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Neural aided cryptanalysis is a challenging topic, in which the neural distinguisher
(ND) is a core module. In this paper, we propose a new ND considering multiple
ciphertext pairs simultaneously. To our best knowledge, this is the only ND except
for the ND proposed by Gohr at CRYPTO’19. Taking Gohr’s ND as the strong
baseline model, we perform an in-depth analysis of our new ND. First, applications
to five different ciphers show that our NDs achieve higher distinguishing accuracy.
Second, we prove that our ND successfully captures features derived from multiple
ciphertext pairs. Third, we further show how to perform various key recovery
attacks with this new ND. More advantages of our ND are further discovered in
key recovery attacks. Taking the neural aided statistical attack (NASA) as an
example, we prove that the data complexity can be reduced by replacing Gohr’s

ND with our ND.
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1. INTRODUCTION

At CRYPTO’19, Gohr improved attacks on round
reduced Speck32/64 using deep learning [1], which
created a precedent for neural aided cryptanalysis. The
neural distinguisher (ND) plays a core role in neural
aided cryptanalysis.

The most important step of Gohr’s key recovery
attack is identifying the right plaintext structure. In [1],
in order to identify the required plaintext structure,
Gohr adopted a 6-round ND and a 7-round ND. The
final decision is based on the output of the 6-round
ND. Compared with the 7-round ND, the 6-round ND
achieves a higher distinguishing accuracy. This implies
that a stronger ND is more helpful for Gohr’s attacks.
Recently, Chen et al proposed a generic neural aided
statistical attack (NASA) for cryptanalysis [2]. The
data complexity of NASA is strongly related to the
distinguishing accuracy of the ND. Thus, developing
new NDs with better performance is an important task
for neural aided cryptanalysis.

The ND proposed by Gohr [1] takes a ciphertext pair
(C0, C1) as the input. In [3], Baksi et al changed the
input of the ND to the ciphertext difference C0 ⊕ C1.
In [2], Chen et al suggested that the ND can be built
by flexibly taking some bits of a ciphertext pair as the
input. These NDs above are the same type of ND since

only features hidden in a ciphertext pair are exploited.
In [4], in order to improve the NDs against round

reduced Speck32/64, Benamira et al tried to take a
ciphertext group as the input. However, no clear
motivations or more in-depth analysis were provided.

1.1. Our Contributions

In this paper, our work contains the follwoing four
aspects:

• We propose a new ND considering multiple
ciphertext pairs simultaneously. If ciphertext
pairs corresponding to plaintext pairs with a
specific plaintext difference obey a non-uniform
distribution, there are some derived features from
multiple ciphertext pairs. Once neural networks
capture these features, the ND would obtain some
performance promotions.

• We design an verification framework for checking
that derived features from multiple ciphertext pairs
are learned. This framework is composed of two
tests: false-negative test (FNT), false-positive test
(FPT).

• We build two types of ND for five round-reduced
ciphers: Speck32/64, Chaskey, Present, DES,
SHA3-256. The first type of ND is the ND
proposed by Gohr, and the other one is our new
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ND. An in-depth analysis based on the analysis
framework above proves that our new ND always
captures derived features from multiple ciphertext
pairs successfully.

• We show how to perform two different key recovery
attacks using our new ND. To our date, there are
only two public key recovery attacks based on the
ND proposed by Gohr. We prove that our new ND
is also applicable in these two attacks. Due to the
performance promotion, the attack complexities of
one attack can be reduced by using our new ND.

1.2. Outlines

This paper is organized as follows:

• In section 2, preliminaries are presented, including
some important notations and five related ciphers.

• In section 3, the ND proposed by Gohr and two
key recovery attacks are briefly reviewed.

• In section 4, our new ND is introduced, including
the model, the neural network for implementing
our new ND, and the training pipeline.

• In section 5, we describe the verification frame-
work.

• In section 6, we build NDs for five ciphers and
perform an analysis of these NDs.

• In section 7, we show how to perform key recovery
attacks using our new ND. A data reuse strategy
is also proposed in this section.

2. PRELIMINARIES

2.1. Notations

P,C Plaintext, Ciphertext
α Plaintext difference
N,M The number of plaintext(ciphertext) pairs
NDk=? ND which the input is k ciphertext pairs
BD Baseline distinguisher (Gohr’s ND)
Z The output of a ND
r The number of reduced rounds

2.2. Five Ciphers

We choose five different ciphers for supporting our work.

• Speck32/64 [5] is a lightweight block cipher whose
block size is 32 bits. Its non-linear component is
the modulo addition.

• Chaskey [6] is a Message Authentication Code
(MAC) algorithm whose intermediate state size is
128 bits. Its non-linear component is the modulo
addition.

• Present64/80 [7] is a block cipher whose block size
is 64 bits. Its non-linear component is a 4×4 Sbox.

• DES [8] is a block cipher whose block size is 64
bits. Its non-linear component is eight different
6× 4 Sboxs.

• SHA3-256 [9] is a hash function whose intermediate
state size is 1600 bits. Its non-linear component is
a logic operation.

We refer readers to [5, 6, 7, 8, 9] for more details of
these ciphers. From the perspective of the non-linear
component, these ciphers almost cover all the types of
ciphers that Gohr’s ND can apply.

3. RELATED WORK

3.1. Gohr’s Neural Distinguisher

In [1], Gohr built NDs against round reduced
Speck32/64. The ND proposed by Gohr is a generic
distinguisher since it only requires a plaintext difference
constraint.

