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Abstract

We present a new construction of maliciously-secure, two-round multiparty computation (MPC) in
the CRS model, where the first message is reusable an unbounded number of times. The security of the
protocol relies on the Learning Parity with Noise (LPN) assumption with inverse polynomial noise rate
1/n1−ε for small enough ε, where n is the LPN dimension. Prior works on reusable two-round MPC
required assumptions such as DDH or LWE that imply some flavor of homomorphic computation. We
obtain our result in two steps:

• In the first step, we construct a two-round MPC protocol in the silent pre-processing model (Boyle et
al., Crypto 2019). Specifically, the parties engage in a computationally inexpensive setup procedure
that generates some correlated random strings. Then, the parties commit to their inputs. Finally,
each party sends a message depending on the function to be computed, and these messages can
be decoded to obtain the output. Crucially, the complexity of the pre-processing phase and the
input commitment phase do not grow with the size of the circuit to be computed. We call this
multiparty silent NISC, generalizing the notion of two-party silent NISC of Boyle et al. (CCS 2019).
We provide a construction of multiparty silent NISC from LPN in the random oracle model.

• In the second step, we give a transformation that removes the pre-processing phase and use of
random oracle from the previous protocol. This transformation additionally adds (unbounded)
reusability of the first round message, giving the first construction of reusable two-round MPC from
the LPN assumption. This step makes novel use of randomized encoding of circuits (Applebaum
et al., FOCS 2004) and a variant of the “tree of MPC messages” technique of Ananth et al. and
Bartusek et al. (TCC 2020).

1 Introduction

Consider a scenario where a consortium of oncologists wants to compute several statistical tests on the
confidential genomic data of their patients, while preserving the privacy of their patients. To accomplish
this, each oncologist first publishes an encryption of their private database on their website. Next, given
a proposed hypothesis F , the oncologists would like to figure out if this hypothesis is consistent with their
joint databases. They would like to achieve this by sending a single message (that could grow with the
size of the circuit computing F ) to each other. Can they achieve this? What if they want to continue
computing multiple hypotheses on the same data? Can they perform multiple tests at varying points in time
while sending just one additional message for every new test? In other words, can they reuse the published
encryptions of their data across multiple tests?

∗University of California, Berkeley, bartusek.james@gmail.com
†Supported in part by DARPA under Agreement No. HR00112020026, AFOSR Award FA9550-19-1-0200, NSF CNS Award

1936826, and research grants by the Sloan Foundation, Visa Inc., and Center for Long-Term Cybersecurity (CLTC, UC Berkeley).
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Government or DARPA.
‡University of California, Berkeley and NTT Research, sanjamg@berkeley.edu.
§Tata Institute of Fundamental Research, akshayaram.srinivasan@tifr.res.in
¶University of California, Berkeley, yinuo@berkeley.edu

1



This scenario is a special case of the more general problem of constructing reusable two-round multiparty
computation, whose feasibility was established in the work of Garg et al. [GGHR14] assuming the existence of
indistinguishability obfuscation [BGI+01, GGH+13]. Starting with this work, an important line of research
has been to weaken the computational assumptions required for constructing this primitive. The work of
Mukherjee and Wichs [MW16] and a recent work of Ananth et al. [AJJM20] gave a construction from the
Learning with Errors assumption [Reg05]. The work of Benhamouda and Lin [BL20] constructed such a
protocol from standard assumptions on bilinear maps and the work of Bartusek et al. [BGMM20] provided
a construction based on the DDH assumption.

Despite significant progress, our understanding of the assumptions necessary to realize two-round MPC
protocols with reusability still lags behind the assumptions known to be sufficient for two-round MPC without
reusability. In particular, while we know two-round MPC from any two-round OT [BL18, GS18a], known
constructions of two-round MPC with reusability seem to require assumptions that support homomorphic
computation — namely, LWE and DDH (which are known to imply various flavours of homomorphic secret
sharing [BGI16]). In particular, these assumptions are known to imply some notion of communication-
efficient1 secure computation for a rich class of functions [MW16, BGI16, DHRW16]. In this work, we
ask:

Can we realize reusable two-round MPC from assumptions that are not known to imply
communication-efficient secure computation?

1.1 Our Results

We answer the above question in the affirmative by constructing a reusable two-round MPC protocol from
the LPN assumption over binary fields with inverse polynomial noise rate 1/n1−ε for small enough constant
ε, where n is the LPN dimension.

Our construction proceeds in two steps:

• Multiparty Silent NISC: We first consider the problem of constructing a two-round MPC protocol
where the first round message is succinct (i.e., the complexity of computing the first round message
does not grow with the circuit size) in the silent pre-processing model [BCG+19b]. To give more
details, there is a pre-processing phase run by a dealer that generates correlated random strings for
each party. In the first round, the parties send a commitment to their inputs using the correlated
randomness. In the second round, the parties send a message that can be later decoded to obtain the
output of the function. For efficiency, we require the complexity of the pre-processing phase and the
input commitment phase to be independent of the circuit size and only the second round computation
can depend on this parameter. We call this multiparty Silent NISC, and this naturally extends a
similar notion defined by Boyle et al. [BCG+19a] for the two-party case. We give a construction of a
multiparty silent NISC protocol with silent pre-processing in the random oracle model based on the
LPN assumption.

• Reusable Two-Round MPC: In the second step, we transform the above protocol to a protocol
in the CRS model that achieves unbounded reusability without increasing the number of rounds or
requiring stronger assumptions. As a corollary, we obtain the first construction of reusable two-round
MPC in the CRS model from the LPN assumption.

2 Technical Overview

In this section, we first discuss the notion of multiparty non-interactive secure computation with silent
preprocessing, which is a natural extension of the silent NISC primitive of [BCG+19a] to the multiparty
setting. We then give an overview of our construction of multiparty silent NISC from the LPN assumption

1By communication efficiency, we mean that the communication cost of the protocols do not grow with the circuit size of
the functionality to be computed.
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in the random oracle model. This result mostly follows from a combination of ideas from [GIS18] and
[BCG+19b], with a few necessary tweaks. Finally, we give an overview of the transformation from multiparty
NISC to reusable two-round MPC. This transformation forms the heart of our technical contribution.

2.1 Multi-party Silent NISC

In a silent NISC protocol [BCG+19a], two parties begin by interacting in a preprocessing phase that results
in some shared correlated randomness. In addition, they send to each other encodings of their inputs x and
y. So far, all computation and communication is “small”, i.e. it does not grow with the size of the circuit C
they will eventually want to compute on their inputs. At this point, one party may publish a single (large)
message to the other party, allowing the latter to learn the value C(x, y). Since all communication before
this point was small, the parties will be required to “silently” expand their correlated randomness into useful
correlations needed for the final non-interactive computation phase.

We naturally extend this interaction pattern to the multi-party setting. We outline a three-phase approach
for computing a m-party functionality.

• Preprocessing phase: A trusted dealer computes correlated secrets {si}i∈[m] and sends si to party i.

• Input commitment phase: Party i, using secret si, computes and broadcasts a commitment ci to its
input xi.

• Compute phase: Once a circuit C is known to all parties, they each compute and broadcast a single
message mi.

• Recovery: The protocol is publicly decodable. That is, the messages {mi}i∈[m] can be combined by

any party (inside or outside the system) to recover the output Y ← C(x1, . . . , xn).

Crucially, we require the computation and communication during the pre-processing and input commit-
ment phases to only grow as a fixed polynomial in the input size and the security parameter, and not with
the size of C (although an upper bound on the size of supported circuits may be known during these phases).

2.1.1 Starting point: PCG

Based on prior works, we can construct a multiparty NISC protocol using either a multi-key fully-homomorphic
encryption [MW16, DHRW16], or homomorphic secret sharing [BGMM20], or using a specialized type of
witness encryption [BL20, GS17]. However, each of these approaches make use of assumptions that can
support some (limited) form of homomorphic computation on encrypted data. Further, these protocols have
a fairly inefficient compute phase. For example, the approach of [BGMM20] requires the parties to compute
a PRF homomorphically under a HSS scheme - this non-black-box use of cryptography will be prohibitively
inefficient in practice.

On the other hand, the works of [BCG+19b] and [BCG+19a] study methods for distributing short seeds
to two parties which can then be silently and efficiently expanded into useful two-party correlations under
the LPN assumption. For example, they show how to generate many random oblivious transfer (OT)
correlations efficiently via short seeds, and they call the primitive that accomplishes this a pseudorandom
correlation generator (PCG) for OT correlations.

Now, given pairwise random OT correlations between each pair of parties, [GIS18] shows how to imple-
ment the two-round MPC protocol of [GS18b] (which we refer to as GS18) in a black-box manner. Their
approach would fit the template of multi-party silent NISC, except that their input commitment phase would
also grow with the size of the circuit, and thus the resulting protocol would not be “succinct”. In this work,
we show how to use the PCG techniques of [BCG+19b, BCG+19a] in order to generate more sophisticated
correlations that suffice to instantiate GS18 while keeping the input commitment phase independent of the
circuit to be computed.
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2.1.2 A PCG for GS18 Correlations

In [GIS18], the random OT correlations and first-round messages (which also function as input commitments)
are essentially used to set up certain structured OT correlations that enable the parties to compute a circuit
over their joint inputs with only one additional message. At a high level, these structured correlations
allow parties to each output sequences of garbled circuits that communicate with each other in order to
implement an MPC protocol among themselves, though the details of this will not be important for this
discussion. Here, we directly describe the correlation which consists of pairwise correlations set up between
each pair of parties, one acting as a sender and one as a receiver. The sender gets random OT messages
{(mt,0,mt,1)}t∈[T ] and the receiver gets a random string v along with messages {mt,zt}t∈[T ]. Each zt is not
a uniformly random and independent bit, rather, each is computed as zt = NAND (v[f ]⊕ α, v[g]⊕ β)⊕ v[h]
for some indices (f, g, h) and constants (α, β).

As we will see below, one can write what is described so far as a two-party bilinear correlation. This is
good news, since the work of [BCG+19b] constructed a PCG for two-party bilinear correlations. However,
we do not generically make use of their PCG, for two reasons. First, we will actually require a multi-party
correlation, since each party’s random string v must be shared among all of the two-party correlations it sets
up with each other party. Next, we have a more stringent requirement on the complexity of expansion. In
particular, parties must use some of their expanded randomness in the input commitment phase, which must
be efficient. We set up the PCG so that parties can obtain some part of the expanded randomness without
expanding the entire set of correlations, which is computation that would grow with the size of the circuit.
Thus, we describe how to set up the multi-party correlations necessary for GS18 from basic building blocks.
Although our construction and proof follow those of [BCG+19b] very closely, we give a full description of
the scheme in the body for the sake of completeness.

Now we briefly review the PCG of [BCG+19b, BCG+19a] that produces a large number of (unstructured)
random OT correlations. Fix parameters n′ > n. The dealer first samples a sparse binary error vector y ∈ Fn′2
(with a compact description denoted by ỹ) and a random offset (shift) δ ∈ F2λ . Then, y · δ is secret shared

into shares k0, k1, which are vectors in Fn′2λ and also have compact descriptions k̃0, k̃1 (this step requires the

use of Distributed Point Functions [GI14]). Finally, (k̃0, ỹ) is given to the receiver, (k̃1, δ) is given to the
sender, and a n′-by-n random binary matrix H is made public. In order to expand these short seeds into n
random OT correlations, the receiver first expands its compact descriptions into (k0, y) and then computes
t0 := k0 ·H ∈ Fn2λ and z := y ·H ∈ Fn2 , and the sender expands its compact description into k1 and computes
t1 := k1 ·H ∈ Fn2λ . It is easy to check that t0 = t1 + z · δ and thus for each i ∈ [n], (z[i], t0[i]), (t1[i], t1[i] + δ)
is a correlated random OT instance. The choice bits z are random due to the LPN assumption. In order to
remove the correlated offset δ, the parties can use a correlation robust hash function [IKNP03] or a random
oracle, to hash each OT string.

Recall that in our setting, we actually require some structure on the string z of choice bits. To implement
this, we first write each expression zt = NAND(v[f ] ⊕ α, v[g] ⊕ β) ⊕ v[h] as a degree-two equation over F2

whose variables are entries of v. That is, zt = v[f ]v[g]+αv[g]+βv[f ]+v[h]+αβ+1. In order to obtain these
degree-two correlated OT, we follow the construction of PCGs for constant-degree relations from [BCG+19b].
In particular, we define the error vector to be y′ := (1, y)⊗ (1, y) ∈ Fn′·n′2 . Same as before, y′ is secret shared
into k0, k1 ∈ Fn′·n′2λ . Now, the receiver can compute v := y · H and set z := (1, v) ⊗ (1, v) ∈ Fn·n2 , and
likewise the receiver and sender can compute vectors t0 := k0 · (H ′⊗H ′) and t1 := k1 · (H ′⊗H ′) respectively,

where H ′ is

(
1

H

)
. Both are vectors in Fn·n2λ , such that for any f, g ∈ [n] and any degree-one or degree-two

monomial v[f ]v[g] over the entries of v, there exists an index i such that (z[i] := v[f ]v[g], t0[i]) , (t1[i], t1[i] + δ)
is a valid correlated OT. One can then obtain any degree-two correlated OT by taking appropriate linear
combinations. Correctness of this step crucially relies on the fact that all the “base” correlated OTs have
the same shift δ. After taking the linear combinations, the parties can still apply a correlation robust hash
function to get structured OT correlations with random sender strings.

In the body, we show that even in the setting where there is one receiver with a fixed error vector y,
but multiple senders with different random offsets δi, one can still show security via reverse sampleability.
In particular, for any one of n parties, their output correlation can be reverse sampled, given the output
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correlations of all other parties.

2.1.3 The Final Protocol

Given ideas from the previous section, we can complete our description of multiparty silent NISC from LPN
in the random oracle model.

In the preprocessing phase, a trusted dealer sets up pairwise structured OT correlations between each
pair of parties as described above. We include a random oracle in the CRS, which is used to generate the
(large) matrix H and also used as a correlation robust hash function. In the input commitment phase,
we have parties partially expand their correlated seeds into randomness that may be used to mask their
inputs. Crucially, this step does not require fully expanding their seeds into the entire set of structured
correlations that will be used in the compute phase, so we maintain the “silent” notion. To implement this,
we actually sample two different H1, H2 matrices and two different error vectors y1, y2 of different sizes,

and set v = (y1, y2)

(
H1

H2

)
. As long as each yb has sufficient error positions, we can still rely on LPN

with inverse polynomial error rate. Finally, in the compute phase, the parties publish GS18 second round
messages computed with respect to their expanded correlations, thus completing the protocol. Since the
GS18 protocol is publicly decodable, so is our protocol.

As a final note, we can remove the random oracle at the cost of having a large CRS. In particular, given
a bound on the size of the circuit to be computed, we can instantiate the protocol with a CRS that contains
the H matrix (note that the size of this matrix must grow with the number of OT correlations generated
and thus, the size of the circuit to be computed). Although this CRS is large, it can be reused across any
number of input commitment and compute phases - a property that we take advantage of in the next section,
which focuses on a construction of reusable two-round MPC from LPN. We will also have to replace the
use of the random oracle as a correlation-robust hash function. As already observed in [BCG+19b], the role
of correlation robust hash function can be replaced by an encryption scheme which is semantically secure
against related-key attack for the class of linear functions. It is known that such an encryption scheme can
be based on the LPN assumption [AHI11].

2.2 Reusable Two-round MPC from LPN

We now turn to our main result - a reusable two-round MPC protocol from the LPN assumption. Our
approach takes the multiparty silent NISC protocol from last section as a starting point and constructs from
it a first message succinct two-round MPC (FMS-MPC). An FMS-MPC protocol satisfies the property that
the size of computation and communication necessary in the first round only grows with the input size and
security parameter, and not with the size of the circuit to be computed in the second round. The work of
[BGMM20] shows that FMS-MPC implies reusable two-round MPC, so we appeal to their theorem to finish
our construction. Our construction of FMS-MPC proceeds in two steps.

2.2.1 Step 1: Bounded FMS-MPC.

In order to convert a multiparty silent NISC protocol into a two-round MPC, we need to remove the pre-
processing phase, instantiating the dealer’s computation in a distributed manner. A natural approach is to
use a two-round MPC (e.g. GS18) to compute the preprocessing and input commitment phases, and after
this is completed, have the parties compute and send their compute phases messages. However, this results
in a three-round MPC protocol.

To collapse this protocol into two rounds, we use an idea from [BGMM20] - the two-round MPC which
implements the dealer will compute garbled labels corresponding to the outputs of the preprocessing and
input commitment phases, and in the second round, parties will also release garbled circuits that output
their compute phase messages. Anyone can then combine the garbled inputs and garbled circuits to learn
the entire set of compute phase messages, which will then allow one to recover the output of the circuit.
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Since the computation necessary for computing the preprocessing and input commitment phases is small,
the first round of the resulting protocol is succinct.

However, recall that the multiparty silent NISC constructed in last section requires a large CRS if
instantiated without the use of a random oracle. In an FMS-MPC, the size of CRS should only depend on
the security parameter, not the circuit size. Thus, we do not quite obtain an FMS-MPC following the above
approach. Rather, we obtain what we call a bounded FMS-MPC, which has a large (but reusable) CRS
whose size grows with the size of the circuit to be computed. Meanwhile, this MPC protocol is bounded
since the size of the CRS determines the bound on the circuit size that can be supported.

2.2.2 Step 2: From Bounded FMS-MPC to FMS-MPC.

Thus, our task is to reduce the size of the CRS as well as to enable computation of unbounded polynomial-size
circuits in the second round. This forms the main technical contribution of the second step.

To support unbounded circuit size, our idea is to use a randomized encoding in order to break down the
computation of one large circuit into the computation of many small circuits. In particular, using results
from [AIK05] for example, one can compute any a priori unbounded polynomial-size circuit with a number
of “small” circuits, where this number depends on the original circuit size. Here “small” means that the
size of each individual circuit is some fixed polynomial in the security parameter. Thus, the size of the CRS
required to compute each of these small circuits only grows with the security parameter. Moreover, the CRS
in our bounded FMS-MPC protocol is reusable, so the same small CRS can be used to compute each small
circuit of randomized encodings.

However, computing each of the small circuits in parallel does not result in an FMS-MPC. Indeed, to
maintain security this would require a different first round message for computing each randomized encoding
circuit, and thus the total size of first round messages will still grow with the original circuit size. To remedy
this, we use a variant of the tree-based approach from [AJJM20, BGMM20]. We construct a polynomial-
size tree of bounded FMS-MPC instances, where each internal node computes two sets of fresh first round
messages which are to be used to compute its two child nodes. Each leaf node corresponds to one of the small
randomized encoding circuits. The first round message in our final FMS-MPC protocol will only consist of
the first round messages for computing the root of this tree. In the second round, parties release garbled
circuits that compute the second round message for each node in this tree. As before, to assist evaluation
of these garbled circuits, each node will instead output garbled labels corresponding to the second round
messages. This allows anyone to evaluate the entire tree, eventually learning the outputs of each leaf MPC,
thus learning the randomized encoding of the original circuit that was computed.

Crucially, the small CRS can be reused to compute each node of this tree, so that each internal node
does not need to generate a fresh CRS for its children. This allows the tree to grow to some unbounded
polynomial size without each node computation becoming prohibitively large - each node just computes
two sets of first round messages of the bounded FMS-MPC, which in total has some fixed polynomial size.
Additional details of this construction can be found in Section 5.2.

