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Abstract

Blind signatures, introduced by Chaum (Crypto’82), allows a user to obtain a signature on a message without
revealing the message itself to the signer. Thus far, all existing constructions of round-optimal blind signatures are
known to require one of the following: a trusted setup, an interactive assumption, or complexity leveraging. This
state-of-the-affair is somewhat justified by the few known impossibility results on constructions of round-optimal blind
signatures in the plain model (i.e., without trusted setup) from standard assumptions. However, since all of these
impossibility results only hold under some conditions, fully (dis)proving the existence of such round-optimal blind
signatures has remained open.

In this work, we provide an affirmative answer to this problem and construct the first round-optimal blind signature
scheme in the plain model from standard polynomial-time assumptions. Our construction is based on various standard
cryptographic primitives and also on new primitives that we introduce in this work, all of which are instantiable from
classical and post-quantum standard polynomial-time assumptions. The main building block of our scheme is a new
primitive called a blind-signature-conforming zero-knowledge (ZK) argument system. The distinguishing feature is that
the ZK property holds by using a quantum polynomial-time simulator against non-uniform classical polynomial-time
adversaries. Syntactically one can view this as a delayed-input three-move ZK argument with a reusable first message,
and we believe it would be of independent interest.

1 Introduction
1.1 Background
Blind signatures enable users to obtain a signature without revealing a message to be signed to a signer. More precisely,
a blind signature scheme is a two-party computation between a signer and a user. The signer has a pair of keys called
verification-key and signing-key, and the user takes as input a message and the verification-key. They interact with each
other, and the user obtains a signature for the message after the interaction. There are two security requirements on
blind signatures: (1) users cannot forge a signature for a new message (unforgeability), and (2) the signer cannot obtain
information about the signed messages (blindness).

Chaum introduced the notion of blind signatures and provided a concrete instantiation, while also showing an
application to e-cash systems [Cha82]. After its invention, blind signatures have been used as a crucial building block
for various other privacy-preserving crypto-systems such as e-voting [FOO93, Cha88], anonymous credential [CL01],
and direct anonymous attestation [BCC04].
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Round-complexity. One of the main performance measures for blind signatures is round-complexity. A round-optimal
blind signature is a blind signature with only 2-moves1, where the user and signer sends one message to each other. We
focus on round-optimal blind signatures in this study since a high round-complexity is one of the main bottlenecks
in cryptographic systems. Another advantage is that round-optimal blind signatures are automatically secure in the
concurrent setting [Lin08, HKKL07].

Round-optimal scheme in the plain model from standard assumptions. From a theoretical point of view, using
less and weaker assumptions is much better. However, all existing round-optimal blind signature schemes require
either (1) a trusted setup [Fis06, AO12, AFG+16, BFPV11, BPV12, MSF10, SC12, Bol03, BNPS02], (2) an interactive
assumption [FHS15, FHKS16, Gha17, BNPS02, Bol03], or (3) complexity leveraging [GRS+11, GG14]. We briefly
discuss each item. In the trusted setup model, if an authority set a backdoor, we can no longer guarantee any security.
Interactive assumptions are non-standard compared to standard non-interactive ones since an adversary can interact
with the challenger.2 Complexity leveraging uses a gap between the computational power of an adversary and the
reduction algorithm in security proofs. To create this gap, we require super-polynomial-time assumptions3 and
large parameters, which hurt the overall efficiency. In fact, there are a few impossibility results on constructing
round-optimal blind signatures in the plain model (i.e., without any trusted setup) from standard assumptions under
some conditions [Lin08, FS10, Pas11]. So far, constructing a round-optimal blind signature scheme in the plain model
from standard polynomial-time assumptions has proven to be elusive.

Thus, a natural and long-standing open question is the following:

Can we achieve a round-optimal blind signature scheme in the plain model from standard polynomial-time assumptions?

We affirmatively answer this open question in this study. Hereafter, we call blind signatures that satisfy all the above
conditions as a blind signature with desired properties.

1.2 Our Result
We present a round-optimal blind signature scheme with desired properties. Our construction relies on various standard
cryptographic primitives such as oblivious transfer and also new primitives that we introduce in this study, all of which
are instantiable from classical and quantum standard polynomial-time assumptions.4

Our construction is based on the idea by Kalai and Khurana [KK19] that we can replace complexity leveraging with
classical and quantum assumptions. However, our technique is not a simple application of their idea. There are several
technical hurdles to avoid complexity leveraging in blind signatures, even if we use classical and quantum assumptions.
We provide further details in Section 1.3.

The main building block of our scheme is a blind-signature-conforming zero-knowledge (ZK) argument system,
which we introduce in this study. It is a 2-move ZK argument system in the reusable public key model where the
ZK property holds by using a quantum polynomial-time simulator against non-uniform classical polynomial-time
adversaries, and parties have access to a reusable public key (possibly maliciously) generated by a prover. We construct
a blind-signature-conforming ZK argument for any NP language from standard classical and quantum assumptions. We
give an overview of our technique in Section 1.3.

Although our scheme satisfies desirable features in the theoretical sense, it is not quite practical since we rely
on general cryptographic tools such as garbled circuits. We believe our scheme opens the possibility of practical
round-optimal blind signatures with the desired properties. We leave this question as an open problem.

1.3 Technical Overview
Here, we provide an overview of our construction.

1We count one move when an entity sends information to the other entity.
2An adversary may have the flexibility to choose a problem instance or obtain auxiliary information related to a problem instance.
3A super-polynomial-time assumption means that a hard problem cannot be broken even by super-polynomial-time adversaries. This is stronger

than a standard polynomial-time assumption, where adversaries are restricted to run in polynomial-time.
4The learning with errors (LWE) assumption against quantum polynomial time adversaries and one of the following assumptions against

(non-uniform) classical polynomial time adversaries: quadratic residuosity (QR), decisional composite residuosity (DCR), symmetric external
Diffie-Hellman (SXDH) over pairing group, or decisional linear (DLIN) over pairing groups.
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Blind signature scheme by Garg et al. Our starting point is the blind signature scheme by Garg, Rao, Sahai, Schröder,
and Unruh [GRS+11]. Their scheme is round-optimal and in the plain model, but the security proof requires complexity
leveraging. Our goal is to remove the complexity leveraging and base the security on classical and quantum polynomial
assumptions.

Here, we recall their construction. In their protocol, a signer publishes a verification key of a digital signature scheme
as its public key and keeps the corresponding signing key secret. To blindly sign on a message, the signer and the user
run secure function evaluation (SFE) protocol where the signer plays the role of the sender and the user plays the role of
the receiver. In more detail, the user’s input is the message to be signed, and the signer holds a circuit corresponding to
the signing algorithm of the digital signature scheme where the signing key is hardwired. At the end of the protocol,
only the user receives the output signature. To prevent malicious behaviors of the signer, such as using arbitrarily chosen
randomness for the signing algorithm to break the blindness, they make the signing algorithm deterministic by using a
PRF and include the perfectly binding commitment of the signing key into the public key. Furthermore, they have the
signer prove that it honestly follows the SFE protocol using a zero-knowledge argument system.

The blindness of the protocol follows from the receiver’s security of the SFE and from the fact that the signer cannot
deviate from the honest execution of the protocol due to the soundness of the zero-knowledge argument system and the
binding property of the commitment scheme. On the other hand, the unforgeability follows from the combination of the
zero-knowledge property of the zero-knowledge argument system, the sender’s security of the SFE protocol, and the
unforgeability of the digital signature scheme. The former two properties intuitively imply that the user cannot obtain
anything beyond the signatures corresponding to the messages it chooses. The final property implies that it cannot
forge a new signature. While intuitively correct, there are two problems with this approach. The first problem is with
the reduction algorithm that reduces the unforgeability of the blind signature scheme to that of the underlying digital
signature scheme. The reduction algorithm has to simulate the signer and extract the message to be signed from the first
message of the user. However, this should not be possible because of the receiver’s security of the SFE. The second
problem is that we need a 2-move zero-knowledge argument system to obtain round-optimal blind signatures. However,
it is known that a 2-move zero-knowledge argument system is impossible [GO94].

To resolve these problems, they assume super-polynomial security for the underlying (plain) signature scheme and
allow the corresponding reduction algorithm to run in super-polynomial time. Then, the first issue can be resolved by
letting the reduction algorithm break the receiver’s security of the SFE scheme and extract the message to be signed
using its super polynomial power. Furthermore, allowing the reduction algorithm to run in super-polynomial time also
enables them to sidestep the impossibility result mentioned above. They use a 2-move zero-knowledge argument system
with a super-polynomial time simulator by Pass [Pas03] and run the super-polynomial time simulator in the reduction
algorithm for unforgeability.5 This also resolves the second issue above.

Our first step towards the goal is to replace the super-polynomial time reduction algorithm in their security proof
with a quantum-polynomial time (QPT) algorithm, which is inspired by Kalai and Khurana [KK19]. To make this work,
we replace primitives with super-polynomial security with quantumly secure ones and the primitives broken by the
super-polynomial time algorithm with quantumly insecure and classically secure ones. However, simple replacement of
the underlying primitives does not work, because their security proof uses complexity leveraging twice, which requires
three levels of security for the underlying primitives, while the combination of classical and quantum polynomial
hardness can offer only two levels of security.6 In particular, the above idea necessitates 2-move zero-knowledge
arguments with QPT simulation, which cannot be obtained by a simple modification of the construction by Pass [Pas03].
As we elaborate in the following, we relax the notion of zero-knowledge argument system so that it still implies
blind signatures and provides a construction that satisfies the notion by adding many modifications to the original
zero-knowledge argument system by Pass [Pas03].

Zero-Knowledge argument system by Pass. To see the problem more closely, we review the zero-knowledge
argument system by Pass [Pas03], which is used in the construction of round-optimal blind signatures by Garg et
al. [GRS+11]. Their starting point is ZAP for NP languages [DN00, DN07]. Recall that ZAP is a 2-move public coin

5Though Garg et al. [GRS+11] does not explicitly state that they use the zero-knowledge argument of [Pas03], we observe that their construction
can be viewed in this way.

6 A reader might consider starting from the blind signature scheme by Garg and Gupta [GG14] instead since their security proof uses complexity
leveraging only once. However, their construction may not be compatible with our idea of using quantum simulation since it is heavily dependent on a
specific structure of the Groth-Sahai proofs [GS08], which is quantumly insecure.
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witness indistinguishable proof system without setup, where the first message can be reused. To make it zero-knowledge,
they use the “OR-proof trick" by Feige, Lapidot, and Shamir [FLS90, FLS99]. This technique converts a witness
indistinguishable proof into a zero-knowledge proof in the context of non-interactive proof systems by adding a trapdoor
branch for the relation to be proven so that the zero-knowledge simulator can use the branch. In more detail, the protocol
proceeds as follows.

1. In the first round of the protocol, the verifier sends the first round message rzap of the ZAP system along with a
random image z = f(y) of a one-way permutation (OWP) f : {0, 1}` → {0, 1}`.7

2. Given the message, the prover who proves x ∈ L, where L is some NP language specified by a relation R,
proceeds as follows. It first commits the string 0` by a non-interactive commitment with perfect biding to obtain
com = Com(0`; rcom) using randomness rcom. It then proves that there is witness (w′, y′, r′com) such that(

(x,w′) ∈ R
)
∨
(

com = Com(y′; r′com) ∧ f(y′) = z
)

by the proving algorithm of the ZAP system to obtain a proof πzap and sends π = (com, πzap) to the verifier. Note
that in the honest execution, the prover sets (w′, y′, r′com) = (w,⊥,⊥).

3. Given the proof from the prover, the verifier parses π → (com, πzap) and verifies the proof πzap for the above
statement by the verification algorithm of the ZAP system.

We then discuss the security of the system. Let us start with the zero-knowledge property. As mentioned, the simulator
will run in super-polynomial time, say T . Given (rzap, z), the simulator uses its super-polynomial power to invert
the permutation to compute y = f−1(z). It then computes a commitment com = Com(y; rcom) and uses the witness
(w′, y′, r′com) = (⊥, y, rcom) to generate a proof. Due to the witness indistinguishability of the underlying ZAP and the
hiding property of the commitment, the simulated proof is indistinguishable from the real one. The proof for soundness
is a bit more complicated. Let us assume an adversary that can generate an accepting proof for a false statement x 6∈ L.
By the statistical soundness of ZAP and by the fact that x 6∈ L, the output (com∗, π∗) of the successful adversary should
satisfy the trapdoor branch of the relation. Namely, com∗ should be a commitment of y = f−1(z). Intuitively, this
contradicts the one-wayness of f , and thus the system is sound since generating such a commitment seems to require the
knowledge of y. However, to turn this intuition into a formal argument, we have to construct a reduction algorithm (i.e.,
inverter for the OWP) that outputs y = f−1(z) in the clear, instead of the commitment of y. To do so, they turn to
complexity leveraging. Namely, they consider an inversion algorithm that runs in super-polynomial time, say T ′, and
have the algorithm extract y from com∗ using its super-polynomial power. If we assume f is hard to invert in time T ′
and the commitment is broken in time T ′, we can derive the contradiction as desired.

We observe that the two super-polynomial functions T and T ′ should satisfy T � T ′, since f should be invertible
in time T for the zero-knowledge simulator to work, while f should be hard to invert in time T ′ for the above reduction
to make sense. This seems to be incompatible with our approach of replacing T -time simulator with QPT simulator,
since this requires hardness that lies between QPT hardness and classical polynomial hardness to replace T ′-time secure
primitives with something. However, we do not know how to do this without turning to complexity leveraging.

Replacing the commitment with encryption. As we observed above, the main technical hurdle to our goal is that
there is no efficient way to extract the message from the commitment for the reduction algorithm that inverts the OWP.
However, extraction should not be possible efficiently, since otherwise the commitment cannot be hiding and thus harms
the zero-knowledge property. To satisfy these contradicting requirements, we switch to the non-uniform setting and
use the standard trick of leveraging the gap between the information available for algorithms in the real-world and
non-uniform reduction algorithms. As observed by Garg et al. [GRS+11], non-uniform algorithms can be regarded as
two-stage algorithms. The pre-computation phase of the algorithm takes the security parameter as input and computes
an advice string of polynomial length using unbounded computational power. Then, the online phase of the algorithm
takes the problem instance along with the advice string as input and tries to solve the problem in polynomial time. In
our context, the non-uniform reduction algorithm will use this advice string to efficiently extract the message from the

7 Though one-way functions with efficiently decidable images suffice, we use OWP in this overview for simplicity. In our construction, we rely on
a slightly generalized notion of hard problem generators which we introduce in Section 3.1.
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commitment. On the other hand, this advice string is not available for the real world algorithms and hence does not
harm the hiding property of the commitment.

To implement this idea, we replace the commitment with public key encryption (PKE) and change the protocol so
that the prover encrypts 0` using a public key pkP chosen by itself, instead of computing a commitment of 0`. The
advice string in our context is the secret key corresponding to pkP . Using the secret key, one can efficiently decrypt
the ciphertext and extract the message as desired. Subtle yet, the important point is that the prover should choose the
public key pkP before the protocol is run and use the same public key for every invocation of the protocol. Then, the
non-uniform reduction algorithm can find the secret key corresponding to pkP in the pre-computation phase using its
unbounded computational power, since pkP is chosen before the problem instance z = f(y) of the OWP is chosen.
This is not possible if the prover chooses a fresh public key for every encryption because the problem instance z and the
public key are chosen at the same time in this case. It is not possible to off-load the task of finding the secret key to the
pre-computation phase.

In fact, with the above modification, the argument system is no longer in the plain model, since we allow the prover
to choose a long-term public key. However, since the syntax of round optimal blind signatures allows the signer to have
a long-term public parameter, this modification does not affect the application to blind signatures.

Dealing with maliciously generated public keys. While the above idea may seem to work at first sight, there is still
an issue. The problem is that a malicious prover may choose an ill-formed public key for the PKE, for which there
are no corresponding secret keys. In this case, we may not be able to extract the message from the ciphertext even
with unbounded computational power. We should consider this kind of attack since a malicious signer against blind
signatures may maliciously choose a public key. A simple countermeasure against this attack would be to use a PKE
scheme such that one can efficiently decide whether the public key is honestly generated or not and have the verifier
reject provers with ill-formed public keys. However, we cannot adopt this simple solution because we do not know
how to instantiate such a PKE. In particular, we require the PKE to have security against QPT adversaries in addition
to the above property due to a technical reason,8 but there are no known PKE schemes satisfying these properties
simultaneously.

To resolve the issue, we further change the protocol. Our first attempt is to let the verifier choose a public key pkV
of PKE and have the prover encrypt 0` under pkV in addition to the long-term public key pkP . Furthermore, we have
the prover prove that it has valid witness w for x or it encrypts y under pkP and pkV . With this change, the reduction
algorithm can extract the message from the ciphertext corresponding to pkV even if pkP is maliciously generated since
pkV is under the control of the reduction algorithm and honestly generated. However, this modification harms the
zero-knowledge property. In particular, since the verifier has secret key corresponding to pkV , it can know whether the
proof is generated from the honest execution of the protocol or not by simply decrypting the ciphertext.