Consider a cipher E and a plaintext difference
α. Gohr’s ND aims at distinguishing two classes of
ciphertext pairs

Y (C0, C1) =

{
1, if P0 ⊕ P1 = α
0, if P0 ⊕ P1 6= α

(1)

where (C0, C1) is the ciphertext pair corresponding
to the plaintext pair (P0, P1), and Y is the label of
(C0, C1).

We denote ciphertext pairs corresponding to plain-
text pairs with the target difference α as positive
samples, and denote ciphertext pairs corresponding
to plaintext pairs with random difference as negative
samples.

If a neural network achieves a distinguishing accuracy
higher than 0.5 over randomly selected ciphertext
pairs, we know the cipher E is not a pseudorandom
permutation. Then this neural network is a valid ND.

In [1], Gohr chose a residual network [10] with one
output neuron. Thus, the output Z of Gohr’s ND is
also used as the following posterior probability

Pr (Y = 1 |(C0, C1) ) = F1 (f (C0, C1))
0 6 Pr (Y = 1 |(C0, C1) ) 6 1

(2)

where f(C0, C1) stands for features learned by the
ND from (C0, C1), F1(·) is the posterior probability
estimation function learned by the ND. If Pr(Y =
1|(C0, C1)) > 0.5, the label of (C0, C1) predicted by
the ND is 1.

3.2. Gohr’s Key Recovery Attack

Given a ND, we denote the output of ND as Z. Positive
samples are expected to obtain a higher posterior
probability than negative samples, which is the core
idea of Gohr’s key recovery attack [1].

Consider a (r + 1)-round cipher E and a r-round
ND built over a plaintext difference α. Gohr’s attack
recovers the subkey of the (r+ 1)− th round as follows:

1. Generate m positive samples with α randomly.
2. For each possible subkey guess kg:
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(a) Decrypt m positive samples with kg.
(b) Feed partially decrypted samples into the ND

and collect the outputs Zi, i ∈ [1,m].
(c) Compute the rank score Vkg of kg as:

Vkg =

m∑
i=1

log2

(
Zi

1− Zi

)
(3)

(d) If Vkg exceeds a threshold c1, save kg as a
subkey kandidate.

3. Return kg with the highest key rank score as the
final subkey guess.

The value of c1 and m is set experimentally.

FIGURE 1. The key recovery process. The prepended
differential ∆P → α is satisfied with a probability p0. The
intermediate state pair is (S0, S1).

A differential ∆P → α can be placed before the ND
to extend the rounds covered by the attack (see Fig.1).
With the help of neutral bits [11], ciphertext structures
consisting of m positive samples or negative samples can
be generated. Then a high rank score occurs only when
the structure consisting of positive samples is decrypted
by the true subkey. More details can refer to [1].

3.3. Neural Aided Statistical Attack

The neural aided statistical attack proposed by Chen et
al [2] is performed as follows:

1. Randomly generate N plaintext pairs with a
difference ∆P .

2. Collect the ciphertext pairs.
3. For each possible subkey guess kg:

(a) Decrypt N ciphertext pairs with kg.
(b) Feed partially decrypted ciphertext pairs into

the ND and collect the outputs Zi, i ∈ [1, N ].
(c) Count the following statics T :

T =

N∑
i=1

φ (Zi), φ (Zi) =

{
1, if Zi > c2
0, if Zi 6 c2

(4)
(d) If T exceeds a decision threshold t, save kg as

a subkey candidate.

4. Return all the surviving subkey candidates.

Chen et al proposed a theoretical framework to estimate
N and t. The value of c2 is set in advance, which doesn’t
influence the estimation of N, t.

According to Fig.1, Chen et al summarized three
types of probabilities:

Pr(Z > c2|S0 ⊕ S1 = α, kg = sk) = p1 (5)

Pr(Z > c2|S0 ⊕ S1 = α, kg 6= sk) = p2 (6)

Pr(Z > c2|S0 ⊕ S1 6= α) = p3 (7)

where sk is the true subkey. These three probabilities
p1, p2, p3 are related to the ND.

NASA returns all the possible subkey candidates.
Besides, NASA allows us to set two ratios β0, β1 in
advance. The ratio β0 is the expected probability that
the true subkey sk survives the attack. The ratio β1
is the expected probability that wrong subkey guesses
survive the attack.

Based on p0, p1, p2, p3, β0, β1, the required N is:

√
N =

z1−β0
× v0 + z1−β1

× v1
(p1 − p2)× p0

(8)

where

v0 =
√
p0 × p1(1− p1) + (1− p0)p3(1− p3)

v1 =
√
p0 × p2(1− p2) + (1− p0)p3(1− p3),

and z1−β0
, z1−β1

are the quantiles of the standard
normal distribution.

The decision threshold t is:

t = µ0 − z1−β0
× σ0 (9)

where
µ0 = N × (p0p1 + (1− p0) p3)

σ0 =
√
N × p0 × p1(1− p1) +N(1− p0)p3(1− p3)

If c2 = 0.5, the distinguishing accuracy of the ND is
(p1 + 1− p3)× 0.5. Thus the data complexity of NASA
is strongly related to the ND. We refer readers to [2] for
more details of NASA.

4. NEW NEURAL DISTINGUISHER

4.1. Motivations

The motivations of our new neural distinguisher contain
two aspects.

