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Abstract. We show a lattice-based solution for commit-and-prove transparent circuit zero-knowledge
(ZK) with polylog-communication, the first not depending on PCPs.
We start from compressed Σ-protocol theory (CRYPTO 2020), which is built around basic Σ-protocols
for opening an arbitrary linear form on a long secret vector that is compactly committed to. These
protocols are first compressed using a recursive “folding-technique” adapted from Bulletproofs, at the
expense of logarithmic rounds. Proving in ZK that the secret vector satisfies a given constraint –
captured by a circuit – is then by (blackbox) reduction to the linear case, via arithmetic secret-sharing
techniques adapted from MPC. Commit-and-prove is also facilitated, i.e., when commitment(s) to the
secret vector are created ahead of any circuit-ZK proof. On several platforms (incl. DL) this leads to
logarithmic communication. Non-interactive versions follow from Fiat-Shamir.
This abstract modular theory strongly suggests that it should somehow be supported by a lattice-
platform as well. However, when going through the motions and trying to establish low communication
(on an SIS-platform), a certain significant lack in current understanding of multi-round protocols is
exposed.
Namely, as opposed to the DL-case, the basic Σ-protocol in question typically has poly-small challenge
space. Taking into account the compression-step – which yields non-constant rounds – and the necessity
for parallelization to reduce error, there is no known tight result that the compound protocol admits
an efficient knowledge extractor. We resolve the state of affairs here by a combination of two novel
results which are fully general and of independent interest. The first gives a tight analysis of efficient
knowledge extraction in case of non-constant rounds combined with poly-small challenge space, whereas
the second shows that parallel repetition indeed forces rapid decrease of knowledge error.
Moreover, in our present context, arithmetic secret sharing is not defined over a large finite field but over
a quotient of a number ring and this forces our careful adaptation of how the linearization techniques
are deployed.
We develop our protocols in an abstract framework that is conceptually simple and can be flexibly
instantiated. In particular, the framework applies to arbitrary rings and norms.

Keywords: Zero Knowledge, Circuit ZK, Lattices, Σ-Protocols, Compression, Short Integer Solution
Problem.

1 Introduction

Compressed Σ-Protocol Theory [AC20] is built around basic Σ-protocols for opening an arbitrary linear form
on a long secret vector that is compactly committed to. More precisely, these Σ-protocols allow a prover to
prove that a committed vector x satifies a constraint L(x) = y captured by a linear form L. They are first
compressed using a recursive “folding-technique” adapted from Bulletproofs [BCC+16, BBB+18]. Compres-
sion reduces the communication complexity from linear down to logarithmic in the dimension of the secret
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vector x, at the expense of a logarithmic number of rounds. Proving in ZK that the secret vector satisfies
an arbitrary (non-linear) constraint – captured by an arithmetic circuit – is then by (blackbox) reduction
to the linear case, via arithmetic secret-sharing techniques adapted from MPC. It was shown how to instan-
tiate this theory from different hardness assumptions, i.e., the Discrete Logarithm (DL), Strong-RSA and
Knowledge-of-Exponent (KEA) assumption. The latter assumption even results in constant communication,
instead of logarithmic. Non-interactive versions follow from the Fiat-Shamir transform [FS86].

The starting point is always a compact and homomorphic vector commitment scheme, i.e., commitments
should have size constant (or logarithmic) in the dimension of the committed vector. After instantiating such
a commitment scheme from any of the aforementioned hardness assumption, compressed Σ-protocol theory
can be described in an abstract and modular manner. This strongly suggests that the theory should also be
supported by a lattice platform. This belief was further strengthened by the recent lattice-based Bulletproof
instantiation for proving knowledge of an SIS preimage [BLNS20].

However, when going through the motions and trying to establish low communication (on an SIS-
platform), a certain significant lack in current understanding of multi-round protocols and several challenges
are exposed.

1.1 Challenges for Lattice Instantiations

As opposed to the DL-case, the lattice-based Σ-protocol typically has polynomially small challenge space.
Taking into account the compression-step – which yields non-constant rounds – there is no known result from
which a tight knowledge soundness property can be derived. In prior works, this lack in understanding was
handled by an alternative non-tight security analysis [BCC+16]. Recent works, while remaining non-tight,
have improved the tightness [Wik18, HKR19, dLS19, JT20, AL21].

The situation is further complicated by the necessity for parallelization to reduce the knowledge error.
While parallel repetition of interactive proofs has been studied extensively in the context of decreasing the
soundness error [HPWP10, CL10, CP15], to the best of our knowledge there does not exist a general parallel
repetition theorem for decreasing the knowledge error.

Setting aside the knowledge error issues addressed previously, the main difference between the lattice
setting and the other settings is a norm bound. Instead of proving knowledge of a preimage for some homo-
morphism Ψ , we aim to prove knowledge of a short pre-image. More precisely, for some homomorphism Ψ ,
we aim to construct a protocol for the following relation

RΨ,α = {(P ;x) : Ψ(x), ‖x‖ ≤ α}

where (P ;x) ∈ RΨ,α is a pair of a public statement P and a secret witness x. The DL-based protocols
are designed for exactly the same abstract relation, but without the norm-bound. This minor difference
introduces a number of challenges that have been dealt with in the context of plain Σ-protocols for some
time now. For example, given a preimage x with ‖x‖ ≤ β, a prover is typically only capable of proving
knowledge of a preimage y with ‖y‖ ≤ αβ. The factor α ≥ 1 is referred to as the soundness slack. In
multi-round protocols the soundness slack accumulates and a more careful analysis is warranted.

Finally, in our present lattice context, committed vectors typically have coefficients in the quotient of
a number ring R = Z[X]/(f(X)) by a rational prime (p). However, the structure of the ring Rp may not
readily allow for the large sets with invertible pairwise differences required for Shamir secret sharing.

1.2 Contributions

We show a lattice-based solution for commit-and-prove transparent circuit ZK with polylogarithmic com-
munication, the first not depending on PCPs.

To this end, we resolve the lack in understanding regarding knowledge soundness by a combination of two
novel results which are fully general and of independent interest. The first gives a tight analysis of efficient
knowledge extraction in case of non-constant rounds, whereas the second shows that parallel repetition
indeed forces rapid decrease of knowledge error.

2



By our extractor analysis, we tightly prove that (k1, . . . , kµ)-special soundness implies knowledge sound-
ness, without imposing any restrictions on the size of the challenge sets. In a concurrent and independent
work this result was deemed out of reach with current techniques[AL21]. More concretely, they apply the
non-tight analysis of [dLS19] and derive a knowledge error κ ≤ 8.16 logn/|C|, where n is the size of the input.
By contrast, we provide a tight bound and show that κ ≤ 2 logn/|C|. This inequality contains a simplified
expression and is therefore non-tight, for the tight bound we refer to Theorem 1. Furthermore, our result
answers an open question regarding knowledge extractors, recently made explicit [HKR19, Question D.4.],
in the affirmative. It is generally applicable to all aforementioned platforms and therefore improves upon the
analyses of [BCC+16, Wik18, HKR19, dLS19, JT20, AL21], directly yielding better parameters for multi-
round protocols such as Bulletproofs. Towards showing that (k1, . . . , kµ)-special soundness tightly implies
knowledge soundness, we observe that for the special case of 2-special soundness (where this implication is
well-known) we can give a very simple proof that we have not encountered in literature before. In contrast
to standard proof techniques, our extractor can be modeled by a negative hyper geometric distribution. This
simplification turns out to be generalizable to the multi-round scenario. Even though the general proof is
building on this simplification, its analysis turns out quite involved.

By the second result, we show that parallel repetition indeed forces a rapid decrease of knowledge error,
explicitly proving a result that is often taken for granted whereas it actually requires a careful analysis. More
precisely, it is known that parallel repetition decreases the soundness error. However, knowledge soundness
is a strictly stronger notion than soundness. Nevertheless, by a careful analysis, we prove that prior results
also apply to knowledge sound protocols and allow for a rapid decrease of knowledge error. The (2, 2)-special
sound signature scheme MQDSS was already presented with a tight knowledge error analysis [CHR+16].
However, their analysis crucially depends on the fact that this signature scheme has a constant number
of rounds and therefore does not apply to our setting. Our techniques are generic and also apply to this
protocol, indeed yielding exactly the same knowledge error.

Furthermore, we describe a careful adaptation of the arithmetic secret sharing based linearization strat-
egy from [AC20]. First, the evaluation points of Shamir’s secret sharing scheme have to be chosen from
an exceptional, instead of an arbitrary, subset of the ring Rp, i.e., a subset with invertible differences. In
many practical scenarios this minor adaptation suffices. However, some rings do not contain “large enough”
exceptional subsets. For this reason, we extend the linearization technique to work for small rings Rp by
defining the secret sharing scheme over an appropriately chosen ring extension. Some care is warranted to
prevent dishonest provers from choosing secret elements in the extension ring.

Subsequently, we note that working in a lattice-platform is considerably more tedious. Traditionally
the security analysis depends strongly on various protocol design choices. Our approach is less sensitive to
these choices. This is very convenient when considering variations. More precisely, we develop our protocols
in an abstract framework that is conceptually simple and can be flexibly instantiated. In particular, the
framework applies to arbitrary rings, challenge sets and norms. Our framework captures general rejection
sampling strategies, gives precise bounds on the introduced soundness slack and generalizes beyond factor-2
per-round compression.

The communication complexity of our protocols, when instantiated from the Module Short Integer So-
lution (MSIS) assumption and appropriately chosen rings, is polylogarithmic in the input size. Due to the
soundness slack it does not achieve the logarithmic communication of a DL-based instantiation. Our pro-
tocols are transparent, i.e., no trusted setup, and easily ported to the commit-and-prove paradigm, where
commitment(s) to the secret vector have been created ahead of any circuit-ZK proof. Moreover, various
efficiency improvements, developed for DL-based (compressed) Σ-protocol theory, almost directly carry over
to the lattice-setting.

1.3 Related Work

Circuit ZK with Polylogarithmic Complexity from PCPs. A generic class of (zero-knowledge) proof systems is
based on Probabilistically Checkable Proofs (PCPs). The security of these protocols only relies on the existence
of collision-resistant hash functions and they achieve polylogarithmic communication complexity. However,
large concrete costs have long prevented PCP-based protocols from being deployed in practice. Recent
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advances have rendered PCP-based protocols practical [AHIV17, BBC+17, BCR+19]. Still, for small problem
instances, PCP-based protocols are often outperformed by other approaches relying on more structured
hardness assumptions. In particular, PCP approaches rely on Merkle-tree commitments and therefore have
an implicit lower bound in the order of a hundred kilobytes, whereas protocols relying on the compression
mechanism such as Bulletproofs can go down to as much as a few kilobytes. Even though the soundness slack
introduced by the compression mechanism is currently somewhat limiting in terms of concrete efficiency, we
expect that on the long run the non-PCP lattice-based approach will lead to more succinct proofs.

Circuit ZK with Sublinear Complexity from Lattice Assumptions. The first protocol of this form achieving a
sub-linear communication complexity Õ(

√
λn), where n is the input size and λ the security parameter, was

presented in [BBC+18]. A key component of their protocol is a compact commitment scheme. In our lattice
instantiation we use exactly the same compact commitment scheme. While their approach is inherently
limited to communication complexity in the order of Õ(

√
λn), our approach yields the first lattice-based

(non-PCP) protocol that achieves polylogarithmic complexity in the input length. On the other hand, our
approach requires a larger number of rounds. Getting a similar communication-complexity/round trade-off
as [BBC+18] by using a larger per-round compression seems currently out of reach, due to the large soundness
slack introduced (which scales exponentially in the compression factor).

Lattice-based proof of knowledge of SIS preimages. The lattice-based Bulletproof instantiation of [BLNS20]
is most similar to our compressed Σ-protocol. However, in this work the aforementioned knowledge error
issues were overlooked. Moreover, their work only considers proving knowledge of an SIS preimage, i.e., it
does not consider generic arithmetic circuit relations. Furthermore, it is not zero-knowledge and it is tailored
to a specific lattice-instantiation. By contrast, our protocol is a circuit ZK protocol that can be instantiated
from a wide variety of lattices. For the specific scenario of proving knowledge of a SIS preimage, we obtain
a comparable communication complexity.

1.4 Roadmap

We start by presenting the general result that (k1, . . . , kµ)-special soundness tightly implies knowledge sound-
ness in Section 3. We first outline a very simple proof for the special case of 2-special soundness, which is novel
to the best of our knowledge. Subsequently, we show how this proof can be generalized to the multi-round
setting. Using results from [CP15], we prove that parallel repetition of multi-round public-coin protocols
not only reduces the soundness error, but also the knowledge error (see Section 4). In Section 5, we give
an abstract theory for lattice-based compressed Σ-protocols. In Section 6 we show how to instantiate our
abstract framework from the Module Short Integer Solution (MSIS) problem. We further provide an asymp-
totic parameter analysis for our instantiation and comparison with [BLNS20]. In Section 7, we show how
to adapt the linearization techniques of [AC20] to the lattice section, where the arithmetic secret sharing
is not defined over a large field but over a quotient of a number ring. Finally, in Section 8, we discuss a
number of extensions for amortization over many linear forms, reducing the communication complexity and
for obtaining commit-and-prove protocols directly.

2 Preliminaries

We typically denote the input by x. We sometimes parametrize security directly by the input length |x|,
and sometimes by an extra security parameter λ ∈ N, whichever is more convenient in the context. Since
we always assume the input length |x| to be polynomial in the security parameter λ, this does not make a
difference asymptotically.

We say a function f : N→ R>0 is negligible, if for all c ∈ N, there exists a λ0 ∈ N such that f(λ) ≤ 1/λc
for all λ ≥ λ0. We write negl(λ) for short to denote a negligible function negl : N→ R>0. We say a function
f : N→ R>0 is noticeable, if there exists a c ∈ N and a λ0 ∈ N, such that f(λ) ≥ 1/λc for all λ0 ≥ λ.
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We use the notation poly(λ) for short to denote a function that is polynomially bounded in λ, i.e., there
exist c, λ0 ∈ N such that poly(λ) ≤ λc for all λ ≥ λ0.

Let X and Y be discrete random variables over a finite support D. The statistical difference of two
distributions X and Y is defined as

∆(X,Y ) = 1
2
∑
d∈D

|Pr[X = d]− Pr[Y = d]| .

We say two ensembles of random variables {Xλ}λ∈N, {Yλ}λ∈N are statistically close if there exists a
negligible function negl : N → R>0 such that ∆(Xλ, Yλ) ≤ negl(λ) for all λ ∈ N. We say two ensembles
of random variables {Xx}x∈{0,1}? , {Yx}x∈{0,1}? are statistically close if there exists a negligible function
negl : N→ R>0 such that ∆(Xx, Yx) ≤ negl(|x|) for all x ∈ {0, 1}?.

2.1 Interactive Proofs

Let R ⊂ {0, 1}∗ × {0, 1}∗ be a binary relation. If (x;w) ∈ R, we say x is a statement and w is a witness for
x. We only consider NP relations, i.e., relations R for which a witness w can be verified in time poly(|x|) for
all (x;w) ∈ R. In particular it follows that |w| = poly(|x|). The set of statements x that admit a witness w
is denoted by LR, i.e., LR = {x : ∃w s.t. (x;w) ∈ R}. The set of witnesses for a statement x is denoted by
R(x), i.e., R(x) = {w : (x;w) ∈ R}.

Definition 1 (Interactive Proof). An interactive proof Π = (P,V) for relation R is an interactive
protocol between two probabilistic polynomial time machines, a prover P and a verifier V. It allows a prover
to convince a verifier to know a witness w for a public statement x. Both P and V take as public input a
statement x and, additionally, P takes as private input a witness w ∈ R(x), which is written as Π(x;w)
or Input(x;w). As the output of the protocol, V either accepts or rejects the prover’s claim of knowing a
w ∈ R(x). Accordingly, we say the corresponding transcript (i.e., the set of all messages sent in the protocol
execution) is accepting or rejecting.

Definition 2 (Completeness). An interactive proof5 is said to be (perfectly) complete, if V accepts after
every honest execution that takes as input a public-private pair (x;w) ∈ R. We also consider a relaxed
notion of completeness, in which an honest execution is allowed to be rejected with some probability called
the completeness error.

Intuitively, Π is said to be knowledge sound if any prover that convinces the verifier of knowing a witness
for x ∈ LR with large enough probability has to know some witness w with (x;w) ∈ R. This is formalized
by requiring that there exists an efficient algorithm that allows to extract such a witness from the prover.

Definition 3 (Knowledge Soundness). Let Π = (P,V) be an interactive proof for relation R. Let
κ : N→ [0, 1) be a function. Then Π is said to be knowledge sound with knowledge error κ, if there exists a
polynomial q : N → N and an algorithm E, called a knowledge extractor, with the following properties: The
extractor E, given input x and rewindable oracle access to a (potentially dishonest) prover P∗, runs in a
expected polynomial number of steps and, whenever (P∗,V)(x) outputs accept with probability ε(x) ≥ κ(|x|),
successfully outputs a witness w ∈ R(x) with probability at least (ε(x)− κ(|x|))/q(|x|).

Definition 4 (Proof/ Argument of Knowledge). An interactive proof that is both complete with com-
pleteness error γ : N → [0, 1) and knowledge sound with knowledge error κ < γ is said to be a Proof of
Knowledge (PoK). PoKs for which knowledge soundness only holds under computational assumptions are
also referred to as Arguments of Knowledge.
5 Note that, originally interactive proofs are required to be complete and knowledge sound by definition [GMR85].
By contrast, we consider these properties separately as desirable properties.
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Definition 5 ((Public-coin) µ-move protocol). An interactive proof with µ communication rounds is
called a µ-move protocol. If additionally all of the verifier’s messages consist of random coins, independent
of earlier messages, Π is said to be a public-coin µ-move protocol.

Public-coin protocols can be made non-interactive by the Fiat-Shamir transformation [FS86]. For details
we refer to Section 5.5. All protocols in this work are public-coin.

