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Abstract. The KEM BIKE is a Round-3 alternative finalist in the NIST
Post-Quantum Cryptography project. It uses the FO6⊥ transformation
so that an instantiation with a decoder that has a DFR of 2−128 will
make it IND-CCA secure. The current BIKE design does not bind the
randomness of the ciphertexts (i.e., the error vectors) to a specific public
key. We propose to change this design, although currently, there is no
attack that leverages this property. This modification can be considered
if BIKE is eventually standardized.
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1 Introduction

Bit Flipping Key Encapsulation (BIKE) [3] is a Quasi-Cyclic Moderate-Density
Parity-Check (QC-MDPC) code-based Key Encapsulation Mechanism (KEM).
It is a Round-3 “alternative finalist” in the NIST Post-Quantum Cryptogra-
phy project [15]. Figure 1 illustrates BIKE’s key generation, encapsulation, and
decapsulation flows.

BIKE decapsulation depends on a probabilistic algorithm that is called “De-
code”, which, for every given input, may succeed (and produce m′) or fail (and
output ⊥). Steps 1, 2, and 4 of the encapsulation flow, and steps 2,3 of the decap-
sulation flow realize the Fujisaki-Okamoto transformation FO 6⊥ [12]. This trans-
formation is required in a KEM with possible decapsulation failures for achieving
IND-CCA security. Reference [8] proves that BIKE is indeed IND-CCA secure if
Decode has a Decoding Failure Rate (DFR) of 2−128, 2−192, 2−256, for security
levels 1, 3, and 5, respectively. BIKE has the following property.

Property 1. Steps 1,2 of the encapsulation are independent of the public key h.

In a multi-user scenario, Property 1 implies that an adversary can select
one errors vector (e0, e1) and use it to produce multiple ciphertexts C for dif-
ferent public keys. In this context, we mention the IND-CCA KEM schemes
FrodoKEM [2], Kyber [17], Saber [6], SIKE [13], that are selected to Round-3 of
the NIST PQC Standardization Project [15] (as either “finalists” or “alternative
finalists”). The encapsulation procedures of these KEMs blend the public key
value with the randomness. This binds the randomness used for the encapsula-
tion to the session keys (private/public key pair). BIKE [3] and NTRU-Prime [4]
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(sk, σ, h)
$←− Keygen()

1. Generate σ
$←− {0, 1}256

2. sk = (h0, h1)
$←− R2 with wt(h0) = wt(h1) = w odd

3. h = h1h
−1
0

4. Return (sk, σ, h)

(C,K)
$←− Encaps(h)

1. Generate a message m
$←−M

2. Compute error vectors (e0, e1) = H(m) with wt(e0, e1) = t and e0, e1 ∈ R.
3. Compute the ciphertext C = (c0, c1) = (e0 + e1h,m⊕ L(e0, e1))
4. Compute the shared key K = K(m,C)

m = Decaps(sk, σ, h, C)

1. m′ = Decode(sk, C) // Or ⊥ on decoding failure.
2. If ((m′ 6=⊥) and (C == ReEncrypt(m′, h))) return K(m′, C)
3. Else return K(σ,C)

Fig. 1. BIKE [3] flows. The block size r and the weights w and t are public parameters
of the scheme. R is the polynomial ring F2[X]/ 〈Xr − 1〉. The Hamming weight of an
element v ∈ R is denoted by wt(v). The ⊕ symbol denotes the exclusive-or operation.
Uniform random sampling from R is denoted by w

$←− R. The key generation outputs
a secret key sk, a random seed σ, and a public key h. The input to the encapsulation
procedure is the public key h. The output is the ciphertext C and the shared key
K. The decapsulation procedure uses the secret key sk, the seed σ, the public key
h and the ciphertext C and (always) outputs a shared key K (which is randomized
on a decoding failure). H : {0, 1}256 −→ {0, 1}2r,K : {0, 1}256+r −→ {0, 1}256,L :

{0, 1}2r −→ {0, 1}256 are (modeled as) some random oracles with respective output
lengths 2r, 256, 256. They can be instantiated in different ways. M = {0, 1}256.