First, in the machine learning community, providing
more features is a common method to improve the
accuracy of neural networks. For example, depth
map estimation [12] and action recognition [13] are
both tackled by feeding various features (eg. stereo
knowledge [14], depth maps [15]) into neural networks
simultaneously.

Second, there are some useful features among
multiple samples drawn from the same non-uniform
distribution. Fig.2 shows a simple example. If we
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FIGURE 2. P1(x) : a Gaussian distribution. P2(x) : a
uniform distribution.

randomly draw two samples (x11, x
1
2)/(x21, x

2
2) from a

Gaussian distribution or a uniform distribution, the
average distance of two samples is d1/d2. Then it is
expected that d1 < d2, which can be used to distinguish
the two distributions.

Based on the two phenomena above, we obtain
the idea of building a new neural distinguisher by
considering multiple ciphertext pairs. When features
hidden in a single ciphertext pair do not provide useful
clues, we still can obtain useful clues from features
among multiple ciphertext pairs.

4.2. New Distinguisher Model

Our new ND needs to distinguish two types of
ciphertext groups (C1,1, C1,2, · · · , Ck,1, Ck,2):

Y =

{
1, if Pj,1 ⊕ Pj,2 = α, j ∈ [1, k]
0, if Pj,1 ⊕ Pj,2 6= α, j ∈ [1, k]

(10)

where Y is the label of ciphertext groups, and
(Cj,1, Cj,2) is the ciphertext pair corresponding to the
plaintext pair (Cj,1, Cj,2), j ∈ [1, k].

Our new ND can be described as

Pr (Y = 1 |X1, · · · , Xk ) =
F2 (f (X1) , · · · , f (Xk) , ϕ (f (X1) , · · · , f (Xk)))

Xi = (Ci,1, Ci,2) , i ∈ [1, k]
(11)

where f (Xi) represents the basic features extracted
from the ciphertext pair Xi, ϕ (·) is the derived features,
and F2 (·) is the new posterior probability estimation
function.

Features ϕ(f(X1), · · · , f(Xk)) are extracted from the
distribution of basic features f(Xi), i ∈ [1, k]. This is
consistent with the motivations.

4.3. Residual Network

4.3.1. Network Architecture
In order to implement our new ND, we propose a
residual network which is a little different from the
network adopted by Gohr.

Fig.3 in next page shows the neural network
architecture for implementing our new ND. The
network architecture contains several modules that are
described in Fig.3. The input consisting of k ciphertext
pairs is arranged in a k×w× 2L

w array. L represents the
block size of the target cipher and w is the size of a basic
unit. For example, L is 32 and w is 16 for speck32/64.

Based on this input, the new ND can be implemented
in two parts. First, the learning of a single ciphertext
pair’s basic features is accomplished by module 1. The
kernel size is 1 × 1, which can capture basic features
efficiently. Second, the learning of derived features and
posterior probability estimation functions are combined
in a part. The two-dimensional filters with a size of
Ks × Ks can learn derived features from k ciphertext
pairs. Such an architecture obeys the model of our
neural distinguisher completely.

4.3.2. Training Pipeline
Our new ND is obtained by following three processes:

1. Data Generation: All the k ciphertext pairs
belonging to a ciphertext group are collected using
the same master key. If the label is Y = 1, the
ciphertext group is denoted as a positive sample.
Otherwise it’s denoted as a negative sample. A
training set is composed of N

2k positive samples and
N
2k negative samples. A testing set is composed of
M
2k positive samples and M

2k negative samples. We
need to generate a training set and a testing set.

2. Training: Train the residual network (Fig.3) on
the training dataset. If the training accuracy is
not larger than 0.5, choose a different α and start
from the data generation process again. Or save
the trained neural network and perform the testing
process.

3. Testing: Test the distinguishing accuracy of the
trained neural network on the testing dataset. If
the test accuracy is larger than 0.5, return the
neural network as a valid ND. Or choose a different
α and start from the data generation process again.

In the training phase, the neural network is trained
for Es epochs with a batch size of Bs. The cyclic
learning rate scheme in [1] is adopted. Optimization
is performed against the following loss function:

loss =

N
k∑
i=1

(Zi,p − Yi)2 + λ× ‖W‖ (12)

where Zi,p is the output of the ND, Yi is the true label,
W is the parameters of the neural network, and λ is the
penalty factor. The Adam algorithm [16] with default
parameters in Keras [17] is applied to the optimization.

5. THE VERIFICATION FRAMEWORK

To check whether our ND captures derived features
from multiple ciphertext pairs as expected, we design
an analysis framework that is composed of two tests.
In this analysis framework, the ND proposed by Gohr
is used as a baseline distinguisher (BD).
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FIGURE 3. The network architecture of our new ND. Conv stands for a convolution layer with Nf filters. The size of each
filter is Ks ×Ks. Module 2 also adopts the skip connection [10]. FC is a fully-connected layer which has d1 or d2 neurons.
BN is batch normalization. Relu and Sigmoid are two different activation functions. The output of Sigmoid ranges from 0
to 1.

5.1. False Negative Test (FNT)

If k ciphertext pairs with label 1 are all wrongly
classified by the BD

p (Y = 1 |X1 ) = F1 (f (X1)) < 0.5
...

p (Y = 1 |Xk ) = F1 (f (Xk)) < 0.5,

(13)

such ciphertext pairs are false negative samples. It
means that the features of a single ciphertext pair f (Xi)
can’t help correct classification. These k samples are
combined into a ciphertext group and fed into our ND.

