
Rinocchio: SNARKs for Ring Arithmetic

Chaya Ganesh1, Anca Nitulescu2, and Eduardo Soria-Vazquez3

1 Indian Institute of Science, India.
2 Protocol Labs, USA.

3 Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi, UAE.??

chaya@iisc.ac.in, anca.nitulescu@protocol.ai, eduardo.soria-vazquez@tii.ae

Abstract. Succinct non-interactive arguments of knowledge (SNARKs) enable non-interactive efficient
verification of NP computations and admit short proofs. However, all current SNARK constructions
assume that the statements to be proven can be efficiently represented as either Boolean or arithmetic
circuits over finite fields. For most constructions, the choice of the prime field Fp is limited by the
existence of groups of matching order for which secure bilinear maps exist.
In this work we overcome such restrictions and enable verifying computations over rings. We construct
the first designated-verifier SNARK for statements which are represented as circuits over a broader
kind of commutative rings.
Our contribution is threefold:
1. We first introduce Quadratic Ring Programs (QRPs) as a characterization of NP where the arith-

metic is over a ring.
2. Second, inspired by the framework in Gennaro, Gentry, Parno and Raykova (EUROCRYPT 2013),

we design SNARKs over rings in a modular way. We generalize pre-existent assumptions employed
in field-restricted SNARKs to encoding schemes over rings. As our encoding notion is generic in
the choice of the ring, it is amenable to different settings.

3. Finally, we propose two applications for our SNARKs.
– Our first application is verifiable computation over encrypted data, specifically for evaluations

of Ring-LWE-based homomorphic encryption schemes.
– In the second one, we use Rinocchio to naturally prove statements about circuits over e.g. Z264 ,

which closely matches real-life computer architectures such as standard CPUs.

?? Work partially done while at Department of Computer Science, Aarhus University, Aarhus, Denmark.

Table of Contents

1 Introduction . 3
1.1 SNARKs for Computation over Rings . 3
1.2 Our Contribution . 4
1.3 Comparison with Related Work . 5

2 Preliminaries . 7
2.1 Succinct Non-interactive ARguments of Knowledge . 7
2.2 Background in Ring Theory . 8

3 Quadratic Programs over Commutative Rings . 11
3.1 Construction of a QRP for a Circuit over Rings . 11

4 Secure Encoding Schemes over Rings . 12
4.1 Assumptions on Encodings . 13

5 Rinocchio: A SNARK over Rings . 14
5.1 Construction from QRP . 15
5.2 Security of our Scheme . 16
5.3 Adding Zero-knowledge: zk-Rinocchio . 17

6 Groth16-Like Construction based on Linear-Only Encodings . 19
7 SNARKs for Computation over Encrypted Data . 21

7.1 Homomorphic Encryption Schemes and their Parameters . 21
7.2 Secure Encodings for (Ring-)LWE ciphertexts . 22
7.3 (zk-)SNARKs for Ring-LWE-based homomorphic encryption . 24
7.4 Comparison with Prior Work . 25

8 SNARKs for Computation over Z2k . 26
8.1 A secure encoding for GR(2k, δ) . 26
8.2 A simple construction . 27
8.3 Soundness Amplification . 27
8.4 Efficiency and Similar Instantiations . 28

A Verifiable Computation . 32
A.1 Context-Hiding . 32

B QRP: Abstraction, Composition and Circuit Representation . 33
B.1 QRP as an Abstraction . 34
B.2 Composing QRPs . 35
B.3 Some useful QRPs . 38

C More on the Security of the Encoding Schemes over Rings . 39
D Proof of Theorem 3 . 41
E SNARKs for Computation over Encrypted Data (Cont’d) . 44

E.1 Further details on Torus encoding . 44
E.2 Parameters for BGV and FV . 45

1 Introduction

Succinct Non-interactive ARguments of Knowledge (SNARKs) are non-interactive proof systems
with short proofs that can be verified very efficiently, that show knowledge of a witness for a
given NP statement. Moreover, Zero-knowledge SNARKs (zk-SNARKs) also guarantee that no
information is revealed beyond the validity of the statement. Since their introduction, zk-SNARKs
proofs have been shown to be very powerful and versatile in the design of secure cryptographic
protocols. Many constructions of SNARKs [33, 39, 7, 31, 42, 40, 4, 34], are in pre-processing model,
i.e., they require a setup that generates a structured common reference string (SRS). The SRS is
relation-dependent and can be reused to prove multiple statements.

A recent line of work on zk-SNARK [41, 20] follows a modular approach to construct SNARKs:
first, an information-theoretic component is constructed, such as Interactive Oracle Proofs (IOP)
or Algebraic Holographic Proofs (AHP); and then this interactive proof system is compiled into
an argument using cryptographic tools. Finally, this is made non-interactive in the random oracle
model (ROM), to obtain a SNARK. While this approach leads to very efficient SNARKs, the size
of the proof is not constant, but logarithmic in the size of the witness. In this work, we focus on
SNARKs with constant size proofs that are secure in the standard model avoiding idealised models
such as ROM.

1.1 SNARKs for Computation over Rings

Despite the progress we have seen in SNARKs, all existing contructions offer efficiency benefits only
for proving statements which can be efficiently represented as very particular forms of computation:
The works of [31, 42, 40, 34] consider statements represented as circuit computations, either as
Boolean circuits or as arithmetic circuits over a field. The compiler of [3] gives an efficient reduction
from the correctness of programs to arithmetic circuit satisfiability for a prime field of suitable size.
However, it is clearly interesting to consider computations over more general rings, that better
suit applications such as proving evaluations over encrypted data or proving CPU computations.
While this can be reduced to computation over a field, emulating ring arithmetic in terms of finite
field operations incurs a significant overhead [38]. In addition, fixed and floating-point arithmetic
operations that frequently come up in real-world applications (for instance in approximate, rather
than exact computations such as in Machine Learning [19]), are more naturally expressed in terms
of operations over rings.

Applications. Verifiable computation (VC) allows a computationally weak client to outsource eval-
uation of a function to a powerful server. The client can then verify that the output returned by
the server is indeed correct while performing less work than what is necessary for computing the
function itself. SNARKs immediately give a VC scheme, where the server performs the computa-
tion and returns a SNARK proof together with the output. Recently, there has been significant
progress in constructing protocols and implementing systems for verifiable computation that lever-
age SNARKs [3, 4, 15, 24]. Nevertheless, the performance of existing constructions deteriorate
for functionalities that have “bad” arithmetic circuit representations, as has been noted in prior
works [42]. Similarly, the problem of ensuring both correctness and privacy of the computation
performed by untrusted machines faces the same bottleneck of circuit representation. A natural
construction for such schemes would be to consider a straightforward combination of SNARKs and
Fully Homomorphic Encryption (FHE), where FHE allows computation over encrypted data and
a SNARK is used to verify the integrity of the results of the computation. However, such a generic

3

construction results in a large overhead even when used with the most performant state-of-the-art
SNARKs for arithmetic circuits to prove FHE evaluations. This is due to the limitation of having
to use representations over fields for proving computations over ciphertexts which are not natu-
rally expressed as field elements. Therefore, such solutions do not scale well when the evaluation
in FHE has to be emulated by arithmetic circuits over fields, and the resulting privacy-preserving
VC schemes have very poor efficiency.

1.2 Our Contribution

Our goal is to construct a (zk)-SNARK for ring computations, thus bringing the theory of proof
systems closer to practice. We focus on building schemes with security in the standard model as
opposed with non-interactive arguments that require the Random Oracle Model (ROM). Along
the way, we tackle new technical problems, introduce useful building blocks, such as Quadratic
Ring Programs (QRPs) and secure encodings over rings. Finally, we provide two applications for
our SNARKs based on the QRP characterization: Privacy-preserving verifiable computation and
SNARKs over Z2k .

Quadratic Programs over Rings. Gennaro et al. [31] introduced the NP representations Quadratic
Span Programs (QSP) and Quadratic Arithmetic Programs (QAP) which can be used to compactly
encode computations. They show how to convert any Boolean/arithmetic circuit into a QSP/QAP.

We are looking to design a similar characterisation for circuits over rings, and a couple of
challenges get in our way: first, not all elements of the ring are invertible, so such a program should
be defined over a subset of the ring, second we need a generalised Schwartz-Zippel lemma that
gives us the necessary soundness. We treat all the technicalities encountered and we introduce
Quadratic Ring Program (QRP) for rings containing big enough exceptional sets [6, 1],i.e. sets of
elements such that their pairwise differences are invertible. As we discuss in Section 3, there is some
‘tightness’ to the need of using exceptional sets when capturing ring arithmetic in a black-box way
using polynomials.

SNARK for Ring Computations. The QRP characterization allows to test satisfiability of an arith-
metic circuit over a ring. To construct a succinct proof, we follow the blueprint of [31, 42], where
the QRP test is performed in a probabilistic way. The setup produces a structured reference string
CRS that consists of linearly homomorphic encodings, on top of which the prover is expected to
compute using the witness. Under knowledge-type assumptions made for the ring encodings, the
resulting SNARK can be proved knowledge sound.

We present Rinocchio, a generic framework for building SNARKs for ring arithmetic based on
encodings over rings. Depending on how these encodings are instantiated, the resulting SNARK is
either public or designated verifiable. One plausible instantiation for publicly-verifiable encodings is
based on pairing-friendly composite order groups. However, the structure of such groups is specific
and restrictive, in the sense that the ring used to represent the computation would not match any of
the important applications considered by this work. Therefore, we focus on more generic secret-key
encodings over rings that allow implementations using various rings and can be applied to speed-up
proofs for real-world computations. On the other hand, these encodings yield designated-verifier
SNARKs.

Our characterization of computation over rings as a QRP and subsequent SNARK construction
inherits the need for a trusted CRS generation. However, in the designated-verifier setting, a trusted
CRS is acceptable in practice, since if we do not need zero-knowledge property, we can simply have

4

the verifier run the setup and send the CRS to the prover, who can reuse the CRS to prove many
statements.

We choose to build Rinocchio in the standard model, on weaker assumptions rather than in
idealized models such as Generic Group Model (GGM) or Algebraic Group Model (AGM) used
for field-based schemes such as in [34]. Our work sets the stage for future SNARKs over rings
with even smaller proof sizes or for other further features, e.g. an updatable structured reference
string. We show in Section 6 that we can construct a SNARK along the lines of the construction
of Groth16 [34] for general rings based on stronger assumptions for the underlying encodings –
we prove its security by assuming that the encoding satisfies “linear only extractability”, which
roughly means that the only operations that can be performed over the encodings are affine.

Knowledge Assumptions over Rings. We prove Rinocchio secure under variants of the generalized
q-PDH and d-PKE assumptions extended to encodings over rings, carefully addressing the technical
challenges that arise in the new ring setting. These generalized assumptions were already stated for
encodings over fields by prior works as [31, 32] and gained some confidence as a base to build post-
quantum SNARKs. Similar to the counterpart of assumptions in the field case, where for instance,
the existence of secure bilinear groups limits the choice of the finite fields, our ring assumptions are
also cautiously made and assumed to be plausible when care is taken about the particular choice of
ring and encoding scheme. In Appendix C we show that if an encryption scheme is assumed to be
a linear-only extractable encoding, then that encoding satisfies the generalized q-PDH and q-PKE
assumptions over rings. Therefore, if our assumptions turn out to not hold for a non-trivial choice
of ring and encoding, that would lead to an efficient encoding scheme over that ring which allows
for more than just linear homomorphism, potentially towards a new fully/somewhat homomorphic
encryption scheme.

Privacy-Preserving Verifiable Computation. We take a step further to construct better VC schemes
with privacy that follows the same blueprint as prior works: combining homomorphic encryption and
a zk-SNARK. When instatiating Rinocchio with encoding schemes that take as input ciphertexts
of a Ring-LWE-based FHE. The use of our generic SNARK for computation over rings allows for
better choices of group order q (not only primes) which improves over the approach from prior
works, e.g. [28]. Rinocchio allows for speed up through classical efficiency optimisations in Rq such
as Number-Theoretic Transform (NTT). Also, we provide tools to enable the application of more
advanced noise reduction techniques for the Ring-LWE scheme such as modulo switching.

Other Applications. Rinocchio can also help to prove arithmetic computations over rings Z2k .
As opposed to the attempt of simulating arithmetic over Z2k in a field Fp, where one has to compute
the modular reduction x mod 2k, a SNARK for ring computation can use a QRPs for the Galois
Ring GR(2k, δ), which has Z2k as a subring. We discuss other nuances of efficient considerations in
Z2k arithmetic in Section 8.4.

1.3 Comparison with Related Work

The work of LegoSNARK [16] partially mitigates the efficiency issue of being tied to a unique,
particular representation of computation in SNARK constructions. They achieve their results by
seeing a computation as naturally consisting of different components and proposing a modular
approach that uses the SNARK best suited for each component. Composition of proof gadgets is
orthogonal to our work, and by extending our construction to be commit-and prove, the broader

5

class of rings to which we can efficiently apply our SNARK adds yet another tool for works in the
spirit of LegoSNARK.

The results of [9] give constructions of a designated verifier Succinct Non-interactive ARGument
(SNARG) based on vector encryption over rings under the assumption that the encryption scheme
satisfies linear targeted malleability. The subsequent work in [10] constructs a SNARG with quasi-
optimal prover complexity. Even though these works use an encoding scheme over a ring to compile
the information theoretic object, the statement to be proven is represented as Boolean/arithmetic
circuit satisfiability over a field, and the computation is still over Fp. Crucially, in these works
the statement to be proved is an arithmetic circuit over a field, whereas our motivation is proving
statements that are represented over rings like Z264 or a polynomial ring Rq = Zq[Y]/(f(Y))
directly. In [37], Kosba et al. generalize the notion of Quadratic Arithmetic Programs over a field
F to that of Quadratic Polynomial Programs (QPPs), which compute circuits whose wires carry
values in the ring F[X]. These polynomial circuits, where the addition and multiplication operations
are over F[X], are introduced with the goal of representing (multi-)sets S of elements over F. While
the construction in [37] is limited to rings of polynomials over the same fields for which SNARKs à
la [42] are secure, our work allows to build SNARKs for any ring R satisfying the property that it
has a large subset such that the difference of the elements in the subset are invertible. Furthermore,
our definition of QRP also recovers the QPP formulation as an instantiation of the underlying ring
R, which we show in Appendix B.1.

Privacy-Preserving Verifiable Computation. To our knowledge, there are few works that consider
privacy in the context of VC. The first one is the seminal paper of Gennaro et al. [30] who introduced
the notion of non-interactive verifiable computation and builds it from garbled circuits and FHE.
Fiore et al. [27] proposed to use homomorphic MACs in order to prove that the evaluation of
FHE ciphertexts has been done correctly. Their solution is inherently bound to computations of
quadratic functions.

To overcome this, the more recent work in this area by Fiore et al. [28] proposes a new protocol
for verifiable computation on encrypted data that supports homomorphic computations of multi-
plicative depth larger than 1. Towards their VC scheme, [28] build a new SNARK that can efficiently
handle computations of arithmetic circuits over a quotient polynomial ring Rq = Zq[Y]/(f(Y)) for
a prime number q in which the prover’s costs have a minimal dependence on the degree d of f(Y).
Although this seems to fit the arithmetic structure for Ring-LWE schemes, it imposes many limi-
tations due to the restriction to rings Rq, where q is a prime which also has to match secure and
efficient pairing constructions for some underlying SNARK over Fq. Another significant impact on
the performance present in the work of [28] is on the prover’s effort to evaluate the circuit C over
ciphertexts. In their VC scheme, the prover cannot use directly the transcript obtained by applying
the evaluation algorithm over FHE ciphertexts as a witness for generating the proof. Instead, the
prover is asked to come up with a different witness by considering the ciphertext of the Ring-LWE
scheme as elements of Zq[Y] rather than Rq = Zq[Y]/(f(Y)). As a consequence, the degree of
the witness polynomial grows linearly with the multiplicative depth of the circuit. This is a sig-
nificant overhead that reflects, besides on the increased Prover’s effort, on the size of the public
setup necessary to commit to this polynomial. In another follow-up work, Bois et al. [8] introduced
an improved solution. The key idea of their protocol is a new homomorphic hash function, which
hashes to Galois rings. This allows for a flexible choice of FHE parameters.

Comparison. While we treat verifiable computation on encrypted data as a use case for Rinocchio
scheme, we note that our work is more general and the main focus is on building a general SNARK

6

that is blackbox in the choice of the ring. The scheme of [8] is along the lines of the GKR protocol, and
therefore admits only circuits that are log-space uniform. Our QRP abstraction yields SNARKs for
general circuit computations, albeit making knowledge assumptions similar to analogous SNARKs
for fields. Furthermore, our scheme is in the standard model, while [28, 8] require a random oracle
for non-interactivity. We give a detailed comparison of our application to privacy-preserving VC
with the scheme of [28] in Section 7.4.

2 Preliminaries

Notation. We use κ to denote the security parameter. If A is a probabilistic polyonomial time
(PPT) algorithm, we use y ← A(x) to denote that y is the output of A on x. By writing A‖χA(σ)
we denote the execution of A followed by the execution of χA on the same input σ and with the
same random coins. The output of the two are separated by a semicolon.

Whenever we talk about a ring R, unless otherwise specified, we mean a commutative finite
ring with identity. We denote the units of such a ring as R∗.

2.1 Succinct Non-interactive ARguments of Knowledge

Let R be an efficiently computable binary relation which consists of pairs of the form (x,w) where
x is a statement and w is a witness. Let L be the language associated with the relation R, i.e.,
L = {x | ∃w s.t. R(x,w) = 1}.

Definition 1 (SNARK). A triple of polynomial time algorithms (Setup,Prove,Verify) is a SNARK
for an NP relation R, if the following properties are satisfied:

1. Completeness. For all (x,w) ∈ R, the following holds:

Pr

(
Verify(vk, x, π) = 1 :

(σ, vk)← Setup(1κ)
π ← Prove(σ, x, w)

)
= 1

2. Knowledge Soundness . For any PPT adversary A, there exists a PPT algorithm χA such that
the following probability is negligible in κ:

Pr

(
Verify(vk, x̃, π̃) = 1
∧R(x̃, w′) = 0

:
(σ, vk)← Setup(1κ)

((x̃, π̃);w′)← A|χA(σ)

)
3. Succinctness. For any x and w, the length of the proof π is given by |π| = poly(κ) · polylog(|x|+
|w|).

Non-black-box extraction. The notion of knowledge soundness requires the existence of an extrac-
tor that can compute a witness whenever the adversarial prover produces a valid argument. The
extractor we defined above is non-black-box and gets full access to the adversary’s state, including
any random coins.

Definition 2 (zk-SNARK). A zk-SNARK for a relation R is a SNARK for R with the following
zero-knowledge property: There exists a PPT simulator (S1,S2) such that S1 outputs a simulated
CRS σ and trapdoor τ ; S2 takes as input σ, a statement x and τ , and outputs a simulated proof π;
and, for all PPT adversaries (A1,A2), the following is negligible in κ.

