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Abstract. Gohr has proposed the only deep learning-based distinguisher
model at Crypto 2019, which is used to distinguish reduced Speck32/64
and a pseudorandom permutation. This distinguisher model can be ap-
plied to many symmetric ciphers. Given a plaintext differential, Gohr’s
distinguisher model can learn differences between two distributions from
adequate single ciphertext pairs.
In this paper, we propose a new neural distinguisher model which takes
k > 2 ciphertext pairs as the analysis object. A non-uniform distribution
can produce many derived features that will not appear in a single ci-
phertext pair. Our neural distinguisher model can exploit these derived
features from k ciphertext pairs. Taking Gohr’s distinguisher model as
the baseline model, we firstly construct strong baseline distinguishers
for five reduced ciphers. Then our neural distinguishers for five ciphers
are also constructed using the new distinguisher model proposed in this
paper. Experiments show our neural distinguishers can always obtain
distinguishing accuracy promotions under various settings of k. When
combining k samples incorrectly classified by baseline distinguishers into
one group, our neural distinguishers can still distinguish correctly with
a non-negligible probability. It indicates that derived features have been
successfully captured by our neural distinguishers. The distinguishing
accuracy promotion also comes from derived features. Our neural distin-
guishers can also be used to improve the key recovery attack on 11-round
Specck32/64.
Besides, compared with the raw attack scheme provided by Gohr, we
propose a new key recovery attack scheme which can further reduce the
time complexity.

Keywords: Neural distinguisher · Differential cryptanalysis · Deep learn-
ing · Data reuse

1 Introduction

Target of this paper. In the field of cryptanalysis, neural distinguisher is a
newly introduced deep learning-based tool [12]. Given a specific plaintext differ-
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ential α and a target cipher Enckey(P ), if (C1, C2) = (Enckey(P ), Enckey(P⊕α))
obey nonuniform distribution on some features such as the differential, a well
trained neural network can distinguish this distribution from the uniform distri-
bution. The neural network can be used as a neural distinguisher.

Except for the differential feature, neural distinguisher can capture some
unknown features of the ciphertext pair, which has been proved in [12]. It ensures
that neural distinguishers are more powerful than pure differential distinguisher
under the same number of rounds. As a deep learning based distinguisher, its
distinguishing accuracy plays a vital role in attacks on a cipher [12]. Therefore,
improving the performance of neural distinguishers is an important topic in deep
learning based cryptanalysis.

In this paper, our target is to propose a new neural distinguisher model which
can also be applied to any symmetric ciphers. It’s expected that neural distin-
guishers based on our distinguisher model can always obtain better performance
than baseline distinguishers.

Inspiration from existed differential cryptanalysis and artificial in-
telligence community. In the last decades, various distinguishers such as
single differential distinguisher [5], linear distinguisher [22] are proposed to ana-
lyze the security bound of ciphers. All these distinguishers are based on a specific
analysis unit and a certain feature. For example, a ciphertext pair is the analysis
unit and differential is the feature for the single differential distinguisher.

In order to enhance the capability of these basic distinguishers, derived fea-
tures of the distribution of the chosen feature can be exploited to design novel
distinguishers. Multiple differential distinguisher [29], truncated differential dis-
tinguisher[26], high order differential distinguisher [20] are all the representatives
that exploit features derived from multiple samples drawn from the same differ-
ential distribution.

Such a strategy above can also be applied to the neural distinguisher. Al-
though features learned by the neural distinguisher are unknown, we are sure
that derived features can be obtained from the nonrandomness of these features.
Here a simplified example can well explain our opinion. Take the differential
between a ciphertext pair β = C0 ⊕ C1 as an example. Denote the differential
distribution resulted from a cipher as the target distribution, a uniform distri-
bution is the reference distribution.

Assuming that the target distribution is a Gaussian distribution as Figure 1
shows, there are some derived features that don’t arise in a single sample. The
average distance of two randomly generated samples is representative:{

dp = |βp1 − β
p
2 |

dn = |βn1 − βn2 |
(1)

where βp1 , βp2 , βn1 , βn2 are random samples from two distributions. It’s expected
that dp < dn. Similar derived features can be captured by the neural network,
which are very useful for helping classification. The extreme scenario is that
even k samples are all wrongly classified based on features of a ciphertext pair,
we can recognize the right distribution with the help of derived features from k
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Fig. 1. Pp (β) is the target difference probability distribution which is a Gaussian
distribution. Pn (β) is reference difference probability distribution which is a uniform
distribution. dp stands for the distance between two random samples βp

1 , βp
2 . dn stands

for the distance between two random samples βn
1 , βn

2 .

samples. This is verified through two tests denoted as False Positive Test and
False Negative Test, which are proposed in Section 3.2.

Deep learning has been applied to various fields, such as computer vision
[17][19], natural language processing [4][25], and health medical [8][10]. An im-
portant target of these topics is promoting the performance of neural networks.
Providing more features that are related to the task is one of the most powerful
methods to achieve this target.

For example, depth map estimation [21] is a regression problem, which aims
to estimate the true distance of the object to the camera from the image. Except
for raw color images, related features such as traditional stereo knowledge [30],
motion features [23] are extracted and fed into the neural network together.
Action recognition [28] is a classification problem, which needs to recognize what
action the actor is performing from images or videos. Similarly, extra depth maps
[31] or abstract representations [9] of postures are input to neural networks
together.

The same mechanism behind various methods above is adjusting the input
to the neural networks. If there are more derived features that are related to the
task, neural networks usually can successfully capture them for promoting the
performance significantly. Our new neural distinguisher model is also based on
this common property.

Our contributions. Proposing a new neural distinguisher model that can
always obtain performance promotion compared to Gohr’s distinguisher model
is the main contribution of this paper. According to the introduction of related
research about traditional differential cryptanalysis, derived features can be gen-
erated from k ciphertext pairs as long as the distribution of a ciphertext pair
isn’t a uniform distribution. Research in the artificial intelligence community also
proves that neural networks are likely to learn extra features from k samples.
Thus our new neural distinguisher model aims at exploiting derived features
from k ciphertext pairs. Our work in this paper contains the following aspects:

Propose a new neural distinguisher model and construct neural
distinguishers for five reduced symmetric ciphers. Taking Gohr’s dis-
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tinguisher model[12] as the strong baseline, we have constructed neural dis-
tinguishers for five reduced symmetric ciphers using the baseline and our new
distinguisher model respectively. Experiments show that our new neural distin-
guishers can always promote the distinguishing accuracy under various settings
of the group size k.

Design false negative test and false positive test. In order to figure
out whether derived features have been captured by our neural distinguishers,
we have designed false negative test and false positive test. We focus on samples
that are wrongly classified by baseline distinguishers. By taking k false nega-
tive or false positive samples as a group, we can observe whether our new neural
distinguishers can correctly classify these samples with a non-negligible probabil-
ity. Experiments show that our neural distinguishers have successfully captured
derived features, which result in the distinguishing accuracy promotion.