Intuitively, an interactive proof is said to be zero-knowledge if a (possibly dishonest) verifier cannot obtain
any information about the secret witness w from interacting with an honest prover. For our setting it will be
sufficient to only consider honest verifiers, because the randomness will be obtained via applying the Fiat-
Shamir transform. Further, for the lattice-based instantiation we will only be able to simulate non-aborting
transcripts and therefore can only rely on a relaxed notion of honest verifier zero knowledge. Again, this will
not constitute a problem when instantiating the protocols with the Fiat-Shamir transform, because in this
case aborting executions are never published.

Definition 6 ((Special/ Non-abort) Honest-Verifier Zero Knowledge). An interactive protocol Π
is said to be honest verifier zero-knowledge (HVZK) if there exists a polynomial time simulator that on input
x ∈ LR outputs an accepting transcript which is distributed statistically close to the transcripts generated
by honest executions of Π. If the simulator proceeds by first sampling the verifier’s messages uniformly at
random, then Π is said to be special honest verifier zero-knowledge (SHVZK). We say a protocol is non-abort
honest-verifier zero knowledge, if the distribution of the transcript produced by the simulator is statistically
close to the transcripts generated by an honest execution whenever the honest prover does not abort.

Note that in the literature non-abort (S)HVZK is often simply referred to as (S)HVZK. We use a different
notation to highlight that the notion of non-abort (S)HVZK is weaker than (S)HVZK, as in an interactive
protocol execution the verifier might learn something from aborting executions.

In the following we introduce the notion of special soundness, which is easier to handle than knowledge
soundness.

Definition 7 (k-Special Soundness). A 3-move public-coin protocol is said to be special sound if there
exists a polynomial time algorithm that on input a statement x and two accepting transcripts (a, c, z) and
(a, c′, z′), with c 6= c′ and common first message a, outputs a witness w ∈ R(x). If the algorithm takes as
input k transcripts, with pairwise distinct challenges and a common first message, instead of 2, the protocol
is said to be k-special sound.

Definition 8 (Σ-Protocol). A 3-move protocol that is public-coin, complete, k-special sound and SHVZK
is said to be Σ-protocol.

In this paper, we will more generally refer to Σ-protocols also for (2µ + 1)-move protocols that are
public-coin, complete (with some completeness error), (k1, . . . , kµ)-special sound and (non-abort) SHVZK.

Before extending the definition of special soundness to 2µ+ 1-move protocols, we have to introduce the
notion of a tree of transcripts.
Definition 9 (Tree of transcripts). A (k1, . . . , kµ)-tree of transcripts for a (2µ + 1)-move public-coin
protocol is a set of K =

∏µ
i=1 ki transcripts arranged in the following tree structure. The nodes in this tree

correspond to the prover’s messages and the edges correspond to the verifier’s challenges. Every node at depth
i has precisely ki children corresponding to ki pairwise distinct challenges. Every transcript corresponds to
exactly one path from the root node to a leaf node. For a graphic representation we refer to Figure 1.

Definition 10 ((k1, . . . , kµ)-Special Soundness). A (2µ + 1)-move public-coin protocol is (k1, . . . , kµ)-
special sound if there exists an efficient algorithm that on input a (k1, . . . , kµ)-tree of accepting transcripts
outputs a witness w ∈ R(x).

Note that it is non-trivial to show that special soundness implies knowledge soundness, because in contrast
to the extractor E of Definition 3 that has only access to the prover, the algorithm for special soundness
obtains the transcripts directly. While it is well known that for 3-move protocols special soundness implies
knowledge soundness, previously there was no known generalization to 2µ + 1-move protocols. We refer
to Section 3 for details.
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Fig. 1. (k1, . . . , kµ)-tree of transcripts of a (2µ+ 1)-move public-key protocol

2.2 Negative Hypergeometric Distribution

In order to show that (k1, . . . , kµ)-special soundness implies knowledge soundness (see Section 3), we will use
the negative hypergeometric distribution. The negative hypergeometric distribution describes the following
distribution: Given a bin with N balls of which M are marked, then the number of attempts when drawing
from the bin (without replacement) until k ≤ M marked balls are drawn is distributed according to the
negative hypergeometric distribution. The expected number of draws equals k(N+1)

M+1 .

2.3 Lattices

A lattice Λ is a discrete additive subgroup of Rm. The lattice Λ is said to be q-ary if qZm ⊂ Λ ⊂ Zm. Let
A ∈ Zk×mq , then Λ⊥q (A) = {x ∈ Zm : Ax = 0 mod q} defines a q-ary lattice in Zm.

We also consider lattices defined over a ring R = Z[X]/f(X), where f(X) is a monic irreducible polyno-
mial of degree d. Via the coefficient embedding norms on C-vector spaces extend to vectors of ring elements,
i.e., for x = (x1, . . . , xm) ∈ Rm with xi =

∑d
j=1 ai,jX

j−1 ∈ R we define

‖x‖2 = ‖(a1,1, . . . , am,d)‖2, and ‖x‖∞ = max
i,j
|ai,j |.

For a prime q ∈ N, we write Rq = Z[X]/(q, f(X)) = Zq[X]/(f(X)). Let A ∈ Rk×m, then Λ⊥q (A) =
{x ∈ Rm : Ax = 0 mod q} defines a q-ary lattice in Zdm. Finding a non-zero and short element in a lattice
Λ⊥q (A) is referred to as the Module Short Integer Solution (MSIS) problem. The MSIS problem is assumed
to be a computationally hard problem.

Definition 11 (MSISk,m,β Problem). Let R = Z[X]/f(X) for a monic and irreducible polynomial f(X)
and let q ∈ N be a prime. The MSISk,m,β problem over Rq is defined as follows. Given a matrix A←R Rk×mq

sampled uniformly at random, find a non-zero vector s ∈ Rm such that As = 0 mod q and ‖s‖2 ≤ β.

Micciancio and Regev [MR09] showed that an MSIS-algorithm is expected to output an MSIS solution
with norm

‖s‖2 ≥ min
(
q, 22
√
dk log δ log q

)
, (1)
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where δ is the root Hermite factor of the lattice reduction algorithm that is used. In particular, smaller
values of δ require better lattice reduction algorithms. In general, δ ≈ 1.0045 is assumed to achieve 128-bit
computational security [APS15, ESS+19].

In this work, we will be interested in vectors that are short with respect to the `∞-norm. For this reason
we also consider the following variant of the MSIS problem, where “shortness” is defined in terms of the
`∞-norm. Clearly, the hardness of MSIS∞k,m,β is implied by the hardness of MSISk,m,√dmβ .

Definition 12 (MSIS∞k,m,β Problem over Rq). Let R = Z[X]/f(X) for a monic and irreducible polyno-
mial f(X) and let q ∈ N be a prime. The MSISk,m,β problem over Rq is defined as follows. Given a matrix
A ←R Rk×mq sampled uniformly at random, find a non-zero vector s ∈ Rm such that As = 0 mod q and
‖s‖∞ ≤ β.

2.4 Commitment Schemes

A commitment scheme allows a prover to create a commitment P to an element x such that the prover can
later open P to the committed element x. Informally, a commitment scheme is required to be binding, i.e.,
a prover cannot open a commitment P to two different elements x 6= y, and hiding, i.e., the commitment P
does not reveal any information about the committed vector x. A commitment scheme consists of a setup
algorithm, generating the schemes public parameters, and a commitment function Com. The commitment
function takes as input an element x and randomness γ (and public parameters pp) and outputs a commitment
P , i.e, Com(x, γ) = P . To open a commitment a prover reveals (x, γ) such that a verifier can verify that
Com(x, γ) = P . The commitment scheme is said to be homomorphic if the commitment function Com
(considered respective to fixed public parameters) is a group homomorphism.

The primary commitment scheme of interest to us, described in Definition 13, was already implicit in
Ajtai’s seminal work [Ajt96]. It allows a prover to commit to a short vector x ∈ Snη ⊂ Rn by sampling
γ ←R Snη uniformly at random and evaluating the commitment function P = Com(x, γ). Note that, we
consider this commitment scheme for secrets and randomness bounded in the `∞-norm. We will typically
instantiate this commitment scheme with norm bound η = d(p− 1)/2e for some prime p < q. This allows
a prover to commit to arbitrary vectors in Rnp . The properties of this commitment scheme are summarized
in Lemma 1 and Lemma 2. Note in particular that by Equation 1 it follows that the hardness does not
depend on the dimension n. It follows that the size of a commitment is constant in the dimension m = n+ r;
we say that this commitment scheme is compact.

Definition 13 (Compact Lattice-Based Commitment Scheme [Ajt96]). Let R = Z[X]/f(X) for
a monic and irreducible polynomial f(x) ∈ Z[X] of degree d and let q ∈ N be a prime. Let η ∈ N and let
Sη = {x ∈ R : ‖x‖∞ ≤ η}. Then, the following setup and commitment algorithms define a commitment
scheme:

– Setup: A1 ←R Rk×rq , A2 ←R Rk×nq .
– Commit: Com : Snη × Srη → Rkq , (x, γ) 7→ A1γ +A2x mod q.

Lemma 1 (Hiding). The commitment scheme of Definition 13 is statistically hiding with statistical secu-
rity parameter λ, where λ ∈ N is such that r ≥ dk log q+2λ

d log(2η+1) .

Proof. The family of functions hA : Rrq → Rkq , x 7→ Ax, indexed by A ∈ Rk×rq is a universal hash family.
The min-entropy of the uniform distribution over Srη equals dr log(2η + 1) ≥ dk log q + 2λ. By the leftover
hash lemma it therefore follows that the statistical distance between the distribution X = {(A,Aγ) : A←R

Rk×rq , γ ←R Srη} and the uniform distribution U over Rk×rq ×Rkq is at most 2−λ, which proves the lemma.

Lemma 2 (Binding). The commitment scheme of Definition 13 is binding, conditioned on the hardness
of the MSIS∞k,n+r,2η-problem over Rq.

Proof. Suppose that (x, γ) 6= (x′, γ′) are two distinct openings of the same commitment P . Then s =
(x − x′, γ − γ′) 6= 0 satisfies ‖s‖∞ ≤ 2η and [A1, A2]s = 0, i.e., s is a solution of the MSIS∞k,n+r,2η problem,
which completes the proof.
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It is generally hard to construct efficient protocols for proving knowledge of an opening (x, γ) for a
commitment P , i.e., (x, γ) such that Com(x, γ) = P and ‖(x, γ)‖∞ ≤ η. For this reason, we introduce the
notion of relaxed openings.

Definition 14 ((β, ζ)-Relaxed Commitment Opening). Let β ∈ N and ζ ∈ R. A (β, ζ)-relaxed opening
of a commitment P is a tuple (x, γ) ∈ Rn+r, such that Com(x, γ) = ζP and ‖(x, γ)‖∞ ≤ β.

Hence, a relaxed opening differs in two ways from a standard commitment opening. First, a relaxed
opening for P contains an approximation factor ζ, such that the opening gives a short preimage for ζP
instead of the commitment P . Second, the norm-bound β of relaxed openings can be different from the norm
bound η on honestly committed vectors (typically β > η).

As long as it is infeasible to find two distinct relaxed openings (x, γ) and (x′, γ′) of a commitment P with
(x, γ) 6= (x′, γ′), proving knowledge of relaxed opening is sufficient in most practical scenarios. In this case,
we say the commitment scheme is binding with respect to relaxed openings.

Lemma 3 (Binding with respect to (β, ζ)-Relaxed Openings). Let β ∈ N and ζ ∈ R. The commit-
ment scheme of Definition 13 is binding with respect to (β, ζ)-relaxed openings, conditioned on the hardness
of the MSIS∞k,n+r,2β-problem over Rq.

Proof. Suppose that (x, γ) and (x′, γ′) are distinct (β, ζ)-relaxed openings of a commitment P . Then s =
(x− x′, γ − γ′) 6= 0 satisfies ‖s‖∞ ≤ 2β and [A1, A2]s = 0, i.e., s is a solution of the MSIS∞k,n+r,2β problem,
which completes the proof.

3 Multi-Round Special Soundness Tightly Implies Knowledge Soundness

In this section we prove that a (k1, . . . , kµ)-special sound protocol is knowledge sound and give a concrete and
tight knowledge error. More precisely, we show the existence of an efficient knowledge extractor. From this
it follows that Bulletproofs [BCC+16, BBB+18] and Compressed Σ-Protocols [AC20] are Proofs/Arguments
of Knowledge (PoKs). We are the first to prove a tight bound on the knowledge error. Prior works mainly
relied on the asymptotic extractor analysis of [BCC+16]. This asymptotic analysis results in conservative
concrete security estimates. Moreover, the analysis of [BCC+16] is restricted to protocols with exponentially
large challenge sets. When the challenge sets are small, such as in lattice based protocols, a refined analysis
is required. Our result solves both problems. It gives tight security guarantees resulting in optimal concrete
parameters for (k1, . . . , kµ)-special sound protocols and it is applicable to protocols with small challenge sets.
The main result of this section is summarized in Theorem 1.

Theorem 1 ((k1, . . . , kµ)-Special Soundness implies Knowledge Soundness). Let µ : N → N and
k1, . . . , kµ : N → N be such that K =

∏µ
i=1 ki can be upper bounded by a polynomial. Let (P,V) be a

(k1, . . . , kµ)-special sound (2µ + 1)-move interactive protocol for relation R, where V samples each chal-
lenge uniformly at random from a challenge set of size N ≥ maxi(ki). Then (P,V) is knowledge sound with
knowledge error

κ =
Nµ −

∏µ
i=1(N − ki + 1)
Nµ

≤
∑µ
i=1(ki − 1)

N
. (2)

First, in Section 3.1, we considers the special case of 2-special soundness (for which the above implication
is well-known). We give a very simple proof that we have not encountered in literature before. In contrast
to standard proof techniques, this simplification turns out to be generalizable to the multi-round scenario.
Second, in Section 3.2, we proof Theorem 1 in its full generality.

Remark 1. Theorem 1 has a straightforward generalization to multi-round protocols in which challenges are
sampled from possibly different challenge sets in every round. The only difference is the slightly different
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knowledge error expression. Let challenge i be sampled uniformly at random from a set of cardinality Ni for
1 ≤ i ≤ µ. Then the knowledge error of a (k1, . . . , kµ)-special sound protocol equals

κ =
∏µ
i=1 Ni −

∏µ
i=1(Ni − ki + 1)∏µ
i=1 Ni

≤
µ∑
i=1

ki − 1
Ni

. (3)

For simplicity, the proofs are restricted to the case where each challenge is sampled from a challenge set of
cardinality N .

3.1 2-Special Soundness

This section is a warm up in which we present a novel proof for the well-known result that 2-special soundness
implies knowledge soundness. Later we show that our techniques generalize to prove a similar result for 2µ+1-
move protocols that are (k1, . . . , kµ)-special sound. We make a minor modification to the “collision-game”
defined in [Cra96]. The knowledge extractor essentially plays this game in order to extract a collision of two
accepting transcripts (a, c, z) and (a, c′, z′) with common first message a. By the special soundness property a
witness can be computed efficiently given this collision. Our modification increases the success probability of
the knowledge extractor of [Cra96] from (ε(x)−κ(|x|))2 to ε(x)−κ(|x|), where κ(|x|) is the knowledge error
and ε(x) the success probability of the prover for a statement x. In contrast to the extractor of [Cra96], which
runs in strict polynomial time, our extractor runs in expected polynomial time. However, this is sufficient for
proving knowledge soundness.

In the following, we will simply write ε to denote ε(x) (where the input x is clear from context). All other
parameters will implicitly depend on |x| (i.e. by writing κ, we denote κ(|x|).

A similar result can be found in [HL10]. However, we note that our approach significantly simplifies the
knowledge extractor and its analysis. For instance, the knowledge extractor of [HL10] is composed of two
algorithms considering different scenarios, whereas this case distinction is not required in our knowledge
extractor. This simplification will allow for a generalization to the (k1, . . . , kµ)-special sound case.

The collision game. Let us now describe the game. We consider a binary matrix H ∈ {0, 1}R×N . The R rows
correspond to the prover’s randomness and the N columns correspond to the verifier’s randomness, i.e., the
verifier samples a challenge uniformly at random from a challenge set of size N . An entry of H equals 1 if
and only if the corresponding protocol transcript is accepting.

The idea of the knowledge extractor is to sample elements from H until two 1-entries in the same row are
found. The ij-th entry of H can be obtained by executing the prover with fixed randomness corresponding to
the i-th row and verifier’s challenge corresponding to the j-th column, and checking if the resulting transcript
would be accepted. As the prover’s randomness is fixed along one row, finding two 1-entries in the same row
corresponds to two finding two accepting transcripts (a, c, e) and (a, c′, e′), which by the 2-special soundness
allows to extract a witness. The difference to the knowledge extractor of [HL10] is the following:

1. Our knowledge extractor checks one entry of H (for position ij sampled at random), and aborts if this
is not a 1-entry.

2. If the first entry was a 1-entry, our knowledge extractor then samples along row i without replacement.

More precisely, the knowledge extractor will play the following collision-game. An entry of H is selected
uniformly at random. If this entry equals 1, continue sampling different elements from this row (without
replacement) until a second 1-entry is found or until the row has been exhausted. If the first entry does not
equal 1, the game aborts. The collision game outputs success if and only if two 1-entries in the same row
have been found.

Lemma 4 (Collision-Game). Let H ∈ {0, 1}R×N and let ε denote the fraction of 1-entries in H. The
expected number of H-entries queried in the collision-game defined above is at most 2. Moreover, the success
probability of the collision-game is greater than or equal to ε− 1/N .
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Proof. Expected Number of Queries. Let εi be the fraction of 1-entries in row i. Assuming that the
first entry lies in row i and equals 1, the remainder of the collision game can be modeled by a negative
hypergeometric distribution. Elements from a population of size N − 1, containing εiN − 1 1-entries, are
drawn (without replacement) until a second 1-entry has been found. The expected number of draws equals
(N − 1 + 1)/(εiN1− 1 + 1) = 1/εi if εi > 1/N (see Section 2.2). If there is no second 1-entry in the row, then
the number of draws is always equal to N − 1. Hence, the expected number of draws can be upper bounded
by 1/εi. The expected number of H-entries queried is therefore at most

1
R

R∑
i=1

(
1 + εi

1
εi

)
= 2,

which proves the first part of the lemma.
Success Probability. The collision-game succeeds if the first entry is a 1 that lies in a row containing

at least two 1-entries. For 0 ≤ k ≤ N , let δk be the fraction of rows with at exactly k 1-entries. Then the
success probability equals

N∑
k=2

k

N
δk =

(
N∑
k=0

k

N
δk

)
− δ1

N
≥ ε− 1/N,

which proves the second part of the lemma.