2.2.3 On the LPN Assumption.

In both the multiparty NISC and the reusable MPC results, we rely on LPN with inverse polynomial error
rate. In both cases, the reason is that we need the computation in the first phase (pre-processing / first-round
message) to be (polynomially) smaller than the size of the circuits supported in the second phase.2 In the
first phase, parties perform computation that sets up the error vector, so the number of error positions in
the vector must be inverse polynomially related to the number of correlations eventually used by the parties,
which roughly corresponds to the number of LPN samples. Thus, we can rely on LPN with noise rate 1/n1−ε,
see Section 3.5 below for more details.

2Note that, as discussed above, in the reusable MPC case, we only need to support circuits of some fixed polynomial size in
order to allow parties to compute circuits of unbounded polynomial size.
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3 Preliminaries

Let λ denote the security parameter. A function µ (·): N→ R is said to be negligible if for any polynomial
poly (·) there exists λ0 ∈ N such that for all λ > λ0 we have µ (λ) < 1

poly(λ) . We will use negl (λ) to denote

an unspecified negligible function and poly (λ) to denote an unspecified polynomial function. We denote [k]
to be the set {1, . . . , k}. For any n-dimensional vector y, we use y[i] to denote the ith entry of y, and use
y[: k] (k ≤ n) to denote its truncation from y[1] to y[k]. For a probabilistic algorithm A, we denote A (x; r)
to be the output of A on input x with the content of the random tape being r. When r is omitted, A (x)
denotes a distribution. For a finite set S, we denote x ← S as the process of sampling x uniformly from
the set S. We will use PPT to denote Probabilistic Polynomial Time algorithm. We assume without loss of
generality that the length of the random tape used by all cryptographic algorithms is λ.

3.1 Robust Private-Key Encryption

A robust private-key encryption scheme (rob.Enc, rob.Dec) satisfies the usual properties of correctness and
semantic security. It additionally ensures that the decryption either outputs the original message correspond-
ing to some ciphertext c, or it outputs nothing. This is formalized by the following robustness property. For
any PPT adversary A and message m,

Pr
k←{0,1}λ, c←rob.Enc(k,m)

[rob.Dec(k′, c) 6= ⊥ : k′ ← A(c)] = negl(λ).

A robust private-key encryption can be constructed from any PRF [BGMM20].

3.2 Garbled Circuits

Below we recall the definition of garbling scheme for circuits [Yao86]. A garbling scheme for circuits is a tuple
of PPT algorithms (Garble,GEval). Garble is the circuit garbling procedure and GEval is the corresponding
evaluation procedure. More formally:

•
(
C̃, {labi,b}i∈[n],b∈{0,1}

)
← Garble

(
1λ, C

)
: Garble takes as input a security parameter 1λ, a circuit C,

and outputs a garbled circuit C̃ along with labels labi,b where i ∈ [n] ([n] is the set of input wires of
C) and b ∈ {0, 1}. Each label labi,b is assumed to be in {0, 1}λ.

• Y ← GEval
(
C̃, {labi,xi}i∈[n]

)
: Given a garbled circuit C̃ and a sequence of input labels corresponding

to an input x: {labi,xi}i∈[n] (referred to as the garbled input), GEval outputs a string Y .

A garbling scheme satisfies the following properties:

Correctness. For correctness, we require that for any circuit C and input x ∈ {0, 1}n:=|x| we have that:

Pr
[
C (x) = GEval

(
C̃, {labi,xi}i∈[n]

)]
= 1

where
(
C̃, {labi,b}i∈[n],b∈{0,1}

)
← Garble

(
1λ, C

)
.

Security. For security, we require that there exists a PPT simulator Sim such that for any circuit C and
input x ∈ {0, 1}|x|, we have that(

C̃, {labi,xi}i∈[n]
)

c
≈ Sim

(
1|C|, 1|x|, C (x)

)
where

(
C̃, {labi,b}i∈[n],b∈{0,1}

)
← Garble

(
1λ, C

)
and

c
≈ denotes that the two distributions are computation-

ally indistinguishable.

Remark 3.1. In this paper we sometimes uses lab to denote {labi,b}i∈[n],b∈{0,1} (all input labels), and we

use l̂ab to denote {labi,xi}i∈[n] (a garbled input).
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Authenticity of Input labels. We require for any circuit C and input x ∈ {0, 1}n and any PPT adversary
A, the probability that the following game outputs 1 is negligible.(

C̃, {labi,xi}i∈[n]
)
← Sim

(
1|C|, 1|x|, C (x)

)
,

{lab′i,xi}i∈[n] ← A
(
C̃, {labi,xi}i∈[n]

)
,

Y ← GEval
(
C̃, {lab′i,xi}i∈[n]

)
,(

{lab′i,xi}i∈[n] 6= {labi,xi}i∈[n]
)
∧ (Y 6= ⊥).

Remark 3.2. One can add authenticity of input labels property generically to any garbled circuit construction
by digitally signing every input label and including the verification key as part of the garbled circuit C̃.

Label encryption. We design a specific encryption scheme for encrypting a grid of 2 × n input labels
corresponding to any garbled circuits. This encryption scheme uses a grid of 2 × n keys (denoted by K).
It encrypts each label using each corresponding key, making use of a robust private-key encryption scheme
(rob.Enc, rob.Dec) as defined in Section 3.1. It then randomly permutes each pair (column) of ciphertexts,
and outputs the resulting 2 × n grid. On the other hand, decryption only takes as input a set of n keys
(denoted by K̂), that presumably correspond to exactly one ciphertext per column, or, exactly one input
to the garbled circuit. The decryption algorithm uses the keys to decrypt exactly one label per column,
with the robustness of encryption scheme ensuring that indeed only one ciphertext per column is able to be
decrypted. The random permutations that occur during encryption ensure that a decryptor will recover a
valid set of input labels without knowing which input they actually correspond to. This will be crucial in
our construction.

• elab ← LabEnc
(
K, lab

)
: On input a grid of 2 × n keys K := {Ki,b}i∈[n],b∈{0,1}, and lab :=

{labi,b}i∈[n],b∈{0,1}, LabEnc draws n random bits b′i ← {0, 1} and outputs elab := {elabi,b}i∈[n],b∈{0,1},
where elabi,b = rob.Enc

(
Ki,b⊕b′i , labi,b⊕b′i

)
.

• l̂ab ← LabDec
(
K̂, elab

)
: On input a set of n keys K̂ := {Ki}i∈[n], a grid of 2 × n encrypted

labels elab := {elabi,b}i∈[n],b∈{0,1}, it outputs l̂ab := {labi}i∈[n], where for each i ∈ [n], labi =

rob.Dec (Ki, elabi,0) if it is not ⊥ and rob.Dec (Ki, elabi,1) otherwise.

3.3 Two-Round MPC

We consider the following syntax of two round MPC protocol.

Definition 3.3 (Two-Round MPC Protocol). An m-party two-round MPC protocol is described by a triplet
of PPT algorithms π := (MPC1,MPC2,MPC3) with the following syntax:

•
(
st

(1)
i ,msg

(1)
i

)
← MPC1

(
1λ,CRS, C, i, xi, ri

)
: Takes as input 1λ, a common reference string CRS

(whose size should only depend on λ; we drop mentioning it explicitly if not needed), (the descrip-
tion of) a circuit C to be computed, identity of a party i ∈ [m], input xi ∈ {0, 1}∗ and randomness
ri ∈ {0, 1}λ (we drop mentioning the randomness explicitly when it is not needed). It outputs party i’s

first message msg
(1)
i and its private state st

(1)
i .

•
(
st

(2)
i ,msg

(2)
i

)
← MPC2

(
C, st

(1)
i ,
{
msg

(1)
j

}
j∈[m]

)
: Takes as input (the description of) a circuit C to

be computed, the state of a party st
(1)
i , and the first round messages of all the parties

{
msg

(1)
j

}
j∈[m]

.

It outputs party i’s second round message msg
(2)
i and its private state st

(2)
i .
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• Y ← MPC3

(
st

(2)
i ,
{
msg

(2)
j

}
j∈[m]

)
: Takes as input the state of a party st

(2)
i , and the second round

messages of all the parties
{
msg

(2)
j

}
j∈[m]

. It outputs the the output Y := C (x1, . . . , xm).

Remark 3.4. In order to distinguish this notion of two-round MPC from the other enhanced notions, we
will sometimes refer to this notion of two round MPC as the vanilla notion of two round MPC.

Remark 3.5. In this work we often consider the vanilla two-round MPC to be publicly decodable. That

is, anyone can recover the output y based on just
{
msg

(2)
j

}
j∈[m]

. We drop mentioning st
(2)
i in the publicly

decodable setting.

3.3.1 Security

We follow the standard real/ideal world paradigm [Gol04]. Consider m parties (P1, . . . , Pm) with inputs
(x1, . . . , xm) respectively that wish to interact in a protocol π to evaluate any circuit/functionality C on
their joint inputs. The security of protocol π (with respect to the circuit C) is defined by comparing the real-
world execution of the protocol with an ideal-world evaluation of C by a trusted party (ideal functionality).
Informally, it is required that for every adversary A that corrupts some subset of the parties I ⊂ [m]
and participates in the real execution of the protocol, there exist an adversary Sim, also referred to as the
simulator, which can achieve the same effect in the ideal-world. Denote ~x := (x1, . . . , xm). We now formally
describe the security definition.

3.3.2 Real Execution

In the real execution, the protocol π for computing C is executed in the presence of an adversary A. The
adversary takes as input the security parameter λ, the CRS and an auxiliary input z. The honest parties
follow the instructions of π. A sends all messages of the protocol on behalf of the corrupted parties following
any arbitrary polynomial-time strategy. The interaction of A in the protocol defines a random variable
RealA(λ, ~x, z, I) whose value is determined by the coin tosses of the adversary and the honest parties. This
random variable contains the output of the adversary as well as the outputs of the honest parties.

3.3.3 Ideal Execution

In the ideal execution, an ideal world adversary Sim interacts with a trusted party (ideal functionality). The
ideal execution proceeds as follows:

• Honest parties send inputs to the trusted party: Each honest party sends its input to the trusted
party. Each corrupted party Pi may either send its input xi or send some other input of the same
length to the trusted party. Let xi

′ denote the value sent by party Pi. Note that for a semi-honest
adversary, xi

′ = xi always.

• Trusted party sends output to the adversary: The trusted party computes Y ← C (x1
′, . . . , xm

′)
and sends Y to Sim.

• Adversary decides whether to continue or abort: After seeing the values y, the adversary sends
either an abort or continue message to the honest parties. (A semi-honest adversary never aborts.)

The interaction of Sim with the trusted party defines a random variable IdealSim(λ, ~x, z, I), containing the
output of Sim and of the honest parties. Having defined the real and the ideal worlds, we now proceed to
define our notion of security.

Definition 3.6. Let λ be the security parameter and let C be any m party functionality. We say that a two
round MPC protocol π securely computes C in the presence of malicious/semi-honest adversaries if for every
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PPT real world malicious/semi-honest adversary A, there exists a PPT ideal world adversary Sim, such that
for any ~x ∈ ({0, 1}∗)m, z ∈ {0, 1}∗, and I ⊂ [m], and for any PPT distinguisher D, we have that:

Pr
[
D (RealA (λ, ~x, z, I)) = 1

]
− Pr

[
D (IdealSim (λ, ~x, z, I)) = 1

]
= negl(λ).

In the same setting, we also consider the notion of first-message-succinct (FMS) two-round MPC protocol.
This notion is a strengthening (in terms of efficiency) of the above described notion of (vanilla) two-round
MPC. Informally, a two-round MPC protocol is first message succinct if the first round messages of all the
parties can be computed without knowledge of the circuit being evaluated on the inputs. This allows parties
to compute their first message independent of the circuit (in particular, independent also of its size) that
will be computed in the second round.

Definition 3.7 (FMS-MPC). Let π := (MPC1,MPC2,MPC3) be a two-round MPC protocol. Protocol π is
said to be first message succinct if algorithm MPC1 does not take as input the circuit C being computed.
More specifically, it takes an input of the form

(
1λ,CRS, i, xi

)
.

A first message succinct two-round MPC also satisfies the same correctness and security properties as
the (vanilla) two-round MPC protocol.

3.4 Computational Randomized Encoding

We recall the following definition of computational randomized encoding in [AIK05] [BL20].

Definition 3.8 (Computational randomized encoding).
Let f =

{
fn : {0, 1}n → {0, 1}l(n)

}
n∈q(λ) be a polynomial-time computable function, computed by the uniform

circuit family {Cn}n∈q(λ). A computational randomized encoding scheme for f is a tuple of three polynomial-

time algorithms (CRE.Enc,CRE.Dec,CRE.Sim) with the following syntax and properties:

• {f̂n}n∈q(λ) ← CRE.Enc
(
1λ, f

)
: on input the security parameter, a function f , it outputs computational

randomized encoding of f , where each f̂n : {0, 1}n × {0, 1}λ → {0, 1}s will be an NC0 circuit. CRE.Enc
is deterministic.

• y ← CRE.Dec
(

1λ, f, {ŷn}n∈q(λ)
)

: on input the security parameter, a function f , and the output ŷn of

each randomized encoding f̂n, it outputs y. CRE.Dec is deterministic.

• {ỹn}n∈q(λ) ← CRE.Sim
(
1λ, f, y

)
: on input the security parameter, a function f and an output y ∈

{0, 1}l(n), it outputs simulated computational randomized encoding {ỹn}n∈q(λ).

Correctness : For every function f =
{
fn : {0, 1}n → {0, 1}l(n)

}
n∈q(λ), for every input x ∈ {0, 1}n and

for every bit string r ∈ {0, 1}λ,

Pr

[
CRE.Dec

(
1λ, f,

{
f̂n(x, r)

}
n∈q(λ)

)
= f(x) |

{
f̂n

}
n∈q(λ)

= CRE.Enc
(
1λ, f

)]
= 1

Security : For every function f =
{
fn : {0, 1}n → {0, 1}l(n)

}
n∈q(λ) and for every input x ∈ {0, 1}n, the

following two distributions are computationally indistinguishable:{{
f̂n

}
n∈q(λ)

= CRE.Enc
(
1λ, f

)
, r ← {0, 1}λ :

{
f̂n(x, r)

}
n∈q(λ)

}
c
≈
{
{ỹn}n∈q(λ) = CRE.Sim

(
1λ, f, f(x)

)}
Above definition of randomized encoding can be constructed from a variant of Yao’s garbling scheme [Yao86].

We assume without loss of generality that each f̂n is a circuit of size p(λ) where p(·) is a fixed polynomial
in λ.
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3.5 Learning Parity with Noise

We recall the decisional exact Learning Parity with Noise (LPN) assumption over binary fields. The word
“exact” modifies the standard decisional Learning Parity with Noise problem by changing the sampling
procedure for the error vector. Instead of setting each component of e ∈ Fn2 to be 1 with independent
probability, we sample e uniformly from the set of error vectors with exactly t entries set to 1. We let HWn,t

denote the uniform distribution over binary strings of length n with Hamming weight t. The exact LPN
problem is polynomially equivalent to the standard version following the search to decision reduction given
in [AIK09], as noted in [JKPT12]. We give the precise definition in its dual formulation.

Definition 3.9 (Exact Learning Parity with Noise). Let λ be the security parameter and let n(·), n′(·), t(·)
be some polynomials. The (dual) Decisional Exact Learning Parity with Noise problem with parameters
(n(·), n′(·), t(·)) is hard if, for every probabilistic polynomial-time algorithm A, there exists a negligible func-
tion µ such that ∣∣∣∣Pr

B,e
[A(B, e ·B) = 1]− Pr

B,u
[A(B, u) = 1]

∣∣∣∣ ≤ µ(n)

where B ← Fn
′(λ)×n(λ)

2 , e← HWn′(λ),t(λ), and u← Fn(λ)2 .

Throughout this work, we will use the following flavor of LPN assumption. For a given security parameter
λ and polynomial p(λ), we will need to assume that LPN is hard when e has Hamming weight λ and e · B
is a vector of length p(λ). Thus, we can set n = p(λ) and n′ = 2n, which corresponds to a (primal) LPN
assumption of dimension n and error rate λ/2n = 1/n1−ε for some constant ε. This is referred to as “LPN
with inverse polynomial error rate”.

3.6 PCG

We recall the following definition of PCG from [BCG+19b]:

Definition 3.10 (Reverse-sampleable Correlation Generator). Let C be a correlation generator, that is,
C(1λ) outputs two random strings (R0, R1) according to some joint distribution. We say C is reverse
sampleable if there exists a PPT algorithm Rsample such that for b ∈ {0, 1} the correlation obtained via:

{(R′0, R′1) | (R0, R1)← C
(
1λ
)
, R′b := Rb, R

′
1−b ← Rsample (b, Rb)}

is indistinguishable from {(R0, R1)← C
(
1λ
)
}.

In this work, we primarily consider the following correlation generators:

• Correlated OT:
{

(R0 := (σ,mσ) , R1 := (m0,m1 := m0 + δ))← C(1λ)
}

. Where δ is a random element
in some field, each σ ∈ {0, 1} and each m0 are uniformly sampled. This correlation generator is clearly
reverse-sampleable. In this work we sometimes refer to R0 as the receiver strings and R1 as the sender
strings.

• Subfield-VOLE:
{

(R0 := (~u,~v) , R1 := (δ, ~w))← C(1λ)
}

. Where (~u,~v) ∈ Fn2 × Fn2λ , (δ, ~w) ∈ F2λ × Fn2λ ,
and where ~u,~v, and δ are uniformly random, and ~v = ~uδ + ~w. This correlation generator is also
reverse-sampleable.

Definition 3.11 (Pseudorandom Correlation Generator (PCG)). Let C be a reverse-sampleable correlation
generator. A pseudorandom correlation generator (PCG) for C is a pair of algorithms (PCG.Gen,PCG.Expand)
with the following syntax:

• (s0, s1)← PCG.Gen
(
1λ
)
: On input the security parameter λ, it outputs a pair of seeds (s0, s1).

• Rb ← PCG.Expand (b, sb): On input an index b ∈ {0, 1}, the seed sb, it outputs a string Rb.
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Correctness: We require that the correlation obtained via:

{(R0, R1) | (s0, s1)← PCG.Gen
(
1λ
)
, Rb ← PCG.Expand (b, sb)}

is indistinguishable from {(R0, R1)← C
(
1λ
)
}.

Security: For any b ∈ {0, 1}, the following two distributions are computationally indistinguishable:

{(s1−b, Rb) | (s0, s1)← PCG.Gen(1λ), Rb ← PCG.Expand (b, sb)}, and{
(s1−b, Rb)

∣∣∣∣ (s0, s1)← PCG.Gen(1λ), R1−b ← PCG.Expand (1− b, s1−b) ,
Rb ← Rsample (1− b, R1−b)

}
where Rsample is the reverse sampling algorithm for correlation C.

We will also consider m-party PCGs, where PCG.Gen(1λ) outputs an m-tuple of seeds (s1, . . . , sm). Here,
security is defined against any subset of colluding parties. In particular, for any T ⊂ [m], the following two
distributions should be computationally indistinguishable:

{({sj}j∈T , {Ri}i/∈T ) | (s1, . . . , sm)← PCG.Gen(1λ), ∀i /∈ T,Ri ← PCG.Expand (i, si)}, and{
({sj}j∈T , {Ri}i/∈T )

∣∣∣∣ (s1, . . . , sm)← PCG.Gen(1λ),∀j ∈ T,Rj ← PCG.Expand (j, sj) ,
{Ri}i/∈T ← Rsample (T, {Rj}j∈T )

}
.