The reason why the above idea fails is that we allow too much flexibility for the verifier in the sense that it can choose
a public key that enables the extraction even if the prover behaves honestly. What we really need is a mechanism where
the verifier can extract the message only when the prover cheats. For this purpose, we use lossy encryption. Recall that
lossy encryption [PVW08, BHY09] is an extension of PKE where we have an additional lossy key generation algorithm.
While the normal key generation algorithm outputs a public key and secret key, the lossy key generation algorithm
only outputs a public key. For lossy encryption, we require the lossiness property, which stipulates that the ciphertext
generated under the lossy key does not carry any information of the message. As for security, we require that the lossy
key and the normal key are indistinguishable. We then would like to change the protocol so that the verifier is restricted
to choose the lossy public key in the honest execution of the protocol and can choose normal public key that allows the
extraction only when the prover chooses an ill-formed public key. To restrict the behavior of the verifier, we have the
verifier prove the following statement:

(pkV is chosen from the lossy key generation) ∨ (pkP is an ill-formed public key) . (1)

The former branch of the statement is used in the honest execution and the latter is for simulation. The proof is generated
by running another instance of the ZAP system, where the roles of the prover and the verifier are swapped. To avoid

8 We need security against QPT adversaries for the PKE scheme because its security is used to prove zero-knowledge property, where the simulator
is a QPT algorithm. Recall that the simulator needs quantum power to invert the OWP. One may try to show that non-uniform security instead of
quantum security is enough for the PKE by using the pre-computation trick we mentioned. However, this does not seem possible because the inversion
should be done after the public key is chosen.
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increasing the round of the overall protocol, we put the first round message of the ZAP system into the public parameter
of the prover and have the verifier generate the proof with respect to it and send the proof along with pkV to the prover
in the first round. Note that it is not clear how to prove the above statement by the ZAP system, since it is not necessarily
in NP. In particular, we do not know of a general way of providing an NP witness for proving the ill-formedness of a
public key. We skip this issue and simply assume that it is possible for the time being. We will get back to the issue at
the end of the overview. The protocol now proceeds as follows.

1. The prover runs the key generation algorithm of the PKE to obtain a public key pkP and chooses the first message
r′zap of the ZAP system. It then sets the long-term public parameter as pp = (pkP , r′zap).

2. In the first round of the protocol, the verifier chooses the first round message rzap of the ZAP system and a random
image z = f(y) of the OWP f : {0, 1}` → {0, 1}`. It then runs lossy key generation of the lossy encryption to
obtain a public key pkV . It then proves statement (1) with respect to r′zap by using the randomness for the lossy
key generation as a witness to obtain a proof π′zap. Finally, it sends (rzap, pkV , π′zap) to the prover.

3. Given the message, the prover verifies π′zap for statement (1) and aborts the protocol if it is not valid. Otherwise, it
encrypts the string 0` under pkP and pkV to obtain ctP = PKE.EncpkP (0`; rP ) and ctV = LE.EncpkV (0`; rV ),
where LE stands for “lossy encryption". It then proves that there is a witness (w′, y′, r′P , r′V ) such that(

(x,w′) ∈ R
)
∨
(

ctP = PKE.EncpkP (y′; r′P ) ∧ ctV = LE.EncpkV (y′; r′V ) ∧ f(y′) = z
)

(2)

with respect to rzap to obtain a proof πzap. Note that in the honest execution, the prover sets (w′, y′, r′P , r′V ) =
(w,⊥,⊥,⊥). It then sends π = (ctP , ctV , πzap) to the verifier.

4. Given the proof from the prover, the verifier parses π → (ctP , ctV , πzap) and verifies the proof πzap with respect
to statement (2).

First attempt of the security proof. We now try to prove the security of the scheme. We first prove the zero-knowledge
property with a QPT simulator. To do so, we start from the real game where a malicious verifier interacts with an honest
prover and gradually change the prover into a zero-knowledge simulator through game hops. In the first step, we change
the prover to be a quantum algorithm, which inverts the OWP to recover y = f−1(z) from the first round message by the
verifier. We then change the game so that the prover encrypts y instead of 0` when it generates the ciphertext ctP . Due
to the security of PKE against QPT adversaries, this game is indistinguishable from the real game. In the next step, we
replace the ciphertext ctV with the encryption of y instead of 0`. We show that this game is indistinguishable from the
previous game by combining the soundness of the ZAP system and the lossiness of the lossy encryption. Without loss
of generality, we can assume that the prover does not abort the interaction, since otherwise the malicious verifier cannot
obtain any information. However, if the prover does not reject the malicious verifier, this means that statement (1) holds
by the soundness of the ZAP. Since pkP is honestly chosen, pkV should be a lossy key. Then, by the lossiness of the
lossy encryption, we conclude that ctV does not carry any information about the message, and the change does not alter
the distribution of ctV . Finally, we change the game so that the prover uses the latter branch of statement (2) to generate
πzap. Due to the witness indistinguishability of the ZAP, this game is indistinguishable from the previous game. Notice
that the prover in the final game does not use the witness w for the statement x to generate the proof and thus constitutes
a zero-knowledge simulator.

We then proceed to the proof of the soundness. The proof will be by case analysis. In both cases, we construct a
non-uniform reduction algorithm that inverts the OWP. First, we consider the case where the malicious prover chooses
honestly generated pkP . In this case, the reduction algorithm receives pkP from the malicious prover and finds the
corresponding secret key skP in the pre-computation phase using its unbounded computational power. Then, in the
online phase, it receives the problem instance z = f(y) of the OWP and embeds it into the first-round message from the
verifier to the prover. If the malicious prover manages to generate an accepting proof for x 6∈ L, this should satisfy the
trapdoor branch of statement (2) by the soundness of the ZAP. In particular, ctP should be an encryption of y = f−1(z)
under the public key pkP and thus the reduction algorithm can successfully extract y from ctP by using skP .

We next consider the other case where pkP is ill-formed. In this case, we need a game hop. In the first step, we
change the verifier to be a non-uniform algorithm and have it compute the NP witness for the ill-formedness of pkP .
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Then, the verifier generates the proof using the latter branch of statement (1). This game is indistinguishable from the
previous game by the witness indistinguishability of the ZAP. In the next step, we change the game so that the verifier
generates pkV by the normal key generation algorithm rather than the lossy key generation algorithm. This game is
indistinguishable from the previous game by the security of the lossy encryption. Note that this game hop is possible
because the verifier no longer needs the witness that proves pkV is generated from the lossy key generation due to the
change introduced in the previous game. We are now ready to construct the inverter for OWP. Similarly to the case
where pkP is honestly generated, the soundness of the ZAP implies that an accepting proof for x 6∈ L satisfies the latter
branch of statement (1). This time, the inverter extracts y from ctV , which is possible because pkV is now changed to
be a normal public key rather than a lossy one.

While the above proof sketch is almost correct, there is still a subtle issue. In particular, the proof of the soundness
for the case of ill-formed pkP is not correct. The problem is that we cannot prove that the winning probability of the
malicious prover is changed only negligibly through the game changes because we cannot construct a corresponding
reduction algorithm that establishes this. For example, we try to construct a reduction algorithm that breaks the witness
indistinguishability of the ZAP by assuming a malicious prover whose success probability in the second game is
non-negligibly different from that in the first game. A natural way to do so is to let the reduction algorithm output 1 only
when the malicious prover successfully breaks the soundness of our argument system. However, this is not possible
since the reduction algorithm cannot efficiently decide whether the output (x∗, π∗) of the malicious prover violates the
soundness or not. In particular, even if the malicious prover outputs an accepting pair of a statement x∗ and a proof π∗,
x∗ may be in L and the reduction algorithm cannot detect it, since L may be hard to decide language. To address this
problem, we further change the protocol.

Making the winning condition efficiently checkable. As we observed above, the only reason why the winning
condition is not efficiently checkable is that the language L is not efficiently decidable in general. To resolve the problem,
we change the protocol so that the prover explicitly includes an encrypted version of witness w in the proof. In more
details, we change the protocol so that we add a public key p̂kP of another instance of PKE to the public parameter of
the prover and change the prover so that it outputs ĉtP = PKE.Encp̂kP

(w; r̂P ) along with ctP and ctV and proves that
there is a witness (w′, r̂′KeyGen, r̂

′
P , y

′, r′P , r
′
V ) such that(

(x,w′) ∈ R ∧
(
p̂kP is generated by PKE.KeyGen(1κ; r̂′KeyGen)

)
∧ ĉtP = PKE.Encp̂kP

(w′; r̂′P )
)

∨(
ctP = PKE.EncpkP (y′; r′P ) ∧ ctV = LE.EncpkV (y′; r′V ) ∧ f(y′) = z

)
, (3)

where the former branch is used in the honest execution of the protocol and the latter is for the simulation and is not
changed from the previous construction. Note that to prove the former branch, the prover needs randomness r̂KeyGen

used in the key generation of p̂kP and thus it has to keep the randomness as a secret parameter. This needs to change the
syntax of the zero-knowledge argument system again. However, it does not affect the application to blind signatures,
since the syntax of the latter allows the prover to have a secret key.

We then explain how the above change helps. In our proof for the soundness, we relax the winning condition so that
the adversary is said to semi-win the game if it outputs an accepting proof π∗ = (ct∗P , ct∗V , ĉt∗P , π∗zap) for x∗ and p̂kP is
not in the range of the key generation algorithm or ĉt∗P is not an encryption of a witness w∗ such that R(x∗, w∗) = 1.
We observe that to check this modified winning condition, it is unnecessary to perform the membership test of the
language L. The modified winning condition is efficiently checkable for the non-uniform reduction algorithm as follows.
It first checks whether p̂kP is honestly generated or not in the pre-computation phase and find the corresponding secret
key by brute-force search if it is so. Then, in the online phase, it decrypts the ciphertext ĉt∗P using the secret key to see
if the decryption result w∗ satisfies R(x∗, w∗) = 1 or not. We note that since we relaxed the winning condition, the
adversary is regarded as (semi-)winning the game even when it outputs an accepting proof for x∗ ∈ L if it chooses
ill-formed p̂kP or ĉt∗P that does not encrypt the witness for x∗. However, these events happen only with negligible
probability and thus can be ignored, since these events imply that the soundness of the ZAP is violated.

Certifying invalid public keys. Now, the only remaining problem is how to prove the statement that pkP is an
ill-formed public key. We show that it is possible to provide an NP witness for this statement if we use Regev’s PKE
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scheme [Reg05, Reg09]. In Regev’s PKE scheme, a public key consists of description of a basis of a lattice L and a
vector v. The secret key is the vector in L closest to v. For an honestly generated public key, the distance dist(L,v)
between L and v is close, while for a maliciously generated key, the distance may be far. Therefore, our goal is to
provide a proof that v is far from L. For this purpose, we use the result by Aharonov and Regev [AR04, AR05], who
showed that a language consisting of a pair of a lattice and a vector whose distance is far constitutes an NP language.
The subtle point is that their proof is for “gap language" in the sense that they cannot give an NP witness for the pair of a
lattice and a vector whose distance is neither far enough nor close enough. Translated to our setting, this means that
a malicious prover in our zero-knowledge argument system may choose a public key that is not in the support of the
honest key generation algorithm without being caught, if the lattice and the vector are not very much far. We show that
we can still define a secret key for such a public key that enables the extraction of the message from the ciphertext,
which is sufficient for our purpose.

1.4 Related Work
(Im)possibility of round-optimal blind signature. Lindell proved that it is impossible to achieve round-optimal
blind signatures in the plain model under the simulation-based security definition [Lin08]. If we do not rely on setup
assumptions, the best possible security that round-optimal blind signatures can satisfy is game-based security. Moreover,
Fischlin and Schröder [FS10] prove that 3-move (and fewer moves) blind signature schemes cannot be secure under
non-interactive assumptions in the plain model via black-box reductions if they satisfy all the following conditions: (1) it
is 3-move (or fewer moves), (2) it satisfies computational blindness (3) we can efficiently check whether the execution of
the scheme yields a valid signature from its transcript, (4) we can efficiently verify whether a verification-key has a
corresponding signing key, and (5) its blindness holds relative to a forgery oracle.9 Pass [Pas11] prove that there is no
black-box reduction from round-optimal unique10 blind signatures to non-interactive assumptions. That is, although
there are black-box impossibility results on round-optimal blind signatures from standard assumptions in the plain
model, there are still possibilities by avoiding the conditions. We circumvent the impossibility result of [FS10] by using
quantum reductions whereas their impossibility result is only applicable to schemes with classical reductions. In a little
more detail, the work of [FS10] constructs an adversary that breaks the blindness using a reduction algorithm for the
unforgeability. In our case, the reduction algorithm for the unforgeability is QPT, so application of their result would
yield a QPT adversary that breaks the blindness. This does not contradict blindness against classical PPT adversaries,
which we prove in this paper.

Garg, Rao, Sahai, Schröder, and Unruh [GRS+11] presented the first round-optimal blind signature scheme from
standard assumptions in the plain model by using the complexity leveraging technique. Fuchsbauer, Hanser, and
Slamanig [FHS15] presented a practical round-optimal blind signature scheme in the plain model without complexity
leveraging by using interactive assumptions.

There are round-optimal blind signature schemes based on non-interactive assumptions in the plain model without
complexity leveraging [HK16, DFKS16], but they are secure in the honest-signer model, where a signer is semi-honest
and does not deviate from protocols.

Non-round-optimal blind signature. Abe presented a 3-move blind signature scheme from standard assumptions in
the RO model [Abe01]. Hazay, Katz, Koo, and Lindell presented a concurrently secure blind signature scheme in the
standard model under a game-based security definition, but it is not round-optimal [HKKL07]. Okamoto presented
a 4-move blind signature scheme based on q-type assumptions in the plain model [Oka06]. Hauck, Kiltz, and Loss
presented a modular framework to construct 3-move blind signature schemes from standard assumptions in the RO
model [HKL19].

ZKprotocols with less than fourmoves. Our notion of blind-signature-conforming ZK arguments syntactically can be
seen as a delayed-input three-move protocol with a reusable first message.11 Here, we review known one-/two-/three-move
ZK protocols and explain that none of them suffices for our purpose.

9If we replace condition (2) with (2’) it satisfies statistical blindness, we need neither condition (4) nor (5).
10If a message is fixed, a valid signature is uniquely determined.
11We say that a ZK argument is delayed-input if a statement and witness are not used until generating the last message.
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Bitansky, Khurana, and Paneth [BKP19] constructed a three-move ZK protocol with the weak ZK property based on
standard polynomial assumptions.12 However, their protocol does not satisfy the delayed-input property, and thus that
does not suffice for our purpose.

Several works [BP04, JKKR17, BGI+17, BL18] constructed one-/two-move ZK arguments with super-polynomial
simulation based on super-polynomial time assumptions.13 However, these constructions rely on 2-layered complexity
leveraging similarly to Pass’ protocol [Pas03], and thus they do not suffice for our purpose even if we try to replace
super-polynomial security with quantum polynomial-time security using the idea of [KK19]. (See the paragraph
“Zero-Knowledge argument system by Pass” in Section 1.3 for details.) Jain et al. [JKKR17] also showed that their
protocol can be proven secure only with polynomial-time assumptions if we augment the protocol to a three-move one.
This protocol is delayed-input and uses complexity leveraging only once. However, their protocol does not satisfy
(super-polynomial simulation) ZK property when the first message is reused, and thus does not suffice for our purpose
even with the idea of [KK19].

Bitansky et al. [BBK+16] constructs a three-move ZK protocol with weaker soundness that holds only against
uniform adversaries. This does not suffice for our purpose since we require soundness against non-uniform adversaries
(even if we only require uniform security for the resulting blind signatures).

Bitansky et al. [BCPR14] constructed a two-move ZK protocol with a weaker zero-knowledge property that holds
only against non-uniform adversaries with bounded-size advice. Such a weaker ZK property may suffice if we focus on
blind signatures with uniform security.14 However, their ZK protocol relies on super-polynomial security of a delegation
protocol [KRR14]. Since there is no known construction of a delegation protocol with the required property based on a
quantum polynomial-time assumption, we cannot apply the idea of [KK19] to reduce the usage of a super-polynomial
time assumption.

2 Preliminaries
Notation. For a positive integer n, [n] denotes a set {1, ..., n}. For a bit string x, |x| denotes its bit-length. For a
set S, we write s $← S to denote the operation of sampling a random s from the uniform distribution over S. For a
(probabilistic classical or quantum) algorithm A, we write y $← A(x) to mean that we run A on input x and the output
is y. For a probabilistic classical algorithm A, we write A(x; r) to mean the output of A on input x and randomness r.
Moreover, by a slight abuse of notation, we write y $← A(x; r) to mean that we uniformly pick r from the randomness
space of A and then set y := A(x; r). For a probabilistic classical algorithm A that takes as input x and randomness r,
“y ∈ A(x)" means Prr[y′ = y : y′ ← A(x; r)] > 0. We use PPT and QPT to mean (classical) probabilistic polynomial
time and quantum polynomial time.

