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Abstract
We present Spectrum, a high-bandwidth, metadata-private

file broadcasting system with malicious security guarantees.
In Spectrum, a small number of publishers broadcast to many
subscribers via two or more non-colluding servers. Sub-
scribers generate indistinguishable cover traffic, hiding which
users are publishers, for full metadata privacy.

Spectrum builds on prior work that uses DC-nets for anony-
mous broadcast. Existing anonymous broadcast systems do
not optimize for a setting where there are fewer publishers
compared to subscribers – a common situation in real-world
broadcasts. To prevent disruption by malicious clients sending
malformed requests, we develop a blind authentication proto-
col that allows servers to reject malicious requests. We also
ensure security against malicious servers deviating from pro-
tocol and potentially colluding with clients. Our techniques
for providing malicious security are applicable to other sys-
tems for anonymous broadcast and may be of independent
interest.

We implement and evaluate Spectrum. Compared to
the state-of-the-art in cryptographic anonymous communi-
cation systems, Spectrum is 3–140× faster (and commensu-
rately cheaper). Deployed on two commodity servers, Spec-
trum allows publishers to share 500 MB in 1h 24m with an
anonymity set of 10,000 (for a total cost of about $1.93). This
corresponds to an anonymous upload of a full-length 720p
documentary movie.

1 Introduction

Free and democratic society depends on an informed public,
which sometimes depends on whistleblowers shedding light
on misdeeds and corruption. Over the last century, whistle-
blowers have exposed financial crimes and government cor-
ruption [50, 59, 67], risks to public health [30, 40], Russian
interference in the 2016 U.S. presidential election [50, 60],
presidential misconduct [11, 32, 56, 71], war and human
rights crimes [3, 26, 79], and, of note to computer security

researchers, digital mass surveillance by U.S. government
agencies [12]. Political philosophers debate [2, 23] the ethics
of whistleblowing, but agree it often has a positive impact.

Motivation for this work. Whistleblowers take on great
personal risks in bringing misdeeds to light. The luckiest
enjoy legal protections [80] or financial reward [81]. But
many face exile [12], incarceration [39, 60, 66], or risk their
lives [79]. More recently, political activist Alexei Navalny
was detained and sentenced to prison following the release
of documents accusing Russian president Vladimir Putin of
corruption and embezzlement [72].

To mitigate these risks, many whistleblowers turn to tech-
nology to protect themselves [36]. Secure messaging apps
Signal [17] and SecureDrop [4] have proven to be an im-
portant resource to whistleblowers and journalists [31, 76].
Encryption does its job, even against the NSA [83]—but it
may not be enough to protect from powerful adversaries.

Since the Snowden revelations, governments and the press
have focused on metadata. The source, destination, and tim-
ing of encrypted data can leak information about its contents.
Prosecutors used SFTP metadata in the case against Chelsea
Manning [88]. Newer technology is still vulnerable: a federal
judge found Natalie Edwards guilty on evidence of metadata
from an encrypted messaging app [39]. To protect whistle-
blowers and protect against powerful adversaries, systems
must be designed with metadata privacy in mind.

Many academic and practical metadata-hiding systems pro-
vide solutions to this problem for some applications. Tor [25]
boasts a distributed network of 6,000 nodes and 2 million
daily active users (the only such system with wide usage).
Tor is fast enough for web browsing, but de-anonymization at-
tacks identify users with a high success rate based on observed
traffic [5, 8, 29, 37, 42, 55, 58]. Moreover, the effectiveness of
de-anonymization attacks increases with the size of the traffic
pattern. Whistleblowers using Tor to upload large files can be
more easily de-anonymized compared to casual web users for
this reason.

Some recent academic research systems [1, 18, 28, 43–45,
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47, 78, 82] address the problem of hiding metadata in anony-
mous communication, providing precise security guarantees
for both direct messaging and “Twitter”-like broadcast ap-
plications. However, a limitation of all existing systems is
that they are designed for low-bandwidth content, incurring
impractical latencies with large messages (see Section 6).

Contributions. Spectrum is the first anonymous broadcast
system supporting high-bandwidth broadcasts with security
against actively malicious clients and servers. We do so by
designing for the many-subscriber and few-publisher setting,
which reflects the real-world usage of broadcast platforms.
Spectrum scales proportionally to the number of broadcasts in
the system rather than the total number of users: the primary
bottleneck and cause for high-latency in prior work.

This paper contributes:

1. Design of Spectrum, a system for high-bandwidth
metadata-private broadcasting with strong robustness and
privacy guarantees in a malicious security setting,

2. A general extension we call BlameGame that can be used
to “upgrade” anonymous broadcasting protocols for se-
curity against de-anonymization attacks from malicious
servers,

3. An open-source implementation of Spectrum which we
extensively evaluate and compare to existing anonymous
broadcasting and communication systems.

Limitations. Spectrum shares some limitations with other
metadata-private systems:

1. Spectrum provides anonymity among honest online users
and requires all users to contribute cover messages to a
broadcast (to perfectly hide network metadata). Thus,
subscribers must upload as much data as a publisher to
provide anonymity for the publisher.

2. Spectrum achieves peak performance with exactly two
servers. Instantiating with more than two servers requires
using less (concretely) efficient cryptographic primitive:
a seed-homomorphic PRG [7].

Other metadata-private systems (e.g., [1,18,19,43,45,47,78])
also provide anonymity within the set of online users and
sending fixed-size messages. Unfortunately, it is a necessary
cost to pay for strong privacy; if only one user uploads a
very large message, the network metadata alone is sufficient
to de-anonymize them. However, we show how to amortize
the practical impact of this limitation by only requiring one
cover message per subscriber, even in the case of multiple
publishers simultaneously using the system (Section 4).

Paper organization. We formalize the setting and function-
ality in Section 3. We describe the protocol in Section 4.
Section 5 presents the implementation and evaluation. Sec-
tion 6 surveys related work.
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Figure 1: In Spectrum, users upload secret shares to the servers.
Servers validate and combine these shares to recover the broadcast
message while hiding its provenance.