Perform key recovery attacks on 11-round Speck32/64. With the
help of a data reuse strategy proposed in Section 5, we have performed the same
key recovery attack on 11-round Speck32/64 in [12] using our neural distinguish-
ers. A success rate of 54.4% that is higher than 52% in [12] is obtained. In fact,
if the distinguishing accuracy is greatly promoted, the complexity of key search
cal also be reduced.

Except for these works, We also find an output signal clustering phenomenon
that is widespread in deep learning based distinguishers. It can directly visualize
the ability of neural distinguishers to distinguish the correct key from the wrong
keys. We have applied it to neural distinguishers for reduced Speck32/64. Be-
sides, we propose a new key recovery attack scheme based on this phenomenon.
It can further reduce the time complexity of the attack.

Organization. In section 2 and section 3, the overviews of the baseline
model and our new distinguisher model are given respectively. In section 4, neural
distinguishers for five symmetric ciphers are constructed using two distinguisher
models. False positive tests and false negative tests are also performed. In section
5, a data reuse strategy for reducing data complexity is proposed. In section 6,
we first describe the output signal clustering phenomenon. Then key recovery
attacks on 11-round Speck32/64 using two attack schemes are given.

2 Notations and overview of Gohr’s Distinguisher Model

To make it easier to read this paper, we first list the major notations. Then an
overview of Gohr’s distinguisher model proposed in [12] is given.
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2.1 Notations

P,C,X Plaintext, Ciphertext, A ciphertext pair
Even there is a subscript, the meaning doesn’t change

α Plaintext differential
N,M The number of ciphertext pairs
BD Baseline distinguishers built using Gohr’s distinguisher model
NDk=? Our new neural distinguishers. The group size is k =?
Z The output of a neural distinguisher
ci The key rank score threshold of the ith round for key recovery
R The number of reduced rounds

2.2 overview of Gohr’s Distinguisher Model

Given a plaintext pair (P1, P2) and a target cipher, the resulting ciphertext pair
(C1, C2) is regarded as a sample. Each sample will be attached a label Y :

Y (C1, C2) =

{
1, if P1 ⊕ P2 = α
0, if P1 ⊕ P2 6= α

(2)

If Y is 1, it means this sample is sampled from the target distribution. If Y is 0,
it means this sample is sampled from a uniform distribution. For convenience, a
sample with label 1 is named a positive sample. Otherwise, we call it a negative
sample. A neural network is trained over enough positive and negative samples.
If the neural network can obtain a stable distinguishing accuracy higher than 0.5
on a testing set, we say this cipher is not a pseudorandom function. The neural
network can be used as a powerful neural distinguisher. Using the model above,
Gohr has obtained distinguishers on Speck32/64 reduced to 5/6/7 rounds.

There is only one neuron in the output layer. And its output is regarded
as the posterior probability that the ciphertext pair is drawn from the target
distribution. Thus, Gohr’s neural distinguisher model can be described as

Pr (Y = 1 |X ) = F1 (f (X))
X = (C1, C2)

Pr (Y = 1 |X ) ∈ [0, 1]
(3)

where f (X) stands for features captured from the ciphertext pair X, and F1 (·)
is the posterior probability estimation function. It’s worth noticing that only
basic features of a single ciphertext pair are exploited in Gohr’s model. In this
paper, we take Gohr’s model as a strong baseline model. Neural distinguishers
built using the baseline model are used as baseline distinguishers, which can help
assess our new neural distinguisher model.

3 Our Neural Distinguisher Model

In this section, our new neural distinguisher model is described firstly. Then
false negative test and false positive test are designed for the model verification.
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At last, the architecture of the neural network for implementing our neural dis-
tinguisher model is introduced. Parameters of this architecture can be adjusted
adaptively.

3.1 New Distinguisher Model

Our new distinguisher model takes a ciphertext group consisting of multiple
ciphertext pairs as the input, which can be described as:

Pr (Y = 1 |X1, · · · , Xk ) = F2 (f (X1) , · · · , f (Xk) , ϕ (f (X1) , · · · , f (Xk)))
Xi = (Ci,1, Ci,2) , i ∈ [1, k]

Pr (Y = 1 |X1, · · · , Xk ) ∈ [0, 1]
(4)

where f (Xi) represents the basic features of a ciphertext pair Xi, ϕ (·) is the
derived features, and F2 (·) is the new posterior probability estimation function.
Derived features from k ciphertext pairs are extracted from the distribution of
basic features.

Neural distinguishers based on our new distinguisher model can be obtained
by following three processes:

1. Data Generation: A ciphertext group consisting of k ciphertext pairs(
Ci1,1, C

i
1,2, · · · , Cik,1, Cik,2

)
is regarded as a sample. Given a plaintext dif-

ferential α, each sample will be attached a label Y according corresponding
plaintexts:

Y =

{
1, if Pj,1 ⊕ Pj,2 = α, j ∈ [1, k]
0, if Pj,1 ⊕ Pj,2 6= α, j ∈ [1, k]

(5)

Similarly, if the label is 1, the ciphertext group is denoted as a positive sam-
ple. Otherwise it’s denoted as a negative sample. A training set is composed
of N

2k positive samples and N
2k negative samples. A testing set is composed

of M
2k positive samples and M

2k negative samples.
2. Training: Train a neural network on the training dataset. If the training

accuracy is not larger than 0.5, choose a different α and start from the data
generation process again. Or save the trained neural network and perform
the testing process.

3. Testing: Test the distinguishing accuracy of the trained neural network on
the testing dataset. If the test accuracy is larger than 0.5, return the neural
network as a successful neural distinguisher. Or choose a different α and
start from the data generation process again.

3.2 Model Verification Tests

In order to verify whether our neural distinguisher based on the new distinguisher
model can learn derived features from k ciphertext pairs. Two auxiliary tests
named as false negative test and false positive test are designed as follows.
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False Negative Test (FNT): If k ciphertext pairs with label 1 are all
wrongly classified by the baseline distinguisher:

p (Y = 1 |X1 ) = F1 (f (X1)) < 0.5
...

p (Y = 1 |Xk ) = F1 (f (Xk)) < 0.5

(6)

such ciphertext pairs are false negative samples. It means that the features of
a single ciphertext pair f (Xi) can’t help correct classification. These k samples
are combined into a ciphertext group and fed into our neural distinguisher. The
output of our distinguisher is:

p (Y = 1 |X1, · · · , Xk ) = F2 (f (X1) , · · · , f (Xk) , ϕ (f (X1) , · · · , f (Xk))) (7)

Generate a large number of such ciphertext groups and feed them to our neural
distinguisher. What we care about is the following pass ratio

F2 (f (X1) , · · · , f (Xk) , ϕ (f (X1) , · · · , f (Xk))) > 0.5 (8)

The classification is totally determined by ϕ (f (X1) , · · · , f (Xk)) now. The
final pass ratio under such a setting can show whether derived features have
been learned and their effects. If our neural distinguisher can obtain a non-
negligible pass ratio, then ϕ (f (X1) , · · · , f (Xk)) can offset the negative influ-
ence of f (Xi) , i ∈ [1, k]. If the pass ratio is high, derived features from k cipher-
text pairs play a vital role in classification for this kind of ciphertext pairs.