Generate a large number of such ciphertext groups
and feed them to our ND. What we care about is the
following pass ratio

F2 (f (X1) , · · · , f (Xk) , ϕ (f (X1) , · · · , f (Xk))) > 0.5
(14)

The classification is totally determined by
ϕ (f (X1) , · · · , f (Xk)) now. The final pass ratio
under such a setting can show whether derived fea-
tures have been learned and their effects. If our
ND can obtain a non-negligible pass ratio, then
ϕ (f (X1) , · · · , f (Xk)) can offset the negative influence
of f (Xi) , i ∈ [1, k]. If the pass ratio is high, derived
features from k ciphertext pairs play a vital role in
classification for this kind of ciphertext pairs.

TABLE 1. Parameters for constructing our new ND

Nf d1 d2 Ks Bs

32 64 64 3 500

λ Lr Es N M

10−5 0.02→ 0.001 10 107 106

5.2. False Positive Test (FPT)

Similarly, if k ciphertext pairs with label 0 are wrongly
classified by the BD

p (Y = 1 |X1 ) = F1 (f (X1)) > 0.5
...

p (Y = 1 |Xk ) = F1 (f (Xk)) > 0.5,

(15)

such ciphertext pairs are false positive samples. These
k samples are combined into a ciphertext group and fed
into our ND. Now what we care about is the following
pass ration

F2 (f (X1) , · · · , f (Xk) , ϕ (f (X1) , · · · , f (Xk))) < 0.5
(16)

6. APPLICATIONS TO FIVE CIPHERS

We build two types of NDs for five ciphers introduced
in section 2.2. The first one is Gohr’s ND that is used
as the BD. The second one is our new ND.

The training pipeline of Gohr’s ND is presented in [1].
Table 1 summarizes the parameters that are related
to the residual network and training pipeline that are
introduced in Section 4.3.
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TABLE 2. Distinguishing accuracy of NDs against
Speck32/64.

r BD
Our neural distinguishers

NDk=2 NDk=4 NDk=8 NDk=16

5 0.929 0.9738 0.991 0.9992 0.9999

6 0.788 0.8613 0.931 0.9562 0.9802

7 0.616 0.6393 0.6861 0.7074 0.6694

TABLE 3. Pass ratios of FPT and FNT of NDs against
Speck32/64.

r
False Negative Test

NDk=2 NDk=4 NDk=8 NDk=16

5 0.0112 0.0013 0.0001 0

6 0.0331 0.0143 0.0081 0.0048

7 0.0511 0.0212 0.0283 0.0917

r
False Positive Test

NDk=2 NDk=4 NDk=8 NDk=16

5 0.3068 0.6268 0.6748 0.7228

6 0.1519 0.1432 0.3723 0.4375

7 0.0659 0.0233 0.0157 0.0691

6.1. Experiments on Speck32/64

The plaintext differential is α = (0x0040, 0) introduced
in [18]. NDs against Speck32/64 reduced to 5, 6, and 7
rounds are built. The accuracy comparison is presented
in Table 2. It’s clear that our NDs achieve higher
distinguishing accuracy than the BD.

We further perform the FPT and FNT. Correspond-
ing pass ratios are presented in Table 3. For each new
ND, there is at least one type of pass ratios higher than
0. This fully proves that our NDs capture derived fea-
tures from k ciphertext pairs.

6.2. Experiemnts on Chaskey

Based on the plainext difference α =
(0x8400, 0x0400, 0, 0) [6], we build NDs against
Chaskey reduced to 3, 4 rounds. The accuracy compar-
ison is presented in Table 4. Our NDs achieve higher
distinguishing accuracy than the BD.

The FPT and FNT are performed over our
NDs. Corresponding pass ratios are summarized in

TABLE 4. Distinguishing accuracy of NDs against
Chaskey

r BD
Our neural distinguishers

NDk=2 NDk=4 NDk=8 NDk=16

3 0.8608 0.8958 0.9583 0.9887 0.9986

4 0.6161 0.6589 0.6981 0.7603 0.7712

TABLE 5. Pass ratios of FPT and FNT of NDs against
Chaskey.

r
False Negative Test

NDk=2 NDk=4 NDk=8 NDk=16

3 0.1156 0.0635 0.0373 0.0087

4 0.1412 0.1749 0.1481 0.1675

r
False Positive Test

NDk=2 NDk=4 NDk=8 NDk=16

3 0.4027 0.4032 0.3976 0.4705

4 0.8369 0.7439 0.7298 0.5591

TABLE 6. Distinguishing accuracy of NDs against
Present64/80

r BD
Our neural distinguishers

NDk=2 NDk=4 NDk=8 NDk=16

6 0.6584 0.7198 0.7953 0.8308 0.8259

7 0.5486 0.5503 0.5853 0.5786 0.5818

Table 5, which also proves that derived features from
k ciphertext pairs are captured by our NDs.

6.3. Experiments on Present64/80

Based on the plaintext difference α = (0, 0, 0, 0x9) pro-
vided in [19], we have built NDs against Present64/80
reduced up to 6, 7 rounds respectively. The penalty fac-
tor is 10−4 and other related parameters are the same
with Table 1. The distinguishing accuracy comparisons
are presented in Table 6.

The pass ratios of the FPT and FNT of our NDs are
presented in Table 7. For each new ND, two related pass
ratios are both higher than 0. Thus, our NDs capture
derived features from k ciphrtext pairs.