2 Anonymous Broadcast

In this section we describe high-level techniques for anony-
mous broadcast.

The setting. In an anonymous broadcast, one or more users
(publishers) share a message (e.g., a file) in a manner that
prevents an adversary from learning its source, even with
full view of the entire network. In Spectrum, passive users
generate cover traffic (indistinguishable dummy messages) to
increase the size of the anonymity set – the users who plau-
sibly could have originated the broadcast message. We call
these passive users subscribers as we expect that most users
in the system that are not broadcasting are instead consuming
broadcasts. We will use the term client to mean the program
via which a user communicates with servers.

DC-nets. A Dining Cryptographer network (DC-net) [15]
allows for anonymous broadcast. DC-nets commonly use
secret-sharing to obscure the source of data in the network.
As in prior work [1, 18, 28], we instantiate a DC-net with two
(or more) servers and many clients.

Toy Protocol. Consider a setting with two (non-colluding)
servers ServerA and ServerB and two or more clients, where
one of the clients wishes to share a file. In a two-server DC-
net, the ith client samples a random bit string ri and sends
secret share ri ⊕mi to ServerA and secret share ri to ServerB.
Servers can recover mi by combining their respective shares:

mi = (mi ⊕ ri ) ⊕ (ri ).

If exactly one of N clients shares a message mi = m while all
other clients share mi = 0, the servers can recover m (without
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learning which client sent mi = m) by aggregating:

m =

ServerA︷          ︸︸          ︷
N⊕
i

(ri ⊕mi )⊕

ServerB︷ ︸︸ ︷
N⊕
i

ri =

(commutativity of xor)︷                      ︸︸                      ︷
N⊕
i

(ri ⊕ ri ) ⊕
N⊕
i

mi

= 0⊕ . . .⊕m ⊕ . . .⊕ 0︸                   ︷︷                   ︸
origin of m is hidden

.

This simple scheme protects client anonymity given that
each server obtains a uniformly random value. Only the com-
bined shares reveal the resulting message. However, user can
undetectably disrupt the broadcast by non-zero shares. The
main challenge in metadata-private broadcasting is ensuring
correctness in the presence of such disruptors [1, 18, 28, 43].
Indeed, preventing disruption by malicious clients is the pri-
mary cause of high-latency incurred by prior work [1, 18, 43].

Moreover, we show that the request auditing process in
existing systems [1,18,28] is susceptible to an active attack by
a malicious server (Appendix A). Specifically, we show that
such a server can undetectably de-anonymize a broadcaster
with some probability by intentionally causing a request audit
to fail, excluding their messages.

Anonymous Broadcast in Spectrum. Spectrum builds on
the above DC-net construction to improve efficiency, pre-
vent disruption, and prevent malicious servers from de-
anonymizing users through active attacks. We present Spec-
trum with two servers and any number of publishers and sub-
scribers. We generalize Spectrum to more than two servers
in Section 4.5. In both cases, privacy for Spectrum holds
provided at least one of the servers does not collude with any
other server, and privacy is guaranteed even in the face of
active attacks. We formalize the threat model in Section 3.1.

3 System Overview

Spectrum consists of two or more broadcast servers and many
clients. Each client is either a publisher or a subscriber.
Figure 1 outlines a deployment with two servers, one pub-
lisher, and three subscribers. In this scenario, the publisher
secret-shares a message with the servers while the subscribers
secret-share dummy cover messages to prevent network meta-
data from de-anonymizing the publisher. In Spectrum, all
clients prove that the provided messages do not disrupt the
broadcast (i.e., that they are behaving according to proto-
col). We achieve this by designing a blind auditing protocol
through which servers ensure that each client’s message is
well-formed and does not disrupt any broadcast. Servers do
not learn whether a client is a subscriber or publisher when
auditing secret-shares of the provided message. We describe
this in Section 3.2.

3.1 Threat Model
In Spectrum, an adversary may control an arbitrary subset
of clients and servers. Only one of the servers needs to be
honest (not colluding with the adversary) in order to guarantee
anonymity for all honest clients. On the other hand, all clients
are completely untrusted by the servers and are assumed to
deviate from protocol in arbitrary ways or collude with the
adversary.

Guarantees. If any subset of malicious clients deviate from
protocol, both anonymity and system availability must remain
intact for all honest clients.

If a subset of corrupted servers arbitrarily deviate from
protocol, anonymity for all honest clients is guaranteed but
availability of the system as a whole is not. Likewise, all
other system failures may disrupt availability but must not
cause deanonymization of any honest client.

Assumptions. As with prior work [1, 18, 43], we assume
that the adversary has full view of the network but does not
interfere with network traffic. To hide network traffic contents,
we make black-box use of public key infrastructure (e.g.,
TLS [63]) for encrypted communication between clients and
servers; such infrastructure is widely deployed. Finally, we
rely on the discrete logarithm assumption for the purpose of
protecting against colluding servers [27].

3.2 Blind Message Authentication
The main idea behind Spectrum is a form of blind request
authentication that can be efficiently verified by the servers
to reject malicious clients. We adapt the Carter-Wegman
MAC [13, 85] to serve as a secret-shared “authentication tag”
accompanying the message shares in the DC-net broadcast
of Section 2. The tag proves that a client’s request is either:
(1) an authenticated broadcast message (i.e., mi = m); or (2)
a cover request issued by a subscriber (i.e., mi = 0). Crucially,
the servers must not learn whether (1) or (2) is true when
auditing the tag for correctness.

Carter-Wegman MAC. Let F be any finite field (e.g., inte-
gers modulo a prime p) of sufficiently large size in a security
parameter. Sample an authentication key by randomly picking
elements α and γ in F and defining the function MACγα :

MACγα (m) = α ·m+γ ∈ F.

A verifier can check the authenticity of a message m′ given
a tag t by computing t ′ ← MACγα (m′) and checking if t =
t ′. Forgery (different messages m , m′ but same tag t =
t ′) is infeasible [69]. Moreover, if F is sufficiently large,
the probability of guessing the authentication key (α,γ) is
negligible.

