
Abuse Resistant Law Enforcement Access Systems

Matthew Green1, Gabriel Kaptchuk2, and Gijs Van Laer1

1Johns Hopkins University, {mgreen, gijs.vanlaer}@jhu.edu
2Boston University, kaptchuk@bu.edu

Abstract

The increasing deployment of end-to-end encrypted communications services has ignited a debate
between technology firms and law enforcement agencies over the need for lawful access to encrypted
communications. Unfortunately, existing solutions to this problem suffer from serious technical risks,
such as the possibility of operator abuse and theft of escrow key material. In this work we investigate
the problem of constructing law enforcement access systems that mitigate the possibility of unauthorized
surveillance. We first define a set of desirable properties for an abuse-resistant law enforcement access
system (ARLEAS), and motivate each of these properties. We then formalize these definitions in the
Universal Composability (UC) framework, and present two main constructions that realize this definition.
The first construction enables prospective access, allowing surveillance only if encryption occurs after a
warrant has been issued and activated. The second, more powerful construction, allows retrospective
access to communications that occurred prior to a warrant’s issuance. To illustrate the technical challenge
of constructing the latter type of protocol, we conclude by investigating the minimal assumptions required
to realize these systems.

1 Introduction

Communication systems are increasingly deploying end-to-end (E2E) encryption as a means to secure physical
device storage and communications traffic. E2E encryption systems differ from traditional link encryption
mechanisms in that keys are not available to service providers, but are instead held by endpoints: typically
end-user devices such as phones or computers. This approach ensures that plaintext data cannot be accessed
by providers and manufacturers, or by attackers who may compromise their systems. Widely-deployed
examples include messaging protocols [Sig, Wha17, Appc], telephony [Appa], and device encryption [Appb,
Goo], with some systems deployed to billions of users.

The adoption of E2E encryption in commercial services has provoked a backlash from the law enforcement
and national security communities around the world, based on concerns that encryption will hamper agencies’
investigative and surveillance capabilities [WMT15,FB14,Bar19]. The U.S. Federal Bureau of Investigation
has mounted a high-profile policy campaign called “Going Dark” around these issues [Fed], and similar
public outreach has been conducted by agencies in other countries [LR18]. These campaigns have resulted
in legislative proposals in the United States [Pop16, Gra20, SLG20] that seek to discourage the deployment
of “warrant-proof” end-to-end encryption, as well as adopted legislation in Australia that requires providers
to guarantee access to plaintext in commercial communication systems [Tar18].

The various legislative proposals surrounding encryption have ignited a debate between technologists
and policymakers. Technical experts have expressed concerns that these proposals, if implemented, will
undermine the security offered by encryption systems [AAB+15, Nat16, Sin20], either by requiring unsafe
changes or prohibiting the use of E2E encryption altogether. Law enforcement officials have, in turn, exhorted
researchers to develop new solutions that resolve these challenges [Bar19]. However, even the basic technical
requirements of such a system remain unspecified, complicating both the technical and policy debates.

1

Existing Proposals for Law Enforcement Access. A number of recent and historical technical proposals
have been advanced to resolve the technical questions raised by the encryption policy debate [Den94,Sav18,
BBB+18, WV18, Tai16, LR18, BR99]. With some exceptions, the bulk of these proposals are variations on
the classical key escrow [DB96] paradigm. In key escrow systems, one or more trusted authorities retain key
material that can be used to decrypt targeted communications or devices.

Technologists and policymakers have criticized key escrow systems [AAB+15, Enc19, Nat18], citing con-
cerns that, without additional protection measures, these systems could be abused to covertly conduct mass
surveillance of citizens. Such abuses could result from a misbehaving operator or a compromised escrow key-
store. Two recent policy working group reports [Enc19,Nat18] provide evidence that, at least for the case of
communications services, these concerns are shared by members of the policy and national security communi-
ties.1 Reflecting this consensus, recent high-profile technical proposals have limited their consideration only
to the special case of device encryption, where physical countermeasures (e.g., physical possession of a de-
vice, tamper-resistant hardware) can mitigate the risk of mass surveillance [Sav18,BBB+18]. Unfortunately,
expanding the same countermeasures to messaging or telephony software seems challenging.

Abuse of Surveillance Mechanisms. Escrow-based access proposals suffer from three primary security
limitations. First, key escrow systems require the storage of valuable key material that can decrypt most
communications in the system. This material must be accessible to satisfy law enforcement request, but must
simultaneously be defended against sophisticated, nation-state supported attackers. Second, in the event
that key material is surreptitiously exfiltrated from a keystore, it may be difficult or impossible to detect
its subsequent misuse. This is because escrow systems designed to allow lawful access to encrypted data
typically store decryption keys, which can be misused without producing any detectable artifact.2 Finally,
these access systems require a human operator to interface between the digital escrow technology and the
non-digital legal system, which raises the possibility of misbehavior by operators. These limitations must be
addressed before any law enforcement access system can be realistically considered, as they are not merely
theoretical: wiretapping and surveillance systems have proven to be targets for both nation-state attacks
and operator abuse [BL06,Nak13,Gor13].

Overcoming these challenges is further complicated by law enforcement’s desire to access data that
was encrypted before an investigation is initiated. For example, several recent investigations requested
the unlocking of suspects’ phones or message traffic in the wake of a crime or terrorist attack [LG16].
Satisfying these requests would require retrospectively changing the nature of the encryption scheme used:
ciphertext must be strongly protected before an investigation begins, but they must become accessible to
law enforcement after an investigation begins. Satisfying these contradictory requirements is extraordinarily
challenging without storing key material that can access all past ciphertexts, since a ciphertext may be
created before it is known if there will be a relevant investigation in the future.

Law enforcement access systems that do not fail open in the face of lost key material or malicious
operators have been considered in the past, e.g., [Bla96,BR99,WV18]. Bellare and Rivest [BR99] proposed
a mechanism to build probabilistic law enforcement access, in order to mitigate the risk of mass surveillance.
Wright and Varia [WV18] proposed cryptographic puzzles as a means to increase the financial cost of abuse.
While these might be theoretically elegant solutions, such techniques have practical limitations that may
hinder their adoption: law enforcement is unlikely to tolerate arbitrary barriers or prohibitive costs that
might impede legitimate investigations. Moreover, these proposals do little to enable detection of key theft
or to prevent more subtle forms of misuse.

Towards Abuse Resistant Law Enforcement Access. In this work, we explore if it is technically possible
to limit abuse while giving law enforcement the capabilities they are truly seeking: quickly decrypting relevant
ciphertexts during legally compliant investigations. To do this, we provide a new cryptographic definition
for an abuse resistant law enforcement access system. This definition focuses on abuse resistance by weaving

1The Carnegie Institution report [Enc19] concludes that “In the case of data in motion, for example, our group could identify
no approach to increasing law enforcement access that seemed reasonably promising to adequately balance all of the various
concerns”.

2This contrasts with the theft of e.g., digital certificates or signing keys, where abuse may produce artifacts such as fraudulent
certificates [Nig11] or malware artifacts that can be detected through Internet-wide surveillance.

2

accountability features throughout the access process. More concretely, our goal is to construct systems that
realize the following three main features:

– Global Surveillance Policies. To prohibit abuse by authorized parties, access systems must enforce
specific and fine-grained global policies that restrict the types of surveillance that may take place.
These policies could, for example, encompass limitations on the number of messages decrypted, the
total number of targets, and the types of data accessed. They can be agreed upon in advance and
made publicly available. This approach ensures that global limits can be developed that meet law
enforcement needs, while also protecting the population against unlimited surveillance.

– Detection of Abuse. We require that any unauthorized use of escrow key material can be detected,
either by the public or by authorized auditing parties. Achieving this goal ensures that even fully-
adversarial use of escrow key material (e.g., following an undetected key exfiltration) can be detected,
and the system’s security can be renewed through rekeying.

– Operability. At the same time, escrow systems must remain operable, in the sense that honest law
enforcement parties should be able to access messages sent through a compliant system. We aim to
guarantee this feature by ensuring that it is easy to verify that a message has been correctly prepared.

We stress that the notion of abuse-resistance is different from impossible to abuse. Under our definitions
abuse may still happen, but the features described above will allow the abuse to be quickly identified and
system security renewed. The most critical aspect of our work is that we seek to enforce these features
through the use of cryptography, rather than relying on correct implementation of key escrow hardware or
software, or proper behavior by authorities.

Prospective vs. retrospective surveillance. We will divide the access systems we discuss into two separate
categories: prospective and retrospective. When using a prospective system, law enforcement may only access
information encrypted sent or received from suspects after those suspects have been explicitly selected as
targets for surveillance: this is analogous to “placing an alligator clip on a wire” in an analog wiretap. A
retrospective access system, as described above, allows investigators to decrypt past communications, even
those from suspects who were not the target of surveillance when encryption took place. Retrospective access
clearly offers legitimate investigators more capabilities, but may also present a greater risk of abuse. Indeed,
achieving accountable access in the challenging setting of retrospective key escrow, where encryption may
take place prior to any use of escrow decryption keys, is one of the most technically challenging aspects of
this work.

Our contributions. More concretely, in this work we make the following contributions.

– Formalizing security notions for abuse resistant law enforcement access systems. We first
provide a high-level discussion of the properties required to prevent abuse in a key escrow system,
with a primary focus on the general data-in-motion setting: i.e., we do not assume that targets
possess trusted hardware. Based on this discussion, we formalize the roles and protocol interface of an
Abuse-Resistant Law Enforcement Access System (ARLEAS): a message transmission framework that
possesses law enforcement access capability with strong accountability guarantees. Finally, we provide
an ideal functionality FARLEAS in Canetti’s Universal Composability framework [Can01].

– A prospective ARLEAS construction from lossy encryption or non-interactive secure com-
putation. We show how to realize ARLEAS that is restricted to the case of prospective access: this
restricts the use of ARLEAS such that law enforcement must identify surveillance parameters before a
target communication occurs. We first show that this can be constructed efficiently using lossy encryp-
tion and efficient simulation sound NIZKs, with the limitation that warrants must explicitly specify
the identities of users being targeted for surveillance. We then show a generalization of this construc-
tion such that warrants can be arbitrary predicates to be evaluated over each message metadata; our
construction of this generalization relies on non-interactive secure computation [IKO+11].

3

– A retrospective ARLEAS construction from proof-of-publication ledgers and extractable
witness encryption. We show how to realize ARLEAS that admits retrospective access, while still
maintaining the auditability and detectability requirements of the system. The novel idea behind our
construction is to use secure proof-of-publication ledgers to condition cryptographic escrow operations.
The cryptographic applications of proof-of-publication ledgers have recently been explored (under
slightly different names) in several works [CGJ+17,GG17,KGM19,Sca19]. Such ledgers may be realized
using recent advances in consensus networking, a subject that is part of a significant amount of research.

– Evaluating the difficulty of retrospective systems. Finally, we investigate the minimal assumptions
for realizing retrospective access in an accountable law enforcement access system. As a concrete
result, we present a lower-bound proof that any protocol realizing retrospective ARLEAS implies the
existence of an extractable witness encryption scheme for some language L which is related to the
ledger functionality and policy functions of the system. While this proof does not imply that all
retrospective ARLEAS realizations require extractable witness encryption for general languages (i.e.,
it may be possible to construct languages that have trivial EWE realizations), it serves as a guidepost
to illustrate the barriers that researchers may face in seeking to build accountable law enforcement
access systems.

1.1 Towards Abuse Resistance

In this work we consider the problem of constructing secure message transmission protocols with abuse
resistant law enforcement access, which can be seen as an extension of secure message transmission as
formalized in the UC framework by Canetti [Can01,CKN03]. Before discussing our technical contributions,
we present the parties that interact with such a system and discuss several of the security properties we
require.

The ARLEAS Setting. An ARLEAS system is comprised of three types of parties:

1. Users: Users employ a secure message transmission protocol to exchange messages with other users.
From the perspective of these users, this system acts like a normal messaging service, with the additional
ability to view public audit log information about the use of warrants on information sent through the
system.

2. Law Enforcement: Law enforcement parties are responsible for initiating surveillance and accessing
encrypted messages. This involves determining the scope of a surveillance request, obtaining a digital
warrant, publishing transparency information, and then accessing the resulting data.

3. Judiciary: The final class of parties act as a check on law enforcement, determining whether a
surveillance request meets the necessary legal requirements. In our system, any surveillance request
must be approved by a judge before it is activated on the system. In our model we assume a single
judge per system, though in practice this functionality can be distributed.

At setup time an ARLEAS system is parameterized by three functions, which we refer to as the global policy
function, p(·), the warrant transparency function, t(·), and the warrant scope check function, θ(·).3 The
purpose of these functions will become clear as we discuss operation and desired properties below. Finally,
our proposals assume the existence of a verifiable, public broadcast channel, such as an append-only ledger.
While this ledger may be operated by a centralized party, in practice we expect that such systems would be
highly-distributed, e.g. using blockchain or consensus network techniques.

ARLEAS Operation. To initiate a surveillance request, law enforcement must first identify a specific class
of messages (e.g. by metadata or sender/receiver); it then requests a surveillance warrant w from a judge.
The judge reviews the request and authorizes or rejects the request. If the judge produces an authorized
warrant, law enforcement must take a final step to activate the warrant in order to initiate surveillance.

3We later introduce a fourth parameterizing function, but omit it here for the clarity of exposition.

4

This activation process is a novel element of an abuse resistant access scheme, and it is what allows for the
detection of misbehavior. To enforce this, we require that activation of a warrant w results in the publication
of some information that is viewable by all parties in the system. This information consists of two parts: (1)
a proof that the warrant is permissible in accordance with the global policy function, i.e. p(w) = 1, and (2)
some transparency data associated with the warrant. The amount and nature of the transparency data to be
published is determined by the warrant transparency function t(w). Once the warrant has been activated,
and the relevant information has been made public, law enforcement will be able to access any message that
is within the scope of the warrant, as defined by the warrant scope check function θ(w).

ARLEAS Properties. For a law enforcement access system to be considered abuse resistant, it must
satisfy the following intuitive properties:

– Messages Secure without a Warrant. A system must provide strong cryptographic security against
attackers who are not authorized to receive messages, and law enforcement can only access the message
if a judge has issued an applicable warrant.

– Global Surveillance Policies. Even in cases where all escrow authorities (i.e. law enforcement and
judges) collude, surveillance requests must always obey a set of global limits defined by the global policy
function which was chosen during system setup.

– Abuse Detectability. To enable detection of abuse or theft of key material, we require that whenever
a warrant w is activated, law enforcement must publish t(w) to all parties in the system, where t(·) is
a warrant transparency function defined at system setup. This publication must occur even in cases
where all escrow authorities collude.

– Target Anonymity. To preserve the integrity of investigations, users should learn no information
about the contents of a warrant beyond what is revealed by the transparency function.

– Escrow Verifiability. Escrow authorities must be assured that the access system will decrypt mes-
sages within the scope of an activated, valid warrant. Because senders can always behave dishonestly
(e.g. using alternative encryption mechanisms or encode messages using steganography), this guaran-
tee cannot be enforced for all possible sender behavior. Instead, we mandate a weaker property that
we call escrow verifiability: this ensures that recipients and/or service providers can filter messages
that will decrypt differently for receivers and law enforcement. This ensures that compliant messages
will be accessible by escrow authorities under appropriate circumstances.

In Section 3 we formalize this intuition and present a concrete security definition for an ARLEAS.

1.2 Technical Overview

We now present an overview of the key technical contributions of this work. We will consider this in
the context of secure message transmission systems, which can be generalized to the setting of encrypted
storage. Our overview will begin with intuition for building prospective ARLEAS, and then we will proceed
to retrospective ARLEAS.

Accountability From Ledgers. For an ARLEAS the most difficult properties to satisfy are accountability
and detectability. Existing solutions attempt to achieve this property by combining auditors and key escrow
custodians; in order to retrieve key material that facilitates decryption, law enforcement must engage with
an auditor. This solution, however, does not account for dishonest authorities, and is therefore vulnerable to
covert key exfiltration and collusion. In our construction, we turn to public ledgers — a primitive that can
be realized using highly-decentralized and auditable systems — as a way to reduce these trust assumptions.

Ledgers have the property that any party can access their content. Importantly, they also have the
property that any parties can be convinced that other parties have access to these contents. Thus, if
auditing information is posted on a ledger, all parties are convinced that that information is truly public.
We note that using ledgers in this way is fundamentally different from prior work addressing encrypted

5

communications; our ledger is a public functionality that does not need to have any escrow secrets. As such,
if it is corrupted, there is no private state that can be exploited by an attacker.

Warm up: Prospective ARLEAS. To build to our main construction, we first consider the simpler
problem of constructing a prospective access system, one that is capable of accessing messages that are sent
subsequent to a warrant being activated. For our practical construction, we make a further simplifying
assumption that law enforcement will target specific parties for surveillance. We then extend this paradigm
to allow law enforcement to target messages using arbitrary predicates.

A key aspect of this construction is that we consider a relatively flexible setting where parties have
network access, and can receive periodic communications from escrow system operators prior to transmitting
messages. We employ a public ledger for transmission of these messages, which provides an immutable record
as well as a consistent view of these communications. The goal in our approach is to ensure that escrow
updates embed information about the specifics of surveillance warrants that are active, while ensuring that
even corrupted escrow parties cannot abuse the system.

Escrow lossy encryption. The basic intuition of our approach is to construct a “dual-trapdoor” public-
key encryption system [BCP03] that senders can use to encrypt messages to specific parties. This scheme
is designed with two ciphertexts c1 and c2, such that c1 can be decrypted by the intended recipient using
a normal secret key, while c2 can be decrypted by law enforcement only if the recipient is under active
surveillance. A feature of this scheme is that for all recipients not the target of surveillance, c2 should
contain no information about the plaintext.

Lossy encryption [PW08] is a natural tool to use to encrypt c2, as an injective key can be used to encrypt
c2 when the recipient is under surveillance (preserving the plaintext) and a lossy key can be used to encrypt
c2 when the recipient is not under surveillance (destroying any information about the plaintext). A naive
solution would have law enforcement generate either an injective key or a lossy key information for each
user, as only law enforcement knows which users are under surveillance. Instead, we realize a more efficient
construction using a tag-based variant of lossy encryption [PW08,BHY09,HLOV11,Hof12] that we call none-
but-N lossy-tag-based encryption, or LTE. In this scheme, key generation creates public parameters mpk
with respect to the set of user identifiers (tags) T that are under active surveillance, along with a secret
decryption key. The public parameters are proportional in size to the number of users under surveillance.
When encrypting a message, a sender encrypts under both the recipient’s public key and tag, along with
mpk.