From Lemma 4 it immediately follows that 2-special soundness implies knowledge soundness with know-
ledge error 1/N .

Corollary 1. Let (P,V) be a special sound 3-move interactive protocol for relation R, where V samples each
challenge uniformly at random from a challenge set of size N ≥ k. Then (P,V) is knowledge sound with
knowledge error

κ = 1
N
. (4)

Remark 2. Lemma 4 has a straightforward generalization to the k-special soundness scenario. In this gener-
alization the collision game draws until it has obtained k, instead of 2, 1-entries in the same row. Hence, it
again involves a negative hypergeometric distribution, but now with different parameters. In this case, the
expected number of queries is at most k and the success probability is greater than or equal to ε− (k−1)/N .

3.2 (k1, . . . , kµ)-Special Soundness

In this section, we generalize the collision-game of Section 3.1 to the (k1, . . . , kµ)-special soundness scenario.

The (k1, . . . , kµ)-collision game. To define the (k1, . . . , kµ)-collision-game, let H ∈ {0, 1}R×N×···×N be a
(µ + 1)-dimensional binary matrix. For a ∈ {1, . . . , R} and c1, . . . , ci ∈ {1, . . . , N}, we let H(a, c1, . . . , ci) ∈
{0, 1}N×···×N be the (µ − i) dimensional submatrix of H that contains all entries of H for which the first
i+ 1 coordinates are equal to (a, c1, . . . , ci). The first dimension corresponds to the prover’s randomness and
the other dimensions correspond to the verifier’s random choices, i.e., we consider protocols in which the
verifier samples all µ challenges uniformly at random from a challenge set of size N . For a fixed public input
x, we define the matrix H such that H(a, c1, . . . , cµ) = 1 if and only if a transcript with prover randomness
a and verifier’s challenges c1, . . . , cµ will lead to an accepting transcript.

In Section 2, we have defined (k1, . . . , kµ)-trees of accepting transcripts for (2µ + 1)-move protocols.
Similarly, we define (k1, . . . , kµ)-trees of 1-entries in matrix H. Such trees can be defined recursively as
follows. For µ = 0, a tree of 1-entries is simply a 1-entry in H. For arbitrary µ, a (k1, . . . , kµ)-tree is the
union of k1 (k2, . . . , kµ)-trees in H(a, c1), . . . ,H(a, ck1), respectively, for a fixed a and pairwise distinct ci.
Hence, a (k1, . . . , kµ)-tree of 1-entries in matrix H is a set of K =

∏µ
i=1 ki 1-entries that are in a (k1, . . . , kµ)-

tree structure. For a graphic representation see Figure 2.
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a

· · ·

· · · · · ·

· · ·

· · ·

· · · · · ·

c1
1 ck1

1

c1,1
2 c1,k2

2 ck1,1
2 ck1,k2

2

c1,...,1
µ c

1,...,kµ
µ ck1,...,1

µ c
k1,...,kµ
µ

Fig. 2. We say a (k1, . . . , kµ)-tree as depicted above is a (k1, . . . , kµ)-tree of 1-entries inH, ifH(a, c1
1, c

1,1
2 , . . . , c1,...,1

µ ) =
H(a, c1

1, c
1,1
2 , . . . , c1,...,2

µ ) = · · · = H(a, ck1
1 , ck1,k2

2 , . . . , c
k1,...,kµ
µ ) = 1.

We define Tree to be the algorithm playing the (k1, . . . , kµ)-collision-game. By playing this game
Tree aims to find a (k1, . . . , kµ)-tree of 1-entries in matrix H. The algorithm Tree is defined recur-
sively as follows. On input a ∈ {1, . . . , R} and c1, . . . , cµ ∈ {1, . . . , N}, Treeµ(a, c1, . . . , cµ) successfully
outputs H(a, c1, . . . , cµ) if this entry equals 1 and it aborts otherwise. For 0 ≤ i ≤ µ − 1 and on input
a ∈ {1, . . . , R} and c1, . . . , ci ∈ {1, . . . , N}, Treei(a, c1, . . . , ci) aims to find a (ki+1, . . . , kµ)-tree of 1-entries
in matrix H(a, c1, . . . , ci). The algorithm Treei(a, c1, . . . , ci) proceeds by sampling ci+1 ∈ {1, . . . N} uni-
formly at random and running Treei+1(a, c1, . . . , ci+1). If this instantiation of Treei+1 aborts the algorithm
Treei(a, c1, . . . , ci) aborts. Otherwise it continues sampling different ci+1’s (i.e., without replacement) until
it has found ki+1 (ki+2, . . . , kµ)-trees of 1-entries or until it has exhausted all possible ci+1’s. In the latter case
Treei(a, c1, . . . , ci) aborts, in the former case Treei(a, c1, . . . , ci) outputs a (ki+1, . . . , kµ)-tree of 1-entries
in matrix H(a, c1, . . . , ci).

The (k1, . . . , kµ)-collision-game samples a ∈ {1, . . . , R} uniformly at random and runs Tree0(a). If
Tree0(a) = ⊥ it aborts and otherwise it outputs a (k1, . . . , kµ)-tree of 1-entries in H(a). The following
lemma gives the expected run-time and success probability of the tree finding algorithm Tree.

Lemma 5 ((k1, . . . , kµ)-Tree Finding Algorithm). Let H ∈ {0, 1}R×N×···×N be a (µ+ 1)-dimensional
matrix and let ε denote the fraction of 1-entries in H. The expected number of entries queried by the
(k1, . . . , kµ)-tree finding algorithm Tree defined above is at most K =

∏µ
i=1 ki. Moreover, Tree successfully

outputs a (k1, . . . , kµ)-tree of 1-entries in H with probability at least

ε−
Nµ −

∏µ
i=1(N − ki + 1)
Nµ

≥ ε−
∑µ
i=1(ki − 1)

N
.

Proof. Expected Number of Queries. Let us first bound the expected run time of Tree. For fixed M
and a, c1, . . . , cM , let us determine the expected number of times that TreeM (a, c1, . . . , cM ) calls TreeM+1.
Let S denote the number of successful calls of TreeM (a, c1, . . . , cM ) to TreeM+1 if it would try all N
possibilities. Conditioned on the event S = ` and the event that the first call to TreeM+1 succeeds, the
remainder of algorithm TreeM can be modeled by a negative hypergeometric distribution. Namely, we
sample (without replacement) from a total population of size N − 1 containing ` − 1 successes until either
kM+1− 1 successes have been obtained or until the population has been exhausted. The expected number of
samples taken from this distribution equals (kM+1− 1)(N − 1 + 1)/(`− 1 + 1) = (kM+1− 1)N/` if ` ≥ kM+1
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(see Section 2.2) and it equals N − 1 ≤ (kM+1 − 1)N/` otherwise. Therefore, the expected number of calls
of TreeM (a, c1, . . . , cM ) to TreeM+1 is at most

N∑
`=0

P (S = `)
(

1 + `

N

(kM+1 − 1)N
`

)
=

N∑
`=0

P (S = `)kM+1 = kM+1.

This upper bound is independent of (a, c1, . . . , ci) and it follows that the expected number of H-entries
that are queried by Tree is at most K =

∏µ
i=1 ki, which proves the first part of the lemma.

Success Probability. Let us now bound the success probability of Tree. For 0 ≤ j < µ, let

κj =
Nµ−j −

∏µ
i=j+1(N − ki + 1)
Nµ−j ,

and let κµ = 0.
For any (a, c1, . . . , ci), let ε(a, c1, . . . , ci) be the fraction of 1-entries in H(a, c1, . . . , ci). We first prove that

the following inequality holds, for all i and (a, c1, . . . , ci),

Pr (Treei(a, c1, . . . , ci) 6= ⊥) ≥

 µ∏
j=i+1

N

N − kj + 1

 (ε(a, c1, . . . , ci)− κi) . (5)

The proof of this claim goes by induction on i. For i = µ the claim holds trivially, so let’s assume the
claim holds for all i ≥ M + 1. The algorithm TreeM (a, c1, . . . , cM ) succeeds if at least kM+1 out of the
N possible calls to TreeM+1 succeed and the first call to TreeM+1 succeeds. As before, let S denote the
number of successful calls of TreeM (a, c1, . . . , cM ) to TreeM+1 if it would try all N possibilities. Then

Pr (TreeM (a, c1, . . . , cM ) 6= ⊥) =
N∑

`=kM+1

`

N
Pr(S = `),

= 1
N

E[S]−
kM+1−1∑
`=0

`Pr(S = `)

 ,

≥ 1
N

E[S]− (kM+1 − 1)
kM+1−1∑
`=0

Pr(S = `)

 .

(6)

Moreover,

E[S] =
N∑
`=0

`Pr(S = `),

≤ (kM+1 − 1)
kM+1−1∑
`=0

Pr(S = `) +N

N∑
`=kM

Pr(S = `),

= N − (N − kM+1 + 1)
kM+1−1∑
`=0

Pr(S = `).

Hence,

kM+1−1∑
`=0

Pr(S = `) ≤ N − E[S]
N − kM+1 + 1 .
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Plugging this inequality in Equation 6 shows that

Pr (TreeM (a, c1, . . . , cM ) 6= ⊥) ≥ 1
N

(
E[S]− (kM+1 − 1)(N − E[S])

N − kM+1 + 1

)
,

= N

N − kM+1 + 1

(
E[S]
N
− kM+1 − 1

N

)
.

(7)

By the induction hypothesis, it follows that

E[S]
N

= 1
N

N∑
cM+1=1

Pr (TreeM+1(a, c1, . . . , cM , cM+1) 6= ⊥) ,

≥ 1
N

N∑
cM+1=1

 µ∏
j=M+2

N

N − kj + 1

 (ε(a, c1, . . . , cM , cM+1)− κM+1) ,

=

 µ∏
j=M+2

N

N − kj + 1

 (ε(a, c1, . . . , cM )− κM+1) .

Further, note that for 0 ≤ j < µ it holds,

κj =
Nµ−jκj+1 + (kj+1 − 1)

∏µ
i=j+2(N − ki + 1)

Nµ−j . (8)

Combining these with Equation 7 shows that

Pr (TreeM (a, c1, . . . , cM ) 6= ⊥) ≥

 µ∏
j=M+1

N

N − kj + 1

 (ε(a, c1, . . . , cM )− κM ) .

Hence, by induction, it follows that Equation 5 holds for all i.
Therefore, the success probability of the tree finding algorithm Tree equals

1
R

R∑
a=1

Pr (Tree0(a) 6= ⊥) ≥ 1
R

R∑
a=1

 µ∏
j=M+1

N

N − kj + 1

 (ε(a)− κ0) ,

= ε− κ0.

which proves the remainder of the lemma.

A knowledge extractor, with rewindable black-box access to a possible dishonest prover P∗, essentially
runs this tree finding algorithm to obtain a (k1, . . . , kµ)-tree of accepting transcripts. It evaluates one protocol
interaction with P∗ and recursively rewinds P∗, fixing its internal randomness and following the tree finding
strategy of Tree. By the (k1, . . . , kµ)-special soundness property a witness can then be extracted efficiently
from the obtained (k1, . . . , kµ)-tree of accepting transcripts. Hence, from Lemma 5 it immediately follows
that a (k1, . . . , kµ)-special sound protocol is knowledge sound with knowledge error κ, where

κ =
Nµ −

∏µ
i=1(N − ki + 1)
Nµ

≤
∑µ
i=1(ki − 1)

N
.

The latter inequality follows since we have N ≥ maxi(ki) and thus
∏µ
i=1(N−ki+1) ≤ Nµ−Nµ−1∑µ

i=1(ki−
1). This proves Theorem 1.
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3.3 Tightness of Our Extraction Analysis

The knowledge error κ of Theorem 1 is optimal, i.e., there exist a dishonest prover that succeeds in cheating
with probability κ. Typically a dishonest prover can cheat in a k-special sound protocol by guessing a set of
k − 1 challenges and hoping that the verifier selects one of these challenges. The success probability of this
attack is equal to (k− 1)/N , where N is the size of the challenge set. More generally, a cheating strategy for
a (k1, . . . , kµ)-special sound (2µ + 1)-move protocol goes as follows. For every round i, the cheating prover
guesses a set of ki− 1 challenges. The cheating prover succeeds if there exists a round i for which the verifier
chooses one of the ki − 1 challenges guessed by the prover. The success probability of this attack is easily
seen to be equal to the knowledge error κ. Hence, this knowledge error is optimal. Alternatively, we observe
that there exist matrices H with ε = κ, i.e., for which the fraction of 1-entries equals κ, that do not contain
a (k1, . . . , kµ)-tree of 1-entries.

Moreover, the tree finding algorithm is optimal in the following sense. The expected number of H-entries
that are queried is exactly equal to the number of entries in a tree. Hence, we can not hope to find a tree
faster than this. Moreover, taking a closer look at the proof of Lemma 5 shows that the success probability
actually has the following lower bound

f(ε) =

 µ∏
j=1

N

N − kj + 1

 (ε− κ) .

Hence, if ε = 1 the success probability of Tree is at least f(1) = 1, which is what we would expect.

3.4 A Note on Witness Extended Emulation

Lindell showed that a technical issue arises when using Proofs of Knowledge as subprotocols in larger cryp-
tographic protocols [Lin03]. To prove security of the compound protocol, a simulator is typically required to
run the extractor of the PoK. However, the naive simulation approach does not necessarily run in polynomial
time. To this end, Lindell defined the notion of witness-extended emulation, capturing precisely the prop-
erties required when using PoKs as subprotocols. Moreover, he showed that any PoK has witness-extended
emulation, thereby solving this technical issue for all PoKs at once. Hence, from our extraction analysis it
follows that any (k1, . . . , kµ)-special sound protocol has witness extended emulation.

Previously, there was no proof showing that a (k1, . . . , kµ)-special sound protocol is knowledge sound. For
this reason prior works (e.g., [BCC+16]) resorted to proving witness-extended emulation directly. However,
these results are non-tight and only apply to protocols with exponentially large challenge sets.

4 Decreasing the Knowledge Error of Public-Coin Interactive Protocols

In this section, we establish a novel parallel repetition theorem showing that the knowledge error of a public-
coin interactive argument can be decreased by repeating the protocol in parallel.

We want the knowledge error of a PoK to be negligible in the security parameter. If this is not the case the
protocol is typically repeated, say t times. The verifier of the composed protocol only accepts if all t instances
of the basic protocol are accepted. Ideally, and perhaps intuitively, this approach reduces the knowledge error
from κ down to κt. This is indeed the case if the repetitions are executed sequentially [Gol01]. However,
sequential repetition increases the round complexity. Since the security loss due to the Fiat-Shamir trans-
formation increases exponentially in the number of rounds [DFM20], this is unacceptable when considering
the non-interactive instantiations of our protocols (see Section 5.5). Further, also in the interactive setting
we would like to avoid the additional round complexity introduced by sequential composition.

For this reason, we aim to repeat the protocol in parallel. We write (Pt,Vt) for the t-fold parallel repetition
of an interactive argument (P,V). However, it is not true in general that parallel repetition decreases the
knowledge error exponentially. There even exist interactive protocols for which parallel repetition does not
decrease the success probability of a dishonest prover at all [BIN97, PW07]. Analyzing parallel repetitions is
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significantly more complicated than analyzing sequential repetitions. The reason is that a dishonest prover
does not have to treat all t parallel instances independently, i.e., a message corresponding to a specific
instance may depend on the messages and challenges of the other parallel instances.

If (P,V) is a 2-special sound 3-move protocol, then (Pt,Vt) is 2-special sound too. It therefore follows
that the knowledge error of a 2-special sound protocol decreases exponentially in the number of parallel
repetitions. However, a similar result does not hold in general, i.e., in general special-soundness is not
preserved by parallel repetition (at least not in a non-trivial manner). For example, it is easily seen that the
parallel repetition of a k-special sound protocol for k 6= 2 is not k-special-sound.

Several parallel repetition results, considering multi-round public-coin interactive arguments, have been
established [HPWP10, CL10, CP15]. These results show that parallel repetition reduces the soundness error.
However, “soundness” is a weaker notion than “knowledge soundness”. Informally the soundness error is
the success probability of a cheating prover and soundness does not require the existence of a knowledge
extractor.

To the best of our knowledge a parallel repetition result for decreasing the knowledge error has not been
established yet, even though the lattice-based Bulletproof protocols of [BLNS20] implicitly rely on such a
parallel repetition result. In Theorem 3, we show that the knowledge error of a public-coin argument decreases
close to exponentially in the number of parallel repetitions. Our proof uses the following result from [CP15].
This theorem shows that, given oracle access to a (possibly dishonest) prover Pt∗ that, for statements x,
succeeds in convincing Vt with probability ε(x), a prover P∗ that succeeds in convincing V with probability
≈ ε(x)1/t can be constructed.

Theorem 2 (Theorem 2 of [CP15]). Let (P,V) be a public-coin interactive argument for a language L.
Let t : N→ N, and let (Pt,Vt) be the t-fold parallel repetition of (P,V). There exists an oracle machine P(·)∗

such that for every ξ : N→ (0, 1), every δ : {0, 1}? → (0, 1), every x ∈ {0, 1}∗, and every PPT prover Pt∗, it
holds that if

Pr
((
Pt∗,Vt

)
(x) = 1

)
≥ (1 + ξ(|x|))δ(x)t(|x|)︸ ︷︷ ︸

ε(x):=

,

then
Pr
((
P(Pt∗)∗,V

)
(x) = 1

)
≥ δ(x).

Furthermore, P(Pt∗)∗ runs in time poly(|x|, t(|x|), ξ(|x|)−1, ε(x)−1, (1− δ(x))−1).

Theorem 3 now shows that the t-fold parallel repetition of knowledge sound interactive argument is
knowledge sound and that the knowledge error decreases close to exponential in t. More precisely, the
theorem shows that if (P,V) has knowledge error κ, then (Pt,Vt) has knowledge error κt + ν, for arbitrary
noticeable ν. Therefore, by choosing t large enough, we can show that (Pt,Vt) has knowledge error 1/|x|c
for any c ∈ N. Note though that we cannot show that (Pt,Vt) has negligible knowledge error negl(λ) for any
fixed negligible function negl : N → N, because the running time of P(Pt∗)∗ scales with the inverse success
probability of Pt∗.