Observe that MACγα is a linear function of the message
which makes it possible to verify a secret-shared tag for a
secret-shared message. That is, for a message m ∈ F that is
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Request Size Audit Size Audit Rounds Server Work Active Security Comments

Blinder [1] |m | · λ
√

U λ · |m | logU U · (λ + |m |) 3 Requires at least 5 servers and MPC

Riposte [18] |m |+ λ
√

U λ
√

U 1 U · (λ + |m |) 7 Requires a separate audit server

Express [28] |m |+ λ2 + λL λ 1 L · (λ + |m |) 7 Can only be instantiated with two servers

Two-Server |m |+ λ log(L) λ 1 L · (λ + |m |) 3 Based on efficient tree-based DPF [9]

Multi-Server |m |+ λL λ 1 L · (λ + |m |) 3 Based on seed-homomorphic DPF [7]

Table 1: Asymptotic efficiency comparison between Spectrum and existing anonymous broadcasting systems on a per request basis when
instantiated with L publishers, U total users, |m |-sized messages, and global security parameter λ. O(·) notation suppressed for clarity.

additively secret-shared as mA and mB such that mA −mB =

m ∈ F and a MAC tag t secret shared as tA and tB such that
tA − tB = t, the servers (knowing α and γ) can verify that the
tag corresponds to the secret-shared message as follows:

1. ServerA computes βA← (α ·mA +γ− tA).
2. ServerB computes βB ← (α ·mB − tB).

3. Servers swap βA and βB to locally check if βA
?
= βB .

The final condition only holds for a valid tag.
Observe that neither server learns anything about the mes-
sage m in the process (apart from the tag validity) since both
the message and tag remain secret-shared between servers.
Note that F can be any finite field, thus the DC-net example
of Section 2, where users send xor-based secret-shares, is just
a special case of the additive secret-sharing in F (any finite
field, for example, integers modulo a prime p).

That these properties are almost sufficient to prevent dis-
ruption in the DC-net described in Section 2. If both the
servers and the publisher have access to the key (α,γ), the
publisher can compute a tag t which the servers can check for
correctness as above.

However, the approach does not allow subscribers to send
cover messages as they must also generate a tag for their
message mi = 0, with no authentication key. If subscribers
do not authenticate cover messages, servers could distinguish
publishers and subscribers, but giving this key to subscribers
would defeat the purpose of authentication.

To overcome this, we make the following observation
which is inspired by a technique in the SPDZ [21] multi-party
computation protocol. The Carter-Wegman MAC has key
(α,γ) where γ acts solely as a “nonce” to prevent forgeries
on the value 0 ∈ F [84]. Because of this, we can eliminate
γ while still having the desired unforgeability property of
the original MAC for all non-zero messages. Thus, when
evaluated over secret shares,

MACα (m) = α ·m

remains as secure as the original MACγα for all m , 0. The
advantage to us, however, is that this allows subscribers to
authenticate the message mi = 0 without knowing α (i.e.,
subscribers can “forge” the MAC but only for mi = 0).

This makes MACα sufficient to prevent disruptors: a pub-
lisher can secret-share a non-zero message and valid tag using
the broadcast key α while a subscriber can only secret-share
the message mi = 0 (and corresponding tag) without knowl-
edge of the authentication key. Any deviation to this would
result in an invalid tag which will be caught by the servers
when performing the above audit.

Preventing collusion. One final issue with this message au-
thentication technique is that all servers (including the mali-
cious ones) receive the MAC key in the clear. This makes the
scheme vulnerable in the case that a malicious server colludes
with a malicious client to disrupt the protocol by sharing the
broadcast key with the client. We resolve this by shifting the
entire MAC to the exponent of a group where the Discrete
Logarithm (DL) problem is assumed to be hard [77]. This
way servers only obtain gα and can proceed to verify the
MAC as before. We explain this further in Section 4.3.

3.3 Spectrum Functionality
We now present the functionality of Spectrum assuming two
servers, but note that our definitions generalize to any n ≥ 2
number of servers (see Section 4.5).

Let N be the total number of clients, of which L are pub-
lishers broadcasting messages m1,. . . ,mL , respectively. Each
publisher is assigned to an oblivious “channel” (servers can-
not tell when a message is being written to a channel). For
our purposes, a channel is simply a slot with an associated
broadcast key. Both publishers and subscribers “write” to all
channels to make requests indistinguishable to the servers.
However, only a publisher, knowing the channel authenti-
cation key, can write a non-zero message to the associated
channel. That is, channel j ∈ [L] has an authentication key
α j known to the publisher of the channel (but not to any other
client). An immediate problem to overcome is that of key
distribution: How do publishers obtain the secret broadcast
key for their channel?

Channel Key Distribution. In Spectrum, a publisher must
“register” with the servers by giving them an authentication
key. However, the servers must not learn the identity of
the publisher when receiving this key, which leads us to a
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Figure 2: 1 A publisher creates a new “channel” by sending a
broadcast key to the servers via a (slow, low-bandwidth) anonymous
network (e.g., Riposte [18]). 2 The publisher can then broadcast
using Spectrum (fast and high-bandwidth). 3 Even if a malicious
client attempts to disrupt, the servers (blindly) verify that each client
request is valid using the broadcast key—only the publisher can
write to the channel.

somewhat circular problem: publishers need to anonymously
broadcast a key in order to broadcast anonymously.

We solve this one-time setup problem as follows (illus-
trated in Figure 2). All clients use a slower anonymous
bulletin board suitable for low-bandwidth content at sys-
tem setup time. There are many different ways to realize
this functionality using existing anonymous broadcasting sys-
tems (e.g., [1, 18, 43]). Keys are small (e.g., 32 bytes) and
therefore using existing systems to anonymously share the key
is not challenging. Moreover, once the keys for publishers are
established, they may be used indefinitely by the publishers
to broadcast on their respective channels.

