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Abstract. Group key exchange (GKE) protocols let a group of users jointly establish fresh and
secure key material. Many flavors of GKE have been proposed, differentiated by, among others,
whether group membership is static or dynamic, whether a single key or a continuous stream of
keys is established, and whether security is provided in the presence of state corruptions (forward
and post-compromise security). In all cases, an indispensable ingredient to the rigorous analysis of a
candidate solution is a corresponding formal security model. We observe, however, that most GKE-
related publications are more focused on building new constructions that have more functionality
or are more efficient than prior proposals, while leaving the job of identifying and working out the
details of adequate security models a subordinate task.

In this systematization of knowledge we bring the formal modeling of GKE security to the fore
by revisiting the intuitive goals of GKE, critically evaluating how these goals are reflected (or not)
in the established models, and how they would be best considered in new models. We classify and
compare characteristics of a large selection of game-based GKE models that appear in the academic
literature, including those proposed for GKE with post-compromise security. We observe a range of
shortcomings in some of the studied models, such as dependencies on overly restrictive syntactical
constrains, unrealistic adversarial capabilities, or simply incomplete definitions. Our systematiza-
tion enables us to identify a coherent suite of desirable characteristics that we believe should be
represented in all general purpose GKE models. To demonstrate the feasibility of covering all these
desirable characteristics simultaneously in one concise definition, we conclude with proposing a new
generic reference model for GKE.

Keywords: Group key exchange · key agreement · key establishment · security model · multi-
user protocol

1 Introduction

The group key exchange (GKE) primitive was first considered about four decades ago. The aim of early
publications on the topic [ITW82, BD95] was to generalize the (two-party) Diffie–Hellman protocol to
groups of three or more participants, i.e., to construct a basic cryptographic primitive that allows a fixed
set of anonymous participants to establish secure key material in the presence of a passive adversary.
Later research identified a set of additional features that would be desirable for GKE, for instance the
support of participant authentication, the support of dynamic groups (where the set of participants is
not fixed but members can join and leave the group at will), the support of groups where one or many
members might temporarily be unresponsive (asynchronous mode of operation), or a maximum resilience
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against adversaries that can obtain read-access to the states of participants for a limited amount of time
(forward and post-compromise security).

Standard applications that require a GKE protocol as a building block include online audio-video
conference systems and instant messaging [RMS18]. Indeed, in an ongoing standardization effort the
IETF’s Messaging Layer Security (MLS) initiative [BBM+20] tests employing GKE protocols for the
protection of instant messaging in asynchronous settings.

While, intuitively, most of the GKE protocols proposed in the literature can serve as a building
block for such applications, it turns out that effectively no two security analyses of such protocols were
conducted in the same formal model, meaning that there is effectively no modularity: For every GKE
candidate that is used in some application protocol, a new security evaluation of the overall construction
has to be conducted. In fact, as will become clear in the course of this article, the GKE literature has
neither managed to agree on a common unified syntax of the primitive, nor on a common approach for
developing and expressing corresponding security definitions. In our view, the lack of a common reference
framework for GKE, including its security, and the implied lack of modularity and interoperability,
imposes an unnecessary obstacle on the way to secure conference and messaging solutions.

1.1 Systemizing Group Key Exchange Models
With the goal of developing a general reference formalization of the GKE primitive, we have a fresh look
at how it should be modeled such that it simultaneously provides sufficient functionality and sufficient
security. More precisely, we are looking for a formalization that is versatile enough to practically fit and
protect generic applications like the envisioned video conferencing. To achieve this, we need to consider
questions like the following: What features does an application expect of GKE? What type of underlying
infrastructure (network services, authentication services, . . . ) can a GKE primitive assume to exist?
What types of adversaries should be considered? To obtain a satisfactory reference formalization, our
model should be as generic as possible when meeting the requirements of applications, should make
minimal assumptions on its environment, and should tolerate a wide class of adversaries.

After identifying the right questions to ask, we derive a taxonomy in which existing models for GKE
can be evaluated to determine whether they provide answers to these questions. If they don’t, we explore
the consequences of this. As a side product, our taxonomy also sheds light on how the research domain
of GKE has evolved over time, and how models in the literature relate to each other. It also informs us
towards our goal to develop a versatile and uniform model for GKE.

We organize our taxonomy and investigations with respect to four property categories of GKE models:
1. the syntax of GKE (Section 2),
2. the definition of partnering (Section 3.1),
3. the definition of correctness (in Appendix A), and
4. the definition of security (Section 4).
While syntax, correctness, and security are properties generally formalized for all kinds of cryptographic
primitives, the partnering notion is specific to the domain of key exchange. In a nutshell, partnering
captures the conditions under which remote parties compute the same session key.

For each of these four categories, we discuss their purposes and central features, and classify the
literature with respect to them. Having both considered the literature and revisited GKE with a fresh
view, we identify a set of desirable characteristics in each of the four categories, from the perspective of
generality of use and minimality of assumptions on the context in which GKE takes place. Based on these
findings, we see how individual definitional approaches and, to some extent, subparadigms of GKE, do
not fully satisfy the needs of GKE analysis. We are further able to synthesize a coherent set of desirable
properties into a single, generic model (Sections 2.5, 3.2, and 4.4, and Appendix A.1), demonstrating
that it is possible to design a model that simultaneously incorporates all these characteristics.

Choice of Literature. Most of the literature in the domain of GKE revolves around the exposition of
a new construction (accompanied either with formal or only heuristic security arguments; see, e.g.,
[ITW82, BD95]). When selecting prior publications to survey in this SoK article, we focused on those
that were developed with respect to a formal computational game-based security model. Our compari-
son covers all publications on GKE with this type of model that appeared in cryptographic “tier-one”
proceedings5 [BCP01, BCPQ01, BCP02a, BCP02b, KY03, KLL04, KS05, CCG+18, ACDT19]. Beyond
5 CRYPTO, Eurocrypt, Asiacrypt, CCS, S&P, Usenix Security, and the Journal of Cryptology.
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that, we browsed through the proceedings of all relevant “tier-two” conferences6 and selected publi-
cations that explicitly promise to enhance the formal modeling of GKE [GBG09, YKLH18].7 We also
include three recently published articles on GKE with post-compromise security (aka. group ratcheting
or continuous GKE), one of which is yet only available as a preprint [CCG+18, ACDT19, ACC+19].8 As
computational simulation-based (UC) and symbolic modeling approaches are essentially incomparable
with computational game-based notions, we exclude these type of models from our systematization.

Tables 1, 2, 3, and 5 summarize and compare the common features that we identified in the sur-
veyed models. The models reflected in these tables are arranged into three clusters. Leftmost: GKE in
static groups [BCPQ01, BCP02b, KY03, KS05, GBG09, CCG+18]; centered: GKE with regular, post-
compromise secure key material updates (aka. ratcheting) [CCG+18, ACDT19, ACC+19]; and rightmost:
GKE in dynamic groups [ACDT19, ACC+19, BCP01, BCP02a, KLL04, YKLH18]. Within each cluster,
models are, where possible, ordered chronologically by publication date. Naturally, works are historically
related, did influence each other, and use intuitively similar notations across these clusters (e.g., due to
overlapping sets of authors). Our results, however, show that these “soft” properties are almost indepen-
dent of the factual features according to which we systematized the models. We correspondingly refrain
from introducing further “clustering-axes” with respect to historic relations between the considered works
as this may mislead more than it supports comprehensibility. Nevertheless, we refer the interested reader
to Appendix C for a short overview of the historic context of the chosen literature and the purposes of
each selected article.

We use symbols , , , , , -, and others to condense the details of the considered model definitions
in our systematizing tables, and accompany them with textual explanations. Not surprisingly, this small
set of symbols can hardly reflect all details encoded in the models but makes “losses due to abstraction”
unavoidable. We optimized the selection of classification criteria such that the amount of information
loss due to simplifications is minimized.

Relation to Two-Party Key Exchange. While the focus of this article is on GKE, many of the notions
that we discuss are relevant also in the domain of two-party key exchange. In our comparisons, we
indicate which properties are specific to the setting of GKE, and which apply to key exchange in general.
Given the large amount of two-party key exchange literature, we do not attempt to provide more direct
comparisons between group and two-party key exchange.

Proposed Model. Since none of the models that we survey achieves all the desirable properties that we
identify, we conclude this article with proposing a simple and generic GKE model that achieves all these
properties. The components of this model are introduced gradually at the end of each systematization sec-
tion. We emphasize that it is not necessarily our goal to guide all future research efforts to a unified GKE
model. Some modeling design decisions are not universal and cannot be reduced to objective criteria, so
we are neither under the illusion that a perfectly unified model exists, nor that the research community
will any time soon agree on a single formalization. Our primary goal when writing down a model was
rather to demonstrate the relative compatibility of the desirable properties. That said, as our systemati-
zation reveals undesirable shortcomings even in very recent GKE models for ratcheting—shortcomings
that partially seem inherited from older work—we believe that proposing a better alternative is long
overdue.

Although our model can be used for analyzing GKE protocols with various realistic, so far disre-
garded properties, achieving these properties is not mandatory but optional for covered GKE protocols.
For example, dynamic GKE protocols with multi-device support that can handle fully asynchronous in-
teraction can be analyzed by our model as well as static GKE protocols in which the interaction between
the participating instances follows a fixed schedule. We consider these properties as implementation de-
tails of the protocols to which our model is carefully defined indifferent. The only mandatory property

6 TCC, PKC, CT-RSA, ACNS, ESORICS, CANS, ARES, ProvSec, FC.
7 We appreciate that many more publications introduce other GKE constructions [BC04, ABCP06, TC06,
NPKW07, JL07, JKT07, DLB07, WZ08, Man09, BBM09, YT10, NS11, GZ12, NSS12, LY13, XHZ15, FTY19,
BDR20]. However, we did not identify that they contribute new insights to the modeling of GKE.