While it might seem that this barrier is rather an artifact of the proof technique of [CP15] on which
we build, it was shown by [DJMW12] that Theorem 2 is tight when considering soundness amplification of
protocols in general. More precisely, based on some cryptographic assumptions they showed that parallel
repetition does not amplify security beyond negligible, meaning that for any negligible function negl one
can find an instantiation that when starting with non-negligible soundness error, the protocol can always be
broken with probability negl(|x|), no matter how many parallel repetitions one runs.

Theorem 3. Let (P,V) be a public-coin interactive argument for a relation R that is knowledge sound with
knowledge error κ : N → (0, 1). Let t : N → N be upper bounded by a polynomial. Let ν : N → (0, 1) be an
arbitrary noticeable function. Then, (Pt,Vt) is knowledge sound with knowledge error κ′ = κt + ν.

Proof. We construct a knowledge extractor E ′ for (Pt,Vt) as follows. Let Pt∗ be some (potentially dishonest)
prover, for which (Pt∗,Vt) outputs 1 with probability ε(x). Let ξ : N → (0, 1) such that ξ = ν/κt. Then,

16



by Theorem 2 there exists a prover P(·)∗ such that
(
P(Pt∗)∗,V

)
(x) = 1 with probability at least δ(x), where

δ(x) =
(

ε(x)
1 + ξ(|x|)

)1/t(|x|)
.

By assumption (P,V) is knowledge sound with knowledge error κ, therefore, there exists a knowledge ex-
tractor E for (P,V). Now, we define E ′ as the algorithm that executes the knowledge extractor E on the
prover P(Pt∗)∗. It is left to show that the following holds:

Claim. If ε(x) ≥ κ′(|x|), then E ′ as defined above runs in an expected polynomial number of steps and there
exists a polynomial q : N→ N such that E ′ is successful at least with probability (ε(x)− κ′(|x|))/q(|x|).

We start proving the claim by showing that P(Pt∗)∗ runs in an expected polynomial number of steps.
By Theorem 2, we have that the run-time of P(Pt∗)∗ is in poly(|x|, t(|x|), ξ(|x|)−1, ε(x)−1, (1 − δ(x))−1).
By assumption we have that t(|x|) ≤ poly(|x|) and further ξ = ν/κt ≥ ν and ε(x) ≥ κ′(|x|) ≥ ν(|x|) and
therefore also ξ(|x|)−1, ε(x)−1 ≤ poly(|x|). It is left to show that 1 − δ(x) is noticeable. Via the Taylor
approximation of the function f(a) = a1/t in a = 1, we obtain

δ(x) =
(

ε(x)
1 + ξ(|x|)

)1/t(|x|)
≤ 1− 1

t(|x|)

(
1− ε(x)

1 + ξ(|x|)

)
.

Therefore, we also have

1− δ(x) ≥ 1
t(|x|)

(
1− ε(x)

1 + ξ(|x|)

)
= 1
t(|x|)

(
1 + ξ(|x|)− ε(x)

1 + ξ(|x|)

)
ξ,ε≤1
≥ ξ(|x|)

2t(|x|) ≥
ν(|x|)
2t(|x|) ,

as required.
Next, note that if ε(x) ≥ κ′(|x|), then δ(x) ≥ κ(x). This is a simple consequence of the definition of ξ and

δ, because ε(x) ≥ κ(|x|)t(|x|) + ν(|x|) = κ(|x|)t(|x|)(1 + ξ(|x|) implies δ(x) = (ε(x)/(1 + ξ(|x|))1/t(|x|) ≥ κ(|x|)
as required.

Altogether, this shows that if ε(x) ≥ κ′(|x|), then E ′ runs in an expected polynomial number of steps
and there exists a polynomial p : N→ N, such that E ′ outputs a witness w ∈ R(x) with probability at least
(δ(x)− κ(|x|))/p(|x|). It is left to show that if ε(x) ≥ κ′(|x|), there exists a polynomial q : N→ N such that

δ(x)− κ(|x|)
p(|x|) ≥ ε(x)− κ(|x|)t(|x|) − ν(|x|)

q(|x|) .

To express the success probability of E ′ in terms of ε(x), let us define the functions f(a) = t(a1/t − b)
and g(a) = a − bt, for b ∈ [0, 1]. Observe that f(a) is concave for a ≥ 0. Moreover, f(bt) = g(bt) = 0 and
f(1) = t(1− b) ≥ (1− b)

∑t−1
i=0 b

i = g(1). Hence max(f(a), 0) ≥ g(a) for all a ∈ [0, 1].
From this inequality we have that whenever δ(x) ≥ κ(|x|), it holds

δ(x)− κ(|x|) ≥ max(δ(x)− κ(|x|), 0),

= max
((

ε(x)
(1 + ξ(|x|))

)1/t(|x|)
− κ(|x|), 0

)
,

≥ 1
t(|x|)(1 + ξ(|x|))

(
ε(x)− (1 + ξ(|x|))κ(|x|)t(|x|)

)
,

≥ 1
2t(|x|)

(
ε(x)− κ(|x|)t(|x|) − ν(|x|)

)
.

Thus, choosing q = 2tp yields the desired result, which proves the claim and completes the proof of the
theorem.
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Remark 3. The properties completeness and special honest verifier zero-knowledge are easily seen to be
preserved by parallel repetition, although the completeness error increases in the number parallel repetitions.

Remark 4. LetM be the total size of the challenge set, i.e.,M =
∏µ
i=1 |Ci| where the ith challenge is sampled

from challenge set Ci. IfM is polynomial in the security parameter the analysis can be simplified significantly.
In this case the knowledge extractor can query all possible challenges and still run in polynomial time. Both
the results from Section 3 and a parallel repetition theorem then follow by a simple counting argument. This
is the approach in the analysis of the 5-round (2, 2)-special sound signature scheme MQDSS [CHR+16]. It
is much more challenging to construct efficient knowledge extractors when M is not polynomial.

5 A General Framework for Compressed Σ-Protocols over Lattices

The main pivot of compressed Σ-protocol theory [AC20] is a basic Σ-protocol for proving that a committed
vector satisfies some linear constraint. Subsequently, a compression mechanism is applied (recursively) to
reduce the communication complexity from linear down to polylogarithmic in the input size. The composition
of these protocols is referred to as a compressed Σ-protocol. In this section we present a natural abstraction
similar to the one presented in [ACF20, Appendix A] extended to the lattice setting. This requires a number
of non-trivial adaptations that are explained in the following. Subsequently, we show how to instantiate this
abstraction from a concrete lattice assumption.

In the following we first give an abstraction of the standard Σ-protocol to the lattice setting and then
explain how the compression mechanism extends to this setting. Note that we give both protocols in a
very abstract fashion, with the goal of allowing to instantiate them from a broad variety of lattice-based
assumptions. Note that our abstraction is not restricted to instantiations based on lattices, but is tailored
to this setting.

5.1 Standard Σ-Protocol

In this section we recall what we will refer to as standard Σ-protocol for proving knowledge of a preimage
of some given module homomorphism Ψ . This protocol can be viewed as the abstraction of the protocol of
Schnorr [Sch90] to arbitrary module homomorphisms, where we have to build in several relaxations in order
to make it compatible with the lattice setting.

First, in the lattice setting the witness is required to be small, we therefore define a pair (Y ; y) to be
in the target relation if Y = Ψ(y) and ‖y‖ ≤ α, for some α ∈ N. Note that this requires to define a norm
in the preimage space, we therefore in the following restrict to modules with norm. If the preimage is not
required to be small (as, e.g., is the case in the discrete log setting), one does not have to require a norm on
the module and can simply ignore the corresponding requirements in the protocols. The requirement of the
witness y to have small norm is also where the main difficulty stems from, because one now has to transform
a witness y into a witness x, such that

1. the norm of x is not much larger than y (as otherwise the statement becomes meaningless), but
2. x still hides y.

In order to ensure the second without a too large knowledge error, the relation that one can prove
knowledge of does not correspond to the target relation R, but some relaxed relation R′. In this case, we say
the protocol is a protocol for the pair of relations (R,R′), i.e., an honest prover knows a witness for R but
can only prove knowledge of a witness for R′.

In fact, there are two sources introducing “soundness slack”: First, x itself will in general already have
larger norm than y (in order to ensure hiding). Second, even worse, extracting a witness ỹ from two accepting
transcripts, introduces additional slack. This slack is more difficult to control, as it depends on the inverse of
challenge differences. As challenge differences will not necessarily be invertible over the underlying ring, we
introduce an additional relaxation on the relation. Namely, for some fixed element ζ (in our examples, we will
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typically have that ζ is a power of two) we will consider relations R′, such that (X;x) ∈ R′ if Ψ(x) = ζ ·X
and ‖x‖ ≤ β. We refer to ζ as an approximation factor.

More formally, let R = {Rλ}λ∈N be an ensemble of rings, let M = {Mλ}λ∈N, N = {Nλ}λ∈N be ensembles
of R-modules (such thatMλ is finite for all λ ∈ N), let Ψ = {Ψλ : Mλ → Nλ}λ∈N be an ensemble of efficiently
computable R-module homomorphisms and let ζ = {ζλ}λ∈N be an ensemble of approximation factors (i.e.,
ζλ ∈ Rλ for all λ). Let further ‖·‖ be a norm on M , let α, β : N → N with α ≤ β. Then, we define the
relations R(Ψ, α) = {Rλ(Ψ, α)}λ∈N and R(Ψ, β, ζ) = {Rλ(Ψ, β, ζ)}λ∈N via

Rλ(Ψ, α) =
{

(Y ; y) : y ∈Mλ, Y = Ψλ(y), ‖y‖ ≤ α(λ)
}
,

Rλ(Ψ, β, ζ) =
{

(Y ; y) : y ∈Mλ, ζλ · Y = Ψλ(y), ‖y‖ ≤ β(λ)
}
.

In the following we abstract the notion of rejection sampling [Lyu09, Lyu12], which is used in lattice
based cryptography to sample a value, such that

1. the sample algorithm is somewhat norm-preserving, i.e., the norm of the sampled value is not too much
larger than the norm of the witness,

2. adding this value to the witness statistically hides the witness or the rejection sampling strategy aborts,
and, finally,

3. the abort probability is essentially independent of the witness.

Definition 15 (V -Hiding and β-Bounded Sampling). Let R = {Rλ}λ∈N be an ensemble of rings and
let M = {Mλ}λ∈N be an ensemble of R-modules. Let V = {Vλ}λ∈N ⊆M be an ensemble of sets. Let (D,F)
such that D is an ensemble of efficiently sampleable distributions D = {Dλ}λ∈N over M , and F a PPT
algorithm. We say (D,F)-is V -hiding, if there exists a PPT algorithm F ′ such that for each λ ∈ N:

– F on input r ∈Mλ and v ∈ Vλ, outputs r + v or ⊥,
– F ′ on input 1λ, outputs an element z ∈Mλ or ⊥,

such that the output distributions of (D,F) and F ′ are statistically close. More precisely, there exists a
negligible function negl : N→ N such that for all λ ∈ N and for all v ∈ Vλ we have

∆
(
{F(r, v) | r ← Dλ}, {F ′(1λ)}

)
≤ negl(λ),

where the probability is taken over the randomness of Dλ and the random coins of F ,F ′. If the distribution
of (D,F) and F ′ are equal, we say (D,F)-is perfectly V -hiding.

Note that by the above considerations we can upper bound the abort probability of (D,F) by

δ(λ) = Pr[F ′(1λ) = ⊥] + negl(λ),

for all λ ∈ N.
Let further β : N→ N. We say that (D,F) is β-bounded if for all λ ∈ N, v ∈ Vλ and r in the support of

Dλ it holds ‖F(r, v)‖ ≤ β(λ) whenever F(r, v) 6= ⊥.

To improve readibility, we will in the following omit the security parameter, and, e.g., simply say “Let
R be a ring. . . ”, or “Let α ∈ N. . . ”, even though we assume all variables to be parametrized by the security
parameter.

Before stating the Σ-protocol, we introduce the notion of an ζ-exceptional subset, which will ensure that
the protocol satisfies special soundness.

Definition 16 (ζ-Exceptional Subset). Let R be a ring, ζ ∈ R and C ⊆ R be a set. We say C is an
ζ-exceptional subset of R, if for all pairs of distinct elements c, c′ ∈ C there exists a non-zero element a ∈ R
such that a(c− c′) = ζ. If C is a 1-exceptional subset of R, we simply say that C is an exceptional subset of
R.
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We further need to give bounds on the soundness slack introduced by extraction. To this end, for ζ-
exceptional subsets C ⊂ R we define w(C) and w̄(C, ζ) as follows:

w(C) = max
c∈C,x∈R\{0}

‖cx‖
‖x‖

,

w̄(C, ζ) = max
c6=c′∈C,x∈R\{0}

max
a∈R:a(c−c′)=ζ

‖ax‖
‖x‖

.

(9)

The value w(C) gives an upper bound on how much the norm of an element inR increases when multiplied
by an element in C, i.e., w(C) is such that ‖cx‖ ≤ w(C)‖x‖ for all c ∈ C and x ∈ R. Note that if R = Z and
with absolute value | · |, we simply have w(C) = max{|c| : c ∈ C}.

The value w̄(C, 1) gives an upper bound on how much the norm of an element in R increases when
multiplied with the inverse of challenge differences, i.e., w̄(C, 1) is such that ‖(c − c′)−1x‖ ≤ w̄(C, 1)‖x‖ for
all x ∈ R and distinct c, c′ ∈ C. In general, the value w̄(C, ζ) gives an upper bound on how much the norm
of an element in R increases when multiplied with an a such that a(c − c′) = ζ for challenges c 6= c′. Note
that w̄(C, ζ) is only well-defined if C is ζ-exceptional.

The maximum over a ∈ R in Equation 9 can be replaced by a minimum, potentially resulting in tighter
norm bounds. More precisely, the extractor can choose the element a that minimizes ‖ax‖/‖x‖. However,
this requires the minimum to be efficiently computable. To avoid this additional assumption we take the
maximum over all a. Moreover, in most practical applications R does not have zero-divisors and a ∈ R is
uniquely defined.

For a module M over R with norm ‖·‖, similarly we define

wM (C) = max
c∈C,x∈M\{0}

‖cx‖
‖x‖

and w̄M (C, ζ) = max
c6=c′∈C,x∈M\{0}

max
a∈R:a(c−c′)=ζ

‖ax‖
‖x‖

.

Note that for M = Rn and ‖·‖ over M defined as `p-norm (for p ∈ N ∪ {∞}), we have wM (C) = w(C) and
w̄M (C, ζ) = w̄(C, ζ).

We now state the standard Σ-protocol Π0 for the pair of relations (R(Ψ, α), R(Ψ, 2β, ζ)) in Protocol 1.
Further, we summarize its properties in Theorem 4.

Protocol 1 Standard Σ-Protocol Π0 for the pair of relations (R(Ψ, α), R(Ψ, 2βσ, ζ)), where σ = w̄M (C, ζ).
Here, (D,F) is V -hiding and β-bounded, where V = {cy | y ∈M,‖y‖ ≤ α, c ∈ C}.

Input(Y ; y)
Y = Ψ(y)

Prover Verifier

w ←R D,W = Ψ(w) W−−−−−−−−−−−−−−→
c0 ←R C ⊂ R

c0←−−−−−−−−−−−−−−
If F(w, c0y) = ⊥ : Abort
Else: x = w + c0y

x−−−−−−−−−−−−−−→ ‖x‖
?
≤ β, Ψ(x) ?= W + c0Y

Theorem 4 (Standard Σ-Protocol). Let R be a ring, let M,N be R-modules and let Ψ : M → N be
an efficiently computable R-module homomorphism.

Further, let ζ ∈ R and C ⊂ R be a finite ζ-exceptional subset of R, let α, β ∈ N and δ ∈ [0, 1), let
V = {cy | y ∈M, ‖y‖ ≤ α, c ∈ C} and let (D,F) be a β-bounded V -hiding distribution with abort probability
δ.
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Then, the protocol Π0 (as defined in Protocol 1) is a 3-move protocol for relations (R(Ψ, α), R(Ψ, 2βσ, ζ))
defined via

R(Ψ, α) =
{

(Y ; y) : y ∈M,Y = Ψ(y), ‖y‖ ≤ α
}
,

R(Ψ, 2βσ, ζ) =
{

(Y ; y) : y ∈M, ζ · Y = Ψ(y), ‖y‖ ≤ 2βσ
}
,

where σ = w̄M (C, ζ).
It is complete with completeness error δ, unconditionally 2-special sound and statistical non-abort special

honest verifier zero-knowledge.

Proof. Completeness follows directly, because (D,F) is β-bounded and has abort probability δ, and Ψ is
a module homomorphism.

2-Special Soundness: Let (W, c, x), (W, c′, x′) be two accepting transcripts for c 6= c′ ∈ C. Define ỹ =
a(x−x′), where a is such that a(c− c′) = ζ. Then, we have ‖ỹ‖ = ‖a(x−x′)‖ ≤ w̄M (C, ζ)(‖x‖+ ‖x′‖) ≤
2βw̄M (C, ζ). Further, we have Ψ(ỹ) = a(Ψ(x)− Ψ(x′)) = a(c− c′) · Y = ζ · Y as required.

Non-abort SHVZK: We simulate a transcript as follows: Let F ′ be the PPT algorithm corresponding
to the V -hiding of (D,F). Given a challenge c, the simulator runs F ′ on input 1λ. If F ′ outputs ⊥,
the simulator return (⊥, c,⊥). Else, the simulator sets x ← F ′(1λ), computes the first message as
W = Ψ(x)− cY and outputs (W, c, x). Since by the V -hiding property the output distributions of F and
F ′ are statistically close, and W can be derived deterministically from the values c, x and Y , statistical
non-abort SHVZK follows.