3.6.1 PCG for subfield-VOLE

One of the building blocks used in this work is a PCG protocol for subfield-VOLE correlation. It has been
studied by the works of [BCG+19b, BCG+19a] and is known to be implied by a suitable choice of the LPN
assumption. Our main construction is crucially inspired by such PCG so we give a brief overview of the
protocol.

We denote this protocol specifically by (PCG.GensVOLE,PCG.ExpandsVOLE). Due to the compressing nature
of PCG, we also explicitly associate an algorithm sEval with this protocol. It takes as input any compressed
vector y ∈ Fnp and an evaluation domain of size k ≤ n, and reconstructs the vector y restricted to Fkp :=
Fnp [: k]. We denote the compressed form of any vector y by ỹ. Therefore for correctness we always have
y = sEval (ỹ, n).

In [BCG+19a], the algorithm PCG.GensVOLE begins by sampling a random sparse vector y ∈ Fn′2 of
Hamming weight w and a random offset δ ∈ F2λ , but here we alter the syntax so that PCG.GensVOLE

takes these values as input. Since y is a sparse vector, it can be naturally represented in a compressed
form using O(w · log(n′)) bits, which we denote by ỹ. In this way, PCG.GensVOLE takes as input

(
1λ, ỹ, δ

)
and outputs a pair of compressed random seeds (k̃0, k̃1) where (k̃0, k̃1) can later be expanded using sEval

into k0, k1 ∈ Fn′2λ such that k0 = k1 + y · δ. In fact, (k̃0, k̃1) are the outputs of a Function Secret Shar-
ing (FSS) scheme for the multi-point function induced by the sparse vector y · δ. Their sizes only de-
pend on (λ, t, log(n′)). Furthermore, due to the security of FSS, there exists a simulator Sim so that for
any PPT adversary who is given the description of y · δ, and for each b ∈ {0, 1}, the two distributions{

(k̃b, ·)← PCG.GensVOLE(1λ, ỹ, δ)
}
,
{
k̃′b ← Sim(1λ,F2λ , n

′)
}

are indistinguishable.

To expand these seeds into subfield-VOLE correlation, PCG.ExpandsVOLE takes as input
(
k̃0, k̃1

)
and

a random n′-by-n binary code matrix Hn′,n ∈ Fn
′×n

2 (where n < n′), and computes k0 = sEval
(
k̃0, n

′
)

,

k1 = sEval
(
k̃1, n

′
)

, t0 := k0 · Hn′,n, t1 := k1 · Hn′,n and sets v := y · Hn′,n. This immediately gives the

desired subfield-VOLE correlation where t0 = t1 +v ·δ. The vector v is random due to the LPN assumption.
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4 Multiparty NISC with Silent Preprocessing

In this section we describe our first result: a multiparty silent NISC protocol from the LPN assumption
in the random oracle model. We organize this section as follows. In section 4.1, we give a definition of
multiparty silent NISC. In section 4.2, we revisit the GS18 compiler in the context of multiparty silent NISC
and identify a specific type of correlation that we need for implementing this compiler. In section 4.3 we give
a PCG protocol for this correlation. The final construction is given in section 4.4. Finally, in section 4.5, we
discuss some extensions to our basic protocol. The security proof of our protocol is given in Appendix E.

The main result of this section is the following:

Assuming LPN with inverse polynomial error rate, there exists a multiparty silent NISC protocol in the
random oracle model.

4.1 Multiparty Silent NISC: Definition

We introduce the notion of multiparty non-interactive secure computation with silent preprocessing, or
Multiparty Silent NISC, which extends the two-party silent NISC primitive of [BCG+19a] to the multi-party
setting.

An m-party silent NISC protocol begins with a preprocessing phase, where a CRS is sampled and a
trusted dealer sets up m secret parameters and distributes them to each party. The computation performed
by the dealer should be efficient, in the sense that it only grows with the security parameter, and not with
the size of the circuit that the parties will eventually compute. After the preprocessing phase, each party
broadcasts a commitment to its input. Finally, the parties compute a circuit C over their joint inputs by
broadcasting one additional message. Anyone can recover the output of the computation based on these
messages.

Definition 4.1 (Multiparty Silent NISC). An m-party non-interactive secure computation with silent prepro-
cessing (m-party silent NISC) is a protocol described by algorithms (Gen,Setup,Commit,Compute,Recover)
with the following syntax and properties:

• CRS← Gen(1λ): On input a security parameter λ, the Gen algorithm outputs a CRS.

• {si}i∈[m] ← Setup
(
1λ, L,CRS

)
: On input the security parameter λ, a bound L on the size of supported

circuits, and CRS, the Setup algorithm outputs a set of secret parameters {si}i∈[m]. Secret si is given
to party i.

• ci ← Commit (i, xi, si,CRS): On input an index i, ith party’s input xi, its secret parameter si and CRS,
the Commit algorithm outputs party i’s commitment ci to its input xi.

• mi ← Compute
(
i, xi, si,CRS, {cj}j∈[m] , C

)
: On input an index i, ith party’s input xi, its secret param-

eter si, the CRS, all the commitments {cj}j∈[m] and description of a circuit C, the Compute algorithm

outputs party i’s message mi for computing circuit C.

• Y ← Recover
(
{mj}j∈[m]

)
: On input all messages {mj}j∈[m], the Recover algorithm outputs Y ←

C (x1, . . . , xm).
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4.1.1 Correctness

For any (deterministic) circuit C whose size is bounded by L, and any set of inputs (x1, . . . , xm), correctness
requires that:

Pr

 Y = C (x1, . . . , xm)

∣∣∣∣∣∣∣∣∣∣∣∣

CRS← Gen(1λ),
{si}i∈[m] ← Setup

(
1λ, L,CRS

)
ci ← Commit (i, xi, si,CRS)

mi ← Compute
(
i, xi, si,CRS, {cj}j∈[m] , C

)
Y ← Recover

(
{mj}j∈[m]

)

 = 1.

4.1.2 Silent Preprocessing

A multi-party silent NISC satisfies the following properties.

• Succinct setup: The running time of the Setup algorithm is independent of the circuit size L. That is,
we require that the setup algorithm runs in some fixed polynomial time poly (λ).

• Circuit-independent commitment : The running time of the Commit algorithm is independent of the
circuit size, and only depends on the security parameter and input size.

4.1.3 Security

For defining security, we follow the standard real/ideal world paradigm. A formal definition may be found
in Appendix C.

4.2 A Strawman From GS18 Compiler

Recall that the GS18 compiler (see Appendix B for a description of the compiler and Appendix A for a
description of the conforming protocol to which the compiler is applied) yields a two round MPC protocol
(MPC1,MPC2,MPC3), which can be presented in the syntax of multiparty NISC as follows:

• The Gen algorithm samples the CRS for GS18 compiler.

• In the setup phase, the setup algorithm samples a set of secret randomness {ri}i∈[m]. Then it sets

si := ri for each i ∈ [m].

• In the commit phase, given the description of circuit C, party i commits to its input xi by running(
st

(1)
i ,msg

(1)
i

)
← MPC1

(
1λ,CRS, C, i, xi, si

)
. Then it sets ci := msg

(1)
i .

• In the compute phase, given all the previous commitments, ith party computes msg
(2)
i ← MPC2

(
C, st

(1)
i , {cj}j∈[m]

)
.

It then sets mi := msg
(2)
i .

• In the recover phase, given all messages, anyone can simply compute Y ← MPC3

(
{mj}j∈[m]

)
.

However, this naive construction does not achieve silent preprocessing (section 4.1.2), due to the fact
that MPC1 takes as input a description of the circuit and that its running time is dependent on the size of
this circuit. Thus, this construction does not achieve circuit-independent commitment.

To address this issue, we begin by taking a closer look to the MPC1 algorithm. It outputs two things:
an encoding of party i’s input, which only depends on the input size, and a number of OT1 messages that
is comparable to the size of circuit C. Merely computing these messages already takes time O (|C|) so we
cannot hope to include them as part of the commitment.

14



The reason these OT1 messages are required is that, combining with the subsequent OT2 messages sent
by each party’s garbled circuits, they allow to set up OT correlations between any two parties (i, j) in the
following way. For any round t where party i is the speaking party and party j is one of the listening parties,

• Party i has the receiver strings R0 := (γt,mγt). The choice bit γt is computed according to the
description of action φt of the conforming protocol3 Φ: γt = NAND (vf ⊕ α, vg ⊕ β)⊕ vh, where α and
β are recorded in each party’s public state, φt := (i, f, g, h) and v := vi are ith party masking bits
(secret state).

• Party j has the sender strings R1 :=
(
m0 := labi,t+1

h,0 ,m1 := labi,t+1
h,1

)
, where

(
labi,t+1

h,0 , labi,t+1
h,1

)
are

input labels for input value γt of its next garbled circuit.

Then party i can simply output its string so that any party can recover the correct input label (c.f labi,t+1
h,γt

)
for party j’s next round garbled circuit.

We formalize those OT correlations by defining the more general GS18 correlations:

Definition 4.2 (GS18 correlation generator). A GS18 correlation generator, denoted as CGS, is an algorithm
which takes as input the security parameter λ and a set {φt := (·, f, g, h)}t∈[q], and outputs: R0 :=

(
v,
{
mt,(α,β)

}
α,β∈{0,1},t∈[q]

)
,

R1 :=
(
δ,
{
mt,(α,β),0

}
α,β∈{0,1},t∈[q]

) ← CGS

(
1λ, {φt}t∈[q]

)
Where v ← {0, 1}n is a random vector and δ ← F2λ is a random offset. mt,(α,β),0 ← {0, 1}λ is a random
string. Furthermore, for each t ∈ [q], φt := (·, f, g, h), and for any choice of α, β ∈ {0, 1}, let γt,(α,β) =
NAND (vf ⊕ α, vg ⊕ β)⊕ vh, and mt,(α,β),1 := mt,(α,β),0 + δ. Then mt,(α,β) = mt,(α,β),γt,(α,β) . Notice that the
GS18 correlation is also reverse-sampleable:

• Rsample (0, R0): Sample δ ← F2λ randomly, then for each t ∈ [q] and each α, β ∈ {0, 1}, set mt,(α,β),0 :=
mt,(α,β) + γt,(α,β) · δ.

• Rsample (1, R1): Sample v ← {0, 1}n randomly, then for each t ∈ [q] and each α, β ∈ {0, 1}, compute
γt,(α,β) as before and set mt,(α,β) := mt,(α,β),0 + γt,(α,β) · δ.

Observe that we define GS18 correlation such that for each action φt, we obtain a set of four correlated
OTs, one for each choice of α, β:

R0 :=
(
γt,(α,β),mt,(α,β)

)
, R1 :=

(
mt,(α,β),0,mt,(α,β),1 := mt,(α,β),0 + δ

)
(1)

As first observed in [IKNP03], it suffices to use a correlation robust hash function to obtain random OTs
from correlated OTs. In our construction we deploy a random oracle function ρ as correlation robust hash
function.

Now suppose that before the compute phase, for each round t, party i is given R0 whereas party j is
given R1, and additionally both parties agree on the choice of (α, β) in the compute phase. Thereby party

i’s garbled circuit can simply output
(
γt := γit,(α,β),mt := ρ

(
mi,j
t,(α,β)

))
, whereas party j’s garbled circuit

outputs:(
a0 := labi,t+1

h,0 ⊕ ρ
(
mi,j
t,(α,β),0

)
, a1 := labi,t+1

h,1 ⊕ ρ
(
mi,j
t,(α,β),1

))
. As a result, any party can recover the label

labi,t+1
h,γt

= aγt ⊕mt.
But how can those parties obtain GS18 correlations before the compute phase? We cannot afford to

generate them in the setup phase since its runtime should be succinct. To solve this problem, we specifically
design a pseudorandom correlation generator (PCG) for GS18 correlations. With this tweak, the setup
algorithm will include PCG seeds for each party in its secret parameter, so that each party can silently expand
its seed to obtain desired GS18 correlations before the compute phase, hence making the preprocessing phase
silent.

3See Appendix A for a description of the conforming protocol.
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4.3 A PCG Protocol For GS18 Correlation

As suggested in [BCG+19a], any subfield-VOLE correlation gives correlated OTs where for each i ∈ [n], the
receiver string is R0 :=

(
v[i],mv[i] := t0[i]

)
, and the sender string is R1 := (m0 := t1[i],m1 := t1[i] + δ). One

can then get random OTs by applying a correlation-robust hash function on these correlated OTs.
In order to generate desired OT correlations, first note that in the field F2, one can rewrite each NAND

relation as a degree-two equation: NAND (vf ⊕ α, vg ⊕ β) ⊕ vh ≡ 1 + (vf + α) (vg + β) + vh = (vfvg) +
(αvg + βvf + vh) + (αβ + 1). As a result of this, given random masking bits v ∈ {0, 1}n, each choice bit γt
can be viewed as a sum of a degree two relation over v, a degree one relation over v, and a constant which
are parametrized by the choice of (α, β).

The subfield-VOLE correlation is itself a degree 1 relation. As before we set v := y · Hn′,n. In order

to distinguish it from a degree 2 relation, we use the notation ((ỹ, k̃10), (k̃11, δ)) to denote the degree 1
seeds for receiver (R := 0) and sender (S := 1) respectively, and propagate this notation to all other
symbols in the natural way. For consistency with previous sections, we slightly abuse the notation by letting
vi := v[i]. Under this notation, the degree-1 correlated OT can be rewritten as follows: for each i ∈ [n],
R1

0 :=
(
vi, m

1
vi := t10[i]

)
, R1

1 :=
(
m1

0 := t11[i],m1
1 := t11[i] + δ

)
.

In order to deduce degree 2 relations, we take the tensor product of same error vector with itself and use

it as the new error vector as suggested in [BCG+19a]:
(
k̃20, k̃

2
1

)
← PCG.GensVOLE

(
1λ, ỹ ⊗ y, δ

)
. The expan-

sion algorithm also needs to be modified as follows: k20 = sEval
(
k̃20, n

′
)
, t20 := k20 · (Hn′,n ⊗Hn′,n) , k21 =

sEval
(
k̃21, n

′
)
, t21 := k21 · (Hn′,n ⊗Hn′,n), where t20, t

2
1 ∈ Fn2

2λ . Viewing both t21 and t20 as n-by-n matri-

ces over F2λ , for any i, j ∈ [n], observe that the following degree 2 relation holds: t20[i, j] = t21[i, j] +

vivj · δ. As before, this immediately gives a correlated OT where R2
0 :=

(
vivj ,m

2
vivj := t20[i, j]

)
, and R2

1 :=(
m2

0 := t21[i, j],m2
1 := t21[i, j] + δ

)
.

Now that we know how to generate degree 1 and degree 2 correlated OTs, we can easily derive the GS18
correlations by taking linear combinations of (R1

0, R
2
0) (resp. (R1

1, R
2
1)) over F2. This gives a PCG protocol

for generating GS18 correlations. Now, the protocol we need is actually in the multi-party setting: that is,
the receiver’s choice bits v must be shared between all of their pairwise correlations with every other sender.
This additional requirement can be ensured by reusing the same error vector y multiple times. Below we
give a PCG protocol for GS18 correlations with one receiver and an arbitrary number m of senders. We
denote this specific PCG protocol by (PCG.GenGS,PCG.ExpandGS), given in Protocol 1.

We prove the following theorem in Appendix D.

Theorem 4.3. Assuming LPN with inverse polynomial noise rate, (PCG.GenGS,PCG.ExpandGS) in Protocol
1 is a multi-party PCG protocol for GS18 correlations satisfying PCG security (Definition 3.11).
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Protocol 1 (Multi-party PCG Protocol For GS18 Correlations).

• Parameters: Let λ be the security parameter, m be the number of senders, q be the number of actions for the
GS18 protocol, and n′, n be integers such that n′ > n.

• Output:

– For receiver:

∗ Masking bits v ∈ {0, 1}n;

∗ For each t ∈ [q], α, β ∈ {0, 1}, i ∈ [m], a receiver string mi
t,(α,β).

– For sender i ∈ [m]:

∗ A shift δi ∈ F2λ ;

∗ For each t ∈ [q], α, β ∈ {0, 1}, a sender string mi
t,(α,β),0.

• Input:

– A compressed random error vector y ∈ {0, 1}n
′

with hamming weight λ, denoted by ỹ.

– A random shift δi ∈ F2λ for each i ∈ [m].

– An n′-by- n binary code matrix Hn′,n.

– A sequence of actions {φt}t∈[q].

• GenGS
(
1λ, ỹ, {δi}i∈[m]

)
:

– For each i ∈ [m], compute
(
k̃1
i,0, k̃

1
i,1

)
← PCG.GensVOLE

(
1λ, ỹ, δi

)
;(

k̃2
i,0, k̃

2
i,1

)
← PCG.GensVOLE

(
1λ, ỹ ⊗ y, δi

)
.

– Set si0 :=
(
k̃1
i,0, k̃

2
i,0, ỹ

)
, si1 :=

(
k̃1
i,1, k̃

2
i,1, δi

)
.

• ExpandGS
(
1λ, b, {sib}i∈[m], Hn′,n, {φt}t∈[q]

)
:

– If b = 0, set y = sEval (ỹ, n′), v = y ·Hn′,n, and for each i ∈ [m]:

∗ Parse si0 =
(
k1
i,0, k

2
i,0, ỹ

)
, and compute k1

i,0 = sEval
(
k̃1
i,0, n

′
)
, k2

i,0 = sEval
(
k̃2
i,0, n

′
)

.

∗ Compute t1i,0 := k1
i,0 ·Hn′,n, t2i,0 := k2

i,0 · (Hn′,n ⊗Hn′,n).

∗ For each t ∈ [q], parse φt := (·, f, g, h), and for each α, β ∈ {0, 1} set mi
t,(α,β) := t2i,0[f, g] + α ·

t1i,0[g] + β · t1i,0[f ] + t1i,0[h].

– If b = 1, for each i ∈ [m]:

∗ Parse si1 =
(
k1
i,1, k

2
i,1, δi

)
, and compute k1

i,1 = sEval
(
k̃1
i,1, n

′
)
, k2

i,1 = sEval
(
k̃2
i,1, n

′
)

.

∗ Compute t1i,1 := k1
i,1 ·Hn′,n, t2i,1 := k2

i,1 · (Hn′,n ⊗Hn′,n).

∗ For each t ∈ [q], parse φt := (·, f, g, h), and for each α, β ∈ {0, 1}, set mi
t,(α,β),0 := t2i,1[f, g] + α ·

t1i,1[g] + β · t1i,1[f ] + t1i,1[h] + (αβ + 1) · δi.
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4.4 Multiparty Silent NISC: The Construction

4.4.1 Two-step seed expansion

In our strawman protocol (see section 4.2), each party’s commitment contains an encoding of its input and a large
number of OT1 messages. Using PCG for GS18 correlations we are able to remove the OT1 messages in this com-
mitment. Nevertheless, recall that in GS18 compiler, party i’s input encoding is computed as zi := xi ⊕ ri, where
ri := vi[: l] (l is a bound on |xi|). If party i does this naively and computes the whole masking bits vi in the commit
phase, it would take time |vi| at least, which is dependent on the circuit size. To circumvent this problem, we slightly
modify the receiver expansion algorithm to allow a two-step seed expansion.