8 Since our analysis started before [ACDT20] was submitted to CRYPTO 2020, we consider a fixed preprint
version [ACDT19] here. Note that the two follow-up works [ACJM20, AJM20] use simulation-based security
models.
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that our model demands is the secrecy of keys in the presence of either active or passive adversaries,
which demonstrates the generality and versatility of our proposal.

1.2 Basic Notions in Group Key Exchange

A group key exchange scheme is a tuple of algorithms executed by a group of participants with the
minimal outcome that one or multiple (shared) symmetric keys are computed.

Terminology of GKE. A global session is a joint execution of a GKE protocol. By joint execution we
mean the distributed invocation of GKE algorithms by participants that influence each other through
communication over a network, eventually computing (joint) keys. Each local execution of algorithms
by a participant is called a local instance. Each local instance computes one or more symmetric keys,
referred to as group keys. Each group key computed by a single local instance during a global session
has a distinct context, which may consist of: the set of designated participants, the history of previously
computed group keys, the algorithm invocation by which its computation was initiated, etc. Participants
of global sessions, represented by their local instances, are called parties.9 If the set of participants in a
global session can be modified during the lifetime of the session, this is an example of dynamic GKE;
otherwise the GKE is static.

There are many alternative terms used in the GKE literature for these ideas: local instances are
sometimes called processes, local sessions, or (misleadingly) oracles; group keys are sometimes called
session keys; and parties are sometimes called users.

Security Models for GKE. As it is common in game-based key exchange models, an adversary against
the security of a GKE scheme plays a game with a challenger that simulates multiple parallel real global
sessions of the GKE scheme. The challenge that the adversary is required to solve is to distinguish
whether a challenge key is a real group key established in one of the simulated global sessions or is a
random key. In order to solve this challenge, the adversary is allowed to obtain (through a key reveal
oracle) group keys that were computed independently, to obtain (through a state exposure oracle)
ephemeral local secret states of instances that do not enable the trivial solution of the challenge, and to
obtain (through a corruption oracle) static party secrets that do not trivially invalidate the challenge
either. While the GKE literature agrees on these high-level concepts, the crucial details are implemented
in various incompatible ways in these articles.

2 Syntax Definitions

Modeling a cryptographic primitive starts with fixing its syntax: the set of algorithms that are available,
the inputs they take and the outputs they generate. We categorized the GKE models we consider ac-
cording to the most important classes of syntactical design choices. In particular, the GKE syntax may
reflect (1) imposed limits on the number of supported parties, sessions, and instances; (2) assumptions
made on the available infrastructure (e.g., the existence of a PKI); (3) the type of operations that the
protocols implement (adding users, removing users, refreshing keys, . . . ); and (4) the information that
the protocols provide to the invoking application (set of group members, session identifiers, . . . ). We
compile the results of our studies in Table 1. If for some models an unambiguous mapping to our cate-
gories is not immediate, we report the result that comes closest to what we believe the authors intended.
Independently, if in any of the categories one option is clearly more attractive than the other options, we
indicate this in the Desirable column. (We leave the cells of that column empty if no clearly best option
exists.) The Our model column indicates the profile of our own GKE model; see also Section 2.5. Note
that no two models in the table have identical profiles.10

The upcoming paragraphs introduce our categories in detail.

9 We further clarify on the relation between local instances and parties and their participation in sessions in
Appendix B.

10 Surprisingly, this holds even for models that appeared in close succession in publications of the same authors.
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Syntax

GKE-specific

[BCPQ01]

[BCP02b]

[KY03]

[KS05]

[GBG09]

[CCG +
18]

[ACDT19]

[ACC +
19]

[BCP01]

[BCP02a]

[KLL04]

[YKLH18]

Desirable

Our model

Quantities
Instances per party n n n n n n 1 (1) 1 n n n n n
Parties per session F F V V V V D D D D D D D D
Multi-participation

Setup assumptions
Authentication by . . . SK PW PK PK PK PK PK (PK) SK PK PK PK any
PKI - - * * * - * -
Online administrator - - - - - -

Operations
Level of specification G L L L G G G L L
Algo: Setup -
Algo: Add -
Algo: Remove -
Algo: Refresh/Ratchet -
Abstract interface

Return values
Group key
Ref. for session
Ref. for group key
Designated members
Ongoing operation - - - -
Status of instance

Table 1. Syntax definitions. Notation: n: many; F: fixed; V: variable; D: dynamic; : yes; : implicitly; : par-
tially; : no; -: not applicable; (blank): no option clearly superior/desirable; SK: symmetric key; PW: password;
PK: public key; G: global; L: local.

2.1 Quantities

All models we consider assume a universe of parties that are potential candidates for participating in
GKE sessions. Instances per party: While most models assume that each party can participate—
using independent instances—in an unlimited number of sessions, three models impose a limit to a
single instance per party.11 In Table 1 we distinguish these cases with the symbols n and 1, respectively.
Parties per session: While some models prescribe a fixed number of parties that participate in each
GKE session, other models are more flexible and assume either that the number of parties is in principle
variable yet bound to a static value when a session is created, or even allow that the number of parties
changes dynamically over the lifetime of a session (accommodating parties being added/removed). In
the table we encode the three cases with the symbols F,V,D, respectively. Multi-participation: In
principle it is plausible that parties participate multiple times in parallel in the same session (through
different, independent instances, e.g., from their laptop and smartphone; see also Appendix B). We note
however that all of the assessed models exclude this and don’t allow for more than one participation
per party. We encode this in the table by placing the symbol in the whole row. Despite no model
supporting it, we argue that a multi-participation feature might be useful in certain cases.

Discussion. We note that security reductions of early ring-based GKE protocols [BD95] require that the
number of participants in sessions always be even [BD05]. We take this as an example that clarifies a
11 The case of [ACC+19] is somewhat special: While their syntax in principle allows that parties operate multiple

instances, their security definition reduces this to strictly one instance per party. For their application (secure
instant messaging) this is not a limitation as parties are short-lived and created ad-hoc to participate in only
a single session.
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crucial difference between the F and V types in the Parties-per-session category, as [BD95] fits into the
F regime but not into the V regime.

2.2 Setup Assumptions

Security models are formulated with respect to a set of properties that are assumed to hold for the
environment in which the modeled primitive is operated. We consider three classes of such assumptions.
The classes are related to the pre-distribution of key material that is to be used for authentication,
the availability of a centralized party that leads the group communication, and the type of service
that is expected to be provided by the underlying communication infrastructure. Authentication by
. . . : If a GKE protocol provides key agreement with authentication, its syntax has to reflect that the
latter is achievable only if some kind of cryptographic setup is established before the protocol session is
executed. For instance, depending on the type of authentication, artifacts related to accessing pre-shared
symmetric keys, passwords, or authentic copies of the peers’ public keys, will have to emerge in the
syntax. In the table we encode these cases with the symbols SK,PW,PK, respectively.12 PKI: In the
case of public-key authentication we studied what the models say about how public keys are distributed,
in particular whether a public key infrastructure (PKI) is explicitly or implicitly assumed. In the table
we indicate this with the symbols and . We further specially mark with * the cases of “closed PKIs”
that service exclusively potential protocol participants, i.e., PKIs with which non-participants (e.g., an
adversary) cannot register their keys. Online administrator: The number of participants in a GKE
session can be very large, and, by consequence, properly orchestrating the interactions between them can
represent a considerable technical challenge.13 Two of the models we consider resolve this by requiring
that groups be managed by a distinguished always-honest leader (either being a group member or an
external delivery service) who decides which operations happen in which order, and another two models
assume the same but without making it explicit. The model of [ACC+19] is slightly different in that a
leader is still required, but it does not have to behave honestly. The model of [YKLH18] does not assume
orchestration: Here, protocols proceed execution as long as possible, even if concurrent operations of
participants are not compatible with each other. This is argued to be sufficient if security properties
ensure that the resulting group keys are sufficiently independent. The remaining models are so simple
that they do not require any type of administration.

Discussion. While the authentication component that is incorporated into GKE protocols necessarily
requires the pre-distribution of some kind of key material, the impact of this component on the GKE
model should be minimal; in particular, details of PKI-related operations should not play a role. It is
even less desirable to assume closed PKIs to which outsiders cannot register their keys.

As we have seen, some models require an online administrator where others do not. If an online
administrator is available, tasks like ensuring that all participants in a session have the same view
on the communication and group membership list become easy. However, in many settings an online
adminstrator is just not available. For instance, instant messaging protocols are expected to tolerate
that participants, including any administrator, might go offline without notice. Unfortunately, if no
adminstrator is available, seemingly simple tasks like agreeing on a common group membership list
become hard to solve as, at least implicitly, they require solving a Byzantine Consensus instance. On
the other hand, strictly speaking, achieving key security in GKE protocols is possible without reaching
consensus.