An LTE scheme must satisfy three main security properties. First, if the parameter generation process
is run honestly with some set of user identifiers T and any (even biased) random coins r, then even an
adversarial law enforcement should not be able to retrieve the message m if the receiver is not in T . Second,
to ensure that law enforcement access is possible, we require that adversarial encryptors cannot produce a
ciphertext that appears correctly formatted but does not admit decryption. Finally, we require that mpk
must at least computationally hide the set of users that are being targeted for surveillance, i.e. no efficient
adversary with mpk should be able to recover any information about T , beyond the size of its description.
In Section 4.4 we discuss candidate constructions for LTE schemes based on the lossy encryption scheme
in [BHY09].

Building prospective ARLEAS for identities from LTE. Given an appropriate lossy tag-based en-
cryption scheme, the remainder of the ARLEAS construction proceeds as follows. The global parameters
of the scheme are created at setup: these include a public verification key for the judge presiding over the
system, as well as a global transparency function t and policy function p agreed on by system participants.

When a law enforcement agency wishes to add a user to those being surveilled, it creates a new warrant
w embedding the tag of that user and adds it to the set of active warrants W. Law enforcement then runs
the LTE parameter generation algorithm on the set of tags T embedded in the warrants in W, obtaining
mpk and the corresponding secret key. Law enforcement next contacts the judge to obtain a signature over
w, and proceeds to generate a NIZK π that the following statements hold: (1) the prover posses a signature
from the judge for each warrant in W, (2) the parameter mpk was correctly generated with respect to the
user-set T specified in the warrants in W, (3) each warrant w ∈ W is permissible according to the global

6

policy function p, and (4) the transparency information info ← {t(w),∀w ∈ W} was calculated honestly.
Finally, it transmits (mpk, info, π) to a global ledger. Each participant in the system must ensure that this
message was correctly published, and verify the proof π. If this proof verifies correctly, the participants will
accept the new parameter mpk and use this value for all subsequent encryptions.

A critical security property of this system is that, even if law enforcement and judges collude (e.g., if both
parties become catastrophically compromised), users retain the assurance that issued warrant in violation
of the global policy p cannot be used. Moreover, even in this event, the publication of a transparency record
info ensures that every warrant activated in the system produces a detectable artifact that can be used to
identify abuse.4

Prospective ARLEAS for Arbitrary Predicates. The solution presented above is inherently identity
based, which restricts the types of warrants that a judge is able to issue. We now describe a version of this
system that facilitates law enforcement access to messages if they possess a valid warrant embedding an
arbitrary predicate such that this predicate, evaluated over the message metadata, is satisfied. Unlike the
identity-based solution, generating key material for each possible situation cannot work; while the number
of identities in the system may be bounded, there are an exponential number of predicate functions that law
enforcement might want to embed into warrants. Instead, we rely on non-interactive secure computation
(NISC) [IKO+11], a reusable, non-interactive version of two-party computation. NISC for an arbitrary
function f allows a receiver to post an encryption of some secret x1 such that all players can reveal f(x1, x2)
to the receiver with only one message, without revealing anything about x2 beyond the output of the function.
We leverage such a scheme to have senders reveal the message plaintext to law enforcement if and only if
law enforcement’s input to the NISC scheme contains a valid, pertinent warrant.

As before, law enforcement computes the transparency information for their warrant info ← t(w) along
with the first message of the NISC scheme, embedding the warrant. Both of these are posted onto the ledger,
along with a non-interactive zero-knowledge proof of correctness and compliance with the policy function.
Whenever a sender sends a message m, they generate c1 as normal and then generate c2 which, using the
NISC scheme, allows law enforcement to compute

f(w, (m,meta)) = m ∧ θ(meta, w),

where θ(·, ·) evaluates if the warrant applies to this particular message (we will discuss θ(·, ·) in more detail
in Section 3). Notice that if θ(meta, w) = 0, then the output of the NISC evaluation is uncorrelated with
the message. However, if θ(meta, w) = 1, meaning law enforcement has been issued a valid warrant, then
the message is recovered. As before, users are assured that all activated warrants are acceptable according
to the policy function and detectable artifacts must be generated before any messages can be decrypted.

From Prospective to Retrospective. The major limitation of the ARLEAS construction above is that
it is fundamentally restricted to the case of prospective access. Abuse resistance derives from the fact that
“activation” of a warrant results in a distribution of fresh encryption parameters to users, and each of these
updates renders only a subset of communications accessible to law enforcement. A second drawback of the
prospective protocol is that it requires routine communication between escrow authorities and the users of
the system, which may not be possible in all settings.

Updating these ideas to provide retrospective access provides a stark illustration of the challenges that
occur in this setting. In the retrospective setting, the space of targeted communications is unrestricted at
the time that encryption takes place. By the time this information is known, both sender and recipient may
have completed their interaction and gone offline. Using some traditional, key-based solution to this problem
implies the existence of powerful master decryption keys that can access every ciphertext sent by users of
the system. Unfortunately, granting such power to any party (or set of parties) in our system is untenable;
if this key material is compromised, any message can be decrypted without leaving a detectable artifact.
The technical challenge in the retrospective setting is to find an alternative means to enable decryption,
such that decryption is only possible on the conditions that (1) a relevant warrant has been issued that is

4The flexible nature of the transparency function t ensures that these records can contain both publicly-visible records (e.g.,
a quantized description of the user set size, as well as private information that can be encrypted to auditors.

7

compliant with the global policy function, (2) a detectable artifact has been made public. This mechanism
must remain secure even when encryption occurs significantly before the warrant is contemplated.

Ledgers as a cryptographic primitive. A number of recent works [CGJ+17,GG17,KGM19,CGJ19,Sca19]
have proposed to use public ledgers as a means to condition cryptographic operations on published events.
This paradigm was initially used by Choudhuri et al. [CGJ+17] to achieve fairness in MPC computations,
while independently a variant was proposed by Goyal and Goyal [GG17] to construct one-time programs
without the need for trusted hardware. Conceptually, these functionalities all allow decryption or pro-
gram execution to occur only after certain information has been made public. This model assumes the
existence of a secure global ledger L that is capable of producing a publicly-verifiable proof π that a
value has been made public on the ledger. In principle, this ledger represents an alternative form of
“trusted party” that participates in the system. However, unlike the trusted parties proposed in past
escrow proposals [Den94], ledgers do not store any decryption secrets. Moreover, recent advances in consen-
sus protocols, and particularly the deployment of proof-of-work and proof-of-stake cryptocurrency systems.
e.g., [KRDO17, DGKR18, GKZ19, BBBF18], provide evidence that these ledgers can be operated safely at
large scale.

Following the approach outlined by Choudhuri et al. [CGJ+17], we make use of the ledger to conditionally
encrypt messages such that decryption is only possible following the verifiable publication of the transparency
function evaluated over a warrant on the global ledger. For some forms of general purpose ledgers that we
seek to use in our system, this can be accomplished using extractable witness encryption (EWE) [BCP14].5

EWE schemes allow a sender to encrypt under a statement such that decryption is possible only if the
decryptor knows of a witness ω that proves that the statement is in some language L, where L parameterizes
the scheme. While candidate schemes for witness encryption are known for specific languages (e.g. hash
proof systems [CS02,GOVW12]), EWE for general languages is unlikely to exist [GGHW14].

Building Retrospective ARLEAS from EWE. Our retrospective ARLEAS construction assumes the
existence of a global ledger that produces verification proofs πpublish that a warrant has been published to a
ledger. As mentioned before, we aim to condition law enforcement access on the issuance of a valid warrant
and the publication of a detectable artifact. In a sense, we want to use this published detectable artifact as
a key to decrypt relevant ciphertexts. Thus, in this construction, a sender encrypts each message under a
statement with a witness that shows evidence that these conditions have been met. This language reasons
over (1) the warrant transparency function, (2) a function determining the relevance of the warrant to
ciphertext, (3) the global policy function, (4) the judge’s warrant approval mechanism, and (5) the ledger’s
proof of publication function.

On the Requirement of EWE. We justify the use of EWE in our construction by showing that the
existence of a secure protocol realizing retrospective ARLEAS implies the existence of a secure EWE scheme
for a related language that is deeply linked to the ARLEAS protocol. Intuitively, the witness for this
language should serve as proof that the protocol has been correctly executed; law enforcement should be
able to learn information about a message if and only if the accountability and detectability mechanisms have
been run. For the concrete instantiation of retrospective ARLEAS, we give in Section 6, this would include
getting a valid proof of publication from the ledger. If the protocol is realized with a different accountability
mechanism, the witness encryption language will reason over that functionality. No matter the details of
the accountability mechanism, we note that it should be difficult for law enforcement to locally simulate
the mechanism. If it were computationally feasible, then law enforcement would be able to circumvent the
accountability mechanism with ease.

1.3 Contextualizing ARLEAS In The Encryption Debate

This work is motivated by the active global debate on whether to mandate law enforcement access to
encrypted communication systems via key escrow. Reduced to its essentials, this debate incorporates two

5Using the weaker witness encryption primitive may be possible if the ledger produces unique proofs of publication.

8

broad sub-questions. First: can mandatory key escrow be deployed safely? Secondly, if the answer to the
first question is positive: should it be deployed?

We do not seek to address the second question in this work. Many scholars in the policy and technical
communities have made significant efforts in tackling this issue [Nat18, Bar19, AAB+15, Enc19] and we do
not believe that this work can make a substantial additional contribution. We stress, therefore, that our
goal in this work is not to propose techniques for real-world deployment. Numerous practical questions and
technical optimizations would need to be considered before ARLEAS could be deployed in practice.

Instead, the purpose of this work is to provide data to help policymakers address the first question. We
have observed a growing consensus among stakeholders that key escrow systems should provide strong guar-
antees of information security as a precondition for deployment. Some stakeholders in the law-enforcement
and national security communities grant that key escrow systems should not be deployed unless they can mit-
igate the risk of mass-surveillance via system abuse or compromise.6 Unfortunately, there is no agreement
on the definition of safety, and the technical community remains divided on whether traditional key escrow
security measures (such as the use of secure hardware, threshold cryptography and policy safeguards) will
be sufficient. We believe that the research community can help to provide answer these questions, and a
failure to do so will increase the risk of unsound policy.

Our contribution in this paper is therefore to take a first step towards this goal. We attempt to formalize a
notion of abuse-resilient key escrow, and to determine whether it can be realized using modern cryptographic
techniques. Our work is focused on feasibility. With this perspective in mind, we believe that our work makes
at least three necessary contributions to the current policy debate:

Surface the notion of cryptographic abuse-resistance. We raise the question of whether key escrow can be
made abuse resistant using modern cryptographic technologies, and investigate what such a notion
would imply. A key aspect of this discussion is the question of detectability: by making abuse and key
exfiltration publicly detectable, we can test law enforcement’s belief that backdoor secrets can remain
secure, and renew security by efficiently re-keying the system.

Separate the problems of prospective and retrospective surveillance. By emphasizing the technical distinc-
tions between prospective and retrospective surveillance, we are able to highlight the design space in
which it is realistic to discuss law enforcement access mechanisms. In particular, our technical results
in this work illustrate the cryptographic implausibility of retrospective ARLEAS: this may indicate
that retrospective surveillance systems are innately susceptible to abuse.

Shift focus to public policy. In defining and providing constructions for prospective and retrospective AR-
LEAS, we formalize the notion of a global policy function and a transparency function (see Section 3).
By making these functions explicit, we hope to highlight the difficult policy issues that must be solved
before deploying any access mechanism. As noted by Feigenbaum and Weitzner [FW18], there are
limits what cryptography can contribute to this debate; legal and policy experts must do a better
job reducing the gray area between rules and principles so that technical requirements can be better
specified.

Finally, we note that the existence of a cryptographic construction for ARLEAS may not be sufficient to
satisfy lawn enforcement needs. The mathematics for cryptographically strong encryption systems is already
public and widespread, and determined criminals may simply implement their own secure messaging sys-
tems [Enc]. Alternatively, they may use steganography or pre-encrypt their messages with strong encryption
to prevent “real” plaintext from being recovered by law enforcement while still allowing contacts to read
messages [HPRV19]. These practical problems will likely limit the power of any ARLEAS and must be
considered carefully by policy makers before pushing for deployment.

6For evidence of this consensus, see e.g., the 2018 National Academies of Sciences Report [Nat18], which provides a framework
for discussing such questions. See also a recent report by the Carnegie Endowment [Enc19] which chooses to focus only on the
problem of escrow for physical devices rather than data in motion, providing the following explanation: “it is much harder to
identify a potential solution to the problems identified regarding data in motion in a way that achieves a good balance” (p. 10).

9

2 Related work

The past decade has seen the start of academic work investigating the notion of accountability for govern-
ment searches. Bates et al. [BBS+12] focus specifically on CALEA wiretaps and ensuring that auditors can
ensure law enforcement compliance with court orders. In the direct aftermath of the Snowden leaks, Segal
et al. [SFF14] explored how governments could accountably execute searches without resorting to dragnet
surveillance. Liu et al. [LRC14] focus on making the number of searches more transparent, to allow demo-
cratic processes to balance social welfare and individual privacy. Kroll et al. [KFB14, KZW+] investigate
different accountability mechanisms for key escrow systems, but stop short of addressing end-to-end encryp-
tion systems and the collusion problems we address in this work. Kamara [Kam14] investigates cryptographic
means of restructuing the NSA’s metadata program. Backes considered anonymous accountable access con-
trol [BCS05], while Goldwasser and Park [GP17] investigate similar notions with the limitation that policies
themselves may be secret, due to national security concerns. Frankle et al. [FPS+18] make use of ledgers to
get accountability for search procedures, but their solution cannot be extended to the end-to-end encryption
setting. Wright and Varia [WV18] give a construction that uses cryptographic puzzles to impose a high
cost for law enforcement to decrypt messages. Servan-Schreiber and Wheeler [SSW19] give a construction
for accountability that randomly selects custodians that law enforcement must access to decrypt a message.
Panwar et al. [PVMB19] attempt to integrate the accountability systems closely with ledgers, but do not
use the ledgers to address access to encryption systems. Finally, Scafuro [Sca19] proposes a closely related
concept of “break-glass encryption” and give a construction that relies on trusted hardware.

3 Definitions

Notation. Let λ be an adjustable security parameter and negl(λ) be a negligible function in λ. We

use ‖ to denote concatenation,
c
≈ to denote computational indistinguishability, and

s
≈ to denote statistical

indistinguishability. We will write x ← Algo(·) to say that x is a specific output of running the algorithm
Algo on specific inputs and will write x ∈ Algo(·) to indicate that x is an element in the output distribution of
Algo, when run with honest random coins. We write AlgoPar to say that the algorithm Algo is parameterized
by the algorithm Par.

Defining ARLEAS. We now formally define the notion of an Abuse-Resistant Law Enforcement Access
System (ARLEAS). An ARLEAS is a form of message transmission scheme that supports accountable access
by law enforcement officials. To emphasize the core functionality, we base our security definitions on the UC
Secure Message Transmission (FSMT) notion originally introduced by Canetti [Can01]. Indeed, our systems
can be viewed as an extension of a multi-message SMT functionality [CKN03], with added escrow capability.

Parties and system parameters. An ARLEAS is an interactive message transmission protocol run
between several parties and network components:

• User Pi: Users are the primary consumer of the end-to-end encrypted service or application. These
parties, which may be numerous, interact with the system by sending messages to other users.

• Judge PJ : The judge is responsible for determining the validity of a search and issuing search warrants
to law enforcement. The judge interacts with the system by receiving warrant requests and choosing
to deny or approve the request.

• LawEnforcement PLE: Law enforcement is responsible for conducting searches pursuant to valid war-
rants authorized by a judge. Law enforcement interacts with the system by requesting warrants from
the judge and collecting the plaintext messages relevant to their investigations.

A concrete ARLEAS system also assumes the existence of a communication network that parties can use to
transmit encrypted messages to other users. To support law enforcement access, it must be possible for law
enforcement to “tap” this network and receive encrypted communications between targeted users. For the

10

purposes of this exposition, we will assume that law enforcement agents have access to any communications
transmitted over the network (i.e., the network operates as a transparent channel.) In practice, a service
provider would handle the transmissions of ciphertexts. This service provider would also be responsible for
storing ciphertext and metadata, and providing this information to law enforcement. Our simplified model
captures the worst case network security assumption, where the service provider cooperates with all law
enforcement requests. Service providers would also be responsible for checking that messages sent by users
are compliant with the law enforcement access protocol. We move this responsibility to the receiver for
simplicity. We discuss the role of service providers more in Appendix D.

An ARLEAS system is additionally parameterized by four functions, which are selected during a trusted
setup phase:

• t(w): the deterministic transparency function takes as input a warrant w and outputs specific informa-
tion about the warrant that can be published to the general public.

• p(w): the deterministic global policy function takes as input a warrant w and outputs 1 if this warrant
is allowed by the system.

• θ(w,meta): the deterministic warrant scope check takes as input a warrant w and per-message metadata
meta. It outputs 1 if meta is in scope of w for surveillance.

• v(meta, aux): The deterministic metadata verification functionality takes as input metadata associ-
ated with some message meta and some auxiliary information aux and determines if the metadata is
correct. This auxiliary information could contain the ciphertext, global timing information, or some
authenticated side channel information.

We discuss concrete instantiations of these functions in Appendix D.

ARLEAS scheme. An ARLEAS scheme comprises a set of six possibly interactive protocols. We provide
a complete API specification for these protocols in later sections:

• Setup. On input a security parameter, this trusted setup routine generates all necessary parameters
and keys needed to run the full system.

• SendMessage. On input a message m, metadata meta, and a recipient identity, this protocol sends an
encrypted message from one party to another.

• RequestWarrant. On input a description of the warrant request, this procedure allows law enforcement
to produce a valid warrant.

• ActivateWarrant. Given a warrant w, this protocol allows law enforcement and a judge to confirm and
activate a warrant.

• VerifyWarrantStatus. Given a warrant w, this protocol is used to verify that a warrant is valid and
active.

• AccessMessage. in the retrospective case, this protocol is used by law enforcement to open a message.