First, instead of generating the code matrix Hn′,n uniformly at random, we let Hn′,n be a block diagonal matrix
that consists of a small matrix H1

l′,l and a big matrix H2
n′−l′,n−l along its diagonal. The small matrix is only

used to generate input masking bits whereas the big matrix is used to generate all of the remaining masking bits.
Correspondingly, we also need to modify the error vector y now that Hn′,n is not a uniformly random matrix. The
error vector will be split into two parts: y := y′||y∗, where |y′| = l′ and |y∗| = n′ − l′. We sample y′ ← HW l′,λ

and y∗ ← HWn′−l′,λ independently. This ensures that both v′ = y′ · H1
l′,l and v∗ = y∗ · H2

n′−l′,n−l will both be
indistinguishable from random due to the LPN assumption with inverse polynomial noise rate, showing that the
multi-party PCG from last section remains secure.

Then, in the input commitment phase, each party computes y′ = sEval(ỹ′, l′) and then sets v′ = y′ · H1
l′,l and

ci := zi = xi ⊕ v′. This can be seen as the first-step seed expansion and it allows to remove dependency on circuit
size. Finally, in the compute phase, each pair of parties silently expand the rest seeds just as before. This is the
second-step seed expansion.

Protocol 2 (Multiparty Silent NISC).

• Parameters: Let m be the number of parties. Let (MPC1,MPC2,MPC3) be a set of algorithms in the GS18
compiler, and let (PCG.GenGS,PCG.ExpandGS) be a multi-party PCG protocol for GS18 correlations. Let n′ > n
be integers that depend on the size L of the circuit to be computed, and let l′ > l be integers that depends on
the size of inputs to the circuit.

• Gen(1λ): Set CRS := ρ, where ρ is a random oracle function.

• Setup(1λ, L):

1. For each i ∈ [m], sample y′i ← HW l′,λ, y∗i ← HWn′−l′,λ and set yi = y′i||y∗i .

2. For each i, j ∈ [m], sample shifts δi,j ← Fp.

3. For each i ∈ [m], compute
{
si,j0 , si,j1

}
j 6=i ← PCG.GenGS

(
1λ, ỹi, {δi,j}j 6=i

)
.

4. Set secret parameter si :=
({

si,j0

}
j∈[m]/{i} ,

{
sj,i1

}
j∈[m]/{i}

)
.

• Commit (i, xi, si,CRS):

1. Parse si :=
({

si,j0

}
j∈[m]/{i} ,

{
sj,i1

}
j∈[m]/{i}

)
, then parse any si,j0 :=

(
k̃1

0, k̃
2
0, ỹi

)
and ỹi = ỹ′i||ỹ∗i .

2. Compute yi
′ = sEval

(
ỹ′i, l

′
)

.

3. Generate an l′-by- l random binary code matrix H1
l′,l ← ρ (l, l′) and compute vi

′ = yi
′ ·H1

l′,l, where l ≥ |xi|
and l′ > l.

4. Set commitment ci := xi ⊕ vi
′.

• Compute: See algorithm 4.4.

• Recover: See algorithm 4.5.
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Algorithm 4.4 (Compute).

• Parameters: Let C be the description of a circuit and Φ be a T -round conforming protocol for computing C.

• Compute
(
i, xi, si,CRS, {cj}j∈[m] , C

)
:

1. Parse si :=
({

si,j0

}
j∈[m]/{i} ,

{
sj,i1

}
j∈[m]/{i}

)
.

2. Generate a (n′ − l′)-by-(n− l) random binary code matrix H2
n′−l′,n−l ← ρ (n′, l′), and set

Hn′,n :=

[
H1
l′,l

H2
n′−l′,n−l

]

3.

(
vi,
{
mi,j
t,(α,β)

}
t,α,β,j

)
← PCG.ExpandGS

(
1λ, 0, {si,j0 }j 6=i, Hn′,n, {φt}t∈[q]

)
,

(
δj,i,

{
mj,i
t,(α,β),0

}
t,α,β,j

)
←

PCG.ExpandGS
(
1λ, 1, {sj,i1 }j 6=i, Hn′,n, {φt}t∈[q]

)
.

4. For each t ∈ T such that φt := (i, f, g, h), and each j ∈ [m]/{i}, compute
{
m̃i,j
t,(α,β)

}
t,α,β

:={
ρ
(
mi,j
t,(α,β)

)}
t,α,β

.

For each t ∈ T such that φt := (j, f, g, h) for j 6= i,

– Set
{
mj,i
t,(α,β),1

}
t,α,β

:=
{
mj,i
t,(α,β),0 + δj,i

}
t,α,β

.

–
{
m̃j,i

(t,(α,β),0), m̃
j,i
(t,(α,β),1)

}
t,α,β

:=
{
ρ
(
mj,i

(t,(α,β),0)

)
, ρ
(
mj,i

(t,(α,β),1)

)}
t,α,β

5. Parse vi := vi
′||v∗i and adjust v∗i so that pq = |v∗i |. Initialize a computation tape sti := c1||0pq|| . . . ||cm||0pq.

Let N := |sti|.

6. Set lab
i,T+1

:=
(
labi,T+1

k,0 , labi,T+1
k,1

)
k∈[N ]

where for each k ∈ [N ] and b ∈ {0, 1} labi,T+1
k,b = 0λ.

7. For each t from T to 1, compute: (
P̃i,t, lab

i,t
)
← Garble

(
1λ,Pi,t

)
.

where the circuit Pi,t hardcodes party i’s receiver and sender strings, as well as all input labels of Pi,t+1

(see algorithm 4.6).

8. Set l̂ab
i,1

:=
{
labi,1k,sti,k

}
k∈[N ]

9. Set message mi :=

({
P̃i,t
}
t∈[T ]

, l̂ab
i,1
)

.
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Algorithm 4.5 (Recover).

• Parameters: Let Φ be the conforming protocol that computes circuit C. Let T be total number of rounds of Φ.

• Recover
(
{mj}j∈[m]

)
:

1. For each j ∈ [m], parse mj :=

({
P̃j,t
}
t∈[T ]

, l̂ab
j,1
)

.

2. For each t from 1 to T , do:

(a) Parse action φt := (i∗, f, g, h).

(b) Compute

(
γt,
{
m̃i∗,j
t

}
j∈[m]/{i∗}

, l̂ab
i∗,t+1

)
← GEval

(
P̃i
∗,t, l̂ab

i∗,t
)

.

(c) For each j 6= i∗, do:

i. Compute (a0, a1)← GEval
(
P̃j,t, l̂ab

j,t
)

.

ii. Recover labj,t+1
h = aγt ⊕ m̃

i∗,j
t .

iii. Reset l̂ab
j,t+1

:=
{
{labj,t+1

k,stj,k
}k∈[N ]/{h}, lab

j,t+1
h

}
.

3. Let Z := (γ1, . . . , γT ), set Y := post (Z).

Algorithm 4.6 (Circuit Pi,t).
Input: sti.

Hardwired inputs: Party i’s masking bits vi, its receiver and sender strings
{
m̃i,j
t,(α,β)

}
α,β∈{0,1},j∈[m]/{i}

,{(
m̃j,i

(t,(α,β),0), m̃
j,i
(t,(α,β),1)

)}
α,β∈{0,1},j∈[m]/{i}

, the input labels of the next garbled circuit P̃i,t+1: lab
i,t+1

, and the

round action φt.

1. Parse φt = (i∗, f, g, h).

2. Set α := sti[(i
∗ − 1) (pq + l) + f ], β := sti[(i

∗ − 1) (pq + l) + g].

3. If i = i∗, then:

(a) Set v := vi, and compute γit,(α,β) = NAND (vf ⊕ α, vg ⊕ β)⊕ vh.

(b) Set sti[(i− 1) (pq + l) + h] := γit,(α,β).

(c) Set l̂ab
i,t+1

:=
{
labi,t+1

k,sti,k

}
k∈[N ]

.

(d) Output

(
γit,(α,β),

{
m̃i,j
t,(α,β)

}
j∈[m]/{i}

, l̂ab
i,t+1

)
.

4. If i 6= i∗, then:

(a) Set l̂ab
i,t+1

:=
{
labi,t+1

k,sti,k

}
k∈[N ]/{h}

.

(b) Output
(
labi,t+1

h,0 ⊕ m̃i∗,i
t,(α,β),0, lab

i,t+1
h,1 ⊕ m̃i∗,i

t,(α,β),1, l̂ab
i,t+1

)
, where the label labi,t+1

h is the input for the

bit sti[(i
∗ − 1) (pq + l) + h] of the next garbled circuit.

Theorem 4.7. Assuming LPN with inverse polynomial error rate, Protocol 2 is a secure multiparty silent NISC
protocol in the random oracle model.

See Section 3.5 for how we set LPN parameters based on the (polynomial-size) circuit C to be computed. The
proof of this theorem is given in Appendix E.
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4.5 Extensions

4.5.1 Removing the random oracle

Our construction of multiparty silent NISC relies on a random oracle. Nevertheless, we can remove the use of random
oracle, at the cost of introducing a large (growing with the size of the computation) CRS. Below we define this notion
as multiparty silent NISC with large reusable CRS.

To begin with, one can observe that the previous construction utilizes the random oracle in two following ways:

• Modeling it as a correlation robust hash function; This is used to obtain random OTs from correlated OTs.

• Generating random binary code matrices for PCG seed expansion.

As already observed in [BCG+19b], the role of correlation robust hash function can be replaced by an encryption
scheme which is semantically secure against related-key attack for the class of linear functions. It was also shown that
this encryption scheme can be based on standard LPN assumptions (over F2)[AHI11]. Therefore we can effectively
remove this use of random oracle without introducing new assumptions.

Without using the random oracle, an easy way to solve the second problem is to let the Gen algorithm sample
a random block-diagonal code matrix, and directly includes it in the CRS. This, however, requires that the Gen
algorithm must take as input the circuit size bound L since the dimension of this code matrix must exceed the size of
circuit to be computed. Furthermore, the CRS is large since its size now depends on the circuit size. As a result, the
commit algorithm cannot take the whole CRS as input. So instead we split the block-diagonal code matrix, and only
supply the small code matrix as input to the commit algorithm so as to remove its dependency on the circuit size. To
summarize, we set CRS := (CRS′,CRS∗)← Gen(1λ, L) where CRS′ := H1

l′,l and CRS∗ := H2
n′−l′,n−l. Notice that the

size of CRS′ only depends on the input size whereas CRS∗ depends on the circuit size |C| ≤ L. The commit algorithm

now takes as input (i, xi, si,CRS
′) whereas the compute algorithm still takes as input

(
i, xi, si,CRS, {cj}j∈[m] , C

)
.

We adopt these notations for CRS in all following sections.

4.5.2 Reusable CRS

Although the CRS in the resulting protocol is large, it can be reused across an arbitrary polynomial number of
multiparty silent NISC executions. This property will be crucial for our construction next section, so we give more
details here. After the CRS is sampled, an adversary may specify any polynomial q(λ) number of multiparty silent
NISC executions in which it would like to participate using the same fixed CRS (but fresh preprocessing, commitment,
and compute phases). Security for each of these executions will still follow from the LPN assumption. To see why,
recall that the CRS is a dual-LPN matrix H, and is only used in the security proof when appealing to the dual-LPN
assumption. By a straightforward hybrid argument, dual-LPN will hold with respect to a single random matrix H
for any polynomial q(λ) number of samples.
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5 Reusable Two-Round MPC from LPN

In this section, we build on top of our previous result and show a compiler that takes any multiparty silent NISC with
large reusable CRS and produces a reusable two-round MPC protocol. This section is organized as follows: we divide
our compiler into three parts, each part involving one specific transformation. We proceed and give constructions of
these transformations one by one in each subsection:

1. We define the notion of bounded FMS-MPC and show that multiparty silent NISC with reusable large CRS
implies bounded FMS-MPC.

2. We show that bounded FMS-MPC implies standard FMS-MPC

3. Finally, we appeal to [BGMM20], who show that FMS-MPC implies reusable two-round MPC.

5.1 Multiparty silent NISC with reusable large CRS → Bounded FMS-MPC

We start by defining a relaxed notion of first message succinct MPC (FMS-MPC), which was introduced in [BGMM20].
We call this new primitive a bounded FMS-MPC, which can be naturally thought as a middle ground between a
multiparty silent NISC and a standard FMS-MPC.

Definition 5.1 (Bounded FMS-MPC). Let Gen be an algorithm that generates a CRS. We say that the protocol
π∗ = (Gen,BFMS.MPC1,BFMS.MPC2,BFMS.MPC3) is a bounded FMS-MPC protocol if it is a two-round MPC
protocol with the following properties:

• Bounded circuit size: The Gen algorithm takes as input the security parameter λ, a circuit size bound L, and
outputs a CRS := (CRS′,CRS∗). The size of CRS′ only depends on an upper bound on input size, whereas the
size of CRS∗ can be as large as L. Moreover, the protocol π∗ only supports circuits such that |C| ≤ L.

• Reusable CRS: The part CRS∗ only needs to be set up once, and can be reused across an unbounded polynomial
number of two-round MPC protocols.

• First message succinctness: The BFMS.MPC1 algorithm takes as input
(
1λ,CRS′, i, xi

)
. In particular, its

runtime should not depend on the circuit size |C|.

As our construction of bounded FMS-MPC from multiparty silent NISC is very similar to the transformation
given in [BGMM20, Section 5], we defer the construction and security proof to Appendix F. In particular, we prove
the following theorem.

Theorem 5.2. Assuming a semi-honest multiparty silent NISC with large reusable CRS and a maliciously-secure
vanilla two-round MPC in the CRS model, there exists a maliciously-secure bounded FMS-MPC protocol.

Due to results from last section and [DGH+20], we have the following corollary.

Corollary 5.3. Assuming LPN with inverse polynomial error rate, there exists a maliciously-secure bounded FMS-
MPC protocol.

5.2 Bounded FMS-MPC → FMS-MPC

In order to obtain standard FMS-MPC, we must allow for computation of a priori unbounded polynomial size circuits.
That is, we must support the computation of unbounded polynomial size circuits using only a bounded polynomial
size CRS. A natural idea is then to use randomized encodings to break down the computation of any unbounded
polynomial size circuit into the computation of a number of bounded polynomial size circuits, and use a bounded size
(reusable) CRS to compute each small circuit.

Indeed, any m-input polynomial-size circuit C : {0, 1}m·` → {0, 1}`
′

admits a randomized encoding (see section
3.4), which can be written as a sequence of small circuits {Gy : {0, 1}m·` × {0, 1}λ → {0, 1}s}y∈[n], where n depends
on the size of C, but each Gy has size p(λ) for some a priori fixed polynomial p(·). The correctness of random-
ized encoding ensures that for any inputs x1, . . . , xm and random coins v ← {0, 1}λ, one can recover the output
Y := C (x1, . . . , xm) just given {Gy(x1, . . . , xm, v)}y∈[n]. The security of randomized encoding guarantees that this
distribution is simulatable just given the output Y .

Now, one could naively compute n bounded FMS-MPC protocols in parallel to determine the outputs ofG1, . . . , Gn.
However, the total number of first round messages would now depend on |C|, violating first message succinctness.
To circumvent this issue, we delay the computation of those first round messages to the second round. Following
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the GGM approach, we define a complete binary tree based on the circuit being computed. This tree will have n
leaves in total and will be of depth d = log(n). The y’th leaf is associated with the randomized encoding Gy. Each
internal node is associated with an expansion circuit E. This circuit takes as input (x1, . . . , xm, v) and some additional
secret randomness, and generates two sets of fresh first round messages, one for each child node. By computing all
the expansion circuits using bounded FMS-MPC, we generate a set of fresh first round messages for each leaf node,
enabling computation of all randomized encoding circuits using n more bounded FMS-MPC instances. Furthermore,
since the CRS of the bounded FMS-MPC has unbounded reusability, it can be used by each node computation in
this tree.

To fully compute this tree, each party needs to output its second round message for each node computation in each
level, and read all other parties’ second round messages. This allows it to recover a new set of first round messages
which is required for node computations in the next level. If we implement this protocol naively, the number of rounds
in total would match the depth of the tree. Nonetheless, one can still compress it to just two rounds by repeatedly
applying the round collapsing transformation: In the first round, each party i outputs its first round message of a
bounded FMS-MPC for computing the first expansion circuit (root node). In the second round, party i first outputs
its second round message for this bounded FMS-MPC. Then for each level k ∈ [2, d−1], party i outputs 2k−1 garbled
circuits which realizes its MPC2 functionality at this level. That is, for each y ∈ [2k−1], it computes a garbled circuit
of MPC2 (E, (· , CRS∗), · , · ). This circuit hardwires the description of E and the part CRS∗. It takes as input the
part CRS′, party i’s first round state and all first round messages for computing the yth expansion circuit in this
level, and outputs its second round message. In the last level, for each y ∈ [n], party i computes a garbled circuit
of MPC2 (Fy, (· , CRS∗), · , · ), where Fy computes the randomized encoding Gy. These garbled circuits constitute
party i’s second round message.

In order to recover the input labels for each garbled circuit, we ask each expansion circuit E to output the input
labels which correspond to the correct inputs for each party’s next garbled circuit. Each party will actually output
encryptions of all input labels along with each garbled circuit, and each expansion circuit will output keys that can
be used to decrypt only the correct input labels for each party’s next garbled circuit.

It is worth noting that this use of “tree of MPC messages” differs somewhat from how it is used in [AJJM20,
BGMM20]. In particular, we build a tree of polynomial size. In order to compute a single large circuit in the second
round, each party releases a garbled circuit for each node in the tree. During output reconstruction, the entire tree
is evaluated. In [AJJM20, BGMM20], to obtain reusability, they set up a implicit tree of exponential size. Each time
the parties wish to compute a circuit in the second round, they each release a sequence of garbled circuits that trace
one root to leaf path in this exponentially-sized tree.

As a final point, since the size of the CRS in a FMS-MPC should only depend on the security parameter λ, we
must argue that the CRS we are using is small. Notice that for every node in this tree, either the expansion circuit
E or some randomized encoding Gy is computed. The size of either circuit only depends on λ. Therefore it suffices
to set L = poly(λ) for some fixed polynomial when instantiating the bounded FMS-MPC. As a result, the CRS only
depends on λ, which is what is required for FMS-MPC.

Applying this transformation, we build a FMS-MPC (described in protocol 3) from bounded FMS-MPC.
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Protocol 3 (FMS-MPC).
Let (Gen,MPC1,MPC2,MPC3) be a bounded FMS-MPC protocol, (Garble,GEval) be a garbling scheme,
(LabEnc, LabDec) be a label encryption scheme and (CRE.Enc,CRE.Dec) be a computational randomized encoding
scheme. Let PRG = (G0,G1,H0,H1) be a length quadrupling PRG. The expansion circuit E is defined in algorithm
5.4 and circuit Fy is defined in algorithm 5.5. Let L = max (|E|, |Fy|) and CRS := (CRS′,CRS∗)← Gen(1λ, L).

• FMS.MPC1

(
1λ,CRS′, i, xi

)
:

1. Sample (ri, vi)← {0, 1}λ × {0, 1}λ and compute(
st

(1)
i ,msg

(1)
i

)
← MPC1

(
1λ,CRS′, i, ((xi, vi), ri)

)
.