False Positive Test (FPT): Similarly, if k ciphertext pairs with label 0
are wrongly classified by the baseline model

p (Y = 1 |X1 ) = F1 (f (X1)) > 0.5
...

p (Y = 1 |Xk ) = F1 (f (Xk)) > 0.5

(9)

such ciphertext pairs are false positive samples. These k samples are combined
into a ciphertext group and fed into our neural distinguisher. Now what we care
about is the following pass ration

F2 (f (X1) , · · · , f (Xk) , ϕ (f (X1) , · · · , f (Xk))) < 0.5 (10)

The pass ratios of FNT and FPT are another two important indicators that
can show the superiority of our distinguisher model. In the following experiments,
the distinguishing accuracy and these two pass ratios are used to assess our
neural distinguishers together.

3.3 Generic Network Architecture

Figure 2 shows the neural network architecture for implementing the new dis-
tinguisher model. The network architecture contains several modules that are
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described in Figure 2. The input consisting of k ciphertext pairs is arranged in a
k×w× 2L

w array. L represents the block size of the target cipher and w is the size
of a basic unit. For example, L is 32 and w is 16 for speck32/64. Based on this
input, the new distinguisher model can be implemented in two parts. First, the
learning of a single ciphertext pair’s basic features is accomplished by module
1. The kernel size is 1 × 1, which can capture basic features efficiently. Second,
the learning of derived features and posterior probability estimation functions
are combined in a part. The two-dimensional filters with a size of Ks ×Ks can
learn derived features from k ciphertext pairs. Such an architecture obeys the
model of our neural distinguisher completely.

Fig. 2. The network architecture of our neural distinguishers. Conv stands for a con-
volution layer with Nf filters. The size of each filter is Ks ×Ks. Module 2 also adopts
the skip connection [13]. FC is a fully-connected layer which has d1 or d2 neurons. BN
is batch normalization. Relu and Sigmoid are two different activation functions. The
output of Sigmoid ranges from 0 to 1.

The number of module 2 is set 1. Such a setting can greatly reduce the
number of neural network parameters. From the perspective of deep learning, it
can limit the neural network’s capability. This allows a fair comparison between
our new distinguisher model and the baseline model.

Training Pipeline: The neural network is trained for Es epochs with a
batch size of Bs. The cyclic learning rate scheme in [12] is adopted. Optimization
is performed against the following loss function:

loss =

N
k∑
i=1

(Yi,p − Yi)2 + λ× ‖W‖ (11)

where Yi,p is the output of the neural distinguisher, Yi is the true label, W is the
parameters of the neural network, and λ is the penalty factor. The Adam algo-
rithm [18] with default parameters in Keras [11] is applied to the optimization.
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4 Neural Distinguishers for Five Reduced Symmetric
Ciphers

The distinguishing accuracy is the most important indicator which reflects the
performance of neural distinguishers. To verify whether our distinguisher model
can achieve performance improvements on as many types of symmetric ciphers
as possible, neural distinguishers for five different ciphers are constructed in this
section. The concrete properties of these ciphers are shown in Table 1.

Table 1. Five tested ciphers in this paper

Ciphers
Nonlinear Components Types

Sbox modulo addition logic operation Block Cipher Hash Mac

Speck X X
Chaskey X X
Present X X

Des X X
Keccak X X

The distribution of a feature such as the differential feature is also mainly af-
fected by nonlinear components. Almost all the non-linear components currently
used in symmetric ciphers are included in Table 1. So this is enough to verify
whether the new distinguisher model is generic and effective.

For a cipher reduced to T rounds, a specific plaintext differential α is set
firstly. Then a training set and a test set are randomly generated. After suffi-
cient training, we will observe the testing accuracy of the obtained new neural
distinguisher. An important parameter related to our neural distinguisher is
the group size k. In subsequent experiments, the group size k has four options
{2, 4, 8, 16}. Other parameters related to the training and network architecture
of our neural distinguisher are posted in Table 2. Baseline distinguishers based
on Gohr’s distinguisher model are constructed with parameters given in [12].

Table 2. Related parameters for constructing neural distinguishers based on our dis-
tinguisher model

Nf d1 d2 Ks Bs

32 64 64 3 500

λ Lr Es N M

10−5 0.02→ 0.001 10 107 106

4.1 Experiments on Speck32/64

Neural distinguishers for reduced Speck32/64: Distinguishers for reduced
speck32/64 [3] built based on the baseline model have been already reported.
Related distinguishing accuracies will be posted directly. In order to assess our
new distinguisher model, new neural distinguishers are also built for Speck32/64
reduced to 5, 6, and 7 rounds respectively.

Let N = 107 and M = 106. The plaintext differential is α = (0x0040, 0)
introduced in [1]. The accuracy comparison is presented on Table 3.
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Table 3. Distinguishing accuracy of neural distinguishers for 5/6/7 rounds speck32/64.

R BD
Our neural distinguishers

NDk=2 NDk=4 NDk=8 NDk=16

5 0.929 0.9738 0.991 0.9992 0.9999

6 0.788 0.8613 0.931 0.9562 0.9802

7 0.616 0.6393 0.6861 0.7074 0.6694

Compared with baseline distinguishers, our neural distinguishers can obtain
significant accuracy promotion despite the value of k. When Speck32/64 is re-
duced to 6 or 5 rounds, the distinguishing accuracy of our distinguishers can be
further promoted by increasing k. This phenomenon will be discussed in later
tests.

Although the distinguishing accuracy comparisons are sufficient to verify
the superior performance of our new distinguishers, we can still have higher
expectations about our neural distinguishers. The number of training samples
for baseline distinguishers is N while it is N

k for our neural distinguishers. Thus
the performance of our neural networks may be likely improved by training on
more ciphertext groups.

False negative/positive test: With the help of baseline distinguishers, 10000×
k false negative and false positive samples are randomly generated respectively.
Then FNT and FPT are performed on 10000 ciphertext groups respectively.
Table 4 has shown corresponding test results.

Table 4. Pass ratios of false negative test and false positive test.