Remark 5. In some settings it is beneficial to introduce another relaxation. For example, if ζ = 1 (i.e., if
challenge difference are invertible), the aforementioned approach requires inverses of challenge differences to
be of small norm. The following relaxed relation only requires challenge differences, and not necessarily their
inverses, to be of small norm. It introduces an adapted approximation factor c̄ ∈ C̄ = {c−c′; c, c′ ∈ C, c 6= c′}
and is defined as follows

R(Ψ, β, C̄) =
{

(Y ; y, c̄) : y ∈M, c̄ · Y = Ψ(y), ‖y‖ ≤ β, c̄ ∈ C̄
}
.

The approximation factor c̄ is not fixed and part of the secret witness. This relaxation allows for more efficient
Σ-protocols. However, when composed with other protocols the fact that the approximation factors are not
fixed introduces additional difficulties. These can be handled, but in most settings the required adjustments
negate the benefits of this relaxed relation, we therefore do not consider it further.

From non-abort SHVZK to SHVZK. Rejection sampling, and therefore also our abstraction of rejection
sampling, in general does not allow to simulate the first message for aborting transcripts (see e.g. [Lyu09,
Lyu12]). For this reason, the standard Σ-protocol presented above provides only non-abort SHVZK. When
applying the Fiat-Shamir transform and using the proof system in the non-interactive setting this is not a
problem, because the prover simply does not output aborting transcripts (for more details see Section 5.5).
But, when using the Σ-protocol in the interactive setting, we have to apply an additional measure in order
to guarantee zero-knowledge also in the cases where the prover has to abort. In [DOTT20] it was recently
shown how to deal with this problem for the purpose of constructing lattice-based multi-signature scheme,
which is more challenging and therefore requires to either rely on random oracles or trapdoor commitments.
We observe that in our case to go from non-abort SHVZK to standard SHVZK it suffices to replace the first
message by a statistically hiding commitment, on the cost of going from perfect soundness to computational
soundness. Note that replacing the commitment by a trapdoor commitment scheme in the transformation
below, one can even achieve standard zero-knowledge.

Lemma 6. If Π is a Σ protocol that is complete, 2-special sound and non-abort special honest verifier zero-
knowledge for the pair of relations (R,R′) and Com is a statistically hiding and computationally binding
commitment scheme, then there exists a Σ protocol Π ′ that is complete, computationally 2-special sound
and special honest verifier zero knowledge.
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Proof. The idea of the protocol is simply to replace the first message of the protocol by a commitment to the
first message. The protocol Π ′ can be described as follows. First, the prover computes the first message W
according to Π. Further, the prover samples randomness γ for the commitment scheme and sends Com(W ; γ)
to the Verifier, who responds with a challenge c. In the last round the prover computes x according to the
second prover’s message in Π depending on W and the challenge c. If Π does not abort, the prover sends
W,γ, x to the verifier. The verifier accepts if W,γ is a valid opening of the commitment sent in the first
round, and (W, c, x) is an accepting transcript for Π. It is left to show that Π ′ indeed satisfies the required
properties.

Completeness follows directly.
Computational 2-Special Soundness: Let (C, c,W, γ, x) and (C, c′,W ′, γ′, x′) be two accepting tran-

scripts. Then, either we have that W ′ = W and we can rely on the 2-Special Soundness of Π, or the
prover broke the computational binding property of Com by finding two valid openings W,γ and W ′, γ′
with W 6= W ′.

Special Honest Verifier Zero Knowledge: Given a challenge c, the simulator runs the simulator for the
underlying protocol Π. If the underlying simulator returns (⊥, c,⊥), the simulator samples randomness
γ and outputs (Com(0; γ), c,⊥). If the underlying simulator returns (W, c, x), then the simulator samples
randomness γ and outputs (Com(W ; γ), c,W, γ, x). SHVZK follows by the statistical hiding property of
Com and the non-abort SHVZK property of the underlying protocol Π.

Remark 6. Applying this transformation to the standard Σ-protocol, the prover does not have to send W ,
because the verifier can first compute W as Ψ(x) − cY and then verify if W,γ is indeed a valid opening.
Therefore, instantiating Com with a compressing commitment scheme leads to an overall improvement in
the communication complexity.

Example. The basic Σ-protocol of [AC20], for proving that a committed vector satisfies a linear constraint,
is a special case of protocol Π0. It can be derived by instantiating Π0 with

Ψ : Znq × Zq → G× Zq, (x, γ) 7→ (Com(x, γ), L(x)) ,

for some prime q and where G is a group of order q, Com is the Pedersen vector commitment scheme and L
is a linear form. Both M = Znq ×Zq and N = G×Zq are Zq modules and, since C = Zq is a field, the subset
C = Zq is exceptional as required. Further, we can choose D as the uniform distribution, which is trivially
V -hiding for any set V ⊆ Zq without abort, i.e., the resulting protocol is perfectly correct. Finally, note that
as this instantiation does not require the witness to be small, we do not need to consider a norm (i.e., the
verifier will only check if the equation is satisfied).

5.2 Compression Mechanism

Observe that the final message x of protocol Π0 is a witness for statement X := W + c0Y , i.e., the final
message can be viewed a trivial proof of knowledge for X ∈ LR(Ψ,β). In the following, we will present a
general view on this compression mechanism that allows to replace this trivial PoK by a more efficient one,
using Bulletproof’s folding mechanism [BCC+16, BBB+18]. Recall that this protocol does not need to be
SHVZK, since it is a replacement for the trivial last message PoK of the standard Σ-protocol.

Compression function. The Bulletproof folding mechanism relies on an compression function that allows to
compress the witness iteratively. In the following we outline the properties the compression function has to
satisfy. The main purpose of giving this abstraction is to improve readibility of the protocols described in
the following. In Appendix A, we further give an abstraction generalizing to larger compression rate and
the corresponding compression mechanism.
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Definition 17 (Extractable compression function). Let M,M ′ be R-modules, such that M is of even
dimension n and M ′ of dimension n/2. Let C ⊂ R be an exceptional subset of R. Let Comp = {Compc : M →
M ′ : c ∈ C} and Φ = {Φc : M ′ →M : c ∈ C}, where Φc is an R-module homomorphism for each c ∈ C. Then,
we say (Comp, Φ) is an extractable compression function for C, if the following holds: There exists maps
πL, πR : M →M , such that for all c ∈ C:

Φc(Compc(x)) = πL(x) + c · x+ c2 · πR(x).

We further say that (Comp, Φ) is (τ, τ ′)-norm preserving, if for all c ∈ C, x ∈M, z ∈M ′:

‖Compc(x)‖ ≤ τ · ‖x‖ and ‖Φc(z)‖ ≤ τ ′ · ‖z‖.

The reason why Φc ◦ Compc has to be of this specific form is to allow extractability even if the maps
πL, πR are not evaluated honestly. More precisely, let Ψ : M → N . Then, given pairwise distinct c1, c2, c3 ∈ C
and z1, z2, z3 ∈ M ′ such that Φci(zi) = A+ ciX + c2

iB for i ∈ [3] (for arbitrary A,B ∈ N), it is possible to
extract an x ∈ M with Ψ(x) = X (resulting in 3-special soundness of the compression mechanism). In the
lattice setting it is further crucial that we can give a meaningful bound on the norm of the extracted x. In
the proof of Theorem 5 we will show that this is indeed the case (with bound depending on τ and τ ′).

Example 1 (Bulletproof compression function [BCC+16, BBB+18]). Let M = Rn,M ′ = Rn/2 with the
infinity norm ‖·‖∞. Then, the Bulletproof compression function is obtained as

Compc((xL, xR)) = xL + c · xR,

Φc(z) = (cz, z)

and
πL((xL, xR)) = (0, xL),

πR((xL, xR)) = (xR, 0).

Recall that w(C) = maxc∈C,x∈R\{0} ‖cx‖∞/‖x‖∞. The Bulletproof compression function is (1 +
w(C), w(C))-norm preserving, as for all c ∈ C, x ∈M it holds

‖xL + c · xR‖∞ ≤ ‖x‖∞ + w(C)‖x‖∞

and
‖(cz, z)‖∞ ≤ w(C)‖z‖∞,

whenever w(C) ≥ 1 (which will be the case for our instantiations).
Using the Bulletproof compression function with the p-norm ‖·‖p for arbitrary p ∈ N ∪ {∞} instead of

restricting to the infinity norm, we obtain that the Bulletproof compression function is (1 +w(C), 1 +w(C))-
norm preserving, because in general we can only guarantee

‖(cz, z)‖p ≤ w(C)‖z‖p + ‖z‖p,

where now w(C) = maxc∈C,x∈R\{0} ‖cx‖p/‖x‖p.

The idea of the compression mechanism is as follows: First the prover commits to A = Ψ(πL(x)) and
B = Ψ(πR(x)). Next, the verifier sends a challenge c ∈ C. Using the compression mechanism, the prover
then compresses x as z = Compc(x). Now, the verifier can check if indeed Ψ(Φc(z)) = A + cX + c2B. As
Compc(x) is 2-compressing, this strategy reduces communication complexity by roughly a factor 2. Note that
this factor 2 reduction comes at the cost of sending two elements A,B ∈ N . Hence, in practice the reduction
of the communication cost depend on the size of the R-module N . Finally, by extrability it follows that the
compression protocol Π1 is 3-special sound.

The compression mechanism is graphically displayed in Protocol 2 and its properties are summarized
in Theorem 5.
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Protocol 2 Generic Compression Mechanism Π1 for relations
(
R(Ψ, β), R(Ψ, βσ, ζ3)

)
, where σ =

6ττ ′wM (C)2w̄M (C, ζ)3. Recall that (Comp, Φ) is a (τ, τ ′)-norm preserving extractable compression map, i.e.
for all c ∈ C:

Φc(Compc(x)) = πL(x) + cx+ c2πR(x).

Input(X;x)
X = Ψ(x) ∈ N

Prover Verifier

A = Ψ(πL(x))
B = Ψ(πR(x)) A,B−−−−−−−−−−−−−−→

c←R C ⊂ R
c←−−−−−−−−−−−−−−

z = Compc(x)
z−−−−−−−−−−−−−−→ ‖z‖

?
≤ β · τ,

Ψ(Φc(z)) ?= A+ cX + c2B

Theorem 5 (Compression Mechanism). Let M,M ′, N be R-modules, such that M has even dimension
n and M ′ has dimension n/2 over R, and let Ψ : M → N be an R-module homomorphism. Further, let ζ ∈ R
and let C be a finite ζ-exceptional subset of R, let (Comp, Φ) be a (τ, τ ′)-norm preserving extractable com-
pression function for C with projection maps πL, πR, and let σ = 6ττ ′wM (C)2w̄M (C, ζ)3. Then, Π1 as given
in Protocol 2 is a 3-move protocol for relations

(
R(Ψ, β), R(Ψ, βσ, ζ3)

)
which satisfies perfect completeness

and unconditional 3-special soundness.

Proof. Completeness follows, because we have Compc is τ -preserving for all c ∈ C, i.e., ‖z‖ = ‖Compc(x)‖ ≤
τ · ‖x‖, as required. Further, by the considerations above, also the second verification equation will always
be true for an honest prover.

3-Special Soundness: Let (A,B, c1, z1), (A,B, c2, z2) and (A,B, c3, z3) be three accepting transcripts
for pairwise distinct challenges c1, c2, c3 ∈ C ⊂ R. Let

(a1, a2, a3) =
(
c2

3 − c2
2, c

2
1 − c2

3, c
2
2 − c2

1
)
.

Then,  1 1 1
c1 c2 c3
c2

1 c
2
2 c

2
3

a1
a2
a3

 = c̃

0
1
0

 ,

where c̃ = (c1 − c2)(c1 − c3)(c2 − c3) ∈ R∗.
Let a such that a · c̃ = ζ3 (such an a exits because C is ζ-exceptional) and let

x̃ = a ·
3∑
i=1

ai · Φci(zi) ∈M.

Then, we have

Ψ(x̃) = a ·
3∑
i=1

ai · Ψ(Φci(zi)) = a ·
3∑
i=1

ai(A+ ciX + c2
iB) = a · (0 ·A+ c̃ ·X + 0 ·B) = ζ3 ·X.

Further, we have

‖x̄‖ ≤ w̄M (C, ζ)3 ·
3∑
i=1

2 · wM (C)2 · τ ′ · ‖zi‖ ≤ 6 · w̄M (C, ζ)3 · wM (C)2 · τ ′ · τ · β = β · σ,

where σ = 6ττ ′wM (C)2w̄M (C, ζ)3. This completes the proof.
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5.3 Compressed Σ-Protocol
In this setting we build on the previous sections in order to present the compressed Σ-Protocol Πcomp,
allowing to reduce complexity to polylogarithmic in the input length (when choosing a suitable instantiation).

The introduced soundness slack makes concatenating protocols a bit more involved than in the plain
setting. For more details and a formal treatment of this issue we refer to the Appendix B. Informally

Πcomp = Π1 � · · · �Π1 �Π0,

for the appropriate instantiations of Π0 and Π1. Recall, that in the composition Πb �Πa, the final message
of protocol Πa is replaced by an execution of Πb.

Building on the composition theorem and the results of the previous sections, where the compression
function is instantiated with the Bulletproof compression function, we obtain the following corollary.
Corollary 2 (Generic Compressed Σ-Protocol). Let µ ∈ N. Let M = R2µ and ‖·‖∞ the infinity norm
on M (for some underlying norm on R). Let Ψ : M → N be an R-module homomorphism, let ζ ∈ R and let
C be a finite ζ-exceptional subset of R. Let α, β ∈ N and δ ∈ [0, 1), let V = {cy | y ∈M, ‖y‖∞ ≤ α, c ∈ C} and
let (D,F) be a β-bounded V -hiding distribution with abort probability δ. Then, there exists a (2µ+ 3)-move
public-coin protocol Πcomp for the pair of relations(

R(Ψ, α), R(Ψ, 2β · w̄(C, ζ) · σµ, ζ3µ+1)
)
,

where σ = 6 · w(C)3 · (1 + w(C))·w̄(C, ζ)3.
It is complete with completeness error δ, unconditionally (2, 3, . . . , 3)-special sound and non-abort special

honest-verifier zero-knowledge. Moreover, the communication costs are:
– P → V: 2µ+ 1 elements of N and 1 element of R.
– V → P: µ+ 1 elements of C.

Remark 7. When instantiating the norm in the corollary above with the p-norm ‖·‖p for arbitrary p ∈ N∪{∞}
instead of restricting to the infinity norm, then σ in the above corollary increases to σ = 6 · w(C)2 · (1 +
w(C))2 · w̄(C, ζ)3. This is due to the fact that the Bulletproof compression function instantiated with an
arbitrary p-norm can only guaranteed to be (w(C) + 1, w(C) + 1)-norm preserving in general.

5.4 From Compressed Σ-Protocols to Proof of Knowledge
With our tight knowledge extractor theorem (Theorem 1), we obtain the following corollary.
Corollary 3. Let µ ∈ N, C ⊂ R and Πcomp as in Corollary 2. Then, the protocol Πcomp is knowledge sound
with knowledge error

κ ≤ 2µ+ 1
|C|

.

In order to bring the knowledge error down to 1/λd for arbitrary constant d ∈ N, we can apply the
parallel repetition theorem (Theorem 3).
Corollary 4. Let µ ∈ N, δ ∈ [0, 1), C ⊂ R and Πcomp as in Corollary 2. Let t ∈ N such that |C|t is negligible.
Let d ∈ N be an arbitrary constant. Then, the t-times parallel repetition Πt

comp of Πcomp is complete with
completeness error 1− (1− δ)t, knowledge sound with knowledge error

κ ≤ 1
λd

and non-abort honest verifier zero-knowledge.
Note that the above requires that 1− (1− δ)t is noticeable. This can be achieved by chosing a rejection

sampling strategy such that δ is constant and t ∈ O(log λ).
Applying Lemma 6, one can further obtain an interactive protocol that satisfies honest verifier zero-

knowledge (or even standard zero-knowledge, when building on trapdoor commitment schemes), at the cost
of increasing the knowledge error by the advantage an adversary has to break the binding property of the
commitment scheme.
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5.5 From Interactive to Non-Interactive Proofs

The Fiat-Shamir paradigm [FS87] yields a generic conversion from interactive public-coin zero-knowledge
proofs to non-interactive zero-knowledge proofs. The idea of the Fiat-Shamir paradigm is that the next
challenge is computed as a hash of the statement, together with all previous messages of the protocol. The
prover can thus generate a proof without interacting with the verifier, and the verifier check if the challenges
were indeed computed correctly and the transcript verifies. The Fiat-Shamir paradigm can be proven secure
in the (quantum) random-oracle model [DFMS19, LZ19, DFM20].

Unfortunately, when applying the Fiat-Shamir transform in our setting, the following issue arises: For a
(2µ + 3)-move public coin protocol the security loss of the reduction equals Qµ+1, where Q is the number
of random oracle queries by the adversary. Since we have to rely on parallel repetition in order to reduce
the soundness error, we are stuck with soundness error 1/|x|c (for arbitrary large c). Therefore, applying
Fiat-Shamir to our protocol would result in losing any asymptotic security guarantees.

We still believe that applying Fiat-Shamir does not actually render our protocol insecure. More precisely,
even though the loss of Qµ+1 is optimal in general and unfortunately we are not able to prove a tighter
bound for our protocol, we still believe that the loss introduced by Fiat-Shamir should actually be in the
order of Q.

Intuitively, the best strategy of a cheating prover is to decide on one round and query the random oracle
until it returns a “good” challenge, i.e., a challenge for which the prover can generate an accepting transcript
(in our protocol getting a “good” challenge in one round will indeed be sufficient to generate a complete
accepting transcript, independent of future challenges). Looking at our protocol, the probability of guessing a
“good” challenge in one round for all t executions simultaneously is at most (2/|C|)t which is upper bounded
by κ. This attack therefore succeeds with probability at most Q · (2/|C|)t ≤ Q ·κ. Note though that if instead
we would have relied on sequential repetition, this attack would have success probability Q · (2/|C|) for each
instance, rendering the protocol insecure whenever |C| is polynomially bounded (as is the case in the lattice
setting).

The Bulletproof line of work [BCC+16, BBB+18] also implicitly considered the described attack as
optimal when choosing concrete parameters. Their choice of parameters was only recently supported by
[GT20], who gave a proof in the algebraic group model that the loss for [BBB+18] is indeed only in the order
of Q. This can be viewed as support of our claim above, but unfortunately there are no known similar results
in the standard model that would apply to the lattice setting. Lattice-based interactive protcols with more
than a constant number of rounds (such as this work and [BLNS20]) therefore have to rely on the above
described heuristic or be used in the interactive setting.