2.3 Operations

In this category we compare the GKE models with respect to the algorithms that parties have available
for controlling how they engage in sessions. Level of specification: While precisely fixing the APIs of
these algorithms seems a necessity for both formalizing security and allowing applications to generically
12 In continuation of Footnote 11: The case of [ACC+19] is special in that the requirement is an ephemeral

asymmetric key, that is, a public key that is ad-hoc generated and used only once.
13 Consider, for instance, that situations stemming from participants concurrently performing conflicting opera-

tions might have to be resolved, as have to be cases where participants become temporarily unavailable without
notice.
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use the protocols, we found that very few models are clear about API details: Four models leave the syntax
of the algorithms fully undefined.14 Another four models describe operations only as global operations,
i.e., specify how the overall state of sessions shall evolve without being precise about which steps the
individual participants shall conduct. Only three models fix a local syntax, i.e., specify precisely which
participant algorithms exist and which inputs and outputs they take and generate. In the table, we
indicate the three levels of specification with the symbols , G, and L, encoding the terms “missing”,
“global”, and “local”, respectively. The model of [YKLH18] sits somewhere between G and L, and is
marked with . Algo: The main operations executed by participants are session initialization (either of
an empty group or of a predefined set of parties), the addition of participants to a group, the removal of
participants from a group, and in some cases a key refresh (which establishes a new key without affecting
the set of group members). In the table we indicate which model supports which of these operations.
Note that the correlation between the Add/Remove rows and symbolD in Quantities/Parties-per-Session
is as expected. Only very recent models that emerged in the context of group ratcheting support the
key refresh operation. Abstract interface: While the above classes Add/Remove/Refresh are the most
important operations of GKE, other options are possible, including Merge and Split operations that join
two established groups or split them into partitions, respectively. In principle, each additional operation
could explicitly appear in the form of an algorithm in the syntax definition of the GKE model, but
a downside of this would be that the models of any two protocols with slightly different feature sets
would become, for purely syntactic reasons, formally incomparable. An alternative is to use only a single
algorithm for all group-related operations, which can be directed to perform any supported operation
by instructing it with corresponding commands. While we believe that this flexible approach towards
defining APIs to group operations has quite desirable advantages, we have to note that only one of the
considered models supports it.

Discussion. Instance-centric (‘L-level’) specifications of algorithms are vital for achieving both practical
implementability and meaningful security definitions. To see the latter, consider that the only way for
adversaries to attack (global) sessions is by exposing (local) instances to their attacks.

2.4 Return Values

The main outcome of a successful GKE protocol execution is the group key itself. In addition, protocol
executions might establish further information that can be relevant for the invoking application. We
categorize the GKE models by the type of information contained in the protocol outcome. Group key:
We confirm that all models that we consider have a syntactical mechanism for delivering established keys.
Reference for session: By a session reference we understand a string that serves as an unambiguous
handle to a session, i.e., a value that uniquely identifies a distributed execution of the scheme algorithms.
Some of the models we consider require that such a string be established as part of the protocol execution,
but not necessarily they prescribe that it be communicated to the invoking application along with the key.
(Instead the value is used to define key security.) In Table 1, we indicate with symbols and whether
the models require the explicit or implicit derivation and communication of a session reference. We mark
models with if no such value appears in the model. Reference for group key: A key reference is
similar to a session reference but instead of referring to a session it refers to an established key. While
references to sessions and keys are interchangeable in some cases, in general they are not. The latter is
the case, for instance, for protocols that establish multiple keys per execution. Further, if communication
is not authentic, session references of protocol instances can be matching while key references (and keys)
are not. In the table we indicate with symbols and if the models consider explicit or implicit key
references. Designated members: Once a GKE execution succeeds with establishing a shared key, the
corresponding participants should learn who their partners are, i.e., with whom they share the key. In
some models this communication step is made explicit, in others, in particular if the set of partners is
input to the execution, this step is implicit. A third class of models does not communicate the set of
group members at all. In the table we indicate the cases with symbols , , , respectively. Ongoing
operation: In GKE sessions, keys are established as a result of various types of actions, particularly
including the addition/removal of participants, and the explicit refresh of key material. We document
14 In some cases, however, it seems feasible to reverse-engineer some information about an assumed syntax from

the security reductions also contained in the corresponding works.

7



for each considered model whether it communicates for established group keys through which operation
they were established. Status of instance: Instances can attain different protocol-dependent internal
states. Common such states are that instances can be in an accepted or rejected state, meaning that they
consider a protocol execution successful or have given up on it, respectively. In this category we indicate
whether the models we consider communicate this status information to the invoking application.

Discussion. In settings where parties concurrently execute multiple sessions of the same protocol, explicit
references to sessions and/or keys are vital for maintaining clarity about which key belongs to which
execution. (Consider attacks where an adversary substitutes all protocol messages of one session with the
messages of another session, and vice versa, with the result that a party develops a wrong understanding
of the context in which it established a key .) We feel that in many academic works the relevance of
such references could be more clearly appreciated. The formal version of our observation is that session
or key references are a prerequisite of sound composition results (as in [BFWW11]). Sound composition
with other protocols plays a pivotal role also in the Universal Composability (UC) framework [Can01].
Indeed, not surprisingly, the concept of a session reference emerges most clearly in the UC-related model
of [KS05].

Also related to composition is the requirement of explicitly (and publicly) communicating session
and key references, member lists, and information like the instance status: If a security model does not
make this information readily available to an adversary, a reductionist security argument cannot use such
information without becoming formally, and in many cases also effectively, invalid.

Finally, we emphasize that some GKE protocols allow for the concurrent execution of incompatible
group operations (e.g., the concurrent addition and removal of a participant) so that different participants
might derive keys with different understandings of whom they share it with. This indicates that the
Designated members category in Table 1 is quite important.

2.5 Our Syntax Proposal

We turn to our syntax proposal that achieves all desirable properties from the above comparison. It is
important to note that, in contrast to our party-centric perspective in the comparative systematization of
this article, we design our model with an instance-centric view. That means, we here consider instances
as the active entities in group key exchange and parties as only the passive key-storage in authenticated
GKE to which distinct groups of instances have joint access. We discuss the perspectives on the relation
between instances and parties in more detail in Appendix B.

A GKE protocol is a quadruple GKE = (gen, init, exec, proc) of algorithms that generate authenti-
cation values, initialize an instance, execute operations according to protocol-dependent commands, and
process incoming ciphertexts received from other instances. In order to highlight simplifications that are
possible for unauthenticated GKE, we indicate parts of the definition with gray marked boxes that are
only applicable to the authenticated case of GKE.

We define GKE protocol GKE over sets PAU , SAU , IID, ST , CMD, C, K, KID where PAU and
SAU are the public and secret authenticator spaces (e.g., verification and signing key spaces, or public
group identifier and symmetric pre-shared group secret spaces), IID is the space of instance identifiers,
ST is the space of instances’ local secret states, CMD is the space of protocol-specific commands (that
may include references from IID to other instances) to initiate operations in a session (such as adding
users, etc.), C is the space of protocol ciphertexts that can be exchanged between instances, K is the
space of group keys, and KID is the space of key identifiers that refer to computed group keys. The
GKE algorithms are defined as follows:

– gen out−−→ PAU × SAU . This algorithm takes no input and outputs a pair of public and secret au-
thenticator.

– IID in−→ init out−−→ ST . This algorithm initializes an instance’s secret state.15

– SAU × ST × CMD in−→ exec out−−→ ST . This algorithm initiates the execution of an operation in a
group, e.g., the adding/joining/leaving/removing of instances; affected instances’ identifiers can be
encoded in the command parameter cmd ∈ CMD.

15 Although exec and proc could implicitly initialize the state internally, we treat the state initialization explicitly
for reasons of clarity.
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– SAU × ST × C in−→ proc out−−→ ST ∪ {⊥}. This algorithm processes a received ciphertext. Return
value ⊥ signals rejection of the input ciphertext.

Interfaces for Algorithms. In contrast to previous works, we model communication to upper layer appli-
cations and to the underlying network infrastructure via interfaces that are provided by the environment
in which a protocol runs rather than via direct return values. Each of the above algorithms can call the
following interfaces (to send ciphertexts and report keys, respectively):

– IID×C in−→ snd. This interface takes a ciphertext (and the calling instance’s identifier) and hands it
over to the network which is expected to deliver it to other instances for processing. (The receiving
instances are encoded in the ciphertext, see below.)

– IID×KID×K in−→ key. This interface takes a key identifier and the associated key (and the calling
instance’s identifier) and delivers them to the upper layer protocol.

Information Encoded in Objects. We assume that certain context information like paired protocol in-
stances and public authenticators is encoded in objects like key identifiers, ciphertexts, and instance
identifiers. More precisely, we assume three ‘getter functions’ mem, rec, pau as follows:

– Function KID in−→ mem out−−→ P(IID) extracts from a key identifier the list of identifiers of the
instances that are expected to be able to compute the same key.16

– Function C in−→ rec out−−→ P(IID) extracts the identifiers of the instances that are expected to receive
the indicated ciphertext.

– Function IID in−→ pau out−−→ PAU , in the authenticated setting, extracts the public authenticator of
an instance from its identifier.

While this notation is non-standard, it has a number of advantages over alternatives. One advantage
has to do with clarity. For instance, function mem is precise about the fact that the list of peers with
whom a key is shared is a function of the key itself, represented by its key identifier, and not of the
session that established it. Indeed, the latter could establish also further keys with different sets of peers.
A second advantage has to do with compactness of description. (This will be discussed in more detail
in Section 3.1.) For instance, the notation of the proc algorithm would be more involved if the set of
recipient instances of the ciphertext would have to be made explicit as well.

The properties of this syntax proposal are presented in the rightmost column of Table 1. Note that
some properties are implied only by the use of this syntax in our partnering, correctness, and security
definitions. For example, the flexible consideration of authentication mechanisms and the dispensability
of online administrators are due to the game definition in our security notion of Section 4.4. We clarify
on the advantages of our model at the end of Section 4.4.