R
False Negative Test False Positive Test

NDk=2 NDk=4 NDk=8 NDk=16 NDk=2 NDk=4 NDk=8 NDk=16

5 0.0112 0.0013 0.0001 0 0.3068 0.6268 0.6748 0.7228

6 0.0331 0.0143 0.0081 0.0048 0.1519 0.1432 0.3723 0.4375

7 0.0511 0.0212 0.0283 0.0917 0.0659 0.0233 0.0157 0.0691

Even if all the k ciphertext pairs are regarded as the opposite class by base-
line distinguishers, our neural distinguishers can correctly classify these false
negative/positive samples with a non-negligible or high probability. It proves
that our neural distinguishers have captured derived features from k ciphertext
pairs. These derived features can offset the negative influence of a single cipher-
text pair’s features.

If the target distribution is very different from the uniform distribution, there
would be more derived features among ciphertext pairs by increasing k. Due
to such an advantage, the distinguishing accuracy of our distinguishers can be
further promoted by increasing the group size k.

Besides, the two tests can provide more information. For example, the success
rate of FPT is far higher than the success rate of FNT when R = 5, 6. Thus
derived features from k ciphertext pairs learned by our neural distinguishers are
mainly helpful for recognizing the uniform distribution.
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4.2 Experiments on Chaskey

Neural distinguishers for reduced Chaskey: Based on the best differen-
tial path searched in [27], baseline distinguishers are built for reduced Chaskey
firstly. Given the plainext difference α = (0x8400, 0x0400, 0, 0), the baseline dis-
tinguisher can distinguish chaskey up to 4 rounds.

Our neural distinguishers are also built for Chaskey reduced to 3, 4 rounds.
All related parameters are the same with Table 2, except for the penalty factor
λ is increased to 10−4. A larger penalty factor can reduce the complexity of the
neural network, which can help obtain a stable distinguisher when the ratio of
sampled data to the entire ciphertext pair space is too small. The distinguishing
accuracy comparisons are presented on Table 5.

Table 5. Distinguishing accuracy of neural distinguishers for 3/4 rounds Chaskey

R BD
Our neural distinguishers

NDk=2 NDk=4 NDk=8 NDk=16

3 0.8608 0.8958 0.9583 0.9887 0.9986

4 0.6161 0.6589 0.6981 0.7603 0.7712

Compared with baseline distinguishers, our neural distinguishers can obtain
much higher accuracy even if the ciphertext group size k is 2. Besides, the dis-
tinguishing accuracy of our neural distinguishers can be further improved by
increasing k.

Speck is a block cipher while Chaskey is a Message Authentication Code
(MAC) algorithm. These two ciphers have the same nonlinear components. Our
neural distinguishers can both achieve the target of promoting distinguishing
accuracy despite the concrete encryption process. Thus it can be inferred that
our distinguisher model can be applied to more symmetric ciphers which are
constructed based on modulo addition.

False negative/positive test: Similarly, 104 × k false negative and false
positive samples are randomly generated first. Table 6 shows the pass ratios of
FNT and FPT on reduced Chaskey.

Table 6. Pass ratios of false negative test and false positive test

R
False Negative Test False Positive Test

NDk=2 NDk=4 NDk=8 NDk=16 NDk=2 NDk=4 NDk=8 NDk=16

3 0.1156 0.0635 0.0373 0.0087 0.4027 0.4032 0.3976 0.4705

4 0.1412 0.1749 0.1481 0.1675 0.8369 0.7439 0.7298 0.5591

Based on these two tests above, our neural distinguishers can correctly clas-
sify these false negative/positive samples with a non-negligible or high proba-
bility. Thus we can obtain the same conclusion which has been proved in tests
for reduced Speck32/64. Our neural distinguishers can successfully capture de-
rived features that can help promote the distinguishing accuracy. Compared with
the baseline distinguisher for Chaskey reduced to 4 rounds, the accuracy of our
neural distinguisher with k = 2 is only a little higher. However, our neural distin-
guisher can obtain 0.8369 and 0.1412 accuracies on two tests respectively. Based
on our test setting, only derived features among k ciphertext pairs can make
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positive influence on the classification. Thus, it further proves the superiority of
our distinguisher model.

If we observe Table 4 and Table 6 at the same time, we can find a similar
property of our neural distinguishers for reduced Speck32/64 and Chaskey. Com-
pared with FNT, our neural distinguisher can both obtain higher accuracy on
FPT. It indicates that the distribution resulting from Speck32/64 is similar to
the distribution resulting from Chaskey. These two symmetric ciphers are both
built on modulo addition which may be the cause of this phenomenon. This
guess can be further verified in the following experiments.

4.3 Experiments on Present64/80

Neural distinguishers for reduced Present64/80: Present [7] is a block
cipher that is based on a 4 × 4 Sbox. Based on the plaintext difference α =
(0, 0, 0, 0x9) provided in [24], we have built baseline distinguishers for Present64/80
reduced up to 7 rounds.

Our neural distinguishers are also built for Present64/80 reduced to 6, 7
rounds respectively. The penalty factor is 10−4 and other related parameters are
the same with Table 2. The distinguishing accuracy comparisons are presented
in Table 7.

Table 7. Distinguishing accuracy of neural distinguishers for 6/7 rounds Present64/80

R BD
Our neural distinguishers

NDk=2 NDk=4 NDk=8 NDk=16

6 0.6584 0.7198 0.7953 0.8308 0.8259

7 0.5486 0.5503 0.5853 0.5786 0.5818

Compared with baseline distinguishers, our neural distinguishers can obtain
distinguishing accuracy promotion under all settings. Additionally, the distribu-
tion resulted from the Present64/80 reduced to 6 rounds is very different from
the uniform distribution, which can be inferred from the distinguishing accuracy.
Then we can obtain high accuracy promotion by directly increasing the value of
k as expected.

The nonlinear component of Present is Sbox, which is different from the mod-
ulo addition. Our neural distinguishers can still achieve the target of accuracy
promotion as long as the distribution resulted from the target cipher is different
from the uniform distribution. This further proves that our distinguisher model
is applicable to symmetric ciphers based on Sbox which the size of the input is
the same with the size of the output.

False negative/positive test: Based on baseline distinguishers, 104× k false
positive and false negative samples are randomly generated. Table 8 shows the
pass ratios of FNT and FPT.