Client Algorithms. Each client must generate a “write” re-
quest to the servers. The request must not reveal whether the
client is broadcasting or only generating cover traffic. Servers
aggregate the requests from all clients to ensure the origins
of the broadcasts remain hidden among the set of all honest
clients. To this end, both publishers and subscribers gener-
ate indistinguishable “request shares” (τA,τB). The clients
send these shares to ServerA and ServerB, respectively. The
servers then blindly audit the requests for correctness (check
that the message has a valid tag) and aggregate all requests
that pass the audit.

Broadcast(m, j,α j )→ (τA,τB). Generates request shares
which write message m to the jth channel.

Cover()→ (τA,τB). Generates cover request shares, indistin-
guishable from shares output by Broadcast but resulting in
no change to any channel.

Remark 1. We assume that subscribers can download broad-
casts made available through Spectrum directly from the
servers since all broadcasts are made public at the end of
each round and thus do not require the access key to down-
load. While privacy for subscribers (hiding which broadcast
is fetched) is orthogonal to our main goal, we do describe
such an extension in Appendix B.

Server Algorithms. Servers collaboratively audit the request
shares received from each client, then combine all requests
together to reveal the L messages, ensuring the provenance of
each broadcast is hidden. To audit a request sent by a client,
each server locally generates an audit token and shares it with
the other server. Together, the servers audit the request using
the provided token in a way that does not reveal information
on the request beyond its validity.

GenAudit(Γ,τ◦)→ β◦. Prepares an audit token for the given
client request agains the broadcast authentication keys Γ.
Servers then swap the locally computed tokens βA and βB
with each other.

CheckAudit(βA, βB)→ yes or no. Validates the result of
GenAudit.

Accept(τ◦)→ m◦. Maps a request token to a vector of L
secret-shares m◦, which can be aggregated by the server.

Recover(mA,mB)→ m. Locally, aggregate shares of Accept
outputs (one per client). Globally, recovers all messages. We
use mA ⊕mB as shorthand for Recover, since we implement
it with XOR.

We now define the informal properties required for the above
algorithms to achieve the security requirements of Section 3.1
with the caveat that both servers must follow protocol cor-
rectly when auditing a client request. In Section 3.3 we show
how to ensure anonymity for honest clients in the face of an
actively malicious server tampering with the auditing pro-
cess. A more formal description of the protocol properties
and requirements can be found in Appendix C.

Correctness. Provided all honest publishers broadcast mes-
sages m1 through mL and all honest subscribers broadcast
cover messages, the protocol recovers all broadcast messages
m = (m1,. . . ,mL ) as output, one message per channel.

Completeness. With valid channel authentication and verifi-
cation keys, requests generated with Broadcast pass the audit.
Cover generates cover messages that pass the audit without
needing any authentication key.

Soundness. Without the channel authentication key, it should
be computationally infeasible to generate a request that writes
a non-zero message to the associated channel.

Privacy. If at least one server is honest, an adversary control-
ling the other server (but not deviating from protocol) and a
subset of malicious clients (possibly deviating from protocol)
should learn nothing more from an honest client request other
than that the request is well-formed.

These properties are guaranteed by Spectrum provided both
servers follow protocol and do not collude with each other.
We now describe the functionality of BlameGame used to
achieve malicious security.
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BlameGame Functionality. We cannot eliminate the require-
ment for abort in the case of a malicious server, which can
always refuse to participate, disrupting availability. But if a
client deviates, the servers can proceed. BlameGame decides
which of these is the case.

If a client audit in Spectrum fails, then servers double-
check each others’ work to prevent a malicious server from
selectively rejecting requests to reduce the anonymity set over
time via a guess-and-check attack (see Appendix A). Each
server sends a client-generated “dispute token” σ◦ to the other
servers. All servers then use the following functionality to
assign blame. If at least one server is honest, then the protocol
aborts if another server cheats.

Resolve(sk◦,Γ,σ◦)→ β′◦. A server resolves a dispute σ◦ sent
by the other server with Resolve, which outputs a backup
client audit token β′◦.

Absolve(sk◦,σ◦)→ φ◦. If the backup audit fails, an honest
server can absolve itself by sending an acquittal token φ◦ to
the other server, which proves adherence to the audit protocol
(blaming the client).

Blame(Γ,τ◦,σ◦,φ◦)→ server/client. Assigns blame to either
a server or the client based on the request τ◦, dispute token
σ◦, and acquittal token φ◦.

In the case that Blame outputs server, Spectrum is aborted
by the honest server. The above functionality, used by the
servers as depicted in Figure 4, must satisfy the following
properties (formalized in Appendix D).

Completeness. If both servers and clients follow protocol,
Resolve outputs β′◦ such that CheckAudit outputs yes. Other-
wise, Blame outputs server or client to indicate which party
deviated.

Soundness. It must be computationally difficult for a ma-
licious client to generate a malicious request token τ and
dispute token σ such that Blame does not output client (i.e., a
malicious client should be unable to “frame” an honest server
as being malicious) or vice versa.

Privacy. Dispute and Resolve should reveal no informa-
tion about a client request. Absolve and Blame may reveal
the client request (for checking server protocol compliance)
which results in a one-shot de-anonymization of an honest
broadcasting client with probability at most L

N (1−ε) , where N
is the total number of users, L is the number of publishers,
and ε is the fraction of corrupted clients.

4 Spectrum Protocol

In this section we describe the design and architecture of
Spectrum. We first show how a distributed point function
(DPF) [33] can support many broadcast channels with little
increase in bandwidth overhead (compared to the setting with

Broadcast

CoverRequest

GenAudit

CheckAudit

Servers

Subscriber

Publisher

GenAudit

Accept

1

2

3

Accept4

Blame server

Blame client

5BlameGame

Figure 3: 1 Clients send encoded requests to the servers
(Broadcast/Cover). 2 The servers share “audit tokens” for each
client’s request (GenAudit). 3 Servers locally validate the tokens
(CheckAudit). 4 Servers process the request (Accept). 5 If servers
or clients misbehave, BlameGame assigns culpability.

only one channel). We prevent disruption by augmenting
these DPFs with an extension of the message authentication
technique in Section 3.2. Prior works [9, 10, 18, 28] describe
techniques for verifying that a DPF is well-formed but do
not provide a way to enforce access control as required for
our purposes. In Spectrum, we simultaneously enforce mes-
sage authentication and guarantee that the DPF is correctly
encoded for each client.