3 Communication Models

The high flexibility in communication (i.e., interaction among participants) in a GKE protocol execution
creates various challenges for modeling and defining security of GKE. Firstly, tracing participants of a
single global session is a crucial yet typically complex task. Nearly all considered GKE models trace
communication partners differently and, in the two-party key exchange literature, there exists an even
wider variety of partnering predicates (aka. matching mechanisms) for this task. Secondly, normatively
defining valid executions of a GKE protocol (versus invalid ones) in order to derive correctness require-
ments for them is not trivial for a generic consideration of GKE protocols. We note that only five out
of the twelve considered models define correctness. In the following, we discuss partnering notions of the
analyzed models. We also systematize their correctness definitions in Appendix A.

16 P(X ) denotes the powerset of X .
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3.1 Partnering

Generally, a partnering predicate identifies instances with related, similar, or even equal contexts of
their protocol execution. However, partnering has served many different, somewhat related and some-
what independent purposes in (group) key exchange security models. We distinguish four subtly distinct
purposes of partnering.

1. Forbid trivial key reveals. In security experiments where an adversary trying to break a challenge key
can also reveal “independently” established keys, partnering is used to restrict the adversary’s ability
to learn a challenge instance’s key by revealing partner instances’ keys. Here, the partnering predicate
must include at least those instances that necessarily computed the same key (e.g., group members),
but it could be extended to further instances to artificially weaken the adversary (as this restricts its
ability to reveal keys), for example, in order to allow for more efficient GKE constructions.

2. Detect authentication attacks. In some explicitly authenticated GKE security definitions, partnering
is used to identify successful authentication attacks when one instance completes without there
existing partner instances at every designated group member. Here, the partnering predicate must
include at least those instances belonging to designated members of a computed key, otherwise it is
trivial to break authentication. But in this use, compared to use (1) above, the predicate should not
be extended to further instances, as actual attacks against authentication might go undetected, if
partnering is used for this purpose.

3. Define correctness. Partnering is sometimes used to identify instances expected to compute the
same key for correctness purposes. In this case, the partnering predicate must include at most those
instances that are required to compute the same key.

4. Enabling generic composability. Partnering also plays a crucial role in the generic composability
of (group) key exchange with other primitives: Brzuska et al. [BFWW11] show that a publicly
computable partnering predicate is sufficient and (in some cases) even necessary for proving secure
the composition of a symmetric key application with keys from an AKE protocol. (Although they
consider two-party key exchange, the intuition is applicable to group key exchange as well.)

Even though the first three purposes share some similarities, there are also subtle differences, and
defining them via one unified notion can lead to problems.17

Our Consideration of Partnering Predicates. We consider the forbidding trivial key attacks ((1) above)
as the core purpose of the partnering predicate. If the predicate is defined precisely (i.e., it exactly catches
the set of same keys that result from a common global session) and is publicly derivable, it also allows
for generic compositions of group key exchange with other primitives ((4) above), which we also consider
indispensable.

Thereby, it is important to overcome a historic misconception of partnering: for either of the two
above mentioned purposes (detection of key reveals and use of established keys in compositions), not
the instances (that compute keys) are central for the partnering predicate but the keys themselves and
the contexts in which they are computed are. As a result, a partnering definition ideally determines the
relation between established keys and their contexts instead of the relation between interacting instances.
We elaborate on this in the following: In two-party key exchange, the context of a key is defined by its
global session which itself is defined by its two participating instances. In multi-stage key exchange, keys
are computed in consecutive stages of a protocol execution. Hence, the context can be determined by
the two participating instances in combination with the current (consecutive) stage number. However,
in group key exchange—especially if we consider dynamic membership changes—the context of a key
is not defined consecutively anymore: due to parallel, potentially conflicting changes of the member set
in a protocol execution, it is not necessary that all instances, computing multiple keys, perform these
computations in the same order. Consequently, partnering is not a linear, monotone predicate defined for
instances but an individual predicate for each computed group key that reflects its individual context.
17 During the research for this article, we found two recent papers’ security definitions for two-party authenticated

key exchange that, due to reusing the partnering definition for multiple purposes, cannot be fulfilled: Li
and Schäge [LS17] and Cohn-Gordon et al. [CCG+19] both require in their papers’ proceedings version for
authentication that an instance only computes a key if there exists a partner instance that also computed the
key (which is impossible as not all/both participants compute the key simultaneously). Still, the underlying
partnering concept suffices for detecting reveals and challenges of the same key (between partnered instances).
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Partnering/Matching/. . .

GKE-specific

[BCPQ01]

[BCP02b]

[KY03]

[KS05]

[GBG09]

[CCG +
18]

[ACDT19]

[ACC +
19]

[BCP01]

[BCP02a]

[KLL04]

[YKLH18]

Desirable

Our model

Defined?
Generic or protocol-specific - -
Normative/Precise/Retrospect. Variable N - N N N N N - N - V V P P
x Tight (vs. loose ) - - - - - - -
Publicly derivable - -

Components included in partnering predicate:

Transcript
Matching transcripts - -
Sequence of matching transcripts - -

Identifiers
Group identifier - - *
Key identifier - - *
Externally input identifier - -

Group key
Whether partners computed a key - -
Whether group computed a key - -
Whether partners computed same key - -

Members of the group - -

Table 2. Partnering definitions. Notation: : yes, : implicitly, : almost, : partially, : no, -: not applicable;
(blank): no option clearly superior/desirable.

This context can be protocol-dependent and may include the set of designated member instances, a
record of operation by which its computation was initiated, etc. We treat the context information of
group keys as an explicit output of the protocol execution also for supporting the use of these keys in
upper layer applications (see Table 1).

Models Without Partnering Definitions. Three models do not define a partnering predicate at all. In one
of these, [ACDT19], a partnering predicate is implicit within their correctness definition. Two of these
have no need of partnering since they restrict to (quasi-)passive adversaries [ACDT19] or do not offer
adversaries a dedicated access to group keys [ACC+19], however by not defining a partnering predicate,
they do not allow for generic composition with symmetric applications. [BCP02a] seemingly rely on an
undefined partnering predicate, using the term ‘partner’ in their security definition but not defining it
in the paper. [KLL04] define a partnering predicate of which two crucial components (group and key
identifier; see the asterisk marked items in Table 2) are neither defined generically nor defined for the
specific protocol that is analyzed in it.

Generality of Predicates. A partnering predicate can be generic or protocol-specific. From the con-
sidered models, only one has a predicate explicitly tailored to the analyzed GKE construction. But many
of the generic partnering predicates involve values that are not necessarily part of all GKE schemes (e.g.,
group identifiers, externally input identifiers, etc.); a sufficiently generic partnering predicate should be
able to cover a large class of constructions.

Character of Predicates. Generic partnering predicates can be normative, precise, or retrospectively
variable.

Normative predicates define objective, static conditions under which contexts of keys are declared
partnered independent of whether a particular protocol, analyzed with it, computes equal keys under
these conditions. This has normative character because protocols analyzed under these predicates must
implement measures to let contexts that are—according to the predicate—declared unpartnered result
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in the computation of independent (or no) keys. As almost all security experiments allow adversaries to
reveal keys that are not partnered with a challenge key (see Section 4), protocols that do not adhere to
a specified normative predicate are automatically declared insecure (because solving the key challenge
thereby becomes trivial). These predicates can hence be considered as (hidden) parts of the security
definition.

The class of normative predicates can further be divided into tight and loose ones. Tight predicates
define only those contexts partnered that result from a joint protocol execution when not attacked by
active adversaries. This corresponds to the idea of matching conversations being the first tight predicate
from the seminal work on key exchange by Bellare and Rogaway [BR94]. Two instances have match-
ing conversations if each of them received a non-empty prefix of, or exactly the same, ciphertexts that
their peer instances sent over the network—resulting in partnered contexts at the end of their session.
Matching conversations are problematic for the GKE setting for two reasons. First, achieving security un-
der matching conversations necessitates strongly unforgeable signatures or message authentication codes
when being used to authenticate the communication transcript.18 Second, lifting matching conversations
directly and incautiously to the group setting, as in [KY03], requires all communication in a global session
to be broadcast among all group members so each can compute the same transcript—inducing imprac-
tical inefficiency for real-world deployment. If the model’s syntax generically allows to (partially) reveal
ciphertexts’ receivers, as in [ACDT19], pairwise transcript comparison does not require all ciphertexts to
be broadcast but the strong unforgeability for authenticating signatures or MACs remains unnecessarily
required. Several models [BCPQ01, BCP01] circumvent the necessity of broadcasting all group com-
munication in a matching conversation-like predicate, although their syntax does not reveal receivers of
ciphertext: they define two instances and their contexts as partnered if there exists a sequence of instances
between them such that any consecutive instances in this sequence have partnered contexts according to
matching conversations. (This still needs strongly unforgeable signatures and MACs, however.)

A loose partnering predicate is still static but declares more contexts partnered than those that
inevitably result in the same key due to a joint, unimpeded protocol execution. This may include contexts
of instances that actually did not participate in the same global session, or that did not compute the same
(or any) key. An example for loose partnering predicates is key partnering [CCG+18] which declares the
context of a key as the value of the key itself, regardless of whether it is computed due to participation
in the same global session. Clearly, two instances that participated in two independent global sessions
(e.g., one global session terminated before the other one begun) should intuitively not compute keys with
partnered contexts even if these keys equal. Forbidding the reveal of group keys of intuitively unpartnered
contexts results in security definitions that declare protocols ‘secure’ that may be intuitively insecure. On
the other hand, partnering predicates that involve the comparison of a protocol-dependent [GBG09] or
externally input [KS05] group identifier are loose because equality of this identifier means being partnered
but does not imply the computation of an equal (or any) key.