Table 8. Pass ratios of false negative test and false positive test

R
False Negative Test False Positive Test

NDk=2 NDk=4 NDk=8 NDk=16 NDk=2 NDk=4 NDk=8 NDk=16

6 0.0277 0.0097 0.0258 0.0751 0.0147 0.0046 0.0068 0.0183

7 0.1796 0.0587 0.1214 0.1488 0.0533 0.0126 0.0324 0.0302
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The false positive and false negative test confirm the same conclusion, but
also allow us to know more about our neural distinguishers. Our neural dis-
tinguishers have captured derived features from k ciphertext pairs. However,
there is a different phenomenon that doesn’t occur in the same tests for reduced
Speck32/64 and Chaskey. Compared with FPT, our neural distinguishers can
obtain higher accuracy on FNT. Besides, if we look at Table 6 and Table 8 at
the same time, we can find another unusual phenomenon. Compared with the
distribution generated by the T -round cipher, the distribution generated by the
(T + 1)-round cipher is more similar to the uniform distribution. However, our
neural distinguishers can obtain higher accuracy on two tests for the T+1-round
cipher. At last, our neural distinguishers with lower accuracy can obtain higher
accuracy in the false negative test, such as our neural distinguishers with k = 2.

These phenomenons are unusual but totally obey the properties of neural
networks. Since there are no limitations about the neural network except for
the optimization loss function, The neural network can autonomously choose
which features to learn, and can also autonomously assign weights to the learned
features. If the distribution resulted from the target cipher is too complex, the
performance of our neural distinguishers may vary differently.

At the same time, these phenomenons also prove that our distinguisher model
is very reasonable. No matter how complex the target distribution is, our neural
distinguishers can always capture useful derived features from k ciphertext pairs,
which can promote the distinguishing accuracy.

4.4 Experiments on DES

Neural distinguishers for reduced DES: DES [14] is a block cipher that is
built on a 6×4 Sbox. Based on the analysis of DES in [6], the plaintext difference
adopted in this paper is α = (0x40080000, 0x04000000). We have built baseline
distinguishers for DES reduced up to 6 rounds.

Our neural distinguishers are also built for DES reduced to 5, 6 rounds.
The batch size is adjusted to 5000. The penalty factor is increased to 8× 10−4.
Other related parameters are the same as Table 2. Corresponding distinguishing
accuracy comparisons are presented on Table 9.

Table 9. Distinguishing accuracy of neural distinguishers for 5/6 rounds DES

R BD
Our neural distinguishers

NDk=2 NDk=4 NDk=8 NDk=16

5 0.6261 0.7209 0.8382 0.9318 0.9585

6 0.5493 0.5653 0.5568 0.5507 0.5532

Compared with baseline distinguishers, our neural distinguishers can obtain
distinguishing accuracy promotion under all settings. When R = 5, the baseline
distinguisher can well classify two kinds of ciphertext samples. Thus there are
significant differences between the target distribution and the uniform distribu-
tion, which can make our neural distinguisher capture more derived features by
increasing k. When R = 6, the two distributions are very similar. Then it is un-
likely to keep getting more useful information by increasing k. On the contrary, it
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may make two ciphertext groups sampled from two different distributions more
similar. Corresponding influence is that the accuracy of our distinguisher may
decrease.

False negative/positive test: Based on baseline distinguishers, 104× k false
negative and false positive samples are randomly generated. Table 10 shows the
pass ratios of FNT and FPT.

Table 10. Pass ratios of false negative test and false positive test

R
False Negative Test False Positive Test

NDk=2 NDk=4 NDk=8 NDk=16 NDk=2 NDk=4 NDk=8 NDk=16

5 0.0046 0.0034 0.0132 0.0131 0.0594 0.0627 0.0566 0.0518

6 0.0802 0.2348 0.2526 0.3207 0.0462 0.0598 0.0921 0.0809

The FNT and FPT prove that the accuracy promotion of our neural dis-
tinguishers mainly comes from derived features. When R = 6, our neural distin-
guishers can also obtain higher accuracy on FNT than that on FPT. Although
this rule doesn’t hold when R = 5, it doesn’t affect our conclusions. As long as
the distribution generated by the reduced cipher is not a uniform distribution,
our neural distinguishers can obtain accuracy promotion by capturing derived
features from k samples. Besides, the distributions generated by symmetric ci-
phers which have the same nonlinear component are likely to be similar.

4.5 Experiments on SHA3-256

Neural distinguishers for reduced SHA3-256: SHA3-256 [15] is a hash
function that is exactly different from the other four ciphers from the perspective
of the nonlinear component. When one message block is fed into reduced SHA3-
256, we collect the first 32 bytes of the output process after T -rounds permutation
is applied to this message block. Given a message differential α = 1, we have
built baseline distinguishers for SHA3-256 reduced up to 4 rounds.

Our neural distinguishers are also built for SHA3-256 reduced to 3, 4 rounds.
Limited by the computer memory, the number of ciphertext pairs is adjusted
to N = 2 × 106. The batch size is 500, and the penalty factor is 10−5. The
distinguishing accuracy comparisons are presented in Table 11.

Table 11. Distinguishing accuracy of neural distinguishers for 3/4 rounds SHA3-256

R Gohr
Our neural distinguishers

NDk=2 NDk=4 NDk=8 NDk=16

3 0.7228 0.8149 0.9241 0.971 0.9904

4 0.5844 0.6409 0.8441 0.8748 0.8775

Compared with baseline distinguishers, our neural distinguishers can obtain
accuracy promotion under all settings. SHA3-256 is built on nonlinear logic op-
erations. As long as the resulting distribution is different from the uniform dis-
tribution, our neural distinguishers can obtain accuracy promotion as expected.

False negative/positive test: With the help of baseline distinguishers, 104×k
false negative and false positive samples are randomly generated. Table 12 shows
the pass ratios of FNT and FPT.
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Table 12. Pass ratios of false negative test and false positive test

R
False Negative Test False Positive Test

NDk=2 NDk=4 NDk=8 NDk=16 NDk=2 NDk=4 NDk=8 NDk=16

3 0.2249 0.2347 0.3336 0.2711 0.1045 0.0961 0.0171 0.0088

4 0.8834 0.1425 0.1406 0.8646 0.4619 0.4933 0.4918 0.5044

Test results above can also prove that our neural distinguishers have success-
fully captured derived features from k ciphertext pairs. These derived features
are very useful for promoting distinguishing accuracy as Table 11 shows. Since
the nonlinear component is different from the other four ciphers, the test results
are also very different. These complex but interesting test results above can still
prove that our neural distinguishers can learn derived features no matter how
complex the target distribution is.

4.6 Short Conclusion

Our neural distinguishers for five reduced symmetric ciphers can always obtain
distinguishing accuracy promotion by regarding k ciphertext pairs as the analysis
object. The FNT and FPT also prove that the accuracy promotion comes from
derived features that have been successfully learned by our neural distinguishers.
Since there are similar properties in the distributions generated by symmetric
ciphers built on the same nonlinear component, experiments on these five dif-
ferent symmetric ciphers can prove the generic superiority of our distinguisher
model.