7

∣∣∣∣∣∣Pr

(
(x,w) ∈ R : ∧
A2(π, st) = 1

:
(σ, vk)← Setup(1κ)

(x,w, st)← A1(1
κ, σ)

π ← Prove(σ, x, w)

− Pr

(
(x,w) ∈ R ∧
A2(π, st) = 1

:
(σ, τ)← S1(1κ)

(x,w, st)← A1(1
κ, σ)

π ← S2(σ, τ, x)

∣∣∣∣∣∣
Public vs Designated verifiability. In a publicly verifiable SNARK, there is no private verification in-
formation, i.e. vk = ∅. A SNARK is designated verifiable if the proof can be verified only by a party
knowing vk. Note that in the designated-verifier case, the verifier’s decision bit on a proof poten-
tially leaks some information about vk. Thus, the same common reference string cannot be reused
for multiple proofs as in publicly-verifiable case. This was addressed in prior works in verifiable
computation [30, 22], by either keeping the decision bit secret from the prover, or running a fresh
setup every time a proof fails verification. Note that any sound scheme can tolerate O(log κ) bits
of leakage, and assuming that the decision bit leaks only a constant number of bits of information,
one would only need to run a new setup after logarithmically-many proof rejections.

Strong Soundness. Multi-statement designated-verifier SNARKs are requiring soundness to hold
even against a prover that makes adaptive queries to a proof verification oracle.

2.2 Background in Ring Theory

We now turn to recall useful results from ring theory. While some of the results for fields and
euclidean domains (such as Z) carry over to the more general rings we deal with, others do not.
For example, one has to be careful about the fact that the rings we consider contain zero divisors,
i.e. d ∈ R \ {0} for which ∃ q ∈ R \ {0} such that d · q = 0.

Lemma 1. Let R be a finite ring. Then all non-zero elements of R are either a unit or a zero
divisor.

Proof. For every a ∈ R \ {0}, let fa : R → R be the map given by fa(x) = a · x. If fa is injective,
then it has to be surjective, because R is finite. Therefore, in such a case there must exist an x ∈ R
verifying that fa(x) = 1. So we conclude that a is a unit.

Assume that fa(x) is not injective. Then there exist b, c ∈ R, b 6= c, such that a · b = a · c, and
thus a · (b− c) = 0. In other words, a is a zero divisor.

We recall that an ideal of a ring R is an additive subgroup I ⊆ R such that r · x ∈ I for any
r ∈ R, x ∈ I. Through the paper, (x) will denote the ideal generated by x ∈ R.

Theorem 1. Let R be a finite commutative ring with identity and let Z(R) denote the set of all
its zero divisors. Then the following are equivalent:

1. Z(R) is an ideal.

2. Z(R) is a maximal ideal.

3. R is local.

4. Every x ∈ Z(R) is nilpotent.

8

Proof. (1) ⇔ (2). Assume Z(R) is an ideal and it is not maximal. Then, there must exist some
ideal I such that Z(R) (I (R. Which is absurd, as if Z(R) (I, then I must contain a unit and
hence I = R.

(2) ⇒ (3). Assume R contains another maximal ideal I 6= Z(R). Then either I (Z(R), in
which case it is not maximal, or otherwise it contains a unit and hence I = R.

(3) ⇒ (1). Let M be the maximal ideal of R. In order to see that Z(R) is an ideal, let x, y be
any two zero-divisors and (x), (y) the ideals they generate. Because R is local, then (x) ⊂ M and
(y) ⊂ M . Since M is a proper ideal of R, then we have that ∀r ∈ R, r · (x + y) ∈ M and that
r · (x+ y) cannot be a unit. Hence, by Lemma 1, r · (x+ y) ∈ Z(R).

(1) ⇒ (4). Assume Z(R) is an ideal, and assume towards contradiction some x ∈ Z(R) such
that xi 6= 0 for any positive integer i. Then, as R is finite, there must exist some i > j > 0
such that xi = xj , from which we deduce that xj · (xi−j − 1) = 0. As xj 6= 0, then it has to
be that xi−j − 1 ∈ Z(R). Then, as we also now that xi−j ∈ Z(R) and Z(R) is an ideal, then
(xi−j − 1)− xi−j = −1 ∈ Z(R). Which is absurd, as then we would have that Z(R) = R.

(4) ⇒ (1). Let Z(R) = {x1, . . . , xm}. We will prove that Z(R) is an ideal by showing the
existence of some z ∈ R such that z · xj = 0 for all j ∈ [m], from which follows that Z(R) is an
ideal. We construct z = zm recursively as follows. Because x1 is nilpotent, there exists an a1 s.t.
xa1+1
1 = 0 but xa11 6= 0, so we define z1 = xa11 . For i ∈ [m], we define zi = zi−1 ·xaii , where ai (which

is possibly zero) is chosen such that zi 6= 0 and zi · xi = 0. Notice that ai must exist from the fact
that xi is nilpotent.

Theorem 2 (Chinese Remainder Theorem). Let I1, . . . , Im be m pairwise co-prime4 ideals
of R, i.e. ∀i 6= j, Ii + Ij = R. Denote I = I1 · · · Im. Then the following map is a ring isomorphism:

R/I → R/I1 × · · · ×R/Im
r mod I 7→ (r mod I1, . . . , r mod Im)

Exceptional sets. Elements which satisfy that their pairwise differences are invertible will be
fundamental in our constructions. These have received different names in the literature: ‘Condition
(F)’ sets in [6], ‘exceptional sequences’ in [1] and ‘exceptional sets’ in [25]. We will stick with the
latter denomination.

Definition 3. Let A = {a1, . . . , an} ⊂ R. We say that A is an exceptional set if ∀i 6= j, ai−aj ∈ R∗.
We define the Lenstra constant of R to be the size of the biggest exceptional set in R.

We will need the following generalization of the Schwartz-Zippel lemma.

Lemma 2. [Generalized Schwartz-Zippel Lemma [6]] Let f : Rn → R be an n-variate non-zero
polynomial. Let A ⊆ R be a finite exceptional set. Let deg(f) denote the total degree of f . Then:

Pr
~a←An

[f(~a) = 0] ≤ deg(f)

|A|

Proof. We prove by induction on the number of variables n. For n = 1, let a1 ∈ A be a root of f(x).
As (x− a1) is a monic polynomial, we have that f(x) = (x− a1)f1(x), where the deg(f1) < deg(f).

4 Such ideals are also denoted co-maximal by some authors.

9

Any other root a2 ∈ A has to be a root of f1(x), as (a2−a1) ∈ R∗ and f(a2) = 0. Hence, we have that
f(x) = (x−a1)(x−a2)f2(x), where the deg(f2) < deg(f1). By iterating this argument, we conclude
that f(x) cannot have more roots in A than deg(f) and hence Pra←A[f(a) = 0] ≤ (deg(f))/|A|.

Assume now the result holds for (n − 1)-variate polynomials. Given any n-variate polynomial
f(~x) ∈ R[x1, . . . , xn], denote by k = degxn(f) the largest power of xn appearing in any monomial
of f . Then we have that:

f(~x) =
k∑
`=1

x`n · g`(x1, . . . , xn−1)

Denote by E1 the event gk(~a) = 0. By definition of k, we know that gk(x1, . . . , xn−1) is a non-zero
polynomial, so by induction hypothesis Pr~a←An−1 [E1] ≤ (deg(f) − k)/|A|. Assuming ¬E1 and by
applying the same reasoning as for n = 1, we have that f(~a) ∈ R[xn] has at most k roots in A, so
Pr~a←A[f(~a) = 0|¬E1] ≤ k/|A|. We finalize by noting that (where the probability is taking over the
choice of ~a← An):

Pr[f(~a) = 0] = Pr[f(~a) = 0|¬E1] · Pr[¬E1] + Pr[f(~a) = 0|E1] · Pr[E1]

≤Pr[f(~a) = 0|¬E1] + Pr[E1] ≤
deg(f)− k
|A|

+
k

|A|

Interpolation. Lagrange interpolation for sets of points (xi, yi) ∈ R2 can be computed, as long as
all the xi are part of the same exceptional set A ⊂ R. This follows from either looking at the
definition of Lagrange basis polynomials or, more formally, from the Chinese Remainder Theorem
(Theorem 2). As an intuition of the latter approach, the ideals (x− xi) are co-prime, so there is a
one-to-one correspondence between any polynomial p(x) ∈ R[x]/I, where I =

∏d+1
i=1 (x − xi), and

y1 = p(x1), . . . , yd+1 = p(xd+1). In other words, any p(x) ∈ R[x] of degree d is uniquely determined
by its evaluation at d points of an exceptional set. For more details about the CRT argument, see
e.g. [1].

Galois Rings. Galois Rings are the generalization of Galois Fields to the ring case. Informally, a
Galois Ring relates to integers modulo pk in the same way a Galois Field relates to integers modulo
a prime p. In the following, we provide a high level overview of their properties and arithmetic. For
a more detailed introduction to Galois Rings, see [45].

Definition 4. A Galois Ring is a ring of the form R = Zpk [X]/(h(X)), where p is a prime, k a
positive integer and h(X) ∈ Zpk [X] a monic polynomial of degree d ≥ 1 such that its reduction
modulo p is an irreducible polynomial in Fp[X].

Given a base ring Zpk , there is a unique degree d Galois extension of Zpk , which is precisely
the Galois Ring provided on the previous definition. Hence, we shall denote such Galois Ring as
GR(pk, d). Note that Galois Rings reconcile the study of finite fields Fpd = GR(p, d) and finite rings

of the form Zpk = GR(pk, 1).

Every Galois Ring R = GR(pk, d) is a local ring and its unique maximal ideal is (p). Hence, by
Theorem 1, all the zero divisors of R are furthermore nilpotent, and they constitute the maximal
ideal (p). Furthermore, we have that R/(p) ∼= Fpd , and thus a canonical homomorphism π : R→ Fpd
which can be computed by ‘reducing modulo p’.

10

Proposition 1 ([1]). The Lenstra constant of R = GR(pk, d) is pd.

In this work, we will be particularly interested in Galois Rings of the form R = GR(2k, d), i.e.
of characteristic 2k, maximal ideal (2) and such that R/(2) ∼= F2d . Whenever we need to explicitly
represent elements a ∈ R, we will do so as it follows from Definition 4. In that case, we will say
that a is given in its additive representation, which consists of the residue classes

a ≡ a0 + a1 ·X + . . .+ ad−1 ·Xd−1 mod h(X), ai ∈ Z2k . (1)

3 Quadratic Programs over Commutative Rings

Notation. We use κ to denote the security parameter. If A is a probabilistic polyonomial time (PPT)
algorithm, we use y ← A(x) to denote that y is the output of A on x. By writing A‖χA(σ) we
denote the execution of A followed by the execution of χA on the same input σ and with the same
random coins. Whenever we talk about a ring R, unless otherwise specified, we mean a commutative
finite ring with identity. We denote the units of such a ring as R∗.

We now give a characterization for the satisfiability of arithmetic circuits over commutative
rings with identity.

Definition 5 (Quadratic Ring Programs (QRP)). A Quadratic Ring Program (QRP) Q
over a finite commutative ring R consists of three sets of polynomials, V = {vk(x) : k ∈ [0,m]},
W = {wk(x) : k ∈ [0,m]}, Y = {yk(x) : k ∈ [0,m]} and a target polynomial t(x), all in R[x].
Let C be an arithmetic circuit over R with n inputs and n′ outputs. We say that Q is a QRP that
computes C if the following holds:

a1, . . . , an, am−n′+1, . . . am ∈ Rn+n
′

is a valid assignment to the input/output variables of C if
and only if there exist an+1, . . . , am−n′ ∈ Rm−n−n

′
such that:

t(x) divides p(x),

where p(x) = V (x) ·W (x)− Y (x), V (x) =
(
v0(x) +

∑m
k=1 ak · vk(x)

)
, W (x) =

(
w0(x) +

∑m
k=1 ak ·

wk(x)
)

and Y (x) =
(
y0(x) +

∑m
k=1 ak · yk(x)

)
.

We define the size and degree of Q to be m and deg(t(x)) respectively. Given polynomials
V (x),W (x), Y (x) ∈ R[x] defined as above and corresponding to a valid assignment of the in-
put/output wires, we will call them a QRP solution.

3.1 Construction of a QRP for a Circuit over Rings

Let C be an arithmetic circuit over R. To build a QRP, we will make use of an exceptional set A
as follows. We will pick elements rg ∈ A for each multiplication gate g ∈ C and define the target
polynomial as t(x) =

∏
g∈C(x− rg). As a consequence of the CRT over rings, the vk(x), wk(x) and

yk(x) polynomials can be computed by interpolating over those rg ∈ A in the same way one proceeds
in the QAP case [31, 42]. In more detail, let I1, . . . Ideg(t(x)) be the ideals defined by Ig = (x− rg),
which are co-prime since A is an exceptional set. Noting that p(x) ≡ p(rg) mod (x− rg), we have
that:

φ : R[x]/(t(x)) ' R[x]/I1 × . . .×R[x]/Ideg(t(x)) (2)

p(x) 7→ (p(r1), . . . , p(rdeg(t(x))))

11

In other words, the isomorphism above tells us that t(x) divides p(x) if and only if p(rg) = 0 for
every rg ∈ A, as long as A is an exceptional set. We show that this imposition on A is not only
sufficient, but also necessary.

Proposition 2. Let t(x) =
∏
g∈C(x− rg), Ig = (x− rg) and A = {rg}g∈C . If the map φ given by

Eq. (2) is an isomorphism, then A is an exceptional set.

Proof. Assume that A is not exceptional, i.e. that there exist r1, r2 ∈ A such that r1 − r2 /∈ R∗.
Since R is a finite ring, then r1 − r2 is a zero divisor, so ∃b ∈ R s.t. b · (r1 − r2) = 0. We show that
φ is not injective by giving two elements of R[x]/(t(x)) that map to the all zeroes vector: 0 and
b ·
∏
rg∈A\{r1}(x− rg).

The above proposition highlights the “tightness” of the requirement to use exceptional sets in
order to build QRPs. We would like to emphasize that exceptional sets have no further algebraic
properties (e.g. no closure under addition).

In Appendix B, we show how to build a QRP for a multiplication sub-circuit, and how to
compose QRPs to obtain a QRP for any arithmetic circuit.

4 Secure Encoding Schemes over Rings

To construct a SNARK, we follow the framework in [31]. The QRP polynomials are represented
by encodings of the polynomials evaluated at a secret point, and the encoding used is additively
homomorphic in the ring of computation. We now define these encodings and their properties.

Definition 6 (Encoding scheme). An encoding scheme Encode over a ring R consists of a tuple
of algorithms (Gen,E).

– (pk, sk) ← Gen(1κ), a key generation algorithm that takes as input a security parameter and
outputs a secret key sk, and public information pk.

– s ← E(a), a probabilistic encoding algorithm mapping a ring element a ∈ R to an encoding s
in an encoding space S such that the sets {{E(a)} : a ∈ R} partition S, where {E(a)} is the set
of encodings of a. Depending on the encoding algorithm, E could require the secret state sk. To
ease notation, we will omit this additional argument.

An encoding scheme has to satisfy the following properties:

– `-Linearly homomorphic: There is an efficient algorithm Eval that on input public infor-
mation pk, encodings E(a1), . . .E(a`) and coefficients c1, . . . , c` ∈ R` computes the encoding
E(
∑`

i=1 ci · ai).
– Quadratic root detection: There exists an algorithm that given secret key sk, (E(a1), . . .E(ad)),

and a quadratic polynomial Q(x1, . . . , xt) ∈ R[x1, . . . , xt], can distinguish whether Q(a1, . . . , at) =
0.

– Image verification: There exists an efficient algorithm that given sk, and an element c, can
detect if c is a valid encoding of some element in R.

12

4.1 Assumptions on Encodings

While the definition of encoding above can be satisfied by, for instance, the identity function, we will
only be interested in secure encodings, i.e. those which satisfy certain cryptographic assumptions.
In the following, A (resp. A∗) denotes an exceptional set of a commutative ring with identity R
(resp. R∗, the units of that ring).

Our computational assumptions have been previously used in the discrete-logarithm group
setting. Here, we generalize them to encodings over rings. We also show (in Appendix C) how our
assumptions are weaker than the more intuitive, but stronger, notion of linear-only extractable
encodings from [7].

We start by giving a generalized version of the q-PDH problem used in [31]. This assumption
has two differences with respect to the original one. First of all, the adversary is able to win the
game as long as it outputs a pair (a, y) such that a 6= 0 and y ∈ {E(a · sq+1)}. In the field case, this
is trivially equivalent to the original q-PDH assumption, as a−1 ·E(a ·sq+1) = E(sq+1). Nevertheless,
in the ring case, we need to deal with elements a ∈ R which might be zero divisors. Second, in
order to have the assumption work for any given q, we need to ensure that s2q 6= 0. Due to this
and additional security reasons, we restrict s to be a unit. Furthermore, we need s to be part of
a big enough exceptional set, so that we can prove the soundness of our SNARKs by invoking the
Generalized Schwartz-Zippel lemma.

Assumption 1 (Generalized q-PDH) The generalized q-power Diffie-Hellman assumption holds
for an encoding scheme Encode if, for every non-uniform PPT algorithm A, the following probability
is less or equal than 2q

|A∗| + negl(κ):

Pr

 a 6= 0 ∧
y ∈ {E(a · sq+1)} :

(pk, sk)← Gen(1κ),
s← A∗,

σ = (pk,E(1),E(s), . . . ,E(sq),E(sq+2), . . . ,E(s2q)),
(a, y)← A(σ)

 .

Note that we linked our generalization of q-PDH to the size of the exceptional set A∗. Usually, we
will consider A∗ to be of exponential size in the security parameter, so that the previous probability
is just negligible in the security parameter. Nevertheless, for the purpose of parallel soundness
amplification techniques, in some cases it will be useful to consider even exceptional sets of constant
size. The reason to bound A’s advantage by 2q/|A∗| is the possibility of a generic attack on q-
PDH, which was presented in [35]. We generalize such attack to our assumption in Lemma 7, in
Appendix C.

We also need a q-power knowledge assumption, which is both augmented to handle the desig-
nated verifier setting and generalized to encodings over rings.

Assumption 2 (Generalized Augmented q-PKE) The generalized augmented q-power knowl-
edge of encoding assumption holds for an encoding scheme Encode and for the class Z of “benign”
auxiliary input generators if, for every non-uniform PPT auxiliary input generator Z ∈ Z and
for all non-uniform PPT algorithm A there exists a non-uniform PPT extractor χA such that the
following probability is negligible in the security parameter:

Pr

 ĉ− αc = 0
∧

c 6=
∑q

i=0 ais
i

:

(pk, sk)← Gen(1κ), α← R∗, s← A∗,
σ = (pk,E(1),E(s), . . . ,E(sq),E(α),E(αs), . . . ,E(αsq)),

z ← Z(σ)
(E(c),E(ĉ); a0, . . . , aq)← (A||χA)(σ, z)

 .