UC ideal functionality. To define the properties of an ARLEAS system, we present a formal UC ideal
functionality FARLEAS in Figure 1. Recalling that ARLEAS can be instantiated in one of two modes,
supporting only prospective or retrospective surveillance, we present a single definition that supports a
parameter, mode ∈ {pro, ret}.

Ideal World. For any ideal-world adversary S with auxiliary input z ∈ {0, 1}∗, input vector x, and security
parameter λ, we denote the output of the ideal world experiment by IdealS,Fv,t,p,θ,mode

ARLEAS
(1λ, x, z).

Real World. The real world protocol starts with the adversary A selecting a subset of the parties to com-
promise PA ⊂ P, where PA ⊂ {{Pi}, {PLE}, {PLE, PJ}}, where we denote sender with Pi and receiver with

11

Functionality Fv,t,p,θ,mode
ARLEAS

The ideal functionality is parameterized by mode ∈ {pro, ret}, a metadata verification function v :
{0, 1}∗ × {0, 1}∗ → {0, 1}, the transparency function t(·), the global policy function p(·), and the
warrant scope check functionality θ(·, ·). The three latter functions are as defined above. We denote
the session identifier as sid to separate different runs of the same protocol. We have several parties:

• P1, . . . , Pn: participants in the system

• PJ : the generator of a warrant

• PLE: Law enforcement that can read the message given a valid warrant
Send Message: Upon receiving a message (SendMessage, sid, Pj ,m,meta, valid) where valid ∈ {0, 1}
from party Pi, it sends (Sent, sid,meta) to the adversary. If (sid, c) is received from the adversary,

• If valid = 0 or v(meta, aux) = 0, send (Sent, sid,meta, c,m) to Pi and send (Sent, sid,meta, c, 0) to
PLE.

• If valid = 1, v(meta, aux) = 1, and there is no entry w in the active warrant table Wactive send
(Sent, sid,meta, c,m) to Pi and Pj , and send (Sent, sid,meta, c) to PLE.

• If valid = 1, v(meta, aux) = 1, and there is an entry w in the active warrant table Wactive send
(Sent, sid,meta, c,m) to Pi, Pj , and PLE.

Finally, store (Sent, sid,meta, c,m) in the message table M .

Request Warrant: Upon receiving a message (RequestWarrant, sid, w) from PLE, the ideal functionality
first checks if p(w) = 1, responding with ⊥ and aborting if not. Otherwise, the ideal functionality sends
(ApproveWarrant, w) to PJ . If PJ responds with (Disapprove), the trusted functionality sends ⊥ to PLE.
If PJ responds with (Approve), the trusted functionality sends (Approve) to PLE, and stores the entry
w in the issued warrant table Wissued.

Activate Warrant: Upon receiving a message (ActivateWarrant, sid, w) from PLE, the ideal func-
tionality checks to see if w ∈ Wissued, responding with ⊥ and aborting if not. If w ∈ Wissued, the
trusted functionality adds the entry w to the active warrant table Wactive, computes t(w), and sends
(NotifyWarrant, t(w)) to all parties and the adversary.

Verify Warrant Status: Upon receiving message (VerifyWarrantStatus, sid, c,meta, w) from PLE, if
mode = pro, the ideal functionality responds with ⊥ and aborts. Otherwise, if (Sent, sid,meta, c,m) ∈M
and w ∈ Wactive such that θ(w,meta) = 1, the ideal functionality returns 1. Finally, if θ(w,meta) = 0
or w 6∈Wactive, it returns 0.

Access message: Upon receiving message (AccessData, sid, c,meta, w) from PLE, if mode = pro, the
ideal functionality responds with ⊥ and aborts. Otherwise, if (Sent, sid,meta, c,m) ∈M and w ∈Wactive

such that θ(w,meta) = 1, the ideal functionality returns m. Finally, if θ(w,meta) = 0 or w 6∈ Wactive,
it returns 0.

Figure 1: Ideal functionality for an Abuse Resistant Law Enforcement Access System.

12

Protocol RealA,Π(1λ, x, z)

RealA,Π(1λ, x, z) is parameterized by the protocol Π = (Setup, SendMessage,
RequestWarrant,ActivateWarrant,VerifyWarrantStatus,AccessMessage) and a
variable mode ∈ {pro, ret}.

1. When RealA,Π(1λ, x, z) is initialized, then all parties engage in the
interactive protocol Π.Setup

2. When Pi is activated with (SendMessage, sid, Pj ,m, 1), parties Pi, Pj ,
and PLE engage in the interactive protocol Π.SendMessage. PLE learns
some metadata meta about the message.

3. When Pi is activated with (SendMessage, sid, Pj ,m, 0), parties Pi, and
PLE engage in the interactive protocol Π.SendMessage (with Pj not
getting output). PLE learns some metadata meta about the message.

4. When PLE is activated with (RequestWarrant, sid, ŵ), parties PLE and
PJ engage in the interactive protocol Π.RequestWarrant.

5. When PLE is activated with (ActivateWarrant, sid, w), all parties engage
in the interactive protocol Π.ActivateWarrant.

6. When PLE is activated with (VerifyWarrantStatus, sid, c,meta, w), if
mode = pro, PLE returns ⊥. Otherwise, PLE calls the non-interactive
functionality Π.VerifyWarrantStatus(c,meta, w)

7. When PLE is activated with (AccessData, sid, c,meta, w), if mode = pro,
PLE returns ⊥. Otherwise, PLE calls the non-interactive functionality
Π.AccessMessage(c,meta, w)

Figure 2: The real world experiment for a protocol implementing Fv,t,p,θ,mode
ARLEAS

Pj . We limit the subsets of parties that can be compromised to these cases, because any other combination
is trivial to simulate or can be deducted from the other cases. For example, if both Pi and Pj would be
corrupted, there is nothing stopping them from not using the system. Moreover, we also don’t consider
the case where PJ is the only corrupted party, this case is a more specific then when both PLE and PJ
are corrupted and PJ on its own doesn’t have any additional information to achieve anything different. All
parties engage in a real protocol execution Π, the adversary A sends all messages on behalf of the corrupted
parties and can choose any polynomial time strategy.

In a real world protocol we assume that communication between a sender Pi and receiver Pj happens
over a transparent channel, meaning all other parties are able to receive all communication. We make this
choice to simplify the protocol and security proofs. In the real world, this can be modeled with a service
provider relaying messages between Pi and Pj that always complies with law enforcement requests and hands
over encrypted messages when presented with a valid warrant. Note that this makes our modeling the worst
case scenario, and therefore captures more selective service providers. Additionally, in practice, this service
provider would validate if messages are well-formed to make sure Pi and Pj follow the real protocol.

For any adversary A with auxiliary input z ∈ {0, 1}∗, input vector x, and security parameter λ, we denote
the output of Π by RealA,Π(1λ, x, z).

Definition 1 A protocol Π is said to be a secure ARLEAS protocol computing Fv,t,p,θ,mode
ARLEAS if for every PPT

real-world adversary A, there exists an ideal-world PPT adversary S corrupting the same parties such that
for every input x and auxiliary input z it holds that

IdealS,Fv,t,p,θ,mode
ARLEAS

(1λ, x, z)
c
≈ RealA,Π(1λ, x, z)

13

4 Building Blocks

4.1 Proof-of-publication ledgers

Our work makes use of a public append-only ledger that can produce a publicly-verifiable proof of publi-
cation. This concept was formalized by Goyal et al. [GG17], Choudhuri et al. [CGJ+17], and Kaptchuk
et al. [KGM19], but related ideas have also been previously used by Liu et al. to realize time-lock en-
cryption [LJKW18]. Plausible candidates for such ledgers have been the subject of great interest, due to
the deployment of blockchains and other consensus networks [Nak08]. Significant work has been done to
formalize the notion of a public, append-only ledger [CGJ19,BGK+18,BMTZ17,GG17] and study its appli-
cations to cryptographic protocols [ADMM14, BK14,CGJ+17]. This work uses a simplified ledger interface
formalized in [CGJ+17] that abstracts away details such as timing information and temporary inconsistent
views that are modeled in [BMTZ17]. However, this simplified view captures the eventual functionality of
the complex models, and is therefore equivalent for our purposes.

The ledger ideal functionality is provided in Figure 3. This functionality allows users to post arbitrary
information to the ledger; this data is associated with a particular index on the ledger, with which any user
can retrieve the original data as well as a proof of publication. For security, our functionality encodes a
notion we refer to as ledger unforgeability, which requires that there exists an algorithm to verify a proof
that a message has been posted to the ledger, and that adversaries cannot forge this proof.

Functionality LVerify

GetCounter: Upon receiving (GetCounter) from any party, return `.

Post: Upon receiving (Post, x), the trusted party increments ` by 1, computes the proof of publication
πpublish on (`||x) such that Verify((`‖x), πpublish) = 1. Add the entry (`, x, πpublish) to the entry table T .
Respond with (`, x, πpublish)

GetVal: Upon receiving (GetVal, `), check if there is an entry (`, x, πpublish) in the entry table T . If not,
return ⊥. Otherwise, return (`, x, πpublish).

Figure 3: Ideal functionality for a proof-of-publication ledger, from [CGJ+17].

4.2 Authenticated Communication

We use a variant of Canetti’s ideal functionality for authenticated communication, FAUTH , to abstract the
notion of message authentication [Can01]. This is presented in Figure 4. Since we restrict our analysis to
static corruption, we simplify this functionality to remove the adaptive corruption interface.7

4.3 Simulation Extractable Non-Interactive Zero Knowledge

In our protocols we require non-interactive zero knowledge proofs of knowledge that are simulation ex-
tractable. To preserve space, we refer the reader to the definitions of Sahai [Sah99] and De Santis et
al. [DDO+01]. Rather than rely on UC functionalities, we employ a NIZK directly in our protocols.

Definition 2 (Simulation Extractable Non-Interactive Zero Knowledge) A non-interactive
zero-knowledge proof of knowledge for a relation R is a set of algorithms (ZKSetup,ZKProve,ZKVerify,
ZKSimulate) defined as follows:

7Note that this ideal functionality only handles a single message transfer, but to achieve multiple messages, we rely on
universal composition and use multiple instances of the functionality.

14

Functionality FAUTH

Sending: Upon receiving an input (Send, sid, Pj ,m) from Pi, if it is not the first instance of (Send, ·, ·, ·),
the ideal functionality does nothing. Otherwise, it sends (Sent, sid, Pi, Pj ,m) to the adversary. If the
adversary responds with (OK), then the ideal functionality sends (Sent, sid, Pi, Pj ,m) and halts. If the
adversary does not approve, the ideal functionality drops the message and halts.

Figure 4: The message authentication ideal functionality FAUTH supporting static corruption, adapted
from [Can01].

– ZKSetup(1λ) returns the common reference string and simulation trapdoor (CRSZK , τ).

– ZKProve(CRSZK , x, ω) takes in the common reference string CRSZK , a statement x and a witness ω
and outputs a proof π.

– ZKVerify(CRSZK , x, π) takes in the common reference string CRSZK , a statement x and a proof π, and
outputs either 1 or 0.

– ZKSimulate(CRSZK , τ, x) takes in the common reference string CRSZK , a statement x and the simula-
tion trapdoor τ and outputs a proof π.

We say that a non-interactive zero-knowledge argument of knowledge is simulation extractable if it
satisfies the following properties:

– Completeness: If a prover has a valid witness, then they can always convince the verifier. More
formally, for all relations R and all x, ω, if R(x, ω) = 1, then

Pr
[
ZKVerify(CRSZK , x, π) = 1

∣∣(CRSZK , τ)← ZKSetup(1λ), π ← ZKProve(CRSZK , x, ω)
]

= 1

– Perfect Zero knowledge: A scheme has zero-knowledge if a proof leaks no information beyond that
truth of the statement x. We formalize this by saying that an adversary with oracle access to a prover
cannot tell if that prover runs the honest algorithm ZKProve or uses the trapdoor and ZKSimulate.

Pr
[
AZKProve(CRSZK ,·,·)(CRSZK) = 1|(CRSZK , ·)← ZKSetup(1λ)

]
s
≈

Pr
[
AZKSimulate(CRSZK ,τ,·)(CRSZK) = 1|(CRSZK , τ)← ZKSetup(1λ)

]
– Simulation Extractability: There exists an extractor Extract such that

Pr

R(x, ω) = 1

∣∣∣∣∣∣∣
(CRSZK , τ)← ZKSetup(1λ),

(x, π)← AZKSimulate(CRSZK ,τ,·)(CRSZK),

ω ← Extract(CRSZK , τ, x, π)

 ≥ 1− negl(λ)

It has been shown that realizing this primitive for languages outside BBP requires the common reference
string model [Ore87,GO94,GK96]. We present the common reference string ideal functionality from [CF01]
in Figure 5.

15

Functionality FDCRS

FDCRS proceeds as follows, when parameterized by a distribution D:

Common Reference String: When activated for the first time on input (CRS, sid), choose a value

d
$←− D and send back to the activating party. In each other activation return the value d to the

activating party.

Figure 5: Ideal functionality for generating a Common Reference String, from [CF01].

4.4 Lossy Tag Encryption

Lossy encryption [BHY09] is an encryption application of lossy trapdoor functions, which were introduced
by Peikert and Waters [PW08]. Intuitively, lossy encryption is a public key encryption scheme that has
an algorithm to generate lossy keys that are computationally indistinguishable from normal keys. When
encrypting with these lossy keys, the resulting ciphertext contains no information about the plaintext.

Definition 3 A lossy public-key encryption scheme is a tuple of algorithms (KeyGen,KeyGenloss,Enc,Dec)
defined as

– KeyGen(1λ) generates an injective keypair (pk, sk)

– KeyGenloss(1
λ) generates a lossy keypair (pk, ·)

– Enc(pk,m) takes in a public key pk and a plaintext message m and outputs a ciphertext c

– Dec(sk, c) takes in a secret key sk and a ciphertext c and either outputs ⊥ or the message m

We require that the above algorithms satisfies the following properties:

– Correctness on real keys: For all messages m, it should hold that

Pr
[
m = Dec(sk,Enc(pk,m))

∣∣(pk, sk)← KeyGen(1λ)
]

= 1

– Lossiness on lossy keys: for all (pk, ·)← KeyGenloss(1
λ) and m0,m1 such that |m0| = |m1|,

Enc(pk, tag ,m0)
s
≈ Enc(pk, tag ,m1)

– Indistinguishability of keys: Finally, over all random coins, it should hold that

KeyGen(1λ)
c
≈ KeyGenloss(1

λ)

In this work, we require a specific generalization of lossy encryption we call lossy-tag encryption (LTE).
Intuitively, this is an encryption scheme with a single public key in which encryption takes as input a “tag”
in addition to the public key and plaintext. Encrypting under a tag from a specific subset will produce in an
injective ciphertext, while the remaining tags will produce a lossy ciphertext. This notion is closely related
to numerous previous works, including lossy encryption [BHY09], lossy trapdoor functions [PW08], identity-
based lossy trapdoor functions [BKPW12] all-but-one functions [PW08], and all-but-n functions [HLOV11].
We define lossy-tag encryption formally as follows:

16

Definition 4 A lossy-tag encryption (LTE) scheme with respect to a tag space T consists of a tuple of
algorithms (KeyGen,Enc,Dec) defined as follows:

– KeyGen(1λ, T) takes in a set of tags T ⊂ T of polynomial size in λ and outputs a public key mpk and
a secret key msk .

– Enc(mpk, tag ,m) encrypts the message m under the public key mpk and tag ∈ T to produce ciphertext
c.

– Dec(msk , tag , c) takes in the secret key msk , tag ∈ T and a ciphertext c and either outputs a message
m or ⊥.

We require that the above algorithms satisfy the follow properties

– Correctness on injective tags:

Pr

[
m = Dec(msk , tag ,Enc(mpk, tag ,m))

∣∣∣∣∣ tag ∈ T
(mpk,msk)← KeyGen(1λ, T)

]
= 1

– Lossiness on lossy tags: for all messages m0,m1 and all sets T , if tag 6∈ T and (mpk,msk) ∈
KeyGen(1λ, T), then

Enc(mpk, tag ,m0)
s
≈ Enc(mpk, tag ,m1)

– Indistinguishability of tag sets: for all sets T0 6= T1 such that |T0| = |T1|,

KeyGen(1λ, T0)
c
≈ KeyGen(1λ, T1)

A stronger version of this definition could remove the requirement that |T0| = |T1| for indistinguishability
of tag sets. For our constructions, we do not concern ourselves with this leakage.

Realizing lossy-tag encryption: When the size of T is polynomial in the security parameter, it is trivial to
realize lossy-tag encryption from standard lossy encryption [BHY09] simply by generating one lossy keypair
to represent each “tag”. However, even for small sets T this may produce unreasonably large public keys. In
this work, we present a direct instantiation of a lossy-tag encryption scheme based on DDH, such that the
public parameters mpk that are linear in |T |.

Let G be a cyclic group of order p. Define pk = (g, h, g̃, h̃) ∈ G4, and DoubleEncrypt(pk,m; r1, r2) to
output (gr1hr2 , g̃r1 h̃r2 ·m). As noted in [BHY09], if pk is a DDH tuple then this encryption is injective, but
if pk is a random tuple then the encryption is statistically lossy. We now present a construction ΠLTE for
lossy-tag encryption as follows:

• KeyGen(params, T) → (mpk,msk). Sample params = p,G, g, h, ĝ, ĥ where G has order p and g, h, ĝ, ĥ
are generators of G. Sample a random polynomial A(x) in Zp of degree k = |T | such that for each
s ∈ T , A(x) = 0. Then compute B(x) = d2A(x) for some constant d2 6= d0

d1
. Let αi be the ith coefficient

of A(x) and βi be the ith coefficient of B(x). Use rejection sampling to sample random η0 . . . ηk such
then when ηi is interpreted as the ith coefficient of a polynomial E(x), E(tag) 6= 0 for all tag ∈ T .

Compute mpk = ((gηk ĝαk , . . . , gη0 ĝα0), (hηk ĥβk , . . . , hη0 ĥβ0)). Compute msk = (η0, η1, . . . , ηk) and
output mpk,msk .

• Enc(params,mpk, tag ,m)→ c.