5 Data Reuse Strategy for Reducing Data Complexity

Previous experiments have shown the superiority of our distinguisher model.
But there is a potential problem that may make it unpractical being applied to
attacks in real scenarios. Assuming the baseline distinguisher and our neural dis-
tinguisher have the same performance, and a certain attack requires M random
inputs. If we directly reshape M × k ciphertext pairs into M ciphertext groups,
the data complexity of our neural distinguisher is k times as much as the data
complexity of the baseline model.

Given N ciphertext pairs Xi = (Ci,0, Ci,1), i ∈ [1, N ], there are a total of CkN
options for composing a ciphertext group, which is much larger than N

k . Thus
we can randomly select M ciphertext groups from CkN options. Such a strategy
can help reduce the data complexity. In fact, it is equivalent to attach more
importance to derived features from k ciphertexts. However, the subsequent
key recovery attacks using this naive strategy don’t obtain good results. The
main reason is that the sampling randomness of M ciphertext groups is greatly
destroyed. Two new concepts are proposed for overcoming this problem.

Maximum Reuse Frequency: During the generation of M ciphertext
groups, a ciphertext pair is likely to be reused several times. Let’s denote the
reuse frequency of the ith ciphertext pair as RFi, i ∈ [1, N ]. Maximum Reuse
Frequency (MRF ) is defined as the maximum value of RFi:

MRF = maxRFi, i ∈ [1, N ] (12)
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Sample Similarity Degree: For any two ciphertext groups Gi, Gj , the
similarity of these two ciphertext groups is defined as the number of the same
ciphertext pairs. As for M ciphertext groups, Sample Similarity Degree (SSD)
is defined as the maximum of any two ciphertext groups’ similarity:

SSD = max |Gi
⋂
Gj | , i, j ∈ [1,M ]

Gi = {Xi1, · · · , Xik}
Gj = {Xj1, · · · , Xjk}

i1, · · · , ik, j1, · · · , jk ∈ [1, N ]

(13)

MRF can ensure that the contribution of each ciphertext pair is similar.
SSD can increase the distribution uniformity of M ciphertext groups as much
as possible. Based on the above two concepts, we propose the following Data
Reuse Strategy that can reduce data complexity and maintain sampling ran-
domness:

1. Set two upper thresholds for MRF and SSD.
2. Randomly select k ciphertext pairs from N ciphertext pairs to form a ci-

phertext group.
3. Repeat step 2 for M times to obtain M ciphertext groups.
4. Compute MRF and SSD. If two values are both smaller than the threshold

we set, return the M ciphertext groups. Or start from step 2 again.

6 Key Recovery Attacks on Speck32/64

Our neural distinguishers can obtain much higher distinguishing accuracy than
baseline distinguishers. When applied to the same key recovery attack, the per-
formance of different neural distinguishers can be compared in two aspects.

When we decrypt enough ciphertexts with a key and feed partially decrypted
ciphertexts into a neural distinguisher, the value of the output signal is related
to the key. When the output signal of the correct key is very different from the
output signals of the wrong keys, it indicates the neural distinguisher can well
distinguish the correct key from wrong keys. For deep learning based distinguish-
ers, we are the first to find a widespread output signal clustering phenomenon.
Based on this phenomenon, we can directly assess the performance of neural
distinguishers by observing the output signal distribution.

We can also compare the performance of different neural distinguishers indi-
rectly through a complete key recovery attack. Such an evaluation method will
be greatly affected by the key recovery attack strategy. But the final comparison
result can be used as a reference.

In this section, we will introduce the output signal clustering phenomenon
firstly. The direct comparison between baseline distinguishers and our neural
distinguishers is also given. Then the same key recovery attack [12] on 11-round
Speck32/64 is performed again with our neural distinguishers. At last, a new
key recovery attack scheme is proposed based on two important rules derived
from the output signal clustering phenomenon. It can further reduce the time
complexity.
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6.1 Output signal clustering phenomenon

There is a common property for most symmetric ciphers.

Property 1. Let a ciphertext be decrypted one round with two different round
keys, CrT−1 = Dec(CT , SK1), CwT−1 = Dec(CT , SK2). If SK1 and SK2 are
different at a few bits (e.g. just 1 bit or 2 bits), the Hamming distance between
CrT−1 and CwT−1 will be very small.

At the same time, there is also a common property for a neural network.

Property 2. Given a trained neural network f(·) for solving a binary classifica-
tion problem, if two input samples X1, X2 are very close to each other in the
input space, two outputs f(X1) and f(X2) obtained from the neural network may
satisfy f(X1) ≈ f(X2) with a high probability.
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Fig. 3. Mean output signals of baseline distinguishers for 6/7-round Speck32/64.
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Fig. 4. Mean output signals of our neural distinguishers for 6/7-round Speck32/64.

Although the real distance metric for a neural network is unknown, the Ham-
ming distance is a good approximation. Thus there exists an output signal clus-
tering phenomenon for neural distinguishers. When two keys have the same
Hamming distance from the correct key, corresponding output signals should be
similar.

Given a key difference δ and a cipher reduced to R+ 1 rounds, we randomly
generate N 5-tuple (Pi,1, Pi,2, Ci,1, Ci,2, SKi,R+1) , Pi,1 ⊕ Pi,2 = α, i ∈ [1, N ].
Ci,1, Ci,2 are encrypted from Pi,1, Pi,2 with the same key, and SKi,R+1 is the last
round key. Then Ci,1 and Ci,2 are decrypted one round with δ⊕SKi,R+1. At last,
these decrypted ciphertext pairs are reshaped into N

k ciphertext groups and fed
into an R-round neural distinguisher. Denote the neural distinguisher’s output
for (Ci,1, Ci,2) as Zδ,i. Then we can obtain the mean value of Zδ,i, i ∈ [1, N ] and
denote it as Zδ. It can be regarded as the expected output signal when there is
a difference δ between the key guess and the true key.
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After we obtain all the Zδ, δ ∈ [0, 216−1], we further calculate the Hamming
weight HDδ of each δ. For Speck32/64, HDδ ranges from 0 to 16. At last, the
following mean value is formulated:

ZHDδ =
∑

HDδ=i

Zδ
Ci16

, i ∈ [0, 16] (14)

where ZHDδ stands for the expectation output signal when the Hamming dis-
tance between the key guess and true key is HDδ. In this paper we denote ZHDδ
as the mean output signal.

Let N = 2000, Figure 3 shows the mean output signals of neural distinguish-
ers [12] reduced to 6/7 rounds. Figure 4 shows the mean output signals of our
neural distinguishers reduced to 6/7 rounds. The group size of our neural distin-
guishers is k = 2. Compared with the baseline model, our neural distinguishers
can increase the mean output signal of the correct key. As for wrong keys, when
the Hamming distance from the correct key is larger than 2, our neural dis-
tinguishers can decrease the mean output signal. Then the mean output signal
difference can be further increased by our neural distinguishers. Such a good
property proves that the superiority of our neural distinguishers. It can directly
show the positive impact of derived features on key recovery attacks.