13

In the above, (x; y) ← (A||χA)(σ, z) denotes that on input (σ, z), A outputs x, and χA given the
same input (σ, z), and A’s random tape, outputs y. When we assume that Z is benign, we mean
that the auxiliary information z is generated with a dependency on sk, s and α that is limited to
the extent that it can be generated efficiently from σ.

5 Rinocchio: A SNARK over Rings

The QRP characterization allows a test for satisfiability of an arithmetic circuit, by checking if the
target polynomial divides p(x) =

(∑
ck · vk(x)

)
·
(∑

ck · wk(x)
)
−
(∑

ck · yk(x)
)
. If divisibility

holds, there is a quotient polynomial that is guaranteed to exist that serves as a witness for this test.
To construct a succinct proof, we follow the blueprint of [31, 42]: the QRP test is performed in a
probabilistic way at a random point chosen during the setup. Toward this end, the prover is expected
to give, in the proof, the polynomials V (x),W (x), Y (x) computed as a linear combination of the
QRP polynomials using the intermediate witness values ck as coefficients. The prover also provides
the quotient polynomial H(x), and verification checks whether V (s) ·W (s) − Y (s) = H(s) · t(s),
where s is the random point that is hidden from the prover. The CRS consists of an encoding of
this secret point together with encodings of the QRP polynomials, and the prover homomorphically
computes the elements in the proof.

Besides the security assumptions we introduced in the previous section, our designated verifier
SNARK construction will rely on the following two technical lemmas. The first one will be useful
to define the concrete soundness error of our construction, while the second one is an analogue of
[31, Lemma 10]. At a high level, this second lemma will be invoked in the security proof to ensure
that, if the adversary outputs a false proof that passes verification that implicitly uses some V (x)
that is not in the span of the QRP polynomial set {vk(x)}, then the reduction will be able to use
that false proof to solve a q-PDH challenge.

Lemma 3. Given an exceptional set of size n in R, we can construct another exceptional set
A = {0, a1, . . . , an−1 : ai ∈ R∗}. When an exceptional set has the latter form, we say it is given in
its canonical form.

Proof. Let B = {b1, . . . , bn} ⊂ R be an exceptional set. For all i ∈ {1, . . . , n−1}, define ai = bn−bi.
By the definition of B, we have that ai ∈ R∗ and hence so is (0−ai). Furthermore, ∀i 6= j, ai−aj =
(bn − bi)− (bn − bj) = bi − bj which is again a unit by the definition of B.

Lemma 4. Let R[x]≤e denote the polynomials in R[x] of degree at most e. Let R[x]¬(e) denote
polynomials over R[x] that have a zero coefficient for xe. Let A∗ ⊂ R∗ be an exceptional set. We
define A∗[x]≤e, A

∗[x]¬(e) analogously. Given a set U = {ui(x)} ⊂ R[x]≤e such that |U| = m,
let span(U) denote the set of polynomials that can be generated as R-linear combinations of the
polynomials in U . Let a(x) ∈ A∗[x]≤e+1 be generated uniformly at random subject to the constraint
that {a(x) · ui(x) : ui(x) ∈ U} ⊂ R[x]¬(e+1). Let s← A∗. Then, if e > m− 1, for all algorithms A,

Pr

 u(x) ∈ R[x]≤e ∧
u(x) /∈ span(U) ∧

a(x) · u(x) ∈ R[x]¬(e+1)
: u(x)← A(U , s, a(s))

 ≤ 1

|A∗|

Proof. Let u(x) = u0 + u1x + . . . + uex
e ∈ R[x] and u(x) /∈ span(U). Define the vector u = (u0,

. . . , ue, 0), corresponding to the coefficients of the monomials in u and padded with a zero, and

14

similarly define ui = (ui,0, . . . , ui,e, 0) for every ui(x) ∈ U . Then, u is not in the span of the vectors
(se+1, se, . . . , 1)

⋃
i∈[m] ui. This follows from the assumption that u(x) /∈ span(U) and the fact that

the last element of u is a 0 and that of (se+1, se, . . . , 1) is 1.

This time following the opposite order, define a vector a = (ae+1, . . . , a0) from the coefficients
of a(x) = a0 + · · ·+ ae+1 · xe+1. Then, A has the following information about a(x):

〈a, (se+1, se, . . . , 1)〉 = a(s)

〈a, (ui,0, . . . , ui,e, 0)〉 = 0, i ∈ [m] (3)

Where the second set of equations comes from the fact that {a(x) ·ui(x) : ui(x) ∈ U} ⊂ R[x]¬(e+1).
This provides a system of m + 1 linear equations on the e + 2 coefficients a, so as e > m − 1 by
hypothesis, a appears uniformly random to A.

Finally, assume that Amanages to satisfy the last missing condition for u(x), that is a(x)·u(x) ∈
R[x]¬(e+1), which is equivalent to 〈a,u〉 = 0. Since u is not in the span of (se+1, se, . . . , 1)

⋃
i∈[m] ui,

it is not a linear combination of the equations constituting the system in (3). Hence, since every
ai ∈ A∗ and a appears uniformly random to A (subject to the constraints provided by the system
of linear equations), by looking at u as the coefficients of a polynomial ũ(x1, . . . , xe+2) = u0 · x1 +
u1 · x2 + · · ·+ ue · xe+1 + 0 · xe+2, we have that Pr[〈a,u〉 = 0] = Pr[ũ(a) = 0] ≤ 1/|A∗| as a direct
consequence of the Generalized Schwartz-Zippel Lemma (Lemma 2).

5.1 Construction from QRP

Let C be an arithmetic circuit over R, with m wires and d multiplication gates. Let A be an
exceptional set given in canonical form and AQ = {0, a1, . . . , ad−1} ⊂ A. Using AQ, define the
QRP Q = (t(x), {vk(x), wk(x), yk(x)}mk=0) which computes C. Let A∗ = A\AQ, which satisfies that
A∗ ⊆ R∗, since A is canonical.

We denote by Iio = 1, 2, . . . ` the indices corresponding to the public input and public output
values of the circuit wires and by Imid = `+ 1, . . .m, the wire indices corresponding to the interme-
diate values. We construct a SNARK scheme Rinocchio = (Setup,Prove,Verify) for ring arithmetic
as described in Figure 1.

Remark 1. An aspect of our construction that could look surprising to the reader is the definition
of A∗: Why do we not include the elements in AQ used to define the QRP? As previously discussed,
we do this in order to precisely define the soundness of our construction. In some cases, as we
will discuss in Section 8.3, it could be useful to use parallel repetition strategies for soundness
amplification. Previous works in the field setting, using pairings, did not need to make such a
concrete analysis, since if circuits are assumed to be of polynomial size in the security parameter,
the probability that a randomly sampled s ← F would be precisely one of the points used to
define the QRP would be negligible, because F has exponential size in the security parameter. In
all rigour, nevertheless, the concrete soundness error of those constructions is also bounded by the
size of F minus the size of the QRP5. We prefer this concrete analysis even when rings might have
exceptional sets of exponential size in the security parameter.

5 In order to see this, consider a proof that consists purely of encodings of zero. The checks in the verification
equations would pass if s happened to coincide with a value in the QRP used to describe a multiplication gate
with no connections to input or output wires. This applies to e.g. [42].

15

Rinocchio
Setup(1κ,R)

(pk, sk)← Gen(1κ), s← A∗, rv, rw ← R∗, ry = rv · rw
α, αv, αw, αy ← R∗, β ← R \ {0}

crs =
(
{E(si)}di=0, {E(rvvk(s))}k∈Imid , {E(rwwk(s))}k∈Imid , {E(ryyk(s))}k∈Imid ,

{E(αsi)}di=0, {E(β(rvvk(s) + rwwk(s) + ryyk(s))}k∈Imid , pk
)

(4)

vk = (sk, crs, s, α, β, rv, rw, ry)

Prove(crs, u, w)

u = (a1, . . . , a`), a0 = 1,
w = (a`+1, . . . , am)

v(x) =
∑m
k=0 akvk(x)

vmid(x) =
∑
k∈Imid

akvk(x)

w(x) =
∑m
k=0 akwk(x)

wmid(x) =
∑
k∈Imid

akwk(x)

y(x) =
∑m
k=0 akyk(x)

ymid(x) =
∑
k∈Imid

akyk(x)

h(x) =
v(x)w(x)− y(x)

t(x)

Lβ=β
(
rvvmid(s) + rwwmid(s) + ryymid(s)

)
A = E(vmid(s)), Â = E(αvmid(s)),

B = E(wmid(s)), B̂ = E(αwmid(s)),

C = E(ymid(s)), Ĉ = E(αymid(s)),

D = E(h(s)), D̂ = E(αh(s)), F = E(Lβ).

return π = (A, Â,B, B̂, C, Ĉ,D, D̂, F)

Verify(vk, u, π)

π = (A, Â,B, B̂, C, Ĉ,D, D̂, F),
A = E(Vmid), Â = E(V̂mid),
B = E(Wmid), B̂ = E(Ŵmid),
C = E(Ymid), Ĉ = E(Ŷmid),
D = E(H), D̂ = E(Ĥ), F = E(L)
vio(x) =

∑`
k=0 akvk(x)

wio(x) =
∑`
k=0 akwk(x)

yio(x) =
∑`
k=0 akyk(x)

Lspan = rvVmid + rwWmid + ryYmid
P = (vio(s) + Vmid) · (wio(s) +Wmid)− (yio(s) + Ymid)

Check: V̂mid = αVmid,

Ŵmid = αWmid,

Ŷmid = αYmid,

Ĥ = αH (5)

L = βLspan (6)

P = H · t(s) (7)

Fig. 1. The Rinocchio scheme for (zk-)SNARKs over a ring R.

5.2 Security of our Scheme

We are now ready to state the main theorem and prove that Rinocchio scheme satisfies the properties
of a SNARK as stated in Defn. 1.

Theorem 3. Let R be commutative ring with identity and A ⊆ R an exceptional set. Let d be an
upper bound on the degree of the QRP. Assuming that the generalized augmented (4d+3)-PKE and
the generalized (4d+ 4)-PDH assumptions hold for the encoding scheme Encode over R (and A∗),
the Rinocchio protocol described in Fig. 1 is a SNARK as per Defn. 1, with soundness error 1/|A∗|.

Security Proof Sketch. In the following, we provide intuition and an informal sketch of the
security reduction for our construction. We refer the reader to Appendix D for the full proof.

The CRS contains encodings of powers of some random secret point s as well as encodings of the
QRP polynomials evaluated at s. The construction asks the prover to present encodings computed
homomorphically using this CRS. Furthermore, the prover has to duplicate its effort with respect to
scalars α, αv, αw, αy. This allows the simulator to extract representations of terms as polynomials
of a certain degree using the augmented d-PKE extractor. The crs also contains terms multiplied
by a value β that enforce the prover to compute its encoding E(L) as a linear combination of some

16

given encoded polynomials. In the case when a proof π̂ would be accepted by the verifier but the
statement is not true, we can build an adversary B that is able to solve the q-PDH problem.

The adversary B, given its q-PDH challenge, tailors a CRS by picking values r′v, r
′
w, r
′
y, α, αv, αw, αy

and β. Since the proof π̂ verifies but the statement is false, we can show that then one of the fol-
lowing must hold, where V (x) =

∑
k∈Iio ckvk(x) + Vmid(x) (similarly W (x), Y (x)) and Vmid(x) is

an extracted polynomial (through the d-PKE assumption).:

Case 1: V (x) ·W (x)−Y (x) 6= H(x) · t(x), but Equation (7) holds, therefore, V (s) ·W (s)−Y (s) =
H(s) · t(s).

Case 2: U(x) = r′vx
d+1Vmid(x)+r′wx

2(d+1)Wmid(x)+r′yx
3(d+1)Ymid(x) is not in the module S gen-

erated by theR-linear combinations of the polynomials {uk(x) = r′vx
d+1vk(x)+r′wx

2(d+1)wk(x)+
r′yx

3(d+1)yk(x)}k∈Imid .

If the first case holds, then γ(x) = V (x) ·W (x)− Y (x)−H(x) · t(x) is a nonzero polynomial of
degree some k ≤ 2d that has s as a root. The simulator can then from γ(x) and the PDH challenge
subtract off encodings of lower powers of s to get E(sq+1) and solve q-PDH. The second case follows
a similar strategy, this time invoking Lemma 4 and reasoning about U(x).

Strong Soundness. We remark that we do not prove strong soundness, which demands that
soundness holds even when the prover has access to the verification oracle. While some designated-
verifier schemes are provably strongly sound, the reduction requires the d-PKEQ assumption (see
Assumption 3 in Appendix C) on the encoding scheme to hold. For the sake of keeping Rinocchio
as general as possible in the choice of rings and encodings, we do not make that assumption, but
our result could be adapted to that case.

5.3 Adding Zero-knowledge: zk-Rinocchio

We can make our construction zero-knowledge by randomizing the elements in the proof π such
that the checks verify and the proof is statistically indistinguishable from random encodings. The
idea is for the prover to add random multiples of t(x) to the proof terms so that we can define a
simulator that “fakes” the proof elements from completely random values. In more detail:

The prover chooses random δv, δw, δy ← R∗, and adds δvt(s) inside the encoding to vmid(s);
δwt(s) to wmid(s); and δyt(s) to ymid(s). It is easy to see that the modified value of p(x) remains
divisible by t(x). We need to add additional elements to the crs to allow for this computation. The
construction zk-Rinocchio is given in Fig. 2.

Theorem 4. Let R be commutative ring with identity with an exceptional subset A, and d be an
upper bound on the degree of the QRP. Assuming that the generalized augmented (4d + 3)-PKE
and the generalized q-PDH assumptions hold for the encoding scheme Encode over R (and A∗)
for q = 4d + 4, the protocol zk-Rinocchio described in Fig. 2 is a zk-SNARK as per Defn. 2, with
soundness error 1/|A∗|.

Proof. We will prove the zero-knowledge property by showing that zk-Rinocchio is statistically ZK.
The theorem will follow from the proof of Theorem 3 and the ZK property. Towards this, we first
note the following: for a fixed crs and statement u, given the elements vmid, wmid, ymid that are
encoded in π, the rest of the elements that are encoded in π are detremined by the constriants
given by the verification equations. Fix Vmid,Wmid, Ymid. This fixes V̂mid, Ŵmid, Ŷmid, and also P
since the coefficients {ak}`k=0 of vio, wio, yio are given by u, and P = (vio(s) + Vmid) · (wio(s) +

17

zk-Rinocchio
Setup(1κ,R)

(pk, sk)← Gen(1κ), s← A∗, rv, rw ← R∗, ry = rv · rw
α, αv, αw, αy ← R∗, β ← R \ {0}

crs =
(
{E(si)}di=0, {E(rvvk(s))}k∈Imid , {E(rwwk(s))}k∈Imid , {E(ryyk(s))}k∈Imid ,

{E(αsi)}di=0, {E(β(rvvk(s) + rwwk(s) + ryyk(s))}k∈Imid ,

E(rvαt(s)),E(rwαt(s)),E(ryαt(s)),E(rvβt(s)),E(rwβt(s)),E(ryβt(s)), pk) (8)

vk = (sk, crs, s, α, β, rv, rw, ry)

Prove(crs, u, w)

u = (a1, . . . , a`), a0 = 1,
w = (a`+1, . . . , am)

v(x) =
∑m
k=0 akvk(x)

vmid(x) =
∑
k∈Imid

akvk(x)

w(x) =
∑m
k=0 akwk(x)

wmid(x) =
∑
k∈Imid

akwk(x)

y(x) =
∑m
k=0 akyk(x)

ymid(x) =
∑
k∈Imid

akyk(x)

h(x) =
v(x)w(x)− y(x)

t(x)

δv, δw, δy ← R∗

h′(x) = h(x) + δvw(x) + δwv(x) + δvδwt(x)− δy
Lβ=β

(
rvvmid(s) + rwwmid(s) + ryymid(s)

)
A = E(vmid(s) + δvt(s))
Â = E(α(vmid(s) + δvt(s)))
B = E(wmid(s) + δwt(s))
B̂ = E(α(wmid(s) + δwt(s)))
C = E(ymid(s) + δyt(s))
Ĉ = E(α(ymid(s) + δyt(s)))
D = E(h′(s)), D̂ = E(αh′(s)), F = E(Lβ)

return π = (A, Â,B, B̂, C, Ĉ,D, D̂, F)

Verify(vk, u, π)

π = (A, Â,B, B̂, C, Ĉ,D, D̂, F),
A = E(Vmid), Â = E(V̂mid),
B = E(Wmid), B̂ = E(Ŵmid),
C = E(Ymid), Ĉ = E(Ŷmid),
D = E(H), D̂ = E(Ĥ), F = E(L)
vio(x) =

∑`
k=0 akvk(x)

wio(x) =
∑`
k=0 akwk(x)

yio(x) =
∑`
k=0 akyk(x)

Lspan = rvVmid + rwWmid + ryYmid
P = (vio(s) + Vmid) · (wio(s) + Wmid) −
(yio(s) + Ymid)

Check: V̂mid = αVmid,

Ŵmid = αWmid,

Ŷmid = αYmid,

Ĥ = αH (9)

L = βLspan (10)

P = H · t(s) (11)

Fig. 2. The zk-Rinocchio scheme for zk-SNARKs over a ring R.

Wmid) − (yio(s) + Ymid). Therefore, this fixes H = P/t(s), and also Ĥ. Now, Vmid,Wmid, Ymid are
computed by adding uniformly random values δvt(s), δwt(s), δyt(s) respectively, and are therefore
statistically uniform, since t(s) ∈ R∗ with high probability. We now construct a simulator (S1,S2).
S1 outputs a simulated CRS crs′ and sets the trapdoor τ to be (s, rv, rw, α, αv, αw, αy, β). S2 takes
as input crs′, trapdoor τ , statement u and produces a simulated proof π′ as follows. S2 samples
random v(x), w(x), y(x) such that t(x) divides v(x) ·w(x)− y(x), and sets h(x) to be the quotient
polynomial. Using the statement u, S2 computes vmid(x) = v(x)− vio(x), wmid(x) = w(x)−wio(x)
and ymid(x) = y(x) − yio(x). Now, S2 uses the trapdoor τ to compute elements that are to be
encoded as part of the proof; it uses s to compute encodings of vmid(s), wmid(s), ymid(s), h(s), uses
knowledge of s, α to compute encodings of αvmid(s), αwmid(s), αymid(s), αh(s), and knowledge of
s, β, rv, rw, ry to compute an encoding of L. The encoded values satisfy the verification equations
and are statistically uniform elements just as an honestly generated proof.