We begin by providing a formal definition for a DPF and
then explain how we adapt the message authentication tech-
nique of Section 3.2 to the multi-channel setting.

4.1 Distributed Point Functions
A point function P is a function that evaluates to a message m
on a single input j in its domain and evaluates to zero on all
other inputs i , j. In Definition 1, we describe a distributed
point function: a point function that is encoded and secret-
shared in a set of n keys.

Definition 1 (Distributed Point Function (DPF) [18,33]). Fix
positive integers L and n ≥ 2. An n-DPF consists of (possibly
randomized) algorithms:

• Gen(m ∈ {0,1}` , j ∈ [L])→ (k1,. . . ,kn )
• Eval(ki )→ m◦

These algorithms must satisfy the following properties:

Correctness. A DPF is correct if the sum of the results of
evaluating all keys produced by Gen(m, j) is a vector m in
({0,1}`)L such that m j = m and m j′ = 0 for j ′ , j:

Pr
[

(k1,. . . ,kn )← Gen(m, j)
s.t.

∑n
j=1 Eval(k j ) = m · e j

]
= 1

where the probability is over the randomness of Gen and
e j ∈ {0,1}L is the jth row of the L× L identity matrix.
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Privacy. A DPF is private if fewer than n evaluation keys
created by Gen(·,·) do not reveal any information about the
inputs. Let I ⊂ [n] be any strict subset of indices, and DI be
the distribution over {ki | i ∈ I} where the ki are sampled as

(k1,. . . ,kn )← Gen(m, j)

for fixed m and j. Then, there exists a probabilistic polyno-
mial time (PPT) algorithm Sim such that DI ≈c Sim(I).

Efficiency. There exist efficient constructions for 2-DPFs
where the key size is O

(
λ log L+ |m |

)
[9, 10]. However, in

the general case (n > 2) it is not known how to achieve smaller
key sizes [9]. While there exist sublinear constructions for
n-DPFs [9], the key size is exponential in n with a multiplica-
tive factor of |m |. Because in our case L is small, for the
case where n ≥ 3, we tolerate a linear key size in L with an
additive dependence on |m |. We describe such a construction
in Appendix F.

DPFs for Broadcasting. To broadcast a message m to chan-
nel j, a publisher computes DPF.Gen(m, j) and sends the
output to the servers. A subscriber runs DPF.Gen(0,·) and
does likewise. The servers sum the results of Eval on each
key received by a client (each server gets one of the gener-
ated DPF keys) to locally recover secret-shares of a message
destined for each channel. When the accumulated values are
combined, only the message m remains on the jth channel
(and 0 is written to other channels).

4.2 Auditing Bandwidth Optimization
When used for private writing, a point function can be viewed
as one operation (i.e., write) at a specific index and a sequence
of “zero-writes” at all other indices; a DPF efficiently secret-
shares these operations. Each “write” might be large (` bits);
for the audit, rather than checking the whole value of the write,
we need only check whether it writes to any unauthorized
index. This allows the servers to broadcast O(λ) bits to verify
the request, rather than O(λ · |m |).

Specifically, we can define a function SmallEval that evalu-
ates a DPF key, but into a smaller message space. SmallEval
is an efficiently computable mapping from DPF keys to ad-
ditive secret shares of an L-vector ρ = (ρ1,. . . , ρL ) in some
field F such that ρ j = 0 if and only if the DPF input at index j
was zero for all j ∈ [L]). We give a construction of SmallEval
alongside our DPF construction in Appendix F. Then, we can
check that, for each j, ρ j = 0 or the client knows the cor-
responding broadcast key α j , applying the Carter-Wegman
MAC (Section 3.2).

Let α = (α1,. . . ,αL ) ∈ FL be the respective broadcast keys
of the L channels. Then, the servers can check that 〈α,ρ〉 = 0
(〈·,·〉 denotes the inner product). When all α j = 0, this holds
trivially. When some α j , 0, the user needs α j to “cancel”
the non-zero value. Because the servers hold secret-shares of

ρ and plaintext values of α, computing the inner product is
a linear operation. That is, the servers can compute additive
secret-shares of 〈α,ρ〉 locally. They can then reveal these
shares and check that they are zero; this value is the same
for all honest clients, so the servers learn nothing. In the
following section, we show how to perform this check without
revealing the keys to the servers.

4.3 Collusion-Secure Blind Authentication
In this section we show how to apply the MAC verification
of Section 3.2 “in the exponent” of a group in which the
Discrete Logarithm (DL) problem is assumed to be hard [77].
We do so to prevent a malicious server from sharing the
broadcast key of a channel with a malicious client (which a
malicious server can do if the broadcast key is given to it in
the clear). Specifically, let G be a group of prime order p with
generator g such that the DL problem in G is computationally
intractable. That is, for a random element y ∈ G, finding u
such that y = gu is infeasible in polynomial time.

A publisher, instead of sending α to the servers at setup
time, sends gα – a “public verification key” – which servers
can use to audit the MAC tag as before, but this time without
having α in the clear. This ensures that a malicious server
colluding with a client cannot covertly disrupt a broadcast
since doing so would imply that the server was able to recover
the discrete logarithm of gα . We provide a formal analysis of
security in Appendix C.

4.4 Protocols
Using a DPF we can instantiate Spectrum with multiple chan-
nels while incurring very little bandwidth overhead on clients
and servers. The full multi-channel instantiation of Spectrum
is provided in Algorithm 1 and uses the DPF construction
found in Appendix F. Clients generate a write request by
running DPF.Gen, providing the index j to broadcast on
the jth channel. To convince the servers that the DPF ex-
pands to the correct channel (i.e., the generated keys kA and
kB are correct), the client generates a tag t by evaluating
ρA ← SmallEval(kA) and ρB ← SmallEval(kB), then com-
puting: t = α ·

(
ρA[ j]+ ρB[ j]

)
. This value is secret-shared

to the servers and is used to authenticate the request. To do
so, each server evaluates SmallEval on their DPF key and
subtracts the share of t. We provide a full security analysis
for Algorithm 1 in Appendices C and C.