– Parse ((gηk ĝαk , . . . , gη0 ĝα0), (hηk ĥβk , . . . , hη0 ĥβ0))← mpk

– Compute the user public key

pk = (g, h,

k∏
i=0

(gηi ĝαi)tag
i

,

k∏
i=0

(hηi ĥβi)tag
i

)

17

– Sample r1, r2 ← Zp
– Compute and return

c = (gr1hr2 ,

(
k∏
i=0

(gηi ĝαi)tag
i

)r1
·

(
k∏
i=0

(hηi ĥβi)tag
i

)r2
·m)

• Dec(params,msk , tag , c)→ m

– Parse (η0, η1, . . . , ηk)← msk

– Parse (c1, c2)← c

– Compute y =
∑k
i=0 η0(tag)k

– Compute and return m = c2
cy1

.

Proof. We now prove that ΠLTE above realizes the the functionality of lossy-tag encryption. To do so, we
recall the construction of a lossy encryption scheme in Section 4.1 of [BHY09]. As mentioned above, they
observe that ElGamal double encryption is injective when the public key has the structure (g, h, gx, hx), but
is lossy when the public key has the structure (g, h, gx, hy), for x 6= y.

Correctness on injective tags. For injective tags, A(x) = B(x) = 0. Recall that the public key used

during encryption is computed as (g, h,
∏k
i=0(gηi ĝαi)tag

i

,
∏k
i=0(hηi ĥβi)tag

i

). Written another way, this is

(g, h, gE(tag)ĝA(tag), hE(tag)ĥB(tag)). Because A(x) = B(x) = 0, the public key is (g, h, gE(tag), hE(tag)),
where E(tag) is non-zero. Note that this form is the same form as an injective key from [BHY09], so the
resulting ciphertext is injective with corresponding private key E(tag).

Lossiness on lossy tags. For lossy tags, A(x) 6= B(x) 6= 0. This can be observed because B(x) = kA(x),
and there are at most |T | zeros of a degree |T | polynomial, and all all these zeros were set to be the injective

tags. The public key used for encryption is, as before, (g, h, gE(tag)ĝA(tag), hE(tag)ĥB(tag)). Without loss of
generality, the public key can then be written as

(g, h, gE(tag)+d0A(tag), hE(tag)+d1B(tag)).

Note that because B(·) was sampled such that d2A(x) = B(x), and d0
d1
6= d2, then E(tag) + d0A(tag) 6=

E(tag) + d1B(tag). Thus this public key is structured exactly like the lossy key from [BHY09], so the
resulting ciphertext is lossy.

Indistinguishability of tag sets. Due to the key indistinguishability of [BHY09], it is clear that a lossy
key and an injective key, when computed during encryption, are statistically indistinguishable. All that
remains to argue is that the public parameters leak no information about the tag set besides its size (note
that the size of mpk trivially leaks |T |). Notice that it is sufficient to show that this property holds when
two sets differ in only a single tag, as a straightforward hybrid argument in which a single tag is swapped
in each hybrid can generalize the result. Next, notice that each element in mpk is formed like a Pendersen
commitment [Ped92] to αi or βi. Thus, it is clear to see that if there exists an adversary that can distinguish
between sets, it can be used to break the hiding property of Pendersen commitments.

4.5 Multi-sender Non-interactive Secure Computation

When instantiating our prospective protocol for arbitrary predicates in Section 5.1,we will require the use of
Non-interactive Secure Computation (NISC) [IKO+11,AMPR14]. In NISC, a receiver can post an encryption
embedding a secret x1 such that senders with secret x2 can reveal f(x1, x2) to the receiver by sending only a
single message. Realizing such a scheme (see [IKO+11]) is feasible in the CRS model [Can01,CLOS02] from
two-round, UC-secure malicious oblivious transfer [DNO09, NO09], Yao’s garbled circuits [Yao86, HK07],
and generic non-interactive zero knowledge (see Section 4.3). The resulting protocols, however, are very

18

inefficient and require non-blackbox use of the underlying cryptographic primitives. While this is sufficient
for our purposes, we note that depending on specific functionality required in an instantiation of ARLEAS, it
may be possible to use more efficient constructions (i.e. depending on the size of the predicate circuit, etc.)
Because the notation for NISC protocols varies, we fix it for this work below. We omit the ideal functionality
of multi-sender NISC from [AMPR14], due to space constraints. Because we require non-blackbox use of the
primitive, we will use it directly rather than as a hybrid.

Definition 5 (Multi-sender Non-interactive Secure Computation) A garbling scheme for a func-
tionality f : {0, 1}input1 × {0, 1}input2 → {0, 1}output is a tuple of PPT algorithms ΠNISC := (GenCRS,NISC1,
NISC2,Evaluate) such that

– GenCRS(1λ, input; r)→ (CRSNISC, τNISC): GenCRS takes the security parameter 1n and outputs a CRS,
along with a simulation backdoor τNISC. When we explicitly need to specify the randomness, we will
include it as r as here.

– NISC1(CRSNISC, x1; r) → (niscpublic1 , niscprivate1): NISC1 takes in the CRS and an input x ∈ {0, 1}input1
and outputs the first message NISC1. When we explicitly need to specify the randomness, we will include
it as r as here.

– NISC2(CRSNISC, f, x2, niscpublic1 ; r) → nisc2: NISC2 takes in the CRS, a circuit C, an input x2 ∈
{0, 1}input2 and the first garbled circuit message niscpublic1 . It outputs the second message nisc2. When
we explicitly need to specify the randomness, we will include it as r as here.

– Evaluate(CRSNISC, nisc2, niscprivate1): Evaluate takes as input the second GC message nisc2 along with the

private information niscprivate1 and outputs y ∈ {0, 1}output or the error symbol ⊥

We give an ideal world security definition for a multi-sender NISC in Figure 6.

Multi-sender Non-interactive Secure Computation.

Receiver Posting: Upon receiving a message (Input1, x1) from P1, store x1. Initialize and empty table
T and ignore future Input1 messages.

Sender Input: Upon receiving a message (Input2, x2) from Pi, store (Pi, x2) in table T.

Outputs: Upon receiving a message (Outputs) from P1, send ({(Pi, f(x1, x2)}(Pi,x2)∈T)

Figure 6: Ideal functionality for multi-sender NISC, from [AMPR14].

4.6 Witness Encryption and Extractable Witness Encryption

Our retrospective constructions require extractable witness encryption (EWE) [BCP14], a variant of witness
encryption in which the existence of a distinguisher can be used to construct an extractor for the necessary
witness [GLW14]. While EWE is a strong assumption, in later sections of this work we show that it is a
minimal requirement for the existence of retrospective ARLEAS.

Definition 6 (Extractable Witness Encryption) An extractable witness encryption ΠEWE = (Enc,Dec)
for an NP language L associated with relation R consists of the following algorithms:

– Enc(1λ, x,m): On input instance x and message m ∈ {0, 1}, it outputs a ciphertext c.

19

– Dec(c, w): On input ciphertext c and witness w, it outputs m′.

We require that the above primitive satisfy the following properties:

– Correctness: For every (x,w) ∈ R, for every m ∈ {0, 1},

Pr[m = Dec(Enc(1λ, x,m), w)] = 1

– Extractable Security: For any PPT adversary A = (A0,A1), if:

Pr

A1(1λ, c, state) = b

∣∣∣∣∣∣∣
b← {0, 1}

(m0,m1, state)← A0(1λ, x)

c← Enc(1λ, x,mb)

 ≥ 1

2
+ negl(λ)

then there exists a PPT extractor Ext such that for all auxiliary inputs aux :

Pr
[
w ← ExtA(1λ, x, aux) s.t. : (x,w) ∈ R

]
≥ negl(λ)

4.7 Programmable Global Random Oracle Model

The security proof for our retrospective construction makes use of the programmable global random oracle
model, introduced in [CDG+18]. The ideal functionality GpRO is illustrated in Figure 7.

Functionality GpRO.

Initiate with an empty list ListH

Query: Upon receiving message (HashQuery,m) from party P , the ideal functionality proceeds as
follows. Find h such that (m,h) ∈ ListH. If no such h exists, let h←$ {0, 1}` and store (m,h) in ListH.
Return (HashConfirm, h) to P .

Program: Upon receiving message (ProgramRO,m, h) from adversary A, the ideal functionality pro-
ceeds as follows. If ∃h′ ∈ {0, 1}` such that (m,h′) ∈ ListH and h 6= h′, then abort. Otherwise, add
(m,h) to ListH and output (ProgramConfirm) to A

Figure 7: Ideal functionality for the global programmable random oracle, from [CDG+18].

5 Prospective Solution

In this section we describe a prospective ARLEAS scheme, the first of which work with warrants that specify
the target’s identity and the second of which supports arbitrary predicates. Recall that the key feature of
the prospective case is that warrants must be activated before targets perform encryption. A key implication
of this setting is that new cryptographic material can be generated and distributed to users each time law
enforcement updates the set of active warrants. The technical challenge, therefore, is to ensure that this
material is distributed in such a way that the surveillance it permits is accountable, without revealing to
targets any confidential information about which messages are being accessed.

The need for accountability restricts us from using many natural cryptographic tools. For example,
Identity Based Encryption (IBE) systems provide a natural form of key escrow. Unfortunately, in a standard
IBE scheme this key escrow is absolute: the master authority can decrypt any ciphertext in the system. To

20

enable limited surveillance, we require a system in which only a subset of communications will be targeted
at any time epoch, and no additional information about non-targeted plaintexts will be revealed to the
authorities. The first scheme relies on the ΠLTE scheme presented in Section 4 and ensures that messages sent
to recipients under surveillance contain a copy of the ciphertext that can be decrypted by law enforcement,
while messages send to recipients not under surveillance contain only a lossy ciphertext.

For generality, our main second construction supports targeting by allowing warrants to specify an ar-
bitrary predicate over the metadata of a transmitted messages. In practice, we realize this functionality
through the use of public ledgers and non-interactive secure computation techniques.

5.1 UC-Realizing Fv,t,p,θ,proARLEAS for Identity-Based Predicates

Our first construction only permits warrants that specify the identity of individuals to surveil and leverages
the ΠLTE scheme presented in Section 4. With this encryption scheme, encrypting to some public keys create
information theoretic lossy ciphertexts, while using other public keys results in injective ciphertexts. We
use this scheme to allow law enforcement to decrypt messages exactly when they have activated a warrant
corresponding to the recipient’s identity. When sending a new message, a user encrypts directly to the
recipient as normal and creates a second ciphertext using the ΠLTE scheme. The key material used for the
second ciphertext comes public parameters generated by law enforcement that are posted onto the public
ledger.

Our construction makes use of a CCA secure encryption system ΠEnc, a SUF-CMA secure signature
scheme ΠSign, a lossy-tag encryption scheme ΠLTE (presented in Section 4). We now present a protocol

πv,t,p,θPRO in the LVerify, FΠNIZK.ZKSetup
CRS , FAUTH hybrid model. Our scheme consists of the following interactive

protocols:

πv,t,p,θPRO .Setup:

• All users send (CRS) to FΠNIZK.ZKSetup
CRS to retrieve the common reference string for the NIZK scheme.

• Each user Pj computes (pkj , skj)← ΠEnc.KeyGen(1λ) and selects a unique tag tagj and sends (pkj , tagj)
to PLE and to each other user Pi via FAUTH .

• The judge PJ computes (pksign, sksign) ← ΠSign.KeyGen(1λ) and send pksign to all other users via
FAUTH .

• Law enforcement PLE runs πv,t,p,θPRO .ActivateWarrant with as input an empty set ∅ as the valid warrants.

πv,t,p,θPRO .SendMessage :

• The sender Pi computes the ciphertext (c1, c2, π,meta) as follows, and sends it to Pj and PLE via
FAUTH :

– Send (GetCounter) to LVerify and receive the current counter `. Then query LVerify on (GetVal, `) to
receive the latest posting (`, x, πpublish). Parse x as (mpk, π, info). If ΠNIZK.ZKVerify(mpk, info, π) =
0 or LVerify.Verify(`‖(mpk, π, info), πpublish) = 0 return ⊥ and halt.

– c1 ← ΠEnc.Enc(pkj ,m; r1), where r1
$←− {0, 1}λ

– c2 ← ΠLTE.Enc(mpk, tagj ,m; r2) where r2
$←− {0, 1}λ

– Use ΠNIZK.ZKProve to compute π such that

π ← NIZK

{
(m, r1, r2) :

c1 = ΠEnc.Enc(pkj ,m; r1)∧
c2 = ΠLTE.Enc(mpk, tagj ,m; r2)

}

– Create meta← tagj

21

• Upon receiving c from Pi, Pj calls πv,t,p,θPRO .VerifyMessage on c. If the output is 1, then recover the
message as m← ΠEnc.Dec(skj , c2)

• Upon receiving c from Pi, PLE calls πv,t,p,θPRO .VerifyMessage on c. If the output is 1, then recover the
message as m← ΠLTE.Dec(msk , tagj)

πv,t,p,θPRO .VerifyMessage :

• Any party parses (c1, c2, π,meta)← c and verifies that π is correct and computes v(meta, aux), aborting
if the output is 0. Otherwise, output 1.

πv,t,p,θPRO .RequestWarrant:

• PLE sends (RequestWarrant, tag) to PJ via FAUTH . PJ then either decides to send (Disapprove) to PLE

and halt or executes the following:

– Verify that p(tag) = 1. If not send (Disapprove) to PLE and abort.

– σ ← ΠSign.Sign(sksign, tag)

– Send the signed warrant (tag , σ) to PLE via FAUTH .

πv,t,p,θPRO .ActivateWarrant:

• PLE adds the new warrant w to the set of valid warrants W. It then extracts the set of tags T ←
{tag |(tag , σ) ∈ W}

• Compute (mpk,msk)← ΠLTE.KeyGen(1λ, T ; r) for r
$←− {0, 1}λ

• Compute info← {t(tag , σ)|(tag , σ) ∈ W}

• Use ΠNIZK.ZKProve to compute π such that

π ← NIZK{(W, T ,msk , r) : info = {t(tag , σ)|(tag , σ) ∈ W} ∧ T ← {tag |(tag , σ) ∈ W}∧
(mpk,msk) ∈ ΠLTE.KeyGen(1λ, T ; r)∧

∀(tag , σ) ∈ W,ΠSign.Verify(pksign, tag , σ) = p(tag) = 1}

• Send (Post, (mpk, π, info)) to LVerify and receive (`, x, πpublish).

Theorem 1 Assuming a CCA secure public key encryption scheme ΠEnc, a SUF-CMA secure signature
scheme ΠSign, a NIZK scheme ΠNIZK, and a lossy-tag encryption scheme ΠLTE, πv,t,p,θPRO UC-realizes Fv,t,p,θ,proARLEAS

initialized in prospective mode in the LVerify, FΠNIZK.ZKSetup
CRS , FAUTH−hybrid model for meta that contains re-

ceiver identity θ(w,meta) = (w == meta).

Security Proof. The proof of security can be found in Appendix A

5.2 UC-Realizing Fv,t,p,θ,proARLEAS for Arbitrary Predicates

The prospective solution we have presented is limited in the flexibility of warrants; unlike the ideal function-
ality, warrants were limited to specifying a single individual. It is clear that it would be better to support
arbitrary warrants whose applicability to some meta could be checked with the warrant scope functionality
θ.

First, we note that directly extending the existing solution’s intuitions is insufficient, as creating a one-
to-one correspondence between tags and meta would clearly result in exponentially sized public parameters.

22

We require a mechanism that evaluates the warrant scope predicate θ(w,meta) and outputs the message
only if the result is 1. Clearly this can be accomplished using extractable witness encryption, and indeed
we will use extractable witness encryption to accomplish a similar goal in Section 6. However, we are able
to leverage the prospective nature of this case to realize prospective ARLEAS from non-interactive secure
computation (NISC) [IKO+11]. Recall that a NISC scheme for some function f allows a receiver to post an
encryption of some secret x1 such that all players can reveal f(x1, x2) to the receiver with only one message,
without revealing anything about x2 beyond the output of the function. For the following construction, we
require an NISC scheme for the function Ik, defined as

Ik((w1, w2, . . . , wk), (m,meta)) = m ∧ (θ(meta, w1) ∨ . . . ∨ θ(meta, wk)).

This function evaluates the warrant scope check functionality on the metadata over k different warrants. If
any of them evaluate to true, the message is output. Otherwise, Ik outputs 0. Note that the number of
warrants is an explicit parameter of the function and its circuit representation.

Law enforcement begins by posting the first message of the NISC scheme, embedding as input their
k warrants, along with the transparency information and proof of correctness. As before, senders send a
ciphertext (c1, c2, π). c1 remains a normal public key ciphertext for the recipient. c2 is modified (from the
previous construction) to be the second message of the NISC scheme. This message must embed the inputs
(m,meta). Most known realizations of NISC rely on garbled circuits, with the second message containing the
garbling of the intended function and hardcoding the sender’s inputs. As such, we need to ensure that the
sender computes the second message of the NISC scheme with respect to the correct functionality; this can
be handled by requiring malicious security from the underlying NISC scheme or by including a correctness
in the NIZK π. As we require a proof of consistency (i.e. c1 and c2 embed the same message), we already
require non-blackbox use of the NISC scheme.

Upon receiving the resulting ciphertext, law enforcement can attempt to decrypt by evaluating the NISC
ciphertext. By the security of the NISC scheme, law enforcement will only learn information about the
plaintext if they have a relevant warrant and posted the required transparency information, accomplishing
our goal.

We now proceed to give a formal description of this protocol.

πv,t,p,θPRO .Setup:

• All users send (CRS) to FΠNIZK.ZKSetup
CRS to retrieve the common reference string for the NIZK scheme

and all users send (CRS) to FΠNISC.GenCRS
CRS to retrieve the common reference string for the NISC scheme

CRSNISC.

• Each user Pj computes (pkj , skj)← ΠEnc.KeyGen(1λ) and sends pkj to PLE and to each Pi via FAUTH .

• The judge PJ computes (pksign, sksign) ← ΠSign.KeyGen(1λ) and send pksign to all other users via
FAUTH .

• Law enforcement PLE runs πv,t,p,θPRO .ActivateWarrant with an empty set ∅ as the valid warrants.

πv,t,p,θPRO .SendMessage :

• The sender Pi computes the ciphertext (c1, c2, π,meta) as follows, and sends it to Pj and PLE via
FAUTH :

– Send (GetCounter) to LVerify and receive the current counter `. Then query LVerify on (GetVal, `) to

receive the latest posting (`, x, πpublish). Parse x as (niscpublic
1 , π, info). If ΠNIZK.ZKVerify(niscpublic

1 ,

info, π) = 0 or LVerify.Verify(`‖(niscpublic
1 , π, info), πpublish) = 0 return ⊥ and halt.