18

6 Groth16-Like Construction based on Linear-Only Encodings

We construct a zk-SNARK scheme for ring computations with efficiency close to its field-restricted
counterpart proposed in [34].

Let C be an arithmetic circuit over R, with m wires and d multiplication gates. Let Q =
(t(x), {vk(x), wk(x), yk(x)}mk=0) be a QRP which computes C. We denote by Iio = 1, 2, . . . ` the
indices corresponding to the public input and public output values of the circuit wires and by
Imid = `+ 1, . . .m, the wire indices corresponding to non-input, non-output intermediate values.
Let Encode = (Gen,E) be a secure encoding scheme and A∗ ⊂ R∗ an exceptional set.

Our scheme is based on the assumption of linear-only encodings and consists in 3 algorithms
RingSNARK = (Setup,Prove,Verify) described in Figure 3.

Setup(1κ,R) :

α, β, γ, δ ← R∗, s← A∗, (pk, sk)← Gen(1κ)

crs =
(
pk, {E(si)}d−1

i=0 , {E(βvk(s)+αwk(s)+yk(s)
γ

)}k∈Iio ,

{E(βvk(s)+αwk(s)+yk(s)
δ

)}k∈Imid , {E(s
it(s)
δ

)}d−1
i=0

)
vk = (sk, crs, s, α, β, γ, δ)
return (crs, vk)

Prove(crs, u, w)

u = (a1, . . . , a`), a0 = 1
w = (a`+1, . . . , am)
v(x) =

∑m
k=0 akvk(x)

vmid(x) =
∑
k∈Imid

akvk(x)

w(x) =
∑m
k=0 akwk(x)

wmid(x) =
∑
k∈Imid

akwk(x)

y(x) =
∑m
k=0 akyk(x)

ymid(x) =
∑
k∈Imid

akyk(x)

h(x) = (v(x)w(x)−y(x))
t(x)

fmid = βvmid(s)+αwmid(s)+ymid(s)
δ

A = E
(
α+ v(s)

)
B = E

(
β + w(s)

)
C = E(fmid + t(s)h(s)

δ
)

return π = (A,B,C)

Verify(vk, u, π)

π = (A,B,C)
A = E(Av)
B = E(Bw),
C = E(Cy)
vio(x) =

∑`
i=0 aivi(x)

wio(x) =
∑`
i=0 aiwi(x)

yio(x) =
∑`
i=0 aiyi(x)

fio = βvio(s)+αwio(s)+yio(s)
γ

F = E(fio)

Check on encodings
AB = E(α)E(β) + γF + δC

i.e.
AvBw = αβ + γfio + δCy

Fig. 3. RingSNARK Construction from Linear-only Encodings.

Theorem 5. Let R be commutative ring with identity with an exceptional subset A, and d be an
upper bound on the degree of the QRP. Assuming that the linear-only extractable assumption as
per Definition 10 holds for the encoding scheme Encode over R (and A∗), the protocol RingSNARK
described in Fig. 3 is a SNARK as per Definition 1, with soundness error 1/|A∗|.

Proof of Security We first give a variant of the Schwartz-Zippel lemma for Laurent polynomials
over rings that we will rely on in the proof.

Lemma 5. Let A be an exceptional set. Let h(X) ∈ R[X1, X
−1
1 , . . . , Xn, X

−1
n] where no term in any

Xi has degree less than −D or larger than D. Let us assume that h(X) is not the zero-polynomial.

19

Let a ∈ (A)n be chosen uniformly at random. Then

Pr[h(a) = 0] ≤ 2nD

|A|
.

Proof. We notice that f(X) :=
∏n
i=1X

D
i · h(X) is an ordinary polynomial of degree ≤ 2nD. Since

h(a) = 0 implies f(a) = 0, by the generalized Schwartz-Zippel lemma (Lemma 2), we have that

Pr[h(a) = 0] ≤ Pr[f(a) = 0] ≤ 2nD

|A|
,

finishing the proof.

We are now ready to give the security proof of our scheme RingSNARK:

Theorem 6. Let R be commutative ring with identity with an exceptional subset A, and d be an
upper bound on the degree of the QRP. Assuming that the linear-only extractable assumption as
per Definition 10 holds for the encoding scheme Encode over R (and A∗), the protocol RingSNARK
described in Fig. 3 is a SNARK as per Definition 1, with soundness error 1/|A∗|.

Proof. Completeness. Completeness of the SNARK protocol follows by QRP completeness and
by the (statistical) correctness of the Encode scheme.

Knowledge Soundness. We will show the existence of an extrator that on same input and random
coins as A can produce a valid witness whenever the prover A outputs a valid proof. Let A be the
PPT adversary in the game for knowledge soundness (Definition 1) able to produce a proof π for
which the verification algorithm returns true. By linear-only extractable assumption 10 we can
run an extractor that gives us a vector of coefficients Aα, Aβ, Aγ , Aδ, {Ak}mk=0 and polynomials
A(x), Ah(x) of degree d−1, d−2 such that the value encoded in the proof element A can be written
as a linear combination of the initial values encoded in the crs:

Av = Aαα+Aββ+Aγγ +A(s) +
∑̀
k=0

Ak
βvk(s) + αwk(s) + yk(s)

γ
+

+

m∑
k=`+1

Ak
βvk(s) + αwk(s) + yk(s)

δ
+Ah(s)

t(s)

δ
(12)

We can write out Bw and Cy in a similar fashion. We can see the verification equation as an equality
of multivariate Laurent polynomials. By Lemma 5, A has negligible success probability unless the
verification equation holds when viewing Av, Bw and Cy as formal polynomials in indeterminates
xα, xβ, xγ , xδ, xs.

Using the verification test equations and following the same reasoning as the proof in [34] we
eliminate coefficient by coefficient until we obtain:

A(x) =

m∑
k=0

akvk(x), B(x) =

m∑
k=0

akwk(x), C(x) =

m∑
k=0

akyk(x).

This implies that w = (a`+1, . . . , am) is a witness for u = (a1, . . . , a`).

20

7 SNARKs for Computation over Encrypted Data

In this section we detail how we can apply Rinocchio to the problem of verifiable computation over
encrypted data. Our approach is generic, where we just run a proving mechanism – the (zk-)SNARK
– on pre-existing Homomorphic Encryption (HE) schemes in a modular way. Taking advantage of
our protocol Rinocchio with zero-knowledge (see Section 5.3) this reduces to finding secure encoding
schemes over a ring that are compatible with the ciphertext space of the underlying HE scheme.

In Section 7.1 we review some popular homomorphic encryption schemes that are good candi-
dates for realising our privacy-preserving VC scheme. Then, by using a secure encoding scheme E
as the ones we provide in Section 7.2, we can invoke Theorem 3 to obtain a DV-SNARK for Rq, as
explained in Section 7.3.

7.1 Homomorphic Encryption Schemes and their Parameters

The first fully homomorphic encryption schemes were based on the Learning With Errors (LWE)
problem [44], which is the main assumption behind schemes with ciphertexts in the ring Zq such
as [12]. Nevertheless, the most efficient HE schemes are based on the Ring-LWE problem.

For the Ring-LWE-based schemes we will work with, the ring of plaintexts isRp = Zp[Y]/(f(Y))
and the ring of cyphertexts is R2

q , where Rq = Zq[Y]/(f(Y)) for some degree-N polynomial f(Y).
This is usually picked to be a cyclotomic polynomial, so that it factors into ` irreducible factors
modulo p. More concretely, f(Y) ≡

∏`
i=1 fi(Y) mod p, where each fi(Y) has degree φ(N)/`. By

imposing p ≡ 1 mod N , this creates ` “plaintext slots”, and hence a popular choice is f(Y) =
Y N + 1, where N is a power of two. In order to deal with the noise growth that affects these
schemes, q has to be chosen large (several hundreds of bits) and the rank of the associated lattice,
which corresponds to N , has to be high enough to meet security requirements (usually between 210

and 215).

Frequently, q is chosen so that q =
∏k
i=1 pi. While this does not affect the asymptotic complexity

of operations on ciphertexts, it brings an important gain in practice: The polynomials of Rq are
represented as k polynomials of same degree but with smaller coefficients, thanks to the ring
isomorphism given by the CRT. In many cases, these smaller primes fit native (64-bit) integer
data types, which speeds up computation and hence this representation is implemented in the
SEAL (https://github.com/Microsoft/SEAL), Lattigo (https://github.com/ldsec/lattigo)
and PALISADE (https://palisade-crypto.org/) libraries. Being able to efficiently deal with
non-prime choices for q is hence a significant advantage of our work, compared to prior results [28].
Depending on the choice of q and f(Y) in the underlying schemes, we have different options for
our exceptional sets. Generally speaking, if q =

∏k
i=1 pi, where p ≤ p1 < p2 < . . . < pk and p comes

from the plaintext space Rp, we can always find the exceptional set A∗ = {1, 2, . . . , p1 − 1} ⊂ R∗.
Hence, if p1 is big enough we don’t need to worry about anything else. Otherwise, we can move
to an extension of the ciphertext ring or apply a parallel soundness amplification strategy as we
discuss in Section 8.3.

Concrete Ring-LWE schemes. The HE schemes that we will consider for our privacy-preserving VC
are BV [14], BGV [13] and FV [26]. We are interested in “somewhat homomorphic” variants of these
schemes, where the parameters are set just large enough so as to enable homomorphic evaluation
of some target function which will be represented as a QRP and hence fixed in Rinocchio’s crs.

21

https://github.com/Microsoft/SEAL
https://github.com/ldsec/lattigo
https://palisade-crypto.org/

In this setting, schemes like BGV [13] (and a variant of FV [26]) use so-called modulo-switching.
They require a chain of moduli q0 < · · · < qL to be able to scale the noise down after each
multiplication by switching the ciphertext to a smaller modulus. When evaluating circuits with large
multiplicative depth, one needs to choose a large chain of moduli and thus use higher dimensions,
resulting in poor performance.

Scale invariant schemes allow to partially overcome this limitation by removing the need of the
modulus-switching procedure, which potentially results in the possibility of evaluating circuits with
a bigger multiplicative depth. In his seminal work [12], Brakerski introduced a new scale-invariant
scheme based on classical LWE where the noise grows only linearly during multiplication. This
more effective noise control mechanism makes the scale-invariant schemes particularly interesting.
In [26], the scale-invariant scheme of [12] was adapted to the Ring-LWE setting.

Each Ring-LWE scheme is best suited for different types of operations. BGV [13] uses, in general,
slow operations, but benefits from optimizations to treat many bits at the same time, while FV [26]
allows to perform large vectorial arithmetic operations as long as the multiplicative depth of the
evaluated circuit remains small.

7.2 Secure Encodings for (Ring-)LWE ciphertexts

We introduce two different instantiations for the encoding scheme, one suitable for the ciphertext
ring Zq that appears in LWE-based HE and the other one for a polynomial ring Rq, as in the
ciphertext ring of Ring-LWE-based schemes.

Regev-style Encoding. Here, we consider the ring Zq as the input space of the encoding (the
ring R over which the QRP is defined). This matches the ciphertext ring of LWE-based HE schemes
such as [12]. Note that Zq need not be a field. In fact, a popular choice for q is a product of co-prime
numbers q =

∏
i qi with some extra conditions on qi’s as discussed in works as [44, 43].

The encoding E.Regev we consider over the ring Zq is the same as the one used to construct
lattice-based SNARGs and SNARKs in [32], a slight variation of the classical LWE cryptosystem ini-
tially presented by Regev [44]. The encryption scheme is described by parameters Γ ← (q,Q, n, α),
with q,Q, n ∈ N such that (q,Q) = 1, and 0 < α < 1. We will also consider χσ(S), the discrete
Gaussian distribution over a discrete set S with mean 0 and parameter σ.

Gen(1κ, Γ): Choose some random string s← ZnQ. Output sk = s.
Esk(m): Given m ∈ Zq, sample a ← ZnQ, define σ = Qα; e ← χσ(Zq). Output C = (−a, a · s +

qe+m).
Dsk(C): Parse sk = s, C = (a0, c1) Compute m = (a0 · s+ c1) mod q.

On the suitability of the encoding. It is easy to see that this is a statistically-correct encoding
scheme. When encodings are added together and multiplied by scalars, the noise starts to build
up. Nevertheless, for any fixed ` there is a choice of parameters Γ such that the encoding is
`-linearly-homomorphic. Consequently, in order to ensure that we obtain a valid encoding of the
result, we need to start with sufficiently small noise in each of the initial encodings. A more detailed
discussion about the noise growth and the choices for Γ can be found in [9, 10, 32] that specifically
address SNARK applications of this encoding. The quadratic root detection and image verification
properties can be implemented using Dsk.
Security: Regarding security, this encoding scheme was already used and conjectured as linear-only
and secure against generalized q-PDH assumption over fields by prior works. Our generalized q-PDH
assumption over rings extends this, taking into account encodings over rings. The constructions

22

in [9, 10] also employ E.Regev to instantiate their SNARG(K) and this is assumed to be linear-only
extractable which, as we show in Appendix C, is a stronger assumption than our secure encoding,
i.e. an encoding that satisfies both the Generalized q-PDH and the Generalized Augmented q-PKE
assumptions.
Extension to Ring-LWE. Our Regev-style encoding can be naturally extended to an encoding over
the ring Rq used in Ring-LWE based schemes by combining N copies of the encoding above under
the same key, similar to what we will do in the Torus Encoding or in Section 8.1.

Torus Encoding. We will use a variant of the Torus FHE (TFHE) cryptosystem from [21].
We let RR = R[Y]/(f(Y)), RZ = Z[Y]/(f(Y)) and Rq = Zq[Y]/(f(Y)) denote the quotient rings
with respect to some polynomial f(Y) = Y N + 1, where m is an integer and N is a power of 2. We
let T = R/Z be the torus, which is a Z-module structure but not a ring.

We consider the RZ-module TR = RR/RZ. The plaintext for the TFHE cryptosystem is the
Z-module T = R/Z. Our encoding scheme E.Torus has Zq as message space and will be used for
encoding of elements in Rq = Zq[Y]/(f(Y)). The key remark is that the ring Rq can be identified
with a subgroup of the torus TN via the map Rq ' ZNq that identifies q−1Z/Z ' Zq as an

isomorphism of Z-modules. Also, TN ' TR because TN can be seen as a vector of coefficients. The
module structure of the encoding space TN+1 allows us to conjecture that E.Torus scheme only
supports linear homomorphic operations.

Let B = {0, 1}. The encoding scheme E.Torus is described by parameters Γ ← (q,N, α), with
q,N ∈ N such that 0 < α < 1. The noise parameter α is the standard deviation for a concentrated
distribution on the torus (more details can be found in [21]). Below, we describe the algorithms of
the encoding:

Gen(1κ, Γ): Choose a random vector s ∈ BN . Output sk = s.
Esk(m): Given sk = s ∈ BN and m ∈ Zq, apply the map Zq ' q−1Z/Z to m and get m′ ∈ T such

that m′ ≡ m/q mod 1, sample a vector a ∈ TN and compute b = s · a+m′ + e where e ∈ T is
sampled according to a noise distribution defined by the standard deviation α. Output encoding
C = (a, b).

Dsk(C): Parse sk = s, C = (a, b). Compute m” = b−a ·s = m”+e. Round m” to the nearest point
m′ on the torus with respect to a distance function and apply the equivalence q−1Z/Z ' Zq to
recover m.

The ring-LWE variant of the torus encoding scheme E.Torusr works for message space Rq as follows:

Gen(1κ, Γ): Choose a random polynomial s(Y) ∈ RZ with coefficients in {0, 1}. Output sk = s(Y).
Esk(m): Given sk = s(Y) and m(Y) ∈ Rq ' ZNq , apply the map Zq ' q−1Z/Z to each component

of m(Y) and get m′(Y) ∈ TR ' TN , sample a polynomial a(Y) ∈ TN and compute b(Y) =
s(Y) · a(Y) +m′ + e(Y) where e(Y) ∈ TR is sampled according to a noise distribution defined
by the standard deviation α.

Dsk(C): Parse sk = s(Y), C = (a(Y), b(Y)). Compute m”(Y) = b(Y)−a(Y) ·s(Y) = m”(Y)+e(Y).
Round coefficients of m”(Y) to the nearest ones on the torus to obtain m′(Y) ∈ TR and apply
the equivalence q−1Z/Z ' Zq to recover m(Y) ∈ Rq.

On the suitability of the encoding. It is easy to see that this is a statistically-correct encoding scheme
and due to the linearly-homomorphic property of the cryptosystem (see Appendix E for specific
details), for a fixed `, there is a choice of parameters Γ such that we have `-linearly-homomorphic.
The quadratic root detection and image verification properties can be implemented using Dsk.

23

Security: E.Torus is semantically secure under the TLWE assumption, a generalized intractability
problem similar to LWE. Also, it is plausible that E.Torus only permits linear homomorphisms,
therefore we conjecture that this is a secure encoding, satisfying both q-PDH and q-PKE assump-
tions. A heuristic argument for believing multiplication of two encoded values is impossible is the
torus structure of the encoding space, T is a Z-module and not a ring (i.e., the product of elements
in T is not well defined), so there is no way for one to compute any missing E(sq+1) to solve q-
PDH. Of course, the original TFHE encryption scheme defined in [21] overcomes this limitation:
it consists of three major encryption/decryption schemes (each represented by a different plaintext
space) and makes use of tools like key-switching, gate bootstrapping and gadget decomposition
function to perform computations other than additions. These operations are possible only if some
extra keys are available, for example some precomputed ciphertexts of the binary secret key in the
case of gate bootstrapping. Since we do not consider all these extensions and we do not provide
encodings of the secret key in the crs, our encoding E.Torus is limited to basic linear operations.

7.3 (zk-)SNARKs for Ring-LWE-based homomorphic encryption

We now have everything we need to instantiate the protocol defined in Section 5.1. We pick the
ring Rq = Zq[Y]/(f(Y)), to match the ciphertext space of the Ring-LWE schemes from Section 7.1.
We can next choose a secure encoding scheme E from the ones in Section 7.2. Assuming that the
evaluation algorithm of the underlying homomorphic encryption scheme (e.g. [14]) does not involve
modulus switching and rounding operations, we directly obtain a Designated Verifier SNARK for
computation on encrypted data by invoking Theorem 3 for Rq, as explained in Section 7.3.