(also a Round-3 alternative finalist) use the public key value only after the ran-
domness is generated and thus do not possess Property 1 or equivalent. Note that
unlike NTRU-Prime, BIKE may encounter decapsulation failures that can lead
to reaction attacks [9, 11, 14, 16]. This is potentially exploitable if the scheme’s
DFR is not negligible. An interesting discussion on the subject can be found on
the PQC forum [1] where the discussion ends with:

[M. Hamburg] “Hashing the public key or its seed is only: A required
security feature if your system exhibits decryption failures; and A useful
feature to reduce multi-target concerns if your system has any parameter
sets aimed at class ≤ III.”
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Examples for the rationale behind the multi-key consideration of Kyber and
Frodo are given next. Kyber justifies the discussed binding as follows [5]:

“This tweak has two effects. First, it makes the KEM contributory; the
shared key K does not depend only on input of one of the two parties.
The second effect is a multitarget protection. Consider an attacker who
searches through many values m to find one that is ’likely’ to produce
a failure during decryption. Such a decryption failure of a legitimate
ciphertext would leak some information about the secret key. [...] hashing
pk into K̂ ensures that an attacker would not be able to use precomputed
values m against multiple targets.”

The Frodo team [2] defines a new transformation, namely FO⊥′ , that is based
on FO⊥ and states that “following [5], we make the following modifications [..],
denoting the resulting transform FO⊥′ : [..] The computation of r and k also
takes the public key pk as input.”

Remark 1. Binding the randomness or the ciphertext (without randomness) to
the public key is meaningful only if this binding is verified during the decapsu-
lation. In particular, schemes that use the FO [10] transformation, where decap-
sulation includes re-encryption, verify the binding explicitly (when it exists).

This note discusses the technical considerations that are required for avoiding
property 1 in the context of BIKE, with methods to bind the errors vector to a
specific public key. We view it as a cheap means to diminish the efficiency of any
potential analyses in the multi-key scenario. In this sense, our binding matches
BIKE design to that of FrodoKEM, Kyber, Saber, and SIKE.

2 Specific proposals for BIKE

Binding the errors to a specific public key can be done in several ways. Some
were mentioned e.g., in [1]: concatenate m to either 1) the public key; 2) the
hash digest of the public key; 3) the seed used to generate m (if available). We
discuss only options 1 and 2 for BIKE because option 3 is not applicable (in
BIKE, the public key is generated from the (secret) private key and not from a
publicly known seed).

The function H : {0, 1}256 −→ {0, 1}2r is modeled as a random oracle (see [8]
for the details). Its input is a 256 bits seed that H expands into an errors vector
(e0, e1). In the current BIKE instantiation, the expander H is based on AES-
CTR PRF, where the input seed plays the role of an AES key. Applying options
1 or 2 above requires another approach. First, using an extractor f : {0, 1}∗ −→
{0, 1}256 (modeled as a random oracle), to compress the longer input to a 256-bit
uniform random string; and subsequently feeding the result into the expander
H, as before.
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(sk, σ, h)
$←− Keygen()

1. Generate σ
$←− {0, 1}256

2. sk = (h0, h1)
$←− R2 with wt(h0) = wt(h1) = w odd

3. h = h1h
−1
0

4. Return (sk, σ, h)

(C,K)
$←− Encaps(h)

1. Generate a message m
$←−M

2. Compute error vectors (e0, e1) = H(fi(m,h)) with wt(e0, e1) = t and e0, e1 ∈
R.

3. Compute the ciphertext C = (c0, c1) = (e0 + e1h,m⊕ L(e0, e1))
4. Compute the shared key K = K(m,C)

m = Decaps(sk, σ, h, C)

1. m′ = Decode(sk, C) // Or ⊥ on decoding failure.
2. If ((m′ 6=⊥) and (C == ReEncrypt(m′, h))) return K(m′, C)

. ReEncrypt uses H(fi(m
′, h)) instead of H(m′)

3. Else return K(σ,C)

Fig. 2. Variants of BIKE KEM that bind the errors vector to the public key. The two
options are reflected through the function fi, i = 1, 2, as explained in the text. The
differences are highlighted in red.

To realize options 1 and 2, we use f1 and f2, respectively, as follows

f1 : M×PK −→ {0, 1}256 f2 : M×PK −→ {0, 1}256

(m, pk) 7−→ H(m || pk) (m, pk) 7−→ H(m || H ′(pk))

Here, H,H ′ : {0, 1}∗ −→ {0, 1}256 are collision-resistant cryptographic hash
functions (e.g., SHA256), and PK is the set of BIKE public keys. With no loss
of generality, we assume that H = H ′. The resulting modified version of BIKE
is illustrated in Figure 2.

Remark 2. For completeness, we mention the following two obvious options for
f and explain why we do not recommend them for BIKE.

1. Pad the public key to the nearest multiple of 256 bits boundary, split the
padded string to 256-bit chunks pk1, . . . , pkq (for the appropriate q), and
invoke H(m⊕ pk1 ⊕ . . .⊕ pkn) instead of H(m) as in Figure 1 Step 2. This
approach allows an adversary to control the output of H through the publicly
known pk.