Besides, there are two useful properties that can help us develop a new key
recovery attack scheme.

Property 3. The right key has the highest mean output signal. Thus the right key
can obtain the highest key rank score as long as the number of input samples is
large enough in the key recovery attack.

Property 4. The mean output signal decreases as the Hamming distance from
the right key increases. A high key rank score will only occur when the Hamming
distance between the key guess and true key is very small. Taking the true key as
the center, the keys which can obtain a high score is involved in a small cluster
around the center.

6.2 Key Recovery Attack Using Gohr’s Attack Scheme

In this section, we will further assess our neural distinguishers through the same
key recovery attack [12] on 11-round Speck32/64.

Gohr’s attack scheme. The 7-round distinguisher is extended to a 9-round
distinguisher by prepending a 2-round differential transition (0x211, 0xa04) →
(0x0040, 0) with a probability of about 1

64 . The 9-round distinguisher is then
extended by another round at no additional cost by asking for encryptions of
ciphertext pairs (P1, P2) that encrypt to the desired input difference α after one
round of Speck encryption. This is easy since no key addition happens in Speck
before the first nonlinear operation.

This 10-round distinguisher is applied to a key recovery attack on 11-round
Speck32/64. Six neutral bits {20, 21, 22, 14, 15, 23} are used to creat from a plain-
text pair a plaintext structure consisting of 64 plaintext pairs. Such a plaintext
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structure is expected to pass the prepended 2-round differential transition. For
each plaintext structure, decrypt the resulting ciphertexts under all final subkeys
and rank each partially decrypted ciphertext structure using the 7-round distin-
guisher. If the resulting score is beyond a threshold c11, decrypt another round
and grade the resulting partially-decrypted ciphertexts using the 6-round neu-
ral distinguisher. A key guess is returned if the resulting score for the partially
decrypted ciphertext structure then exceeds another threshold c10.

In the attack scheme above, the key rank score is formulated as

SSK =

N
k∑
i=1

log2

(
Zi

1− Zi

)
(15)

where SSK stands for the key rank score of SK, and Zi is the ith input sample’s
output signal given by the neural distingusiher. As for the baseline model, the
group size is k = 1.

By transforming this attack scheme into a multi-armed bandit problem, an
accelerated version that can reduce the time complexity of the 11-round attack to
38 bits is given in [12]. This accelerated version is based on the standard Upper
Confidence Bound (UCB) algorithm [2]. A key recovery attack is considered
as a success only when the returned final subkey is correct and the second-to-
last subkey is incorrect in at most 2 bits. If the maximum number of plaintext
structures is 100, the key recovery attack using the baseline model can obtain a
success rate of 52%. The average data complexity is 213.5.

Key recovery attack using our neural distinguisher. When the maximum
number of randomly generated plaintext structure is given, the success rate of
the key recovery attack is strongly related to the performance of the neural
distinguisher.

Our neural distinguisher can be applied to Gohr’s attack scheme directly.
In order to evaluate our neural distinguisher fairly, the data complexity is un-
changed. The maximum number of plaintext structures is 100. For our neural
distinguisher, the group size is k = 2. A data reuse strategy with MRF = 2 and
SSD = 1 is applied. Two thresholds are c11 = 18, c10 = 150.

With the help of the accelerated attack scheme proposed by Gohr, the key
recovery attack using our neural distinguisher is performed 1000 times. Based
on these given settings, our attack can succeed in 544 out of 1000 trials The
average data complexity of our attack is 213.2.

As we have proved in the previous section, our neural distinguishers can
increase the mean output signal of the correct key and reduce the mean output
signal of the wrong keys. When the data complexity and time complexity are
limited, the output signal difference will play a vital role in the key recovery
attack. This is why the same key recovery attack using our neural distinguishers
can obtain a little higher success rate with the same data complexity. If the
output signal difference is very high, it’s possible to perform this key recovery
attack with a 7-round neural distinguisher. Thus it’s very important to develop
more powerful neural distinguishers.
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6.3 Key Recovery Attack Using New Attack Scheme

In this section, a new key recovery attack scheme is proposed based on the output
signal clustering phenomenon. The key recovery attack on 11-round Speck32/64
is performed again based on this new scheme. Compared with Gohr’s attack
scheme, it can further reduce the time complexity. Besides, experiments in this
section can also show the superiority of our neural distinguishers.

New key recovery attack scheme. The most important property of Gohr’s
attack scheme is that the correct ciphertext structure which passes the prepended
differential can be found after the 2-round attack. Based on the correct ciphertext
structure, the unknown round keys can be recovered at a negligible cost.

According to Property 3, the correct round key can obtain the highest key
rank score as long as the correct ciphertext structure contains enough ciphertext
pairs. Thus the correct ciphertext structure can be found with a 1-Round attack.
Based on this conclusion, we propose a new key recovery attack scheme as follows:

1. Set a series of thresholds c1, · · · , cT for a cipher reduced to T rounds.
2. Generate enough plaintext structures, and obtain the ciphertext structures

through T + 1 rounds of encryption.
3. For each ciphertext structure, we decrypt it under all possible subkeys of the

last round and obtain the key rank scores.
4. If any final round key’s key rank score is higher than cT , we think the

related ciphertext structure is a correct ciphertext structure. Then we save
the partially decrypted ciphertext structure and try to recover other round
keys as follows:
(a) Decrypt the partially decrypted ciphertext structure under all round

keys of the ith round, i ∈ [1, T − 1].
(b) If the key rank score of a key is higher than ci, repeat the process and

attack the (i− 1)th round.
5. If a ciphertext structure can pass the attack for each round, return recovered

keys as the final key guesses.

It’s worth noticing that all thresholds c1, · · · , cT should be large enough.
This can ensure only the correct ciphertext structure can pass the attack for the
Tth round. Besides, only a few keys will survive in each round. This is based on
the second finding in the output signal clustering phenomenon. In fact, all the
surviving keys belong to the cluster centered on the right key.

Like Gohr’s attack scheme, the most important point of the new attack
scheme is also finding the correct ciphertext structure. Based on this new key
recovery attack scheme, we have performed tests on 11-round Speck32/64. The
attack target is to find the correct ciphertext structure with only one round at-
tack. Besides, the key which has the highest key rank score is returned as the
key guess of the Tth round.

Seven neutral bits {20, 21, 22, 14, 15, 23, 7} are adopted for generating plain-
text structures. c11 is 15 for the 7-round distinguisher [12]. As for our 7-round
neural distinguisher, the group size is 2, c11 = 35. Parameters of the data reuse
strategy are MRF = 2 and SSD = 1. 100 experiments are then performed with
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two neural distinguishers above respectively. The maximum number of plaintext
structures is set to 100. There are about 49 trials in which a correct plaintext
structure will arise. Both our neural distinguisher and the baseline model can
find the right plaintext structure in the 49 experiments.