We could choose schemes that employ modulus switching to deal with the quadratic growth of
the noise after a multiplication, such as BGV [13] and FV [26]. In these schemes, there is a chain of
moduli qi =

∏i
j=1 pi to successively reduce to (from q to qk, from qk to qk−1 and so on) when noise

builds up, typically after every multiplication. An advantage of the fact that we can work over Rq
natively (rather than emulating its arithmetic) is that reducing modulo a qi in the chain is simply a
multiplication by a public constant, which corresponds to (1, . . . , 1, 0, . . . , 0) in CRT representation,
where the amount of non-zero elements in the vector is i. As multiplication by constants can be
basically considered “for free” in SNARKs, this is a clear advantage of our work compared with
field-based counterparts which cannot work natively over Rq. Nevertheless, BGV and FV are less
friendly to Rinocchio than BV [14], since relinearization requires some bit-wise and/or rounding
operations which significantly increase the number of constraints in the QRP. Furthermore, since
these operations happen before modular reduction, in order to work with BGV and (the modulus-
switching variant of) FV, Rinocchio would have to be instantiated over a ring Rs where s > q2,
rather than Rq. Whereas this is an additional overhead, it does not deny the advantages of working
with the CRT representation of ciphertexts and the ease to extract a witness from it, since we can
pick s = P · q, where P > q is a prime that “creates another slot”. We consider a very interesting
venue for a less foundational but more experimental work to determine what would be overall more
efficient for the prover: Having a more efficient SNARK but using BV or using more state-of-the-art
schemes such as BGV and FV at an increased cost in terms of producing a witness and computing
the SNARK.

Context hiding. Another challenge for our VC scheme is preserving privacy of the inputs against
the verifier. Such a property would turn useful in the following two example scenarios. In the
first one, the party holding the secret key for HE and the verifier (who holds the secret key for

24

the encoding) checking the computation over the ciphertexts are different entities. In the second
scenario, the prover wants to compute on ciphertext from the verifier using some secret coefficients
(e.g. a Machine Learning model, or his own input in a two-party computation scenario) that he
wants to remain private.

The context hiding property roughly says that output encodings together with input verification
tokens do not reveal any information on the input. Note that this is required to hold even against
a party that is in possession of the secret key for the encryption scheme. We can make our VC
scheme context-hiding using the same techniques as proposed in [28]. In the HE schemes we propose,
information about the underlying plaintexts may be inferred from the distribution of the noise
recovered during decryption of the result. To address this, the strategy is to statistically hide the
noise. In a nutshell, the trick is to add to the public key some honestly generated encryptions of 0
and then ask the prover to add these to the result of the computation.

7.4 Comparison with Prior Work

We compare our work with its most close counterpart for this specific application, which is [28]. We
remind that the result from [8] is not comparable to ours, since it is not succinct for general circuits
and turning it to a non-interactive variant requires relying on random oracles and the Fiat-Shamir
heuristic.

The advantage of choosing our SNARK for ring computation as a candidate for the VC scheme
is that it is compatible with a set of optimisations on the underlying homomorphic encryption
schemes, which leads to a total computational overhead smaller than in prior works not only in
terms of the Prove algorithm, but also in the work required to obtained a suitable witness for it
beyond a non-verifiable evaluation of the desired function on the ciphertexts.

The work by Fiore et al. [28] relies on bilinear-group based primitives such as commitments and
SNARKs, and therefore imposes specific parameters to the ciphertext space, the polynomial ring
Rq = Zq[Y]/(f(Y)), which are not optimal for the relevant homomorphic schemes known today.

Rinocchio supports generic rings Rq with q =
∏L
i=1 qi for a chain of moduli {q1, . . . , qL} as in the

state-of-art leveled HE schemes, whereas [28] requires q to be a prime.
Another drawback of [28] comes from the trick of moving from ciphertexts inRq = Zq[Y]/(f(Y))

to scalars in Fq. This requires expensive computations on large degree polynomials in Zq[Y]. The
prover needs to carry all the circuit computations on the ciphertext polynomials without reduc-
tion modulo f(Y) along the way (where f(Y) is the quotient polynomial that defines Rq =
Zq[Y]/(f(Y))). Even if this is not counted in the cost of proof generation, it is an overhead for
the worker performing the homomorphic evaluation of the HE scheme. Since f(Y) has a large de-
gree df in practice (usually between 211 to 215, see e.g. the analysis in [8] for BV and Appendix E.2
for BGV and FV), this incurs on a very significant overhead just in obtaining the witness. For a
depth-D circuit, the Zq[Y] polynomials in the output layer can have a degree m = 2D · (df −1) and
since polynomial multiplication has a complexity of at least O(m logm), this is an overhead that
very soon becomes prohibitive as D increases (which moreover requires to quickly increase df too
for the security of the underlying HE scheme!).

In our work, such an overhead is not necessary, our techniques allow for the worker/prover
to use the existing HE schemes with their latest optimisations for computations over ciphertexts.
After the HE evaluation, the prover can use the intermediate ciphertexts from the homomorphic
evaluation of the circuit as witness to our SNARK. We remark that these are all elements in the
ring Rq as opposed to large degree integer polynomials in Zq[Y] computed in Fiore et al. [28].

25

Even though they are costly, since they incur rounding operations, Rinocchio also enables noise
reduction operations such as relinearization in BGV [13] and FV [26]. These are directly impossible
in [28], since they homomorphically hash ciphertexts to a single element of Fq (for a prime q) and
rounding/bit-wise operations are not preserved through the homomorphic hash function.

A qualitative difference is that [28] is a commit-and-prove scheme; and has the inherent drawback
that it is limited by the choice of schemes which are compatible with both the commitment scheme
and the proof system. Our scheme is an instantiation of a SNARK without combining two different
proof systems. We believe one could turn our scheme into a commit-and-prove SNARK along the
lines of [2] by “extracting” a suitable encoding to act as a commitment to the input wire values
from the SNARK. We leave working out the details to obtain a concrete commit-and-prove scheme
for ring computation to future work.

8 SNARKs for Computation over Z2k

We instantiate Rinocchio for the ring R being the Galois Ring GR(2k, δ). As R is a free module
over Z2k of rank δ, we can embed elements from Z2k into the first coordinate of R. Hence, a QRP
for arithmetic circuits over Z2k can be embedded in a QRP for arithmetic circuits over R. We
first discuss a suitable encoding scheme for R = GR(2k, δ). Then, we provide a simple, direct
instantiation of Theorem 3 using said encoding, together with some QRP gadgets to perform useful
computations such as bit decomposition.

8.1 A secure encoding for GR(2k, δ)

We will use the Joye-Libert (JL) cryptosystem [5], which has Z2k as message space, as building
block for our encoding of Galois Ring elements.

KeyGen(1κ, k): According to the security parameter κ, choose two random primes p, q satisfying
the equivalences:

p ≡ 1 (mod 2k) and q ≡ 3 (mod 4).

For simplicity, pick p = 2kp′ + 1 and q = 2q′ + 1, where p′, q′ are primes. Let g be a random
generator of both Z∗p and Z∗q , N = p · q and µ = p′. We define pk = (g, k,N) and sk = µ.

Encpk(m): Given m ∈ Z2k , sample x← Z∗N and output C = gm · x2k (mod N).
Decsk(C): Compute c = Cµ mod p and then retrieve m bit by bit as follows. Observe that c = Cµ

mod p = (gµ)m mod p, where gµ is an element of order 2k in Z∗p. Let m =
∑k−1

j=0 2jmj , mj ∈
{0, 1}. We can compute its least significant bit m0 by computing c2

k−1
mod p. Set m0 = 0 if

c2
k−1

mod p = 1, and 1 otherwise. After computing mi−1, . . . ,m0, compute mi as follows: Set
mi = 0 if and only if (

c

(gµ(
∑i−1
j=0 2

jmj))

)2k−i−1

= 1 mod p

Note that whereas the decryption cost is linear in k, there is empirical evidence [18, Section 5]
that it can be faster than more common encryption schemes such as Paillier. The JL cryptosystem
is secure under the assumption that k-quadratic residuosity is hard [5]. It is linearly homomorphic
over Z2k , and it has already been employed in the context of efficient two-party computation over
Z2k (see [18] for concrete efficiency estimates).

26

Let R = GR(2k, δ). Given a ∈ R written in its additive form a = a0 + a1X + . . . + aδ−1X
δ−1

(see Equation (1)), we define our encoding E.JL as follows:

– (pk, sk)← Gen(1κ) calls KeyGen(1κ, k) in the JL cryptosystem and outputs (pk, sk).

– ZN1× . . .×ZNδ ← E.JLpk(a) is a probabilistic encoding algorithm mapping a ring element a ∈ R
to an encoding space Z = ZN1 × . . .× ZNδ such that the sets {{E.JL(a)} : a ∈ R} partition Z,
where {E.JL(a)} is the set of encodings of a. Concretely:

E.JL(a) =
(
Encpk(a0), . . . ,Encpk(ad−1)

)
On the suitability of the encoding. The scheme E.JL clearly satisfies all non-security properties
required from an encoding. Under the security assumptions of the JL scheme, it is also reasonable
to assume that q-PDH (and q-PKE) hold for the encoding scheme too, where A has a success
probability negligible in d. This dependence on d is intrinsic to the arithmetic in R, as A can simply
output (a, y) = (2k−1,E.JL(

∑d−1
`=0 s`,0 ·X`)), where s`,0 are A’s guesses for the least significant bit of

each s` ∈ Z2k that conform the additive representation of s. Note that the fact that Enhanced-CPA
cannot be supported by the JL cyptosystem, as brought up by [18], is not an issue here. Such notion
requires interaction with an oracle which the Adversary does not have access to in our construction,
as we do not aim to provide strong soundness.

8.2 A simple construction

We can instantiate the protocol defined in Section 5.1 for R = GR(2k, δ). It follows from inspection
that, representing elements of R in their additive notation, A = {ai ∈ R : ai =

∑δ−1
j=0 ai,j ·Xj , ai,j ∈

{0, 1}} is an exceptional set in canonical form. Let C be a circuit with d multiplication gates
and define A∗ as described in Section 5.1. Then, using the secure encoding scheme E.JL from
Section 8.1, we can invoke Theorem 3 to obtain a DV-SNARK for R ⊃ Z2k with a soundness error
of |A∗|−1 = (2δ − d)−1.

Efficiency considerations. While in this construction δ is logarithmic in the desired soundness error,
we emphasize that our QRP does not suffer from the overhead of adding roughly k multiplication
gates whenever a modular reduction x mod 2k has to be computed, as it would happen if the
circuit was to be run by a SNARK over fields (see our discussion in Section 1.1). Hence, avoiding
this and using Rinocchio allows us not blow-up the degree of the QRP, which was an efficiency
bottleneck in e.g. [42]. We would further like to note that FFT-style techniques can be applied
to Galois Rings [17] and that the price of working with circuits over GR(2k, δ), rather than Z2k ,
has the potential to be amortized, as it has happened in the context of Multi-Party Computation
protocols which faced similar limitations (c.f. [1, 25]).

In Appendix B.3 we show how to build QRPs for bit decomposition, which is useful for practical
bit-wise operations such as comparisons. Next, we outline a soundness amplification technique. We
discuss efficiency considerations of this construction in Appendix 8.4.

8.3 Soundness Amplification

Despite the previous arguments, there is a concern as to what is the practical impact of the extension
degree δ in the previous construction. We believe that this is an interesting question to explore in
experimental work, for which we provide one more strategy here. Whereas it would seem that

27

we cannot escape from δ being logarithmically proportional to the soundness error, we it is good
enough to apply a parallel repetition strategy as we next describe.

Let d be the number of multiplication gates in the QRP Q. If we choose δ ∈ O(log(d)) and
work over R = GR(2k, δ), the soundness error for a single execution of Rinocchio over R is of
|A∗| = |A| − |AQ| = 2δ − d. Let us analyze the soundness error for r independent instances of
Rinocchio over R for the same QRP (that is, r different crs from r independent Setup executions), for
each of which the prover computes the Prove step from the (common) QRP witness. Now, the verifier
only accepts if all the r proofs pass verification, yielding a soundness error of |A∗|−r = (2δ − d)−r.
The previous analysis considers that the adversary does not break q-PDH. Since A has a bigger
advantage (of 2q/|A∗|) in breaking that assumption, it would be its best attack strategy. Still, A
would need to break all the q-PDH instances, which only has a success probability of (2q/|A∗|)r.
Recall that q = 4d + 4. If we pick δ = log(17d), then the best cheating strategy has a success
probability of roughly 2−r.

Working over R = GR(2k, δ) rather than R̃ = GR(2k, S) improves the computational efficiency
without greatly affecting the total proof or crs sizes. This is due to the fact that the size of each value
in R encoded using E.JL is reduced by a multiplicative factor of δ/S compared with R̃. Overall,
and since we repeat r times the Rinocchio protocol over R, this results on a total proof and crs size
which is rδ/S times the ones that would result from a single execution of Rinocchio over R̃.

8.4 Efficiency and Similar Instantiations

A natural question is whether the Rinocchio instantiation from Section 8 will beat a QAP over a field,
where reduction modulo k is computed after every multiplication gate by using bit decomposition.
We would like to emphasize that asymptotic comparison of costs to other approaches is fairly
complex. We discuss some of the issues below for the case of computing with the integers modulo
2k. In this instantiation, the degree of the extension affects the complexity of the Prover, CRS
size and the Verifier’s complexity. This is in the same way as in pairing-based SNARKs, where the
typical matching finite field has to be big enough (and meet other security requirements which rule
out e.g. characteristic 2 fields) for soundness. Usually, a 254-bit prime field is chosen.

– Our soundness amplification techniques (Sec 8.3) describe how to make the extension degree
logarithmic in the QRP size, rather than logarithmic in the soundness error, for the particular
case of the integers modulo 2k. The strategy easily generalizes to other rings. This is in contrast
to pairing-based SNARKs where no similar strategies are known.

– When using a QAP to emulate ring arithmetic, addition gates are no longer for free; in contrast
to QRPs with free ring additions. This is due to the fact that, in the QAP-based approach,
a modular reduction might be necessary after adding two numbers. Hence, the blowup in the
QAP degree of the näıve baseline needs to take addition gates into consideration as well.

– Besides having to take addition gates into account too, the cost of bit decomposition in a QAP
over a field F is not exactly k gates, but one of the following:

• If there is no enforced upper bound on the value that has to be decomposed (which always
happens if inputs are not known and proven to be upper bounded), the cost of bit decompo-
sition is log2(F) + 1 multiplication gates. Since the typical bit size of F is 254 bits for secure
and efficient pairings, this means approximately 255 gates per bit decomposition.
• If the values are provably bounded, the above can be reduced to logarithmic in the maximum

value attainable in the wire, e.g. 2k for the result of multiplying two k-bit numbers or k+ 1

28

for the result of adding them. In order to provably bound values in the circuit, when some
inputs are provided in ZK, this would require enforcing the bound by providing them bit-
by-bit and ensuring that they are indeed bits (i.e. computing x(1− x) for every alleged bit
and checking it equals zero, plus reconstructing the bits into a single value: k + 1 gates for
a k-bit value). Hence, there is an additive overhead depending on the number of ZK-inputs
if opting for this approach.

– On the plus side for QAPs, modular reduction is not needed after every operation as long as the
value on every wire can be upper-bounded. Nevertheless, optimizing the compilation of a QAP
so as to reduce the cost of modular reductions is a non-trivial problem for which practitioners
have turned to heuristics [38] (see discussion in Sec 1.1). The Rinocchio approach, on the other
hand, requires only black-box access to the underlying ring operations and removes the need for
any compilation step.

These issues are specific to the instantiation of computing with the integers modulo 2k when
k < F/2, i.e. k < 122 for the typical field choice. For larger values of k, there are additional
problems for QAP-based SNARKs over the typical field choices. For instance, the integers modulo
a composite N , there is already an exceptional set of size as big as the smallest prime factor of N ,
which reduces the impact of this efficiency concern. Furthermore, if the prover and/or the verifier
know the factorization of N , they can benefit from using a CRT representation of data during the
execution of their respective Prove and Verify algorithms, which is more efficient in practice and
incompatible with having to emulate the arithmetic of ZN within a field.

For Rinocchio’s application to privacy-preserving verifiable computation, we refer the reader to
the detailed analysis in Section 7.4.

While there are lookup techniques [11, 29] that can be used to simulate non-arithmetic oper-
ations like bit-decomposition, it is not clear how to use them directly in the QAP/QRP setting
(without a Random Oracle assumption). Hence, we do not find these approaches to be comparable
in terms of assumptions. We view our contributions as a first step towards constructing practical
SNARKs for ring arithmetic, setting the stage for further work and improvements. The main ad-
vantage of our work is its generality and the ease to instantiate with different commutative rings,
due to its black-box nature on the choice of that ring. We leave implementation and experimen-
tal studies to compare concrete gains of Rinocchio in our proposed (or different) applications as
interesting future work.

References

1. Mark Abspoel, Ronald Cramer, Ivan Damg̊ard, Daniel Escudero, and Chen Yuan. Efficient information-theoretic
secure multiparty computation over Z/pkZ via galois rings. In Dennis Hofheinz and Alon Rosen, editors,
TCC 2019, Part I, volume 11891 of LNCS, pages 471–501. Springer, Heidelberg, December 2019.

2. Shashank Agrawal, Chaya Ganesh, and Payman Mohassel. Non-interactive zero-knowledge proofs for composite
statements. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of
LNCS, pages 643–673. Springer, Heidelberg, August 2018.

3. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs for C: Verifying
program executions succinctly and in zero knowledge. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 90–108. Springer, Heidelberg, August 2013.

4. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive zero knowledge
for a von neumann architecture. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security 2014, pages 781–796.
USENIX Association, August 2014.

5. Fabrice Benhamouda, Javier Herranz, Marc Joye, and Benôıt Libert. Efficient cryptosystems from 2k-th power
residue symbols. Journal of Cryptology, 30(2):519–549, April 2017.

29

6. Anurag Bishnoi, Pete L Clark, Aditya Potukuchi, and John R Schmitt. On zeros of a polynomial in a finite grid.
Combinatorics, Probability and Computing, 27(3):310–333, 2018.

7. Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct non-interactive
arguments via linear interactive proofs. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 315–333.
Springer, Heidelberg, March 2013.

8. Alexandre Bois, Ignacio Cascudo, Dario Fiore, and Dongwoo Kim. Flexible and efficient verifiable computation
on encrypted data. LNCS, pages 528–558. Springer, Heidelberg, 2021.

9. Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based SNARGs and their application to more
efficient obfuscation. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part III,
volume 10212 of LNCS, pages 247–277. Springer, Heidelberg, April / May 2017.

10. Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Quasi-optimal SNARGs via linear multi-prover interactive
proofs. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS,
pages 222–255. Springer, Heidelberg, April / May 2018.

11. Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K. Jakobsen, and Mary Maller. Arya: Nearly linear-time
zero-knowledge proofs for correct program execution. In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part I, volume 11272 of LNCS, pages 595–626. Springer, Heidelberg, December 2018.

12. Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 868–886. Springer,
Heidelberg, August 2012.

13. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic encryption without
bootstrapping. In Shafi Goldwasser, editor, ITCS 2012, pages 309–325. ACM, January 2012.

14. Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-LWE and security for key
dependent messages. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 505–524. Springer,
Heidelberg, August 2011.

15. Benjamin Braun, Ariel J Feldman, Zuocheng Ren, Srinath Setty, Andrew J Blumberg, and Michael Walfish.
Verifying computations with state. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 341–357, 2013.

16. Matteo Campanelli, Dario Fiore, and Anäıs Querol. LegoSNARK: Modular design and composition of succinct
zero-knowledge proofs. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,
ACM CCS 2019, pages 2075–2092. ACM Press, November 2019.

17. David G Cantor and Erich Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta Infor-
matica, 28(7):693–701, 1991.

18. Dario Catalano, Mario Di Raimondo, Dario Fiore, and Irene Giacomelli. Monza: Fast maliciously secure two party
computation on Z2k . Cryptology ePrint Archive, Report 2019/211, 2019. https://eprint.iacr.org/2019/211.

19. Shuo Chen, Jung Hee Cheon, Dongwoo Kim, and Daejun Park. Verifiable computing for approximate computa-
tion. Cryptology ePrint Archive, Report 2019/762, 2019. https://eprint.iacr.org/2019/762.

20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas P. Ward. Mar-
lin: Preprocessing zkSNARKs with universal and updatable SRS. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768. Springer, Heidelberg, May 2020.

21. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast fully homomorphic en-
cryption over the torus. Journal of Cryptology, 33(1):34–91, January 2020.

22. Kai-Min Chung, Yael Kalai, and Salil P. Vadhan. Improved delegation of computation using fully homomorphic
encryption. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 483–501. Springer, Heidelberg,
August 2010.

23. Anamaria Costache, Kim Laine, and Rachel Player. Evaluating the effectiveness of heuristic worst-case noise
analysis in FHE. In Liqun Chen, Ninghui Li, Kaitai Liang, and Steve A. Schneider, editors, ESORICS 2020,
Part II, volume 12309 of LNCS, pages 546–565. Springer, Heidelberg, September 2020.

24. Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael Naehrig, Bryan
Parno, and Samee Zahur. Geppetto: Versatile verifiable computation. In 2015 IEEE Symposium on Security and
Privacy, pages 253–270. IEEE, 2015.

25. Anders P. K. Dalskov, Eysa Lee, and Eduardo Soria-Vazquez. Circuit amortization friendly encodingsand their
application to statistically secure multiparty computation. In ASIACRYPT 2020, Part III, LNCS, pages 213–243.
Springer, Heidelberg, December 2020.

26. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryptology
ePrint Archive, 2012:144, 2012.

30

https://eprint.iacr.org/2019/211
https://eprint.iacr.org/2019/762

27. Dario Fiore, Rosario Gennaro, and Valerio Pastro. Efficiently verifiable computation on encrypted data. In
Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014, pages 844–855. ACM Press, November
2014.

28. Dario Fiore, Anca Nitulescu, and David Pointcheval. Boosting verifiable computation on encrypted data. In
Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part II, volume
12111 of LNCS, pages 124–154. Springer, Heidelberg, May 2020.

29. Ariel Gabizon and Zachary J. Williamson. plookup: A simplified polynomial protocol for lookup tables. Cryp-
tology ePrint Archive, Report 2020/315, 2020. https://ia.cr/2020/315.

30. Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Outsourcing computa-
tion to untrusted workers. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 465–482. Springer,
Heidelberg, August 2010.

31. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and succinct
NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881
of LNCS, pages 626–645. Springer, Heidelberg, May 2013.

32. Rosario Gennaro, Michele Minelli, Anca Nitulescu, and Michele Orrù. Lattice-based zk-SNARKs from square
span programs. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS
2018, pages 556–573. ACM Press, October 2018.

33. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki Abe, editor, ASI-
ACRYPT 2010, volume 6477 of LNCS, pages 321–340. Springer, Heidelberg, December 2010.

34. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-Sébastien Coron,
editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016.

35. Yuval Ishai, Hang Su, and David J. Wu. Shorter and faster post-quantum designated-verifier zkSNARKs from
lattices. pages 212–234. ACM Press, 2021.

36. Yuval Ishai, Hang Su, and David J. Wu. Shorter and faster post-quantum designated-verifier zkSNARKs from
lattices. Cryptology ePrint Archive, Report 2021/977, 2021. https://eprint.iacr.org/2021/977.

37. Ahmed E. Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, Mahmoud F. Sayed, Elaine Shi, and
Nikos Triandopoulos. TRUESET: Faster verifiable set computations. In Kevin Fu and Jaeyeon Jung, editors,
USENIX Security 2014, pages 765–780. USENIX Association, August 2014.

38. Ahmed E. Kosba, Charalampos Papamanthou, and Elaine Shi. xJsnark: A framework for efficient verifiable
computation. In 2018 IEEE Symposium on Security and Privacy, pages 944–961. IEEE Computer Society Press,
May 2018.

39. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In
Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 169–189. Springer, Heidelberg, March 2012.

40. Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and linear error-
correcting codes. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS,
pages 41–60. Springer, Heidelberg, December 2013.

41. Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge SNARKs from linear-
size universal and updatable structured reference strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz, editors, ACM CCS 2019, pages 2111–2128. ACM Press, November 2019.

42. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical verifiable computa-
tion. In 2013 IEEE Symposium on Security and Privacy, pages 238–252. IEEE Computer Society Press, May
2013.

43. Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In
Michael Mitzenmacher, editor, 41st ACM STOC, pages 333–342. ACM Press, May / June 2009.

44. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Harold N. Gabow and
Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May 2005.

45. Zhe-Xian Wan. Lectures on finite fields and Galois rings. World Scientific Publishing Company, 2003.

31

https://ia.cr/2020/315
https://eprint.iacr.org/2021/977

A Verifiable Computation

Verifiable computation [?, 30] addresses the setting where a computationally limited client wishes
to outsource the computation of a function to an untrusted, but computationally powerful worker.
The goal is to enable to client to outsource the computation and be able to verify the correctness
of the result such that this verification is less work than the evaluation of the function itself.

Definition 7 (Verifiable Computation). A verifiable computation scheme is a tuple of poly-
nomial time algorithms (KGen,ProbGen,Compute,Ver) defined as follows.

– (SK,PKF)← KGen(1κ, F): A randomized key generation algorithm takes a function F as input
and outputs a secret key SK and a public key PKF .

– ([x],VKx) ← ProbGenPKF (x) A randomized problem generation algorithm takes the public key
PKF , an input x, and outputs an encoding of x, together with a private verification key VKx.

– [y]← ComputePKF ([x]) A deterministic worker computation algorithm takes the public key PKF
and an encoded input [x] to compute a value [y].

– y ← VerSK(VKx, [y]) A verification algorithm uses the verification key VKx, the worker’s output
[y], and outputs y ∈ {0, 1}∗ ∪⊥, where y is the output of the computation and ⊥ indicates that
the client rejects the worker’s output.

A verifiable computation scheme satisfies correctness, efficiency and security properties.

– Correctness. Correctness guarantees that if the worker is honest, the verification test will pass.
That is, for all F , and for all x in the domain of F ,

Pr

y = F (x) :

(SK,PK)← KGen(1κ, F)
([y],VKx)← ProbGenPK([x])

[y]← ComputePK([x])
y ← VerSK(VKx, [y])

 = 1

– Efficiency. The efficiency requirement states that the complexity of the outsourcing algorithm
ProbGen, and verification algorithm Ver together is less than the computation required to evaluate
F . A VC must satisfy the property that for any x and any [y], the time required for ProbGen(x)
plus the time required for Ver(VKx, [y]) is o(T), where T is the time required to compute F (x).

– Security. A VC scheme is secure if a malicious worker cannot make the verification algorithm
accept an incorrect answer. That is, a scheme is secure if the advantage of any PPT adversary
A in the game ExptV erA defined as Pr

(
ExptV erA [V C, F, κ] = 1

)
is negligible.

A.1 Context-Hiding

An additional property that can be defined for a VC scheme is called context-hiding. This captures
the setting where one wants to hide information on the input x even from the verifier. Such a
property would turn useful in scenarios where the data encoder and the verifier are different entities.
Informally, this property says that output encodings [y], as well as the input verification tokens
verification key VKx do not reveal any information on the input x. Notably this should hold even
against the holders of the secret key SK. We formalize this definition in zero-knowledge style,
requiring the existence of a simulator algorithm that, without knowing the input, should generate
(VKx, [y]) that look like the real ones. More formally:

32

procedure Game ExptV erA (V C, F, κ)
(SK,PK)← KGen(1κ, F)
for i = 1, . . . , ` = poly(κ) do

xi = A(PK, x1, [x1], . . . , xi−1, [xi−1])
([xi],VKxi)← ProbGenPK(xi)

end for
(i, [y]) = A(PK, x1, [x1], . . . , x`, [x`])
y ← VerSK(VKxi , [y])

return ((y 6= ⊥) ∧ (y 6= F (xi)))
end procedure

Definition 8 (Context-Hiding). A VC scheme is context-hiding for a function F if there exist
simulator algorithms S1, S2 such that:

– the keys (SK,PK) and (SK′,PK′) are statistically indistinguishable, where (SK,PK)← KGen(1κ, F)
and (SK′,PK′, td)← S1(1

κ, f);
– for any input x, the following distributions are negligibly close

(SK′,PK′,VKx, [x], [y]) ≈ (SK′,PK′,VK′x, [x], [y]′)

where (SK′,PK′, td)← S1(1
κ, f), ([x],VKx)← ProbGenPK′(x),

[y]← ComputePK([x]), and ([y]′,VK′x)← S2(td,SK
′, F (x)).

B QRP: Abstraction, Composition and Circuit Representation

We begin by recalling the definition of a QRP, after which we follow with all the results about QRP
composition and circuit representation.

Definition 9 (Quadratic Ring Programs (QRP)). A Quadratic Ring Program (QRP) Q over
a finite commutative ring R consists of three sets of polynomials, V = {vk(x) : k ∈ [0,m]},W =
{wk(x) : k ∈ [0,m]},Y = {yk(x) : k ∈ [0,m]} and a target polynomial t(x), all in R[x]. Let C be an
arithmetic circuit over R with n inputs and n′ outputs. We say that Q is a QRP that computes C
if the following holds:

a1, . . . , an, am−n′+1, . . . am ∈ Rn+n
′

is a valid assignment to the input/output variables of C if
and only if there exist an+1, . . . , am−n′ ∈ Rm−n−n

′
such that:

t(x) divides V (x) ·W (x)− Y (x),

where V (x) =
(
v0(x) +

∑m
k=1 ak · vk(x)

)
, W (x) =

(
w0(x) +

∑m
k=1 ak · wk(x)

)
and Y (x) =

(
y0(x) +∑m

k=1 ak · yk(x)
)
.

We define the size and degree of Q to be m and deg(t(x)) respectively. Given polynomials
V (x),W (x), Y (x) ∈ R[x] defined as above and corresponding to a valid assignment of the in-
put/output wires, we will call them a QRP solution.

Theorem 7. Let C be a circuit over the ring R containing only one multiplication gate. If C has
m− 1 inputs and a single output, there is a QRP of size m and degree 1 that computes C.

Proof. Let t(x) = x − r, r ∈ A, where A is the exceptional set. Define ρ1(X1, . . . , Xm−1) = c0 +∑m−1
i=1 ci ·Xi (resp. ρ2(X1, . . . , Xm−1) = d0+

∑m−1
i=1 di ·Xi) to be the linear polynomial corresponding

33

to the left (resp. right) input wire of the only multiplication gate in C. For k ∈ {0, . . . ,m− 1}, let
vk(x) = ck, wk(x) = dk, and yk(x) = 0. Set vm(x) = wm(x) = 0 and ym(x) = 1. Then we have that:(

v0(x) +
m∑
k=1

ak · vk(x)
)
·
(
w0(x) +

m∑
k=1

ak · wk(x)
)
−
(
y0(x) +

m∑
k=1

ak · yk(x)
)

= ρ1(a1, . . . , am−1) · ρ2(a1, . . . , am−1)− am = p(x)

We prove that this is a QRP for C. First assume that a1, . . . , am ∈ Rm is a valid assignment to the
input/output of C. Then p(x) = 0, which is trivially divisible by t(x). Conversely, assume that the
degree-zero polynomial p(x) is divisible by the degree-one t(x). As r is a root of t(x), then so it has
to be of p(x), which implies p(x) = 0.

B.1 QRP as an Abstraction

Here, we highlight the generality of our notion of QRP and our construction by outlining how our
notion recovers the QPP based construction of [37] for polynomial circuits.

In [37], Kosba et al. generalize the notion of Quadratic Arithmetic Programs over a field F to
that of Quadratic Polynomial Programs (QPPs), which compute circuits whose wires carry values
in the ring F[Z] of polynomials over the base field F. These polynomial circuits, where the addition
and multiplication operations are over F[Z], are introduced with the goal of representing (multi-
)sets S of elements over F. Our definition of QRPs and SNARK construction, being more general
than those of [37], also covers their work and allows us to see it as an instantiation of Rinocchio
for R = F[Z].

In [37], we have that A = F ⊂ R, i.e. the degree-zero polynomials, and A∗ = F∗. The polynomials
vk, wk, zk ∈ R[X] = F[Z][X] can be made univariate in X by imposing that the coefficients of public
linear combinations in the arithmetic circuit over R are all field elements, rather than elements of
R = F[Z], which is also the approach taken in [37]. The secure encoding E : R → S consists in,
given ck(z) ∈ R, producing Ẽ(ck(t)) = gck(t) for some fixed, secret t ∈ F and where Ẽ : F → S is
the same encoding used for QAPs over finite fields, e.g., in Pinocchio.

To cast the construction of [37] in our framework, consider the following encoding E : F→ S to
encode the QRP polynomials in the CRS: E(s) = {Ẽ(ti ·s)}ni=1, where n is determined by the degree
of the polynomials on the wires of the computation circuit. When Ẽ is exponentiation in a bilinear
group, the encoding E satisfies additive homomorphism and the resulting SNARK achieves public
verifiability. The central idea is that even though one has to encode “wire values”, which in this
case are polynomials and therefore, ring elements, the polynomials can be mapped to an evaluation
instead, resulting in a field element which is subsequently encoded during the computation of the
proof by the prover. The encoding E is designed to allow the prover to compute this encoding where
the evaluation point is the secret t. At a high level, the encoding and the CRS crafted this way
means that the secret point of evaluation of the wire polynomials is t, the secret point of evaluation
for the QRP polynomials is s, and the prover can compute the correct encodings of the SNARK
proof given the encodings in the CRS.

We sketch how the SNARK construction via QPP is a special case of our construction via QRP
below.

QPP as an instantiation of QRP. The following definition is recovered by Definition 5, where
R = Fp[Z], A = Fp ⊂ R, i.e. the degree-zero polynomials, and A∗ = F∗p. The bivariate polynomial
p(x, z) accounts for the wire values themselves being polynomials.

34

Definition B1 (Quadratic Polynomial Program (QPP) [37]) A QPP Q consists of three sets
of polynomials, V = {vk(x)},W = {wk(x)},Y = {yk(x)} and a target polynomial t(x). Let C be a
polynomial circuit. We say that Q computes C if the following holds:

a1(z), . . . , an(z), am−n′+1(z), . . . am(z) is a valid assignment to the input/output variables of C
if and only if there exist polynomials an+1(z), . . . , am−n′(z) such that t(x) divides p(x, z), where

p(x, z) =
(∑m

k=1 ak(z) · vk(x)
)
·
(∑m

k=1 ak(z) · wk(x)
)
−
(∑m

k=1 ak(z) · yk(x)
)

The degree of Q is said to be deg(t(x)).

B.2 Composing QRPs

Our definition of QRPs and the construction of QRP above, allow for their composition exactly as
in the field case [31]. In the following, we use the symbol ◦ both for circuit and QRP composition.
Note that the composition theorem below holds for the particular QRP construction of Theorem
7, and we make no claims about other constructions that satisfy the QRP definition. In particular,
we are careful to pick all the roots of the target polynomials to belong to the same exceptional set
A.

For i ∈ {1, 2}, let Qi be a QRP computing an arithmetic circuit fi. Let Ii be the set of indices
representing all wires in fi and allow I1 ∩ I2 to ‘stitch’ up to ` output wires of I1 to the inputs of

I2. Denote such stitched circuit as C = C2 ◦ C1. Express Qi as V(i) = {v(i)k (x) : k ∈ Ii},W(i) =

{w(i)
k (x) : k ∈ Ii},Y(i) = {y(i)k (x) : k ∈ Ii} and target polynomial t(i)(x). Then, let Q = Q2 ◦ Q1

consists of V = {vk(x) : k ∈ I1 ∪ I2},W = {wk(x) : k ∈ I1 ∪ I2},Y = {yk(x) : k ∈ I1 ∪ I2} and a
target polynomial t(x) which are constructed as follows.

First, define t(x) = t(1)(x) · t(2)(x). Second, for all indices k̃ ∈ I2 \ I1, extend the definition

of the wire polynomials in Q1 as v
(1)

k̃
(x) = w

(1)

k̃
(x) = y

(1)

k̃
(x) = 0. Proceed analogously for Q2

and k̂ ∈ I1 \ I2. For all k ∈ I1 ∪ I2 and i ∈ {1, 2}, we can now set vk(x) ≡ v
(i)
k (x) mod t(i)(x),

wk(x) ≡ w
(i)
k (x) mod t(i)(x) and yk(x) ≡ y

(i)
k (x) mod t(i)(x). Such modular equivalences can be

satisfied as long as the target polynomials have no common roots, as we show in the following
lemma.

Lemma 6. Let t(1)(x), t(2)(x) ∈ R[x] be two polynomials which have roots only on the same excep-
tional set A ⊂ R and such that they have no common roots. Let I1 = (t(1)(x)), I2 = (t(2)(x)) and
I = I1 · I2. Then R[x]/I

∼−→ R[x]/I1 ×R[x]/I2.

Proof. For i ∈ {1, 2}, let t(i)(x) =
∏di
ji=1(x− r

(i)
ji

). Define ideals Ii,ji = (x− r(i)ji), where 1 ≤ ji ≤ di.
Define S = {Ii,ji : 1 ≤ i ≤ 2, 1 ≤ ji ≤ di}. All the ideals in S are pairwise coprime. To see that, take
any K, K̃ ∈ S and re-denote for simplicity K = (x− k), K̃ = (x− k̃). As k − x ∈ K, we have that
k− k̃ = k−x+x− k̃ ∈ K+ K̃. Hence, as k, k̃ are two different elements from the same exceptional
set A ⊂ R, we have that k − k̃ is a unit and so K + K̃ = R[x].

Given the above, we can apply the CRT (Theorem 2) three times and conclude that

R[x]/I1 ×R[x]/I2
∼−→ (

d1∏
j1=1

R[x]/I1,j1)× (

d2∏
j2=1

R[x]/I2,j2)
∼−→ R[x]/I.