A Convention on Non-Uniform Adversaries. When we consider the security of cryptographic primitives against
non-uniform classical adversaries, we say that an adversary A = (A0,A1) is non-uniform PPT if A0 is a (possibly
randomized) unbounded-time algorithm that takes as input the security parameter 1κ and outputs a string of length
poly(κ) and A1 is PPT. Typically, A0 and A1 can be understood respectively as a “pre-computation phase” that outputs
a non-uniform advice and an “online phase” that takes as input the advice and a problem instance and outputs a solution.
We note that the randomness ofA does not increase the computational power ofA sinceA0 can find the best randomness
by using its unbounded computational power. We allow A to be randomized just for convenience for describing the
reductions.

2.1 Non-Interactive Commitment
A non-interactive commitment is a PPT algorithm Com that takes as input the security parameter 1κ and a message
m ∈ {0, 1}∗ and outputs a commitment com. For notational simplicity, we often omit the security parameter from an
input of Com when it is clear from the context.

12The weak ZK allows a simulator to depend on a distinguisher.
13Constructions in [BP04, BL18] also weaken soundness.
14We note that our construction satisfies non-uniform security if we assume non-uniform security for all underlying assumptions. See Remark 2.2.
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We require the following security requirements for a non-interactive commitment.

Perfect Binding. For any κ, there does not existm 6= m′ and r, r′ such that Com(1κ,m; r) = Com(1κ,m′; r′).

Computational Hiding against QPT Adversary. For any QPT adversary A = (A0,A1), we have∣∣∣∣∣∣∣∣∣Pr

coin′ = coin :

(m0,m1, st) $← A0(1κ)
coin $← {0, 1}
com $← Com(1κ,mcoin)
coin′ $← A1(st, com)

− 1/2

∣∣∣∣∣∣∣∣∣ = negl(κ).

Lombardi and Schaeffer [LS19] constructed a perfectly-binding non-interactive commitment based on a public key
encryption scheme with perfect correctness, which in turn exists under the LWE assumption [Reg09]. Though they
only consider the hiding property against PPT adversaries, the security proof immediately extends to that for the hiding
property against QPT adversaries by assuming the LWE assumption against QPT adversaries.

2.2 Public Key Encryption
A public key encryption (PKE) schemeΠPKE for message spaceM consists of PPT algorithms (PKE.KeyGen,PKE.Enc,
PKE.Dec) defined below.

PKE.KeyGen(1κ)→ (ekpke, dkpke): The key generation algorithm takes as input the security parameter 1κ and outputs
an encryption key ekpke and a decryption key dkpke.

PKE.Enc(ekpke,m)→ ctpke: The encryption algorithm takes as input an encryption key ekpke and a messagem ∈M
and outputs a ciphertext ctpke.

PKE.Dec(dkpke, ctpke)→ m or ⊥: The decryption algorithm takes as input a decryption key dkpke and a ciphertext
ctpke and outputs a messagem ∈M or a special symbol ⊥ indicating decryption failure.

Perfect Correctness. For any κ ∈ N,m ∈M, (ekpke, dkpke) ∈ PKE.KeyGen(1κ), and ctpke ∈ PKE.Enc(ekpke,m),
we have PKE.Dec(dkpke, ctpke) = m.

CPA Security against QPT Adversary. For any QPT adversary A = (A0,A1), we have∣∣∣∣∣∣∣∣∣∣∣
Pr

coin′ = coin :

(ekpke, dkpke)
$← PKE.KeyGen(1κ)

(m0,m1, st) $← A0(ekpke)
coin $← {0, 1}
com $← PKE.Enc(ekpke,mcoin)
coin′ $← A1(st, com)

− 1/2

∣∣∣∣∣∣∣∣∣∣∣
= negl(κ).

There exists a PKE scheme that satisfies the above properties assuming the LWE assumption against QPT adversaries
[Reg09]. We note that although the PKE of [Reg09] only satisfies correctness with a negligible decryption error, it can
be easily modified to satisfy perfect correctness (see Appendix B.2).

2.3 Lossy Encryption
A lossy PKE scheme ΠLE for message spaceM consists of PPT algorithms (LE.InjGen, LE.LossyGen, LE.Enc, LE.Dec).
The difference between a standard PKE is that a lossy PKE comes with two key generation algorithms: LE.InjGen and
LE.LossyGen defined below.

10



LE.InjGen(1κ)→ (ekle, dkle): The injective key generation algorithm takes as input the security parameter 1κ and
outputs an injective encryption key ekle and a decryption key dkle.

LE.LossyGen(1κ)→ ekle: The key generation algorithm takes as input the security parameter 1κ and outputs a lossy
encryption key ekle.

Perfect Correctness on Injective Keys. For any κ ∈ N, m ∈ M, (ekle, dkle) ∈ LE.InjGen(1κ), and ctle ∈
LE.Enc(ekle,m), we have LE.Dec(dkle, ctle) = m.

Indistinguishability of Keys Against Non-Uniform PPT Adversary. For any κ and non-uniform PPT adversary
A = (A0,A1), we have ∣∣∣∣∣Pr

[
A1(st, ekle) = 1 : st $← A0(1κ)

(ekle, dkle)
$← LE.InjGen(1κ)

]

−Pr
[
A1(st, ekle) = 1 : st $← A0(1κ)

ekle
$← LE.LossyGen(1κ)

]∣∣∣∣∣ ≤ negl(κ).

Lossiness of Lossy Keys. For any κ, ekle ∈ LE.LossyGen(1κ), andm0,m1 ∈M, the statistical distance between the
distributions LE.Enc(ekle,m0) and LE.Enc(ekle,m1) is negligible.

There exists a lossy PKE scheme that satisfies the above properties assuming the DDH, DLIN, quadratic residuosity
(QR), or decisional composite residuosity (DCR) assumptions against non-uniform PPT adversaries [PVW08, BHY09,
HLOV11].

2.4 ZAP
ZAP [DN07] is a public coin 2-move witness indistinguishable non-interactive argument. More precisely, a ZAP system
Πzap for an NP language L corresponding to a relation R with public coin length ` consists of two PPT algorithms
(ZAP.Prove,ZAP.Verify).

ZAP.Prove(r, x, w)→ π: The proving algorithm is given the public coin r ∈ {0, 1}`, a statement x, and a witness w,
and outputs a proof π.

ZAP.Verify(r, x, π)→ > or ⊥: The verification algorithm is given the public coin r ∈ {0, 1}`, a statement x, and a
proof π, and outputs > indicating acceptance or ⊥ indicating rejection.

Completeness. For any κ ∈ N, r ∈ {0, 1}`, and (x,w) ∈ R, we have

Pr[ZAP.Verify(r, x,ZAP.Prove(r, x, w)) = >] = 1.

Adaptive Statistical Soundness. For any unbounded-time adversary A, we have

Pr[ZAP.Verify(r, x∗, π) = > ∧ x∗ /∈ L : r $← {0, 1}`, (x∗, π) $← A(r)] = negl(κ).

Adaptive Computational Witness Indistinguishability against Non-Uniform PPT Adversary. For any non-
uniform PPT adversary A = (A0,A1), we have∣∣∣∣∣Pr

[
1 $← A1(stA, π0)
∧ (x,w0) ∈ R ∧ (x,w1) ∈ R

: (r, x, w0, w1, stA) $← A0(1κ)
π0

$← ZAP.Prove(r, x, w0)

]
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−Pr
[

1 $← A1(stA, π1)
∧ (x,w0) ∈ R ∧ (x,w1) ∈ R

: (r, x, w0, w1, stA) $← A0(1κ)
π1

$← ZAP.Prove(r, x, w1)

]∣∣∣∣∣ ≤ negl(κ).

As shown in [DN07], ZAP satisfying the above properties can be constructed based on any NIZK proofs (with
zero-knowledge against non-uniform PPT verifiers) in the common random string model, which in turn is known to
exist under the (non-uniform PPT) hardness of factoring. [FLS99]. Another instantiation is possible based on SXDH or
DLIN assumptions (against non-uniform PPT adversaries) in pairing groups [GOS12]. We note that there is no known
construction of ZAP from polynomial-time quantum assumptions.

2.5 Digital Signatures
Here, we give a definition of digital signatures. A digital signature scheme with a message spaceM consists of PPT
algorithms (SigGen,Sign,SigVerify).

SigGen(1κ)→ (svk, ssk): The key generation algorithm takes as input the security parameter 1κ and outputs a
verification key svk and a signing key ssk.

Sign(ssk,m)→ σ: The signing algorithm that takes as input a signing key ssk and a messagem ∈M and outputs a
signature σ.

SigVerify(svk,m, σ)→ > or ⊥: The deterministic verification algorithm that takes as input a verification key vk, a
messagem ∈M, and a signature σ, and outputs > to indicate acceptance or ⊥ to indicate rejection.

Correctness. For any κ ∈ N,m ∈M,

Pr
[

SigVerify(svk,m, σ) = ⊥ : (svk, ssk) $← SigGen(1κ)
σ

$← Sign(ssk,m)

]
= negl(κ).

Unforgeability against QPT Adversary. For any QPT adversary A with classical access to a signing oracle
Sign(ssk, ·), we have

Pr
[

SigVerify(svk,m, σ) = >
∧A never queriedm : (svk, ssk) $← SigGen(1κ)

(m,σ) $← ASign(ssk,·)(svk)

]
= negl(κ)

A digital signature scheme that satisfies the above properties can be constructed based on any OWF against
quantum adversaries [Rom90]. More direct and efficient constructions exist based on the LWE assumption against QPT
adversaries [ABB10, CHKP12].

2.6 Secure Function Evaluation
A secure function evaluation (SFE) is a 2-move protocol between a sender who holds a (classical) circuit C and a
receiver who holds x, where the goal is for the receiver to compute C(x) without revealing the inputs to each other.
Specifically, SFE consists of PPT algorithms ΠSFE = (Receiver,Sender,Derive) with the following syntax:

Receiver(1κ, x)→ (sfe1, sfest): This is an algorithm supposed to be run by a receiver that takes the security parameter
1κ and x as input and outputs a first message sfe1 and a receiver’s state sfest.

Sender(1κ, sfe1, C)→ sfe2: This is an algorithm supposed to be run by a sender that takes the security parameter 1κ, a
first message sfe1 sent from a receiver and a description of a classical circuit C as input and outputs a second
message sfe2.

Derive(sfest, sfe2)→ y: This is an algorithm supposed to be run by a receiver that takes a receiver’s state sfest and a
second message sfe2 as input and outputs a string y.
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Correctness. For any κ ∈ N, C, and x, we have

Pr[Derive(sfest, sfe2) = C(x) : (sfe1, sfest) $← Receiver(1κ, x), sfe2
$← Sender(1κ, sfe1, C)] = 1.

Security requirements are essentially the same as those in [GRS+11] except that we require the extraction algo-
rithm to run in QPT instead of classical super-polynomial time. Specifically, we require the following two security notions.

Receiver’s Security against Non-Uniform PPT Adversary. For any pair of inputs (x0, x1) and non-uniform PPT
adversary A = (A0,A1), we have∣∣∣∣∣Pr

[
A1(st, sfe1) = 1 : st $← A0(1κ)

(sfe1, sfest) $← Receiver(1κ, x0)

]

−Pr
[
A1(st, sfe1) = 1 : st $← A0(1κ)

(sfe1, sfest) $← Receiver(1κ, x1)

]∣∣∣∣∣ ≤ negl(κ).

Quantum-Extraction Sender’s Security against QPT Adversary. There exists a QPT algorithm SFEExt and a
PPT algorithm SFESim that satisfy the following: For any QPT adversary A = (A0,A1), we have∣∣∣Pr[A1(stA, sfe2) = 1 : (sfe1, C, stA) $← A0(1κ), sfe2

$← Sender(1κ, sfe1, C)]

− Pr[A1(stA, sfe2) = 1 : (sfe1, C, stA) $← A0(1κ), x $← SFEExt(sfe1), sfe2
$← SFESim(1κ, sfe1, C(x))]

∣∣∣ ≤ negl(κ).

An SFE protocol that satisfies these security notions can be constructed based on either of the DDH, QR, or
decisional composite residuosity (DCR) assumptions against non-uniform PPT adversaries and LWE assumption against
QPT adversaries. Namely, we can construct it based on Yao’s 2PC protocol instantiated with secure garbled circuit
against quantum adversaries (which can be instantiated based on OWF against quantum adversaries) and non-uniform
classical-receiver-secure but quantumly receiver-insecure and statistically sender-private OT (which can be instantiated
based on the non-uniform PPT hardness of DDH [NP01], DLIN [LVW20], QR, or DCR [HK12]). See Appendix A for
details.

2.7 Blind Signatures
Here, we give a definition of blind signatures. For simplicity, we give a definition focusing on round-optimal
blind signatures. A round-optimal blind signature scheme with a message spaceM consists of PPT algorithms
(BSGen,U1,S2,Uder,BSVerify).

BSGen(1κ)→ (pk, sk): The key generation algorithm takes as input the security parameter 1κ and outputs a public
key pk and a signing key sk.

U1(pk,m)→ (µ, stU ): This is the user’s first message generation algorithm that takes as input a public key pk and a
messagem ∈M and outputs a first message µ and a state stU .

S2(sk, µ)→ ρ: This is the signer’s second message generation algorithm that takes as input a signing key sk and a first
message µ as input and outputs a second message ρ.

Uder(stU , ρ)→ σ: This is the user’s signature derivation algorithm that takes as input a state stU and a second message
ρ as input and outputs a signature σ.

BSVerify(pk,m, σ)→ > or ⊥: This is a deterministic verification algorithm that takes as input a public key pk, a
messagem ∈M, and a signature σ, and outputs > to indicate acceptance or ⊥ to indicate rejection.
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Correctness. For any κ ∈ N,m ∈M,

Pr

BSVerify(pk,m, σ) = ⊥ :

(pk, sk) $← BSGen(1κ)
(µ, stU ) $← U1(pk,m)
ρ

$← S2(sk, µ)
σ

$← Uder(stU , ρ)

 = negl(κ).

Unforgeability against PPT Adversary. For any q = poly(κ) and PPT adversary A that makes at most q queries,
we have

Pr
[

BSVerify(pk,mi, σi) = > for all i ∈ [q + 1]
∧ {mi}i∈[q+1] is pairwise distinct

: (pk, sk) $← BSGen(1κ)
{(mi, σi)}i∈[q+1]

$← AS2(sk,·)(pk)

]
= negl(κ)

where we say that {mi}i∈[q+1] is pairwise distinct if we havemi 6= mj for all i 6= j.

Blindness against PPT Adversary. For defining blindness, we consider the following game between an adversary A
and a challenger.

Setup. A is given as input the security parameter 1κ, and sends a public key pk and a pair of messages (m0,m1) to the
challenger.

First Message. The challenger generates (µb, stU,b)
$← U1(pk,mb) for each b ∈ {0, 1}, picks coin $← {0, 1}, and

gives (µcoin, µ1−coin) to A.

Second Message. The adversary sends (ρcoin, ρ1−coin) to the challenger.

Signature Derivation. The challenger generates σb
$← Uder(stU,b, ρb) for each b ∈ {0, 1}. If σ0 = ⊥ or σ1 = ⊥, then

the challenger gives (⊥,⊥) to A. Otherwise, it gives (σ0, σ1) to A.

Guess. A outputs its guess coin′

We say that A wins if coin = coin′. We say that a blind signature scheme satisfies blindness if for any PPT adversary A,
we have ∣∣∣∣Pr[A wins]− 1

2

∣∣∣∣ = negl(κ).

Remark 2.1. In a definition of blindness for general (not necessarily round-optimal) blind signatures, A can schedule
interactions with two sessions of a user in an arbitrary order. However, as observed in [GRS+11], the order can be fixed
as above without loss of generality when we consider round-optimal schemes.

Remark 2.2. The above definition only requires security against uniform PPT adversaries. We can achieve security against
non-uniform PPT adversaries if we assume all assumptions used in this paper hold against non-uniform adversaries. We
primarily consider security against uniform adversaries to clarify which assumptions should hold against non-uniform
adversaries even if our goal is to prove security against uniform PPT adversaries.

3 Preparations
In this section, we introduce two new primitives used in our construction of blind-signature-conforming zero-knowledge
argument in Section 4.
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3.1 Classical-Hard Quantum-Solvable Hard Problem Generator
A hard problem generator consists of algorithms ΠHPG = (ProbGen,VerProb,Solve,VerSol).

ProbGen(1κ)→ prob : The problem generation algorithm is a PPT algorithm that is given the security parameter 1κ
as input and outputs a problem prob ∈ {0, 1}∗.

VerProb(1κ, prob)→ > or ⊥ : The problem verification algorithm is a deterministic classical polynomial-time
algorithm that is given the security parameter 1κ and a problem prob and returns > if it accepts and ⊥ if it rejects.

Solve(prob)→ sol : The solving algorithm is a QPT algorithm that is given a problem prob and returns a solution sol.