Theorem 1 (Security). The construction in Definition 1 sat-
isfies the correctness, completeness, soundness, and privacy
properties for Algorithm 1 defined in Appendix C.

Proof. See Appendix C. �

Theorem 2 (Communication). Each request share generated
with Broadcast and Cover is of size O

(
|m |+ λ log(L)

)
in the
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Algorithm 1: Spectrum

Client Algorithms

def Broadcast(m, j,α):
(kA,kB )← DPF.Gen(m, j) // generate DPF keys(
ρA,ρB

)
← (SmallEval(kA),SmallEval(kB ))

t← α ·
(
ρA[ j]− ρB[ j]

)
// MAC tag

(tA,tB )
R
← F×F s.t. tA − tB = t // secret-share tag

output (kA | |tA,kB | |tB ) // requests: keys with tags

def Cover():
(kA,kB )← DPF.Gen(0` ,0)

(tA,tB )
R
← F×F s.t. tA − tB = 0 // secret-share of 0

output (kA | |tA,kB | |tB )

Server Algorithms

def GenAudit(Γ = (gα1 ,. . . ,gαL ),τ◦ = k◦ | |t◦):
ρ◦← SmallEval(k◦) // where ρ◦ ∈ G

L

// DPF key k◦

β◦←
(∏L

i=1(gαi )ρ◦[i]
)
· g−t◦ // Tag share t◦; keys Γ

output β◦

def CheckAudit(βA, βB ):
output yes if βA = βB ; no otherwise

def Accept(τ◦ = (k◦‖t◦)):
output DPF.Eval(k◦)

two-server setting and O( |m |+ λL) in the multi-server setting.
Each audit share is of size O(λ).

Proof. The DPF key size (O
(
|m |+ λ log(L)

)
for the 2-

DPF [10] and O
(
|m |+ λ log(L)

)
with the DPF in Ap-

pendix F [18]) dominates the requests of Broadcast and Cover.
The audit token is 3 field elements (O(λ)). �

Theorem 3 (Computation). Broadcast and Cover require
O(L+ |m |) work on the client. Accept and GenAudit require
O(L · |m |) work on the server.

Proof. Both the client and server work is dominated by the
DPF algorithms. Generating DPF keys requires O(L+ |m |)
work in the worst case, depending on the construction (see Ap-
pendix F). Evaluating the DPF key requires O(L · |m |) work
on the server for all constructions [9]. �

BlameGame Protocol. Many anonymity systems face the
problem that if a message is expected to be broadcast, then a
malicious server can drop or modify a client’s request to learn
whether they were broadcasting that message. To prevent this
attack, prior anonymity systems [18, 28] must abort on a bad
client request (allowing disruption). Instead, in Spectrum,
following an audit failure servers open a “dispute” which the

other servers must resolve. If the resolution fails, an honest
server assigns blame to either a server (aborting the protocol)
or client (dropping the message).

We require a verifiable public-key encryption scheme: the
encryptor can prove the correct decryption of a ciphertext to
a verifier. This is a property of most public-key encryption
schemes (e.g., RSA [64] and ElGamal [27]).

The Protocol. In addition to request tokens τA and τB , each
client encrypts and sends σA = ~τB�pkB to server ServerA
and σB = ~τA�pkA to ServerB. Note that the encrypted re-
quests are swapped, commiting each server to the backup
request and audit. If an audit fails in Spectrum (CheckAudit
outputs no), servers exchange σA and σB and decrypt them
to retrieve “backup” requests.

Each server proceeds to run Resolve using the received
σ◦ and sends β◦ to the other server. Servers then run
CheckAudit(βA, βB). However, if the second audit fails,
blame can be assigned to either the server or the client as
follows. Each server runs Absolve to generate an acquittal
token φ◦ and prove adherence to protocol by revealing the de-
cryption of the token (a malicious server is unable to do so if
it deviated from protocol). Each server runs Blame using the
received acquittal token φ◦ and blames the party responsible
for audit failure. In the case that the server is blamed, Spec-
trum is aborted (by at least one honest server) and no more
client requests are processed. Otherwise, the client is blamed
and the request is discarded by all servers. We provide formal
requirements for Algorithm 2 in Appendix D.

Theorem 4 (Security). BlameGame satisfies the complete-
ness, soundness, and privacy properties defined in Appendix D
when a server is actively malicious.

Proof. See Appendix D. �

Theorem 5 (Communication). BlameGame incurs an over-
head of O(Lλ) bits per request and at most one additional
round of communication between servers.

Proof. Assume that each dispute token σ◦ is posted to a pub-
licly accessible bulletin board. To resolve disputes, servers
decrypt their share σ◦ and run Resolve only if the original au-
dit fails (this requires one round of communication). Servers
can then post their shares of Absolve to the bulletin board and
assign blame through Blame if the secondary audit fails. The
size of σ◦ is at most O(Lλ) when using the multi-server DPF
since the audit is only evaluated over the compressed DPF
keys (independently of the message m). �

4.5 Multiple Servers
While we focus our presentation on the two server setting, the
underlying building blocks trivially generalize to multi-server
settings as well, where we allow an adversary to control all
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Figure 4: BlameGame protocol. 1 Clients sends an encrypted
backup of their shares to the opposite server. 2 Servers audit the
secret-shared requests (from Spectrum). 3 If the audit fails, servers
swap the backups and perform a second audit over the (decrypted)
shares. 4 If this audit fails, then blame is assigned to either the
client (and the request is discarded) or the server (and the honest
server aborts).

but one server. In Appendix F, we provide a construction for
a general, multi-server DPF similar to the one used in Riposte.
We note that the authorization technique of Section 4.3 applies
to this general construction as well. However, instantiating
Spectrum with more than two servers requires switching the
underlying cryptographic primitives in a DPF [18]. The multi-
key DPF presented in Appendix F uses a seed-homomorphic
PRG, which is much slower compared to an AES-based PRG
used in the two-key DPF construction [9, 10]. We imple-
ment and show experimental results demonstrating this effect
in Section 5.