– c1 ← ΠEnc.Enc(pkj ,m; r1), where r1
$←− {0, 1}λ

– Create meta

23

– nisc2 ← ΠNISC.NISC2(CRSNISC, I|info|, (m,meta), niscpublic
1 ; r2), where r2

$←− {0, 1}λ

– c2 ← nisc2

– Use ΠNIZK.ZKProve to compute π such that

π ← NIZK

{
(m, r1, r2) :

c1 = ΠEnc.Enc(pkj ,m; r1)∧

c2 = ΠNISC.NISC2(CRSNISC, I|info|, (m,meta), niscpublic
1 ; r2)

}

• Upon receiving c from Pi, Pj calls πv,t,p,θPRO .VerifyMessage on c. If the output is 1, then recover the
message as m← ΠEnc.Dec(skj , c2)

• Upon receiving c from Pi, PLE calls πv,t,p,θPRO .VerifyMessage on c. If the output is 1, then recover the

message as m← ΠNISC.Evaluate(CRSNISC, nisc2, niscprivate
1)

πv,t,p,θPRO .VerifyMessage :

• Any party parses (c1, c2, π,meta)← c and verifies that π is correct and computes v(meta, aux), aborting
if the output is 0. Otherwise, output 1.

πv,t,p,θPRO .RequestWarrant:

• PLE sends (RequestWarrant, ŵ) to PJvia FAUTH . PJ then either decides to send (Disapprove) to PLE

and halt or executes the following:

– Verify that p(ŵ) = 1. If not send (Disapprove) to PLE and abort.

– σ ← ΠSign.Sign(sksign, ŵ)

– Send the signed warrant w = (ŵ, σ) to PLE via FAUTH .

πv,t,p,θPRO .ActivateWarrant:

• PLE adds the new warrant w to the set of valid warrantsW. Let w∗ = w1‖ . . . ‖w|W| for wi = (ŵi, σi) ∈
W.

• (niscpublic
1 , niscprivate

1)← ΠNISC.NISC1(CRSNISC, w
∗; r) and record niscprivate

1

• Compute info← {t(w)|w ∈ W}

• Use ΠNIZK.ZKProve to compute π such that

π ← NIZK

(W, niscprivate
1 , r) :

info = {t(w)|w ∈ W}∧

(niscpublic
1 , niscprivate

1)← ΠNISC.NISC1(CRSNISC, w
∗; r)∧

∀(ŵ, σ) ∈ W,ΠSign.Verify(pksign, ŵ, σ) = p(ŵ) = 1

• Send (Post, (niscpublic

1 , π, info)) to LVerify and receive (`, x, πpublish).

Theorem 2 Assuming a CCA secure public key encryption scheme ΠEnc, a SUF-CMA secure signature
scheme ΠSign, a NIZK scheme ΠNIZK, and an NISC scheme ΠNISC, πv,t,p,θPRO UC-realizes Fv,t,p,θ,proARLEAS initialized

in prospective mode in the LVerify, FΠNIZK.ZKSetup
CRS , FΠNISC.GenCRS

CRS , FAUTH−hybrid model.

Security Proof. The proof of security can be found in Appendix B

24

6 Retrospective Solution

In the previous section we proposed a protocol to realize ARLEAS under the restriction that access would
be prospective only. That protocol requires that law enforcement must activate a warrant and post the
resulting parameters on the ledger before any targeted communication occurs. In this section we address
the retrospective case. The key difference in this protocol is that law enforcement may activate a warrant
at any stage of the protocol, even after a target communication has occurred.

In this setting we assume law enforcement has a way of getting messages that were sent in the past.
As described before, we take the simplifying assumption that messages automatically get send to law en-
forcement. In practice, either a service provider can forward them, after checking the warrant. One can
try to avoid surveillance by using expiring messages, but service providers can be forced to keep encrypted
messages for a certain period of time. Or law enforcement can actively record messages in transit.

Our construction makes use of an extractable witness encryption scheme ΠEWE (see Definition 6) to
encrypt the law enforcement ciphertext c2. This scheme is parameterized by a language LEWE that is
defined with respect to the transparency function t(·), the policy function p(·), the targeting function θ(·, ·),
the warrant signing key pksign, and the ledger verification function L.Verify, as follows:

LEWE =

meta

∣∣∣∣∣∣∃w, (t, info, πpublish) s.t.
w = (ŵ, σ),L.Verify((`‖info), πpublish) = 1,
info = t(w),ΠSign.Verify(pksign, ŵ, σ) = 1,
p(ŵ) = 1, θ(ŵ,meta) = 1

Intuitively, these ciphertexts can only be decrypted by law enforcement once they have performed all the

accountability tasks required by the ARLEAS.
Our construction also makes use of a simulation-extractable NIZK scheme ΠNIZK satisfying Definition 2. We
will prove statements in the following languages:

L1
NIZK =

{
(c1, c2, pk,meta)

∣∣∣∣∃(r, r1, r2) s.t.
c1 = ΠEnc.Enc(pk, r; r1) ∧
c2 = ΠEWE.Enc(meta, r; r2)

}

L2
NIZK =

{
(info, pksign)

∣∣∣∣∃(ŵ, σ) s.t.
ΠSign.Verify(pksign, ŵ, σ) = 1 ∧
x← t(w)

}
We will describe our protocol in a hybrid model that makes use of several functionalities. These include L,
FDCRS , GpRO and FAUTH .

6.1 UC-Realizing Fv,t,p,θ,retARLEAS

We now provide a description of the retrospective ARLEAS protocol πv,t,p,θRET .

πv,t,p,θRET .Setup:

• All users send (CRS) to FΠNIZK.ZKSetup
CRS to retrieve the common reference string for the NIZK scheme.

• PJ computes (pksign, sksign)← ΠSign.KeyGen(1λ) and sends pksign to all other users via FAUTH .

πv,t,p,θRET .SendMessage:

• The sender Pi computes the ciphertext (c1, c2, c3, π,meta) as follows, and sends it to Pj and PLE via
FAUTH :

– Sample r ← {0, 1}λ

– Query the random oracle to obtain the hashes:

(HashConfirm, r1)← GpRO(HashQuery, (“ENC”‖r‖m)),

(HashConfirm, r2)← GpRO(HashQuery, (“WE”‖r‖m)), and

25

(HashConfirm, r3)← GpRO(HashQuery, (“RP”‖r))
– c1 ← ΠEnc.Enc(pk, r; r1), c2 ← ΠEWE.Enc(meta, r; r2), and c3 ← m⊕ r3

– Use ΠNIZK.ZKProve to compute

π ← NIZK{(r, r1, r2) : c1 = ΠEnc.Enc(pkj , r; r1) ∧ c2 = ΠEWE.Enc(meta, r; r2)}

• Upon receiving (send, c), Pj performs the following steps:

– Call πv,t,p,θRET .VerifyMessage on c, aborting if the output is 0;

– Compute r′ ← ΠEnc.Dec(skj , c1)

– (HashConfirm, r3)← GpRO(HashQuery, (“RP”‖r′))
– Compute m′ ← c3 ⊕ r3

– (HashConfirm, r1)← GpRO(HashQuery, (“ENC”‖r′‖m′))
– (HashConfirm, r2)← GpRO(HashQuery, (“WE”‖r′‖m′))
– Then to verify that the message has not been mauled, Pj recomputes c′1 ← ΠEnc.Enc(pkj , r

′; r1)
and c′2 ← ΠEWE.Enc(meta, r′; r2). If c1 6= c′1 or c2 6= c′2, return ⊥. Otherwise, return m′.

• Upon receiving (send, c), PLE calls πv,t,p,θRET .VerifyMessage on c, aborting if the output is 0, and then

calls πv,t,p,θRET .AccessMessage on c.

πv,t,p,θRET .VerifyMessage :

• Any party parses (c1, c2, c3, π,meta) ← c and verifies that π is correct and computes v(meta, aux),
aborting if the output is 0. Otherwise, output 1.

πv,t,p,θRET .RequestWarrant:

• PLE sends (RequestWarrant, ŵ) to PJ via FAUTH . PJ then either decides to send (Disapprove) to PLE

and halt or executes the following:

– Verify that p(ŵ) = 1. If not send (Disapprove) to PLE and abort.

– σ ← ΠSign.Sign(wsk , ŵ)

– Send the signed warrant w = (ŵ, σ) to PLE via FAUTH .

πv,t,p,θRET .ActivateWarrant:

• PLE computes info← t(w); uses ΠNIZK.ZKProve to compute

π ← NIZK{(w) : w = (ŵ, σ),ΠSign.Verify(pksign, ŵ, σ) = 1 ∧ info← t(w)};

and sends (Post, (info, π)) to LVerify. It receives and returns (`, info, πpublish).

πv,t,p,θRET .VerifyWarrantStatus:

• PLE calls ΠEWE.Dec(c2,meta, (ŵ, σ), (`, info, πpublish)). If the output is ⊥, return 0. Otherwise, return
1.

πv,t,p,θRET .AccessMessage:

• PLE computes r′ ← ΠEWE.Dec(c2,meta, (ŵ, σ), (`, info, πpublish)).

26

• (HashConfirm, r3)← GpRO(HashQuery, (“RP”‖r′))

• Recovers m′ ← c3 ⊕ r3.

• (HashConfirm, r1)← GpRO(HashQuery, (“ENC”‖r′‖m′))

• (HashConfirm, r2)← GpRO(HashQuery, (“WE”‖r′‖m′))

• Recomputes c′1 ← ΠEnc.Enc(pkj , r
′; r1) and c′2 ← ΠEWE.Enc(meta, r′; r2). If c′1 = c1 and c′2 = c2, PLE

returns m′ and ⊥ otherwise.

Theorem 3 Assuming a CCA-secure public key encryption scheme ΠEnc, an extractable witness encryption
scheme for LEWE, a SUF-CMA secure signature scheme ΠSign, and a simulation-extractable NIZK scheme

ΠNIZK, πv,t,p,θRET UC-realizes Fv,t,p,θ,retARLEAS in the LVerify,FΠNIZK.ZKSetup
CRS ,GpRO−hybrid model.

Security Proof. The proof of security can be found in Appendix C

7 On the Need for Extractable Witness Encryption

The retrospective solution we present in Section 6 relies on extractable witness encryption. Intuitively, this
strong assumption is required in our construction because a user must encrypt in a way that decryption is
only possible under certain circumstances. Because the description of these circumstances can be phrased
as an NP relation, witness encryption represents a “natural” primitive for realizing it. However, thus far we
have not shown that the use of extractable witness encryption is strictly necessary. Given the strength (and
implausibility [GGHW14]) of the primitive, it is important to justify its use. We do this by showing that any

protocol ΠA that UC-realizes Fv,t,p,θ,retARLEAS implies the existence of extractable witness encryption for a related
language. Notice that this does not mean the existence of a particular ARLEAS instantiation implies the
existence of generic extractable witness encryption scheme, but rather a specific, non-trivial scheme.

Before proceeding to formally define this related language, we give some intuition about its form. We
wish to argue that a protocol ΠA acts like an extractable witness encryption scheme in the specific case
where an adversary has corrupted the escrow authorities PLE and PJ (along with an arbitrary number of
unrelated users). Recall that in order to learn any information about a message sent in ΠA, the following
conditions must be met: specifically, law enforcement must correctly run the protocol for ΠA.RequestWarrant
and ΠA.ActivateWarrant such that if ΠA.VerifyWarrantStatus were to be called, it would output 1.8 For the

protocol we presented in Section 6, this corresponds to obtaining a correct proof of publication from the
ledger. Importantly, it must be impossible for law enforcement and judges to generate this information inde-
pendently; if it were possible, it would be easy for these parties to circumvent the accountability mechanism.

We give a formal definition of this language L below. We denote the view of a user Pi as VPi , where this
view is a collection of the views of running all algorithms that appear. We abuse notation slightly and denote
the protocol transcript resulting from a sender PS sending a messagem to PR as ΠA.SendMessage(·, PS , PR,m)

L =

(meta, sid)

∣∣∣∣∣∃
(
w, c,

{
VPLE

,VPJ ,
VP0

, . . . ,VPn

})
s.t.

c,meta← ΠA.SendMessage(sid, PS , PR,m),

(Approve)← ΠA.RequestWarrant(sid, w),

(NotifyWarrant, t(w))← ΠA.ActivateWarrant(sid, w),

1← ΠA.VerifyWarrantStatus(sid, w,meta, c)

In this language, the statement comprises some specified metadata and a valid instance of the protocol

ΠA from the perspectives of the parties PLE, PJ , and the users Pi without the sender and receiver. This
setup specifies all the relevant components of the protocol (including the ledger functionality, in the case

8As specified in the ideal functionality, during verification it will be checked that a warrant was properly requested and
activated.

27

of the protocol presented in Section 6). The witness is a valid transcript starting with that setup, that
includes the sending party sending a message with the appropriate metadata and concludes with a call to
ΠA.VerifyWarrantStatus that returns 1. Note that if VerifyWarrantStatus returns 1, then in the real protocol,
AccessMessage would return the relevant plaintext. Unlike other common witness encryption languages,
we note that all correctly sampled statements are trivially in the language and have multiple witnesses.
Therefore, we need the strong notion of extractable witness encryption. As we will discuss, finding a witness
for the statement remains a difficult task.

Consider the implications if it were computationally feasible for an adversary to generate a witness for an
honestly sampled statement for L. This would imply that an adversary corrupting PLE and PJ interacting
with the real protocol has a correct witness, which includes a call to ActivateWarrant, this implies our
accountability property. Such a protocol could never succeed in meeting our original goals; law enforcement
would always be able to simulate the steps required for proper accountability. An accountability mechanism
that can be locally simulated cannot guarantee that all parties can monitor the mechanism, undermining
the purpose of the protocol.

To formalize this intuition, we begin by describing an extractable witness encryption scheme ΠEWE for
language L given access to an ARLEAS protocol ΠA.

– Enc(x,m) parses (meta, sid) from x and calls ΠA.SendMessage(sid,m, PS , PR) such that it outputs
meta, c. It then returns the views {VPLE ,VPJ ,VP0 , . . . ,VPn} resulting from that run, excluding the
private information associated with sending the message.

– Dec(c, ω) parses c, w,meta, sid from c and ω, calls m ← ΠA.AccessMessage(sid, w,meta, c) and returns
the result.

It is easy to see that this construction satisfies the correctness property of extractable witness encryption.
Notice that a valid witness needs to contain inputs to VerifyWarrantStatus such that it outputs 1. Because
VerifyWarrantStatus is defined to return 1 exactly when AccessMessage will return a message, the above
decryption algorithm will return a message only with a valid witness.

We introduce the metadata in the statement in order to fix a witness to a particular statement. Note that
our protocol generates an encryption as running part of the protocol, actually generating part of the witness.
If metadata is not included in the statement, then any witness for a particular setup can be used to decrypt
any ciphertext generated by the encryption oracle under the same statement. While this is not inherently
problematic for extractable witness encryption, it no longer corresponds neatly to ARLEAS. Recall that
warrants in ARLEAS specify the metadata for which they are relevant through the warrant scope check
functionality θ(·, ·) and this property must be enforced in the language. We now proceed to show that the

above scheme ΠEWE satisfies extractable security if ΠA UC-realizes Fv,t,p,θ,retARLEAS .

Theorem 4 Given a protocol ΠA that UC-realizes Fv,t,p,θ,retARLEAS , ΠEWE is a secure extractable witness encryp-
tion scheme for the language L.

Proof 1 Given an adversary A with non-negligible advantage in the extractable witness encryption game for
language L, either

1. We construct an extractor ExtA(1λ, x, aux) by verifying if the adversary A ran ΠA.RequestWarrant(sid, w)
and ΠA.ActivateWarrant(sid, w) such that ΠA.VerifyWarrantStatus(sid, w,meta, c) = 1. If this was the
case, the extractor would have all information to form a witness that it can output;

2. else, if such extractor does not exist, we construct a distinguisher Z that distinguishes between ΠA and
ARLEAS ideal functionality. Z proceeds as follows

(a) When A asks to sample a statement, Z instantiates ΠA with parties {PLE, PJ , P0, . . . Pn, PS , PR}
on honest random coins. Z then generates some arbitrary metadata meta associated with a mes-
sage that PS could send in the future. and returns meta, sid to A.

28

(b) When A sends the challenge plaintexts m0,m1 (such that |m0| = |m1|) on statement x, Z then

flips a coin b
$←− {0, 1}, Z has PS call

ΠA.SendMessage(sid,mb, PS , PR)

such that it outputs c,meta. Z then returns the updated views of PLE, PJ and the N other users
to A.

(c) When A outputs the guess b′ and halts, Z outputs b′ == b, where 1 indicates the real world and
0 indicates the ideal world.

Note that in the ideal functionality, the joint views of law enforcement and the judge contain no infor-
mation about the plaintext, because the ciphertext is chosen by the ideal world adversary without access
to the plaintext. As such, if the adversary is able to distinguish between messages with non-negligible
probability, Z must be interacting with the real world protocol.

Implications For Practical Retrospective ARLEAS. The relationship between retrospective ARLEAS
and extractable witness encryption is an indication of the difficulty of realizing retrospective ARLEAS in
practice. In very specific cases, it may be possible to phrase certain existing encryption schemes as witness
encryption schemes, for example some IBE schemes. General purpose extractable witness encryption, on
the other hand, is considered implausible [GGHW14]. The extractable witness encryption language we have
described above must reason over the ledger authentication language and the various functionalities that
parameterize an retrospective ARLEAS system. As such, the difficulty of realizing a practical retrospective
ARLEAS will hinge on the complexity of the ledger and the parameterizing functionalities. If they are
centralized and simple, it may be possible to instantiate an retrospective ARLEAS using the protocol we
provided in Section 6 and known encryption techniques. However, the security provided by a centralized
ledger is not significant, as a compromised central authority could circumvent the accountability properties
of the system. Thus, we believe that this result indicates that instantiating an retrospective ARLEAS with
meaningful security is impractical with known techniques.