VerSol(prob, sol)→ > or ⊥ : The solution verification algorithm is a deterministic classical polynomial-time algorithm
that is given an problem prob and a solution sol, and returns > if it accepts and ⊥ if it rejects.

We say that ΠHPG is non-uniform-classical-hard quantum-solvable if it satisfies the following properties.
Quantum Solvability. For any prob ∈ {0, 1}∗ such that VerProb(1κ, prob) = >, we have

Pr[VerSol(prob, sol) = ⊥ : sol $← Solve(prob)] = negl(κ).

Validity of Honestly Generated Problem. For all κ ∈ N, we have

Pr[VerProb(1κ, prob) = > : prob $← ProbGen(1κ)] = 1.

Non-Uniform Classical Hardness. For any non-uniform PPT adversary A = (A0,A1), we have

Pr[VerSol(prob, sol) = > : st $← A0(1κ), prob $← ProbGen(1κ), sol $← A1(st, prob)] = negl(κ).

Remark 3.1. HPG can be trivially constructed based on any OWFwith an efficiently recognizable range that is uninvertible
by non-uniform PPT adversaries and invertible in QPT by considering an image of the function as prob and its preimage
as sol. The efficient recognizability of the range is needed since otherwise we cannot implement VerProb that verifies
the existence of a solution. Such an OWF with an efficiently recognizable range can be constructed from the RSA
assumption or the discrete logarithm assumption over Zp for a prime p of a special form as shown by Goldreich, Levin,
and Nisan [GLN11]. (Indeed, their construction is length-preserving and injective and thus any bit-string is in the range
of the function.) On the other hand, to the best of our knowledge, there is no known construction of such an OWF
from the hardness of factoring or DL over more general groups. This is why we introduce the notion of classical-hard
quantum-solvable HPG, which can be seen as a relaxed notion of a OWF with an efficiently recognizable range that is
secure against non-uniform classical adversaries and invertible in QPT.

Lemma 3.2. Assuming the non-uniform classical hardness of factoring or discrete logarithm over an efficiently
recognizable cyclic group, there exists classical-hard quantum-solvable hard problem generator.

Proof. This lemma is an easy consequence of Shor’s algorithm [Sho94] that solves factoring and discrete logarithm
problems in QPT. For completeness, we describe the constructions.

First, we give a construction based on the non-uniform classical hardness of factoring. For clarity, the non-uniform
classical hardness of factoring means that for any non-uniform PPT adversary A = (A0,A1), we have

Pr[A1(st, N) = (P,Q) : st $← A0(1κ), (P,Q) $← P2
κ, N := PQ]

where Pκ the set of all κ-bit primes. Based on this assumption, we construct a classical-hard quantum-solvable hard
problem generator as follows:

ProbGen(1κ) : This algorithm generates (P,Q) $← P2
κ and outputs prob := PQ.

VerProb(1κ, prob) : This algorithm outputs > if and only if prob is a valid encoding of some positive integer N . Note
that this algorithm does not check that N is a product of two primes of equal size since this cannot be done
efficiently.
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Solve(prob) : Let N be a positive integer encoded by prob. (If prob does not encode such N , this algorithm aborts.)
Then it computes the prime factorization of N by using Shor’s algorithm, and outputs it as sol.

VerSol(prob, sol) : This algorithm outputs > if and only if sol is the prime factorization of prob. We note that this can
be done in classical polynomial time by using the AKS primality test [AKS04].

The above construction satisfies quantum solvability since Shor’s algorithm succeeds in factoring an integer with
overwhelming probability. It satisfies the validity of honestly generated problem since ProbGen always outputs a
positive integer, which passes VerProb. Non-uniform classical hardness directly follows from the assumed hardness of
factoring.

Next, we give a discrete-logarithm-based construction. Let G = {Gκ}κ∈N be a family of cyclic groups Gκ of order
pκ with a generator gκ that is efficiently recognizable, i.e., there exists a PPT algorithm that decides if a given string
encodes an element of G. In the following, we omit the subscript κ when that is clear from context for notational
simplicity. We assume that discrete logarithm w.r.t. G is hard against non-uniform classical adversaries. That is, we
assume that for any non-uniform PPT adversary A = (A0,A1), we have

Pr[A1(st, gx) = x : st $← A0(1κ), x $← Zp] = negl(κ).

Based on this assumption, we construct a classical-hard quantum-solvable hard problem generator as follows:

ProbGen(1κ) : This algorithm chooses x $← Zp and outputs prob := gx.

VerProb(1κ, prob) : This algorithm outputs > if and only if prob is a valid encoding of an element of G.

Solve(prob) : Let h ∈ G be an element encoded by prob. (If prob does not encode such h, this algorithm aborts.) Then
it computes x such that gx = y by using Shor’s algorithm and outputs sol := x.

VerSol(prob, sol) : This algorithm outputs > if and only if we have gsol = prob.
The above construction satisfies quantum solvability since Shor’s algorithm succeeds in solving discrete logarithm
problem with overwhelming probability. It satisfies the validity of honestly generated problem since ProbGen always
outputs an element of G, which passes VerProb. Non-uniform classical hardness directly follows from the assumed
hardness of discrete logarithm problem.

3.2 Public Key Encryption with Invalid Key Certifiability.
We introduce a new notion for PKE which we call invalid key certifiability. Roughly speaking, it requires that for any
(malformed) encryption key ekikc, there exists a witness for the invalidness of ekikc or otherwise there must exist a
corresponding decryption key that can decrypt ciphertexts under ekikc.

More precisely, a PKE scheme ΠIKC = (IKC.KeyGen, IKC.Enc, IKC.Dec) has invalid key certifiability if it
additionally has a deterministic classical polynomial-time algorithm IKC.InvalidVerf with the following syntax and
properties:

IKC.InvalidVerf(1κ, ekikc,witinvalid)→ > or ⊥: This algorithm takes the security parameter 1κ, an encryption key
ekikc and a witness witinvalid ∈ {0, 1}` as input where `(κ) = poly(κ) is a parameter fixed by the scheme, and
outputs > or ⊥.

We require the following two properties:

1. For any κ ∈ N and (ekikc, dkikc)
$← IKC.KeyGen(1κ), there does not exist witinvalid ∈ {0, 1}` such that

IKC.InvalidVerf(1κ, ekikc,witinvalid) = >.

2. For any κ ∈ N and (possibly malformed) ekikc, if there does not exist witinvalid ∈ {0, 1}` such that IKC.InvalidVerf
(1κ, ekikc,witinvalid) = >, then there exists dkikc such that for anym, we have

Pr[IKC.Dec(dkikc, IKC.Enc(ekikc,m)) = m] = 1.

We call such dkikc a corresponding decryption key to ekikc. We say that ekikc is undecryptable if there does not
exist a corresponding decryption key to ekikc.
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Remark 3.3. Remark that we do not require the converse of Item 2, i.e., we do not require that “if there exists
witinvalid ∈ {0, 1}` such that IKC.InvalidVerf(1κ, ekikc,witinvalid) = >, then ekikc is undecryptable”. That is, even if
ekikc has a corresponding decryption key, it may also have a witness for the invalidness.

Remark 3.4. All dense PKE schemes, in which any string can be a valid encryption key, satisfy invalid key certifiability
since all bit strings can be a valid encryption key that has a corresponding decryption key. However, a PKE scheme with
invalid key certifiability may not be dense. We note that there is no known candidate of a dense PKE scheme against
quantum adversaries.

Lemma 3.5. There exists a PKE scheme that satisfies the CPA security against QPT adversaries and invalid key
certifiability under the quantum hardness of LWE problem.

The construction is almost identical to the Regev’s PKE scheme [Reg09] (modulo some tweak in the parameter). To
show the invalid key certifiability property, we rely on the result that the (approximated) gap closest vector (GapCVP)
problem lies in NP ∩ CoNP [AR05]. In particular, witinvalid will be a witness to a NO instance of the GapCVP
problem. Then, Item 1 follows since a valid public key of Regev’s PKE scheme can be seen as an YES instance to the
GapCVP problem and there will exist no witness to prove otherwise (i.e., witinvalid does not exist). On the other hand, to
show Item 2, we rely on the fact that if the public key is not a NO instance to the GapCVP problem, then it is still a
public key that admits a “good enough” decryption key (i.e., a short vector slightly larger than an honestly generated
one). We refer the full details to Appendix B.

4 Blind-Signature-Conforming Zero-Knowledge Argument
In this section, we define blind-signature-conforming zero-knowledge arguments that are sufficient to construct round-
optimal blind signatures and construct it based on standard assumptions. Roughly speaking, a blind-signature-conforming
zero-knowledge argument is an interactive argument protocol that satisfies the following properties:

1. publicly verifiable15 and 2-move with reusable setup by the prover,16

2. adaptive soundness with untrusted setup against classical prover, and

3. reusable quantum-simulation zero-knowledge against classical verifier.

4.1 Definition
Let L be an NP language andR be the corresponding relation. A blind-signature-conforming zero-knowledge argument
for L has the following syntax:

Setup(1κ)→ (pp, sp): This is a setup algorithm (supposed to be run by a prover) that takes as input the security
parameter 1κ and outputs a public parameter pp and a secret parameter sp.

V1(pp)→ ch: This is the verifier’s first message generation algorithm that takes as input a public parameter pp and
outputs a first message ch referred to as a challenge.

P2(sp, ch, x, w)→ resp: This is the prover’s second message generation algorithm that takes as input a secret parameter
sp, a challenge ch, a statement x, and a witness w, and outputs a second message resp referred to as a response.

Vout(pp, ch, x, resp)→ > or ⊥: This is the verification algorithm that takes a public parameter pp, a challenge ch, a
statement x, and a response resp, and outputs > to indicate acceptance or ⊥ to indicate rejection.

It should satisfy the following properties:

15Actually, the public verifiability is not needed in the construction of our blind signatures. We only require this because our construction satisfies
this.

16We can also view it as a three-move protocol by considering the setup as the prover’s first message. However, since the first message is reusable,
we view the protocol as a two-move protocol with reusable setup.
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Completeness. For any (x,w) ∈ R, we have

Pr[Vout(pp, ch, x, resp) = > : (pp, sp) $← Setup(1κ), ch $← V1(pp), resp $← P2(sp, ch, x, w)] = 1.

Adaptive Soundness with Untrusted Setup against Non-Uniform PPT Adversary. For any non-uniform PPT
cheating prover P∗ = (P∗Setup,P∗2 ), we have

Pr

 Vout(pp, ch, x∗, resp) = >
∧ x∗ /∈ L :

(pp, stP∗) $← P∗Setup(1κ),
ch $← V1(pp),
(x∗, resp) $← P∗2 (stP∗ , ch)

 ≤ negl(κ).

Reusable Quantum-Simulation Zero-Knowledge against PPTAdversary. Roughly speaking, we require that there
exists a QPT simulator that simulates a view of a PPT cheating verifier that interacts with an honest prover even if the
setup is reused many times.

More precisely, there exists a QPT simulator S such that for any PPT adversary A, we have

∣∣∣Pr
[
AOreal(pp) = 1 : (pp, sp) $← Setup(1κ)

]
− Pr

[
AOsim(pp) = 1 : (pp, sp) $← Setup(1κ)

]∣∣∣ ≤ negl(κ)

where oracles Oreal and Osim are defined as follows:
Oreal(ch, x, w)
If (x,w) ∈ R
Return resp $← P2(sp, ch, x, w)
Else
Return ⊥

Osim(ch, x, w)
If (x,w) ∈ R
Return resp $← S(pp, ch, x, 1|w|)
Else
Return ⊥

4.2 Construction
Let L be an NP language and R be its corresponding relation (i.e., x ∈ L if and only if there exists w such that
(x,w) ∈ R). We construct a blind-signature-conforming zero-knowledge argument for L based on the following
building blocks.

• A PKE scheme ΠPKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) that is CPA secure against QPT adversaries.

• A PKE scheme with invalid key certifiability ΠIKC = (IKC.KeyGen, IKC.Enc, IKC.Dec, IKC.InvalidVerf) that is
CPA secure against QPT adversaries.

• A lossy PKE scheme ΠLE = (LE.InjGen, LE.LossyGen, LE.Enc, LE.Dec) that satisfies key indistinguishability
against non-uniform PPT adversaries.

• A classical-hard quantum-solvable hard problem generator ΠHPG = (ProbGen,VerProb,Solve,VerSol).

• A ZAP system Πzap = (ZAP.Prove,ZAP.Verify) for the NP language L̃ = L̃1 ∪ L̃2 that satisfies completeness,
adaptive statistical soundness, and adaptive computational witness indistinguishability against non-uniform PPT
adversaries where languages L̃1 and L̃2 are defined as follows.

1. (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle) ∈ L̃1 if there exists (w, dkpke, rpke-gen, rpke-enc) such that

(x,w) ∈ L,

(ekpke, dkpke) = PKE.KeyGen(1κ; rpke-gen),

ctpke = PKE.Enc(ekpke, w; rpke-enc).
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2. (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle) ∈ L̃2 if there exists (sol, rikc-enc, rle-enc) such that

VerSol(prob, sol) = >,

ctikc = IKC.Enc(ekikc, sol; rikc-enc),

ctle = LE.Enc(ekle, sol; rle-enc).

• A ZAP system Π′zap = (ZAP.Prove′,ZAP.Verify′) for the NP language L̃′ = L̃′1 ∪ L̃′2 that satisfies completeness,
adaptive statistical soundness, and adaptive computational witness indistinguishability against non-uniform PPT
adversaries where languages L̃′1 and L̃′2 are defined as follows.

1. (ekikc, ekle) ∈ L̃′1 if there exists rle-gen such that ekle = LE.LossyGen(1κ; rle-gen).

2. (ekikc, ekle) ∈ L̃′2 if there exists witinvalid such that IKC.InvalidVerf(ekikc,witinvalid) = >.

We assume that the first message spaces of Πzap and Π′zap are {0, 1}`, which can be assumed without loss of
generality by taking ` as an arbitrarily large polynomial in κ. Then our blind-signature-conforming zero-knowledge
argument (Setup,V1,P2,Vout) is described as follows:

Setup(1κ): The setup algorithm is given the security parameter 1κ, and works as follows.

1. Generate (ekpke, dkpke) := PKE.KeyGen(1κ; rpke-gen).

2. Generate (ekikc, dkikc)
$← IKC.KeyGen(1κ).

3. Generate r′zap
$← {0, 1}`

4. Output pp := (ekpke, ekikc, r
′
zap) and sp := (ekpke, ekikc, r

′
zap, dkpke, rpke-gen).

V1(pp): The verifier is given a public parameter pp = (ekpke, ekikc, r
′
zap), and works as follows.

1. Generate rzap
$← {0, 1}`.

2. Generate prob $← ProbGen(1κ).

3. Generate ekle
$← LE.LossyGen(1κ; rle-gen).

4. Generate π′zap
$← ZAP.Prove′(r′zap, (ekikc, ekle), rle-gen).

5. Output ch := (rzap, prob, ekle, π
′
zap).

P2(sp, ch, x, w): The prover is given a secret parameter sp := (ekpke, ekikc, r
′
zap, dkpke, rpke-gen), a challenge ch =

(rzap, prob, ekle, π
′
zap), a statement x, and a witness w, and works as follows.

1. Immediately abort and output ⊥ if VerProb(1κ, prob) = ⊥ or ZAP.Verify′(r′zap, (ekikc, ekle), π′zap) = ⊥.

2. Generate ctikc
$← IKC.Enc(ekikc, 0|sol|) and ctle

$← LE.Enc(ekle, 0|sol|).

3. Generate ctpke
$← PKE.Enc(ekpke, w; rpke-enc).

4. Generate πzap
$← ZAP.Prove(rzap, (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle), (w, dkpke, rpke-gen, rpke-enc)).

5. Output resp := (ctpke, ctikc, ctle, πzap).

Vout(pp, ch, x, resp): The verifier is given a public parameterpp = (ekpke, ekikc, r
′
zap), a challenge ch = (rzap, prob, ekle, π

′
zap),

a statement x, and a response resp = (ctpke, ctikc, ctle, πzap), and works as follows.

1. Output ZAP.Verify(rzap, (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle), πzap).

The correctness of the scheme immediately follows from the correctness of Πzap and Π′zap and the validity of an
honestly generated instance of ΠHPG.
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4.3 Security
In this section, we prove that the construction of zero-knowledge arguments given in Section 4.2 satisfies security
defined in Section 4.1.

Soundness.

Theorem 4.1. If ΠIKC satisfies invalid key certifiability, ΠLE satisfies key indistinguishability against non-uniform PPT
adversaries, ΠHPG is hard against non-uniform PPT adversaries, ΠZAP satisfies adaptive statistical soundness, and
Π′ZAP satisfies adaptive computational witness indistinguishability against non-uniform PPT adversaries, then ΠZK
satisfies the adaptive soundness with untrusted setup against non-uniform PPT adversaries.

Proof. Let P∗ = (P∗Setup,P∗2 ) be a non-uniform PPT cheating prover against adaptive soundness of ΠZK. We consider
the following sequence of games between P∗ and a challenger.