5 Evaluation

We implement and evaluate Spectrum, comparing it to the
state-of-the-art protocols for anonymous broadcasting: Ri-
poste [18], Blinder [1], and Express [28] (see a full compari-
son in Section 6).

Riposte is designed for anonymous broadcasting but does
not have a concept of channels: all users are assumed to be
broadcasting all the times. Riposte can be instantiated with a
minimum of 3 servers (of which one is an audit server) but
generalizes to a many-server setting, where at least one server
is assumed to be honest. Riposte was designed for smaller
messages and the source code fails to run with messages of
size 5 kB or greater.

Blinder builds on Riposte but requires at least 5 servers of
which a majority is assumed to be honest. Like Riposte,
Blinder also assumes that all users are broadcasting and does
not have a concept of channels. However, Blinder is designed
to take advantage of a server-side GPU to increase throughput

Algorithm 2: BlameGame

Params : E = (Gen,Enc,Dec,DecProof,VerProof).

def Resolve(sk◦,Γ,σ◦):

parse Γ = (gα1 ,. . . ,gαL ) // verification keys

parse σ◦ = ~τ◦�pk◦
τ◦← Dec(sk◦,~τ◦�pk◦ ) // decrypt backup request

β◦← GenAudit(Γ,τ◦)
output β◦

def Absolve(sk◦,σ◦ = (~τ◦�pk◦ ):
τ◦← Dec(sk◦,~τ◦�pk◦ ) // decrypt backup request

π◦← DecProof(sk◦,~τ◦�pk◦ ) // proof of decryption

φ◦← τ◦‖π◦ // backup request/decryption proof

output φ◦

def Blame(Γ,τ◦ = (k◦‖t◦),σ◦ = (~τ′◦�pk◦ ),φ◦ = (τ′◦‖π◦)):
parse φ◦ = τ′◦‖π◦
if VerProof(pk◦,π◦,~τ

′
◦�pk◦ ,τ

′
◦) = no then

output server // incorrect decryption proof

(β◦, β′◦)←
(
GenAudit(Γ,τ◦), GenAudit(Γ,τ′◦)

)
if CheckAudit(β◦, β′◦) = yes then

output server // server tampered with audit

else
output client // client sent an invalid request

and achieves a concrete advantage over Riposte.

Express [28] is an anonymous communication system de-
signed for anonymous “dropbox”-like applications. While
not designed for anonymous broadcasting, we find that it can
be easily modified to do so (but with much weaker security
guarantees; see Section 6). We include Express in our com-
parison (after modifying it for broadcasting) because, to the
best of our knowledge, it is the only existing system that is
capable of decoupling publishers and subscribers if used for
anonymous broadcasting.

We run Express [28] and Riposte [18] in the same setting as
Spectrum1. For Blinder we include performance numbers as
reported in their paper [1] because their released source had
multiple syntax errors and did not compile for us.

5.1 Setup

Implementation. We implement Spectrum2 in approxi-
mately 8,000 lines of Rust code (2020-12-21 nightly build).
We instantiate our construction with AES-128 (CTR mode)

for the PRG and BLAKE3 [57] for collision-resistant hashing.

1Our source repository includes Terraform [35] deployment templates for
all three systems for easy reproduction of these experiments.

2Source available at http://github.com/znewman01/spectrum-
impl
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Figure 5: Throughput (client requests per second; higher is better)
for a one channel deployment (one publisher and many subscribers).
Shaded region represents 95% confidence interval.

For the multi-server extension (Section 4.5), we construct
a seed-homomorphic PRG [7] with the Jubjub [38] twisted
Edwards curve. All traffic between the client and servers is
encrypted using TLS 1.3 [63].

Environment. We use Amazon Elastic Cloud Compute
(EC2) for our experiments. Our deployment comprises two
or more server machines, along with machines to simulate
client traffic. Each is a c5.4xlarge3 virtual machine (VM)
instance with an 8-core Intel Xeon Platinum 8000 CPU and
32 GiB RAM, running Ubuntu 20.04 LTS. While compara-
tively small (only 8 cores), we choose these VMs as are they
represent mid-tier commodity servers. Each VM cost $0.68
per hour as of February 2021. Running openssl speed re-
ports 3.5 GiB/s throughput for CTR mode AES-128. All
servers run in the same region, with 1 ms network RTT.

5.2 Results
Across all settings in which we evaluate these systems, we
find Spectrum is 3–140× faster than Express, 0.3–8.5× the
speed of Blinder (GPU), 1.3–54× faster than Blinder (CPU),
and 328× faster than Riposte.

One channel. We report the throughput (client requests per
second) for both Spectrum and Express in the one-channel
setting in Figure 5. As expected, throughput scales inversely
with the message size for both Spectrum and Express. How-
ever, we find that Spectrum, compared to Express, is up to
140× faster on both small (100 kB) messages and up to 3×
faster on large (5 MB) messages. Riposte and Blinder have
no analog for the single-channel setting.

Many channels. The throughput for both Riposte and Blin-
der depends only on the total number of users. Therefore,
to adequately compare with Spectrum, we first fix the total
number of users to 10,000 (increasing to a larger anonymity
set size is less favorable to Riposte and Blinder) and vary the
number of channels for both Spectrum and Express to 10,000
(which represents the worst case setting for these systems).
Even with many simultaneous broadcast channels, Spectrum

3See https://aws.amazon.com/ec2/instance-types/c5.4xlarge
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Figure 6: Throughput (requests per second; higher better) for broad-
casts with 10,000 users: Express and Spectrum benefit from having
relatively few channels. (Blinder numbers as reported by the au-
thors.) Shaded region represents 95% confidence interval.

outperforms Express, Riposte, and Blinder (both CPU and
GPU variants) in terms of throughput (see Figure 6). How-
ever, as the number of channels increases and approaches
the total number of users in the system (10,000), we see a
diminishing advantage in performance. As the number of
channels reaches the total number of users Spectrum (and
Express) perform slightly worse compared to Blinder’s GPU
deployment (which is an order of magnitude faster than Blin-
der’s CPU variant and Riposte). Therefore, in a setting where
every user is broadcasting to their own channel simultane-
ously, there is no net benefit to using Spectrum. However, we
note that most real-world applications have a high ratio of
passive subscribers to active publishers [53,87], which makes
Spectrum appealing in most situations.