8 Acknowledgments

The first author funded in part from the National Science Foundation under awards CNS-1653110 and CNS-
1801479, a Google Security & Privacy Award. The second author is supported by the National Science
Foundation under Grant #2030859 to the Computing Research Association for the CIFellows Project. The
second author would like to thank Eliana Pfeffer for her help understanding the legal context of this work.
Additionally, this material is based upon work supported by DARPA under Agreements No. HR00112020021
and Agreements No. HR001120C0084. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the United States
Government or DARPA.

References

[AAB+15] Harold Abelson, Ross Anderson, Steven M. Bellovin, Josh Benaloh, Matt Blaze, Whitfield Diffie,
John Gilmore, Matthew Green, Susan Landau, Peter G. Neumann, Ronald L. Rivest, Jeffrey I.
Schiller, Bruce Schneier, Michael A. Specter, and Daniel J. Weitzner. Keys under doormats:
mandating insecurity by requiring government access to all data and communications. Journal
of Cybersecurity, 1(1):69–79, 11 2015.

[ADMM14] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. Secure
multiparty computations on bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages
443–458. IEEE Computer Society Press, May 2014.

29

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure compu-
tation based on cut-and-choose. In Phong Q. Nguyen and Elisabeth Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 387–404. Springer, Heidelberg, May 2014.

[Appa] Apple. Facetime. Available at https://apps.apple.com/us/app/facetime/id1110145091.

[Appb] Apple. icloud security overview. Available at https://support.apple.com/en-us/HT202303.

[Appc] Apple. imessage. Available at https://support.apple.com/explore/messages.

[Bar19] William Barr. Attorney General William P. Barr Delivers Keynote Address at the In-
ternational Conference on Cyber Security. Available at https://www.justice.gov/opa/

speech/attorney-general-william-p-barr-delivers-keynote-address-international-

conference-cyber, July 2019.

[BBB+18] Steven M. Bellovin, Matt Blaze, Dan Boneh, Susan Landau, and Ronald R. Rivest. Analysis of
the CLEAR protocol per the National Academies’ framework. Technical Report CUCS-003-18,
Columbia University, May 2018.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of
LNCS, pages 757–788. Springer, Heidelberg, August 2018.

[BBS+12] Adam M. Bates, Kevin R. B. Butler, Micah Sherr, Clay Shields, Patrick Traynor, and Dan S.
Wallach. Accountable wiretapping -or- I know they can hear you now. In NDSS 2012. The
Internet Society, February 2012.

[BCP03] Emmanuel Bresson, Dario Catalano, and David Pointcheval. A simple public-key cryptosystem
with a double trapdoor decryption mechanism and its applications. In Chi-Sung Laih, editor,
ASIACRYPT 2003, volume 2894 of LNCS, pages 37–54. Springer, Heidelberg, November / De-
cember 2003.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In Yehuda Lindell,
editor, TCC 2014, volume 8349 of LNCS, pages 52–73. Springer, Heidelberg, February 2014.

[BCS05] Michael Backes, Jan Camenisch, and Dieter Sommer. Anonymous yet accountable access control.
In Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society, WPES ’05,
pages 40–46, New York, NY, USA, 2005. Association for Computing Machinery.

[BGK+18] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.
Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability. In David
Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages
913–930. ACM Press, October 2018.

[BHY09] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility results for en-
cryption and commitment secure under selective opening. In Antoine Joux, editor, EURO-
CRYPT 2009, volume 5479 of LNCS, pages 1–35. Springer, Heidelberg, April 2009.

[BK14] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages
421–439. Springer, Heidelberg, August 2014.

[BKPW12] Mihir Bellare, Eike Kiltz, Chris Peikert, and Brent Waters. Identity-based (lossy) trapdoor
functions and applications. In David Pointcheval and Thomas Johansson, editors, EURO-
CRYPT 2012, volume 7237 of LNCS, pages 228–245. Springer, Heidelberg, April 2012.

30

[BL06] Cassell Bryan-Low. Vodafone, Ericsson Get Hung Up In Greece’s Phone-Tap Scandal. The Wall
Street Journal, June 2006.

[Bla96] Matt Blaze. Oblivious key escrow. In Ross Anderson, editor, Information Hiding, pages 335–343,
Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

[BMTZ17] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a trans-
action ledger: A composable treatment. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 324–356. Springer, Heidelberg, August
2017.

[BR99] Mihir Bellare and Ronald L. Rivest. Translucent cryptography - an alternative to key escrow,
and its implementation via fractional oblivious transfer. Journal of Cryptology, 12(2):117–139,
March 1999.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[CDG+18] Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gregory Neven.
The wonderful world of global random oracles. In Jesper Buus Nielsen and Vincent Rijmen, ed-
itors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 280–312. Springer, Heidelberg,
April / May 2018.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer, Heidelberg, August 2001.

[CGJ+17] Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel Kaptchuk, and Ian Miers. Fairness
in an unfair world: Fair multiparty computation from public bulletin boards. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages
719–728. ACM Press, October / November 2017.

[CGJ19] Arka Rai Choudhuri, Vipul Goyal, and Abhishek Jain. Founding secure computation on
blockchains. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, vol-
ume 11477 of LNCS, pages 351–380. Springer, Heidelberg, May 2019.

[CKN03] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-ciphertext security. In
Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 565–582. Springer, Heidelberg,
August 2003.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-
party and multi-party secure computation. In 34th ACM STOC, pages 494–503. ACM Press,
May 2002.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen ci-
phertext secure public-key encryption. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume
2332 of LNCS, pages 45–64. Springer, Heidelberg, April / May 2002.

[DB96] Dorothy E Denning and Dennis K Branstad. A taxonomy for key escrow encryption systems.
Communications of the ACM, 39(3):34–40, 1996.

[DDO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit Sahai.
Robust non-interactive zero knowledge. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of
LNCS, pages 566–598. Springer, Heidelberg, August 2001.

[Den94] Dorothy E. Denning. The US key escrow encryption technology. Computer Communications,
17(7):453–457, 1994.

31

[DGKR18] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In Jesper Buus Nielsen and
Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 66–98.
Springer, Heidelberg, April / May 2018.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensi-
tivity in private data analysis. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876
of LNCS, pages 265–284. Springer, Heidelberg, March 2006.

[DNO09] Ivan Damg̊ard, Jesper Buus Nielsen, and Claudio Orlandi. Essentially optimal universally com-
posable oblivious transfer. In Pil Joong Lee and Jung Hee Cheon, editors, ICISC 08, volume
5461 of LNCS, pages 318–335. Springer, Heidelberg, December 2009.

[Dwo08] Cynthia Dwork. Differential privacy: A survey of results. In International conference on theory
and applications of models of computation, pages 1–19. Springer, 2008.

[Enc] EncroChat. Encrochat network. http://encrochat.network/.

[Enc19] Encryption Working Group. Moving the Encryption Policy Conversation Forward. Technical
report, Carnegie Endowment for International Peace, 2019.

[FB14] Lorenzo Franceschi-Bicchierai. FBI Director: Encryption Will Lead to a ’Very Dark Place’.
Mashable, October 2014.

[Fed] Federal Bureau of Investigation. Going Dark. Available at https://www.fbi.gov/services/

operational-technology/going-dark.

[FPS+18] Jonathan Frankle, Sunoo Park, Daniel Shaar, Shafi Goldwasser, and Daniel J. Weitzner. Prac-
tical accountability of secret processes. In William Enck and Adrienne Porter Felt, editors,
USENIX Security 2018, pages 657–674. USENIX Association, August 2018.

[FW18] Joan Feigenbaum and Daniel J Weitzner. On the incommensurability of laws and technical
mechanisms: Or, what cryptography can’t do. In Cambridge International Workshop on Security
Protocols, pages 266–279. Springer, 2018.

[GG17] Rishab Goyal and Vipul Goyal. Overcoming cryptographic impossibility results using
blockchains. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of
LNCS, pages 529–561. Springer, Heidelberg, November 2017.

[GGHW14] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implausibility of differing-
inputs obfuscation and extractable witness encryption with auxiliary input. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 518–535.
Springer, Heidelberg, August 2014.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof systems.
SIAM J. Comput., 25(1):169–192, February 1996.

[GKZ19] Peter Gazi, Aggelos Kiayias, and Dionysis Zindros. Proof-of-stake sidechains. In 2019 IEEE
Symposium on Security and Privacy, pages 139–156. IEEE Computer Society Press, May 2019.

[GLW14] Craig Gentry, Allison B. Lewko, and Brent Waters. Witness encryption from instance indepen-
dent assumptions. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I,
volume 8616 of LNCS, pages 426–443. Springer, Heidelberg, August 2014.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems.
Journal of Cryptology, 7(1):1–32, December 1994.

32

[Goo] Google. Encrypt your data - pixel phone help. Available at https://support.google.com/

pixelphone/answer/2844831?hl=en.

[Gor13] Siobhan Gorman. NSA Officers Spy on Love Interests. The Wall Street Journal, August 2013.

[GOVW12] Sanjam Garg, Rafail Ostrovsky, Ivan Visconti, and Akshay Wadia. Resettable statistical zero
knowledge. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 494–511.
Springer, Heidelberg, March 2012.

[GP17] Shafi Goldwasser and Sunoo Park. Public accountability vs. secret laws: Can they coexist?
a cryptographic proposal. In Proceedings of the 2017 on Workshop on Privacy in the Elec-
tronic Society, WPES ’17, pages 99–110, New York, NY, USA, 2017. Association for Computing
Machinery.

[Gra20] Sen. Lindsey Graham. Eliminating abusive and rampant neglect of interactive technologies act of
2020. https://www.congress.gov/bill/116th-congress/senate-bill/3398/text, March
2020.

[HK07] Omer Horvitz and Jonathan Katz. Universally-composable two-party computation in two
rounds. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 111–129.
Springer, Heidelberg, August 2007.

[HLOV11] Brett Hemenway, Benôıt Libert, Rafail Ostrovsky, and Damien Vergnaud. Lossy encryption:
Constructions from general assumptions and efficient selective opening chosen ciphertext secu-
rity. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS,
pages 70–88. Springer, Heidelberg, December 2011.

[Hof12] Dennis Hofheinz. All-but-many lossy trapdoor functions. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 209–227. Springer, Hei-
delberg, April 2012.

[HPRV19] Thibaut Horel, Sunoo Park, Silas Richelson, and Vinod Vaikuntanathan. How to subvert back-
doored encryption: Security against adversaries that decrypt all ciphertexts. In Avrim Blum,
editor, ITCS 2019, volume 124, pages 42:1–42:20. LIPIcs, January 2019.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai. Effi-
cient non-interactive secure computation. In Kenneth G. Paterson, editor, EUROCRYPT 2011,
volume 6632 of LNCS, pages 406–425. Springer, Heidelberg, May 2011.

[Kam14] Seny Kamara. Restructuring the NSA metadata program. In Rainer Böhme, Michael Brenner,
Tyler Moore, and Matthew Smith, editors, FC 2014 Workshops, volume 8438 of LNCS, pages
235–247. Springer, Heidelberg, March 2014.

[KFB14] J Kroll, E Felten, and Dan Boneh. Secure protocols for accountable warrant execution. 2014.

[KGM19] Gabriel Kaptchuk, Matthew Green, and Ian Miers. Giving state to the stateless: Augmenting
trustworthy computation with ledgers. In NDSS 2019. The Internet Society, February 2019.

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 357–388. Springer, Heidelberg,
August 2017.

[KZW+] Joshua A Kroll, Joe Zimmerman, David J Wu, Valeria Nikolaenko, Edward W Felten, and Dan
Boneh. Accountable cryptographic access control.

33

[LG16] Eric Lichtblau and Joseph Goldstein. Apple Faces U.S. Demand to Unlock 9 More iPhones. The
New York Times, February 2016.

[LJKW18] Jia Liu, Tibor Jager, Saqib A. Kakvi, and Bogdan Warinschi. How to build time-lock encryption.
Designs, Codes and Cryptography, 86(11):2549–2586, Nov 2018.

[LR18] Ian Levy and Crispin Robinson. Principles for a more informed exceptional access debate.
Lawfare, Thursday 2018.

[LRC14] J. Liu, M. D. Ryan, and L. Chen. Balancing societal security and individual privacy: Accountable
escrow system. In 2014 IEEE 27th Computer Security Foundations Symposium, pages 427–440,
July 2014.

[Nak08] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. 2008.

[Nak13] Ellen Nakashima. Chinese hackers who hacked Google gained access to sensitive data, U.S.
officials say. The Washington Post, May 2013.

[Nat16] National Academies of Sciences, Engineering, and Medicine. Exploring Encryption and Potential
Mechanisms for Authorized Government Access to Plaintext. The National Academies Press,
2016.

[Nat18] National Academies of Sciences, Engineering, and Medicine. Decrypting the Encryption Debate:
A Framework for Decision Makers. The National Academies Press, Washington, DC, 2018.

[Nig11] Johnathan Nightingale. Fraudulent *.google.com Certificate, August 2011.

[NO09] Jesper Buus Nielsen and Claudio Orlandi. LEGO for two-party secure computation. In Omer
Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 368–386. Springer, Heidelberg, March
2009.

[Ore87] Yair Oren. On the cunning power of cheating verifiers: Some observations about zero knowledge
proofs (extended abstract). In 28th FOCS, pages 462–471. IEEE Computer Society Press,
October 1987.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret shar-
ing. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer,
Heidelberg, August 1992.

[Pop16] Cody M. Poplin. Burr-feinstein encryption legislation officially released. Lawfare, April 2016.

[PVMB19] Gaurav Panwar, Roopa Vishwanathan, Satyajayant Misra, and Austin Bos. SAMPL: Scalable
auditability of monitoring processes using public ledgers. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2249–2266. ACM Press,
November 2019.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In Richard E.
Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 187–196. ACM Press, May 2008.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext se-
curity. In 40th FOCS, pages 543–553. IEEE Computer Society Press, October 1999.

[Sav18] Stefan Savage. Lawful device access without mass surveillance risk: A technical design discus-
sion. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’18, pages 1761–1774, New York, NY, USA, 2018. Association for Computing
Machinery.

34

[Sca19] Alessandra Scafuro. Break-glass encryption. In Dongdai Lin and Kazue Sako, editors, PKC 2019,
Part II, volume 11443 of LNCS, pages 34–62. Springer, Heidelberg, April 2019.

[SFF14] Aaron Segal, Bryan Ford, and Joan Feigenbaum. Catching bandits and only bandits: Privacy-
preserving intersection warrants for lawful surveillance. In 4th USENIX Workshop on Free
and Open Communications on the Internet (FOCI 14), San Diego, CA, August 2014. USENIX
Association.

[Sig] Signal. Signal secure messaging system.

[Sin20] Manish Sing. Over two dozen encryption experts call on India to rethink changes to its inter-
mediary liability rules. TechCrunch, February 2020.

[SLG20] Sen. Marsha Blackburn Sen. Lindsey Graham, Sen. Tom Cotton. Lawful access to 5 encrypted
data act. https://www.judiciary.senate.gov/press/rep/releases/graham-cotton-

blackburn-introduce-balanced-solution-to-bolster-national-security-end-use-of-

warrant-proof-encryption-that-shields-criminal-activity, June 2020.

[SSW19] Sacha Servan-Schreiber and Archer Wheeler. Judge, jury & encryptioner: Exceptional access
with a fixed social cost, 2019.

[Tai16] Matt Tait. An approach to James Comey’s technical challenge. Lawfare, April 2016.

[Tar18] Jamie Tarabay. Australian Government Passes Contentious Encryption Law. The New York
Times, December 2018.

[Wha17] WhatsApp. WhatsApp Encryption Overview. Available at https://scontent.whatsapp.net/
v/t61/68135620_760356657751682_6212997528851833559_n.pdf/WhatsApp-Security-

Whitepaper.pdf, December 2017.

[WMT15] Nicholas Watt, Rowena Mason, and Ian Traynor. David Cameron pledges anti-terror law for
internet after Paris attacks. The Guardian, January 2015.

[WV18] Charles Wright and Mayank Varia. Crypto crumple zones: Enabling limited access without
mass surveillance. In 2018 IEEE European Symposium on Security and Privacy (EuroS P),
pages 288–306, April 2018.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

A Proof of Theorem 1

Proof 2 We prove that the above construction securely realizes Fv,t,p,θ,proARLEAS by showing that there does not
exist a distinguisher Z that can distinguish between an interaction with the ideal functionality and a simulator
S and the real protocol πv,t,p,θPRO . We define the interaction with the real protocol as follows: The experiment is
initialized with N users P1, . . . PN , law enforcement PLE and a judge PJ . The adversary A chooses a subset of
these users to corrupt. Then, users run πv,t,p,θPRO .Setup, with A controlling the actions of the corrupted parties.

Honest users then, according to their arbitrary strategy, run πv,t,p,θPRO .SendMessage to exchange messages with

other users. Law enforcement interacts with the judge to get warrants via πv,t,p,θPRO .RequestWarrant and uses

πv,t,p,θPRO .ActivateWarrant to start surveilling a user. Honest parties follow an arbitrary strategy, but follow the
protocol and corrupted parties are controlled by the adversary.

We start our proof by first considering the case where a single user Pi is corrupted.

Pi is corrupted.
We begin by showing that πv,t,p,θPRO UC-realizes the Fv,t,p,θ,proARLEAS when a user Pi is compromised. We construct

the simulator S as follows:

35

1. S generates the common reference string for the NIZK scheme directly, and stores the trapdoor τ . S
runs (pksign, sksign)← ΠSign.KeyGen(1λ) as the judge would in the real protocol, and outputs pksign to
the adversary A. S initializes an instance of the ideal functionality in prospective mode. Finally, S
runs πv,t,p,θPRO .ActivateWarrant with an empty active warrants set.

2. S computes (pkj , skj)← ΠEnc.KeyGen(1λ) and samples a unique tagj ← Zp for all honest Pj and sends
(pkj , tagj) to A. Additionally, S waits to receive pki, tag i from Pi.

3. When S receives (c1, c2, π,meta) from A intended for uncorrupted Pj, S begins by verifying π and
checking that meta is correct. If these checks pass, set b ← 1, and b ← 0 otherwise. S computes
m← ΠEnc.Dec(skj , c1). S then sends (SendMessage, Pj ,m, b) to the ideal functionality.

4. Upon receiving (Sent,meta, c,m) from the ideal functionality, S computes (c1, c2, π,meta) using πv,t,p,θPRO .
SendMessage and forwards it to Pi.