A precise partnering predicate exactly declares those contexts as partnered that refer to equal keys
computed due to the participation in the same global session. Hence, the conditions for being partnered
are not static but depend on the respectively analyzed protocol. As a response to the disadvantages of
normative partnering (and in particular tight matching conversations), Li and Schäge [LS17] proposed
original-key partnering as a precise predicate for two-party key exchange: two instances have partnered
contexts if they computed the same key, due to participating in a global session, that they would also
have computed (when using the same random coins) in the absence of an adversary. As of yet, there
exists no use of original-key partnering for the group setting in the literature, and we discuss drawbacks
of this form of precise predicate with respect to the purpose of partnering below.

Variable predicates are parameterized by a customizable input that can be post-specified individually
for each use of the model in which they are defined. Hence, these predicates are neither statically fixed
nor determined for each protocol (individually) by their model, but can be specified ad hoc instead. As a
result, a cryptographer, using a model with a variable predicate (e.g., when proving a construction secure
in it), can define the exact partnering conditions for this predicate at will. The main drawback is that
different instantiations of the same variable predicate in the same security model can produce different
security statements for the same construction. We consider this ambiguity undesirable. Both group

18 Note that every manipulated bit in the transcript (including signatures or MAC tags themselves) dissolves
partnering.
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identifier and key identifier are left undefined in [KLL04] so they are effectively variable; in [YKLH18]
the group ID is outsourced and thus left effectively variable.

Public Derivability of Predicates. A partnering predicate can and—in order to allow for generic compo-
sitions—should be publicly derivable. That is, the set of partnered contexts should be deducible from
the adversarial interaction with the security experiment (or, according to Brzuska et al. [BFWW11], from
the communication transcript of all instances in the environment). Only four models considered achieve
this as listed in Table 2; here refers to the implicit ability to observe whether group keys are computed.
Partnering in all remaining models involves private values in instances’ secret states. We remark that
original-key partnering [LS17] (for two-party key exchange) is the only known precise predicate but it is
not publicly computable as it depends on secret random coins.

Components of Predicates. The lower part of Table 2 lists the various parameters on which partner-
ing predicates we consider are defined. These parameters include: the transcript of communications,
protocol-specific identifiers, external inputs, the computed group key, the set of group members,
etc.

The two main purposes of partnering ((1) forbidding trivial attacks and (4) allowing for generic com-
position) use the partnering predicate to determine which keys computed during a protocol execution are
meant to be the same and in fact equal (i.e., whether they share the same context). Consequently, an ideal
partnering predicate should depend on the context that describes the circumstances under which (and if)
the group key is computed. As only for few protocols (e.g., optimal secure ones; cf. [PR18a, PR18b, JS18])
it is reasonable that the entire communicated transcript primarily determines the circumstances (i.e.,
the context) under which a key is computed, we consider it unsuitable to define partnering based on the
transcript generally.

We conclude that it is not the task of the partnering predicate to define security (as normative
predicates do). Neither should the variability of partnering predicates lead to ambiguous security notions.
Hence, we consider generic, precise, and publicly derivable partnering predicates desirable. With our
proposed partnering predicate from Section 3.2, we demonstrate that the problems of the yet only known
precise partnering predicate [LS17] can be solved.

3.2 Our Partnering Proposal

Our partnering predicate defines keys with the same explicitly (and publicly; see Section 4.4) output
context kid partnered:

Definition 1 (Partnering). Two keys k1, k2 computed by instances id1 and id2 and output as tuples
(id1, kid1, k1) and (id2, kid2, k2) via their key interface are partnered iff kid1 = kid2.

4 Security Definitions

Although the actual definition of security is the core of a security model, there is no unified notion of
“security” nor agreement on how strong or weak “security” should be—in part because different scenarios
demand different strengths. Thus we do not aim to compare the strength of models’ security definitions,
but do review clearly their comparable properties. We focus on the desired security goals, adversarial
power in controlling the victims’ protocol execution, and adversarial access to victims’ secret information.
We do not compare the conditions under which adversaries win the respective security experiments (aka.
“freshness predicates”, “adversarial restrictions”, etc.) as this relates to the models’ “strength”, but we
do report on characteristics such as forward-secrecy or post-compromise security.

4.1 Security Goals

The analyzed models primarily consider two independent security goals: secrecy of keys and authentica-
tion of participants.

Secrecy of keys is in all models realized as indistinguishability of actually established keys from
random values, within the context of an experiment in which the adversary controls protocol executions.
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Security

GKE-specific

[BCPQ01]

[BCP02b]

[KY03]

[KS05]

[GBG09]

[CCG +
18]

[ACDT19]

[ACC +
19]

[BCP01]

[BCP02a]

[KLL04]

[YKLH18]

Desirable

Our model

Security goals
Key indistinguishability
x Multiple challenges
Explicit authentication

Adversarial protocol execution
All algorithms
Instance specific
Concurrent invocations
Active communication manipulation

Adversarial access to secrets
Corruption of involved parties’ secrets -
x After key exchange - - -
x Before key exchange - - -
Corruption of independent parties’ secrets -
x Always - - -

Exposure of involved instances’ states
x After key exchange - - - - -
x Before key exchange - - - - -
Exposure of independent instances’ states
x Always - - - - -

Reveal of independent group keys
x Always

Table 3. Security definitions. Notation: : yes, : implicitly, : almost, : partially, : no, -: not applicable;
(blank): no option clearly superior/desirable.

During the experiment, the adversary can query a challenge oracle that outputs either the real key for
a particular context or a random key; a protocol is secure if the adversary cannot dinistinguish between
these two. Only one model allows adversaries to query the challenge oracle multiple times; all others
allow only one query to the challenge oracle, resulting in an unnecessary and undesirable tightness loss
in reduction-based proofs of composition results.

Key indistinguishability against active adversaries already implies implicit authentication of par-
ticipants. That means keys computed in a session must diverge in case of active attacks that modify
communications. Some models require explicit authentication: that the protocol explicitly rejects
when there was an active attack. ([KLL04] only provide a very specialized notion thereof.) However,
the value of explicit authentication in GKE, or even authenticated key exchange broadly, has long been
unclear [Sho99]: GKE is never a standalone application but only a building block for some other purpose,
providing keys that are implicitly authenticated and thus known only to the intended participants. If
the subsequent application aims for explicit authentication of its payload, the diverging of keys due to
implicit authentication can be used accordingly.

4.2 Adversarial Protocol Execution

To model the most general attacks by an adversary, the security experiment should allow adversaries
to setup the experiment and control all victims’ invocations of protocol algorithms and operations;
all models considered do so. However, in two models the adversary can setup only one group during
the entire security experiment ( ); this again introduces a tightness loss in the number of groups for
composition results, and means that the use of long-term keys by parties across different sessions, as
defined by [ACC+19], cannot be proven secure in the respective model.
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Most models allow for instance-specific scheduling of invocations. This means that the adversary
can let each instance execute the protocol algorithms individually instead of, for example, being re-
stricted to only initiate batched protocol executions (e.g., of all instances involved in a group together).
Three models ( ) indeed require that the adversary schedules algorithm and operation invocations that
change group membership for all affected instances at once (and not individually); hence, diverging and
concurrent operations (e.g., fractions of the group process different actions) cannot be scheduled in these
three models. In practice this restriction means that some form of consensus is required (e.g., a central
delivery server). While algorithms and operations can be invoked concurrently in [ACDT19], this
model allows only one of the resulting concurrently sent ciphertexts to be delivered to and processed by
the other participants of the same session; this similarly requires some consensus mechanism.

An active adversary who modifies communication between instances is permitted in almost all
models. However, [CCG+18] forbid active attacks during the first communication round, [ACC+19] only
allow adversaries to inconsistently forward ciphertexts but not manipulate them, and [ACDT19] require
honest delivery of the communication. For the deployment of protocols secure according to the latter two
models, active adversaries must be considered impractical or authentication mechanisms must be added.

4.3 Adversarial Access to Secrets

GKE models allow the adversary to learn certain secrets used by simulated participants during the secu-
rity experiment. Below we discuss the different secrets that can be learned and the conditions under which
this is allowed. We neglect adversarial access to algorithm invocations’ random coins in our systematiza-
tion as only three models consider this threat in their security experiments [CCG+18, ACDT19, ACC+19].

Corruption of party secrets models a natural threat scenario where parties use static secrets to
authenticate themselves over a long period. Corruption is also necessary to model adversarial partici-
pation in environments with closed public key infrastructure (see Section 2), allowing the adversary to
impersonate some party. Table 3 shows which models allow for corruptions of party secrets after and be-
fore the exchange of a secure group key (i.e., forward-secrecy and post-compromise security, respectively),
and corruptions of independent parties anytime. In [ACDT19] parties do not maintain static secrets so
corruption is irrelevant. Two other models do have parties with static secrets but do not provide an oracle
for the adversary to corrupt them.19 Due to imprecise definitions, [KLL04] partially forbids corruptions
of involved parties even after a secure key was established, and two other models even forbid corruptions
of independent parties before an (independent) secure group key is established. Only three models treat
authentication as the sole purpose of party secrets, defining precise conditions that allow corruptions
before and after the establishment of a secure group key. As secrecy of a group key should never depend
solely on secrecy of independent parties’ long-term secrets and forward-secrecy is today considered a
minimum standard, we deem security despite later corruption of long-term secrets desirable.