2. Set FMS.st
(1)
i :=

(
st

(1)
i , ri, vi

)
and FMS.msg

(1)
i := msg

(1)
i .

• FMS.MPC2

(
C,CRS,FMS.st

(1)
i ,
{
FMS.msg

(1)
j

}
j∈[m]

)
:

1. Compute [Gy]y∈[n] ← CRE.Enc
(
1λ, C

)
.

2. Define a complete binary tree of depth d = log(n) with n leaves. Associate the yth leaf with the randomized
encoding Gy.

3. Let r
(k,y)
i denotes party i’s secret randomness for computing the yth node at level k. Set r

(1,1)
i := ri;

compute r
(2,1)
i := G0

(
r

(1,1)
i

)
, r

(2,2)
i := G1

(
r

(1,1)
i

)
.

4. Compute k
(2,1)
i := H0

(
r

(1,1)
i

)
, k

(2,2)
i := H1

(
r

(1,1)
i

)
.

5. Compute msg
(2)
i ← MPC2

(
E,CRS, st

(1)
i ,
{
msg

(1)
j

}
j∈[m]

)
.

6. For each level k ∈ [2, d− 1] and for each y ∈ [1, 2k−1]:

(a) Compute
(
C̃

(k,y)
i , lab

(k,y)
i

)
← Garble

(
1λ, MPC2 (E, (· , CRS∗), · , · )

)
.

(b) Compute elab
(k,y)
i ← LabEnc

(
K

(k,y)
i , lab

(k,y)
i

)
, where

K
(k,y)
i = PRF

(
k

(k,y)
i , (t, b)

)
t∈[l],b∈{0,1}

.

(c) Compute r
(k+1,2y−1)
i := G0

(
r

(k,y)
i

)
, r

(k+1,2y)
i := G1

(
r

(k,y)
i

)
;

k
(k+1,2y−1)
i := H0

(
r

(k,y)
i

)
, k

(k+1,2y)
i := H1

(
r

(k,y)
i

)
.

7. In the last level d, for each y ∈ [n]:

(a) Compute
(
C̃

(d,y)
i , lab

(d,y)
i

)
← Garble

(
1λ, MPC2 (Fy, (· , CRS∗), · , · )

)
;

(b) Compute elab
(d,y)
i ← LabEnc

(
K

(d,y)
i , lab

(d,y)
i

)
where

K
(d,y)
i = PRF

(
k

(d,y)
i , (t, b)

)
t∈[l],b∈{0,1}

.

8. Set FMS.msg
(2)
i :=

(
msg

(2)
i ,
{
C̃

(k,y)
i , elab

(k,y)
i

}
k∈[2,d],y∈[1,2k−1]

)
.
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• FMS.MPC3

({
FMS.msg

(2)
j

}
j∈[m]

)
:

1. Compute
{(
K̂

(2,1)
i , K̂

(2,2)
i

)}
i∈[m]

← MPC3

({
msg

(2)
j

}
j∈[m]

)
.

2. For each level k ∈ [2, d] and each y ∈ [1, 2k−1]:

(a) For each j ∈ [m]:

i. Compute l̂ab
(k,y)

j ← LabDec
(
K̂

(k,y)
j , elab

(k,y)
j

)
;

ii. Compute
(
msg

(2),(k,y)
j

)
← GEval

(
C̃

(k,y)
j , l̂ab

(k,y)

j

)
.

(b) If k < d, then compute{(
K̂

(k+1,2y−1)
i , K̂

(k+1,2y)
i

)}
i∈[m]

← MPC3

({
msg

(2),(k,y)
j

}
j∈[m]

)
.

(c) If k = d, compute

Gy ((x1, . . . , xm), v)← MPC3

({
msg

(2),(d,y)
j

}
j∈[m]

)
.

3. Set Y ← CRE.Dec
(

1λ, C, {Gy((x1, . . . , xm), v)}y∈[n]

)
.

Algorithm 5.4 (Circuit E).
Input: {(xj , vj), rj}j∈[m].
Hardwired inputs: Description of a length-quadruple PRG : (G0,G1,H0,H1).

1. For each i ∈ [m] (Generating the left child):

(a) Compute CRS′ 0 ← Gen
(
1λ
)
.

(b) Compute
(
st

(1),0
i ,msg

(1),0
i

)
← MPC1

(
1λ,CRS′ 0, i, ((xi, vi),G0(ri))

)
.

2. For each i ∈ [m]:

(a) Set k0
i := H0(ri), z0

i :=

(
CRS′ 0, st

(1),0
i ,

{
msg

(1),0
j

}
j∈[m]

)
.

(b) Let l := |z0
i |. For t ∈ [l], set K0

i,t := PRF
(
k0
i , (t, z

0
i [t])

)
.

(c) Set K̂0
i :=

{
K0
i,t

}
t∈[l]

.

3. For each i ∈ [m] (Generating the right child):

(a) Compute CRS′ 1 ← Gen
(
1λ
)
.

(b) Compute
(
st

(1),1
i ,msg

(1),1
i

)
← MPC1

(
1λ,CRS′ 1, i, ((xi, vi),G1(ri))

)
.

4. For each i ∈ [m]:

(a) Set k1
i := H1(ri), z1

i :=

(
CRS′ 1, st

(1),1
i ,

{
msg

(1),1
j

}
j∈[m]

)
.

(b) Let l := |z1
i |. For t ∈ [l], set K1

i,t := PRF
(
k1
i , (t, z

1
i [t])

)
.

(c) Set K̂1
i =

{
K1
i,t

}
t∈[l]

.

5. Output
{
K̂0
i

}
i∈[m]

and
{
K̂1
i

}
i∈[m]

.
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Algorithm 5.5 (Circuit Fy).
Input: {(xj , vj), rj}j∈[m].
Hardwired input: the randomized encoding Gy.

1. Set v := v1 ⊕ · · · ⊕ vm.

2. Output Gy ((x1, . . . , xm), v).

In Appendix G, we prove the following theorem, which, combined with Corollary 5.3, gives the following corollary.

Theorem 5.6. Assuming a maliciously-secure bounded FMS-MPC protocol, there exists a maliciously-secure FMS-
MPC protocol in the CRS model.

Corollary 5.7. Assuming LPN with inverse polynomial error rate, there exists a maliciously-secure FMS-MPC
protocol in the CRS model.

5.3 FMS-MPC → Reusable two-round MPC

It has been shown in previous work [BGMM20] that any maliciously-secure FMS-MPC protocol in the CRS model
implies a maliciously-secure reusable two-round MPC protocol in the CRS model. Thus, we immediately have the
following theorem.

Theorem 5.8. Assuming LPN with inverse polynomial error rate, there exists a maliciously-secure reusable two-
round MPC protocol in the CRS model.

5.3.1 The semi-honest case

We have presented all of our results in this section in the malicious-security setting, which requires a CRS. However,
we remark here that we can also achieve semi-honest secure reusable MPC in the plain model from LPN. In fact, we
claim that any maliciously-secure reusable MPC in the CRS model plus semi-honest secure vanilla two-round MPC
in the plain model implies a semi-honest secure reusable MPC in the plain model. As this transformation is nearly
identical to that of [BGMM20, Section 5], we do not provide a formal proof, but give the following sketch.

The vanilla two-round MPC can be used to compute a CRS and first round messages of the reusable MPC, and
release garbled labels of the CRS and first round messages to all parties. In the second round, each party also releases
a garbled circuit that computes their second round message of the reusable MPC. Anyone can combine the labels for
the CRS and labels for the first round messages with these garbled circuits to compute the second round messages
and thus the output.
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A Conforming Protocol

We recall the following specification of conforming protocol from [BGMM20] [GS18b]:
For any m-party MPC protocol Φ between parties P1, . . . , Pm with respective inputs (x1, . . . , xm), a conforming
protocol is defined by a tuple of functions (pre, post) and a number of computation steps (actions) (φ1, . . . , φT ). The
protocol Φ proceeds in three stages: the pre-processing stage, the computation stage and the output stage.

Remark A.1. We outline some differences between our definition and that of [GS18b]:

• Whereas in [GS18b] each party maintains its secret state in the computation phase, in our specification, each
party maintains a public state (its computation tape) in the computation phase. Every party initializes its tape
in the preprocessing stage, and updates it in each step in the computation stage. In all round t ∈ T , we require
that every party’s computation tape is the same (hence public).

• Without loss of generality, we set party i’s secret state (denoted as vi) to be its input masking bits concatenated
with its masking bits for inner gates in its computation. Looking ahead, in the context of multiparty NISC, each
party’s masking bits vi can deduced from its secret parameter si.

We begin with some notations and description of parameters. Then we specify each stage in the conforming
protocol.

• Parameters: Let T be the total number of rounds in Φ and let p be the number of times that some party
needs to compute some circuit of fixed size. Let q be the number of steps (gates) to compute any such circuit.
Therefore, each party needs to perform pq steps of computation in total, and the total number of rounds is
T = pqm. Denote by l the length of each xi, assuming their lengths are all equal. We sometimes appeal to
[GS18b] and use the notation vf to denote vi[f ] when the index i is clear from the context.

• Preprocessing stage: For each i ∈ [m], party i computes

(zi, vi)← pre
(
1λ, i, xi

)
;

where the randomized algorithm pre samples ri ← {0, 1}l and vi,k ← {0, 1}q−1 for k ∈ [p]. It then sets
zi := xi ⊕ ri and vi = ri||vi,1||0|| . . . ||vi,p||0. Then party i broadcasts the value zi and keeps the secret state vi
to itself.

• Computation stage: For each i ∈ [m], party i does the following:

1. Initialize a computation tape (public state) sti, which begins with the values sti := z1||0pq|| . . . ||zm||0pq.
For all rounds t ∈ [T ], st1 = st2 = · · · = stm always.

2. For each t ∈ [T ], proceed as follows:

(a) Parse the action φt as φt := (i∗, f, g, h), where i∗ ∈ [m], and f, g, h ∈ [pq+ l]. We sometimes refer to
Pi∗ as the speaking party.

(b) Read two values α and β from its computation tape: first locate the portion ’zi∗ || . . . ’ on the tape,
and then set α to be the value at the f th position starting from zi∗ , and β to be the value at the gth

position starting from zi∗ . In other words, α := sti[(i
∗ − 1) (pq + l)+f ], β := sti[(i

∗ − 1) (pq + l)+g].

(c) If i = i∗, then set v := vi∗ and compute one NAND gate as follows: γt = NAND (vf ⊕ α, vg ⊕ β)⊕vh.
Then broadcast the value γt to every other party.

(d) If i 6= i∗, then record the value γt on its computation tape as follows: first locate the portion ’zi∗ || . . . ’
on the tape, and then write the value γt on the hth position starting from zi∗ . In other words, set
sti[(i

∗ − 1) (pq + l) + h] := γt.

• Output stage: Let Z := (γ1, . . . , γT ) be the transcript of the conforming protocol Φ. Given Z, anyone can
decode the output by computing Y ← post(Z).

Lemma A.2. Any MPC protocol can be written as a conforming protocol Φ with the same correctness and security
guarantee of the original protocol.

Proof. Following the proof strategy of [GS18b], without loss of generality consider any MPC protocol where in each
round, one party broadcasts one bit that is obtained by computing a circuit on its initial state and the messages it
has received so far from other parties. Assume that each party computes p such circuits in total, and each circuit
only outputs a single bit. Let each circuit only consists of NAND gates and let q be the number of gates in this
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circuit. We show that the above construction correctly executes this MPC protocol:
Correctness: To show correctness, it suffices to argue that all the messages in the original MPC protocol is included
in the final transcript Z and they are correctly computed. We use induction to prove this. In the base case, some
party i computes its first circuit over its own inputs xi. The masking bits that it uses are v := ri||vi,1||0. Consider
to cases: firstly, if the action φt computes an NAND gate over two input bits (xi[f ], xi[g]), then by construction,
α := xi[f ]⊕ vf and β := xi[g]⊕ vg, thus γt = NAND (xi[f ]⊕ vf ⊕ vf , xi[g]⊕ vg ⊕ vg)⊕ vh = NAND (xi[f ], xi[g])⊕ vh.
Therefore it is correctly computed and masked. Secondly, if the action φt computes an NAND gate over outputs of
two inner gates (let the output be yf and yg, masked by vf and vg previously), then by construction, α := yf ⊕ vf
and β := yg ⊕ vg, thus γt = NAND (yf ⊕ vf ⊕ vf , yg ⊕ vg ⊕ vg) ⊕ vh = NAND (yf , yg) ⊕ vh. Therefore it is correctly
computed and masked. Since the last masking bit is 0, the output of this circuit is given in clear and is included in
the transcript.
Now for the inductive step, let n be the total number of circuits computed so far and let party i compute the (n+1)th

circuit based on the previous messages (which are recorded in sti by induction hypothesis). We can again use the
same argument to conclude that this circuit is also corrected computed.
Finally, the post algorithm reads the output of each circuit from the transcript Z and decodes the output y according
to the specification of the original MPC protocol.
Security : To argue security, it suffices to observe that the value of each gate (except the output gate) is masked with
a random bit. Therefore, no other information is leaked except for the output of each individual circuit.

B The GS18 Compiler

The GS18 compiler [GS18b] compresses a multi-round conforming protocol to two rounds. Thus it can be viewed
as a publicly decodable two-round MPC protocol and thus we adopt the syntax of two-round MPC to describe this
compiler.
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Protocol 1 (GS18 Compiler).

•
(
st

(1)
i ,msg

(1)
i

)
← MPC1

(
1λ,CRS, C, i, xi, ri

)
:

1. Let Φ be a conforming protocol for computing C.

2. Party i computes (zi, vi)← pre
(
1λ, i, xi

)
(pre uses ri as its random coins).

3. For any round t ∈ [T ] such that i = i∗ in the action
φt = (i∗, f, g, h), set v = vi and compute four OT1 messages:

{OT1

(
1λ,NAND (vf ⊕ α, vg ⊕ β)⊕ vh

)
}α,β∈{0,1}. Denote each message by OT

(α,β),(i,t)
1 and the

secret randomness used to generate it by ωi,tα,β.

4. Set msg
(1)
i :=

(
zi, {OT

(α,β),(i,t)
1 }{t}i=i∗ ,α,β∈{0,1}

)
.

5. Set st
(1)
i :=

(
vi, {ωi,tα,β}{t}i=i∗ ,α,β∈{0,1}

)
.

• msg
(2)
i ← MPC2

(
C, st

(1)
i ,
{
msg

(1)
j

}
j∈[m]

)
:

1. Party i initializes its computation tape sti := z1||0pq|| . . . ||zm||0pq. Let n := |sti|.

2. Set lab
i,T+1

:= {labi,T+1
k,0 , labi,T+1

k,1 }k∈[n] where for each k ∈ [n] and b ∈ {0, 1} labi,T+1
k,b = 0λ.

3. For each t from T to 1, compute (P̃i,t, lab
i,t

)← Garble
(
1λ,Pi,t

)
.

where the circuit Pi,t hardcodes all input labels of Pi,t+1 (see B.1).

4. Set l̂ab
i,1

:= {labi,1k,sti,k}k∈[n]

5. Set msg
(2)
i :=

(
{P̃i,t}t∈[T ], l̂ab

i,1
)

.

• Y ← MPC3

({
msg

(2)
j

}
j∈[m]

)
:

1. For each t from 1 to T , do:

(a) Parse action φt := (i∗, f, g, h).

(b) Compute

(
γt, ω

i∗,t
α,β , l̂ab

i∗,t+1
)

:= GEval

(
P̃i
∗,t, l̂ab

i∗,t
)

.

(c) For each j 6= i∗, do:

i. Compute
(
OT

(α,β),(j,t)
2 , l̂ab

j,t+1
)

= GEval
(
P̃j,t, l̂ab

j,t
)

.

ii. Parse l̂ab
j,t+1

:=
{
labj,t+1

k,stj,k

}
k∈[n]/{h}

.

iii. Recover labj,t+1
h ← OT3

(
OT

(α,β),(j,t)
2 , ωi

∗,t
α,β

)
.

iv. Reset l̂ab
j,t+1

:=
{
{labj,t+1

k,stj,k
}k∈[n]/{h}, lab

j,t+1
h

}
.

2. Let Z := (γ1, . . . , γT ), set Y := post(Z).
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Algorithm B.1 (Circuit Pi,t).
Input: sti.
Hardwired inputs: Party i’s masking bits (secret state) vi, its secret randomness for generating OT1 messages:

{ωi,tα,β}{t}i=i∗ ,(α,β)∈{0,1}. Every other party j’s OT1 messages: {OT
(α,β),(j,t)
1 }{t}j=i∗ ,(α,β)∈{0,1}. The input labels of

the next garbled circuit P̃ i,t+1: lab
i,t+1

. The round action φt and the description of a two round OT protocol.

1. Parse φt := (i∗, f, g, h).

2. Set α := sti[(i
∗ − 1) (pq + l) + f ], β := sti[(i

∗ − 1) (pq + l) + g].

3. If i = i∗, then:

(a) Set v := vi, and compute γt = NAND (vf ⊕ α, vg ⊕ β)⊕ vh.

(b) Set sti[(i
∗ − 1) (pq + l) + h] := γt.

(c) Set l̂ab
i,t+1

:=
{
labi,t+1

k,sti,k

}
k∈[n]

.

(d) Output
(
γt, ω

i,t
α,β , l̂ab

i,t+1
)

.

4. If i 6= i∗, then:

(a) Compute OT
(α,β),(i,t)
2 ← OT2

(
OT

(α,β),(i∗,t)
1 , labi,t+1

h,0 , labi,t+1
h,1

)
, where the label labi,t+1

h is the input bit

for sti[(i
∗ − 1) (pq + l) + h] of its next garbled circuit.

(b) Set l̂ab
i,t+1

:=
{
labi,t+1

k,sti,k

}
k∈[n]/{h}

.

(c) Output
(
OT

(α,β),(i,t)
2 , l̂ab

i,t+1
)

.

C Security Definition of Multiparty Silent NISC

Consider m parties (P1, . . . , Pm) with inputs (x1, . . . , xm) respectively that wish to participate in an m-party silent
NISC protocol to evaluate any circuit/functionality C over their joint inputs. The description of real/ideal world
execution is given below:

Real Execution In the real execution, the m-party silent NISC protocol for computing C is executed in the
presence of an adversary A. A trusted dealer generates the CRS, runs the Setup algorithm, and distributes all secret
parameters {si}i∈[m]. The adversary A takes as input the security parameter λ, an auxiliary input z, the CRS and
all secret parameters of corrupted parties: {sj}j∈I . The honest parties follow the instructions and take as input the
CRS and their own secret parameters: {si}i∈H . A sends the commitments {cj}j∈I and then the messages {mj}j∈I on
behalf of the corrupted parties following any arbitrary polynomial-time strategy, and at the end outputs an arbitrary
function of its view. We denote ~x := (x1, . . . , xm). The interaction of A in the protocol defines a random variable
RealA (λ, ~x, z, I) whose value is determined by the coin tosses of the dealer, the adversary, and the honest parties.
This random variable contains the output of the adversary along with the output of the honest parties.

Ideal Execution In the ideal execution, an ideal world adversary Sim interacts with a trusted party (ideal
functionality). The ideal execution proceeds as follows:

• Simulator distributes secret parameters: The ideal world adversary Sim generates the CRS along with the
secret parameters {si}i∈[m]. It then broadcasts the CRS and distributes the secret parameters to each party.