Besides, the Hamming distance between the final key guess and the true
round key is lower than 2. By regarding the number of keys which have equal
or higher key rank score than the true key as the key rank of the true key, we
observe that the mean key rank is both lower than 4 no matter which neural
distinguisher is used. When we attack the same cipher reduced to shorter rounds,
the mean rank of the true key will be higher. Thus we can also recover unknown
round keys at a negligible cost once the correct ciphertext structure is found.

Accelerate the new key recovery attack scheme. It’s time-consuming
to find the correct ciphertext structure by decrypting each ciphertext structure
with all final round keys. In fact, It can be accelerated in two aspects.

First, the search for the true key in each round can be broken down into two
simpler processes as follows:

1. Find the correct cluster which contains the true round key. The size of the
cluster is defined by the Hamming distance. According to Figure 3, Figure 4,
the size is set to 2. The Hamming distance from each element in the cluster
to the center does not exceed 2.

2. Search the true key in the cluster.

Since the output signal decreases as the Hamming distance from the right key
increases, we can set two thresholds ci,1, ci,2, ci,1 < ci,2. Most keys in the cluster
centered in the true round key should have a key rank score higher than ci,1.
But only the true key can obtain a key rank score higher than ci,2 with a high
probability. Thus we can randomly generate some seed keys and obtain corre-
sponding key rank scores. If a seed key’s key rank score is higher than ci,1, we
will test keys in the cluster centered on this seed key. If any key can obtain a
higher key rank score, take it as the new center and continue the search until
the center is unchanged. If the final center key’s key rank score is higher than
ci,2, return it as the final key guess of the ith round.

Second, we can focus on the most promising ciphertext structure instead of
spending the same amount of computation on every ciphertext structure. This
can be achieved by the standard Upper Confidence Bound (UCB) algorithm [2].
Set a maximum iteration number. Then we actively choose a ciphertext structure
for the test at each iteration. This decision is made based on a concept named
the priority score. The priority score of each ciphertext structure is

Si = wimax + α×

√
log2 (j)

ni
(16)

where wimax is the highest score obtained from the current neural distinguisher
so far for the ith ciphertext structure, j is the number of current iteration, ni
is the number of iterations which the ith ciphertext structure has been selected,
and α is the balance factor. Before each iteration, all priority scores are updated
and the ciphertext structure that has the highest score is selected.
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Key recovery attack using the new accelerated attack scheme. Key
recovery attack on 11-round Speck32/64 is performed with this accelerated at-
tack scheme again. 7 probabilistic neutral bits {20, 21, 22, 14, 15, 23, 7} are used
to generate 100 plaintext structures randomly. The maximum iteration number
is 500. At each iteration, we will test 150 possible keys. Key recovery is consid-
ered a success only when the hamming distance between the returned subkey
and the correct key is no more than 2. Except for the total success rate, two
indicators will also be observed. The first one is the number of experiments that
the correct ciphertext structure really exists. The second one is the success rate
of these experiments above.

Key recovery attack is firstly performed 1000 times with the distinguisher in
[12]. Except for settings above, c11,1 = 5, c11,2 = 15. 572 experiments out of 1000
are successful attacks. The Hamming distance between the returned key and the
true key is no more than 2. The corresponding key rank score also exceeds the
threshold c2. There are 551 experiments in which the correct ciphertext structure
exists. Among these experiments above, only 10 experiments are failed. In the
remaining 31 successful experiments, the number of ciphertext pairs that pass
the prepended differential transition in the returned ciphertext structure is also
greater than 100. The mean data complexity of our attack is 214.12.

Based on the data reuse strategy with MRF = 2 and SSD = 1, key recovery
attack is performed for 1000 times with our neural distinguisher which the group
size is 2. Except for settings above, c11,1 = 25, c11,2 = 35. 595 experiments out
of 1000 are successful attacks. There are 564 experiments in which the correct
ciphertext structure exists. Among these experiments above, only 15 experiments
are failed. In the remaining 46 successful experiments, the number of ciphertext
pairs that pass the prepended differential transition in the returned ciphertext
structure is also greater than 64. The mean data complexity of our attack is
214.11.

According to these results, we can obtain the following conclusions. First,
this new key recovery attack scheme is practical and reasonable. Second, the key
recovery attack can also be improved by using our 7-round neural distinguisher.
Although the difference between the mean output signal of the correct key and
the output signal of the wrong key is not increased significantly, it still has a
non-negligible effect on the final success rate.

Time complexity. The time consumption of Gohr’s key recovery scheme and
the new key recovery scheme are both related to the key search strategy. The
total time complexity is proportional to the number of keys that need to be
searched. When a powerful graphics card is available, the time required for the
attack depends almost entirely on the number of keys to be searched.

We have estimated the time consumption of two key recovery schemes under
the same experiment environment. A single GTX 1080 Ti graphics card is used.
When the key recovery attack on 11-round Speck32/64 is performed using Gohr’s
attack scheme, a key guess is returned in about 50 seconds. When the same attack
is performed using our new attack scheme, a key guess is returned in about
12 seconds. Besides, the 7-round neural distinguisher adopted here is also the
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baseline model. The time complexity of Gohr’s key recovery attack is equivalent
to 238 Speck32/64 encryption. Thus the time complexity of the key recovery
attack using our attack scheme is about 236 Speck32/64 encryption.

7 Conclusion

As long as a distribution is not a uniform distribution, there will be many de-
rived features generated from the non-uniformity. These derived features can
be captured from multiple samples. Based on such a finding, we propose a new
neural distinguisher model which takes k ciphertext pairs as input.

This new neural distinguisher model can successfully capture derived fea-
tures, which can always promote the distinguishing accuracy under various set-
tings of k. Besides, it can be used to improve the key recovery attack. At the
same time, it is as generic as Ghor’s distinguisher model. All the works in this
paper have shown the superiority of our new neural distinguisher model.

Based on our new neural distinguisher model and some happened interesting
phenomenon, there are several important research directions that are worthy of
exploring. First, applying this new neural distinguisher to key recovery attacks
on other ciphers still needs to perform. Second, if we can add some suitable prior
knowledge to the neural distinguisher, its performance is expected to be further
enhanced. Now there are no extra requirements for k ciphertext pairs composing
a ciphertext group. Third, derived features extracted from the non-uniformity of
the distribution generated by a certain cipher may be applicable to other ciphers
constructed based on the same nonlinear components. In the FNT and FPT,
there are similar results for symmetric ciphers that are built based on the same
nonlinear components. Thus, it’s likely to reduce the cost of building neural
distinguishers for different ciphers. Noval cryptanalysis ways are also likely to
be developed for symmetric ciphers based on the same nonlinear component.
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