6 Compressed Σ-Protocols Instantiated from the MSIS Assumption

The compressed Σ-protocol Πcomp of Corollary 2 is typically instantiated with Ψ(x, γ) = (Com(x, γ), L(x))
for a commitment scheme Com and a linear form L, where γ is the commitment randomness. This allows
a prover to show that a committed vector x satisfies a linear constraint. When instantiated with a compact
or compressing commitment scheme, for which the size of a commitment is at most polylogarithmic in the
size of the secret vector, protocol Πcomp achieves communication complexity polylogarithmic in the input
size. In Section 7, we show how to linearize non-linear constraints and thereby prove that committed vectors
satisfy arbitrary non-linear constraints. This explains why our pivotal compressed Σ-protocol Πcomp is only
required to handle linear instances.

The generalizations of Section 5 were introduced to handle lattice-based commitment schemes. In this
section, we instantiate compressed Σ-protocol Πcomp for the following lattice-based commitment function
(Definition 13)

Com : Rn ×Rr → Rkq , (x, γ) 7→ A1γ +A2x mod q.

Recall that, R = Z[X]/f(X) for a monic irreducible polynomial f(X), Rq = R/(q) for a rational prime q,
and A1 ∈ Rk×rq and A2 ∈ Rk×nq are sampled uniformly at random in the setup phase. This commitment
scheme allows a prover to commit to “short” ring elements. We use it to commit to secret vectors of Rnp
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via their unique representation in {x ∈ R : ‖x‖∞ ≤ d(p − 1)/2e}. Subsequently, we aim to prove that a
committed vector x ∈ Rnp satisfies an Rp-linear constraint L(x) = y for a linear form L : Rnp → Rp. To this
end, we instantiate protocol Πcomp with α = d(p− 1)/2e for the R-module homomorphism

Ψ : Rn ×Rr → Rkq ×Rp, (x, γ) 7→ (Com(x, γ), L(x) mod p) .

Note that the protocol of Corollary 2 contains an approximation factor ζ3µ+1. This means that, in the
instantiation of this section, a prover claims to know an exact opening (x, γ) of a commitment P satisfying
L(x) = y, but is only capable of proving knowledge of a relaxed opening (x′, γ′) such that Com(x′, γ′) =
ζ3µ+1 ·P and L(x) = ζ3µ+1 ·y ∈ Rp. For this reason, we require the approximation factor ζ to be invertible in
Rp. In this case, a commitment to a vector x′ ∈ Rnp is also a commitment to the vector x̃ = ζ−3µ−1x′ ∈ Rnp
satisfying the linear constraint L(x̃) = y. Hence, if ζ ∈ R∗p, we derive precisely the desired functionality of
proving that a committed vector satisfies a linear constraint.

The lattice instantiation requires a distribution-algorithm pair (D,F) that is V -hiding, for V = {cy | y ∈
M, ‖y‖∞ ≤ α, c ∈ C}, and β-bounded for some reasonably small β ∈ N. We let D be a uniform distribution
over an appropriate subset of Rn+r. The following lemma shows that this approach gives the required
properties. The smallest lattice-based signatures take D to be a Gaussian distribution. When the secrets
have a constant `2-norm bound the Gaussian distribution namely results in better protocol parameters. In
our scenario this is not the case; our secrets are bounded in the `∞-norm. Additionally, uniform sampling
is less prone to side-channel attacks. For this reason, the digital signature scheme Dilithium also deploys a
uniform rejection sampling approach [DKL+18].

Lemma 7 (Uniform Rejection Sampling). Let R = Z[X]/f(X) for a monic and irreducible polynomial
f(X) ∈ Z[X] of degree d, C ⊂ R and m, η ∈ N. Let ‖z‖∞ be the `∞-norm of the coefficient vector of z ∈ Rm
and let w(C) = maxc∈R,x∈R\{0}‖cx‖∞/‖x‖∞. Let V = {cx ∈ Rm : c ∈ C ⊂ R, ‖x‖∞ ≤ d(p− 1)/2e}. Let D
be the uniform distribution over {x ∈ Rm : ‖x‖∞ ≤ η} and let

F(r, v) =
{
⊥, if ‖v + r‖∞ > η − w(C) d(p− 1)/2e ,
v + r, otherwise.

Then (D,F) is perfectly V -hiding and (η − w(C) d(p− 1)/2e)-bounded, with abort probability

δ ≤ 1− e−
w(C)pmd

2η+1 .

Proof. First note that, for all v ∈ V , it holds that ‖v‖∞ ≤ w(C) d(p− 1)/2e. Hence, the abort probability of
the probabilistic algorithm {F(r, v) | r ← D} equals

δ = 1−
(

1− 2w(C) d(p− 1)/2e
2η + 1

)md
,

≤ 1− emd log
(

1−w(C)p
2η+1

)
,

≤ 1− e−
w(C)pmd

2η+1 .

Now let F ′ be the algorithm that aborts with probability δ and otherwise outputs a z ∈ {x ∈ Rm :
‖x‖∞ ≤ η − w(C) d(p− 1)/2e} sampled uniformly at random. Then it is easily seen that {F(r, v) | r ← D}
and {F ′} have exactly the same output distributions, i.e., (D,F) is V -hiding.

Finally note that (D,F) is clearly (η − w(C) d(p− 1)/2e)-bounded, which completes the proof of the
lemma.

The resulting instantiation of Πcomp, denoted by Λcomp(η), is parameterized by η ∈ N allowing for a
trade-off between the abort probability and communication complexity of the protocol. Its properties are
summarized in Corollary 5.
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Corollary 5 (Lattice-Based Compressed Σ-Protocol). Let n, r, µ, η ∈ N such that n+ r = 2µ and let
p, q ∈ N be primes. Let R = Z[X]/f(X) for a monic and irreducible polynomial f(X) ∈ Z[X] of degree d.
Let ζ ∈ R such that ζ ∈ R∗p and let C be a ζ-exceptional subset of R. Let A1 ∈ Rk×rq , A2 ∈ Rk×nq and

Ψ : Rn ×Rr → Rkq ×Rp, (x, γ) 7→ (A1γ +A2x mod q, L(x) mod p) .

Then, there exists a (2µ+ 3)-move public-coin protocol Λcomp(η) for the pair of relations

R =
{

(P ;x) : P = Ψ(x), ‖x‖∞ ≤ d(p− 1)/2e
}
,

R′ =
{

(P ;x) : ζ3µ+1 · P = Ψ(x), ‖x‖∞ ≤ 2σµw̄(C, ζ)(η − w(C)d(p− 1)/2e)
}
,

where σ = 6 · w(C)3 · (1 + w(C)) · w̄(C, ζ)3 with w(·) and w̄(·) defined as in Equation 9.
It is unconditionally (2, 3, . . . , 3)-special sound, non-abort special honest-verifier zero-knowledge and com-

plete with completeness error
δ ≤ 1− e−

w(C)p(n+r)d
2η+1 .

Moreover, the communication costs are:

– P → V: 2µ+ 1 elements of Rkq , 2µ+ 1 elements of Rp and 1 element of R.
– V → P: µ+ 1 elements of C.

Remark 8. Corollary 5 does not require ζ to be invertible in Rp. In particular, this result is still valid for
ζ = 0. However, in this case 0 is a witness for all statements P ∈ LR′ and thereby the claim that is being
proven becomes vacuous. For this reason, in most practical scenarios we assume that ζ ∈ R∗p.

6.1 Parameters

In this section, we consider compressed Σ-protocol Λcomp(η) defined over the cyclotomic number ring R =
Z[X]/(Xd+1) with d a power of two and with challenge set C = {0,±1,±X, . . . ,±Xd−1}. We show that this
protocol has communication complexity polylogarithmic in the input size. We only consider the simplified
scenario of proving knowledge of a commitment opening and omit the linear constraint from the discussion.

Power-of-two cyclotomic number rings R and their monomial challenge set C have certain convenient
properties. In particular, it holds that w(C) = 1. Moreover, it holds that C is a 2-exceptional subset of
R. In particular, it holds that 2/(c − c′) ∈ R is a polynomial with coefficients in {−1, 0, 1} for all distinct
c, c′ ∈ C [BCK+14]. From this it follows that w̄(C, 2) ≤ d. For a more detailed discussion on optimal challenge
sets see [LS18, ACX19].

Let us now determine the asymptotic communication complexity. First note that, by Theorem 1, Λcomp(η)
has knowledge error κ ≤ (2 log(n+ r) + 1)/(2d+ 1) ≤ log(n+ r)/d (assuming that log(n+ r) < d). For this
reason t = Θ (λ/(log d− log log(n+ r))) parallel repetitions are required, where λ is the security parameter.
Note that, in the recent analysis of the lattice-based Bulletproof folding technique it is incorrectly claimed
that their protocol achieves O(1/d) knowledge error [BLNS20, p. 20].6 However, similar to our protocol, it
achieves a O(log(n+ r)/d) knowledge error.

Moreover, we assume η = Θ(tdp(n+r)), which by Corollary 5 is enough to achieve a constant completeness
error. From Corollary 5 it now follows that the extractor outputs a (B, 23µ+1)-relaxed commitment opening,
where

B = 2d · (12d3)µ
(
η −

⌈
p− 1

2

⌉)
= Θ(d2tp(n+ r)3+log 3+3 log d).

Hence, the commitment scheme must be instantiated to be binding with respect to (B, 23µ+1)-relaxed com-
mitment openings, i.e., the MSIS∞k,n+r,2B problem over Rq must be computationally infeasible (Lemma 3).

6 This was confirmed to us by the authors in personal communication and also observed in [AL21].
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Recall that commitments are k-dimensional Rq-vectors. From the Micciancio-Regev bound (Equation 1) it
follows that this problem is hard if

dk log q ≥ log2(2B
√
n+ r)

4 log δ = Θ

(
log2 d log2 tdp(n+ r)

log δ

)
, (10)

where δ is the root Hermite factor. Note that we derive an additional
√
n+ r factor because we reduce the

MSIS-problem from the `∞-norm to the `2-norm. When these commitments are considered stand-alone their
size is independent of the input dimension n, i.e., they are compact. However, the soundness slack of our
protocols depends (polynomially) on n. This requires our commitment scheme to be instantiated such that
the bit size dk log q of commitments is polylogarithmic.

By Lemma 1 it now follows that r is polylogarithmic in the input size. Together with Corollary 5 and
the fact that t = Θ (λ/(log d− log log(n+ r))), this shows that the prover has to send

O
(
λ log2 d logn log2 λdpn

log δ(log d− log logn)

)
bits of information to the verifier. Hence, this instantiation of Λcomp(α, η) indeed achieves communication
complexity polylogarithmic in the input size.

Remark 9. The lattice based Bulletproof instantiation of [BLNS20] consider the case k = 1 and they derive
a communication complexity of O(dλ logn log pn/ log δ) (using our notation) under the assumption that
log q = Θ(log d log pn). However, to ensure that the underlying commitment scheme is binding they must
choose d = Θ(log q). Moreover, they incorrectly estimate their knowledge error to be O(1/d) instead of
O(logn/d). Taking these two issues into account gives their protocol a communication complexity of

O
(
λ log2 d logn log2 pn

log δ(log d− log logn)

)
.

The additional factor λd inside the logarithm of our communication complexity can be explained by
the fact that our protocol is zero-knowledge, while the protocol of [BLNS20] is not. Besides this factor, our
asymptotic communication complexity is the same.

7 Lattice-Based Protocols for Proving Non-Linear Relations

The compressed Σ-protocol Λcomp of Section 6 allows a prover to show that a committed vector x ∈ Rnp
satisfies an Rp-linear constraint, i.e., prove that L(x) = y for a public linear form L : Rnp → Rp and a
public y ∈ Rp = Fp[X]/(f(X)). We also say that his protocol allows a prover to open a linear form L on
a committed vector x. It trivially follows that Λcomp allows a prover to open affine maps L : Rnp → Rmp .7
Our protocols have an approximation factor ζ` for some ` ∈ N and ζ ∈ R such that the challenge set C is
ζ-exceptional. Recall that to be able to prove that a committed vector satisfies a linear constraint exactly
we must assume that ζ is invertible in Rp.

In this section, we consider non-linear constraints. More precisely, we aim to construct a protocol for
proving that a committed vector x satisfies C(x) = 0 for a circuit C : Rnp → Rp. We follow the linearization
strategy of [AC20]. The main idea is to linearize the non-linear multiplication gates of the circuit C by
deploying an appropriate arithmetic secret sharing scheme. This explains why Λcomp is only required to
prove linear relations. The linearization technique reduces the unconditional soundness of protocol Λcomp
to computational soundness. More precisely, it requires the commitment scheme to be binding. Hence, our
protocols for proving non-linear constraints are arguments of knowledge and not proofs of knowledge. We
briefly recall the techniques from [AC20] and subsequently describe the adaptations required for our lattice
instantiation.
7 An affine map is a linear map plus a constant.
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7.1 Discrete-Log Setting

The protocols of [AC20] consider arithmetic circuits C : Fnp → Fp defined over a finite field Fp. Let us assume
that C has m multiplication gates with two variable inputs.8 We let a = (a1, . . . , am) denote the left input
wires, b = (b1, . . . , bm) the right input wires and c = (c1, . . . , cm) the output wires of the multiplication
gates. For a wire w we write w(x) ∈ Fp for the value it takes when the circuit C is evaluated in x ∈ Fnp . It is
easily seen that all wires w of C correspond to an affine form Lw : Fn+m

p → Fp such that w(x) = Lw(x, c(x))
for all x ∈ Fnp . A naive protocol for proving knowledge of an x such that C(x) = 0 therefore goes as follows:

1. The prover commits to the vector (x, c(x)) ∈ Fn+m
p ;

2. The prover opens the linear forms Lo and Lai , Lbi , Lci for 1 ≤ i ≤ m, where o is the output wire;
3. The verifier checks that Lo(x, c) = 0 and that Lai(x, c)Lbi(x, c) = Lci(x, c) for all 1 ≤ i ≤ m.

The first verification shows that, on input x, the circuit evaluates to 0. The second verification shows that
the committed vector c of auxiliary information has been constructed honestly, i.e., that it equals c(x).

However, this approach is not zero-knowledge; the input and output wire values of the multiplication
gates are revealed. Moreover, the communication complexity is linear in the number of multiplication gates
m. To solve these issues, a multiplicative (packed) secret sharing scheme with 1-privacy is used. The secret
sharing scheme allows the complexity of the m verifications to be amortized and its 1-privacy guarantees
zero-knowledge.

More precisely, the prover samples r1, r2 ∈ Fp uniformly at random and determines the unique polyno-
mials F (Z), G(Z) ∈ Fp[Z] of degree at most m that satisfy

F (0) = r1, F (1) = a1(x), . . . , F (m) = am(x),
G(0) = r2, G(1) = b1(x), . . . , G(m) = bm(x).

Hence, F (Z) and G(Z) define packed secret sharings (Shamir’s scheme) of the vectors a(x),b(x) ∈ Fmp , with
1-privacy. Subsequently, the prover computes the product polynomial H(Z) = F (Z)G(Z) of degree at most
2m, and commits to the vector

y = (x, c(x), F (0), G(0), H(0), H(m+ 1), . . . ,H(2m)) ∈ Fn+2m+3
p .

As before any wire value can be computed as an affine form evaluated in y. Note that the “absent” evaluations,
F (i), G(i) and H(i) for 1 ≤ i ≤ m, can be computed as affine forms evaluated in the committed vector y.
Hence, by Lagrange interpolation, it is, in addition, possible to compute any evaluation of the polynomials
F (Z), G(Z) and H(Z) as a linear form evaluated in y.

Therefore, instead of opening all inputs and outputs of the multiplication gates the prover simply opens
F (ρ), G(ρ) and H(ρ) for an evaluation point ρ ∈ Fp\{1, . . . ,m} selected uniformly at random by the verifier.
Since this secret sharing scheme has 1-privacy, these evaluation points do not reveal any information about
the secret vector x. The verifier subsequently checks that F (ρ)G(ρ) = H(ρ). If the committed vector y is
not created honestly, it follows that the committed polynomials do not satisfy F (Z)G(Z) = H(Z). In this
case, the verification passes with probability at most 2m/(p − m). In the discrete log setting the number
of multiplication gates m can be assumed to be polynomial and the prime p is exponential in the security
parameter, resulting in a negligible cheating probability.

7.2 Lattice Setting

In the lattice setting relations are defined over the ring

Rp = Z[X]/(p, f(X)) = Fp[X]/
(

g∏
i=1

fi(X)ei
)
,

8 The multiplication gates with one constant input value are linear operators. For this reason, we are only interested
in the multiplication gates with two variable inputs.
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where fi(X) is irreducible modulo p and of degree di for all i. This introduces two difficulties. First, the ring
Rp is not necessarily a field. Second, the prime p is typically small. Let us now address these issues.

If Rp is not a field, Shamir’s secret sharing scheme has to be instantiated more carefully. Lagrange
interpolation requires differences of evaluation points to be invertible. For this reason, the subset Sp ⊂ Rp
of evaluation points has to be exceptional. The largest exceptional subset of Rp has cardinality pD, where
D = mini(di) is the minimum of the degrees of the irreducible factors of f(X) modulo p. So let us assume
that Sp = {s0, . . . , spD−1} has cardinality pD.

The secret sharing of the left input wire values a(x) of the multiplication gates is now defined by the
unique polynomial F (Z) ∈ Rp[Z] that satisfies

F (s0) = r1, F (s1) = a1(x), . . . , F (sm) = am(x),

for an element r1 ∈ Rp sampled uniformly at random by the prover. The polynomials G(Z) and H(Z) =
F (Z)G(Z) and the vector y ∈ Rn+2m+3

p are defined as before (now considering evaluation points in Sp).
Subsequently, the prover sends a commitment to y to the verifier. The verifier selects a random evaluation ρ
point from Sp\{s1, . . . , sm}, asks the prover to open F (ρ), G(ρ) and H(ρ) and checks that F (ρ)G(ρ) = H(ρ).
A dishonest prover succeeds with probability at most 2m/(pD −m). Clearly, this requires pD to be larger
than 3m. However, note that 2m/(pD − m) does not necessarily have to be negligible. Namely, it might
very well be the case that the knowledge error of compressed Σ-protocol Λcomp is noticeable and parallel
repetitions are required anyway. In practice, we want 2m/(pD −m) to be of the same order of magnitude
as the knowledge error of Λcomp (see Equation 2). In Appendix C.1, a complete protocol description and
theorem summarizing the protocol’s properties are given. In Appendix C.2, we show how to handle the
situation where pD is too small, e.g., pD ≤ 3m.