We prove that the above construction for Q = Q2 ◦Q1 indeed computes C = C2 ◦ C1.

35

Theorem 8. Let C1 and C2 be two arithmetic circuits computed by QRPs Q1 and Q2. Assume the
target polynomials of both QRPs have roots only on the same exceptional set A ⊂ R, but no common
roots. Allow also some of the input variables of C2 to include some ` output variables from C1, but
let no other kind of overlapping between the arithmetic circuits be possible. Denote by C = C2 ◦C1

the circuit obtained by stitching C1 and C2 together at those ` wires.
There exists a QRP Q with size |Q| = |Q1| + |Q2| − ` and deg(Q) = deg(Q1) + deg(Q2) that

computes C. Q’s target polynomial is the product of the target polynomials for Q1 and Q2.

Proof. Let Ii/o, I1,i/o, I2,i/o be the indices of the input/output wires of C,C1 and C2, respectively.
Suppose ai/o = {ak ∈ Ii/o} is a valid input/output assignment for C. By definition, such in-
put/output assignment can be extended to a valid assignment to all wires of C and hence in
particular we can extend ai/o to a valid assignment ã = {ak ∈ I1,i/o ∪ I2,i/o}. Since Q1 is a QRP,
there exist coefficients b = {bk : k ∈ I1} which are consistent with the valid assignment to I1,i/o
and such that the polynomial

p(1)(x) =
(
v
(1)
0 (x) +

∑
k∈I1

bk · v
(1)
k (x)

)
·
(
w

(1)
0 (x) +

∑
k∈I1

bk · w
(1)
k (x)

)
−
(
y
(1)
0 (x) +

∑
k∈I1

bk · y
(1)
k (x)

)
is a multiple of t(1)(x). The same reasoning can be applied to Q2, for a polynomial p(2)(x) defined
from coefficients c = {ck : k ∈ I2} which must exist by the fact that Q2 is a QRP. By construction,
b and c must be consistent for the indices in I1∩I2, as those are contained in both I1,i/o and I2,i/o,
which were fixed by the extended assignment ã. Therefore, we can define a = {ak ∈ I1 ∪ I2} as
ak = bk for all bk ∈ I1 and ak = ck for all ck ∈ I2. Let

p(x) =
(
v0(x) +

∑
k∈I1∪I2

ak · vk(x)
)
·
(
w0(x) +

∑
k∈I1∪I2

ak · wk(x)
)

−
(
y0(x) +

∑
k∈I1∪I2

ak · yk(x)
)

where vk(x), wk(x) and yk(x) are defined from v
(i)
k (x), w

(i)
k (x) and y

(i)
k (x), i ∈ {1, 2}, as described

above (note the hypothesis of Lemma 6 are satisfied). We show that t(x) divides p(x). Since vk(x) =

v
(1)
k (x) mod t(1)(x), wk(x) ≡ w

(1)
k (x) mod t(1)(x) and yk(x) ≡ y

(1)
k (x) mod t(1)(x) for all k, and

since vk̃(x) = wk̃(x) = yk̃(x) ≡ 0 mod t(1)(x) for all k̃ ∈ I2 \ I1, we conclude that t(1)(x) divides

p(x). Applying analogous reasoning, we can deduce that t(2)(x) divides p(x) and, thus, t(x) =
t(1)(x) · t(2)(x) divides p(x)

Conversely, let p(x) be defined from the polynomial sets V,W and Y as above and such that
t(x) divides p(x). We show that any set of coefficients a enabling such divisibility contains a valid
assignment ai/o = {ak ∈ Ii/o} to the input/output wires of C. As p(x) ≡ 0 mod t(x), by Lemma 6,

p(x) ≡ 0 mod t(i)(x) for i ∈ {1, 2}. Since Q1 and Q2 are QRPs, it follows that a must then contain
valid assignment to the input/output wires of C1 and C2. As Ii/o ⊆ I1,i/o ∪ I2,i/o, we have found a
valid assignment ai/o to the input/output wires of C.

Finally, we conclude by showing how to build a QRP for any arithmetic circuit by using the
previous results from this section.

36

Theorem 9. Let C be an arithmetic circuit with n inputs in (a subring of) R and s < |A| multi-
plication gates, each with fan-in 2. If each output wire of C is the output of a multiplication gate,
there is a QRP with size n+ s and degree s that computes C.

Proof. We obtain this result by combining Theorem 7 and Theorem 8, one multiplication gate
at a time. As long as s < |A|, we can ensure that the target polynomials of the QRPs for each
multiplication gate do not have common roots, so that Theorem 8 can be invoked.

There is only one small task remaining. Let C be a circuit with ñ ≥ 1 output wires which
are not the output of multiplication gates. Our last result does not teach us how to deal with C,
but we can build a modified circuit C̃ for which the hypothesis of Theorem 9 are satisfied. As
in [31], C̃ has one additional ‘dummy’ input wire, which is required to be always assigned to the
multiplicative identity 1. Furthermore, C̃ has a ñ additional multiplication gates: For each of them,
the left gate-input wire is the ‘dummy’ circuit-input wire and the right gate-input wire is one of the
circuit-output wires which did not satisfy the hypothesis of Theorem 9. It follows that the QRP of
size n+ s+ ñ+ 1 and degree s+ ñ that computes C̃ also computes the original C.

output

×

+

a1 a2

×

a3 a4

a5

a6

Roots Polynomials in QRP (V,W,Y, t(x))

Gates Left inputs Right inputs Outputs

v3(r5) = 1 w4(r5) = 1 y5(r5) = 1

r5 vk(r5) = 0, wk(r5) = 0, yk(r5) = 0,

k 6= 3 k 6= 4 k 6= 5

v1(r6) = v2(r6) = 1 w5(r6) = 1 y6(r6) = 1

r6 vk(r6) = 0, wk(r6) = 0, yk(r6) = 0,

k 6= 1, 2 k 6= 5 k 6= 6

Fig. 4. Arithmetic circuit and equivalent QRP. The polynomials V = {vk(x) : k ∈ [6]},W = {wk(x) : k ∈ [6]},
Y = {yk(x) : k ∈ [6]} and the target polynomial t(x) = (x − r5)(x − r6) are defined in terms of their evaluations at
two random points belonging to the same exceptional set (r5, r6 ∈ A), one for each multiplicative gate.

Given a circuit C, we can construct a QRP for C using the composition theorem above. We
can also construct a QRP directly for the given circuit without relying on composition. Let C be
a circuit whose gates have fan-in two and fan-out one. To build a QRP, we will make use of a
exceptional set A as follows. In order to define the target polynomial, we will pick elements rg ∈ A
for each multiplication gate g ∈ C and define t(x) =

∏
g∈C(x − rg). We define the polynomials

vk(x), wk(x) and yk(x) by interpolating over those same points in the same way one proceeds in
the QAP case [42]. As an example for this procedure, see Figure 4.

37

B.3 Some useful QRPs

While the QRP construction described in Section 3 would allow us to easily describe arithmetic
circuits over e.g. Z2k or the rings Rq used for homomorphic encryption, in practical scenarios one
is also interested in performing bit-wise operations such as comparisons, for which we provide a bit
decomposition gate.

Bit Decomposition Gate We show how to build a QRP which, given an input a ∈ R, gives as an
output wires holding values ai ∈ {0, 1} which correspond to the ‘binary representation’ of a. Our
following description is specialized for R = GR(2k, d), but it can be easily adapted to other rings
such as those employed in Section 7.1.

We provide two different versions of this gate. For the first one, nothing is known about a,
whereas in the second case, better efficiency is achieved by assuming that a ∈ Z2k . When interested
in computation over Z2k only, the former version of the gate where potentially a /∈ Z2k is necessary
only if the prover is providing some inputs to the QRP in a zero-knowledge way. Nevertheless, once
the inputs from the prover have been asserted to be elements of Z2k , one can use the more efficient
Z2k -splitter gate during the rest of the circuit. The provers inputs can be tested to be from Z2k

either by inspection when those are provided in the clear, or when they are provided in ZK, by e.g.
applying the general R-splitter gate to them and outputting to the verifier all the wires that should
be always equal to zero in a ‘binary representation’ of an element in Z2k ⊂ R. Let A ⊂ R be the
exceptional set.

1. Z2k -splitter gate: This mini-QRP has one input wire, holding a ∈ Z2k , and k output wires
holding a1, . . . , ak ∈ {0, 1} such that a =

∑k
i=1 2i−1ai. Label the input wires as 1, . . . , k and

the output wire as k + 1. Let t(x) = (x − r)
∏k
i=1(x − ri), where r, r1, . . . , rk ∈ A are pairwise

different. In an approach similiar to Pinocchio [42], we set:

v0(r) = 0, vi(r) = 2i−1, for 1 ≤ i ≤ k, vk+1(r) = 0,

w0(r) = 1, wi(r) = 0, for 1 ≤ i ≤ k,wk+1(r) = 0,

y0(r) = 0, yi(r) = 0, for 1 ≤ i ≤ k, yk+1(r) = 1

For 1 ≤ j ≤ k:

vj(rj) = 1, vi(rj) = 0 for all i 6= j,

w0(rj) = 1, wj(rj) = −1, wi(rj) = 0 for all i 6= 0, j,

yi(rj) = 0 for all i

If (v0(x) +
∑
akvk(x)) · (w0(x) +

∑
akwk(x))− (y0(x) +

∑
akyk(x)) is divisible by t(x), then it

must be 0 at r, and therefore, by the first set of equations, this gives, a =
∑k

i=1 2i−1ai. The
second set of equations guarantee that each rj is a root, which implies, aj(1− aj) = 0. Since all
the zero divisors of R belong to the maximal ideal (2), it follows that if aj is a zero divisor then
aj ± 1 is not, and thence the only solutions for the previous equation are aj ∈ {0, 1}. Together,
these give the guarantee that all ai are bits, and are the binary decomposition of a.

2. R-splitter gate: This works essentially as the previous version of the splitter gate repeated δ
times in parallel, once for every component of R seen as a free-module of rank δ over Z2k .

38

C More on the Security of the Encoding Schemes over Rings

We start by presenting how the attack on q-PDH from [35] extends to the Generalized q-PDH
assumption (Assumption 1). This is the reason behind allowing the adversary to have a 2q/|A∗|
advantage by definition.

Lemma 7. Let Encode be an `-linearly homomorphic encoding scheme over a finite commutative
ring R. Let ` ≥ 2q − 1. There exists an adversary running in time poly(q, log |R|) which wins the
Generalized q-PDH assumption with advantage 2q/|A∗|.

Proof. Let A choose 2q random points z1, . . . , z2q ∈ A∗. Interpolate the polynomial that has

those random points as roots, which we denote by f(X) =
∑2q

i=0 αix
i. It holds that ∀i ∈ [2q],

αq+1z
q+1
i = −(

∑q
j=0 αjz

j
i)− (

∑2q
k=q+1 αkz

k
i). Given a generalized q-PDH challenge, A and since the

encoding scheme is `-linearly homomorphic, A can compute an encoding of the right hand side of
the previous equation. Hence, if the secret s sampled for the q-PDH challenges happens to be one
among z1, . . . , z2q, and since the value αq+1 is known by A, they win the game.

Consider an encryption scheme which satisfies the properties required for an encoding scheme
from Definition 6. If the encryption scheme can be assumed to be linear-only extractable, which
is the assumption in [7, 9, 10], then it automatically is a secure encoding, i.e. it satisfies both the
Generalized q-PDH and the Generalized Augmented q-PKE assumptions. We recall the linear-only
extractable definition from [7], which we adapt to the broader context of (non-field) commutative
rings with identity.

Definition 10 (Linear-only extractable). An encoding scheme Encode = (Gen,E) over R is
linear-only extractable if for all probabilistic polynomial time algorithms A, there exists a proba-
bilistic polynomial time extractor χA such that the following probability is negligible in the security
parameter.

Pr

c 6= a0 +
∑n

i=1 aixi :

(pk, sk)← Gen(1κ),

x1, . . . , xn
R← R,

σ = (pk,E(x1), . . . ,E(xn)),
(E(c); a0, . . . , an)← (A||χA)(σ)

 .

Lemma 8. If an encoding scheme Encode = (Gen,E) is IND-CPA secure and linear-only ex-
tractable, then it is an encoding scheme that satisfies Generalized Augmented q-PKE (Assump-
tion 2).

Proof. Let σ = (pk,E(1),E(s), . . . ,E(sq),E(α),E(αs), . . . ,E(αsq)). We will show that Encode satis-
fies q-PKE, meaning we will show that for any adversary A able to produce c, ĉ such that αc− ĉ = 0,
there exists an extractor χA which outputs coefficients ai satisfying c =

∑q
i=0 ais

i with non negli-
gible probability.

We define two adversaries Bc and Bĉ that, upon receiving as input σ, run exactly the same
code as A and output, respectively, c and ĉ. By our linear-only extractable assumption on E,
there exist an extractor χc (resp. χĉ) for Bc (resp. Bĉ) which outputs a0, . . . , aq, b0, . . . , bq (resp.
a′0, . . . , a

′
q, b
′
0, . . . , b

′
q) such that

c =
∑q

i=0 ais
i +
∑q

i=0 biαs
i, ĉ =

∑q
i=0 a

′
is
i +
∑q

i=0 b
′
iαs

i

39

with non negligible probability.
Knowing that αc− ĉ = 0 implies either that the polynomial

P (X,Y) = X2∑q
i=0 biY

i +X
∑q

i=0(ai − b′i)Y i −
∑q

i=0 a
′
iY

i

is the zero polynomial, or that (α, s) are roots of P (X,Y). We rule out the second case by the
IND-CPA security of the encoding scheme and the generalized Schwartz-Zippel lemma. Hence,
P (X,Y) = 0, which gives us that for every i ∈ [q], bi = a′i = 0 and ai = b′i. Therefore, we have
defined an extractor χA for the Generalized Augmented q-PKE assumption, which outputs the
coefficients ai obtained from χc.

Lemma 9. If an encoding scheme Encode = (Gen,E) is IND-CPA secure and linear-only ex-
tractable, then it is an encoding scheme that satisfies the Generalized q-PDH assumption (As-
sumption 1).

Proof. Consider an adversary A that breaks q-PDH of the scheme Encode. We construct an adver-
sary B that breaks IND-CPA. Consider the adversary B playing left-or-right oracle game where the
adversary gets access to an encryption oracle that receives a pair of chosen messages always returns
a ciphertext encrypting either the left or the right message. The adversary wins if it guesses the
left-or-right bit.
B samples s0, s1 uniformly from an exceptional set A∗ ⊂ R∗. B gets access to the left-or-

right encryption oracle, makes queries on pairs (sk0, s
k
1) for k ∈ {0, . . . , q, q + 2, . . . , 2q} , and

receives {E(sib)}
2q,i6=q+1
i=0 for challenge bit b. B now runs the q-PDH adversary A on {E(sib)}. A

returns y ∈ {E(sq+1
b)}. B now invokes the extractor that exists since Encode satisfies linear-only

extractability (c.f. Definition 10). χA, given the same input as A and its internal randomness,

returns a0, · · · , aq, aq+2, a2q such that a0 +
∑2q,i6=q+1

i=1 ais
i
b = sq+1

b . Since B knows s0, s1, it checks

whether a0 +
∑2q,i6=q+1

i=1 ais
i
0 = sq+1

0 or a0 +
∑2q,i 6=q+1

i=1 ais
i
1 = sq+1

1 , and outputs the bit b∗ for which
this holds. Notice that the previous strategy will output a single possible value for b∗ with high
probability, which further matches the challenge bit b. This is because, for the random s1−b, we
have that a0 +

∑2q,i 6=q+1
i=1 ais

i
1−b = sq+1

1−b will hold only with probability q/|A∗|, by the generalized
Schwartz-Zippel lemma.

Informally, the linear-only extractability assumption captures the fact that an adversary can
perform only affine operations over the encodings provided as input. It can be argued that the
PDH asssumption is in some sense weaker than linear-only extractability since the former is implied
by the latter. However, if for an encoding scheme like JL, the linear-only extractability property
is broken, computing non-linear homomorphisms would be possible which would mean efficient
fully homomorphic encryption which is not known using current techniques. In [18], the authors
consider a seemingly related notion called enhanced CPA and show that an additively homomorphic
encryption scheme over Z2k cannot satisfy enhanced CPA. We note that their attack relies on the
fact that the adversary has access to an oracle that checks the validity of a ciphertext. In our use of
a encoding scheme in constructing a SNARK, we are concerned only with one-time soundness and
our setting does not provide access to such oracles to the adversary (see also the remark at the end
of Section 2.1). In proving multi-theorem soundness of designated-verifier SNARK constructions,
one needs to make a stronger assumption called the q power-knowledge of equality (q-PKEQ)
assumption. The following q-PKEQ assumption is needed in the designated verifier setting where
the adversary has access to a verification oracle (in the public verification setting, this is for free and

40

the adversary has no additional advantage). This assumption is invoked to prove multi-statement
soundness in the proof to test if two (potentially adversarially generated) encodings have the same
value underneath without having the secret key.

Assumption 3 (Generalized q-PKEQ) The generalized q power-knowledge of equality assump-
tion holds for an encoding scheme Encode if for all non-uniform probabilistic polynomial time al-
gorithm A, there exists a non-uniform probabilistic polynomial time extractor χA such that the
following probability is negligible in the security parameter.

Pr

(b = 0 ∧ ĉ ∈ {E(c)})

∨
(b = 1 ∧ ĉ /∈ {E(c)})

:

(pk, sk)← Gen(1κ),

s
R← A∗,

σ = (pk,E(1),E(s), . . . ,E(sq),E(sq+2), . . . ,E(s2q)),
(E(c), ĉ; b)← (A||χA)(σ)

 .

D Proof of Theorem 3

In this section, we prove that the construction satisfies the properties of a SNARK as stated in
Definition 1. We recall the result:

Theorem 10 (Theorem 3, restated). Let R be commutative ring with identity with an excep-
tional subset A, and d be an upper bound on the degree of the QRP. Assuming that the generalized
augmented d-PKE and the generalized q-PDH assumptions hold for the encoding scheme Encode
over R (and A∗) for q = 4d+ 4, the protocol Rinocchio described in Section 5.1 is a SNARK as per
Definition 1, with soundness error 1/|A∗|.

Completeness. Assuming the encoding scheme Encode satisfies (statistical) correctness, then it
follows by inspection that the verification equations are satisfied by a correctly generated proof π.
Therefore (statistical) completeness of the Rinocchio protocol follows by QRP completeness.

Soundness. Assume there exists an adversary A who returns the proof of a false statement. We
use this adversary A in order to construct an adversary B who breaks the q-PDH assumption.