Exposure of instance states is especially important in GKE because single sessions may be quite
long-lived—such as months- or years-long chats—so local states may become as persistent as party
secrets. In most security experiments that provide adversarial access to instance states, their exposure
is not permitted before the establishment of a secure group key. Some of these models further restrict
the exposure of independent instances’ states (e.g., because they were involved in earlier stages of the
same session). The three papers that consider ratcheting of state secrets allow adversarial access to these
states shortly before and after the establishment of a secure group key. [CCG+18] model state expose
through the reveal of random coins, which means an exposure at a particular moment reveals only newly
generated secrets in the current state, not old state secrets. We consider the ability to expose states
independent of and after the establishment of a group key desirable, and leave state exposure before
establishment—post-compromise security—as a bonus feature.20

The reveal of established group keys in the security experiment is important to show that different
group keys are indeed independent. One motivation for this is that use of keys in weak applications should
not hurt secure applications that use different keys from the same GKE protocol. The reveal of keys is
19 Moreover, in [BCP02b, ACC+19], party secrets cannot be derived via state exposures. Although [ACC+19]

allow the exposure of instance states, their syntax, strictly speaking, does not have a method for using party
secrets in the protocol execution, even though their construction makes use of them (violating the syntax
definition).

20 Note, for example, that post-compromise security is rather irrelevant for short-lived static GKE protocols.
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furthermore necessary to prove implicit authentication of group keys. Reveals should also be possible
to permit composition of key exchange with a generic symmetric key protocol [BFWW11]. Almost all
models allow the reveal of different (i.e., unpartnered) group keys unlimitedly. As [BCP02a] and [KLL04]
do not define partnering adequately (see Section 3.1), it cannot be assessed which group keys are declared
unpartnered in their models. The adversary in [ACC+19] is not equipped with a dedicated reveal oracle
but since the security in this model is strong enough, the exposure of instance states suffices to obtain
all keys without affecting unpartnered keys. [YKLH18] forbid the reveal of earlier group keys in the
same session. As unpartnered keys should always be independent we consider it desirable to allow their
unrestricted reveal.

4.4 Our Security Proposal

We define security of GKE schemes via a game in which adversaries can interact with these schemes via
oracles: For each algorithm of the GKE scheme (see Section 2.5), adversaries can query a corresponding
oracle—Init, Execute, Process in the unauthenticated setting and additionally Gen in the authenticated
setting—and thereby choose the respective public input parameters. The public outputs, produced by the
respective internal algorithm invocations of these oracles, are given to adversaries via the interfaces snd
and key. Adversaries can also query oracles Expose, Reveal and in the authenticated setting additionally
Corrupt to obtain instances’ secret states, established group keys, and parties’ authentication secrets,
respectively. By querying oracle Challenge, adversaries obtain challenge group keys and win the game if
they correctly determine whether these keys were actually established by simulated instances during the
game or randomly sampled.

We provide the formal pseudo-code description of this game in Figure 1. The majority of lines of
code in this figure only realizes the sound simulation of the game and, therefore, equally appears in our
correctness definition from Figure 2. Below we textually describe the remaining parts that constitute
restrictions of the adversary and the definition of security.

K Array of computed group keys
ST Array of instance states
SAU Array of secret authenticators
CR Set of corrupted or external authenticators
WK Set of weak group keys
CH Set of keys challenged for A
CP Set of keys already computed by an instance
TR Transcript as queue of ciphertexts sent among

instances

Table 4. Variables in Figures 1 and 2.

To prevent the trivial solving of challenges, the game forbids the adversary to conduct the following
attacks.

1. A group key must not be both revealed via oracle Reveal and queried as a challenge via oracle Challenge
(lines 37,42,05).

2. After an instance’s local state is exposed via oracle Expose, all keys that can be computed by this
instance according to their key identifier are declared weak (i.e., known to the adversary), if these
keys have not already been computed by this exposed instance before (lines 45,34).

As weak keys cannot be challenged but non-weak keys can, we require forward-secrecy—previously com-
puted keys are required to stay secure after an exposure—but not post-compromise security—all future
keys of this instance are declared insecure after an exposure. We sketch how to add post-compromise
security requirements to this notion below but we consider this weaker security definition sufficient for
our demonstration purposes.

Finally, the treatment of active impersonation attacks against the communication in the unauthenti-
cated setting is as follows:
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Game KINDb
GKE(A)

00 K[·]← ⊥; ST [·]← ⊥
01 SAU [·]← ⊥; CR← PAU
02 WK ← ∅; CH ← ∅
03 CP[·]← ∅; TR[·][·]← ⊥
04 b′ ←$ A()
05 · Require WK ∩ CH = ∅
06 Stop with b′

Oracle Gen
07 (pau, sau)←$ gen
08 SAU [pau]← sau
09 · CR← CR \ {pau}
10 Return pau
Oracle Init(iid)
11 Require iid ∈ IID
12 Require SAU [pau(iid)] 6= ⊥
13 Require ST [iid] = ⊥
14 st ←$ init(iid)
15 ST [iid]← st
16 Return

Oracle Execute(iid, cmd)
17 Require ST [iid] 6= ⊥
18 sau ← SAU [pau(iid)]; st ← ST [iid]
19 st ←$ exec(sau, st, cmd)
20 ST [iid]← st
21 Return

Oracle Process(iid, c)
22 Require ST [iid] 6= ⊥
23 sau ← SAU [pau(iid)]; st ← ST [iid]
24 st ←$ proc(sau, st, c)
25 · If @iids : c = TR[iids][iid].peek()

∧st 6= ⊥:
26 · WK ∪← {kid ∈ KID \ CP[iid] :

∃iidcr : {iid, iidcr} ⊆ mem(kid)
∧ pau(iidcr) ∈ CR}

27 Else: TR[iids][iid].dequeue()
28 ST [iid]← st
29 Return

Proc sndiid(c)
30 · For all iidr ∈ rec(c):
31 · TR[iid][iidr].enqueue(c)
32 Give c to A

Proc keyiid(kid, k)
33 K[kid]← k
34 · CP[iid] ∪← {kid}
35 Give kid to A

Oracle Reveal(kid)
36 Require K[kid] 6= ⊥
37 · WK ∪← kid
38 Return K[kid]

Oracle Challenge(kid)
39 Require K[kid] 6= ⊥ ∧ kid /∈ CH
40 k0 ← K[kid]
41 k1 ←$ K
42 · CH ∪← kid
43 Return kb

Oracle Expose(iid)
44 Require ST [iid] 6= ⊥
45 · WK ∪← {kid ∈ KID \ CP[iid] :

iid ∈ mem(kid)}
46 Return ST [iid]

Oracle Corrupt(pau)
47 Require SAU [pau] 6= ⊥
48 · CR ∪← {pau}
49 Return SAU [pau]

Fig. 1. KIND game of GKE modeling unauthenticated or authenticated group key exchange. ‘·’ at the margin
highlight mechanisms to restrict the adversary (e.g., to forbid trivial attacks). Almost all remaining code equally
appears in game FUNC in Figure 2 and is less important for understanding the security definition. The used
variables are explained in Table 4. Line 27 uses iids from line 25.

3a) If a ciphertext from an unknown sender (or from a known sender in the wrong order) is processed
by an instance without being rejected (lines 30-31,25), then all keys that can be computed by this
processing instance according to their key identifier are declared weak, if they have not already been
computed by this processing instance before (lines 26,34).

This reflects that in the unauthenticated setting every adversarially generated ciphertext that is accepted
as valid by an instance can be considered a successful impersonation of another (honest) instance. Hence,
future keys computed by the accepting receiver are potentially known to the adversary.

In the authenticated setting, the set of keys that are declared weak is reduced based on the set of
corrupted authenticators. Authenticators are considered corrupted if they have not been generated by
the challenger (lines 01,09; because thereby they are potentially adversarially generated) or if they have
been honestly generated first but then corrupted via oracle Corrupt (lines 01,09,48). As the impersonation
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of instances with uncorrupted authenticators should be hard in the authenticated setting, active attacks
against the communication between instances are treated as follows:

3b) If a ciphertext from an unknown sender (or from a known sender in the wrong order) is processed
by an instance without being rejected (lines 30-31,25), then all keys that can be computed by this
processing instance according to their key identifier are declared weak, if they have not already been
computed by this processing instance before (lines 26,34) and, according to their key identifier, they
are also computable by an instance with a corrupted authenticator (lines 26,01,09,48).

Definition 2 (Adversarial Advantage). The advantage of an adversary A in winning game KIND
from Figure 1 is Advkind

GKE(A) := |Pr[KIND1
GKE(A) = 1]− Pr[KIND0

GKE(A) = 1]|.

Intuitively, a GKE scheme is secure if all realistic adversaries have negligible advantage in winning this
game.

Discussion of the Model. With our proposed model we only want to provide an example definition of
security. As mentioned before, we believe that optimal security for GKE is often too strong for practical
demands (and hence undesired), and we are not under the illusion that there exists a unified definition of
security on which the literature should or aims to agree on. Our contribution is instead that we provide
a simple, compact, and precise framework that generically captures GKE and in which the restriction
of the adversary (which essentially models the required security) can easily be adjusted. The provided
instance of this framework achieves all properties that we identified as desirable in our systematization
of knowledge. To name only some advantages of our model: 1. it allows for participation of multiple
instances per party per session, 2. it covers unauthenticated, symmetric-key authenticated, and public-
key authenticated settings, 3. it imposes no form of key distribution mechanism on GKE constructions and
their environment, 4. neither does it impose a consensus mechanism for unifying all session participants’
views on the session (although they can be implemented on top), 5. it permits any variant of protocol-
specific membership operations, 6. it bases on natural generic interfaces, 7. it outputs the context of
group keys along with the group keys themselves to upper-layer applications, 8. it allows for actual
asynchronous protocol executions in which not all participants need to agree upon the same order of
group key computations, 9. it defines partnering naturally via the context that the protocol itself declares
for each group key, 10. it illustrates how a generic model can allow for protocol-dependent definitions
of contexts for group keys, 11. it respects the requirements of composition results [BFWW11], 12. it
naturally gives adversaries in the security experiment full power in executing the protocol algorithms
and determining their public inputs, 13. and it can easily express different strengths of security (see the
next paragraph). At the same time, none of the newly captured properties are required to be achieved by
analyzed protocols since our model is designed to be indifferent to them. We conclude that this model
fulfills its main purpose: demonstrating that the desired properties from our systematization framework
do not conflict and can hence be achieved simultaneously.