Game 1: In this game, the challenger simulates the real verifier for P∗. That is, this game proceeds as follows:

1. P∗ generates (pp = (ekpke, ekikc, r
′
zap), stP∗) $← P∗Setup(1κ) and sends pp to the challenger.

2. The challenger generates rzap
$← {0, 1}`, prob $← ProbGen(1κ), ekle

$← LE.LossyGen(1κ; rle-gen), π′zap
$←

ZAP.Prove′(r′zap, (ekikc, ekle), rle-gen), and sends ch := (rzap, prob, ekle, π
′
zap) to P∗.

3. P∗ generates (x∗, resp = (ctpke, ctikc, ctle, πzap)) $← P∗2 (stP∗ , ch) and outputs it.

We say that P∗ wins if the verifier returns > on a statement x∗ /∈ L and denote the event that P∗ wins by Win1.
Our goal is to prove Pr[Win1] = negl(κ).
For proving this, we define a relaxed winning condition as follows: We say that P∗ semi-wins if the verifier
returns > and either of the following is satisfied:

1. ekpke is notwell-formed, i.e., there do not existdkpke and rpke-gen such that (ekpke, dkpke) = PKE.KeyGen(1κ; rpke-gen),
or

2. ekpke is well-formed and ctpke does not encrypt a valid witness, i.e., there exist dkpke and rpke-gen such that
(ekpke, dkpke) = PKE.KeyGen(1κ; rpke-gen) and (x,PKE.Dec(dkpke, ctpke)) /∈ R.

Let Win′1 be the event that P∗ semi-wins. When Win1 occurs, Win′1 also occurs since if x∗ /∈ L and condition 1
is not satisfied, then condition 2 must be satisfied since there does not exist a valid witness for x∗. Therefore, it
suffices to prove Pr[Win′1] = negl(κ).17

Game 2: This game is identical to the previous game except that π′zap is sometimes generated differently. Specifically, the
challenger checks immediately after receiving pp fromP∗ if there exists a witness witinvalid that ekikc is invalid (i.e.,
IKC.InvalidVerf(ekikc,witinvalid) = >) by a brute-force search. We denote by Invalid the event that such witinvalid

exists. If Invalid occurs, then the challenger generates π′zap as π′zap
$← ZAP.Prove′(r′zap, (ekikc, ekle),witinvalid).

Otherwise, the challenger works in exactly the same way as in the previous game. We denote by Win′2 the event
that P∗ semi-wins in this game.

Game 3: This game is identical to the previous game except that when Invalid occurs, ekle is generated as (ekle, dkle)
$←

LE.InjGen(1κ). Note that nothing is modified if Invalid does not occur. We denote by Win′3 the event that P∗
semi-wins in this game.

Lemma 4.2. If Π′zap satisfies adaptive computational witness indistinguishability against non-uniform PPT adversaries,
then we have

∣∣Pr[Win′2]− Pr[Win′1]
∣∣ = negl(κ).

17The motivation of introducing the event Win′1 is to make the winning condition falsifiable (with unbounded-time pre-computation after seeing
ekpke) so that we can argue that the winning probability changes negligibly through the game hops.
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Proof. Since Game 1 and Game 2 are identical when Invalid does not occur, we have
∣∣Pr[Win′2]− Pr[Win′1]

∣∣ =∣∣Pr[Win′2 ∧ Invalid]− Pr[Win′1 ∧ Invalid]
∣∣. We prove that this is negligible by considering a non-uniform PPT

adversary A = (A0,A1) against the adaptive computational witness indistinguishability of Π′zap as follows:

A0(1κ): This is an unbounded-time pre-computation phase ofA thatworks as follows: It runs (pp = (ekpke, ekikc, r
′
zap), stP∗) $←

P∗Setup(1κ), checks if Invalid occurs by a brute-force search, and immediately aborts if Invalid does not occur.
Otherwise, let witinvalid be a string that satisfies IKC.InvalidVerf(ekikc,witinvalid) = > (which must exist if Invalid
occurs), and searches dkpke and rpke-gen such that (ekpke, dkpke) = PKE.KeyGen(1κ; rpke-gen) by a brute-force
search. If such dkpke and rpke-gen do not exist, it defines them to be ⊥. Then it generates rzap

$← {0, 1}`,
prob $← ProbGen(1κ), and ekle

$← LE.LossyGen(1κ; rle-gen), and outputs r′zap, a statement x′ := (ekikc, ekle),
witnesses w′0 := rle-gen and w′1 := witinvalid, and a state stA := (stP∗ , rzap, prob, ekle, dkpke).

A1(stA, π′zap): This is a PPT online phase of A that works as follows: It parses (stP∗ , rzap, prob, ekle, dkpke)← stA,
sets ch := (rzap, prob, ekle, π

′
zap), runs (x∗, resp) $← P∗2 (stP∗ , ch), and parses (ctpke, ctikc, ctle, πzap)← resp. It

outputs 1 if
ZAP.Verify(rzap, (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle), πzap) = >

and either of the following is satisfied:

1. dkpke = ⊥, or
2. dkpke 6= ⊥ and (x,PKE.Dec(dkpke, ctpke)) /∈ R.

We can see that A perfectly simulates Game 1 (resp. Game 2) for P∗ if π′zap is generated by using the witness
w′0 (resp. w′1) conditioned on that Invalid occurs. Moreover A returns 1 if and only if Invalid occurs and P∗
semi-wins in the corresponding game. Therefore, A’s advantage to break the witness indistinguishability of Π′zap
is equal to

∣∣Pr[Win′2 ∧ Invalid]− Pr[Win′1 ∧ Invalid]
∣∣. By the witness indistinguishability of Π′zap, we conclude∣∣Pr[Win′2 ∧ Invalid]− Pr[Win′1 ∧ Invalid]

∣∣ = negl(κ).

Lemma 4.3. If ΠLE satisfies key indistinguishability against non-uniform PPT adversaries, then we have |Pr[Win′3]−
Pr[Win′2]| = negl(κ).

Proof. Since Game 2 and Game 3 are identical when Invalid does not occur, we have
∣∣Pr[Win′3]− Pr[Win′2]

∣∣ =∣∣Pr[Win′3 ∧ Invalid]− Pr[Win′2 ∧ Invalid]
∣∣. We prove that this is negligible by considering a non-uniform PPT

adversary A against the indistinguishability of keys of ΠLE as follows:

A0(1κ): This is an unbounded-time pre-computation phase ofA thatworks as follows: It runs (pp = (ekpke, ekikc, r
′
zap), stP∗) $←

P∗Setup(1κ), checks if Invalid occurs by a brute-force search, and immediately aborts if Invalid does not occur.
Otherwise, let witinvalid be a string that satisfies IKC.InvalidVerf(ekikc,witinvalid) = > (which must exist if Invalid
occurs), and searches dkpke and rpke-gen such that (ekpke, dkpke) = PKE.KeyGen(1κ; rpke-gen) by a brute-force
search. If such dkpke and rpke-gen do not exist, it defines them to be ⊥. Then it generates rzap

$← {0, 1}`, and
prob $← ProbGen(1κ), and outputs stA := (stP∗ , rzap, prob,witinvalid, dkpke).

A1(stA, ekle): This is a PPT online phase ofA that works as follows: It parses (stP∗ , rzap, prob,witinvalid, dkpke)← stA,
generates π′zap

$← ZAP.Prove′(r′zap, (ekikc, ekle),witinvalid), sets ch := (rzap, prob, ekle, π
′
zap), runs (x∗, resp) $←

P∗2 (stP∗ , ch), and parses (ctpke, ctikc, ctle, πzap)← resp. It outputs 1 if

ZAP.Verify(rzap, (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle), πzap) = >

and either of the following is satisfied:

1. dkpke = ⊥, or
2. dkpke 6= ⊥ and (x,PKE.Dec(dkpke, ctpke)) /∈ R.
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We can see that A perfectly simulates Game 2 (resp. Game 3) for P∗ conditioned on that Invalid occurs if ekle
is generated by LE.LossyGen(1κ) (resp. LE.InjGen(1κ)), and A returns 1 if and only if Invalid occurs and P∗
semi-wins in the corresponding game. Therefore, A’s advantage to break the key indistinguishability of ΠLE is
equal to

∣∣Pr[Win′3 ∧ Invalid]− Pr[Win′2 ∧ Invalid]
∣∣. Therefore, by the key indistinguishability of ΠLE, we have∣∣Pr[Win′3 ∧ Invalid]− Pr[Win′2 ∧ Invalid]

∣∣ = negl(κ).

Lemma 4.4. If ΠIKC satisfies invalid key certifiability, Πzap satisfies adaptive statistical soundness, and ΠHPG is hard
against non-uniform PPT adversaries, then we have Pr[Win′3] = negl(κ).

Proof. We divide the event Win′3 into the following three cases.

Win′3.a: This is the event that Win′3 occurs and we have (x∗, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle) /∈ L̃.

Win′3.b: This is the event that Win′3 occurs, we have (x∗, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle) ∈ L̃, and Invalid does
not occur.

Win′3.c: This is the event that Win′3 occurs, we have (x∗, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle) ∈ L̃, and Invalid
occurs.

We show that none of them occurs with non-negligible probability.

Claim 4.5. If Πzap satisfies adaptive statistical soundness, then we have Pr[Win′3.a] = negl(κ).

Proof. We construct an unbounded-time adversary A against the adaptive soundness of Πzap as follows:

A(rzap): This algorithm runs (pp = (ekpke, ekikc, r
′
zap), stP∗) $← P∗Setup(1κ), checks if Invalid occurs by a brute-force

search, and finds witinvalid that satisfies IKC.InvalidVerf(ekikc,witinvalid) = > if Invalid occurs. It generates
prob $← ProbGen(1κ), and generates ekle and π′zap in either of the following ways:

1. If Invalid occurs, then it generates ekle
$← LE.InjGen(1κ) andπ′zap

$← ZAP.Prove′(r′zap, (ekikc, ekle),witinvalid)),

2. Otherwise, it generates ekle
$← LE.LossyGen(1κ; rle-gen)and π′zap

$← ZAP.Prove′(r′zap, (ekikc, ekle), rle-gen)).

Then it sets ch := (rzap, prob, ekle, π
′
zap), runs (x∗, resp) $← P∗2 (stP∗ , ch), parses (ctpke, ctikc, ctle, πzap)← resp,

and outputs (x∗, πzap).

WhenWin′3,a occurs, we haveZAP.Verify(rzap, (x∗, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle), πzap) = > and (x∗, ekpke, ekikc,

ekle, prob, ctpke, ctikc, ctle) /∈ L̃. Therefore, by the soundness of Πzap, we have Pr[Win′3,a] = negl(κ).

Claim 4.6. If ΠIKC satisfies invalid key certifiability and ΠHPG is hard against non-uniform PPT adversaries, then we
have Pr[Win′3.b] = negl(κ).

Proof. First, we remark that when Win′3.b happens, we have (x∗, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle) ∈ L̃2 since the
requirement of thatP∗ semi-wins (and the correctness ofΠIKC) immediately imply that (x∗, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle) /∈
L̃1. Assuming Pr[Win′3.b] is non-negligible, we construct a non-uniform PPT algorithm A = (A0,A1) that breaks the
hardness of ΠHPG as follows:

A0(1κ): This is an unbounded-time pre-computation phase ofA thatworks as follows: It runs (pp = (ekpke, ekikc, r
′
zap), stP∗) $←

P∗Setup(1κ) and checks if Invalid occurs by a brute-force search, and immediately aborts if Invalid occurs. Oth-
erwise, it finds a corresponding decryption key dkikc to ekikc by a brute-force search. (Note that such dkikc
exists when Invalid does not occur by the second requirement of invalid key certifiability.) Then it outputs
stA := (stP∗ , ekikc, dkikc, r

′
zap).

A1(stA, prob): This is a PPT online phase of A that works as follows: It parses (stP∗ , ekikc, dkikc, r
′
zap) ← stA,

generates rzap
$← {0, 1}`, ekle := LE.LossyGen(1κ; rle-gen), and π′zap

$← ZAP.Prove′(r′zap, (ekikc, ekle), rle-gen),
sets ch := (rzap, prob, ekle, π

′
zap), runs (x∗, resp) $← P∗2 (stP∗ , ch), parses (ctpke, ctikc, ctle, πzap) ← resp, and

outputs IKC.Dec(dkikc, ctikc).
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It is easy to see that A perfectly simulates the environment of Game 3 for P∗ conditioned on that Invalid does not occur.
Suppose that Win′3.b happens. ThenA succeeds in finding dkikc corresponding to ekikc since the condition for Win′3.b in-
cludes that Invalid does not occur. Moreover, as discussed above, we have (x∗, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle) ∈
L̃2, which means that there exists (sol, rikc-enc, rle-enc) such that

VerSol(prob, sol) = >,

ctikc = IKC.Enc(ekikc, sol; rikc-enc),

ctle = LE.Enc(ekle, sol; rle-enc).

When this happens, it is clear that A succeeds in outputting a valid witness sol such that VerSol(prob, sol) = >.
Therefore Pr[Win′3.b] = negl(κ) as long as ΠHPG is hard against non-uniform PPT adversaries.

Claim 4.7. If ΠHPG is hard against non-uniform PPT adversaries, then we have Pr[Win′3.c] = negl(κ).

Proof. The proof of this claim is very similar to that of Claim 4.6 except thatA extracts the solution of ΠHPG from ctle in-
stead of ctikc. Similarly to the proof ofClaim4.6, whenWin′3.c happens, we have (x∗, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle) ∈
L̃2. Assuming Pr[Win′3.c] is non-negligible, we construct a non-uniform classical polynomial-time algorithm A that
breaks ΠHPG as follows:

A0(1κ): This is an unbounded-time pre-computation phase ofA thatworks as follows: It runs (pp = (ekpke, ekikc, r
′
zap), stP∗) $←

P∗Setup(1κ) and checks if Invalid occurs by a brute-force search, and immediately aborts if Invalid does
not occur. Otherwise, it finds witinvalid such that IKC.InvalidVerf(ekikc,witinvalid) = > and outputs stA :=
(stP∗ , ekikc,witinvalid, r

′
zap).

A1(stA, prob): This is a PPT online phase of A that works as follows: It parses (stP∗ , ekikc,witinvalid, r
′
zap) ← stA,

generates rzap
$← {0, 1}`, (ekle, dkle)

$← LE.InjGen(1κ), and π′zap
$← ZAP.Prove′(r′zap, (ekikc, ekle),witinvalid),

sets ch := (rzap, prob, ekle, π
′
zap), runs (x∗, resp) $← P∗2 (stP∗ , ch), parses (ctpke, ctikc, ctle, πzap) ← resp, and

outputs LE.Dec(dkle, ctikc).

It is easy to see that A perfectly simulates the environment of Game 3 for P∗ conditioned on that Invalid occurs. As
discussed above, when Win′3.c occurs, we have (x∗, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle) ∈ L̃2 which means that
there exists (sol, rikc-enc, rle-enc) such that

VerSol(prob, sol) = >,

ctikc = IKC.Enc(ekikc, sol; rikc-enc),

ctle = LE.Enc(ekle, sol; rle-enc).

When this happens, it is clear that A succeeds in outputting a valid witness sol such that VerSol(prob, sol) = > by the
correctness of ΠLE in the injective mode. Therefore Pr[Win′3.c] = negl(κ) as long as ΠHPG is hard against non-uniform
PPT adversaries.

Combining Claims 4.5 to 4.7, we have Pr[Win′3] = negl(κ), which concludes the proof of Lemma 4.4.

Combining Lemmata 4.2 to 4.4, we have Pr[Win′1] = negl(κ), which concludes the proof of Theorem 4.1.

Reusable Quantum-Simulation Zero-Knowledge.

Theorem 4.8. If ΠPKE satisfies CPA security against QPT adversaries, ΠIKC satisfies invalid key certifiability and CPA
security against QPT adversaries, ΠLE satisfies lossiness of lossy keys, ΠHPG satisfies quantum solvability, ΠZAP satisfies
adaptive computational witness indistinguishability against non-uniform PPT adversaries, and Π′ZAP satisfies adaptive
statistical soundness, then ΠZK satisfies the reusable quantum-simulation zero-knowledge against PPT adversaries.

Proof. We first describe a QPT simulator S.
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S(pp, ch, x, 1|w|): S is given pp = (ekpke, ekikc, r
′
zap), ch = (rzap, prob, ekle, π

′
zap), a statement x, and a witness length

1|w| as input, and works as follows.

1. Return ⊥ if VerProb(1κ, prob) = ⊥ or ZAP.Verify′(r′zap, (ekikc, ekle), π′zap) = ⊥.

2. Generate sol $← Solve(prob) (by using a QPT computation). If VerSol(prob, sol) = ⊥, immediately return
⊥ and halt. Otherwise, generate ctikc

$← Enc(sol; rikc-enc) and ctle
$← LE.Enc(ekle, sol; rle-enc).

3. Generate ctpke
$← PKE.Enc(ekpke, 0|w|).

4. Generate πzap
$← ZAP.Prove(rzap, (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle), (sol, rikc-enc, rle-enc)).