Setting up the CRS. Adversary B is given the description of the encoding scheme, and the challenge
E(1),E(s), . . . , E(sq), E(sq+2), . . . ,E(s2q). B provides the crs to A by constructing it as follows. It
samples r′v, r

′
w, α, αv, αw, αy at random from R∗ and sets r′y = r′vr

′
w. Let rv = r′vs

d+1, rw = r′ws
2(d+1),

and ry = r′ys
3(d+1). The value β is chosen as follows. Sample a polynomial βpoly(x) ∈ A∗[X]

of degree at most 3d+ 3 uniformly at random, subject to the constraint that βpoly(x) · (r′vvk(x) +
r′wx

(d+1)wk(x)+r′yx
2(d+1)yk(x)) has a zero coefficient for x3d+3 for all k. B sets β = sq−(4d+3)βpoly(s).

Looking ahead in our proof, the polynomial xq−(4d+3) ·βpoly(x) will play the role of a(x) in Lemma 4.
B sets the CRS as follows:

crs =
(
{E(si)}di=0, {E(rvvk(s))}k∈Imid , {E(rwwk(s))}k∈Imid , {E(ryyk(s))}k∈Imid ,

{E(αvrvvk(s))}k∈Imid , {E(αwrwwk(s))}k∈Imid , {E(αyryyk(s))}k∈Imid ,

{E(αsi)}di=0, {E(β(rvvk(s) + rwwk(s) + ryyk(s))}k∈Imid , pk
)

41

We now argue that B can construct the above crs using the terms provided in its challenge.
Consider the term in the proof that involves β, which is the final proof term that the prover will
have to compute using the CRS.

E(β(rvvmid(s) + rwwmid(s) + ryymid(s)))

= E(β(r′vs
d+1vmid(s) + r′ws

2(d+1)wmid(s) + r′ys
3(d+1)ymid(s))). (13)

In this term, β is multiplied by a polynomial evaluated at s. Note that B generated β also as a
polynomial evaluated at s. If we further rewrite (13) by expressing β in terms of s, we have

E(sq−3d−2r′vβpoly(s)vmid(s) + sq−2d−1r′wβpoly(s)wmid(s) + sq−dr′yβpoly(s)ymid(s))

= E(sq−3d−2βpoly(s)(r
′
vvmid(s) + sd+1r′wwmid(s) + s2d+2r′yymid(s))). (14)

Since βpoly(x) · (r′vvk(x) + r′wx
d+1wk(x) + r′yx

2d+2yk(x)) has a zero coefficient in front of x3d+3,
the value underneath the encoding in (14) has a zero in front of sq+1. The powers of s in the
encoding go up to (q − 3d − 2) + (3d + 3) + (2d + 2) + d = q + 3d + 3 ≤ 2q. The polynomials
vk(x), wk(x), yk(x) are of degree d, and none of the other elements in the CRS contain sq+1 inside
the encoding. Since we have q ≥ 4d+ 4, all the elements in the CRS can be generated using terms
in the challenge.

We need to make sure that a crs generated as above has a distribution which is indistinguishable
to the one given in our protocol. Note that, as βpoly(x) is a polynomial of degree at most 3d+3 and
β = sq−(4d+3)βpoly(s), we have that Pr[β = 0] ≤ (3d+ 3)/|A∗| (Lemma 2). This is a bigger chance
for β = 0 than in our protocol, but notice that A never sees β in the clear, but rather encodings
of it. There are hence two cases: Either E(0) is computationally indistinguishable from any E(a)
where a 6= 0, or it is not (as it happens in the exponentiation-based encodings of e.g. [31, 42]). In
the former case, A will accept the crs. In the latter case, B checks whether β = 0 by distinguishing
whether the last term of crs is E(0) and, if so, samples a new βpoly(x) and repeats the process above
until the last term is not E(0).

Extraction. With the CRS set this way, B can now obtain a purported proof from A. Due to
the indistinguishability of simulated CRS and real CRS, A aborting on input the tailored CRS is
negligible. Let π̂ be a purported proof returned by A, which is parsed as follows:

π̂ = (E(rvVmid),E(rwWmid),E(ryYmid),E(H),

E(rvV̂mid),E(rwŴmid),E(ryŶmid),E(Ĥ),E(L)
)

Since B knows that rv = r′vs
d+1, rw = r′ws

2(d+1), and ry = r′ys
3(d+1), it can reinterpret π̂ as

follows: (
Er′v(s

d+1Vmid),Er′w(s2d+2Wmid),Er′y(s
3d+3Ymid),E(H),

Er′v(s
d+1V̂mid),Er′w(s2d+2Ŵmid),Er′y(s

3d+3Ŷmid),E(Ĥ),E(L)
)

Notice that the proof elements are now being treated as if they belonged to four different encodings:
E,Er′v ,Er′w ,Er′y , where the four latter are defined as Ea(b) = E(a ·b). It is easy to see that, by the fact
that r′v, r

′
w, r
′
y ∈ R∗ and the assumption that E is a secure encoding, so are Er′v ,Er′w ,Er′y . Since π̂

42

passes verification (in particular Equation (5)), we can apply the following reasoning for E and any
of the other three encodings. As (E(H),E(Ĥ)) is of the form (E(H),E(αH)), B can use the d-PKE
extractor χA to extract a polynomial H(x) =

∑d
i=0 hix

i of degree at most d such that H = H(s).
This is because the CRS given to A is of the form (σ, z), where:

σ = (pk, {E(si)}di=0, {E(αsi)}di=0), z = crs \ σ

Note that the auxiliary information z is independent of α, as the relation between e.g. Er′v(s
d+1Vmid)

and Er′v(s
d+1V̂mid) is an i.i.d. αv. If we look at any of the three remaining encodings Er′v(·), Er′v(·)

or Er′v(·), we will next show that B can extract Vmid(x) of degree at most d and such that Vmid =
Vmid(s) due to the (2d+ 1)-PKE assumption (resp. Wmid(x) due to (3d+ 2)-PKE and Ymid(x) due
to (4d+ 3)-PKE). Focusing on Vmid(x), notice that A does not have a (2d+ 1)-PKE challenge, but
the following (where the problem is with σ̃v, not with z)

σ̃v = (pk, {Er′v(s
d+1vk(s))}k∈Imid , {Er′v(αvs

d+1vk(s))}k∈Imid), z = crs \ σ̃v

which differs from the expected σv = (pk, {Er′v(s
i)}2d+1

i=0 , {Er′v(αvs
i}2d+1
i=0) in two ways: It is com-

pletely missing the powers {si}di=0 and, for those between d + 1 and 2d + 1, it instead has the
evaluation at s of the polynomials {xd+1vk(x)}k∈Imid . Informally, since B can compute σ̃v from σv,
we can extract. In more syntactic rigour, B can send σv to a (2d+ 1)-PKE adversary Av who runs
internally the SNARK prover A on σ̃v, so as Equation (5) verifies, then, by the PKE assumption
there exists an extractor χAv which gets a polynomial xd+1Vmid(x) =

∑d
i=0 vix

d+1+i of degree
at most 2d + 1 such that Vmid = Vmid(s). Applying the same reasoning, we can conclude on the
extraction of polynomials Wmid(x), Ymid(x) of degree at most d such that Wmid = Wmid(s) and
Ymid = Ymid(s).

Reducing to Generalized q-PDH. Since the proof π̂ verifies but the statement is false, we show that
then one of the following must hold, where V (x) =

∑
k∈Iio ckvk(x) + Vmid(x) and similarly W (x)

and Y (x):

Case 1: V (x) ·W (x)−Y (x) 6= H(x) · t(x), but Equation (7) holds, therefore, V (s) ·W (s)−Y (s) =
H(s) · t(s).

Case 2: The polynomial

U(x) = r′vx
d+1Vmid(x) + r′wx

2(d+1)Wmid(x) + r′yx
3(d+1)Ymid(x)

is not in the module S generated by the R-linear combinations of the polynomials {uk(x) =
r′vx

d+1vk(x) + r′wx
2(d+1)wk(x) + r′yx

3(d+1)yk(x)}k∈Imid .

We demonstrate that those are the only cases for a false π̂ by proving that, if none of them
holds, then V (x),W (x) and Y (x) are a QRP solution, which would then mean that π̂ is a valid
proof. So, towards contradiction, assume both that U(x) ∈ S and V (x) ·W (x)−Y (x) = H(x) · t(x).
Since U(x) ∈ S, it can be expressed as U(x) =

∑
k∈Imid ckuk(x), where ck ∈ R. Thus,

U(x) = r′vx
d+1v′(x) + r′wx

2(d+1)w′(x) + r′yx
3(d+1)y′(x),

where we define v′(x) =
∑

k∈Imid ckvk(x), w′(x) =
∑

k∈Imid ckwk(x) and y′(x) =
∑

k∈Imid ckyk(x).
Note that v′(x), w′(x), y′(x) have degree at most d, since they are in the spans of {vk(x)}k∈Imid , {wk(x)}k∈Imid

43

and {yk(x)}k∈Imid respectively. Since Vmid(x),Wmid(x), Ymid(x) are also polynomials of degree at
most d, and since the R-submodules {xd+1+i : i ∈ [0, d]}, {x2(d+1)+i : i ∈ [0, d]}, and {x3(d+1)+i :
i ∈ [0, d]} of R[x] are disjoint (except at zero) we have that

U(x) = r′vx
d+1Vmid(x) + r′wx

2(d+1)Wmid(x) + r′yx
3(d+1)Ymid(x)

= r′vx
d+1v′(x) + r′wx

2(d+1)w′(x) + r′yx
3(d+1)y′(x),

we conclude that Vmid(x) = v′(x), Wmid(x) = w′(x) and Ymid(x) = y′(x). Therefore, V (x) =∑
k∈Iio ckvk(x)+Vmid(x) =

∑
k∈Iio ckvk(x)+

∑
k∈Imid ckvk(x),W (x) =

∑
k∈Iio ckwk(x)+Wmid(x) =∑

k∈Iio ckwk(x) +
∑

k∈Imid ckwk(x), and Y (x) =
∑

k∈Iio ckyk(x) + Ymid(x) =
∑

k∈Iio ckyk(x) +∑
k∈Imid ckyk(x). Finally, as we assumed that V (x) · W (x) − Y (x) = H(x) · t(x), we have that

V (x),W (x), Y (x) can be written as the same linear combination {ck}k∈Iio∪Imid of their respective
sets, and that t(x) divides V (x) ·W (x)− Y (x). Therefore, V (x),W (x), Y (x) are a QRP solution.

We now address the two cases corresponding to a false proof π̂ and show that, in both Case 1
and Case 2, B can break the Generalized q-PDH (Assumption 1).

Case 1: V (x) ·W (x)−Y (x) 6= H(x) · t(x). The non-zero polynomial γ(x) = V (x) ·W (x)−Y (x)−
H(x) · t(x) has degree k ≤ 2d and s as a root. Express γ(x) = γk · xk + γ̂(x), where k ≤ 2d,
γk 6= 0 and deg(γ̂(x)) < k. Since s is a root of γ(x), it is also a root of xq+1−kγ(x). Hence,
γk · sq+1 = −sq+1−kγ̂(s). B can compute E(γk · sq+1) by computing E(−sq+1−kγ̂(s)), which is a
known linear combination of the {E(si)}qi=0 values belonging to the q-PDH instance. This solves
the q-PDH challenge.

Case 2: The polynomials Vmid(x),Wmid(x), Ymid(x) are not in the required spans. There does
not exist {ck}k∈Imid such that Vmid(x) =

∑
k∈Imid ckvk(x),Wmid(x) =

∑
k∈Imid ckwk(x) and

Ymid(x) =
∑

k∈Imid ckyk(x). Then, the polynomial U(x) = r′vx
d+1Vmid(x) + r′wx

2(d+1)Wmid(x) +

r′yx
3(d+1)Ymid(x) is not in the module S generated by the R-linear combinations of the polyno-

mials {uk(x) = r′vx
d+1vk(x) + r′wx

2(d+1)wk(x) + r′yx
3(d+1)yk(x)}. Recall that B chose a polyno-

mial βpoly(x) ∈ A∗[X] of degree at most 3d+ 3 subject to the constraint that all polynomials in
{βpoly(x) ·(r′vvk(x)+r′wx

(d+1)wk(x)+r′yx
2(d+1)yk(x))} have a zero coefficient for x3d+3. Thus, by

Lemma 4, the coefficient of xq+1 in the polynomial ω(x) = xq−(4d+3) ·βpoly(x)·U(x) is a ∈ R\{0}
with probability 1−1/|A∗|. Furthermore, B can compute all the coefficients of ω(x) on its own, so
it can subtract from E(L) = E(sq−(4d+3)βpoly(s)·(sd+1Vmid(s)+s2(d+1)Wmid(s)+s3(d+1)Ymid(s)))
all the monomials corresponding to E(sj) for j 6= q + 1 and obtain E(a · sq+1). Note that this is
possible even when βpoly(s) = 0. By outputting (a,E(a · sq+1)), B breaks the generalized q-PDH
assumption.

E SNARKs for Computation over Encrypted Data (Cont’d)

E.1 Further details on Torus encoding

Multiplying encoded elements with elements from R: We next show explicitly how our TFHE-based
encoding is R-linear homomorphic. R = Zm[Y]/(f(Y)) is a free module over Zm of rank d, i.e. we
can find a basis for R. Let ξ be a root of f(Y), we have that {1, ξ, . . . , ξd−1} is one of such basis. The
map φ : R→ (Zm)d, which sends b = b0 + · · ·+ bd−1ξ

d−1 to φ(b) = (b0, . . . , bd−1) is an isomorphism
of Zm-modules. We will make extensive use of this isomorphism going forward.

44

The encoding we use is the following:

Epk : R→ (T)d

a 7→ Epk(a) = (TFHE(a0), ...,TFHE(ad−1))

For our QRPs, we wish to compute values of the form E(a ·b), where a, b ∈ R, given E(a) and b.
The problem is that E(a) ∈ (T)d, and the torus does not allow us to simply and directly compute
b ·E(a) as in previous occasions. Rather, we have to look at the R-module endomorphism ·b which
is induced by multiplication of any element of R with b, and use this to manipulate the d individual
values TFHE(a0), ...,TFHE(ad−1) ∈ T.

In a more explicit and step-by-step fashion, ·b is an R-module endomorphism and hence a Zm-
module homomorphism ·b : (Zm)d → (Zm)d. We can therefore represent this operation as follows:

·b : (Zm)d → (Zm)d

a 7→Mb · a

where Mb ∈Md×d(Zm). As a side note, in fact, Mb can be easily defined from the polynomial f(Y)
used to construct R ' (Zm)d. Our goal can now be re-stated as computing E(·b(a)), given E(a)
and b ∈ R. We are almost done, as TFHE(x) + TFHE(y) = TFHE(x+ y) and T allows for external
multiplication with elements in Z. In full formalism, let Nb ∈Md×d(Z) such that Nb ≡Mb mod n.
We only need to compute:

Nb · E(a) = E(Nb · a) = E(Mb · a) = E(·b(a)) = E(a · b)

E.2 Parameters for BGV and FV

Here, we provide some outputs of the Maple script (https://github.com/rachelplayer/CLP19-code/
blob/master/Comparison/comparison.mpl) behind the work of Costache, Laine and Player [23].
These provide a more detailed view of the parameters for the BGV and FV schemes than the
one provided in [23], which is necessary to understand both the soundness of our scheme and the
efficiency impact compared with [28] (see Section 7.4).

45

https://github.com/rachelplayer/CLP19-code/blob/master/Comparison/comparison.mpl
https://github.com/rachelplayer/CLP19-code/blob/master/Comparison/comparison.mpl

Scheme L n |p1| |q|

BGV 2 212 23 109
FV 2 211 22 54

BGV 4 213 24 218
FV 4 212 23 109

BGV 6 213 25 218
FV 6 213 26 218

BGV 8 214 28 438
FV 8 213 24 218

BGV 10 214 25 438
FV 10 214 25 438

BGV 12 214 27 438
FV 12 214 29 438

BGV 14 214 28 438
FV 14 214 26 438

BGV 16 215 34 881
FV 16 215 34 881

Table 1. Parameters for BGV and FV with a plaintext space Rp where p = 28. L is the amount of levels, n the
degree of the quotient polynomial, q the integer modulo of the ciphertext ring Rq and p1 the smallest prime factor
of q. With |x|, we denote the bit-length of x.

Scheme L n |p1| |q|

BGV 2 212 47 109
FV 2 213 48 218

BGV 4 213 48 218
FV 4 214 51 438

BGV 6 214 51 438
FV 6 214 51 438

BGV 8 215 51 881
FV 8 214 50 438

BGV 10 215 56 881
FV 10 215 56 881

BGV 12 215 59 881
FV 12 215 57 881

BGV 14 215 51 881
FV 14 215 50 881

FV 16 215 51 881

Table 2. Parameters for BGV and FV with a plaintext space Rp where p = 232. L is the amount of levels, n the
degree of the quotient polynomial, q the integer modulo of the ciphertext ring Rq and p1 the smallest prime factor
of q. With |x|, we denote the bit-length of x.

46

Scheme L n |p1| |q|

BGV 2 213 80 218
FV 2 214 81 438

BGV 4 214 81 438
FV 4 214 82 438

BGV 6 215 84 881
FV 6 215 84 881

BGV 8 215 86 881
FV 8 215 83 881

BGV 10 215 83 881

Table 3. Parameters for BGV and FV with a plaintext space Rp where p = 264. L is the amount of levels, n the
degree of the quotient polynomial, q the integer modulo of the ciphertext ring Rq and p1 the smallest prime factor
of q. With |x|, we denote the bit-length of x.

47

	Introduction
	SNARKs for Computation over Rings
	Our Contribution
	Comparison with Related Work

	Preliminaries
	Succinct Non-interactive ARguments of Knowledge
	Background in Ring Theory

	Quadratic Programs over Commutative Rings
	Construction of a QRP for a Circuit over Rings

	Secure Encoding Schemes over Rings
	Assumptions on Encodings

	Rinocchio: A SNARK over Rings
	Construction from QRP
	Security of our Scheme
	Adding Zero-knowledge: zk-Rinocchio

	Groth16-Like Construction based on Linear-Only Encodings
	SNARKs for Computation over Encrypted Data
	Homomorphic Encryption Schemes and their Parameters
	Secure Encodings for (Ring-)LWE ciphertexts
	(zk-)SNARKs for Ring-LWE-based homomorphic encryption
	Comparison with Prior Work

	SNARKs for Computation over Z2k
	A secure encoding for GR(2k,)
	A simple construction
	Soundness Amplification
	Efficiency and Similar Instantiations

	Verifiable Computation
	Context-Hiding

	QRP: Abstraction, Composition and Circuit Representation
	QRP as an Abstraction
	Composing QRPs
	Some useful QRPs

	More on the Security of the Encoding Schemes over Rings
	Proof of Theorem 3
	SNARKs for Computation over Encrypted Data (Cont'd)
	Further details on Torus encoding
	Parameters for BGV and FV