Adding Post-Compromise Security. Extending our proposed security definition to also require secrecy of
group keys after an involved instance’s state was exposed is, due to our flexible key identifiers, straight
forward. Intuitively, an instance can recover from a state exposure by contributing new (public) key
material to the group. The period between two such contributions by an instance is sometimes called
“epoch” (cf. [PR18b, ACDT20]). By encoding in the key identifier of each group key the current epoch
of each involved instance, the set of keys that are declared weak due to a state exposure can be reduced
accordingly: Instead of declaring all keys weak that an instance can compute in the future after its state
was exposed (see item 2 and line 45), only those keys that can be computed by this instance in the
current epoch are declared weak. This has the effect that group keys of future epochs are required to be
secure again.

5 Concluding Remarks and Open Problems

Our systematization of knowledge reveals some shortcomings in the GKE literature, stemming from a
tendency to design a security model hand-in-hand with a protocol to be proven; such a model tends to
be less generic, making specific assumptions about characteristics of the protocols it can be used for or
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the application environment with which it interacts. Sometimes the application environment appeared to
be fully neglected. We revisit the underlying concepts of GKE and take into account the broad spectrum
of requirements that may arise from the context in which a GKE protocol may be used, such as the
type and distribution of authentication credentials of parties, how groups are formed and administered,
and whether parties can have multiple devices in the same group. The goal is not to develop a single
unified model of group key exchange security, but to support the development of models within the
GKE literature that are well-informed by the principle requirements of GKE. Our prototype model
demonstrates that these desirable properties of GKE can be satisfied within one generic model, with
reduced complexity, increased precision and without restricting its applicability and coverage.

Looking forward, group key exchange is on track for increasing complexity. There now exist prominent
applications requiring group key exchange—group instant messaging, videoconferencing—and using a
cryptographic protocol in a real-world setting invariably leads to greater complexity in modeling and
design. Moreover, the desire for novel properties such as highly dynamic groups and post-compromise
security using ratcheting, manifested in proposed standards such as MLS, make it all the more important
to have a clear approach to modeling the security of group key exchange.

Among others, our work leaves a number of challenges as open problems. As noted, our model should
be seen as a general framework from which versions dedicated to specific use cases can be derived by
restricting certain components. Identifying a palette of such submodels that are simultaneously useful
and general is challenging, and left for future research. Independently, appropriately integrating the
consideration of weakened randomness sources or low entropy password-based authentication into our
model remains an open task. Finally, our work contributes a new model that, so far, has not been tested
by analyzing the security of a concrete real-world GKE construction.
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A Correctness

Correctness is a quality of protocols that describes the functional guarantees one can expect from their
execution. Before discussing these guarantees and the requirements under which one can expect them,
we first discuss the role of correctness definitions in models that are aimed for the analysis of another
(potentially independent) quality: security.

Safety and Liveness. While usually being defined unified in cryptographic literature, correctness is often
alternatively considered as the combination of distinct safety and liveness predicates in other research
fields (such as distributed computing). Thereby safety captures consistency guarantees and liveness
declares conditions under which actual functionality is guaranteed. Intuitively, liveness expresses under
which conditions the protocol execution computes an output (e.g., if the adversary remains passive and
the protocol terminates, then a key is computed by all execution participants), and safety expresses
which conditions this output must fulfill when it is computed, without requiring that it is ever computed
(e.g., if a key is computed by some participants during a session, then it must be the same key for all of
them). After explaining the problems with liveness definitions in interactive group protocols, we discuss
which of these two components (safety and liveness) are important for defining security.

Liveness in Interactive Group Protocols. For most cryptographic primitives, correctness in the form of
liveness is defined by requiring a specific output behavior for a specific execution schedule. In the simplest
(non-interactive) case, the nested execution of several algorithms is required to produce a certain output
(e.g., for encryption schemes, the decryption of the encryption of a message must produce the message
again; for signature schemes, the verification of a message with a signature that was computed for this
message must accept; etc). Similarly, for two-party key exchange (if correctness is defined) the honest
execution of the protocol is usually required to establish the same key for both execution participants
(see e.g., [BR94]).

For protocol executions (i.e., sessions) with multiple participants that can (all) actively influence
the output of this execution (e.g., dynamic GKE in which all group members can initiate membership
changes), there may exist multiple different execution schedules that results in the same output (e.g.,
the same group can compute the same key independent of the order of membership changes). Simultane-
ously, there may not exist only one “correct” output for each specific execution schedule. (Consider, for
example, a dynamic GKE session in which two group members concurrently initiate conflicting changes
of membership. The resulting set of members and the group key, output by participating members, may
differ for different GKE schemes, or even for different executions of the same GKE scheme.) Finally, as
argued in Section 2, we consider it undesirable to explicitly model specific operations (and their impact
on the session) in GKE syntax definitions. Specifying the exact output of specific execution schedules as
part of a correctness definition is thereby undesirable as well. It is, consequently, complicated (if not im-
possible) to formulate a complete and static definition of execution schedules with their required output
in a liveness definition for generic GKE protocols.

Correctness and Security. Intuitively, correctness and security could be considered independent qualities:
a scheme can be correct but insecure, incorrect but secure, correct and secure, or neither correct nor
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Correctness

GKE-specific

[BCPQ01]

[BCP02b]

[KY03]

[KS05]

[GBG09]

[CCG +
18]

[ACDT19]

[ACC +
19]

[BCP01]

[BCP02a]

[KLL04]

[YKLH18]

Desirable

Our model

Defined

Requirements
Honest transcript delivery - - - - - - -
Two instances are partnered - - - - - - -
All group instances are partnered - - - - - - -
A key is computed - - - - - - -
All participating instances share >= - - - - - - -
Keys are partnered - - - - - - -

Guarantees
Same key - - - - - - -
Non-zero key - - - - - - -
Keys are partnered - - - - - - -

Table 5. Correctness definitions. Notation: : yes, : implicitly, : almost, : partially, : no, -: not applicable;
(blank): no option clearly superior/desirable.

secure. Indeed, “lazy” (i.e., incorrect) schemes not doing anything trivially (can be adapted to) reach most
security properties immediately. Thereby the question may arise why one needs to consider correctness
in a security analysis at all.

On the one hand, there exist security definitions that cannot be achieved by schemes that provide
certain correctness guarantees and consequently there exist correctness definitions that schemes cannot
achieve when also providing certain security guarantees. Hence, for demonstrating the usefulness of a
security definition, either a correctness definition (including liveness guarantees) that is (believed to
be) compatible with this security should be provided. Alternatively, a construction accordingly secure,
implicitly showing its correctness guarantees, should be provided along with this security definition.

On the other hand, based on the idea that an adversary in a security experiment only needs to
be restricted when attacking a correct scheme, the idea of security up to correctness (more precisely
“indistinguishability up to correctness”) was formally proposed by Rogaway and Zhang [RZ18]. Their
approach for defining security for a given correctness definition is intuitively as follows: in the security
experiment adversaries are given full power over the execution of a primitive simulated by a challenger,
potentially including access to special oracles that provide secrets of instances involved in the execution.
The challenger then restricts this power by “silencing” (i.e., suppressing) only adversarial queries for
which the challenger’s response is already determined by the correctness definition. This restriction
prevents the trivial solution of embedded challenges in the security experiment (e.g., if correctness requires
partnered keys k′, k∗ to equal k′ = k∗, then if k∗ is a challenge, revealing k′ determines the challenge’s
solution). The major advantage of this approach is reduced ambiguity in defining security. Note that one
can still define oracles for adversarial access to secrets freely.

It is immediate that the approach of Rogaway and Zhang [RZ18] requires the definition of correctness
for obtaining a definition of security. However, the challenger, when silencing oracle queries based on their
determination, does not need to know in advance when the protocol computes an output (as the outputs
of the protocol execution are directly observable for the challenger). The challenger only needs to know
how a computed output relates to other values. This relation is expressed by the definition of safety
already.

We note that the overall idea behind security up to correctness—silencing oracles or penalizing queries
to them, based on the safety guarantees one expects—is not only the basis of this formal definition process
but also the intuition behind most informal, manual approaches for defining security.

We conclude that defining correctness in definitions of security can be desirable in the form of liveness
for demonstrating that the security can be met by useful constructions, and is desirable in the form
of safety for guiding restrictions of the adversary in the security experiment. As a definition of security
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normally comes with an analysis of a (useful) protocol, the definition of liveness can usually be neglected.
Furthermore, due to the sketched problems with (complete and static) liveness definitions, we focus on
safety guarantees in the following.

A Clean Definition of Safety. The only functionality GKE protocols should provide generically is the
establishment of group keys. Thereby keys should be the same if they were output by participants of
a joint session and meant to be established as a shared group key. The generic mechanism for tracing
commonly computed group keys is the partnering predicate. Consequently, partnered keys (or keys of
partnered instances) should be equal in order to fulfill safety (see Table 5).