Remark 10. The protocol for proving non-linear relations described thus far requires the prover to be com-
mitted to the secret vector x ∈ Rnp and the auxiliary input aux = (c(x), F (s0), . . . ,H(s2m)) ∈ R2m+3

p in
a single commitment. It does not allow a prover to prove non-linear relations about a committed vector
x that has been committed to without the auxiliary input aux, i.e., it is not a commit-and-prove protocol.
In Section 8.3, it is explained how to transform this approach into a commit-and-prove protocol.

Remark 11. Thus far we have considered a somewhat non-standard circuit model, i.e., circuits defined over
the ring Rp. However, our approach is easily adaptable to circuit satisfiability arguments over the field Fp.
For example, by choosing the ring R such that p fully splits. In this case, each NTT coefficient can be
used to commit to an Fp-element. Running the Rp-circuit argument for an Fp-circuit then corresponds to d
simultaneous Fp-circuit satisfiability arguments, where d is the degree of R.

8 Extensions

In this section we discuss a number of extensions of the techniques presented thus far. These extensions
almost directly carry over from the discrete log setting to the lattice setting and demonstrate the plug and
play nature of compressed Σ-protocol theory.

8.1 Amortizing over Many Linear Forms

The compressed Σ-protocol Λcomp allows a prover to open a linear form on a committed vector. The naive
approach for opening s linear form L1, . . . , Ls is to consider the following R-module homomorphism:

Ψ : Rn ×Rr → Rkq ×Rsp, (x, γ) 7→ (Com(x, γ), L1(x), · · · , Ls(x)) .

However, this requires a prover to send 2s elements of Rp in every round of the compression mechanism
Λ1, thereby increasing the communication costs with respect to opening a single linear form. A standard
amortization technique, known for example from MPC, allows a prover to open s linear forms for the
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price of one. Instead of opening all s linear forms separately, the prover opens one linear form Lρ(x) =∑s
i=1 Li(x)ρi−1, where ρ is selected uniformly at random by the verifier from an exceptional subset Sp ⊂ Rp

of size pD. If Lρ(x) =
∑s
i=1 yiρ

i−1, for a random ρ←R Sp, it follows that Li(x) = yi for all i with probability
at least 1− (s− 1)/pD, i.e., a dishonest prover succeeds with probability at most (s− 1)/pD. If the cheating
probability is too large, the techniques from Appendix C.2 can be applied. This amortization technique
reduces the unconditional soundness of Λcomp to computational soundness, i.e., the amortized protocol is an
argument of knowledge and not a proof of knowledge.

As an example, let us consider our protocol for proving non-linear arithmetic circuit relations. This proto-
col requires the prover to open four linear forms, three corresponding to secret shares and one corresponding
to the output of the circuit. These amortization techniques are therefore directly applicable and reduce the
communication complexity.

8.2 Reducing the Communication Complexity

Bulletproofs [BBB+18] and the discrete-log based compressed Σ-protocol of [AC20] apply an additional
reduction to “incorporate” the linear form evaluation into the commitment. More precisely, on input a
challenge ρ from an exceptional subset of Sp ⊂ Rp sampled uniformly at random by the verifier, the following
homomorphism in considered,

Ψρ : Rn ×Rr → Rkq , (x, γ) 7→ Com ((x, ρL(x)), γ) .

The advantage of this homomorphism is that its codomain is smaller; images of Ψρ are commitments and do
not contain linear form evaluations. For details we refer to [AC20, Section 4.1]. Applying the compressed Σ-
protocol Λcomp to this homomorphism results in smaller communication costs than directly applying Λcomp
for the original homomorphism Ψ . In the discrete log setting, linear form evaluations and commitments
have approximately the same size, therefore this improvement reduces the communication costs by roughly
a factor 2. In the lattice setting, commitments are elements in Rkq and linear form evaluations are elements
in the much smaller ring Rp, therefore the reduction is less profitable in this setting. For this reason, we
have not included this reduction into our main protocol Λcomp. Finally, we note that this technique reduces
knowledge soundness from unconditional to computational.

8.3 Commit-and-Prove Protocols

The linearization approach of Section 7 for proving that a committed vector x ∈ Rnp satisfies cer-
tain non-linear constraints requires a prover to be committed to the vector x together with a vector
aux = (c(x), F (s0), . . . ,H(s2m)) of auxiliary information in a single commitment. However, in many practical
scenarios, a prover is already committed to the vector x, without the auxiliary information aux. The secret
vector can be contained in a single commitment or it can be dispersed over many different commitments. We
wish to construct a protocol for proving non-linear statements about commitments that have been created
before the proof of knowledge is evaluated. This is also referred to as commit-and-prove functionality. To
achieve this functionality, the secret vector x and the auxiliary information aux are first compactified into a
single (compact) commitment using the compactification techniques from [AC20].

We describe the most straightforward compactification technique, by considering the scenario that P is
a commitment to a secret vector x ∈ Rnp and aux ∈ Rtp is the auxiliary information required to prove a
certain non-linear statement about x. Note that, the commitment P can also be considered a commitment
to the vector (x, 0) ∈ Rn+t

p . The compactification now goes as follows. The prover sends a commitment Q
to (0, aux) ∈ Rn+t

p to the verifier and, by running Λcomp amortized over n linear forms, proves that the
first n coefficients of the committed vector are 0. Prover and verifier compute a commitment P + Q to the
vector (x, aux) containing both the secret vector x and the auxiliary information. Using P +Q the non-linear
statements about x can be proven.

This approach increases the communication complexity of by roughly a factor 2; the prover has to prove
linear constraints for both commitment Q and commitment P +Q. Protocol 9 in the full-version of [AC20]

32



gives a more advanced protocol for avoiding this factor 2 loss in communication efficiency in the discrete-
log setting. This technique caries over to the lattice setting at the cost of introducing a minor amount of
additional soundness slack. This additional slack is caused by the fact that the prover has to commit to two
additional Rp elements.
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Appendix

A Compression Functions

The compression mechanism Π2 of Section 5.2 makes uses a specific compression function. This compression
allows a prover to reduce the communication complexity and it has certain extractability properties required
by the knowledge extractor of Π2. In this section, we generalize the notion of compression functions to large
compression rates. Subsequently, we define a class of compression functions and prove that these indeed
satisfy the properties required.

A.1 Generalized compression functions

Definition 18 (Extractable compression function). Let M,M ′ be R-modules, such that M is of di-
mension n and M ′ of dimension n/k. Let C ⊂ R be an exceptional subset of R. Let Comp = {Compc : M →
M ′ : c ∈ C} and Φ = {Φc : M ′ →M : c ∈ C}, where Φc is an R-module homomorphism for each c ∈ C. Then,
we say (Comp, Φ) is an extractable k-compression function for C, if the following holds: There exists maps
πi : M →M for i ∈ [2k − 2], such that for all c ∈ C:

Φc(Compc(x)) =
k−1∑
i=1

ci−1πi(x) + ck−1 · x+
k−1∑
i=1

ck+i−1 · πk+i−1(x).

We further say that (Comp, Φ) is (τ, τ ′)-norm preserving, if for all c ∈ C, x ∈M, z ∈M ′:

‖Compc(x)‖ ≤ τ · ‖x‖ and ‖Φc(z)‖ ≤ τ ′ · ‖z‖.

A.2 Generalized Compression Mechanism

Theorem 6 (Compression Mechanism). LetM,M ′, N be R-modules, such thatM has dimension n and
M ′ has dimension n/k over R, and let Ψ : M → N be an R-module homomorphism. Let ζ ∈ R and let C ⊂ R
be a finite ζ-exceptional subset of R, let (Comp, Φ) be a (τ, τ ′)-norm preserving k-compressing extractable
compression function for C with projection maps πL, πR, and let σ = ττ ′(2wM (C))2k2

w̄M (C, ζ)2k2−3k+1.
Then, Π1 as given in Protocol 3 is a 3-move protocol for relations

(
R(Ψ, β), R(Ψ, β · σ, ζ2k2−3k+1)

)
which

satisfies perfect completeness and unconditional (2k − 1)-special soundness.

Proof. Completeness follows, because we have Compc is τ -preserving for all c ∈ C, i.e., ‖z‖ = ‖Compc(x)‖ ≤
τ · ‖x‖, as required. Further, it is easy to verify that also the second verification equation will always be true
for an honest prover.

(2k − 1)-Special Soundness: Let ({Ai,j}i∈[2k−2], cj , zj) be 2k − 1 accepting transcripts for pairwise
distinct challenges c1, . . . , c2k−1 ∈ C ⊂ R.

Let
c̃ :=

∏
1≤j1<j2≤2k−1

(cj1 − cj2).

For i ∈ [2k − 1] let

ai = (−1)k−1 · c̃ ·
2k−1∏
j=1,j 6=i

(ci − cj)−1 ·
∑

1≤j1<...jk−1<2k−1,j` 6=i
cj1 · · · · · cjk−1
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Protocol 3 Generic Compression Mechanism Π1 for relations
(
R(Ψ, β), R(Ψ, β · σ, ζ2k2−3k+1)

)
, where σ =

ττ ′(2wM (C))2k2
w̄M (C, ζ)2k2−3k+1. Recall that (Comp, Φ) is a (τ, τ ′)-norm preserving extractable compression

map, i.e., for all c ∈ C:

Φc(Compc(x)) =
k−1∑
i=1

ci−1πi(x) + ck−1 · x+
k−1∑
i=1

ck+i−1 · πk+i−1(x).

Input(X;x)
X = Ψ(x) ∈ N

Prover Verifier

Ai = Ψ(πi(x))
{Ai}i∈[2k−2]−−−−−−−−−−−−−−→

c←R C ⊂ R
c←−−−−−−−−−−−−−−

z = Compc(x)
z−−−−−−−−−−−−−−→ ‖z‖

?
≤ β · τ, Ψ(Φc(z)) ?=∑k−1

i=1 c
i−1Ai + ck−1 ·X +∑k−1

i=1 c
k+i−1 ·Ak+i−1

then 
1 1 . . . 1
c1 c2 . . . c2k−1
c2

1 c2
2 . . . c2

2k−1
...

...
...

c2k−2
1 c2k−2

2 . . . c2k−2
2k−1





a1
a2
...
...

a2k−1

 = c̃



0
...
1
...
0

 .

Let a ∈ R such that a · c̃ = ζ2k2−3k+1. (Note that such an a exist, because c̃ is the product of
(2k−1

2
)

=
2k2 − 3k + 1 elements in C, and C is a ζ-exceptional subset of R.) Let us now define

x̄ = a ·
2k−1∑
i=1

ai · Φci(zi) ∈M.

It is easily seen that Ψ(x̄) = ζ2k2−3k+1 ·X and that

‖x̄‖ ≤ w̄M (C, ζ)2k2−3k+1 ·
2k−1∑
i=1

(2wM (C))(
2k−2

2 )−(2k−2) ·
(

2k − 2
k − 1

)
· wM (C)k−1 · τ ′ · ‖zi‖,

≤ w̄M (C, ζ)2k2−3k+1 · 2k · (2e)k−1 · (2wM (C))2k2−5k+3 · wM (C)k−1 · τ ′ · β · τ,

≤ w̄M (C, ζ)2k2−3k+1 · (2w(C))2k2
· τ ′ · β · τ,

(11)

which completes the proof.

A.3 Instantiating Extractable Compression Functions
Example 2 ([AC20]). Let M = Rn, M ′ = Rn/k. Then we can define

Compc((x1, . . . , xk)) =
k∑
i=1

ci−1xi
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and
Φc(z) = (ck−1 · z, ck−2 · z, . . . , cz, z).

If we choose the infinity norm ‖·‖∞ on R and we have w(C) ≥ 1, then we obtain that (Comp, Φ) is
(
∑k−1
i=0 w(C)i, w(C)k−1)-norm preserving.
More generally, if we choose the norm ‖·‖p for p ∈ N ∪ {∞}, then we obtain that (Comp, Φ) is

(
∑k−1
i=0 w(C)i,

∑k−1
i=0 w(C)i)-norm preserving.

The corresponding projection maps can be defined as follows: Let

f(x) = (0, . . . , 0, x1, . . . , xn−n/k)

and
g(x) = (xn/k+1, . . . , xn, 0, . . . , 0)

Then, πi = fk−i, πk+i−1 = gi for i ∈ [k − 1].

In the following we show that we can generalize this instantiation. Note that we are not aware of any
instantiation of f and g that would give an actual efficiency improvement over the choice of f and g above,
the abstraction in the following theorem should therefore be viewed as mostly interesting from a theoretical
view point.

Proposition 1. Let k, n ∈ N and let M be an n-dimensional R-module and let C ⊂ R be subset of R.
Suppose f, g ∈ End(M) are such that

1. fk = gk = 0,
2. for all ` ∈ [k − 1] : f ` ◦ g` + gk−` ◦ fk−` = Id.

Let M ′ = gk−1(M). Then, dimRM ′ = n/k and we can obtain a compression function by setting

Compc(x) = gk−1(Fc(x))

and
Φc(z) = Fc(z),

where Fc =
∑k
i=1 c

i−1 · fk−i.

We split the proof of the proposition into a number of intermediary lemmas.

Lemma 8. Let k, n ∈ N and let M be an n-dimensional R-module. Suppose f, g ∈ End(M) are such that

1. fk = gk = 0,
2. for all ` ∈ [k − 1] : f ` ◦ g` + gk−` ◦ fk−` = Id.

Then, it holds that dimR
(
gk−1(M)

)
= n/k.

Proof. By 1. it follows dimR
(
gk−1(M)

)
≤ n/k. By 2. we have fk−1 ◦ gk−1 + g ◦ f = Id and thus

dimR
(
gk−1(M)

)
+ dimR (g(M)) ≥ n. As by 1. we also have dimR (g(M)) ≤ n − n/k, the required fol-

lows.

Lemma 9. Let k, n ∈ N and let M be an n-dimensional R-module. Let f, g ∈ End(M) such that

1. fk = gk = 0,
2. for all ` ∈ [k − 1] : f ` ◦ g` + gk−` ◦ fk−` = Id.

Then, for all ` ∈ [k] :
f ` ◦ g` ◦ f ` = f `.
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Proof. For any ` ∈ [k] we have

f `
2.= f ` ◦ (g` ◦ f ` + fk−` ◦ gk−`) 1.= f ` ◦ g` ◦ f `.

Lemma 10. Let k, n ∈ N and let M be an n-dimensional R-module. Suppose f, g ∈ End(M) are such that
1. fk = gk = 0,
2. for all ` ∈ [k − 1] : f `g` + gk−`fk−` = 1.

Let Fc :=
∑k
i=1 c

i−1 · fk−i. Then, for all c ∈ R, x ∈M we have

Fc(gk−1(Fc(x))) =
k−1∑
i=1

ci−1 · fk−i(x) + ck−1 · x+
k−1∑
i=1

ck+i−1 · gi(x).

Proof. We start by rewriting the left-hand side of the equation as follows:

Fc ◦ gk−1 ◦ Fc =
k∑
j=1

cj−1 · fk−j ◦ gk−1 ◦

(
k∑
i=1

ci−1 · fk−i
)
,

=
k∑
j=1

k∑
i=1

ci+j−2 · fk−j ◦ gk−1 ◦ fk−i,

=
2k−1∑
`=1

c`−1 ·
∑

i+j=`+1,1≤i,j≤k
fk−j ◦ gk−1 ◦ fk−i︸ ︷︷ ︸
t`:=

,

=
k−1∑
`=1

c`−1 · t` + ck−1 · tk +
k−1∑
`=1

ck+`−1 · tk+`.

In order to prove the lemma it is therefore left to show the following:
i.) t` = fk−` for ` ∈ [k − 1],
ii.) tk = Id,
iii.) t`+k = g` for ` ∈ [k − 1].

We first consider the first two cases, i.e, t` for ` ≤ k. We have

t` =
∑

i+j=`+1,1≤i,j≤k
fk−j ◦ gk−1 ◦ fk−i,

=
`−1∑
i=0

fk−`+i ◦ gk−1 ◦ fk−i−1,

=
`−1∑
i=0

fk−`+i ◦ gi ◦ gk−i−1 ◦ fk−i−1,

2.=
`−1∑
i=0

fk−`+i ◦ gi ◦ (1− f i+1 ◦ gi+1),

Lem. 9=
`−1∑
i=0

fk−`+i ◦ gi − fk−`+i+1 ◦ gi+1,

= fk−` ◦ g0 − fk ◦ g`,
1.= fk−`.
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It is left to consider the last case tk+` for ` ∈ [k − 1]. Here, it holds

tk+` =
∑

i+j=k+`+1,1≤i,j≤k
fk−j ◦ gk−1 ◦ fk−i,

=
k−1∑
i=`

f−`+1 ◦ gk−1 ◦ fk−i−1,

2.=
k−1∑
i=`

f−`+i ◦ gi(1− f i+1 ◦ gi+1),

=
k−1∑
i=`

f−`+i ◦ gi − f−`+i ◦ g−`+i ◦ g` ◦ f ` ◦ f−`+i+1 ◦ gi+1,

2.=
k−1∑
i=`

f−`+i ◦ gi − f−`+i ◦ g−`+i(1− fk−` ◦ gk−`) ◦ f−`+i+1 ◦ gi+1,

2.=
k−1∑
i=`

f−`+i ◦ gi − f−`+i+1 ◦ gi+1 + fk−` ◦ gk−`f−`+i+1 ◦ g−`+i+1 ◦ g`,

2.=
k−1∑
i=`

f−`+i ◦ gi − f−`+i+1 ◦ gi+1 + fk−` ◦ gk,

1.=
k−1∑
i=`

f−`+i ◦ gi − f−`+i+1 ◦ gi+1,

= f0 ◦ g` − fk−` ◦ gk,
1.= g`,

as required. This concludes the proof.