6.4. Experiments on DES

Based on the analysis of DES in [20], the plain-
text difference adopted in this paper is α =
(0x40080000, 0x04000000). We have built baseline dis-

TABLE 7. Pass ratios of FNT and FPT of NDs against
Present64/80.

r
False Negative Test

NDk=2 NDk=4 NDk=8 NDk=16

6 0.0277 0.0097 0.0258 0.0751

7 0.1796 0.0587 0.1214 0.1488

r
False Positive Test

NDk=2 NDk=4 NDk=8 NDk=16

6 0.0147 0.0046 0.0068 0.0183

7 0.0533 0.0126 0.0324 0.0302
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TABLE 8. Distinguishing accuracy of NDs against DES.

r BD
Our neural distinguishers

NDk=2 NDk=4 NDk=8 NDk=16

5 0.6261 0.7209 0.8382 0.9318 0.9585

6 0.5493 0.5653 0.5568 0.5507 0.5532

TABLE 9. Pass ratios of FNT and FPT of NDs against
DES.

R
False Negative Test

NDk=2 NDk=4 NDk=8 NDk=16

5 0.0046 0.0034 0.0132 0.0131

6 0.0802 0.2348 0.2526 0.3207

R
False Positive Test

NDk=2 NDk=4 NDk=8 NDk=16

5 0.0594 0.0627 0.0566 0.0518

6 0.0462 0.0598 0.0921 0.0809

tinguishers for DES reduced to 5, 6 rounds.
The batch size is adjusted to 5000. The penalty factor

is increased to 8 × 10−4. Other related parameters
are the same as Table 1. Corresponding distinguishing
accuracy comparisons are presented in Table 8. The
pass ratios of the FPT and FNT of our NDs are
presented in Table 9.

6.5. Experiments on SHA3-256

SHA3-256 is a hash function. When one message block
is fed into reduced SHA3-256, we collect the first 32
bytes of the output process after r-rounds permutation
is applied to this message block. Given a message
difference α = 1, we have built NDs for SHA3-256
reduced up to 3, 4 rounds.

Limited by the computer memory, the number of
ciphertext pairs is adjusted to N = 2 × 106. The
batch size is 500, and the penalty factor is 10−5. The
distinguishing accuracy comparisons are presented in
Table 10. The pass ratios of the FPT and FNT of our
NDs are presented in Table 11.

7. KEY RECOVERY ATTACKS

In this section, we propose a data reuse strategy for
reducing data complexity. Then we prove that our
ND can be applied to the two key recovery attacks
introduced in section 3. Since the data complexity of
NASA is directly related to the performance of NDs,

TABLE 10. Distinguishing accuracy of NDs against SHA3-
256.

r Gohr
Our neural distinguishers

NDk=2 NDk=4 NDk=8 NDk=16

3 0.7228 0.8149 0.9241 0.971 0.9904

4 0.5844 0.6409 0.8441 0.8748 0.8775

TABLE 11. Pass ratios of FNT and FPT of NDs against
SHA3-256.

r
False Negative Test

NDk=2 NDk=4 NDk=8 NDk=16

3 0.2249 0.2347 0.3336 0.2711

4 0.8834 0.1425 0.1406 0.8646

r
False Positive Test

NDk=2 NDk=4 NDk=8 NDk=16

3 0.1045 0.0961 0.0171 0.0088

4 0.4619 0.4933 0.4918 0.5044

the NASA is first performed to highlight the extra
superiority of our NDs.

7.1. Data Reuse Strategy for Reducing Data
Complexity

There is a potential problem when we directly apply
our new ND to key recovery attacks.

Assuming the BD and our ND have the same
performance, and a certain attack requires M random
inputs. If we directly reshape M × k ciphertext pairs
into M ciphertext groups, the data complexity of our
ND is k times as much as the data complexity of the
BD.

Given M ciphertext pairs Xi = (Ci,0, Ci,1), i ∈
[1,M ], there are a total of CkM options for composing a
ciphertext group, which is much larger than M

k . Thus
we can randomly select M ciphertext groups from CkM
options. Such a strategy can help reduce the data
complexity. In fact, it is equivalent to attach more
importance to derived features from k ciphertexts.

However, the subsequent key recovery attacks using
this naive strategy do not obtain good results. The
main reason is that the sampling randomness of M
ciphertext groups is greatly destroyed. Two new
concepts are proposed for overcoming this problem.

Maximum Reuse Frequency: During the
generation of M ciphertext groups, a ciphertext pair is
likely to be reused several times. Let’s denote the reuse
frequency of the ith ciphertext pair as RFi, i ∈ [1,M ].
Maximum Reuse Frequency (MRF ) is defined as the
maximum value of RFi:

MRF = maxRFi, i ∈ [1,M ] (17)

Sample Similarity Degree: For any two
ciphertext groups Gi, Gj , the similarity of these two
ciphertext groups is defined as the number of the same
ciphertext pairs. As for M ciphertext groups, Sample
Similarity Degree (SSD) is defined as the maximum of
any two ciphertext groups’ similarity:

SSD = max |Gi
⋂
Gj | , i, j ∈ [1,M ]

Gi = {Xi1, · · · , Xik}
Gj = {Xj1, · · · , Xjk}

i1, · · · , ik, j1, · · · , jk ∈ [1,M ]

(18)
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MRF can ensure that the contribution of each
ciphertext pair is similar. SSD can increase the
distribution uniformity of M ciphertext groups as much
as possible. Based on the above two concepts, we
propose the following Data Reuse Strategy (see
Algorithm 1) that can reduce data complexity and
maintain sampling randomness.