• Honest parties send inputs to the ideal functionality: Each honest party sends its input to the ideal
functionality. Each corrupt party Pi (controlled by Sim) may either send its input xi or send some other input
of the same length to the ideal functionality. Let xi

′ denote the value sent by Pi. Note that for a semi-honest
adversary, xi

′ = xi always.

• Ideal functionality sends output to the adversary: The ideal functionality computes Y ← C (x1
′, . . . , xm

′)
and sends Y to Sim.
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• Simulator decides whether to continue or abort: After seeing the value Y , the adversary Sim sends
either an abort or continue message to the honest parties. (A semi-honest adversary never aborts.)

The interaction of Sim with the ideal functionality defines a random variable IdealSim (λ, ~x, z, I) that contains the
outputs of Sim and of the honest parties. Having defined the real and the ideal worlds, we now proceed to define our
notion of security.

Definition C.1. Let λ be the security parameter and let C be any m-party functionality. We say that an m-party
silent NISC protocol securely computes C in the presence of malicious/semi-honest adversaries if for every PPT
real world malicious/semi-honest adversary A, there exists a PPT ideal world adversary Sim, such that for any
~x ∈ ({0, 1}∗)m, z ∈ {0, 1}∗, and I ⊂ [m], and for any PPT distinguisher D, we have that:

Pr
[
D (RealA (λ, ~x, z, I)) = 1

]
− Pr

[
D (IdealSim (λ, ~x, z, I)) = 1

]
= negl (λ) .

D Proof of PCG for GS18 Correlations

Theorem D.1. Assuming LPN with inverse polynomial noise rate, (PCG.GenGS,PCG.ExpandGS) in Protocol 1 is a
multi-party PCG protocol for GS18 correlations satisfying PCG security in Definition 3.11.

Proof. We first argue that GS18 correlations are generated properly. That is, considering sender 1 without loss of
generality, for any action φt := (·, f, g, h) and α, β ∈ {0, 1}, given γt,(α,β) = NAND (vf ⊕ α, vg ⊕ β)⊕ vh we have that
m1
t,(α,β),1 = m1

t,(α,β),0 + δ1 and m1
t,(α,β) = m1

t,(α,β),γt,(α,β)
.

By our construction of PCG seeds and previous arguments, we know that for degree 1 relation, we have t11,0[i] =
t11,1[i] + vi · δ1 and for degree 2 relation, we have t21,0[i, j] = t21,1[i, j] + vivj · δ1. For any t, α, β, given γt,(α,β) =
NAND (vf ⊕ α, vg ⊕ β) ⊕ vh ≡ (vfvg) + (αvg + βvf + vh) + (αβ + 1), we can express the correlated OT with such
choice bit as a sum of three correlated OTs (given below) as happening in our protocol.

• Degree 2 correlated OT: R1
0 :=

(
vfvg, t

2
1,0[f, g]

)
, R1

1 :=
(
t21,1[f, g], t21,1[f, g] + δ1

)
.

• Degree 1 correlated OT: R2
0 :=

(
αvg + βvf + vh, α · t11,0[g] + β · t11,0[f ] + t11,0[h]

)
,

R2
1 :=

(
α · t11,1[g] + β · t11,1[f ] + t11,1[h], α · t11,1[g] + β · t11,1[f ] + t11,1[h] + δ1

)
.

• Constant relation: R3
0 := (αβ + 1, 0) , R3

1 := ((αβ + 1) · δ1, αβ · δ1).

Next, we argue security. We show that the PCG protocol satisfies the natural extension of Definition 3.11 to the
multi-party setting. In particular, given any single party i (either the receiver or one of the senders), their output
(expanded) correlation can be reverse sampled given just the output correlations of all other parties.

First consider the case where the adversary corrupts the receiver and senders j ∈ [m]/{i} (all but sender i are
corrupted). In this case, we want to show that just given the receiver’s expanded correlation R0, and the set of sender
expanded correlations {Rj}j∈[m]\{i}, we can reverse sample the i’th sender’s expanded correlation (see Definition
3.11).

The reverse sampling algorithm, given the i’th part {mi
t,(α,β)} of the receiver’s expanded correlations, operates

as follows. This defines the ideal distribution.

• Sample a random element δi ∈ Fp.
• For each t ∈ [q] and each α, β ∈ {0, 1}, set mi

t,(α,β),0 := mi
t,(α,β) + γt,(α,β) · δi.

• Output Ri :=
(
δi,
{
mi
t,(α,β),0

}
α,β∈{0,1},t∈[q]

)
.

Now, by the correctness of generating correlated OTs described above, the real distribution (where sender i’s
output is computed by expanding its seed) is indistinguishable from the distribution induced by defining sender
i’s output instead by applying the shift δi to messages in the receiver’s output. At this point, we can replace the

receiver’s seeds with simulated ones
(
k̃1
j,0
′ ← Sim(1λ,F2λ , n

′), k̃2
j,0
′ ← Sim(1λ,F2λ , n

′2)
)

, where Sim is the multi-point

FSS simulator (see discussion at the end of Section 3.2). Now, the uniformly random shift δi is sampled independently
of the receiver’s seed generation, so we can consider sampling it using the reverse sampling algorithm above (rather
than using the δi that was sampled before seed generation). Now, we switch the seed generation back to honest, and
the resulting distribution is exactly the ideal distribution, where sender i’s output is sampled based on the output of
the receiver.

Now consider the case where the adversary corrupts all the senders j ∈ [m]. Given the output correlations of
each sender, the reverse sampling algorithm for receiver correlations does the following.
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• Sample v ∈ {0, 1}n randomly.

• For each j ∈ [m], each t ∈ [q] and each α, β ∈ {0, 1}, compute γt,(α,β) from v, and set mj
t,(α,β) := mj

t,(α,β),0 +
γt,(α,β) · δj .

• Output R0 =

(
v,
{
mj
t,(α,β)

}
α,β∈{0,1},t∈[q],j∈[m]

)
.

We show that the ideal distribution induced by the above reverse sampling algorithm is indistinguishable from
the real distribution via the following hybrids.

• Hybrid0: This is the real distribution: namely both y ← {0, 1}n
′

and {δj}j∈[m] ← Fj
2λ

are randomly sampled.

Each sender j’s seeds are computed as
(
· , k̃1

j,1

)
← PCG.GensVOLE

(
1λ, ỹ, δj

)
;
(
· , k̃2

j,1

)
← PCG.GensVOLE

(
1λ, ỹ ⊗ y, δj

)
.

v = y ·Hn′,n, and all
{
mj
t,(α,β)

}
α,β∈{0,1},t∈[q],j∈[m]

are computed accordingly.

• Hybridj∈[m]: Instead of generating sender j’s seeds
(
k̃1
j,1, k̃

2
j,1

)
honestly, we replace them one by one with sim-

ulated ones:
(
k̃1
j,1
′ ← Sim(1λ,F2λ , n

′), k̃2
j,1
′ ← Sim(1λ,F2λ , n

′2)
)

, where Sim is the multi-point FSS simulator

(see discussion at the end of Section 3.2). Indistinguishability follows from the security of multi-point FSS.

• Hybridm+1: We sample at random the value v← {0, 1}n instead of computing it as v := y ·Hn′,n. Since for all

j ∈ [m],
(
k̃1
j,1
′, k̃2

j,1
′
)

are independent of y, indistinguishability follows directly from the LPN assumption.

E Security of Muliparty Silent NISC

In this section, we prove malicious security of multiparty silent NISC protocol. We begin by listing all the ingredients
we are using in this section: let SimΦ be a simulator for conforming protocol, SimG be the simulator for garbling
scheme. Let A be the real world adversary who corrupts a set of parties I ⊂ [m]. We always assume that this
corruption is static.

Description of simulator The ideal world adversary Sim simulates the view of real world adversary A as follows:

• Generating secret parameters: Given a circuit size bound L, the simulator generates the CRS and secret
parameter on behalf of an honest dealer: CRS ← Gen

(
1λ
)
; {si}i∈[m] ← Setup

(
1λ, L

)
. It then gives the CRS

and {sj}j∈I to the corrupted parties (controlled by A), and additionally computes {vj}j∈I accordingly, keeping
this value to itself.

• Simulating commit phase: The simulator runs SimΦ

(
1λ
)

and obtains {zi}i∈H : (Recall that by our con-
struction ci = zi). Then it saves the state of SimΦ and sends {ci}i∈H on behalf of honest parties to the real
world adversary A, who responds with {cj}j∈I on behalf of corrupted parties.

• Extracting corrupted party inputs: For each j ∈ I, the simulator parses vj := v′j ||v∗j . (recall that
v′j ∈ {0, 1}l is the random mask for party i’s input) Then set xj := cj ⊕ v′j .

• Receiving output from ideal functionality: Each honest party i ∈ H sends its input xi to the ideal
functionality, and the simulator sends corrupted party inputs {xj}j∈I on behalf of the adversary A. The ideal
functionality computes Y ← C (x1, . . . , xn) and sends Y to the simulator.

• Simulating conforming protocol: The simulator continues to run SimΦ on inputs
(
{xj}j∈I , {vj}j∈I , Y

)
,

and obtain the following:

– The public computation tape (which is same for all honest parties) {sti}i∈H .

– The transcript of the computation phase, still denoted by Z. Let Zt be the bit sent in the tth round of
the computation phase.

• Setting up GS18 correlations for honest parties: For t ∈ [T ], parse φt = (i∗, f, g, h) and set α∗ :=
sti[(i

∗ − 1) (pq + l) + f ], β∗ := sti[(i
∗ − 1) (pq + l) + g]:

– If (i∗ ∈ H), then:
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1. For any j ∈ H/{i∗}, sample two random strings
(
m̃i∗,j
t,0 , m̃

i∗,j
t,1

)
← {0, 1}λ × {0, 1}λ. For each

α, β ∈ {0, 1}, set party i∗’s receiver strings for round t as
(
γi
∗
t,(α,β) := Zt, m̃

i∗,j
t,(α,β) := m̃i∗,j

t,Zt

)
; set party

j’s sender strings for round t as
(
m̃i∗,j
t,(α,β),0 := m̃i∗,j

t,0 , m̃
i∗,j
t,(α,β),1 := m̃i∗,j

t,1

)
.

2. For any j ∈ I, use sj to compute party j’s sender strings:
(
m̃i∗,j
t,(α∗,β∗),0, m̃

i∗,j
t,(α∗,β∗),1

)
. Then for each

α, β ∈ {0, 1} set party i∗’s receiver strings for round t as
(
γi
∗
t,(α,β) := Zt, m̃

i∗,j
t,(α,β) := m̃i∗,j

t,(α∗,β∗),Zt

)
.

– If (i∗ ∈ I), then:

1. For any j ∈ H, use si∗ to compute party i∗’s receiver strings:
(
γi
∗
t,(α∗,β∗), m̃

i∗,j
t,(α∗,β∗)

)
. Then sample

m̃i∗,j
t,(α∗,β∗),1−Zt

← {0, 1}λ, and for each α, β ∈ {0, 1}, set party j’s sender strings for round t as:(
m̃i∗,j
t,(α,β),Zt

:= m̃i∗,j
t,(α∗,β∗), m̃

i∗,j
t,(α,β),1−Zt

:= m̃i∗,j
t,(α∗,β∗),1−Zt

)
.

• Simulating compute phase: For each i ∈ H, Sim generates message mi on behalf of party i as follows:

1. Set lab
i,T+1

:=
(
labi,T+1

k,0 , labi,T+1
k,1

)
k∈[N ]

where for each k ∈ [N ] and b ∈ {0, 1} labi,T+1
k,b = 0λ.

2. For each t from T to 1:

(a) Parse φt := (i∗, f, g, h).

(b) Set α∗ := sti[(i
∗ − 1) (pq + l) + f ], β∗ := sti[(i

∗ − 1) (pq + l) + g].

(c) If i = i∗, then compute:(
P̃i,t, l̂ab

i,t
)
← SimG

(
1|P

i,t|, 1|sti|,

(
Zt,
{
m̃i,j
t,(α∗,β∗)

}
j∈[m]/{i}

, l̂ab
i,t+1

))
(d) If i 6= i∗, then set l̂ab

i,t+1
:=
{

labi,t+1
k,sti,k

}
k∈[N ]/{h}

, and compute:(
P̃i,t, l̂ab

i,t
)
← SimG

(
1|P

i,t|, 1|sti|,
(
labi,t+1

h ⊕ m̃i∗,i
t,(α∗,β∗),0, labi,t+1

h ⊕ m̃i∗,i
t,(α∗,β∗),1, l̂ab

i,t+1
))

3. Set mi :=
(
{Pi,t}t∈[T ], l̂ab

i,1
)

.

Now, we prove indistinguishability via the following hybrids.

Hybrid0 : This hybrid is the real world execution.

Hybrid1 : This hybrid is the same as Hybrid0, except that we remove pairwise setup between party i ∈ H and any
other j ∈ [m] whenever party i is the sender.

For every j ∈ [m], first sample a random shift δj,i ← Fp. For every t ∈ T such that φt := (i∗, f, g, h) and i∗ 6= i, for

each α, β ∈ {0, 1}, let
(
γt := γi

∗
t,(α,β), m

i∗,i
t,(α,β)

)
be party i∗’s receiver strings for round t. Note that this is honestly

computed from si
∗,i

0 . Now set party i’s sender strings for round t as m̃i∗,i
t,(α,β),γt

:= ρ
(
mi∗,i
t,(α,β)

)
, m̃i∗,i

t,(α,β),1−γt :=

ρ
(
mi∗,i
t,(α,β) + δi∗,i

)
.

Now set si :=
({

si,j0

}
j∈[m]/{i}

)
(since we remove pairwise setup between party i and any j ∈ [m] whenever party

i is the sender). Party i hardwires above sender strings in each of its garbled circuit.
This hybrid is indistinguishable from Hybrid0 due to the security of PCG (Theorem D.1). In particular, indis-

tinguishability follows from the fact that we are reverse sampling each sender string conditioning on the receiver
string.

Hybrid2 : In this hybrid we switch honest party sender strings into truly random strings:
For each i ∈ H and for each t ∈ T , parse φt := (i∗, f, g, h). If i∗ 6= i, then we reset party i’s sender string for

round t as: m̃i∗,i
t,(α,β),γt

:= m̃i∗,i
t,(α,β,γt)

, and m̃i∗,i
t,(α,β),1−γt ← {0, 1}

λ being a truly random string.

This hybrid is indistinguishable from Hybrid1 due to the security of random oracle (as a correlation robust hash
function) In particular, the probability that the adversary will be able to correctly guess δi∗,i and make queries

mi∗,i
t,(α,β) + δi∗,i to ρ is negligible.
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Hybridk∈[3,T+3] : In this sequence of hybrids, we simulate honest party garbled circuits as follows:
We start by faithfully executing the conforming protocol on honest party inputs and the masking bits and those of

the corrupted parties. This yields a transcript of the computation phase, denoted as Z. Let sti denote the public com-
putation tape for party i. Each Hybridk differs from the Hybridk−1 in terms of how each honest party’s garbled circuit
are generated in round t := k−3. We use a sequence of inner hybrids:

(
Hybridk,0 := Hybridk−1, Hybridk,1, Hybridk,2 := Hybridk

)
:

Inner hybrid Hybridk,1
Parse φt := (i∗, f, g, h), and set α∗ := sti[(i

∗ − 1) (pq + l) + f ], β∗ := sti[(i
∗ − 1) (pq + l) + g],

• If i∗ ∈ H, then make the following changes: simulate party i∗’s garbled circuit for round t as:(
P̃i
∗,t, l̂ab

i∗,t
)
← SimG

(
1|P

i∗,t|, 1|sti∗ |,

(
Zt,
{
m̃i∗,j
t,(α∗,β∗)

}
j∈[m]/{i}

, l̂ab
i∗,t+1

))
Where l̂ab

i∗,t+1
are the honestly generated labels of its next round garbled circuit.

• Otherwise, for all i ∈ H, simulate party i’s garbled circuit for round t as:(
P̃i,t, l̂ab

i,t
)
← SimG

(
1|P

i,t|, 1|sti|,
(
labi,t+1

h,0 ⊕ m̃i∗,i
t,(α∗,β∗),0, labi,t+1

h,1 ⊕ m̃i∗,i
t,(α∗,β∗),1, l̂ab

i,t+1
))

Where l̂ab
i,t+1

:=
{

labi,t+1
k,sti,k

}
k∈[N ]/{h}

are the honestly generated labels of its next round garbled circuit.

The inner hybrid Hybridk,1 is indistinguishable from Hybridk,0 due to the security of garbled circuits.
Inner hybrid Hybridk,2

• For all i ∈ H, we make the following changes: whenever i∗ ∈ I, simulate party i’s garbled circuit for round t
as: (

P̃i,t, l̂ab
i,t
)
← SimG

(
1|P

i,t|, 1|sti|,
(
labi,t+1

h ⊕ m̃i∗,i
t,(α∗,β∗),0, labi,t+1

h ⊕ m̃i∗,i
t,(α∗,β∗),1, l̂ab

i,t+1
))

This inner hybrid is indistinguishable from Hybridk,1 since m̃i∗,i
t,(α∗,β∗),1−Zt

is a uniformly random string.

HybridT+4 : This hybrid is the same as HybridT+3 except that we remove pairwise setup between party i ∈ H and
any other j ∈ I whenever i is the receiver.

For every i ∈ H, directly sample random masking bits vi ← {0, 1}n. Then for every t ∈ T such that φt :=

(i∗, f, g, h) and i∗ = i, for each α, β ∈ {0, 1} and for every j ∈ [m], let
(
m̃i,j
t,(α,β),0, m̃

i,j
t,(α,β),1

)
be party j’s sender

strings for round t. Note that if j ∈ I, this is honestly computed from si,j1 , and for all j ∈ H/{i} its sender strings
are defined in Hybrid1. Now set v := vi and honestly compute γit,(α,β) := γt = NAND (vf ⊕ α, vg ⊕ β)⊕ vh. Then set

party i’s receiver strings for round t as
(
γit,(α,β), m̃

i,j
t,(α,β) := m̃i,j

t,(α,β),γt

)
.

Now set si := ⊥ (since we remove pairwise setup between party i and any other j ∈ [m] whenever i is the receiver).
Party i hardwires above receiver strings in each of its garbled circuit.

This hybrid is indistinguishable from HybridT+3 due to the security of PCG (Theorem D.1). In particular,
indistinguishability follows from the fact that we are reverse sampling the receiver string conditioning on the sender
string.

HybridT+5 : This hybrid is the same as HybridT+4 except that we change honest party’s all receiver and sender
strings as follows:

For any i ∈ H and each t ∈ [T ], α, β ∈ {0, 1}, parse φt := (i∗, f, g, h). If i∗ = i, then for each j ∈ [m]/{i}, set(
γit,(α,β) := Zt, m̃

i,j
t,(α,β) := m̃i,j

t,(α∗,β∗)

)
. Otherwise, set

(
m̃i∗,i
t,(α,β),0 := m̃i∗,i

t,(α∗,β∗),0, m̃
i∗,i
t,(α,β),1 := m̃i∗,i

t,(α∗,β∗),1

)
.

This hybrid is indistinguishable from HybridT+4 since this only incurs a syntactic change.

HybridT+6 : In this last hybrid we change how the transcript ZΦ, the public state sti, and the masking bits {vi}i∈H
are generated. We simulate them by evoking SimΦ on input {xj}j∈I , {vj}j∈I , as well as the output Y obtained from
the ideal functionality.