5. Upon receiving (NotifyWarrant, t(w)) from Fv,t,p,θ,proARLEAS , S aggregates t(w) from all (NotifyWarrant, ·) mes-
sages seen so far into info. S then randomly chooses a set of tags T such that |T | = |info| and computes
(mpk,msk) ← ΠLTE.KeyGen(1λ, T). S then simulates the proof π and sends (Post, (mpk, π, info)) to
L.

We proceed with a hybrid argument. Let H0 denote the distribution of the view of A in the real world
interaction.
H1 : Let H1 be the same as H0, but instead of having the common reference string generated by the

FΠNIZK.ZKSetup
CRS , the common reference string is generated using (crs, τ)← ΠNIZK.ZKSetup(1λ). Note that the

common reference string is selected from exactly the same distribution, so the difference in the distribution
of the view of A between H0 and H1 is 0.
H2 : Let H2 be the same as H1, but when an honest PLE sends (Post, (mpk, π, info))to L, the proof π is

instead simulated with τ . Because of the perfect zero-knowledge property of ΠNIZK, the adversary’s view in
H2 and H1 is statistically close.
H3 : Let H3 be the same as H2, but when an honest PLE sends (Post, (mpk, π, info))to L, let mpk be

generated with an random set of tags with the correct size. Because of the indistinguishability of tag sets
property of ΠLTE, the difference in the distribution in the view of the A is negligible.

Because the view of A in H3 is distributed the same as in the ideal world with simulator S, the proof is
done. Notice that this proof extends directly to multiple corrupt users, as the views of the users are inde-
pendent, except when they send messages to each other. However, such messages do not require simulation.
Thus it suffices to simulate each one independently.

PLE is corrupted. We now extend the previous proof to include corrupted PLE. We extend S to simulate
the view of PLE. Note that step 5 described in S above is no longer applicable for corrupted users, as the
notification mechanism from the actual protocol will look correct.

1. S generates the common reference string for the NIZK scheme directly, and stores the trapdoor τ .
Then, S sets ValidParameters to true. S then runs ΠSign.KeyGen(1λ) → (pksign, sksign) as the judge
would in the read protocol, and outputs pksign to the adversary A. S initializes an instance of the ideal

functionality in prospective mode. S computes (pkj , skj) ← ΠEnc.KeyGen(1λ) and samples a unique
tagj ← Zp for all honest Pj and sends (pkj , tagj) to A. When S detects (mpk, π, info) posted on L, it
verifies the proof π, and sets ValidParameters to false if it does not verify or |info| 6= 0. S then initializes
an empty warrant table W .

2. We split the case of receiving (Sent,meta, c) from Fv,t,p,θ,proARLEAS intended for PLE into three cases. All
begin by S extracting the recipient Pj from meta:

(a) If ValidParameters is false, S silently drops the message.

36

(b) If ValidParameters is true and Pj is not corrupted, S and chooses a message m0 and computes the

ciphertext (c1, c2, π,meta) by encrypting m0 using πv,t,p,θPRO .SendMessage(pkj , tagj ,m0).

(c) If ValidParameters is true and Pj is corrupted, S will also receive (Sent,meta, c,m) from the ideal

functionality, intended for Pj. S then encrypts m using πv,t,p,θPRO .SendMessage(pkj , tagj ,m)

Finally, S sends the resulting ciphertext to A.

3. Upon receiving (Sent,meta, c, 0) from Fv,t,p,θ,proARLEAS intended for PLE, S samples a random message and

creates a ciphertext with πv,t,p,θPRO .SendMessage. Then, it generates a false proof instead of the real proof.

4. Upon receiving (Sent,meta, c,m) from Fv,t,p,θ,proARLEAS due to an active warrant, if ValidParameters is true,

S calls the send message algorithm of the real protocol on πv,t,p,θPRO .SendMessage(pkj , tagj ,m) and sends
the output to A.

5. Upon receiving (RequestWarrant, tagj) from the adversary, intended for PJ , S generates a warrant w for

the ideal functionality that only targets Pj and sends (RequestWarrant, w) to Fv,t,p,θ,proARLEAS . If Fv,t,p,θ,proARLEAS

answers with (Approve), S uses the sksign for PJ to form and sign (tagj , σ) as in the real protocol and

adds (w,False) to W . If Fv,t,p,θ,proARLEAS responds with (Disapprove), S send ⊥ to the adversary.

6. S monitors L. Upon seeing a new post on the ledger, S performs the following steps

(a) Retrieve the post by sending (GetCounter) to L and receive the current counter `. Then query L
on (GetVal, `) to receive the latest posting (`, (mpk, π, info), πpublish)

(b) Verify ΠNIZK.ZKVerify(mpk, info, π) = 1. If the proof does not verify, the S sets ValidParameters
to false and halts.

(c) Set ValidParameters to true and run Extract to recover (W, T ,msk , r) from π. If extraction fails,
the simulator halts with an error.

(d) If there is an entry (w,False) in W for w ∈ W S sends (ActivateWarrant, w) to the ideal function-
ality and sets the entry to be (w,True).

We proceed with a hybrid argument. Let H0 denote the distribution of the view of A in the real world
interaction.
H1 : Let H1 be the same as H0, but instead of having the common reference string generated by the

FΠNIZK.ZKSetup
CRS , the common reference string is generated using (crs, τ)← ΠNIZK.ZKSetup(1λ). Note that the

common reference string is selected from exactly the same distribution, so the the distribution in the view of
A between H0 and H1 is statistically close.
H2 : Let H2 be the same as H1, except the proof of ciphertexts consistency in a ciphertext (c1, c2, π,

meta) bound for an honest user for which there is no active warrant is simulated. Due to the zero-knowledge
property of ΠNIZK, the difference in the view of the adversary in H2 and H1 is negligible.
H3 : Let H3 be the same as H2, except when S receives a ciphertext (c1, c2, π,meta)bound for an honest

user for which there is no active warrant, S samples a message m0 that would result in the same metadata
and sets c1 ← ΠEnc.Enc(pkj ,m0; r1). By the CCA security of ΠEnc the advantage of A in distinguishing
between H3 and H2 is negligible.
H4 : Let H4 be the same as H3, except the second ciphertext element c2 in a ciphertext (c1, c2, π,meta)

bound for an honest user for which there is no active warrant is computed as ΠLTE.Enc(mpk, tagj ,m0; r2).
By the lossy property of ΠLTE, H4 and H3 are statistically indistinguishable.
H5 : Let H5 be the same as H4, except the proof of ciphertexts consistency in a ciphertext (c1, c2, π,meta)

bound for an honest user for which there is no active warrant is computed honestly with respect to the plaintext
message m0. Again, by the zero-knowledge property of ΠNIZK, the difference in the view of the adversary in
H5 and H4 is negligible.

37

H6 : Let H6 be the same as H5, except when A detects (mpk, π, info) being posted on the ledger, S attempts
to run the extractor ΠNIZK.Extract and abort the experiment if it fails. However, because the extractor only
fails with negligible probability, the difference in the view of the adversary between H6 and H5 is negligible.
H6 has the same distribution as S, concluding the proof. In the real world, PLE would be denied warrants

at the same rate as in the ideal world, as an honest PJ handles warrant requests in the same way. One note
is that law enforcement can “deactivate” warrants in way not possible in the ideal functionality. However,
when warrants are deactivated, honestly encrypting the message still hides the plaintext from the adversary.

PJ and PLE are corrupted. We now focus on the case when PJ and PLE are both corrupted. Note that
step 4 of the above simulator description is no longer relevant, as the warrant request is handled internally
by A. Our simulator requires on minor changes to steps 1 and 5, which we show below.

1. Do the setup as before, but waiting to receive pksign from A
...

5. S monitors L. Upon seeing a new post on the ledger, S performs the following steps

(a) Retrieve the post by sending (GetCounter) to L and receive the current counter `. Then query L
on (GetVal, `) to receive the latest posting (`, (mpk, π, info), πpublish)

(b) Verify ΠNIZK.ZKVerify(mpk, info, π) = 1. If the proof does not verify, the S sets ValidParameters
to false and halts.

(c) Set ValidParameters to true and runs (W, T ,msk , r)← Extract(CRSZK , τ, x, π). If extraction fails,
the simulator halts with an error.

(d) for each warrant w ∈ W for which there does not exist an entry (w,True) in W , the S executes
the following steps

i. S generates a warrant w for the ideal functionality that only targets Pj and sends

(RequestWarrant, w) to Fv,t,p,θ,proARLEAS .

ii. When Fv,t,p,θ,proARLEAS sends (ApproveWarrant, w) to the S intended to PJ , S responds (Approve)
on behalf of PJ

iii. S sends (ActivateWarrant, w) to the ideal functionality

iv. S adds (w,True) to W

In fact, the hybrid argument above holds directly in this case as well. First notice that there are no
additional messages that require simulation. By giving the adversary control of PJ , we give it the ability to
create valid warrants independently. However, there is no change in behavior expected until those warrants
are activated. As such, those warrants can be requested from the ideal functionality right as they are being
activated.

B Proof of Theorem 2

Proof 3 As above, we now prove that our construction securely realizes Fv,t,p,θ,proARLEAS by showing that there
does not exist a distinguisher Z that can distinguish between an interaction with the ideal functionality and
a simulator S and the real protocol πv,t,p,θPRO . We define the interaction with the real protocol as above.

We start our proof by first considering the case where a single user Pi is corrupted.

Pi is corrupted.
We begin by showing that πv,t,p,θPRO UC-realizes the Fv,t,p,θ,proARLEAS when a user Pi is compromised. We construct

the simulator S as follows:

38

1. S generates the common reference string for the NIZK scheme and (CRSNISC, τNISC)← ΠNISC.GenCRS(1λ)
directly, and stores the trapdoors (τ, τNISC). S runs (pksign, sksign) ← ΠSign.KeyGen(1λ)as the judge
would in the real protocol, and outputs pksign to the adversary A. S initializes an instance of the

ideal functionality in prospective mode. Finally, S runs πv,t,p,θPRO .ActivateWarrant with an empty active
warrants set.

2. S computes (pkj , skj)← ΠEnc.KeyGen(1λ) for all honest Pj and sends pkj to A. Additionally, S waits
to receive pki from Pi.

3. When S receives (c1, c2, π,meta) from A intended for uncorrupted Pj, S begins by verifying π and
checking that meta is correct. If these checks pass, set b ← 1, and b ← 0 otherwise. S computes
m← ΠEnc.Dec(skj , c1). S then sends (SendMessage, Pj ,m, b) to the ideal functionality.

4. Upon receiving (Sent,meta, c,m) from the ideal functionality, S computes (c1, c2, π,meta) using πv,t,p,θPRO .
SendMessage and forwards it to Pi.

5. Upon receiving (NotifyWarrant, t(w)) from Fv,t,p,θ,proARLEAS , S aggregates t(w) from all (NotifyWarrant, ·) mes-
sages seen so far into info. S then chooses random inputs for the first round messages of the NISC
scheme to get (niscpublic1 , ·) and simulates the proof π and sends (Post, (niscpublic1 , π, info)) to L.

We proceed with a hybrid argument. Let H0 denote the distribution of the view of A in the real world
interaction.
H1 : Let H1 be the same as H0, but instead of having the common reference string generated by the

FΠNIZK.ZKSetup
CRS , the common reference string is generated using (CRSZK , τ) ← ΠNIZK.ZKSetup(1λ) and

(CRSNISC, τNISC) ← ΠNISC.GenCRS(1λ). Note that the common reference strings are selected from exactly
the same distribution, so the difference in the distribution of the view of A between H0 and H1 is 0.
H2 : Let H2 be the same as H1, but when an honest PLE sends (Post, (niscpublic1 , π, info))to L, the proof π

is instead simulated with τ . Because of the perfect zero-knowledge property of ΠNIZK, the adversary’s view
in H2 and H1 is statistically close.
H3 : Let H3 be the same as H2, but when an honest PLE sends (Post, (niscpublic1 , π, info))to L, let niscpublic1

be generated on random input of the right length. By the security of ΠNISC, the difference in the distribution
in the view of the A is negligible.

Because the view of A in H3 is distributed the same as in the ideal world with simulator S, the proof is
done. Notice that this proof extends directly to multiple corrupt users, as the views of the users are inde-
pendent, except when they send messages to each other. However, such messages do not require simulation.
Thus it suffices to simulate each one independently.

PLE is corrupted. We now extend the previous proof to include corrupted PLE. We extend S to simulate
the view of PLE. Note that step 5 described in S above is no longer applicable for corrupted users, as the
notification mechanism from the actual protocol will look correct.

1. S generates the common reference string for the NIZK scheme and (CRSNISC, τNISC)← ΠNISC.GenCRS(1λ)
directly, and stores the trapdoors (τ, τNISC). S runs (pksign, sksign) ← ΠSign.KeyGen(1λ)as the judge
would in the real protocol, and outputs pksign to the adversary A. S initializes an instance of the

ideal functionality in prospective mode. Finally, S runs πv,t,p,θPRO .ActivateWarrant with an empty active
warrants set. S computes (pkj , skj) ← ΠEnc.KeyGen(1λ) for all honest Pj and sends pkj to A. When

S detects (niscpublic1 , π, info) posted on L, it verifies the proof π, and sets ValidParameters to false if it
does not verify or |info| 6= 0. S then initializes an empty warrant table W .

2. We split the case of receiving (Sent,meta, c) from Fv,t,p,θ,proARLEAS intended for PLE into three cases. All
begin by S extracting the recipient Pj from meta:

(a) If ValidParameters is false, S silently drops the message.

39

(b) If ValidParameters is true and Pj is not corrupted, S and chooses a message m0 and computes the

ciphertext (c1, c2, π,meta) by encrypting m0 using πv,t,p,θPRO .SendMessage(pkj ,m0).

(c) If ValidParameters is true and Pj is corrupted, S will also receive (Sent,meta, c,m) from the ideal

functionality, intended for Pj. S then encrypts m using πv,t,p,θPRO .SendMessage(pkj ,m)

Finally, S sends the resulting ciphertext to A.

3. Upon receiving (Sent,meta, c, 0) from Fv,t,p,θ,proARLEAS intended for PLE, S samples a random message and

creates a ciphertext with πv,t,p,θPRO .SendMessage. Then, it generates a false proof instead of the real proof.

4. Upon receiving (Sent,meta, c,m) from Fv,t,p,θ,proARLEAS due to an active warrant, if ValidParameters is true,

S calls the send message algorithm of the real protocol on πv,t,p,θPRO .SendMessage(pkj ,m) and sends the
output to A.

5. Upon receiving (RequestWarrant, ŵ) from the adversary, intended for PJ , S sends (RequestWarrant, ŵ)

to Fv,t,p,θ,proARLEAS . If Fv,t,p,θ,proARLEAS answers with (Approve), S uses the sksign for PJ to form and sign w = (ŵ, σ)

as in the real protocol and adds (w,False) to W . If Fv,t,p,θ,proARLEAS responds with (Disapprove), S send ⊥ to
the adversary.

6. S monitors L. Upon seeing a new post on the ledger, S performs the following steps

(a) Retrieve the post by sending (GetCounter) to L and receive the current counter `. Then query L
on (GetVal, `) to receive the latest posting (`, (niscpublic1 , π, info), πpublish)

(b) Verify ΠNIZK.ZKVerify(niscpublic1 , info, π) = 1. If the proof does not verify, the S sets ValidParameters
to false and halts.

(c) Set ValidParameters to true and run Extract to recover (W, niscprivate1 , r) from π. If extraction
fails, the simulator halts with an error.

(d) If there is an entry (w,False) in W for w ∈ W S sends (ActivateWarrant, w) to the ideal function-
ality and sets the entry to be (w,True).

We proceed with a hybrid argument. Let H0 denote the distribution of the view of A in the real world
interaction.
H1 :Let H1 be the same as H0, but instead of having the common reference string generated by the

FΠNIZK.ZKSetup
CRS , the common reference string is generated using (CRSZK , τ) ← ΠNIZK.ZKSetup(1λ) and

(CRSNISC, τNISC) ← ΠNISC.GenCRS(1λ). Note that the common reference strings are selected from exactly
the same distribution, so the the distribution in the view of A between H0 and H1 is statistically close.
H2 : Let H2 be the same as H1, except when S receives a ciphertext (c1, c2, π,meta)such that no signed

warrant w has been issued such that θ(w,meta) = 1, the the ciphertexts consistency proof π is simulated.
Due to the zero-knowledge property of ΠNIZK, the difference in the view of the adversary in H2 and H1 is
negligible.
H3 : Let H3 be the same as H2, except when S receives a ciphertext (c1, c2, π,meta)such that no signed

warrant w has been issued such that θ(w,meta) = 1, S samples a message m0 that would result in the
same metadata and sets c1 ← (ΠEnc.Enc(pkj ,m0; r1). By the CCA security of ΠEnc the advantage of A in
distinguishing between H3 and H2 is negligible.
H4 : Let H4 be the same as H3, except when S receives a ciphertext (c1, c2, π,meta)such that no signed

warrant w has been issued such that θ(w,meta) = 1, S computes c2 as ΠNISC.NISC2(CRSNISC, C, (m0,meta),

niscpublic1 ; r2). By the security of ΠNISC.NISC2, A can only learn the correct output of C. Because there is
no issued warrant θ(w,meta) = 1, this means the output of C is independent of m0. Therefore, H4 and H3

are computationally indistinguishable.
H5 : Let H5 be the same as H4,except when S receives a ciphertext (c1, c2, π,meta)such that no signed

warrant w has been issued such that θ(w,meta) = 1, π is computed honestly with respect to the plaintext

40

message m0. Again, by the zero-knowledge property of ΠNIZK, the difference in the view of the adversary in
H5 and H4 is negligible.
H6 : Let H6 be the same as H5, except when A detects (niscpublic1 , π, info) being posted on the ledger,

S attempts to run the extractor ΠNIZK.Extract and abort the experiment if it fails. However, because the
extractor only fails with negligible probability, the difference in the view of the adversary between H6 and H5

is negligible.
H6 has the same distribution as S, concluding the proof. In the real world, PLE would be denied warrants

at the same rate as in the ideal world, as an honest PJ handles warrant requests in the same way. One note
is that law enforcement can “deactivate” warrants in way not possible in the ideal functionality. However,
when warrants are deactivated, honestly encrypting the message still hides the plaintext from the adversary.