5. Return resp = (ctpke, ctikc, ctle, πzap).

We prove that resp simulated by S is indistinguishable from the real one by considering the following sequence of
games between a PPT adversary A and a challenger.

Game 1: This is the real experiment. That is, the challenger generates (ekpke, dkpke) := PKE.KeyGen(1κ; rpke-gen),
(ekikc, dkikc)

$← IKC.KeyGen(1κ), r′zap
$← {0, 1}`, and setspp := (ekpke, ekikc, r

′
zap) and sp := (ekpke, ekikc, r

′
zap, dkpke, rpke-gen).

A is given pp as input and access to an oracle Oreal(ch, x, w) that works as follows:

Oreal(ch, x, w): It immediately returns ⊥ if (x,w) /∈ R. Otherwise, it parses (rzap, prob, ekle, π
′
zap)← ch and

works as follows:
1. Return ⊥ if VerProb(1κ, prob) = ⊥, or ZAP.Verify′(r′zap, (ekikc, ekle), π′zap) = ⊥.

2. Generate ctikc
$← IKC.Enc(ekikc, 0|sol|) and ctle

$← LE.Enc(ekle, 0|sol|).
3. Generate ctpke

$← PKE.Enc(ekpke, w; rpke-enc).
4. Generateπzap

$← ZAP.Prove(rzap, (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle), (w, dkpke, rpke-gen, rpke-enc)).
5. Return resp := (ctpke, ctikc, ctle, πzap).

A’s final output is considered as the output of this game.

Game 2: This game is identical to the previous game except that the oracleOreal(ch, x, w) is replacedwithOhyb(ch, x, w)
that works similarly to Oreal(ch, x, w) except that Step 2 and 4 are replaced with the corresponding steps of S.
That is, Ohyb(ch, x, w) works as follows:

Ohyb(ch, x, w): It immediately returns ⊥ if (x,w) /∈ R. Otherwise, it parses (rzap, prob, ekle, π
′
zap)← ch and

works as follows:
1. Return ⊥ if VerProb(1κ, prob) = ⊥, or ZAP.Verify′(r′zap, (ekikc, ekle), π′zap) = ⊥.

2. Generate sol $← Solve(prob). If VerSol(prob, sol) = ⊥, immediately return ⊥. Otherwise, generate
ctikc

$← Enc(sol; rikc-enc) and ctle
$← LE.Enc(ekle, sol; rle-enc).

3. Generate ctpke := PKE.Enc(ekpke, w; rpke-enc).
4. Generate πzap

$← ZAP.Prove(rzap, (x, ekikc, ekle, prob, ctikc, ctle), (sol, rikc-enc, rle-enc)).
5. Return resp := (ctpke, ctikc, ctle, πzap).

Game 3: This game is identical to the previous game except that the oracleOreal(ch, x, w) is replaced withOsim(ch, x, w)
that works as follows:

Osim(ch, x, w): It immediately returns ⊥ if (x,w) /∈ R. Otherwise, it outputs S(pp, ch, x).

Let Ei be the event that Game i returns 1. What we have to prove is that we have |Pr[E3]− Pr[E1]| = negl(κ). For
proving this, we prove the following lemmata.
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Lemma4.9. IfΠIKC satisfies invalid key certifiability andCPA security against QPT adversaries,ΠLE satisfies lossiness of
lossy keys, ΠHPG satisfies quantum solvability, ΠZAP satisfies adaptive computational witness indistinguishability against
non-uniform PPT adversaries, and Π′ZAP satisfies adaptive statistical soundness, then we have |Pr[E2]− Pr[E1]| =
negl(κ).

Proof. The differences between Game 2 and Game 1 are as follows:

1. ctikc is an encryption of sol instead of 0|sol|, and

2. ctle is an encryption of sol instead of 0|sol|, and

3. πzap is generated by using a witness of L̃2 instead of L̃1.

Roughly, the first difference is indistinguishable by the CPA security of ΠIKC against QPT adversaries. The second
difference is indistinguishable due to the following reasons. (1) If ekle is a lossy key, encryptions of sol and 0|sol| are
statistically indistinguishable. (2) If ekle is not a lossy key, we have ZAP.Verify′(r′zap, (ekikc, ekle), π′zap) = ⊥ with
overwhelming probability by the soundness of Π′ZAP noting that ekikc is honestly generated. In this case, ctle is not
given to the adversary. The third difference is indistinguishable by the witness indistinguishability of ΠZAP. We would
be able to turn this intuition into a formal proof in a straightforward manner if we assumed witness indistinguishability
against quantum adversaries. However, since we only assume witness indistinguishability against non-uniform classical
adversaries, we have to be careful about the order of game hops.18 Namely, if we first make the modifications 1 and 2 for
all queries, then we cannot make the modification 3 since the game involves quantum computations in every query. To
circumvent this issue, we make the above modifications for each query one-by-one similarly to [GRS+11]. In this way,
we can ensure that all quantum computations can be done in the pre-computation stage when making the modification 3
for each query, and the proof goes through even with witness indistinguishability against non-uniform PPT adversaries.
The detail is described below:

Let q be the number of A’s queries.19 For each (i, j) ∈ ([q] × [4]) ∪ {(q + 1, 1)}, we consider further hybrids
Game 1.i.j between Game 1 and Game 2 as follows: (In the descriptions of these games, main differences from the
previous game is highlighted by red underlines.)

Game 1.i.1: This game is identical to Game 1 except that the oracle Oreal is replaced with O1.i.1 that works similarly
to Ohyb for the first i− 1 queries and similarly to Oreal for the rest of queries.

Game 1.i.2: This game is identical to Game 1 except that the oracle Oreal is replaced with O1.i.2 that works similarly
to Ohyb for the first i− 1 queries, similarly to Oreal for the last q − i queries, and works as follows for the i-th
query: Let (ch = (rzap, prob, ekle, π

′
zap), x, w) be A’s i-th query. Then O1.i.2 works as follows:

1. Return ⊥ if VerProb(1κ, prob) = ⊥, or ZAP.Verify′(r′zap, (ekikc, ekle), π′zap) = ⊥.

2. Generate sol $← Solve(prob). If VerSol(prob, sol) = ⊥, immediately return ⊥. Otherwise, generate ctikc
$←

IKC.Enc(ekikc, 0|sol|) and ctle
$← LE.Enc(ekle, 0|sol|).

3. Generate ctpke
$← PKE.Enc(ekpke, w; rpke-enc).

4. Generate πzap
$← ZAP.Prove(rzap, (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle), (w, dkpke, rpke-gen, rpke-enc)).

5. Return resp := (ctpke, ctikc, ctle, πzap).

Game 1.i.3: This game is identical to Game 1 except that the oracle Oreal is replaced with O1.i.3 that works similarly
to Ohyb for the first i− 1 queries, similarly to Oreal for the last q − i queries, and works as follows for the i-th
query: Let (ch = (rzap, prob, ekle, π

′
zap), x, w) be A’s i-th query. Then O1.i.3 works as follows:

1. Return ⊥ if VerProb(1κ, prob) = ⊥, or ZAP.Verify′(r′zap, (ekikc, ekle), π′zap) = ⊥.

18Note that there is no known ZAP with witness indistinguishability against QPT adversaries based on the (quantum) polynomial hardness of
standard assumptions.

19We can assume that the number of A’s queries is a fixed number that only depends on the security parameter without loss of generality.
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2. Generate sol $← Solve(prob). If VerSol(prob, sol) = ⊥, immediately return ⊥. Otherwise, generate
ctikc

$← IKC.Enc(ekikc, sol; rikc-enc) and ctle
$← LE.Enc(ekle, 0|sol|).

3. Generate ctpke
$← PKE.Enc(ekpke, w; rpke-enc).

4. Generate πzap
$← ZAP.Prove(rzap, (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle), (w, dkpke, rpke-gen, rpke-enc)).

5. Return resp := (ctpke, ctikc, ctle, πzap).

Game 1.i.4: This game is identical to Game 1 except that the oracle Oreal is replaced with O1.i.4 that works similarly
to Ohyb for the first i− 1 queries, similarly to Oreal for the last q − i queries, and works as follows for the i-th
query: Let (ch = (rzap, prob, ekle, π

′
zap), x, w) be A’s i-th query. Then O1.i.4 works as follows:

1. Return ⊥ if VerProb(1κ, prob) = ⊥, or ZAP.Verify′(r′zap, (ekikc, ekle), π′zap) = ⊥.

2. Generate sol $← Solve(prob). If VerSol(prob, sol) = ⊥, immediately return ⊥. Otherwise, generate
ctikc

$← IKC.Enc(ekikc, sol; rikc-enc) and ctle
$← LE.Enc(ekle, sol; rle-enc).

3. Generate ctpke
$← PKE.Enc(ekpke, w; rpke-enc).

4. Generate πzap
$← ZAP.Prove(rzap, (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle), (w, dkpke, rpke-gen, rpke-enc)).

5. Return resp := (ctpke, ctikc, ctle, πzap).

Clearly, Game 1.i.1 is identical to Game 1 and Game 1.(q + 1).1 is identical to Game 2. Let E1,i,j be the event that
Game 1.i.j returns 1. We prove the following claims:

Claim 4.10. If ΠHPG satisfies quantum solvability, then we have |Pr[E1.i.2]− Pr[E1.i.1]| = negl(κ) for any i ∈ [q].

Proof. Game 1.i.2 is identical to Game 1.i.1 except that when responding to A’s i-th query, the oracle generates
sol $← Solve(prob), and returns ⊥ if VerSol(prob, sol) = ⊥. By the quantum solvability of ΠHPG, this happens with
negligible probability. Therefore, Claim 4.10 follows.

Claim 4.11. If ΠIKC satisfies CPA security against QPT adversaries, then we have |Pr[E1.i.3]− Pr[E1.i.2]| = negl(κ)
for any i ∈ [q].

Proof. Game 1.i.3 is identical to Game 1.i.2 except that ctikc is an encryption of sol instead of 0|sol| in a response to
i-th query. We observe that the public key ekikc used for generating ctikc is honestly generated, and the corresponding
decryption key dkikc is not used at all in these games. Therefore, it is straightforward to reduce the indistinguishability
between these games to CPA security of ΠIKC against QPT adversaries. Note that we need CPA security against QPT
adversaries (instead of non-uniformly classical adversaries) since these games use QPT computation for running Solve
after generating ekikc.

Claim 4.12. If ΠIKC satisfies invalid key certifiability, ΠLE satisfies lossiness of lossy keys and Π′ZAP satisfies adaptive
statistical soundness, then we have |Pr[E1.i.4]− Pr[E1.i.3]| = negl(κ) for any i ∈ [q].

Proof. Game 1.i.4 is identical to Game 1.i.3 except that ctle is an encryption of sol instead of 0|sol| in a re-
sponse to i-th query. The distributions of them are statistically indistinguishable if the corresponding encryp-
tion key ekle is in the lossy mode (i.e., generated by LE.LossyGen(1κ)). Moreover, ctle is given to A only when
ZAP.Verify′(r′zap, (ekikc, ekle), π′zap) = >. Therefore, (even an unbounded-time) adversary may distinguish these two
games with non-negligible advantage only if an event Bad that ZAP.Verify′(r′zap, (ekikc, ekle), π′zap) = > and ekle is not
in the lossy mode occurs with non-negligible probability. Thus, it suffices to prove that we have Pr[Bad] = negl(κ). By
the definition of L̃′1, we have (ekikc, ekle) /∈ L̃′1 for any ekikc if ekle is not in the lossy mode. Moreover, we observe
that since ekikc is honestly generated in these games, the first requirement of the invalid key certifiability ensures that
there does not exist witinvalid such that IKC.InvalidVerf(ekikc,witinvalid) = >, which implies (ekikc, ekle) /∈ L̃′2 for any
ekle. Combining them, if ekle is not in the lossy mode, (ekikc, ekle) /∈ L̃′. On the other hand, the adaptive statistical
soundness of Π′ZAP ensures that an event that ZAP.Verify′(r′zap, (ekikc, ekle), π′zap) = > and (ekikc, ekle) /∈ L̃′ occurs
with negligible probability. This implies Pr[Bad] = negl(κ), which completes the proof of Claim 4.12.
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Claim 4.13. If ΠZAP satisfies adaptive computational witness indistinguishability against non-uniform PPT adversaries,
then we have

∣∣Pr[E1.(i+1).1]− Pr[E1.i.4]
∣∣ = negl(κ) for any i ∈ [q].

Proof. Game 1.(i+ 1).1 is identical to Game 1.i.4 except that πzap is generated by using a witness of L̃2 instead of L̃1
in a response to i-th query. Noting that all quantum computations in these games are done before πzap in a response to
i-th query is generated, we can consider these quantum computations as part of pre-computation, and thus we can reduce
the indistinguishability between these two games to the witness indistinguishability of ΠZAP against non-uniform PPT
adversaries (instead of quantum adversaries). For completeness, we give the full description of the reduction algorithm
below.

We construct a non-uniform PPT adversary B = (B0,B1) against the witness indistinguishability of ΠZAP as follows:

B0(1κ): This is an unbounded-time pre-computation phase of B that works as follows:20 It generates (ekpke, dkpke) :=
PKE.KeyGen(1κ; rpke-gen), (ekikc, dkikc)

$← IKC.KeyGen(1κ), r′zap
$← {0, 1}`, and sets pp := (ekpke, ekikc, r

′
zap)

and sp := (ekpke, ekikc, r
′
zap, dkpke, rpke-gen). Then it runs A(pp) until it makes i-th query where B0 responds

to the first i − 1 queries by using Ohyb as described in Game 2. Let (ch = (rzap, prob, ekle, π
′
zap), x, w)

be A’s i-th query and stA be the snapshot of A immediately after making the i-th query. Then B0 gen-
erates sol $← Solve(prob), ctikc

$← IKC.Enc(ekikc, sol; rikc-enc), ctle
$← LE.Enc(ekle, sol; rle-enc), and ctpke

$←
PKE.Enc(ekpke, w; rpke-enc), and sets x′ := (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle). It sets flag := ⊥ and
w′0 = w′1 := (w, dkpke, rpke-gen, rpke-enc) if VerProb(1κ, prob) = ⊥, ZAP.Verify′(r′zap, (ekikc, ekle), π′zap) = ⊥,
or VerSol(prob, sol) = ⊥. Otherwise, it sets flag := >, w′0 := (w, dkpke, rpke-gen, rpke-enc), and w′1 :=
(sol, rikc-enc, rle-enc). Finally, it outputs flag, x′, w′0, w′1, and stB := (flag, stA, sp, ctpke, ctikc, ctle).

B1(stB, πzap): This is a PPT online phase of B that works as follows: It parses (flag, stA, sp, ctpke, ctikc, ctle)← stB.
It sets resp := ⊥ if flag = ⊥ and otherwise resp := (ctpke, ctikc, ctle, πzap). B1 restarts A from the point when it
has just made its i-th query by using the snapshot stA, returns resp as a response from the oracle to the i-th query,
and runs the rest of execution of A by simulating an oracle by Oreal as described in Game 1. Finally, B1 outputs a
bit output by A.

We can see that B perfectly simulates Game 1.(i + 1).1 (resp. Game 1.i.4) for A if πzap is generated by using the
witness w′1 (resp. w′0). Moreover, for any (x′, w′0, w′1) output by B0, both w′0 and w′1 are valid witnesses for x′ ∈ L̃.
Therefore, B’s advantage to break the witness indistinguishability of ΠZAP is equal to

∣∣Pr[E1.(i+1).1]− Pr[E1.i.4]
∣∣.

Therefore, this is negligible by the witness indistinguishability of ΠZAP.

By combining Claims 4.10 to 4.13, we have |Pr[E2]− Pr[E1]| =
∣∣Pr[E1.(q+1).1]− Pr[E1.1.1]

∣∣ = negl(κ), which
completes the proof of Lemma Lemma 4.9.

Lemma 4.14. ΠPKE satisfies CPA security against QPT adversaries, then we have |Pr[E3]− Pr[E2]| = negl(κ).

Proof. Game 3 is identical to Game 2 except that ctpke is an encryption of 0|w| instead of w in a response to each
query. Thanks to the modification made in Game 2, dkpke and rpke-gen are not used at all in this game. Therefore, by a
straightforward hybrid argument, we can reduce the indistinguishability between these games to CPA security of ΠPKE
against QPT adversaries. Note that we need CPA security against QPT adversaries (instead of non-uniformly classical
adversaries) since these games use QPT computation for running Solve after generating ekpke.

Combining Lemmata 4.9 and 4.14, we have |Pr[E3]− Pr[E1]| = negl(κ), which completes the proof of Theorem 4.8.

4.4 Instantiations
As mentioned in Sections 2 and 3, we can instantiate ΠPKE and ΠIKC under the QPT hardness of LWE, ΠLE under the
non-uniform PPT hardness of DDH, DLIN, QR, or DCR, ΠHPG under the non-uniform PPT hardness of factoring or
DL, and Πzap under the non-uniform PPT hardness of factoring, SXDH in pairing groups, or DLIN in pairing groups.