This is indistinguishable from the previous hybrid due to the security of the conforming protocol. Finally, notice
that this hybrid is the same as the ideal world execution.
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F Construction of Bounded FMS-MPC

Definition F.1 (Bounded FMS-MPC). Let Gen be an algorithm that generates a CRS. We say that the protocol
π∗ = (Gen,BFMS.MPC1,BFMS.MPC2,BFMS.MPC3) is a bounded FMS-MPC protocol if it is a two-round MPC
protocol with the following properties:

• Bounded circuit size: The Gen algorithm takes as input the security parameter λ, a circuit size bound L, and
outputs a CRS := (CRS′,CRS∗). The size of CRS′ only depends on an upper bound on input size, whereas the
size of CRS∗ can be as large as L. Moreover, the protocol π∗ only supports circuits such that |C| ≤ L. When
the value CRS∗ is fixed, the Gen algorithm only takes as input λ and outputs CRS′.

• Reusable CRS: The part CRS∗ only needs to be set up once, and can be reused across an unbounded polynomial
number of two-round MPC protocols.

• First message succinctness: The BFMS.MPC1 algorithm only takes as input
(
1λ,CRS′, i, xi

)
. In particular, its

runtime should not depend on the circuit size |C|.

Correctness and Security The correctness of bounded FMS-MPC is identical to the standard two-round MPC.
For security, we slightly modify the real/ideal world paradigm in the following way:

• Real execution: A trusted dealer runs Gen on input L (chosen by the adversary) and computes a CRS :=
(CRS′,CRS∗). It then gives CRS to the adversary A. The adversary then specifies an arbitrary polynomial
q(·) in security parameter λ of its choice. Let π = (CRS∗,Gen,BFMS.MPC1,BFMS.MPC2,BFMS.MPC3) be the
two-round MPC protocol with the fixed value of CRS∗. For any arbitrary sequence of circuits

(
C1, . . . , Cq(λ)

)
such that each |Cy|y∈[q(λ)] ≤ L, the honest parties follow the instructions of π to compute Cy. A sends all
messages of the protocol on behalf of the corrupted parties following any arbitrary polynomial-time strategy.
Let ~xy := (xy,1, . . . , xy,m) be the inputs to circuit Cy. The interaction of A in the protocol defines a random

variable RealA
(
λ, {~xy}y∈q(λ) , z, I

)
whose value is determined by the coin tosses of the adversary and the honest

parties. This random variable contains the CRS∗, the output of the adversary as well as the outputs of the
honest parties for computing each circuit.

• Ideal execution: In the ideal execution, the ideal adversary Sim interacts with an ideal functionality as
follows:

– The simulator runs Gen to generate the CRS.

– For each y ∈ q(λ), the honest parties send its input for circuit Cy to the ideal functionality. Each corrupted
party may send arbitrary inputs to the ideal functionality. Semi-honest adversary does not cheat on their
inputs.

– For each y ∈ q(λ), the ideal functionality computes Yy ← Cy (~xy) and gives it to Sim.

– For each y ∈ q(λ), the simulator Sim outputs the view of corrupted parties:
{(

BFMS.msg
(1),y
i ,BFMS.msg

(2),y
i

)}
i∈H

and the value Yy obtained from the ideal functionality.

The interaction of Sim and ideal functionality defines a random variable IdealSim
(
λ, {~xy}y∈q(λ) , z, I

)
.

As before, we require that the two distributions of RealA
(
λ, {~xy}y∈q(λ) , z, I

)
and IdealSim

(
λ, {~xy}y∈q(λ) , z, I

)
are

computationally indistinguishable.

Transformation overview It is straightforward to see that a multiparty silent NISC with large reusable CRS
implies the following three-round FMS-MPC protocol:

1. The Gen algorithm first sets up the CRS for multiparty silent NISC: CRS := (CRS′,CRS∗). Then it sets up the
CRS for a maliciously secure vanilla two-round MPC protocol (to be used in the next step) and includes this
CRS inside CRS′.

2. Define a circuit F, which takes as input the security parameter λ, the circuit size bound L, every party’s input
{xi}i∈[m], and the CRS′. It first plays the role of an honest dealer and computes {si}i∈[m] ← Setup

(
1λ, L

)
.

Then it computes commitments on behalf of each party: ci ← Commit (i, xi, si,CRS
′). Finally it distributes

{si}i∈[m] to every party and outputs {ci}i∈[m]. It is easy to see that this circuit implements the setup and
commit phase of a multiparty silent NISC. Correspondingly, in the first and second round of the three-round
MPC, we simply use a vanilla two-round MPC protocol to compute the circuit F.
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3. By the end of the second round, each party i can recover the output of the vanilla MPC, which contains its secret

parameter si and all the commitments {ci}i∈[m]. Then party i can computemi ← Compute
(
i, xi, si,CRS, {cj}j∈[m] , C

)
,

and broadcasts mi as its third-round message.

4. By the end of this three-round MPC protocol, anyone can recover the output by computing Y ← Recover
(
{mj}j∈[m]

)
.

This three-round MPC protocol inherits the circuit size bound and reusable large CRS from the underlying multiparty
silent NISC. The first message succinctness comes from the fact that the circuit F only takes as input λ, L, CRS′ and
{xi}i∈[m]. Although the runtime of MPC1 in the vanilla two-round MPC depends on the size of F, this circuit does
not depend on C, and therefore MPC1 has no dependence on |C|. Now in order to obtain a bounded FMS-MPC, we
only have to remove one extra round.

To reduce round complexity, we use the round-collapsing approach from [BGMM20]: In the second round, each
party i also outputs a garbled circuit that realizes its third-round functionality. That is, we garble the circuit

Compute (i, xi, ·,CRS, ·, C), which hardwires the values (xi,CRS, C) and receives
(
si, {cj}j∈[m]

)
as inputs. To enable

computing each party’s garbled circuit, we also modify the circuit F so that it outputs the input labels corresponding

to the values
(
si, {cj}j∈[m]

)
for each party i’s garbled circuit. In the real protocol, party i will actually output its

garbled circuit along with the encryption of all input labels using a label encryption scheme (see section 3.2): These
input labels are encrypted using a (2× n) grid of keys, and each key is derived from a PRF. Each party will sample
its randomness ri as its PRF key, and also supply ri as its input to the circuit F. This enables F to output the keys
that can be used to decrypt only the correct input labels for each party’s garbled circuit.

Applying this transformation, we build a bounded FMS-MPC (described in protocol 4) from multiparty silent
NISC with reusable large CRS.
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Protocol 4 (Bounded FMS-MPC).
Let (GenNISC,Setup,Commit,Compute,Recover) be a multiparty silent NISC protocol, (Garble,GEval) be a gar-
bling scheme. Let (GenMPC,MPC1,MPC2,MPC3) be a maliciously secure vanilla two-round MPC protocol and
(LabEnc, LabDec) be a label encryption scheme. The circuit F is defined in algorithm F.2.

• Gen(1λ, L): If CRS∗ is fixed then compute CRS′ ← GenNISC(1λ), otherwise compute (CRS′,CRS∗) ←
GenNISC

(
1λ, L

)
. Also compute C̃RS← GenMPC

(
1λ
)
, and set CRS′ :=

(
CRS′, C̃RS

)
and CRS := (CRS′,CRS∗).

• BFMS.MPC1

(
1λ,CRS′, i, xi

)
:

1. Sample ri ← {0, 1}λ, and compute
(
st

(1)
i ,msg

(1)
i

)
← MPC1

(
1λ, C̃RS,F, i, (xi, ri)

)
.

2. Set BFMS.st
(1)
i :=

(
st

(1)
i , ri

)
and BFMS.msg

(1)
i := msg

(1)
i .

• BFMS.MPC2

(
C,CRS,BFMS.st

(1)
i ,
{
BFMS.msg

(1)
j

}
j∈[m]

)
:

1. Compute msg
(2)
i ← MPC2

(
F, st

(1)
i ,
{
msg

(1)
j

}
j∈[m]

)
.

2. Compute (C̃i, labi)← Garble
(
1λ,Compute(i, xi, · ,CRS, · , C)

)
.

3. Compute elabi ← LabEnc
(
Ki, labi

)
where Ki = PRF (ri, (t, b))t∈[n],b∈{0,1}.

4. Set BFMS.msg
(2)
i :=

(
msg

(2)
i , C̃i, elabi

)
.

• BFMS.MPC3

({
BFMS.msg

(2)
j

}
j∈[m]

)
:

1. Compute
{
K̂j

}
j∈[m]

← MPC3

({
msg

(2)
j

}
j∈[m]

)
.

2. For each j ∈ [m]:

– Compute l̂abj ← LabDec
(
K̂j , elabj

)
;

– Compute mj ← GEval
(
C̃j , l̂abj

)
.

3. Set Y ← Recover
(
{mj}j∈[m]

)
.

Algorithm F.2 (Circuit F).
Input: {(xj , rj)}j∈[m].

Hardwired inputs: the security parameter λ, a circuit size bound L, CRS′ and description of a PRF.

1. {si}i∈[m] ← Setup(1λ, L).

2. For each i ∈ [m], compute ci ← Commit(i, xi, si,CRS
′).

3. For each i ∈ [m]:

• Set zi :=
(
si, {cj}j∈[m]

)
and let n = |zi|, for each t ∈ [n], set Ki,t = PRF (ri, (t, zi[t]));

• Set K̂i = {Ki,t}t∈[n].

4. Output
{
K̂i

}
i∈[m]

.
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Algorithm F.3 (Circuit F′).

Input:
(
{sj}j∈I , {cj}j∈[m] , {rj}j∈I

)
;

Hardwired input: The description of a PRF.

1. For each j ∈ I:

• Set zj :=
(
sj , {ci}i∈[m]

)
;

• Set n = |zj |, for each t ∈ [n], set Kj,t = PRF (rj , (t, zj [t]));

• Set K̂j = {Kj,t}t∈[n].

2. For each i ∈ H:

• For each t ∈ [n], randomly sample Ki,t ← {0, 1}λ;

• Set K̂i = {Ki,t}t∈[n].

3. Output
{
K̂i

}
i∈[m]

.

I

Security We prove malicious security of this bounded FMS-MPC protocol, relying on the following ingredients:
Let SimNISC be a simulator for a multiparty silent NISC protocol, SimG be a simulator for garbling scheme and SimMPC

be a simulator for maliciously secure vanilla two round MPC protocol. Let the adversary A corrupt a set of parties
I ⊂ [m] in a static manner.

Description Of Simulator The ideal world adversary Sim simulates the view of real world adversary as follows:

1. Sampling CRS: The adversary chooses a circuit size bound L. Then the simulator samples (CRS′,CRS∗)←
Gen

(
1λ, L

)
and gives it to A.

2. Adversary decides number of executions: The adversary outputs a polynomial q(·). After this point, the
following steps will be iterated for q(λ) times. In each iteration y ∈ [q(λ)], some arbitrary circuit Cy (|Cy| ≤ L)
is computed.

3. Simulating first round messages of honest parties: The simulator evokes SimMPC on inputs
(
1λ,F

)
, who

first outputs the simulated first round messages of the honest parties:
{
msg

(1)
i

}
i∈H

. Then Sim saves the state

of SimMPC, and for each i ∈ H, sets BFMS.msg
(1)
i := msg

(1)
i and sends it to A on behalf of honest parties.

4. Receiving first round messages from corrupted parties: The adversary outputs first round messages

on behalf of corrupted parties:
{
BFMS.msg

(1
j

}
j∈I

. The simulator then continues SimMPC with these values as

input. This step allows to extract corrupted party inputs {(xj , rj)}j∈I to the vanilla MPC. Sim then saves the
state of SimMPC.

5. Receiving output from ideal functionality: Each honest party i ∈ H sends its input xi to the ideal
functionality, and the simulator sends corrupted party inputs {xj}j∈I on behalf of the adversary A. The ideal
functionality computes Yy ← Cy (x1, . . . , xm) and sends Yy to the simulator.

6. Simulating second round messages of honest parties:

(a) The simulator evokes SimNISC with input
(
I, {xj}j∈I

)
. Instead of letting it generate its own CRS∗,

hardwires the value CRS∗ to SimNISC (However it can generate its own CRS′ after the first iteration). By
our previous construction, SimNISC will first output {sj}j∈I and the simulated commitments for honest
parties: {ci}i∈H . Sim saves the state of SimNISC.

(b) For each j ∈ I, Sim computes cj ← Commit(j, xj , sj ,CRS
′). Sim then computes the circuit F′ on inputs(

{sj}j∈I , {cj}j∈[m] , {rj}j∈I
)

, and obtains
{
K̂i

}
i∈[m]

.
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(c) Sim continues to run SimMPC: when it queries the ideal functionality, send
{
K̂i

}
i∈[m]

to it on behalf of

the ideal functionality. SimMPC will then output the simulated second round messages for honest parties:{
msg

(2)
i

}
i∈H

.

(d) Sim continues to run SimNISC, and sends {cj}j∈I to it on behalf of corrupted parties. When it queries its
own ideal functionality, Sim sends Yy to it on behalf of the ideal functionality. SimNISC eventually outputs
{mi}i∈H .

(e) For each i ∈ H, Sim does the following:

• Compute
(
C̃i, l̂abi

)
← SimG

(
1|Compute|, 1n, mi

)
.

• For each t ∈ [n], randomly sample another set of keys Si,t ← {0, 1}λ; Then setKi := {(Ki,t, Si,t)}t∈[n].

• Set labi :=
(
l̂abi, l̂abi

)
.

• Compute elabi ← LabEnc
(
Ki, labi

)
.

(f) For each i ∈ H, set BFMS.msg
(2)
i :=

(
msg

(2)
i , C̃i, elabi

)
.

Indistinguishability Due to the reusability of large CRS (in particular, CRS∗) in the multiparty silent NISC,
we only have to consider the case where a single circuit C is computed by the bounded FMS-MPC protocol (e.g.
q(λ) = 1). We argue indistinguishability using the following hybrids:

Hybrid0 : This is the real world execution.

Hybrid1 : In this hybrid we make the following changes: for each i ∈ H, instead of settingKi = PRF (ri, (t, b))t∈[n],b∈{0,1},
sample all these keys uniformly at random. Indistinguishability follows from the security of PRF.

Hybrid2 : In this hybrid, we simulate the underlying vanilla two-round MPC protocol.

1. Evoke SimMPC on inputs
(
1λ,F

)
, who first outputs the simulated first round messages of the honest parties:{

msg
(1)
i

}
i∈H

. Then save the state of SimMPC, and for each i ∈ H, set BFMS.msg
(1)
i := msg

(1)
i and send it to A

on behalf of honest parties.

2. Receive
{
BFMS.msg

(1
j

}
j∈I

from A.

3. Continue to run SimMPC with these values as input. Extract corrupted party inputs {(xj , rj)}j∈I to the vanilla
MPC. Then save the state of SimMPC.

4. When SimMPC queries the ideal functionality, proceed the following steps:

• Using corrupted party inputs {xj}j∈I and honest party inputs {xi}i∈H , compute step 1 and step 2 as
described in circuit S honestly. Record the values {si}i∈[m] and {ci}i∈[m].

• Compute the circuit F′ on inputs
(
{sj}j∈I , {cj}j∈[m] , {rj}j∈I

)
, and obtain

{
K̂i

}
i∈[m]

.

Send
{
K̂i

}
i∈[m]

to SimMPC, who will then output the simulated second round messages for honest parties:{
msg

(2)
i

}
i∈H

.

5. For each i ∈ H, set BFMS.msg
(2)
i :=

(
msg

(2)
i , C̃i, elabi

)
, where C̃i and elabi are still honestly computed (using

random keys).

Indistinguishability follows directly from the security of vanilla two-round MPC protocol.

Hybrid3 : In this hybrid, we change how honest party input labels are encrypted:

Let zi :=
(
si, {cj}j∈[m]

)
where both values are obtained from previous hybrid. For i ∈ H, let l̂abi be its input

labels corresponding to the value zi. Set labi :=
(
l̂abi, l̂abi

)
. For each t ∈ [n], if zi[t] = 0, we encrypt the first input

label using Ki,t, and the second input label using Si,t. If zi[t] = 1, switch the order of encryption. Indistinguishability
follows from the semantic security of the label encryption scheme.
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Hybrid4 : In this hybrid, we make the following changes to how honest party input labels are encrypted:
We do not preserve the order of encryption. Instead, for i ∈ H, set Ki := {(Ki,t, Si,t)}t∈[n] and compute

elabi ← LabEnc
(
Ki, labi

)
. Indistinguishability follows from the fact that the label encryption scheme always

randomly permutes the ciphertexts.

Hybrid5 : In this hybrid, we simulate honest party garbled circuits:

1. For each i ∈ H, honestly compute mi ← Compute(i, xi, si,CRS
∗, {cj}j∈[m] , C), where si and {cj}j∈[m] are still

obtained from Hybrid2.

2. For each i ∈ H, simulate its garbled circuit:
(
C̃i, l̂abi

)
← SimG

(
1|Compute|, 1n, mi

)
.

3. Set labi :=
(
l̂abi, l̂abi

)
.

4. Compute elabi ← LabEnc
(
Ki, labi

)
.

Indistinguishability directly follows from the security of garbling scheme.

Hybrid6 : In the last hybrid, we simulate the underlying multiparty silent NISC protocol:

1. Evoke SimNISC with input
(
I, {xj}j∈I

)
. By our previous construction, SimNISC will generate its own random

CRS. We include this CRS in the view that Sim outputs. Then SimNISC will output {sj}j∈I and {ci}i∈H .

2. For each j ∈ I, using extracted corrupted party inputs {xj}j∈I , compute cj ← Commit(j, xj , sj ,CRS
′). Send

{cj}j∈I to SimNISC on behalf of the adversary A. By our construction, SimNISC will then query its ideal func-
tionality.

3. Query the ideal functionality and obtain Y ← C (x1, . . . , xm).

4. Send Y to SimNISC on behalf of the ideal functionality, and SimNISC responds with {mi}i∈H .

5. Moreover, when SimMPC queries the ideal functionality, compute circuit F′ directly with inputs
(
{sj}j∈I , {c}j∈[m] , {rj}j∈I

)
,

and give this output to SimMPC. Similarly, when simulating honest party garbled circuits, use {mi}i∈H instead.

Indistinguishability follows from the security of multiparty silent NISC protocol.

G Security of FMS-MPC

We prove malicious security of this FMS-MPC protocol, relying on the following ingredients: Let SimBFMS be the
simulator for a maliciously secure bounded FMS-MPC protocol, SimCRE be the simulator for randomized encoding
scheme, and SimG be a simulator for garbling scheme. Let the adversary A corrupt a set of parties I ⊂ [m] in a static
manner.

Description Of Simulator The ideal world adversary Sim simulates the view of real world adversary as follows.
It makes use the circuit E′ defined below.

1. Sampling parameters: The simulator sets L = max (|E|, |Fy|), and evokes SimBFMS on inputs (1λ, I, L).

Denote this simulator (in this iteration) by Sim
(1,1)
BFMS. It first outputs the CRS. Sim forwards this CRS to A and

saves the state of Sim
(1,1)
BFMS.

2. Receiving a circuit description from the adversary: The adversary specifies a circuit C, whose size can
be an arbitrary polynomial in λ. Let |C| = q(λ). A gives the description of C to Sim, who then forwards q(·)
and E to Sim

(1,1)
BFMS.