B Composition of Σ-Protocols

In order to deal with the issues arriving when composing protocols which introduce soundness slack, we
separate between the relation for which the honest prover knows a witness in the end of the protocol
execution, and the relation for which one can extract a witness via the special soundness.

Definition 19 (Transforming Protocol). Let R be a ring and letM,N, M̃ be R-modules, and Ψ : M → N
an R-module homomorphism. Let Π be a (2µ + 1)-move public-coin protocol with challenge space C ⊆ R.
Let [Ψ ′] = {Ψ ′c : M̃ → N | c ∈ Cµ} be an ensemble of R-module homomorphisms. Further, let β, σ ∈ R>0 and
Υ ∈ R.

We say a protocol Π transforms relation R(Ψ, α) into R([Ψ ′], β) and is (k1, . . . , kµ)-special sound with
extraction slack (σ, Υ ), if the following holds:

1. A pair of honest prover and verifier (P,V) holding (Y ; y) ∈ R(Ψ, α), will hold some output (X;x) with
(X;x) ∈ R(Ψ ′c, β) at the end of an execution of Π with challenges c, where x is the last message of the
protocol.

2. The verifier accepts if and only if indeed (X;x) ∈ R(Ψ ′c, β).
3. For any β′ ∈ R>0, Υ ′ ∈ R, given an (k1, . . . , kµ)-tree of accepting transcripts with corresponding outputs

(Xi;xi) ∈ R(Ψ ′ci , β
′, Υ ′),

it is possible to extract a witness ỹ such that

(Y ; ỹ) ∈ R(Ψ, σ · β′, Υ · Υ ′).
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Lemma 11. If Π is a (2µ + 1)-move protocol transforming relation R(Ψ, α) into R([Ψ ′], β) and is
(k1, . . . , kµ)-special sound with extraction slack (σ, Υ ), then Π is 2µ + 1-move protocol for relations
(R(Ψ, α), R(Ψ, β · σ, Υ )) that satisfies perfect completeness and (k1, . . . , kµ)-special soundness.

Proof. Perfect completeness follows from the first and second property of a transforming protocol. Further,
by the second property of a transforming protocol, at the end of each accepting transcript the verifier will
hold a tuple (X;x) ∈ R(Ψ ′c, β) = R(Ψ ′c, β, 1). Now, given a (k1, . . . , kµ)-tree of accepting transcripts with
corresponding outputs (Xi;xi) ∈ R(Ψ ′c, β, 1), by the third property of a transforming protocol, we can extract
a witness ỹ such that (Y ; ỹ) ∈ R(Ψ, β · σ, Υ ). This concludes the proof.

Lemma 12. Let all variables be as defined in Theorem 4. Let [Ψ ′] = {Ψc = Ψ : M → N | c ∈ C} (i.e., the
constant ensemble of functions Ψ). Then, protocol Π0 (as defined in Protocol 1) is a protocol transforming
relation R(Ψ, α) into R([Ψ ′], β) that is is 2-special sound with extraction slack (2w̄M (C, ζ), ζ).

Proof. Protocol Π0 (as defined in Protocol 1) transforms a statement Y (with (Y ; y) ∈ R(Ψ, α)) into a
statement X = W + cY , where W is the first message of the prover and c is the challenge. By definition, the
verifier accepts if and only if for the second prover’s message x it holds ‖x‖ ≤ β and Ψ(x) = W + cY , i.e., if
and only if (X;x) ∈ R(Ψ, β) as required.

It is left to show extractability. Let Υ ′ ∈ R and β′ ∈ R>0 be arbitrary. Assume to be given c 6= c′ ∈ C
and tuples (X = W + cY ;x) and (X ′ = W + c′Y ;x′) such that ‖x‖, ‖x′‖ ≤ β′ and Ψ(x) = Υ ′ · (W + cY ) and
Ψ(x) = Υ ′ · (W + c′Y ).

Let a ∈ R such that a(c − c′) = ζ. (Such an a exists, because C is assumed to be a ζ-exceptional
subspace of R.) Let ỹ = a(x− x′). Then we have ‖ỹ‖ ≤ w̄(C, ζ)(‖x‖ − ‖x′‖) ≤ 2w̄(C, ζ)β′. Further, we have
Ψ(ỹ) = Ψ(a(x− x′)) = a · Υ ′ · (c− c′)Y = ζ · Υ ′ · Y , which concludes the proof.

Lemma 13. Let all variables be as defined in Theorem 5. Let [Ψ ′] = {Ψ ′c = Ψ ◦Φc : M ′ → N | c ∈ C}. Then,
protocol Π1 (as defined in Protocol 2) is a protocol transforming relation R(Ψ, β) into relation R([Ψ ′], β · τ)
which is 3-special sound with extraction slack (σ′, ζ3), where σ′ = 6τ ′wM (C)2w̄M (C, ζ)3.

Proof. Protocol Π1 (as defined in Protocol 2) transforms a statement X (with (X;x) ∈ R(Ψ, β)) into a
statement Z = A + cX + c2B, where A,B are as defined by the first message of the prover and c is the
challenge. By definition, the verifier accepts if and only if for the second prover’s message z it holds ‖z‖ ≤ β ·τ
and Ψ(Φc(z)) = A+ cX + c2B, i.e., if and only if (Z; z) ∈ R(Ψ ◦ Φc, β · τ) as required.

It is left to show extractability. Let Υ ′ ∈ R and β′ ∈ R>0 be arbitrary. Assume to be given pairwise
distinct challenges c1, c2, c3 ∈ C and pairs (Z1 = A + c1X + c2

1B; z1), (Z2 = A + c2X + c2
2B; z2) and

(Z3 = A+c3X+c2
3B; z3) such that ‖z1‖, ‖z2‖, ‖z3‖ ≤ β′ and Ψ(Φc1(z1)) = Υ ′ ·(A+c1X+c2

1B), Ψ(Φc2(z1)) =
Υ ′ · (A+ c2X + c2

2B) and Ψ(Φc3(z1)) = Υ ′ · (A+ c3X + c2
3B).

Let
(a1, a2, a3) =

(
c2

3 − c2
2, c

2
1 − c2

3, c
2
2 − c2

1
)
.

Then,  1 1 1
c1 c2 c3
c2

1 c
2
2 c

2
3

a1
a2
a3

 = c̃

0
1
0

 ,

where c̃ = (c1 − c2)(c1 − c3)(c2 − c3) ∈ R∗.
Let a such that a · c̃ = ζ3 (such an a exits because C is ζ-exceptional) and let

x̃ = a ·
3∑
i=1

ai · Φci(zi) ∈M.

Then, we have

Ψ(x̃) = a ·
3∑
i=1

ai · Ψ(Φci(zi)) = a ·
3∑
i=1

ai(A+ ciX + c2
iB) = a · Υ ′ · (0 ·A+ c̃ ·X + 0 ·B) = ζ3 · Υ ′ ·X.
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Further, we have

‖x̄‖ ≤ w̄M (C, ζ)3 ·
3∑
i=1

2 · wM (C)2 · τ ′ · ‖zi‖ ≤ 6 · w̄M (C, ζ)3 · wM (C)2 · τ ′ · β′ = β′ · σ′,

where σ′ = 6τ ′wM (C)2w̄M (C, ζ)3. This concludes the proof.

Definition 20 (Composition of Transforming Protocols). Let R be a ring and let M,N, M̃, M̃ ′ be
R-modules, and Ψ : M → N an R-module homomorphism. Let C ⊆ R. Let [Ψ ′] = {Ψ ′c : M̃ → N | c ∈ C`},
and for each c ∈ C` let [Ψ ′′c ] = {Ψ ′c,c′ : M̃ ′ → N | c ∈ C`′} be ensembles of R-module homomorphisms.

Let Π be an (2` + 1)-move public-coin protocol that transforms relation R(Ψ, a) into R([Ψ ′], β) and is
(k1, . . . , k`)-special sound with extraction slack (σ, Υ ). For each c ∈ C`, let Π ′c be a (2`′+1)-move public-coin
protocol that transforms relations R(Ψ ′c, β) into relation R([Ψ ′′c ], γ) and is (k′1, . . . , k′`′) sound with extraction
slack (σ′, Υ ′).

Then we define the composition Π � Π ′ of Π and Π ′ = {Πc | c ∈ C`} as the protocol that is obtained
by first running Π on input (Y ; y) and Y , and then instead of sending the last message x, running Π ′c on
(X;x) and X, where c ∈ C̃` are the ` challenges of the first run.

Theorem 7 (Composition Theorem). Let all parameters as defined in Definition 20.
Then, Π � Π ′ is a protocol that transforms relation R(Ψ, α) into relation R([Ψ ′′], γ) and is

(k1, . . . , k`, k
′
1, . . . , k

′
`′) sound with extraction slack (σ · σ′, Υ · Υ ′).

Further, if Π satisfies (non-abort) special honest verifier zero-knowledge, then so does Π �Π ′.

Proof. Transforming Protocol. First, we have to show that the protocol Π �Π ′ indeed satisfies all three
required properties of a transforming protocol. It is easy to see that the first and second property indeed
hold: Let c ∈ C` and c′ ∈ C`′ be the challenges sampled by the verifier. If (P, V ) in the beginning hold (Y ; y)
and y with (Y ; y) ∈ R(Ψ, α), then after running Π the parties hold (X;x) and X with (X;x) ∈ R(Ψ ′c, β).
Therefore, after running Π ′c′ on (X;x) and x, the parties obtain (X ′;x′) ∈ R(Ψ ′′(c,c′), γ), as required. Further,
as V will accept the final message if and only if indeed (X ′;x′) ∈ R(Ψ ′′(c,c′), γ), the second property follows.

Extractability. Assume to be given a (k1, . . . , k`, k
′
1, . . . , k

′
`′)-tree of accepting transcripts, i.e., where

the leafs correspond to outputs (X ′i,j ;x′i,j) ∈ R(Ψ ′′(ci,c′i,j), γ) (for i ∈ [
∏`
ι=1 kι], j ∈ [

∏`′

ι=1 k
′
ι]). Then, by the

extractability of Π ′ for each i one can extract an output (Xi;xi) ∈ R(Ψ ′ci , σ
′ · γ, Υ ′) corresponding to a leaf

in the subtree tree of (k1, . . . , k`)-accepting transcript. Now, by the extractability of Π, we can extract an
output (X;x) ∈ R(Ψ ′ci , σ · σ

′ · γ, Υ · Υ ′), as required.
SHVZK. We can simulate a transcript for Π ◦ Π ′ as follows: First, the simulator uses the simulator

of Π to simulate the first half of the transcript. If the protocol does not abort, by the first property of
the protocol this implies that the simulator successfully produced (X;x) with (X;x) ∈ R(Ψ ′c, β) (with
distribution statistically close to an honest execution). Instead of setting x to be the last message of the
protocol, the simulator can now proceed like an honest prover with input (X;x) to simulate Π ′c. Obviously,
if the first part of the protocol is statistically close to an honest execution, so is the second. This concludes
the proof.

C Lattice-Based Circuit Satisfiability Argument

In this section, we first give the complete description of the linearization approach presented in Section 7.2.
This protocol allows a prover to prove knowledge of a secret vector x ∈ Rnp such that C(x) = 0. The
resulting protocol uses compressed Σ-protocol Λcomp(η) in a black-box manner. Subsequently, we describe
the adaptations required when the largest exceptional subset of Rp is “too small”.
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C.1 Protocol Description

The linearization approach, denoted by Λcs(η), is described in Protocol 4. Its properties are summarized
in Theorem 8. As before, η ∈ N is a parameter allowing for a trade-off between the completeness error and
the communication complexity. In this circuit satisfiability argument it is crucial that the approximation
factor ζ is invertible in Rp.

Theorem 8 (Rp-Circuit Satisfiability Argument). Let n, r,m, µ, η ∈ N such that n+ r+ 2m+ 3 = 2µ
and let p, q ∈ N be primes. Let R = Z[X]/f(X) for a monic and irreducible polynomial f(X) ∈ Z[X] of
degree d. Further, let ζ ∈ R such that ζ ∈ R∗p and let C be a ζ-exceptional subset of R. Let Com : Rnp ×Rrp →
Rkq , (x, γ) 7→ A1γ + A2x be the commitment scheme form Definition 13. Then Λcs(η) is a (2µ + 5)-move
protocol for relation

Rcs = {(C; x) : C : Rnp → Rp a circuit with m multiplication gates, C(x) = 0}.

It is computationally (2m+1, 2, 3, . . . , 3)-special sound, under the assumption that the commitment scheme
is binding (with respect to relaxed openings), non-abort special honest-verifier zero-knowledge and complete
with completeness error

δ ≤ 1− e−
w(C)p(n+r+2m+3)d

2η+1 .

Moreover, the communication costs are:

– P → V: 2µ+ 2 elements of Rkq , 2µ+ 4 elements of Rp and 1 element of R.
– V → P: µ+ 2 elements of C.

Protocol 4 Rp-Circuit satisfiability argument Λcs(η) for the relation Rcs
The polynomials F and G are sampled uniformly at random such that their evaluations in s1, . . . , sm ∈ Sp ⊂
Rp coincide with the left and, respectively, right inputs of the m multiplication gates of C evaluated at x.

Input(C; x)
C : Rnp → Rp
C(x) = 0

Prover Verifier
F,G←R Rp[Z]≤m
H(Z) := G(Z)G(Z)

y = (x, F (s0), G(s0), H(s0),
H(s1), . . . , H(s2m))

γ ←R Rrp
P = Com(y, γ) P−−−−−−−−−−−−−−→

ρ←R Sp \ {s1, . . . , sm}
z1 = F (c) ρ←−−−−−−−−−−−−−−
z2 = G(c)
z3 = H(c) z1,z2,z3−−−−−−−−−−−−−−→

z3
?= z1z2

Run Λcomp (η) to show that

C(x) = 0, F (ρ) = z1, G(ρ) = z2, H(ρ) = z3

43



C.2 Handling Small Primes when Proving Non-Linear Relations

In Section 7, it was shown how to prove that committed vectors with coefficients in Rp = Z[X]/(p, f(X))
satisfy non-linear constraints. However, this approach requires that pD is “large enough”, where D is the
minimum of the degrees of the irreducible factors of f(X) modulo p. More precisely, we require 2m/(pD−m)
to be in the same order of magnitude as the knowledge error of compressed Σ-protocol Λcomp. In this section
we consider the case that pD is too small, e.g., pD ≤ 3m. In this case the linearization approach of Section 7
does not work. We show how to handle this scenario by applying Shamir’s secret sharing scheme over an
appropriate ring extension.

Let g(Y ) ∈ R[Y ] be a polynomial of degree k that is irreducible modulo p and let R′ = R[Y ]/(g(Y ))
be a degree k ring extension of R. Then it is easily seen that the largest exceptional subset S ′p of R′p has
cardinality pkD. Let us write S ′p = {s′0, . . . , s′pkD−1}. The linearization approach is adapted by defining the
packed secret sharings over the ring extension R′p instead of over Rp.

Let us first introduce some notation. For a vector x = (x1, . . . , xk+m) ∈ Rk+m
p , we let Fx(Z) ∈ R′p[Z] be

the unique polynomial of degree at most m that satisfies F (s′0) =
∑k
i=1 xiY

i−1 ∈ R′p and F (s′j) = xj+k ∈ R′p
for all 1 ≤ j ≤ m. Since the set S ′p is exceptional, this polynomial is well-defined. Moreover, by Lagrange
interpolation the following map is Rp-linear

L1 : Rk+m
p → R′p[Z], x 7→ Fx(Z).

Furthermore, for a polynomial F (Z) ∈ R′p[Z] evaluated in ρ ∈ R′p, we write F (ρ) =
∑k
i=1 Fi(ρ)Y i−1 with

Fi(ρ) ∈ Rp for all 1 ≤ i ≤ k.
We continue to describe the linearization approach over the ring extension R′p. As before, let a(x),b(x) ∈

Rmp be the vectors of left and right input values of the m multiplication of the circuit C : Rnp → Rp evaluated
in x ∈ Rnp . Similarly, let c(x) ∈ Rmp represent the values of the output wires of the multiplication gates. The
generalized linearization strategy now goes as follows. The prover samples r1 =

∑k
i=1 r1,iY

i−1 ∈ R′p and
r2 =

∑k
i=1 r2,iY

i−1 ∈ R′p uniformly at random, and defines the polynomials

F (Z) = L1(r1,1, . . . , r1,k,a(x)) ∈ R′p[Z],
G(Z) = L1(r2,1, . . . , r2,k,b(x)) ∈ R′p[Z].

As before, F (Z) and G(Z) define packed secret sharings of a and b with 1-privacy, but now over the ring
extension R′p. Note that, this approach guarantees the secret vectors a(x) and b(x) to have coefficients in
the base ring Rp. Only the random elements r1 and r2 are not necessarily contained in Rp.

Subsequently, the prover defines the product polynomial H(Z) = F (Z)G(Z) ∈ R′p[Z] of degree at most
2m. As before, it follows that H(s′i) = c(x)i ∈ Rp for all 1 ≤ i ≤ m. Then, the prover commits to the vector

y = (x, c, F1(s′0), . . . ,Hk(s′0), H1(s′m+1), . . . ,Hk(s′2m)) ∈ Rn+(k+1)m+3k
p .

Since the mapping L1 is linear, it is easily seen that for any ρ ∈ R′p there exist linear mappings
LF (ρ), LG(ρ), LH(ρ) : Rn+(k+1)m+3k

p → Rkp such that

F (ρ) =
k∑
i=1

LF (ρ)(y)Y i−1,

G(ρ) =
k∑
i=1

LG(ρ)(y)Y i−1,

H(ρ) =
k∑
i=1

LH(ρ)(y)Y i−1.
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By a black-box application of compressed Σ-protocol Λcomp and given a commitment to y, the prover
opens F (ρ), G(ρ) and H(ρ) for an evaluation point ρ ∈ S ′p \ {s′1, . . . , s′m} sampled uniformly at random by
the verifier. The verifier checks that H(ρ) = F (ρ)G(ρ). For a dishonest prover, this verification succeeds
with probability at most 2m/(pkD −m). Hence, by choosing the degree k of the ring extension R′p/Rp large
enough the success probability of a dishonest prover can be made arbitrarily small.
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