20Actually, this phase runs in QPT.
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Noting that the QR or DCR assumption implies the factoring assumption, the SXDH assumption implies the DDH
assumption, and the SXDH or DLIN assumption implies the DL assumption, we can instantiate all the building blocks
if we assume the QPT hardness of LWE and non-uniform PPT hardness of either of QR, DCR, SXDH in pairing groups,
or DLIN in pairing groups.

5 Round-Optimal Blind Signatures
In this section, we construct round-optimal blind signatures.

5.1 Construction
Building blocks. We construct a round-optimal blind signature scheme based on the following building blocks.

• ΠSig = (SigGen,Sign,SigVerify) is a digital signature scheme that is EUF-CMA against QPT adversaries. We
assume that Sign is deterministic. This can be assumed without loss of generality by derandomizing the signing
algorithm by using a quantumly secure PRF (which is only required to be secure against QPT adversaries that just
make classical queries).

• ΠSFE = (Receiver,Sender,Derive) is an SFE protocol that satisfies receiver’s security against non-uniform PPT
adversaries and quantum-extraction sender’s security against QPT adversaries.

• Com is a perfectly-binding non-interactive commitment with computational hiding against QPT adversaries.

• ΠZK = (Setup,V1,P2,Vout) is blind-signature-conforming zero-knowledge arguments for a language L, which
is defined as follows: We have (com, sfe1, sfe2) ∈ L if there exists (ssk, rcom, rsfe) such that

com = Com(ssk; rcom)

sfe2 = Sender(1κ, sfe1,Sign(ssk, ·); rsfe)

Construction. Our construction of a round-optimal blind signature scheme ΠBS = (BSGen,U1,S2,Uder,BSVerify)
is described as follows.

BSGen(1κ): The key generation algorithm takes the security parameter 1κ as input, and works as follows:

1. Generate (svk, ssk) $← SigGen(1κ).

2. Generate com $← Com(ssk; rcom).

3. Generate (pp, sp) $← Setup(1κ).
4. Output a public key pk := (svk, com, pp) and a signing key sk := (ssk, rcom, sp).

U1(pk,m): The user’s first message generation algorithm takes as input a public key pk = (svk, com, pp) and a message
m, and works as follows:

1. Generate (sfe1, sfest) $← Receiver(1κ,m).

2. Generate ch $← V1(pp).
3. Output a first message µ := (sfe1, ch) and a state stU := sfest.

S2(sk, µ): The signer’s second message generation algorithm takes as input a signing key sk = (ssk, rcom, sp). and a
first message µ = (sfe1, ch) and works as follows:

1. Generate sfe2
$← Sender(1κ, sfe1,Sign(ssk, ·); rsfe).

2. Generate resp $← P2(sp, ch, (com, sfe1, sfe2), (ssk, rcom, rsfe)).
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3. Output a second message ρ := (sfe2, resp).

Uder(stU , ρ): The user’s signature derivation algorithm takes as input a state stU = sfest and a second message
ρ = (sfe2, resp) as input, and works as follows:

1. Output ⊥ if Vout(pp, ch, (com, sfe1, sfe2), resp) = ⊥

2. Otherwise generate σ $← Derive(sfest, sfe2) and output a signature σ.

BSVerify(pk,m, σ): The verification algorithm takes as input a public key pk = (svk, com, pp), a messagem, and a
signature σ as input, and outputs SigVerify(svk,m, σ).

The correctness of the scheme immediately follows from the correctness of ΠSig, ΠZK, and ΠSFE.

5.2 Security
In this section, we give security proofs for the above scheme.

Unforgeability.

Theorem 5.1. If ΠSig satisfies unforgeability against QPT adversaries, Com satisfies computational hiding against QPT
adversaries, ΠSFE satisfies quantum-extraction sender’s security against QPT adversaries, and ΠZK satisfies reusable
quantum-simulation zero-knowledge against classical adversaries, then ΠBS satisfies unforgeability against classical
adversaries.

Proof. We consider the following sequence of games between a PPT adversary A and a challenger. We denote by Ei
the event that Game i returns 1.

Game 1: This is the original unforgeability game. That is, this game proceeds as follows.

1. The challenger generates (ssk, svk) $← SigGen(1κ), com $← Com(ssk; rcom), and (pp, sp) $← Setup(1κ),
and defines a public key pk := (svk, com, pp) and a signing key sk := (ssk, rcom, sp), and sends pk to A.

2. A can make arbitrarily many signing queries. When it makes a signing query µ = (sfe1, ch), the challenger
generates sfe2

$← Sender(1κ, sfe1,Sign(ssk, ·); rsfe) and resp $← P2(sp, ch, (com, sfe1, sfe2), (ssk, rcom, rsfe)),
and returns ρ := (sfe2, resp).

3. Finally, A returns {(mi, σi)}i∈[q+1] where q is the number of signing queries made by A.

The game returns 1 if and only if A wins, i.e., {mi}i∈[q+1] is pairwise distinct and SigVerify(svk,mi, σi) = >
for all i ∈ [q + 1]. Our goal is to prove Pr[E1] = negl(κ).

Game 2: This game is identical to the previous one except that resp is generated as resp $← S(pp, ch, (com, sfe1, sfe2), 1|w|)
when responding to each signing query where S is the simulator of ΠZK and |w| denotes the bit-length of
(ssk, rcom, rsfe).
By a straightforward reduction to reusable quantum-simulation zero-knowledge property of ΠZK, we have
|Pr[E2]− Pr[E1]| = negl(κ).

Game 3: This game is identical to the previous one except that sfe2 is generated as m $← SFEExt(sfe1) and
sfe2

$← SFESim(1κ, sfe1,Sign(ssk,m)) when responding to each signing query.
Noting that rsfe is no longer used for generating resp due to the modification made in Game 2, a straightforward
reduction to quantum-extraction sender’s security of ΠSFE gives |Pr[E3]− Pr[E2]| = negl(κ). We note that
the reduction works even though these games involve QPT computations (for S and SFEExt) since we assume
quantum-extraction sender’s security against quantum adversaries.
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Game 4: In this game, the challenger generates com as com $← Com(0|ssk|).
Noting that rcom is no longer used for generating resp due to the modification made in Game 2, a straightforward
reduction to computational hiding of ΠSFE gives |Pr[E4]− Pr[E3]| = negl(κ). We note that the reduction works
even though these games involve QPT computations (for S and SFEExt) since we assume computational hiding
against quantum adversaries.

What is left is to prove Pr[E4] = negl(κ). We show this by considering the following QPT adversary B against
unforgeability of ΠSig.

BSign(ssk,·)(svk): It generates com $← Com(0|ssk|) and (pp, sp) $← Setup(1κ) and gives a public key pk :=
(svk, com, pp) toA. WhenAmakes a signing query µ = (sfe1, ch), B computesm $← SFEExt(sfe1) and queries
m to its own signing oracle to obtain σ = Sign(ssk,m). Then B generates sfe2

$← SFESim(1κ, sfe1, σ) and
resp $← S(pp, ch, (com, sfe1, sfe2), 1|w|), and returns ρ := (sfe2, resp) toA as a response from the signing oracle.
Let {(mi, σi)}i∈[q+1] be A’s final output. B finds i∗ ∈ [q + 1] such that it has not queriedmi∗ to its own signing
oracle and SigVerify(svk,mi∗ , σi∗) = >, and outputs (mi∗ , σi∗). If there does not exist such i∗, B aborts.

It is easy to see that B perfectly simulates the environment of Game 4 to A, and when A wins, B also wins (i.e., it
succeeds in outputting (mi∗ , σi∗) such that SigVerify(svk,mi∗ , σi∗) = > and B has not queriedmi∗). Therefore, by
unforgeability of ΠSig, we have Pr[E4] = negl(κ). This completes the proof of Theorem 5.1.

Blindness

Theorem 5.2. If Com satisfies perfect binding, ΠSFE satisfies receiver’s security against non-uniform PPT adversaries,
and ΠZK satisfies adaptive soundness with untrusted setup against non-uniform PPT adversaries, then ΠBS satisfies
blindness against PPT adversaries.

Proof. We consider the following sequence of games between a PPT adversaryA against the blindness and a challenger.
We denote by Ei the event that Game i returns 1.

Game 1: This is the original blindness game. That is, this game proceeds as follows:

1. A is given as input the security parameter 1κ, and sends a public key pk = (svk, com, pp) and a pair
(m0,m1) of messages to the challenger.

2. The challenger generates (sfe1,b, sfestb)
$← Receiver(1κ,mb) and chb

$← V1(pp) and defines µb :=
(sfe1,b, chb) and stU,b := sfestb for each b ∈ {0, 1}, picks coin $← {0, 1}, and sends (µcoin, µ1−coin) to A.

3. A sends (ρcoin = (sfe2,coin, respcoin), ρ1−coin = (sfe2,1−coin, resp1−coin)) to the challenger.
4. The challenger gives (⊥,⊥) to A if Vout(pp, chb, (com, sfe1,b, sfe2,b), resp) = ⊥ for either of b ∈ {0, 1}.

Otherwise it generates σb
$← Derive(sfestb, sfe2,b) for each b ∈ {0, 1} and gives (σ0, σ1) to A.

5. A outputs its guess coin′.

This game returns 1 if and only if coin = coin′. Our goal is to prove
∣∣Pr[E1]− 1

2
∣∣ = negl(κ).

Game 2: This game is identical to the previous game except that we insert Step 1.5 between Step 1 and 2 and Step 4 is
replaced with Step 4′ described below: (Differences of Step 4’ from Step 4 are marked by red underlines.)

1.5.: The challenger finds (ssk, rcom) such that com = Com(ssk; rcom) by a brute-force search. If such (ssk, rcom)
does not exist, it sets (ssk, rcom) := (⊥,⊥).

4′.: The challenger gives (⊥,⊥) to A if Vout(pp, chb, (com, sfe1,b, sfe2,b), resp) = ⊥ for either of b ∈ {0, 1}
or (ssk, rcom) = (⊥,⊥). Otherwise it generates σb := Sign(ssk,mb) for each b ∈ {0, 1} and gives (σ0, σ1)
to A.

In Lemma 5.3, we prove |Pr[E2]− Pr[E1]| = negl(κ).
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Game 3: This game is identical to the previous game except that sfe1,b is generated as (sfe1,b, sfestb)
$← Receiver(1κ,m0)

for both b ∈ {0, 1}.
In Lemma 5.4, we prove |Pr[E3]− Pr[E2]| = negl(κ).

Game 4: This game is identical to the previous game except that the challenger gives (µ0, µ1) to A instead of
(µcoin, µ1−coin) in Step 2.
Since the distributions of µ0 and µ1 are identical, we have Pr[E4] = Pr[E3]. Moreover, since no information on
coin is given to A in this game, we have Pr[E4] = 1

2 .

What is left is to prove the following lemmata.

Lemma 5.3. If Com satisfies perfect binding and ΠZK satisfies adaptive soundness with untrusted setup against
non-uniform PPT adversaries, then we have |Pr[E2]− Pr[E1]| = negl(κ).
Proof. For each b ∈ {0, 1}, we define Badb as an event that we have Vout(pp, chb, (com, sfe1,b, sfe2,b), respb) = > and

1. there does not exist (ssk, rcom) such that com = Com(ssk; rcom), or

2. there exists (ssk, rcom) such that com = Com(ssk; rcom) and Derive(sfestb, sfe2,b) 6= Sign(ssk,mb).
Game 2 and Game 1 may be different only if Bad0 or Bad1 occurs. Therefore, it suffices to prove Pr[Badb] = negl(κ)
for each b ∈ {0, 1}. First, we prove Pr[Bad0] = negl(κ) by considering a non-uniform PPT cheating prover
P∗ = (P∗Setup,P∗2 ) against adaptive soundness with adaptive setup of ΠZK as described below:

P∗Setup(1κ): It runs the first stage of A(1κ) to obtain pk = (svk, com, pp) and (m0,m1). It finds (ssk, rcom) such that
com = Com(ssk; rcom) by a brute-force search. If such (ssk, rcom) does not exist, it sets (ssk, rcom) := (⊥,⊥).
It outputs pp and stP∗ := (pk,m0,m1, ssk, rcom, stA) where stA denotes the snapshot of A at this point.

P∗2 (stP∗ , ch): It parses (pk,m0,m1, ssk, rcom, stA) ← stP∗ , generates (sfe1,b, sfestb)
$← Receiver(1κ,mb) for each

b ∈ {0, 1} and ch1
$← V1(pp), sets ch0 := ch, and defines µb := (sfe1,b, chb) for each b ∈ {0, 1}, picks coin $←

{0, 1}, and sends (µcoin, µ1−coin) toA to run the second stage ofA to obtain (ρcoin = (sfe2,coin, respcoin), ρ1−coin =
(sfe2,1−coin, resp1−coin)). If Bad0 occurs, then P∗2 outputs (com, sfe1,0, sfe2,0) and resp0.

We can see that P∗ perfectly simulates Game 1 for A until the second stage of A. Moreover, if Bad0 occurs, we
have Vout(pp, ch0, (com, sfe1,0, sfe2,0), resp0) = > and (com, sfe1,0, sfe2,0) /∈ L noting that Com is perfectly binding.
Therefore, by the adaptive soundness with untrusted setup of ΠZK, we have Pr[Bad0] = negl(κ). We can prove
Pr[Bad1] = negl(κ) analogously. This completes a proof of Lemma 5.3.

Lemma 5.4. IfΠSFE satisfies receiver’s security against non-uniform PPT adversaries, then we have |Pr[E3]− Pr[E2]| =
negl(κ).
Proof. We prove this by considering a non-uniform PPT cheating adversary B = (B0,B1) against receiver’s security of
ΠSFE as described below:

B0(1κ): It runs the first stage of A(1κ) to obtain pk = (svk, com, pp) and (m0,m1). It finds (ssk, rcom) such that
com = Com(ssk; rcom) by a brute-force search. If such (ssk, rcom) does not exist, it sets (ssk, rcom) := (⊥,⊥).
It outputs (m0,m1) and stP∗ := (pk,m0,m1, ssk, rcom, stA) where stA denotes the snapshot of A at this point.

B1(stB, sfe1): It sets sfe1,1 := sfe1, generates (sfe1,0, sfest0) $← Receiver(1κ,m0) and chb
$← V1(pp) for b ∈ {0, 1},

defines µb := (sfe1,b, chb) for each b ∈ {0, 1}, picks coin $← {0, 1}, and sends (µcoin, µ1−coin) to A to run the
second stage of A to obtain (ρcoin = (sfe2,coin, respcoin), ρ1−coin = (sfe2,1−coin, resp1−coin)). Then B1 gives
(⊥,⊥) to A if Vout(pp, chb, (com, sfe1,b, sfe2,b), resp) = ⊥ for either of b ∈ {0, 1} or (ssk, rcom) = (⊥,⊥).
Otherwise it generates σb := Sign(ssk,mb) for each b ∈ {0, 1} and gives (σ0, σ1) to A. Let coin′ be A’s final
output. B1 outputs 1 if coin = coin′.

Clearly, B perfectly simulates Game 3 (resp. Game 2) if sfe1 is generated as (sfe1, sfest) $← Receiver(1κ,m0) (resp.
(sfe1, sfest) $← Receiver(1κ,m1)). Therefore, by receiver’s security ofΠSFE, we have |Pr[E3]− Pr[E2]| = negl(κ).

Combining the above, Theorem 5.2 is proven.
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5.3 Instantiations
As mentioned in Section 2 and Section 4.4, we can instantiate ΠSig and Com under the QPT hardness of LWE, ΠSFE
under the existence of one-way function against QPT adversaries and the non-uniform PPT hardness of DDH, DLIN,
QR, or DCR, and ΠZK under the QPT hardness of LWE and non-uniform PPT hardness of either of QR, DCR, SXDH in
pairing groups, or DLIN in pairing groups. Noting that the LWE assumption implies the existence of one-way functions
and the SXDH assumption implies the DDH assumption, we can instantiate all the building blocks if we assume the
QPT hardness of LWE and non-uniform PPT hardness of either of QR, DCR, SXDH in pairing groups, or DLIN in
pairing groups.
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A Construction of Secure Function Evaluation
In this section, we give a construction of SFE that satisfies the security properties defined in Section 2.6 based on an
oblivious transfer (OT) with certain properties and a one-way function against quantum adversaries. We note that the
former assumption can be instantiated based on the non-uniform PPT hardness of DDH [NP01], DLIN [LVW20],
quadratic residuosity (QR), or decisional composite residuosity (DCR) [HK12] problems and the latter assumption
can be instantiated based on QPT hardness of the LWE problem. Therefore, our SFE can be instantiated based on the
non-uniform classical hardness of either of DDH, DLIN, QR, or DCR problems and the quantum hardness of the LWE
problem.
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A.1 Building Blocks
Here, we prepare building blocks for our construction of SFE.

Oblivious Transfer. The first building block is oblivious transfer (OT). An OT protocol with a message spaceM
consists of PPT algorithms (OT.Receiver,OT.Sender,OT.Derive).
OT.Receiver(1κ, β): This is an algorithm supposed to be run by a receiver that takes the security parameter 1κ and

β ∈ {0, 1} as input and outputs a first message ot1 and a receiver’s state otst.