3. Simulating first round messages of honest parties: Sim continues to run Sim
(1,1)
BFMS, who then outputs the

simulated first round message of honest parties:
{
msg

(1)
i

}
i∈H

. For each i ∈ H, Sim sets FMS.msg
(1)
i := msg

(1)
i

and gives it to A on behalf of honest parties. Then it saves the state of Sim
(1,1)
BFMS.
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4. Receiving first round messages from corrupted parties: The adversary outputs first round messages

on behalf of corrupted parties:
{
FMS.msg

(1
j

}
j∈I

. Sim continues Sim
(1,1)
BFMS with these values as input. This step

allows to extract corrupted party inputs {((xj , vj), rj)}j∈I to the bounded FMS-MPC. Sim then saves the state

of Sim
(1,1)
BFMS.

5. Receiving output from ideal functionality: Each honest party i ∈ H sends its input xi to the ideal
functionality, and the simulator sends corrupted party inputs {xj}j∈I on behalf of the adversary A. The ideal
functionality computes Y ← C (x1, . . . , xm) and sends Y to the simulator.

6. Simulating second round messages of honest parties: The rest of simulation proceeds as follows:

• Constructing the binary tree: Sim computes [Gy]y∈[n] ← CRE.Enc
(
1λ, C

)
(where n = O (q(λ))).

Then it constructs a complete binary tree according to protocol specification. We adopt the following
notations as before: let d be the depth of this binary tree, and let the index tuple (k, y) denote the yth

node at the kth level in this tree.

• Simulating root node: Sim continues to run Sim
(1,1)
BFMS until it queries the ideal functionality. At this

point, the simulator does the following:

(a) For each j ∈ I, compute r
(2,1)
j := G0(rj), r

(2,2)
j := G1(rj).

(b) Start two new iterations of SimBFMS and denote them by Sim
(2,1)
BFMS and Sim

(2,2)
BFMS respectively. Give

the initial inputs

(
1λ,E,

{
(xj , vj), r

(2,1)
j

}
j∈I

)
to the former, and

(
1λ,E,

{
(xj , vj), r

(2,2)
j

}
j∈I

)
to the

latter.

(c) Sim
(2,1)
BFMS and Sim

(2,2)
BFMS output simulated first round messages for honest parties:

{
msg

(1),(2,1)
i

}
i∈H

and
{
msg

(1),(2,2)
i

}
i∈H

. Then save their states.

(d) Sample two fresh
(
CRS′ (2,1),CRS′ (2,2)

)
← Gen(1λ) and then generate the states and first round

messages on behalf of corrupted parties: for each j ∈ I, compute(
st

(1),(2,1)
j ,msg

(1),(2,1)
j

)
← MPC1

(
1λ,CRS′ (2,1), j, ((xj , vj), r

(2,1)
j )

)
,(

st
(1),(2,2)
j ,msg

(1),(2,2)
j

)
← MPC1

(
1λ,CRS′ (2,2), j, ((xj , vj), r

(2,2)
j )

)
.

(e) Compute circuit E′ on input:(
{rj}j∈I ,

{(
msg

(1),(2,1)
j , msg

(1),(2,2)
j

)}
j∈[m]

,
{(

st
(1),(2,1)
j , st

(1),(2,2)
j

)}
j∈I

,
(
CRS′ (2,1),CRS′ (2,2)

))
. Ob-

tain

({
K̂

(2,1)
i := K̂0

i

}
i∈[m]

,
{
K̂

(2,2)
i := K̂1

i

}
i∈[m]

)
and forward them to Sim

(1,1)
BFMS on behalf of the

ideal functionality.

(f) Sim
(1,1)
BFMS outputs the simulated second round messages for honest parties:

{
msg

(2)
i

}
i∈H

.

• Simulating all other nodes: For each k ∈ [2, d], the simulator runs the subroutine Simk (described in
algorithm G.2 and G.3). It will simulate honest party garbled circuits and their label encryption for all
node computation at level k. Simk will also output the inputs of Simk+1 so that these subroutines can be
run in sequential.
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Algorithm G.1 (Circuit E′).

Input:

(
{rj}j∈I ,

{(
msg

(1),0
j , msg

(1),1
j

)}
j∈[m]

,
{(

st
(1),0
j , st

(1),1
j

)}
j∈I

,
(
CRS′ 0,CRS′ 1

))
.

1. For each i ∈ [1,m] (Generating the left child):

• If i ∈ I, then:

(a) Set k0
i := H0 (ri), z0

i :=

(
CRS′ 0, st

(1),0
i ,

{
msg

(1),0
j

}
j∈[m]

)
.

(b) Let l := |z0
i |. For t ∈ [l], set K0

i,t := PRF
(
k0
i , (t, z

0
i [t])

)
.

(c) Set K̂0
i :=

{
K0
i,t

}
t∈[l]

.

• If i ∈ H, then:

(a) For each t ∈ [l], randomly sample K0
i,t ← {0, 1}λ;

(b) Set K̂0
i = {K0

i,t}t∈[l].

2. For each i ∈ [m] (Generating the right child):

• If i ∈ I, then:

(a) Set k1
i := H1 (ri), z1

i :=

(
CRS′ 1, st

(1),1
i ,

{
msg

(1),1
j

}
j∈[m]

)
.

(b) Let l := |z1
i |. For t ∈ [l], set K1

i,t := PRF
(
k1
i , (t, z

1
i [t])

)
.

(c) Set K̂1
i :=

{
K1
i,t

}
t∈[l]

.

• If i ∈ H, then:

(a) For each t ∈ [l], randomly sample K1
i,t ← {0, 1}λ;

(b) Set K̂1
i = {K1

i,t}t∈[l].

3. Output
{
K̂0
i

}
i∈[m]

and
{
K̂1
i

}
i∈[m]

.
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Algorithm G.2 (Simk∈[2,d−1]).

Input:

{{
r

(k,y)
j

}
j∈I

,
{
msg

(1),(k,y)
j

}
j∈I

,
{
K̂

(k,y)
i

}
i∈H

}
y∈[2k−1]

.

For each y ∈ [2k−1]:

1. Continue to run Simk,y
BFMS. Send to it values

{
msg

(1),(k,y)
j

}
j∈I

on behalf of corrupted parties. Wait until it

queries the ideal functionality and then save its state.

2. For each j ∈ I, compute r
(k+1,2y−1)
j := G0

(
r

(k,y)
j

)
, r

(k+1,2y)
j := G1

(
r

(k,y)
j

)
.

3. Start two new iterations of SimBFMS and denote them by Sim
(k+1,2y−1)
BFMS and Sim

(k+1,2y)
BFMS respectively. Give the

initial inputs

(
1λ,E,

{
(xj , vj), r

(k+1,2y−1)
j

}
j∈I

)
to the former, and

(
1λ,E,

{
(xj , vj), r

(k+1,2y)
j

}
j∈I

)
to the

latter.

4. Sim
(k+1,2y−1)
BFMS and Sim

(k+1,2y)
BFMS output simulated first round messages for honest parties:

{
msg

(1),(k+1,2y−1)
i

}
i∈H

and
{
msg

(1),(k+1,2y)
i

}
i∈H

. Then save their states.

5. Sample two fresh
(
CRS′ (k+1,2y−1), CRS′ (k+1,2y)

)
← Gen(1λ).

6. Generate the states and first round messages twice on behalf of corrupted parties:
For each j ∈ I, compute:(
st

(1),(k+1,2y−1)
j ,msg

(1),(k+1,2y−1)
j

)
← MPC1

(
1λ,CRS′ (k+1,2y−1), j, ((xj , vj), r

(k+1,2y−1)
j )

)
;(

st
(1),(k+1,2y)
j ,msg

(1),(k+1,2y)
j

)
← MPC1

(
1λ,CRS′ (k+1,2y), j, ((xj , vj), r

(k+1,2y)
j )

)
.

7. Compute circuit E′ on inputs
{
r

(k,y)
j

}
j∈I

,
{(

msg
(1),(k+1,2y−1)
j , msg

(1),(k+1,2y)
j

)}
j∈[m]

,
{(

st
(1),(k+1,2y−1)
j , st

(1),(k+1,2y)
j

)}
j∈I

and
(
CRS′ (k+1,2y−1), CRS′ (k+1,2y)

)
.

Obtain

({
K̂

(k+1,2y−1)
i := K̂0

i

}
i∈[m]

,
{
K̂

(k+1,2y)
i := K̂1

i

}
i∈[m]

)
and forward them to Sim

(k,y)
BFMS on behalf of the

ideal functionality.

8. Continue to run Sim
(k,y)
BFMS, which outputs the simulated second round messages for honest parties:{

msg
(2),(k,y)
i

}
i∈H

.

9. For each i ∈ H:

(a) Compute
(
C̃

(k,y)
i , l̂ab

(k,y)

i

)
← SimG

(
1|MPC2|, 1l,

(
msg

(2),(k,y)
i

))
.

(b) For t ∈ [l], randomly sample another set of keys: S
(k,y)
i,t ← {0, 1}λ. Set Ŝ

(k,y)
i :=

{
S

(k,y)
i,t

}
t∈[l]

and

K
(k,y)
i :=

(
K̂

(k,y)
i , Ŝ

(k,y)
i

)
.

(c) Set lab
(k,y)
i :=

(
l̂ab

(k,y)

i , l̂ab
(k,y)

i

)
.

(d) Compute elab
(k,y)
i ← LabEnc

(
lab

(k,y)
i ,K

(k,y)
i

)
.

10. Output
{
C̃

(k,y)
i , elab

(k,y)
i

}
i∈H

.

11. Output

({
r

(k+1,2y−1)
j

}
j∈I

,
{
msg

(1),(k+1,2y−1)
j

}
j∈I

,
{
K̂

(k+1,2y−1)
i

}
i∈H

)
and({

r
(k+1,2y)
j

}
j∈I

,
{
msg

(1),(k+1,2y)
j

}
j∈I

,
{
K̂

(k+1,2y)
i

}
i∈H

)
.
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Algorithm G.3 (Simd).

Input:

{{
msg

(1),(d,y)
j

}
j∈I

,
{
K̂

(d,y)
i

}
i∈H

}
y∈[n]

.

1. Simulate randomized encodings:
[
G̃y
]
y∈[n]

← SimCRE

(
1λ, C, Y

)
.

2. For each y ∈ [n]:

(a) Continue to run Simd,y
BFMS. Send to it values

{
msg

(1),(d,y)
j

}
j∈I

on behalf of corrupted parties. Wait until

it queries the ideal functionality.

(b) Send G̃y to Sim
(d,y)
BFMS on behalf of the ideal functionality.

(c) Proceed step 8, 9 and 10 as the previous simulator.

Indistinguishability We argue indistinguishability using the following hybrids:

Hybrid0 : This hybrid is the same as real world execution.

Hybrid1 : In this hybrid, we make the following changes to honest party secret randomness and PRF keys: for each
i ∈ H, instead of setting:

r
(2,1)
i := G0

(
r

(1,1)
i

)
, r

(2,2)
i := G1

(
r

(1,1)
i

)
; k

(2,1)
i := H0

(
r

(1,1)
i

)
, k

(2,2)
i := H1

(
r

(1,1)
i

)
.

Sample them uniformly at random. Indistinguishability follows from the security of PRG.

Hybrid2 : In this hybrid we make the following changes to honest party label encryption keys: for each i ∈ H,
instead of setting

K
(2,1)
i = PRF

(
k

(2,1)
i , (t, b)

)
t∈[l],b∈{0,1}

, K
(2,2)
i = PRF

(
k

(2,2)
i , (t, b)

)
t∈[l],b∈{0,1}

.

Sample all those keys uniformly at random. Indistinguishability follows from the security of PRF.

Hybrid3 : In this hybrid, we simulate the root node computation.

1. Evoke SimBFMS on inputs
(
1λ, I, L, |C|

)
. Denote this simulator (in this iteration) by Sim

(1,1)
BFMS. It first outputs

the CRS. Broadcast CRS and save the state of Sim
(1,1)
BFMS.

2. Give E to Sim
(1,1)
BFMS, who then outputs the simulated first round message of honest parties:

{
msg

(1)
i

}
i∈H

. For

each i ∈ H, set FMS.msg
(1)
i := msg

(1)
i and forward them to corrupted parties on behalf of honest parties.

3. The corrupted parties output their first round messages:
{
FMS.msg

(1
j

}
j∈I

. Give them to Sim
(1,1)
BFMS so as to

extract corrupted party inputs {((xj , vj), rj)}j∈I .

4. Wait until Sim
(1,1)
BFMS queries the ideal functionality. At this point, using honest party and corrupted party

inputs {(xj , vj)}j∈[m] and the values
{

(r
(2,1)
i , r

(2,2)
i , k

(2,1)
i , k

(2,2)
i )

}
i∈H

, honestly compute the circuit E (while

ignoring PRG and PRF) and give this output to Sim
(1,1)
BFMS. Moreover, for y ∈ [1, 2], record the values CRS′ (2,y),{

st
(1),(2,y)
i

}
i∈H

and
{
msg

(1),(2,y)
j

}
j∈[m]

.

5. Sim
(1,1)
BFMS outputs the simulated second round messages for honest parties. This completes our simulation for

the root node computation.

Indistinguishability follows from the security of bounded FMS-MPC protocol.
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Hybrid4 : In this hybrid, we change how honest party input labels are encrypted at level 2:

For i ∈ H and for y ∈ [1, 2], let l̂ab
(2,y)

i be its input labels corresponding to the value

z
(2,y)
i :=

(
CRS′ (2,y), st

(1),(2,y)
i ,

{
msg

(1),(2,y)
j

}
j∈[m]

)
.

Set lab
(2,y)
i :=

(
l̂ab

(2,y)

i , l̂ab
(2,y)

i

)
. For each t ∈ [l], if z

(2,y)
i [t] = 0, we encrypt the first input label using K

(2,y)
i,t , and

the second input label using S
(2,y)
i,t . If z

(2,y)
i [t] = 1, switch the order of encryption. Indistinguishability follows from

the semantic security of the label encryption scheme.

Hybrid5 : In this hybrid, we again change how honest party input labels are encrypted:

We do not preserve the order of encryption. Instead, for i ∈ H and for y ∈ [1, 2], setK
(2,y)
i :=

{(
K

(2,y)
i,t , S

(2,y)
i,t

)}
t∈[l]

and compute elab
(2,y)
i ← LabEnc

(
K

(2,y)
i , lab

(2,y)
i

)
. Indistinguishability follows from the fact that the label encryp-

tion scheme always randomly permutes the ciphertexts.

Hybrid6 : In this hybrid, we simulate honest party garbled circuits at level 2: For each i ∈ H for y ∈ [1, 2]:

1. Honestly compute msg
(2),(2,y)
i ← MPC2

(
E, (CRS′ (2,y),CRS∗), st

(1),(2,y)
i ,

{
msg

(1),(2,y)
j

}
j∈[m]

)
, where CRS′ (2,y),

st
(1),(2,y)
i and

{
msg

(1),(2,y)
j

}
j∈[m]

are the same as Hybrid3.

2. Simulate its garbled circuit:
(
C̃

(2,y)
i , l̂ab

(2,y)

i

)
← SimG

(
1|MPC2|, 1l, msg

(2),(2,y)
i

)
.

3. Set lab
(2,y)
i :=

(
l̂ab

(2,y)

i , l̂ab
(2,y)

i

)
.

4. Compute elab
(2,y)
i ← LabEnc

(
K

(2,y)
i , lab

(2,y)
i

)
.

Indistinguishability follows from the security of garbling scheme.

Hybrid7 : In this hybrid we simulate all node computations at level 2 (Part I):

We begin with a slight modification on Hybrid3: when Sim
(1,1)
BFMS queries the ideal functionality, instead of computing

the expansion circuit E honestly, we do the following:

1. Start two new iterations of SimBFMS and denote them by Sim
(2,1)
BFMS and Sim

(2,2)
BFMS respectively. Give the initial

inputs

(
1λ,E,

{
(xj , vj), r

(2,1)
j

}
j∈I

)
to the former, and

(
1λ,E,

{
(xj , vj), r

(2,2)
j

}
j∈I

)
to the latter.

2. Sim
(2,1)
BFMS and Sim

(2,2)
BFMS output simulated first round messages for honest parties:

{
msg

(1),(2,1)
i

}
i∈H

and
{
msg

(1),(2,2)
i

}
i∈H

.

Save their states.

3. Generate the states and first round messages on behalf of corrupted parties:

For each j ∈ I, compute
(
st

(1),(2,1)
j ,msg

(1),(2,1)
j

)
← MPC1

(
1λ,CRS′ (2,1), j, ((xj , vj), r

(2,1)
j )

)
;(

st
(1),(2,2)
j ,msg

(1),(2,2)
j

)
← MPC1

(
1λ,CRS′ (2,2), j, ((xj , vj), r

(2,2)
j )

)
.

4. Compute circuit E′ on input:(
{rj}j∈I ,

{(
msg

(1),(2,1)
j , msg

(1),(2,2)
j

)}
j∈[m]

,
{(

st
(1),(2,1)
j , st

(1),(2,2)
j

)}
j∈I

,
(
CRS′ (2,1),CRS′ (2,2)

))
.

Obtain ({
K̂

(2,1)
i

}
i∈[m]

,
{
K̂

(2,2)
i

}
i∈[m]

)
and forward them to Sim

(1,1)
BFMS on behalf of the ideal functionality.

5. Sim
(1,1)
BFMS outputs the simulated second round messages for honest parties:

{
msg

(2)
i

}
i∈H

.

Indistinguishability follows from the security of the bounded FMS-MPC.
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Hybrid8 : In this hybrid we simulate all node computations at level 2 (Part II):

For each y ∈ [1, 2], send
{
msg

(1),(2,y)
j

}
j∈I

to Sim
(2,y)
BFMS and continue to run it. When it queries the ideal func-

tionality, use the honest party inputs {(xi, vi)}i∈H and corrupted party inputs
{(

(xj , vj), r
(2,y)
j

)}
j∈I

to honestly

compute the circuit E (while ignoring PRF and PRG just as before). Give this output to Sim
(2,y)
BFMS on behalf of the

ideal functionality. Sim
(2,y)
BFMS will output the simulated second round messages for honest parties

{
msg

(2),(2,y)
i

}
i∈H

.

This completes our simulation for node computation at level 2.
Indistinguishability follows from the security of the bounded FMS-MPC. Besides, notice that this hybrid realizes

Sim2, except that all nodes at the next level are still honestly computed.

Hybridk∈[9,d+5] : In this sequence of hybrids, let t := k − 4, each Hybridk differs from Hybridk−1 by executing the

simulator Simt. Indistinguishability follows from the same arguments above.

Hybridd+6 : In the last hybrid, we simulate the randomized encodings. First, query the ideal functionality with
corrupted party inputs. The trusted party returns an output Y ← C (x1, . . . , xm). Evoke the simulator for randomized

encoding scheme and compute
[
G̃y
]
y∈[n]

← SimCRE

(
1λ, C, Y

)
. Then for each y ∈ [n], do the following:

Continue to run Simd,y
BFMS. When it queries the ideal functionality, send to it G̃y on behalf of the ideal functionality.

It will output the simulated second round messages for honest parties:
{
msg

(2),(d,y)
i

}
i∈H

. This completes our

simulation of the entire FMS-MPC protocol. Indistinguishability follows from the security of randomized encoding
scheme. Finally, notice that this hybrid is the same as the ideal world execution.
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