4



2. Concatenating only 256 bits tail (truncation) of pk to m, i.e., calling
H(m||trunc256(pk)) instead of H(m) in Figure 1 Step 2. This requires an as-
sumption that trunc256(pk) is uniformly random (over {0, 1}256). Note that
BIKE public keys are not uniformly random strings, for example, their Ham-
ming weight is always even. Therefore, using the public key’s tail requires
some additional justification.

3 Practical considerations and the BIKE Additional
Implementation Package

The general definition of BIKE uses abstract random oracle functions H,K,L [8].
The specification [3] uses a specific instantiation: H is based on the CTR-AES
PRF, while K and L use the standard SHA-384 hash function. The git repository
[7] holds an “Additional implementation” package for BIKE, and offers a full
constant-time software suite as follows: a) a portable C (C99) implementation;
b) an implementation that leverages the AVX2 architecture features, written in
C (with C intrinsics for AVX2 functions); c) an implementation that leverages
the AVX512 architecture features, written in C (with C intrinsics for AVX512
functions).

The AVX512 implementation can also be compiled to use the vector PCLMU
-LQDQ instruction that is available on the Intel IceLake processors. The package
includes testing and invokes the KAT generation utilities provided by NIST. Note
that it is a “stand-alone” suite that does not depend on any external library.
However, it also includes a compilation option that allows the use of OpenSSL
(to consume its AES256 and SHA-384 implementations). The modularity of the
code allows for easy selection of different H,K,L options and for the binding
function f . For example, it possible to choose SHA-512 truncated to 384 bits
instead of SHA-384, or an arbitrary pseudo-random generator for expanding
the (extracted) seed into an errors vector. This code structure makes our build
system flexible and therefore it is easy to switch between the current and the
proposed instantiation through only a compilation flag only.

The sizes of the BIKE public keys are 1541, 3083, and 5122 bytes for Level-1,
3, 5, respectively. We consider the following two options for instantiating f1 and
f2, using SHA384 (which is anyway currently used):

– f1 is the 256 least significant bits of SHA384 hash digest of the input
(m || pk). Here, the input sizes are 1573, 3115, and 5154 bytes require 13,
25, and 41 invocations of the SHA-384 update functions, respectively.

– f2 and H are the 256 least significant bits of the SHA384 hash digest of the
input. When the input to H is pk, the numbers of invocations of the SHA384
update function are 13, 25, and 41, respectively. The function f2 invokes the
SHA384 update function only once (because the input is of length 64 bytes).

We see that computing f2 requires one additional invocation of the SHA384
update function compared to f1. However, the impact of this difference on the
overall performance of BIKE is negligible. The advantage of using f2 is that the
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encapsulator can choose to compute H(pk) only once and reuse the output. This
is valuable in protocols that would use BIKE with static keys. By contrast, using
f1 is more efficient for protocols that use BIKE with ephemeral keys as recom-
mended for BIKE [3] (“BIKE is primarily designed to be used in synchronous
communication protocols (e.g. TLS) with ephemeral keys”). For such usages, we
recommend the use of f1. However, for static keys we recommend f2 because
there is no performance cost.

AVX2 AVX2 SlowDown AVX512 AVX512 SlowDown
Before After Before After

Encaps L1 124 143 1.153 105 121 1.152
Decaps L1 2634 2652 1.007 1197 1213 1.013
Encaps L3 296 325 1.098 237 265 1.118
Decaps L3 7988 8017 1.003 3480 3509 1.008

Table 1. The performance cost of our proposal in 103 cycles, when BIKE is used with
ephemeral keys. Note that the impact on decapsulation is almost negligible.

We implemented our proposed modification in the Additional implementation
of BIKE. This implementation is controlled by the compilation flag BLEND_PK,
where the default compilation still follows the current version of BIKE specifi-
cation [3]. The code modification is small due to the code modularity of our
package and affects only the sha.h and sha.c files. Table 1 compares the perfor-
mance with and without our modification, where we observe a slowdown of up
to 15.3% in the encapsulation and up to 1.3% in the decapsulation.

4 Conclusion

We (i.e., the authors of this paper, speaking for themselves and not on behalf
of the BIKE team) propose to modify BIKE to a variant that binds the errors
vector to the public key. The proposed changes to the encapsulation and decap-
sulation flows are easy to make, have a low-performance impact, and are already
demonstrated in our (Additional) implementation package.
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