Algorithm 1 Data Reuse Strategy

Require: MRF ; SSD; k; M .
Ensure: M ciphertext groups with a size of k.
1: Randomly select k ciphertext pairs from M

ciphertext pairs to form a ciphertext group.
2: Repeat step 2 for M times to obtain M ciphertext

groups.
3: Compute MRF and SSD. If two values are both

smaller than the threshold we set, return the M
ciphertext groups. Or start from step 1 again.

7.2. Application to NASA

When we replace the BD with our new ND, the process
of NASA does not change. The only difference is the
data collection.

7.2.1. Data Collection
Consider the attack process as shown in Fig.1.
Assuming that our new ND is built with α. Now, we
need to generate ciphertext groups.

Generate k plaintext pairs (P i0, P
i
1), i ∈ [1, k] with

the difference ∆P . Collect corresponding ciphertexts
(Ci0, C

i
1), i ∈ [1, k]. The intermediate states are

(Si0, S
i
1), i ∈ [1, k].

According to introduction in Section 4.2, these k
ciphertext pairs should satisfy

Si0 ⊕ Si1 = α, or Si0 ⊕ Si1 6= α, i ∈ [1, k]

simultaneously. We use neutral bits [11] to generate
such k ciphertext pairs.

Here we briefly review the definition of neutral bits.
Let E denote the encryption function. We focus on the
following conforming pairs

P0 ⊕ P1 = ∆P, E(P0)⊕ E(P1) = α.

If the condition E(P0 ⊕ ej) ⊕ E(P1 ⊕ ej) = α always
holds where ej = 1 << j, the j-th bit is a neutral bit.

Thus, we can generate 2m > k ciphertext pairs
using m neutral bits. The probability that these k
ciphertext pairs satisfy the difference transition ∆P →
α simultaneously is still p0. Then N ciphertext groups
with a size of k can be generated as

1. Ranomly generate N plaintext pairs with ∆P .
2. Generate N plaintext structures using m neutral

bits.

3. Randomly pick k plaintext pairs from a structure
and collect the ciphertext pairs.

The total data complexity is N × k.
It is worth noticing that the data reuse strategy is

still applicable here. More exactly, the data collection
is performed as

1. Ranomly generate N
M plaintext pairs with ∆P .

2. Generate N
M plaintext structures using m neutral

bits.
3. Randomly pick M plaintext pairs from a structure,

and generate M ciphertext groups using the data
reuse strategy (Algorithm 1).

The total data complexity is N now.

7.2.2. Experiments on Speck32/64
To prove that our ND is applicable to the NASA, we
perform experiments on Speck32/64.

Our new ND achieves higher performance than the
ND proposed by Gohr. Thus it is also expected that the
data complexity of NASA can be reduced by adopting
our new ND.

Experiment settings. More exactly, we adopt a

2-round differential ∆P = 0x211/0xa04
p0=2−6

−−−−−→ α =
0x40/0x0 as the prepended differential. Let β0 =
0.005, β1 = 2−16, c2 = 0.5. The concrete meaning of
these parameters can refer to Section 3.3. Since c2 is
set, the values of p1, p3 are experimentally estimated
based on NDs.

The estimation of p2 is a little complex. Let
p2|d denote the estimated value of p2 where d is the
Hamming distance between the correct key tk and
wrong keys kg. According to the introduction in [2],
when d increases, p2|d will decrease. Moreover, when p2
increases, the data complexity of NASA also increases.
Thus, if we hope the Hamming distance between tk and
surviving kg does not exceed d, the value of p2 is

p2 = max{p2|i|i ∈ [d+ 1, 16]}. (19)

In this paper, we choose two different settings: d = 2,
d = 1.

Comparison of data complexity. Table 12 and
Table 13 show the comparison of data complexity under
two experiment settings respectively.

The second row corresponds to the data complexity
when Gohr’s ND is adopted. These results are also used
as the baseline. When a r-round ND with a group size
of k is adopted, the corresponding data complexity is
displayed in bold if it is smaller than the baseline.

We test 12 new NDs in total. Table 12 and Table 13
show that the data complexity is reduced in most cases.
There is only one case in which the data complexity is
not reduced.

Analysis of the data complexity. There are two
questions to be explained: (1) why does the accuracy
promotion of NDs bring the reduction of the data
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TABLE 12. Data complexity comparisons when p0 =
2−6, d = 2, β0 = 0.005, β1 = 2−16, c2 = 0.5. The prepended
differential is a 3-round differential that is extended from
0x211/0xa04

p0−→ 0x40/0x0 without loss of transition
probability.

Distinguisher
Data Complexity (log2N)

r = 5 r = 6 r = 7

BD 14.211 16.907 20.515

NDk=2 13.184 15.869 19.792

NDk=4 12.908 14.757 18.881

NDk=8 12.016 14.609 18.573

NDk=16 13.171 14.427 19.684

TABLE 13. Data complexity comparisons when p0 =
2−6,d = 1, β0 = 0.005, β1 = 2−16, c2 = 0.5. The prepended
differential is a 3-round differential that is extended from
0x211/0xa04

p0−→ 0x40/0x0 without loss of transition
probability.