OT.Sender(1κ, ot1,m0,m1): This is an algorithm supposed to be run by a sender that takes the security parameter
1κ, a first message ot1 sent from a receiver and a pair of two messages (m0,m1) ∈M2 as input and outputs a
second message ot2.

OT.Derive(otst, ot2): This is an algorithm supposed to be run by a receiver that takes a receiver’s state otst and a
second message ot2 as input and outputs a messagem′ ∈M.

As correctness, we require the following:

Correctness. For any κ ∈ N, β ∈ {0, 1}, and (m0,m1) ∈M2, we have

Pr[OT.Derive(otst, ot2) = mβ : (ot1, otst) $← OT.Receiver(1κ, β), ot2
$← OT.Sender(1κ, ot1, (m0,m1))] = 1.

Security requirements are essentially the same as those for statistically-sender-private OT [NP01] except that we
require that the extraction algorithm is QPT instead of unbounded time. Specifically, we require the following two
security notions.

Receiver’s Security against Non-Uniform PPT Adversary. For any non-uniform PPT adversary A = (A0,A1),
we have ∣∣∣∣∣Pr

[
A1(st, ot1) = 1 : st $← A0(1κ)

(ot1, otst) $← OT.Receiver(1κ, 0)

]

−Pr
[
A1(st, ot1) = 1 : st $← A0(1κ)

(ot1, otst) $← OT.Receiver(1κ, 1)

]∣∣∣∣∣ ≤ negl(κ).

Quantum-Extraction Statistical Sender’s Security. There exists a QPT algorithm OTExt and a PPT algorithm
OTSim that satisfy the following: For any unbounded-time adversary A = (A0,A1), we have

|Pr[A1(stA, ot2) = 1 : (ot1, (m0,m1), stA) $← A0(1κ), ot2
$← OT.Sender(1κ, ot1, (m0,m1))]

− Pr[A1(stA, ot2) = 1 : (ot1, (m0,m1), stA) $← A0(1κ), β $← OTExt(ot1), ot2
$← OTSim(1κ, ot1,mβ)]| ≤ negl(κ).

An OT protocol that satisfies the above security requirements can be constructed based on the non-uniform PPT
hardness of DDH [NP01], DLIN [LVW20], QR, or DCR [HK12] problems. Namely, these works give OT protocols
that satisfy the same security requirements as above except that they allow OTExt to run unbounded-time instead of
QPT. Given the fact that factoring and discrete logarithm can be solved in QPT [Sho94], we can see that these extractors
actually run in QPT.

Yao’s Garbling. Our second building block is Yao’s garbling. Yao’s garbling scheme consists of PPT algorithms
(Yao.Garble,Yao.Eval).
Yao.Garble(1κ, C): This algorithm takes the security parameter 1κ and a description of a classical circuit C with n-bit

input as input and outputs a garbled circuit C̃ and labels {labeli,b}i∈[n],b∈{0,1}.

Yao.Eval(C̃, {˜labeli}i∈[n]): This is a deterministic algorithm that takes a garbled circuit C̃ and labels {˜labeli}i∈[n] as
input and outputs an evaluation result y.
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Correctness. For any κ ∈ N, a classical circuit C with n-bit input, and x ∈ {0, 1}n we have

Pr[Yao.Eval(C̃, {labeli,xi}i∈[n]) = C(x) : (C̃, {labeli,b}i∈[n],b∈{0,1})
$← Yao.Garble(1κ, C)] = 1.

Quantum Security. There exists a PPT simulator YaoSim such that for any classical circuit C with n-bit input,
x ∈ {0, 1}n and a QPT distinguisher D, we have

Pr[D(C̃, {labeli,xi}i∈[n]) = 1 : (C̃, {labeli,b}i∈[n],b∈{0,1})
$← Yao.Garble(1κ, C)]

−Pr[D(C̃, {˜labeli}i∈[n]) = 1 : (C̃, {˜labeli}i∈[n])
$← YaoSim(1κ, C(x))] = negl(κ)

It is well-known that Yao’s garbling can be constructed based on the existence of one-way function [Yao86, LP09].
The security proof also works in the quantum setting, and thus we can construct secure Yao’s garbling against quantum
adversaries based on any one-way function against quantum adversaries. Especially, the LWE assumption against QPT
adversaries suffices.

A.2 Construction
Here, we give a construction of SFE. The construction is Yao’s two-party computation protocol [Yao86] instantiated
based on OT and garbling that satisfies the security defined in Appendix A.1. Let (OT.Receiver,OT.Sender,OT.Derive)
be an OT protocol and (Yao.Garble,Yao.Eval) be Yao’s garbling that satisfies the security defined in Appendix A.1 and
we assume that the message space for the OT matches the label space of Yao’s garbling. Then we construct SFE as
follows:

SFE.Receiver(1κ, x): Let n be the length of x. Then for each i ∈ [n], it generates (oti,1, otsti)
$← OT.Receiver(1κ, xi)

where xi denotes the i-th bit of x. Then it outputs sfe1 := {oti,1}i∈[n] and sfest := {otsti}i∈[n].

SFE.Sender(1κ, sfe1, C): It parses {oti,1}i∈[n] ← sfe1, generates (C̃, {labeli,b}i∈[n],b∈{0,1})
$← Yao.Garble(1κ, C)

and oti,2
$← OT.Sender(1κ, oti,1, labeli,0, labeli,1) for all i ∈ [n] and outputs sfe2 := (C̃, {oti,2}i∈[n])

SFE.Derive(sfest, sfe2): It parses {otsti}i∈[n] ← sfest, (C̃, {oti,2}i∈[n])← sfe2, computes ˜labeli
$← OT.Derive(otsti, oti,2)

for all i ∈ [n], and finally outputs y := Yao.Eval(C̃, {˜labeli}i∈[n])

Correctness immediately follows from the correctness of underlying primitives. In the following, we give a proof
sketch for security.

Receiver’s Security against Non-Uniform PPTAdversary. Since the first message of SFE just consists of an n-tuple
of first messages of the OT protocol, we can reduce the receiver’s security of SFE to that of OT by a standard hybrid
argument.

Quantum Extraction Sender’s Security against QPT Adversary. For any QPT adversary A = (A0,A1), we
consider the following sequence of games between A and a challenger where we denote by Ej the event that Game j
returns 1:

Game 1: This game is the “real game” where A’s inputs are simulated as in the first term of the inequality in the
definition of quantum extraction sender’s security in Section 2.6. That is, it is described as follows:

1. Run (sfe1 = {oti,1}i∈[n], C, stA) $← A0(1κ).

2. Generate (C̃, {labeli,b}i∈[n],b∈{0,1})
$← Yao.Garble(1κ, C) for all i ∈ [n].

3. Generate oti,2
$← OT.Sender(1κ, oti,1, labeli,0, labeli,1) for all i ∈ [n].

4. Set sfe2 := (C̃, {oti,2}i∈[n]).
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5. Return what A1(stA, sfe2) outputs.

Game 2: This game is identical to the previous game except that we replace the Step 3 with the following Step 3’

3’. Run xi
$← OTExt(oti,1) and oti,2

$← OTSim(1κ, oti,1, labeli,xi) for all i ∈ [n].

We have |Pr[E2]− Pr[E1]| ≤ negl(κ) by the quantum-extraction statistical sender’s security of the OT.

Game 3: This game is identical to the previous game except that the computation of “xi
$← OTExt(oti,1) for all i ∈ [n]”

in Step 3’ is done before Step 2. Since this is a conceptual change, we have Pr[E3] = Pr[E2].

Game 4: This game is identical to the previous game except that we replace the Step 2 and Step 3’ with the following
Step 2’ and Step 3” respectively

2’. Generate (C̃, {˜labeli}i∈[n])
$← YaoSim(1κ, C(x)) where x := x1||...||xn.

3”. Generate oti,2
$← OTSim(1κ, oti,1, ˜labeli) for all i ∈ [n].

We note that this modification is possible since xi for each i ∈ [n] is generated before Step 2 due to the modification
made in Game3. We have |Pr[E4]− Pr[E3]| ≤ negl(κ) by a straightforward reduction to the security of Yao’s
garbling against quantum adversaries.

By combining the above, we have |Pr[E4]− Pr[E1]| ≤ negl(κ).
We can see that Game 4 corresponds to the “simulated game” where A’s inputs are simulated as in the second term

of the inequality in the definition of quantum extraction sender’s security in Section 2.6. w.r.t. the following SFEExt
and SFESim:

SFEExt(sfe1) : It parses {oti,1}i∈[n] ← sfe1, computes xi
$← OTExt(oti,1) for all i ∈ [n], and output x := x1||...||xn.

SFESim(1κ, sfe1, C(x)): It parses {oti,1}i∈[n] ← sfe1, computes (C̃, {˜labeli}i∈[n])
$← YaoSim(1κ, C(x)) and

oti,2
$← OTSim(1κ, oti,1, ˜labeli) for all i ∈ [n], and outputs sfe2 := (C̃, {oti,2}i∈[n]).

We can see that SFEExt runs in QPT since OTExt runs in QPT and that SFESim runs in PPT since OTSim runs in PPT.
This completes the proof of quantum extraction sender’s security against QPT adversaries.

B Construction of Public Key Encryption with Invalid Key Certifiability
In this section, we prove Lemma 3.5 by providing a PKE with invalid key certifiability based on the LWE problem.
Below, we first prepare some tools on lattices. Note that we view vectors in the row form throughout this section.

B.1 Background on Lattices
A full-rankm-dimensional lattice Λ in Zm is a set of the form {

∑
i∈[m] xibi|xi ∈ Z}, where B ∈ Zm×m is the set of

linearly independent row vectors {b1, · · · ,bm}. We call B the basis of the lattice Λ. For any matrix A ∈ Zn×m such
that n ≤ m, define the full-rank m-dimensional lattice Λq(A) = {b ∈ Zm | ∃s ∈ Znq s.t. b = sA mod q}. Using
standard linear algebra, it is known that given A, one can efficiently compute the basis B(A) ∈ Zm×m of the lattice
Λq(A). Finally, given a lattice Λ ⊆ Zm and vector b ∈ Zm, let dist(Λ,b) denote minv∈Λ‖v− b‖2.
Gaussian Measures. Let Dσ denote the discrete Gaussian distribution over Z with parameter σ > 0. For any positive
integer n,Dn

σ is the discrete Gaussian distribution over Zn, where each coordinate is distributed independently according
to Dσ . The following tail bound regarding Dn

σ holds.

Lemma B.1 ([MR04, Lyu12]). We have Pr[e $← Dn
σ : ‖e‖2 > 2

√
nσ] < 2−n.

Hard Problems. We prepare two hard problems.
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Definition B.2 (Learning with Errors). For integers n = n(κ),m = m(n), a prime q = q(n) > 2, an error
distribution χ = χ(n) over Z, and a QPT A, the advantage for the learning with errors problem LWEn,m,q,χ of A is
defined as follows:

AdvLWEn,m,q,χ
A =

∣∣∣Pr
[
A
(
A, sA + e

)
= 1
]
− Pr

[
A
(
A,b

)
= 1
]∣∣∣

where A $← Zn×mq , s $← Znq , b $← Zmq , e $← χm. We say that the LWE assumption holds if AdvLWEn,m,q,χ
A is negligible

for all QPT algorithm A.

The (decisional) LWEn,m,q,Dαq for αq > 2
√
n has been shown by Regev [Reg09] via a quantum reduction to be

as hard as approximating the worst-case SIVP and GapSVP problems to within Õ(n/α) factors in the `2-norm in the
worst case. In the subsequent works, (partial) dequantumization of the reduction were achieved [Pei09, BLP+13].

We also define a hard problem over lattices.

Definition B.3 (Gap Closest Vector Problem). For a given parameter γ > 1 and r > 0, the promise problem
GapCVPr,γ is defined as follows. An input to the problem consists of a basis B ∈ Zm×m of a lattice Λ ⊆ Zm and a
vector b ∈ Zm. It is a YES instance if dist(Λ,b) ≤ r and a NO instance if dist(Λ,b) > γ · r.

Theorem B.4 ([AR05, Theorem 1.1]). There exists a universal constant c > 0 and efficiently and deterministically
computable relationsRYES andRNO with binary output {>,⊥} satisfying the following.

1. If (B,b) ∈ Zm×m × Zm is a YES instance to the GapCVPr,c·√m problem, then there exists a witness witYES
such thatRYES((B,b),witYES) = >, and no witness witNO such thatRNO((B,b),witNO) = >.

2. If (B,b) ∈ Zm×m × Zm is a NO instance to the GapCVPr,c·√m problem, there exists a witness witNO such that
RNO((B,b),witNO) = >, and no witness witYES such thatRYES((B,b),witYES) = >.

B.2 Construction
We provide a construction of a PKE with invalid key certifiability based on lattices. The construction is essentially
Regev’s PKE scheme [Reg09] modulo some minor changes in the parameters. Below, let n,m, q, α be set so that the
LWEn,m,q,Dαq problem is hard, i.e., αq > 2

√
n, 4cm

√
mα < 1 for perfect correctness, and m = 2n log q, where c

is the constant associated to the GapCVP problem (see Theorem B.4). Moreover, let the bit length ` of the witness
witinvalid used by algorithm IKC.InvalidVerf be equal to the witness length of the NO instance to the GapCVPr,c√m
problem, where r = 2

√
mαq.

Construction. The construction of a PKE with invalid key certifiability is provided below.

IKC.KeyGen(1κ) : Sample A $← Zn×mq , s $← Znq , and e $← Dm
αq.21 We assume without loss of generality that

‖e‖2 ≤ 2
√
mαq. Set b = sA + e and output ekikc = (A,b) and dkikc = s.

IKC.Enc(ekikc,m): On input a message m ∈ {0, 1}, sample r $← {0, 1}m and set c0 = Ar> and c1 = br>+m · bq/2e.
Finally, output the ciphertext ctikc = (c0, c1).

IKC.Dec(dkikc, ctikc): On input a ciphertext ctikc = (c0, c1), compute w = c1 − sc0. Output 0 if w is closer to 0 than
to bq/2e modulo q. Otherwise output 1.

IKC.InvalidVerf(1κ, ekikc,witinvalid): On input an encryption key ekikc = (A,b) and a witness witinvalid ∈ {0, 1}`,
construct the basis B(A) ∈ Zm×m for the lattice Λq(A). Then run w ← RNO((B(A),b),witinvalid) by viewing
b as a vector over Zm and output the result w. Here note that since qZm ⊆ Λq(A), the choice of b is arbitrary.

21 In case the complementary event happens (which occurs with probability less than 2−n due to Lemma B.1), we simply choose b to be noise-free,
i.e., b = sA.
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Correctness. Perfect correctness follows from our parameter choice. Since we show that we have perfect correctness
with respect to a “worse” encryption key ekikc below, we omit the proof. Concretely, we consider the case where b is
slightly further away from Λq(A) compared to an honestly generated (A,b).
CPA-Security against Quantum Adversary. The proof is identical to Regev’s PKE scheme. Informally, we rely on
the (quantum secure) LWE problem to modify the public key to be indistinguishable from random matrices, and then
invoke the leftover hash lemma to argue that the ciphertext is distributed uniformly random and independent from the
message m.
Invalid Key Certifiability. We check that Items 1 and 2 regarding algorithm IKC.InvalidVerf hold.

We first check Item 1. Observe that for honestly generated keys (ekikc, dkikc)
$← IKC.KeyGen(1κ), we have

dist(Λq(A),b) ≤ ‖e‖2 ≤ 2
√
mαq = r with overwhelming probability. Therefore, since (B(A),b) is a YES instance

to the GapCVPr,c√m problem, there does not exist witinvalid ∈ {0, 1}` such thatRNO((B(A),b),witinvalid) = > due
to Theorem B.4, Item 1. This in particular implies Item 1 by definition of IKC.InvalidVerf.

Weproceed to check Item2. In case there does not existwitinvalid ∈ {0, 1}` such that IKC.InvalidVerf(1κ, ekikc,witinvalid)
= >, (B(A),b) cannot be a NO instance due to Theorem B.4, Item 2. Namely, we have dist(Λq(A),b) ≤ c

√
m · r.

Therefore, there exists some s∗ ∈ Znq such that ‖b − s∗A‖2 ≤ c
√
m · r. Let us set any such s∗ as the decryp-

tion key dkikc. Then for any m ∈ {0, 1} and (c0, c1) = (Ar>,br> + m · bq/2e) ∈ IKC.Enc(ekikc,m), we have
c1 − s∗c0 = (b− s∗A)r> + m · bq/2e. Since r ∈ {0, 1}m, we have

∣∣(b− s∗A)r>
∣∣ ≤ ‖b− s∗A‖2 · ‖r‖2 ≤ cmr.

Since cmr < q/2 from our parameter choice, the decryption algorithm successfully outputs m. This holds for any
r ∈ {0, 1}m. Hence, this completes the proof of Item 2.
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