PJ and PLE are corrupted. We now focus on the case when PJ and PLE are both corrupted. Note that
step 4 of the above simulator description is no longer relevant, as the warrant request is handled internally
by A. Our simulator requires on minor changes to steps 1 and 5, which we show below.

1. Do the setup as before, but waiting to receive pksign from A
...

5. S monitors L. Upon seeing a new post on the ledger, S performs the following steps

(a) Retrieve the post by sending (GetCounter) to L and receive the current counter `. Then query L
on (GetVal, `) to receive the latest posting (`, (niscpublic1 , π, info), πpublish)

(b) Verify ΠNIZK.ZKVerify(niscpublic1 , info, π) = 1. If the proof does not verify, the S sets ValidParameters
to false and halts.

(c) Set ValidParameters to true and run Extract to recover (W, niscprivate1 , r) from π. If extraction
fails, the simulator halts with an error.

(d) for each warrant w ∈ W for which there does not exist an entry (w,True) in W , the S executes
the following steps

i. S sends (RequestWarrant, w) to Fv,t,p,θ,proARLEAS .

ii. When Fv,t,p,θ,proARLEAS sends (ApproveWarrant, w) to the S intended to PJ , S responds (Approve)
on behalf of PJ

iii. S sends (ActivateWarrant, w) to the ideal functionality

iv. S adds (w,True) to W

In fact, the hybrid argument above holds directly in this case as well. First notice that there are no
additional messages that require simulation. By giving the adversary control of PJ , we give it the ability to
create valid warrants independently. However, there is no change in behavior expected until those warrants
are activated. As such, those warrants can be requested from the ideal functionality right as they are being
activated.

C Proof of Theorem 3

As in the prospective case in Section 5, we show that πv,t,p,θRET UC-realizes Fv,t,p,θ,retARLEAS in a series of steps. First,
we prove this for a single corrupt user, then extend that argument to multiple users. We then expand our
analysis to consider corrupted law enforcement and corrupted judges.

Pi is corrupted. We begin with the simple case of a single corrupted user Pi controlled by an adversary
A. We construct a simulator S to mediate A’s interaction with the ideal functionality as follows.

1. S begins by generating (pksign, sksign) as PJ would do. S then performs key generation for each honest
party Pj . S then outputs all the public information to A. Finally, S receives pki from A.

41

2. When receiving a (CRS) request from A, S generates (CRSZK , τ) ← ΠNIZK.ZKSetup(1λ) and returns
CRSZK to A and keeps τ .

3. Whenever S receives (send, c) from Pi intended for Pj , S parses c = (c1, c2, c3, π,meta) and verifies π. If
it does not verify, set b← 1, and set b← 0 otherwise. Next, (r, r1, r2)← ΠNIZK.Extract(CRSZK , τ, x, π),
queries the random oracle (HashConfirm, r3) ← GpRO(HashQuery, (“RP”‖r)). It then computes m ←
c3⊕ r3 and verifies the structure of c1, c2 by re-computing the ciphertexts c1, c2 as in the real protocol.
If some passes do not check, set b ← 0. Finally, it sends (SendMessage, sid, Pj ,m, b) to the ideal
functionality.

4. When S receives (Sent, sid,meta, c,m) from the ideal functionality destined for Pi, it identifies the
public key for Pi and computes the ciphertext c = (c1, c2, c3, π,meta) as in the real protocol. It sends
the resulting ciphertext to Pi.

5. When S receives (NotifyWarrant, t(w)) from the ideal functionality, it simulates the proof π, and sends
(Post, (t(w), π)) to L.

We prove that A’s interaction with the real protocol and the ideal functionality, mediated by S are
computationally indistinguishable by using the following hybrids.

Let H0 denote the distribution of the view of A in the real world interaction.
H1 : Let H1 be the same as H0, but instead of having the common reference string generated by the

FΠNIZK.ZKSetup
CRS , the common reference string is generated using (crs, τ) ← ΠNIZK.ZKSetup(1λ). Note that

the common reference string is selected from exactly the same distribution, therefore, the distribution of the
view of A between H0 and H1 is the same.
H2 : In this hybrid we will use the extractor ΠNIZK.Extract to get the randomness and create the ciphertext

as in step 3. H1 and H2 are computationally indistinguishable as Extract will only fail with negligible
probability.
H3 : At this point we will simulate the proof π when publishing on the ledger. H2 and H3 are indistin-

guishable because of the zero knowledge property of ΠNIZK.
The view of the adversary in H3 is the same as its view when talking with S in the ideal world, which

concludes the hybrid argument.
This argument extends to multiple parties as all ciphertexts can be properly simulated by either extracting

from the NIZK or actually receiving the message in case the receiver is corrupted.

Subset of users and PLE are corrupted. We now extend S from above to handle a corrupt PLE. Note
that step 5 of the above description is not longer relevant, as notifications will come directly from the ledger
for the corrupt parties.

1. S runs the same setup as above. Additionally, S initializes an empty message equivocation table T .

2. When receiving a (CRS) request from A, S generates (CRSZK , τ) ← ΠNIZK.ZKSetup(1λ) and returns
CRSZK to A and keeps τ .

3. We split the case of receiving (Sent, sid,meta) from Fv,t,p,θ,retARLEAS intended for PLE into two cases:

(a) If Pj is not corrupted, S samples r, r1, r2, r3 ← {0, 1}poly(λ) (where poly(·) is a polynomial function
that upper-bounds the longest random string necessary) and computes the ciphertext components
as follows

• c1 ← ΠEnc.Enc(pkj , r; r1)

• c2 ← ΠEWE.Enc(meta, r; r2)

• c3 ← r3

• Use ΠNIZK.ZKProve to compute

π ← NIZK

{
(r, r1, r2)

∣∣∣∣ c1 = ΠEnc.Enc(pk, r; r1) ∧
c2 = ΠEWE.Enc(meta, r; r2)

}

42

S adds an entry (r, r1, r2, r3, c1, c2, c3, π,meta) to T .

(b) If Pi or Pj is corrupted, S will also receive (Sent, sid,meta, c,m) from the ideal functionality,

intended for Pj . S then encrypts m using πv,t,p,θRET .SendMessage, programming the random oracle
honestly as needed.

S then sends the resulting ciphertext to both the ideal functionality and A.

4. Upon receiving (Sent,meta, c, 0) from Fv,t,p,θ,retARLEAS intended for PLE, S samples a random message and

creates a ciphertext with πv,t,p,θRET .SendMessage. Then, it generates a false proof instead of the real proof.

5. When S receives (RequestWarrant, ŵ) from A, intended for PJ , S sends (RequestWarrant, ŵ) to the
trusted party. If the trusted party responds with ⊥, S sends (Disapprove) to A. Otherwise, S generates
a warrant ŵ and signs it with σ = ΠSign.Sign(sksign, ŵ) and sends w = (ŵ, σ) to A.

6. When S notices new posts on L it retrieves that information by sending t ← (GetCounter) and
(t(w), π))← (GetVal, t) to L. S uses τ to extract w from π. Without loss of generality, let w be for user
Pi. S sends (ActivateWarrant, w, Pj) to the ideal functionality. Next, S checks to see if there is an entry
(r, r1, r2, r3, c1, c2, c3, π,meta) for which θ(ŵ,meta) = 1 in T and sends (AccessData, (c1, c2, c3, π), w) to
the ideal functionality for all such records. If the ideal functionality responds with ⊥, abort. Other-
wise, the ideal functionality will return a message m. S then programs the random oracle by sending
(ProgramRO, r, (r3 ⊕m)), (ProgramRO, (“WE”r‖m), r2) and (ProgramRO, (“ENC”‖r‖m), r1), and re-
sponds to the initial query.

To show that the simulation above is computationally indistinguishable from the real experiment in the view
of A, we proceed with a hybrid argument. Let H0 denote the distribution of the view of A in the real world
interaction.
H1 : Let H1 be the same as H0, but instead of having the common reference string generated by the

FΠNIZK.ZKSetup
CRS , the common reference string is generated using (crs, τ) ← ΠNIZK.ZKSetup(1λ). Note that

the common reference string is selected from exactly the same distribution, therefore, the distribution of the
view of A between H0 and H1 is the same.
H2 : In this hybrid we change the NIZK proof for L1

NIZK to be a simulation. Because of the zero knowledge
property of ΠNIZK, H2 is statistically close to H3.
H3 : Choose r1, r2, and r3 uniformly at random in {0, 1}λ to replace the randomness used to compute

c1, c2, and c3 respectively. Also, send (ProgramRO, (“ENC”‖r‖m), r1), (ProgramRO, (“WE”‖r‖m), r2), and
(ProgramRO, r, r3) to GpRO. Clearly the only way the view between H1 and H2 can differ is when GpRO was
queried on these inputs before S programs them, in which case the protocol aborts, but this only happens
with negligible probability which we prove in Lemma 1.
H4 : Change the simulated NIZK proof back to a real proof. Again, by the zero-knowledge property H3

and H4 are indistinguishable.
H5 : Now, do everything as described in step 5 to recover the message m. Next, we change the ciphertext

c3 in step 3 to be r3 and change the programming of GpRO to be (ProgramRO, r,m⊕ r3) in step 5. Note that
by security of the one-time pad H4 and H5 are indistinguishable.

Now, the view of the adversary in H5 is exactly the same as its view when talking with S in the ideal
world, which concludes the hybrid argument.

Lemma 1 For any adversary A against H4 in the security proof of πv,t,p,θRET where PLE is compromised, the
probability that A queries or programs GpRO on r, “ENC”‖r‖m, or “WE”‖r‖m without sending (Post, (t(w), π))
to L is negligible, for r←$ {0, 1}λ and m uniformly at random from the message space, both used inside H4.

Proof 4 Assume such adversary A exists, then if A has queried or programmed GpRO on one of the inputs
it must have had r. Either A has selected r by accident which can only happen with probability 2−λ, or it
has extracted it from the ciphertext, which we will now show with a series of hybrids can only happen with
negligible probability.
H′0 : This looks exactly the same as H4. The encryption is created in the following way:

43

• sample r ← {0, 1}λ

• (HashConfirm, r1)← GpRO(HashQuery, (“ENC”‖r‖m)),

• (HashConfirm, r2)← GpRO(HashQuery, (“WE”‖r‖m)), and

• (HashConfirm, r3)← GpRO(HashQuery, (“RP”‖r))

• Create the components or the encryption in the following way:

– c1 ← ΠEnc.Enc(pkj , r; r1)

– c2 ← ΠEWE.Enc(meta, r; r2)

– c3 ← m⊕ r3

– Use ΠNIZK.ZKSimulate to simulate the proof

H′1 : Replace all three calls to GpRO with uniform random values r1, r2, r3. By the properties of GpRO the
view of A doesn’t change between H′0 and H′1. Note that we only care about the view of A up until it calls
GpRO on one of the three values, so we don’t have to program GpRO accordingly.
H′2 : Now we replace c1 by ΠEnc.Enc(pkj , r

′; r1), which is possible because the proof is simulated. By the
security of ΠEnc the view of the adversary doesn’t change.
H′3 : Next, we replace c2 with ΠEWE.Enc(meta, r′; r2). If there would be a distinguisher for H′2 and H′3

we can build a distinguisher for ΠEWE, by the extractable security of ΠEWE we can now extract a witness,
but this is in contradiction with the ideal functionality Gledger, as we assumed it was not called. Therefore,
H′2 and H′3 must be indistinguishable.

We see that H′3 does not contain any reference to r, and A would not have changed its strategy as the
difference between its view in H′0 and H′3 is computationally indistinguishable.

Subset of users, PJ , and PLE are corrupted. We further extend our analysis to cover both corrupt
law enforcement and corrupt judges. Notice that step 4 of the previous simulator description is no longer
relevant, as these requests are handled inside A. The proof is exactly the same is in the previous case.

D An ARLEAS’ Parameterizing Functions in Practice

In the name of being generalizable, we have presented both our definition and protocols with a significant
number of parameterized functions, making our construction very abstract. To better understand how an
ARELAS might actually work in practice, we give possible choices for various parts of the system.

D.1 Service Providers

For simplicity, in the protocols and ideal functionalities we present in this work, there is no service provider.
Users send ciphertexts directly to law enforcement. In practice, law enforcement does not directly operate
a communication network, and thus a service provider is crucial. We do not give a formal treatment of the
responsibilities of the service provider, as it is not central to our work, but assume that the service provider’s
role is similar to modern systems. This includes authenticating users, delivering messages, and verifying
that messages are properly constructed. Moreover, we assume that the service provider is transparent to law
enforcement, i.e. all requests for data will be approved.

44

D.2 Transparency Functionalities

Recall that when law enforcement wants to activate an issued warrant, an ARLEAS requires that they
make some information, determined by the transparency function, about that warrant public. In practice,
choosing a transparency function is a balance between robust accountability and operability (i.e. not tipping
off individuals that they are under surveillance).

We briefly consider three possible transparency functions:

• Counting Warrants. A baseline transparency function would leak the number of warrants activated
over time. Each time law enforcement activates a group of warrants, the transparency function counts
these valid warrants and outputs this count. While the impact of this simple transparency function
may seem limited, it provides a way for the government to detect key exfiltration. This can be done
by observing when the number of warrants activated is greater than those known about.

• Issuing Court. Another possible transparency function would leak the identity of the court that issued
the warrant. While this could potentially leak more information about where an activated warrant is
going to be used (i.e. if it was issued by a local court), it also provides significantly stronger protections
and oversight. For instance, if the warrant signing keys of a particular court are compromised, a system
with this transparency will quickly identify the problem and be able to re-key just that court.

• Differential Private Analytics. The above transparency functions do not leak any information
about the contents of the warrant. As our final example transparency function, we consider a function
that leaks differentially private [DMNS06,Dwo08] information about activated warrants. The analytics
could, for instance, include the racial identity of targeted individuals, so that civil liberties groups could
monitor courts with a problematic history. Computing these differential private analytics could either
be done with randomized response or by modifying the interface to the transparency function to take
in all active warrants. Either way, the random coins used must be deterministically generated from
the warrants, as a possibly adversarial law enforcement would be able to choose them otherwise.
Additionally, special attention must be paid to the privacy budget if iterative analytics will be run over
the same warrants.

D.3 Policy Functionalities

While the transparency function allows for detection of malicious behavior, the policy function prevents
certain types of warrants altogether. As part of activating a warrant, law enforcement must prove (in zero-
knowledge) that all the warrants being activated satisfy the policy function. Thus it will be impossible to
activate warrants that are not compliant with the policy function, even if a malicious judge does issue such
warrants.

We consider three possible choices of policy functions, which limit the space of possible valid warrants:

• Warrants Must Specify Individual Targets. In order to limit the risk of unfettered surveillance,
it may be prudent to require that warrants specify individuals, rather than an entire group. Note
that this does not inherently limit the power of law enforcement, as a group can be monitored by
simply issuing individual warrants for each member. However, it could prevent unintentionally issuing
a warrant with an overly broad scope. To mitigate this risk, the system can be set up with a policy
function that checks the structure of each warrant and ensures that it specifies only a single individual.

• Warrants Must Have A Limited Time Scope. It may be desirable to require all warrants to
specify the length of time for which they are valid. Put another way, warrants should only apply to
messages encrypted within a fixed time-frame. This could prevent unintended mission creep or reuse
of old, stale warrants. As before, this does not affect the power of law enforcement (renewed warrants
can be issued at will) but it does reduce the possibility for unintentionally using warrants after a case
has been concluded.

45

• Warrants Issued By Problematic Courts Must Be Subject To Additional Oversight. Many
law enforcement organizations in the United States have a problematic history of violating civil rights.
In these cases, it is common to have Federal bodies oversee the actions of these law enforcement
organizations. This oversight continues until the federal government is convinced that it is no longer
warranted. This arrangement can be formalized by requiring warrants to bear the signature of the
federal oversight body. Alternatively this role could be outsourced to a civil liberty group instead of a
federal body.

D.4 Metadata and Warrant Scope Check Functionalities

Each message sent in an ARLEAS has associated metadata that is added by the sender. This metadata
is information about the message that is public to the service provider and law enforcement. In modern
systems, some metadata may be added by the sender while other metadata may be added by the service
provider relaying the message. We explicitly consider the following three kinds of metadata, but note that
the space of potential metadata information could be significantly larger:

• Sender/Receiver Identity. A service provider is responsible for routing messages from a sender to
a receiver. As such, it is important the service provider is able to know these identities so that it can
fulfill this functionality. Warrants that targets specific users can use this information to determine if a
message should be decryptable.

• Timestamp. Timestamp information is a common piece of information included with a message in
modern systems. As mentioned above, including timestamp information in message metadata and in
warrant scopes is an important way of ensuring that a warrant is only used to surveil the intended
targets and not used surreptitiously after an investigation has finished.

• Geolocation. Geolocation information gives a message a physical origin and can be provided either
by global positioning systems or by identifying the first piece of static networking equipment through
which the message is transmitted (e.g. a cell tower). This information could be used by law enforcement
to target groups moving through a specific location. For instance, law enforcement may have a strong
justification that illicit activity is happening in a remote area, but are unable to identify who is visiting
the area. Allowing warrants to reason over geolocation is a powerful investigative tool, but should be
considered carefully as to not accidentally enable dragnet surveillance.

While we are not overly interested in designing a system secure against malicious senders (see Section 1.3),
it would be preferable for a service provider to be able to drop messages that are flagrantly flaunting the
system using the metadata verification function v(·, ·). This function verified if metadata associated with
a particular message is correctly. There are two main approaches for a metadata verification functionality.
The first is a “common sense” approach: the service provider checks that the metadata supplied by the
user is reasonable from the view of the service provider. A second approach would be to get authenticated
metadata sources, where appropriate. For instance, existing GPS satellite messages could be modified to
transmit a cryptographically signed version of their signal, and messages could include this in the metadata.
Alternatively, a mobile device get an attestation from all connected cell towers proving their location. Neither
approach is foolproof — colluding devices in different geolocations might be able to spoof a location — but
they could raise the difficulty of circumventing the system.

Warrant Scope Check. In addition to being input to the metadata verification functionality, the metadata
also is an input to the warrant scope check θ(·, ·). This functionalities take in a warrant and some metadata,
and decides if the associated message is within the scope of the supplied warrant. We do not specify how this
check would work in practice, as it is tightly coupled to the format of warrants and metadata. A minimal
implementation might be to split the warrant into a list of clauses or requirements and ensure the metadata
satisfies each one.

46