Distinguisher
Data Complexity (log2N)

r = 5 r = 6 r = 7

BD 14.72 17.158 21.085

NDk=2 13.971 16.517 20.386

NDk=4 14.189 15.566 19.483

NDk=8 13.863 15.688 19.214

NDk=16 15.560 16.065 20.433

complexity? (2) why does the data complexity is not
reduced in the only failed case shown in Table 13?

To answer the first question, we need to analyze
how the data complexity is influenced by p1, p3. Based
on Equation 8 in Section 3.3, we get two following
conclusions:

• when p1|p1 > 0.5 increases, the data complexity N
decreases.

• when p3|p3 6 0.5 decreases, the data complexity N
decreases.

During the training of NDs, the accuracy can be
formulated as

acc = 0.5× (TPR+ TNR)

where TPR is the ratio that samples with a label Y = 1
are correctly classified by NDs, and TNR is the ratio
that samples with a label Y = 0 are correctly classified
by NDs.

If we set c2 = 0.5, the following conclusions also hold

TPR = p1, TNR = 1− p3
acc = 0.5× (p1 + 1− p3).

(20)

Thus, when the accuracy acc of NDs increases, there
are three phenomena: p1 increases, or p3 decreases, or
the former two phenomena both occur.

TABLE 14. The value of p1, p2, p3 related to the 5-round
NDs when c2 = 0.5,d = 1, r = 5. p0 = 2−6.

Distinguisher p1 p2 p3 log2N

BD 0.8975 0.3334 0.0462 14.72

NDk=2 0.9677 0.468 0.01964 13.971

NDk=4 0.9894 0.6908 0.00704 14.189

NDk=8 0.9988 0.8539 0.00063 13.863

NDk=16 0.9999 0.9693 2.4× 10−5 15.56

TABLE 15. The value of p1, p2, p3 related to the 5-round
NDs when c2 = 0.5, d = 1, r = 5. p0 = 2−12.

Distinguisher p1 p2 p3 log2N

BD 0.8975 0.3334 0.0462 26.66

NDk=2 0.9677 0.468 0.01964 25.81

NDk=4 0.9894 0.6908 0.00704 25.84

NDk=8 0.9988 0.8539 0.00063 24.49

NDk=16 0.9999 0.9693 2.4× 10−5 24.46

No matter which phenomenon occurs, it is helpful
for reducing the data complexity. This is why the data
complexity is reduced in most cases shown in Table 12
and Table 13.

To answer the second question, we must consider
the impact of p2. For convenience, we summarized
the values of p1, p2, p3 related to the 5-round NDs in
Table 14.

The value of p2 also increases as shown in Table 14.
Chen et al presented that the impact of p1, p2 on N is
O((p1− p2)−2) [2]. Therefore, the promotion of p2 has
a negative impact on the data complexity. If p2 is very
close to p1, the positive impact of the accuracy increase
may be offset. This is why the data complexity is not
reduced when the 5-round NDk=16 is adopted.

Although p2 also increases when we improve the
distinguishing accuracy of NDs, its negative influence
seldom offsets the positive influence resulted from the
accuracy promotion. Table 12 and Table 13 have
already proved it. Actually, when p0 becomes smaller,
the reduction of data complexity is more significant.
Table 15 shows an example.

Practical experiments. Based on the attack
settings shown in Table 12, we perform NASA against
10-round Speck32/64 based on the BD and NDk=2

(r = 6) respectively. The target is to recover sk10. Since
d = 2, the number of surviving subkey guess should not
exceed 137× (1− β0) + (216 − 137)× β1 = 137.31.

When we perform NASA with Gohr’s 6-round ND
(BD) 100 times (N = 216.907), the results are

1. the true subkey sk10 survives in 99 trails.
2. the average number of surviving subkey guesses is

18.63.
3. In all the 100 trails, the number of surviving subkey

guess is lower than 137.31.
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When we perform NASA with our 6-round NDk=2

100 times (N = 215.869), the results are

1. the true subkey sk10 survives in 94 trails.
2. the average number of surviving subkey guesses is

29.44.
3. In all the 100 trails, the number of surviving subkey

guess is lower than 137.31.

The practical experiments further prove that our new
NDs can be applied to NASA. Besides, with smaller
data complexity, the NASA based on our ND achieves
a competitive result.

7.3. Application to Gohr’s Attack

Gohr’s attack is not directly related to the distinguish-
ing accuracy of NDs. Thus, we mainly verify whether
our new ND is applicable to Gohr’s attack.

In [1], Gohr performed a key recovery attack on 11-
round Speck32/64. In this section, we first perform the
same attack using our new NDk with k = 2. Then we
present a deeper discuss.

7.3.1. Key Recovery Attack on 11-round Speck32/64
The target of this attack is to recover the last two
subkeys (sk11, sk10). This attack returns a pair of
subkey guesses (kg11, kg10). If kg11 = sk11 and kg10 is
different from sk10 at most 2 bits, this attack is viewed
as a success [1].

Experiment settings. A 6-round and 7-round
NDk=2 are built over α = (0x40, 0x0). A prepended 3-
round differential is extended from a 2-round differential

∆P = (0x211, 0xa04)
p0=2−6

−−−−−→ α = (0x40, 0x0). Six
neutral bits {14, 15, 20, 21, 22, 23} are used to generate
plaintext structures consisting of 64 plaintext pairs.
The data reuse strategy is also adopted by letting
MRF = 2 and SSD = 1.