As our syntax from Section 2.5 allows upper layer protocols to identify keys (with the key identifier),
it is actually not necessary that two session participants compute two distinct group keys in the same
order. Partnering of instances, however, seems to be a linearly sequential property (if two instances were
partnered once and their partnerships is disrupted, they will not become partners again). Partnering
of group keys is, in contrast, a time-independent property (if two keys are partnered, they will remain
partnered forever). As a consequence, we consider keys (as opposed to instances) being partnered desirable
as the requirement of the safety definition.

Discussion of Models. As it can be seen in Table 5, two definitions [KY03, YKLH18] match our idea
of requirements for correctness (note that both define partnering w.r.t. instances and [KY03] require
honest delivery for being partnered). In addition to requiring key equality as safety guarantee, [KY03]
furthermore demand the computation of a non-trivial real key.

The remaining three correctness definitions require an honest protocol execution (satisfying their
explicit or implicit partnering predicates) for the computation of same keys. The above described problem
of declaring an execution honest (and requiring a certain output from it) is resolved in these three
definitions as follows: The former two models [KS05, GBG09] solely capture static GKE (in which
the execution schedule can be predetermined) and the latter one forbids the concurrent processing of
conflicting operations in groups such that a fixed, shared output can be expected.

A.1 Our Correctness Proposal

Game FUNCGKE(A)
50 K[·]← ⊥; ST [·]← ⊥
51 SAU [·]← ⊥
52 Invoke A()
53 Stop with 0
Oracle Gen
54 (pau, sau)←$ gen
55 SAU [pau]← sau
56 Return pau
Oracle Init(iid)
57 Require iid ∈ IID
58 Require SAU [pau(iid)] 6= ⊥
59 Require ST [iid] = ⊥
60 st ←$ init(iid)
61 ST [iid]← st
62 Return

Proc sndiid(c)
63 Give c to A

Oracle Execute(iid, cmd)
64 Require ST [iid] 6= ⊥
65 sau ← SAU [pau(iid)]; st ← ST [iid]
66 st ←$ exec(sau, st, cmd)
67 ST [iid]← st
68 Return

Oracle Process(iid, c)
69 Require ST [iid] 6= ⊥
70 sau ← SAU [pau(iid)]; st ← ST [iid]
71 st ←$ proc(sau, st, c)
72 ST [iid]← st
73 Return

Proc keyiid(kid, k)
74 · Reward K[kid] /∈ {⊥, k}
75 · Reward iid /∈ mem(kid)
76 K[kid]← k
77 Give kid to A

Fig. 2. FUNC game of GKE describing correctness in the form of safety. Gray marked code is only applicable
in the authenticated setting. Lines marked with ‘·’ at the left margin highlight safety requirements. For an
explanation of the used variables see Table 4.

We here shortly describe the details of our correctness definition that is based on the game from
Figure 2.
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Definition 3 (Safety). A GKE protocol GKE is safe if for all adversaries A against game FUNC
according to Figure 2 it holds that Pr[FUNCGKE(A) = 1] = 0.

We declare a GKE protocol incorrect if two computed non-trivial keys (i.e., k 6= ⊥) with equal key
identifiers differ (see Figure 2 line 74).

Beyond the core functionality of establishing group keys, our syntax allows upper layer protocols to
derive the set of designated group members for each established group key. For this additional func-
tionality we require that group keys, output by an instance via interface key, are actually designated to
this instance (Figure 2 line 75). We emphasize that this requirement is indeed a property of safety (and
not security) as it does not hinder any independent exposable instance to be able to compute the key
internally without outputting it.

All remaining pseudo-code in Figure 2 only describes the necessary framework for executing the
algorithms inside the oracles that are provided to adversaries. Consequently, these parts of the Figure
are irrelevant for understanding the definition and equally appear in the security experiment in Figure 1.

B The Relation between Parties and Instances

Even with our systematic approach some semantic interpretations of modeling choices are not ultimately
determined. One example that we discuss here is that it remains debatable whether local instances or
parties are the actual participants of sessions. In the instance-centric perspective, instances are active
entities that may or may not represent passive parties. The term party would thereby only refer to static
objects that embody authentication secrets whereas instances would be considered active entities that
potentially make use of these static objects. In the party-centric perspective, instances are only
realizations of parties’ participation in sessions. Parties would thereby actively outsource the execution
of algorithms, necessary for participating in sessions, to their instances. As this distinction may appear
as quibble on a language level, we clarify technical differences below.

Instance-Centric Perspective. We first consider a setting that neither of the publications, analyzed in
the main body of this article, models: unauthenticated GKE. In unauthenticated GKE the concept of
parties remains unclear. While parties usually refer to permanent entities, participants of unauthenticated
GKE session only temporarily exist during their participation. Additionally, parties are often linked to
authentication secrets. According to this interpretation, parties do not exist in unauthenticated GKE
such that only instances could be participants of sessions. Secondly, if instances are the actual participants
of sessions, it can be reasonable to allow simultaneous participation of multiple instances per party in
sessions. This can be a useful feature for multi-device settings (e.g., in instant messaging). Thirdly, GKE
is never a primitive used by humans but a tool used by other cryptographic applications. GKE instances,
executing the participation in a GKE session, may thereby be initiated by instances of the upper layer
cryptographic application rather than by a central GKE party. Thereby the concept of a party collapses
to some static information (e.g., authentication secrets) that these GKE instances use.

Party-Centric Perspective. If parties are active participants of sessions (i.e., members thereof) trough
their instances, participation in a single session through multiple instances per party is contradictory.
Therefore settings in which human users participate in a session with multiple devices would need to
be modeled by declaring each device of a user an individual party. We note that sharing authentication
secrets between these “device-parties” would be considered insecure in all analyzed models. Nevertheless,
the concept of active parties and their realization through controlled instances intuitively describes the
idea of (authenticated) entities using the GKE protocol for deriving group keys more comprehensibly than
the instance-centric perspective. Even if GKE instances are locally initiated by distributed instances of
the cryptographic application that uses the group keys, one can trace the initialization of these application
instances back to a central active party. As application executions of the same party are in reality usually
initiated and managed centrally, conceiving this central party as an active entity instead of its multiple
local instances appears to be practical.

We believe that neither of both perspectives describes the essential truth and preferences for either of
them may depend on the individual understanding of what parties and instances are in reality. Neverthe-
less, for modeling GKE one needs to commit to either of them, implicating the respective consequences
described above. As all analyzed models adopt the party-centric perspective (see the first three rows
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in Table 1), the terminology in our comparison is chosen accordingly. However, since this intuitively re-
stricts parties from participating in sessions with multiple of their instances, we chose the instance-centric
perspective in our proposed model.

C Historic Context

Bresson et al. [BCPQ01] initiate the formal consideration of GKE with game-based security models
by generalizing two-party key exchange to the (static) group setting. They then extend their model
to capture dynamic groups [BCP01], later refine this dynamic model variant in [BCP02a], and finally
modify their static GKE model to cover password-based authentication methods [BCP02b]. This cascade
of proposed GKE notions constitutes the blueprint or at least a reference for most of the follow-up works.

For analyzing the GKE protocol by Burmester and Desmedt [BD95], and developing a generic compiler
with which passively secure GKE protocols can be strengthened to resist against active adversaries, Katz
and Yung [KY03] design a new security model. Subsequently, Katz and Shin [KS05] modify this model to
demonstrate that the cited line of work by Bresson et al. insufficiently captures impersonation attacks.
In such attacks, users are tricked about the set of group members they are interacting with. With their
observation of insufficiency in previous models, they motivate their additional security definition of GKE
in the UC modeling framework. Gorantla et al. [GBG09] further investigate security of GKE under
impersonation attacks—specifically focusing on attacks in which the victim itself is corrupted (so called
key-compromise impersonation attacks). With their new model, they revisit the security guarantees of
GKE protocols in the literature. Meanwhile, Kim et al. [KLL04] slightly adapt the models by Bresson et
al. for analyzing a strengthened generalization of the Burmester-Desmedt GKE protocol [BD95].

With the goal of developing an authentication compiler for dynamic GKE—note that the Katz-Yung
compiler [KY03] is only applicable to static GKE protocols—, Yang et al. [YKLH18] design a new model
that is relatively independent of the previous literature.

A new line of work starts with Cohn-Gordon et al. [CCG+18], who use the idea of refreshing key
material in an established group by Kim et al. [KPT04] to develop a group equivalent to existing two-
party ratcheted key exchange protocols. Their model is based on the ideas of multi-stage key exchange
by Fischlin and Günther [FG14] with which also a model for two-party ratcheting was designed be-
fore [CCD+17]. The protocol by Cohn-Gordon et al. [CCG+18] initiated the IETF MLS standardization
approach [BBM+20]. A redesign of the MLS protocol is then analyzed by Alwen et al. [ACDT19], who
adapt a different modeling concept of two-party ratcheting [ACD19] for deriving a suitable model for
group ratcheting. This adaptation relatively closely captures the ideas of the MLS standardization ini-
tiative [BBM+20]. For analyzing a new variant of the MLS protocol, Alwen et al. [ACC+19] accordingly
update their group ratcheting model.

26


	Introduction
	Systemizing Group Key Exchange Models
	Basic Notions in Group Key Exchange

	Syntax Definitions
	Quantities
	Setup Assumptions
	Operations
	Return Values
	Our Syntax Proposal

	Communication Models
	Partnering
	Our Partnering Proposal

	Security Definitions
	Security Goals
	Adversarial Protocol Execution
	Adversarial Access to Secrets
	Our Security Proposal

	Concluding Remarks and Open Problems
	Correctness
	Our Correctness Proposal

	The Relation between Parties and Instances
	Historic Context