The whole attack is performed as

1. Randomly generate 100 plaintext pairs with a
difference ∆P .

2. Generate 100 plaintext structures using 6 neutral
bits above, and collect corresponding ciphertext
structures.

3. For each ciphertext structure:

(a) collect possible kg11 using the method
introduced in Section 3.2.

(b) For each possible kg11:

i. Decrypt the current ciphertext structure
with kg11.

ii. Collect possible subkey guess pairs
(kg11, kg10) using the method introduced
in Section 3.2.

4. Return surviving (kg11, kg10) with the highest rank
score as the final subkey guess.

In Section 3.2, we have reviewed how Gohr’s attack
recovers the subkey skr+1 with an r-round ND. This
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FIGURE 4. The expectations of the conditional posterior
probability (Equation 21) of Gohr’s 6-round ND against
Speck32/64.
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FIGURE 5. The expectations of the conditional posterior
probability (Equation 21) of our 6-round NDk=2 against
Speck32/64.

method needs a rank score threshold. In step 3a
and 3(b)ii, we need a threshold c3, c4 respectively. In
this paper, let c3 = 18 and c4 = 150.

Experiment results. The key recovery attack was
performed 1000 times. Under the settings above, this
attack was successful in 527 out of 1000 trials. Using
the same ciphertexts, the attack based on Gohr’s
NDs was also performed 1000 times. As a comparison,
this attack was successful in 521 out of 1000 trials.

7.3.2. Posterior Probability Comparison
We have proved that our ND is applicable to Gohr’s
attack. Moreover, in the 1000 trials above, the attack
based on our NDs achieved a higher success rate.

To check whether the higher success rate is
necessarily obtained using our new NDs, we perform
a deeper analysis from the perspective of the key rank
score.

Consider a (r + 1)-round cipher E. We first build a
r-round ND based on a difference α. Then we collect
numerous ciphertext pairs corresponding to plaintext
pairs with a difference α. We decrypt these ciphertext
pairs with a subkey guess kg, and feed the partially
decrypted ciphertext pairs into the ND.

Let tk denote the true subkey of the (r + 1)-round.
Besides, the Hamming distance between tk and kg is d.
We focus on the expectation of the following conditional
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FIGURE 6. The expectations of the conditional posterior
probability (Equation 21) of Gohr’s 7-round ND against
Speck32/64.
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FIGURE 7. The expectations of the conditional posterior
probability (Equation 21) of our 7-round NDk=2 against
Speck32/64.

posterior probability

Z = Pr (Y = 1 |X, d ) = F (X) (21)

where X is the input of the ND, and F is the ND.
More exactly, if the ND is Gohr’s ND, X is a decrypted
ciphertext pair. If the ND is our ND (eg. NDk), X is
a ciphertext group consisting of k decrypted ciphertext
pairs.

Taking NDk=2 against Speck32/64 reduced to 6, 7
rounds as examples, we estimate the expectations of
the above conditional posterior probability. As a
comparison, we also estimate the expectations based
on Gohr’s NDs. The final estimation results are shown
in Figure 4, Figure 5, Figure 6, Figure 7.

There are two important phenomena. First,
compared with Gohr’s NDs, our NDs brings higher
expectations Pr(Y = 1|X, d = 0). Second, the value
of Pr(Y = 1|X, d = 0) − Pr(Y = 1|X, d = i), i ∈ [1, 3]
increases.

The first phenomenon makes that a high key rank
score (c3 = 18, c4 = 150) threshold is applicable. The
second phenomenon makes the gap between the rank
score of the true key and that of wrong keys increase.
By setting a high key rank score threshold, wrong keys
are less likely to obtain a key rank score higher than the
threshold. Thus, a higher success rate is more likely to
be obtained by replacing Gohr’s NDs with our NDs.

8. CONCLUSIONS

In this paper, we focus on the neural distinguisher
which is the core module in neural aided cryptanalysis.
Inspired by works in the machine learning community,
we propose a new neural distinguisher considering
multiple ciphertext pairs simultaneously. We perform
a deep exploring of this new neural distinguisher, and
show its superiorities.

First, Compared with the neural distinguisher
considering a single ciphertext pair, this new neural
distinguisher achieves higher distinguishing accuracy.
This advantage is verified through applications to five
different ciphers. Second, except for features hidden in a
single ciphertext pair, this new neural distinguisher can
capture derived features from multiple ciphertext pairs,
which is the root reason for the accuracy promotion.
Derived features are detected by a newly proposed
verification framework consisting of two tests: False
Negative Test, False Positive Test.

Our new neural distinguisher can be applied to
neural aided key recovery atacks. Due to the accuracy
promotion, it can be used to reduce the data complexity
of the neural aided statistical attack. A data reuse
strategy is proposed to strengthen this advantage. As
for the key recovery attack proposed by Gohr, compared
with Gohr’s neural distinguisher, our new neural
distinguisher can bring a success rate promotion, which
is verified by the attack against 11-round Speck32/64.

Our new neural distinguisher is full of potential. In
the future, as long as neural aided key recovery attacks
are related to the performance of neural distinguishers,
our new neural distinguisher is a priority choice.
Besides, our neural distinguisher also introduces a
novel cryptanalysis direction by considering multiple
ciphertext pairs simultaneously.

9. DATA AVAILABILITY

The data underlying this article are available in the
article.
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