Overhead. In any anonymous broadcast scheme, every client
(even subscribers) must upload data corresponding to the mes-
sage length |m | to ensure full metadata privacy. For DC-net
based schemes, the client sends a size-|m | request to each
server. We measure the concrete request sizes of Spectrum
and compare to this baseline in Table 2. Client request over-
head is small: about 70 B which is roughly 75× smaller com-
pared to request sizes in Express. Moreover, in Spectrum,
request audits are under 100 B which is a 120× improvement
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Request Size Request Audit Aggregation
per client per client once per server

|m |+ 70 bytes 70 bytes |m |+ 3 bytes

BlameGame Backup Request Audit Decryption
(per failed audit) per client per client once per client

140 bytes 200 bytes 10 µs

Table 2: Upper bound on concrete request size (bytes) for one
channel and messages of size |m |. BlameGame only incurs an audit
and decryption overhead if the first request audit fails (i.e., the
BlameGame protocol is invoked).
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Figure 7: Throughput (higher is better) for n-server deployments
with 64 channels of 160 B messages. (Riposte numbers are as re-
ported by the authors for a similar setting.)

over audits in Express [28].
We also find that BlameGame imposes little overhead

(both in terms of bandwidth and computation) over Spec-
trum. Moreover, because BlameGame is only invoked when
a request audit fails, these overheads are only incurred for a
small fraction of requests (provided servers are honest).

Many servers. We compare the 2-server and n-server ver-
sions of Spectrum (where all but one server is assumed to be
malicious). Under this threat model, the n-server variant re-
quires the use of a seed-homomorphic PRG [7] to instantiate
the DPF (Definition 1), which in turn requires elliptic curve
operations (rather than AES). This requires using public-key,
rather than symmetric, cryptographic operations to evaluate
the PRG resulting in a concrete performance hit (Figure 7).
Specifically, we observe a 200× decrease in throughput in a
direct comparison to the AES PRG. However, we note that
this concrete performance factor remains constant even as
the number of servers increases and outperforms the n-server
deployment of Riposte.

Scalability. In practical settings, one logical “server” may be
deployed as several worker servers. Since each worker server
within a logical server is likely to be in the same location
and network, running the same software, administered by
the same organization, we may trust them identically. In
such a deployment, Spectrum can shard client requests across
workers composing a logical server. That is, running 10
workers per logical server leads to a 10× increase in overall
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Figure 8: Spectrum is embarassingly parallel: for 500 channels of
100 kB messages, 10 VMs per “server” gives a 10× speedup.

throughput. One benefit of this is that in a cloud deployment, a
fixed workload (i.e., number of clients, channels, and message
size) can be processed in less time for negligible additional
cost by parallelizing the servers.

5.3 Discussion

Our evaluation and results showcase the utility of Spectrum
on a real-world anonymous broadcasting deployment using
only commodity servers. Compared to the state-of-the-art
in anonymous broadcasting, Spectrum achieves speedups in
settings where the ratio of passive subscribers to publishers
is large. We calculate the below times and costs based on
throughput observed in our evaluation.

Case study I: Leaking a document. Our deployment of
Spectrum can be used to share a small PDF document (1 MB)
in 10s within an anonymity set of 10,000 users.

Case study II: Publishing a podcast. Another application
of Spectrum is to broadcast a podcast file (50 MB), potentially
from a region of the world where internet traffic is monitored
and journalistic activities supressed. Our deployment can be
used to achieve this in 8m30s with 10,000 users.

Case study III: Publishing a documentary. Finally, we
examine the case where Spectrum is used to broadcast a
documentary movie (e.g., Navalny’s documentary on Putin’s
Palace [72]). This 2h documentary, available on YouTube, is
under 500 MB, requiring roughly 1h24m to upload through
Spectrum with an anonymity set size of 10,000.

We note that all of these times can be reduced by parallelizing
the logical servers (Figure 8).

Operational costs. To compute cost, we note that for EC2
inbound data is free, and our only outbound data requirement
is under 100 bytes per query (about 1 GB per day, at the
above rates). Compute costs are $3.85 per GB published
through Spectrum (for 10,000 users). We compare with other
systems (Case study III, above) in Figure 9. For a cloud-based
deployment, parallelizing yields better throughput at almost
no additional cost.
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Figure 9: Estimated costs for Spectrum and other systems. For
Express and Riposte, we extrapolate from our measurements; for
Blinder, we use their reported costs.

Additional extensions. In Appendix B, we discuss two exten-
sions which we believe can be useful to a real-world deploy-
ment. First, we show how to incorporate content moderation
mechanisms to prevent harmful or copyrighted content from
being published through Spectrum (a feature that is often at
odds with anonymity in other systems but not for Spectrum
due to the concept of channels). Second, we show how to pro-
vide subscriber anonymity when fetching published content
by using private information retrieval.

6 Related Work

We provide a comparison to related work in anonymous broad-
casting in Table 1. Existing systems for anonymous broadcast
are suitable for 140 B to 40 kB [1, 18, 28] broadcasts, which
is 2–8 orders of magnitude too small when considering the
gigabytes of text documents [68] and multi-terabyte data
dumps [59, 67] common today. Anonymity systems such as
Tor [25] allow for greater throughput but fail to provide strong
anonymity: if only the whistleblower uploads terabytes of
data through Tor, metadata (visible to any Tor nodes and net-
work attackers) can be used to uniquely identify them (which
is why Tor operators discourage high-bandwidth applications
such as BitTorrent [24]).

Mix Networks and Onion Routing. In a mix net [14], users
send an encrypted message to a proxy server, which for-
wards these messages to their destinations in a random order.
By chaining several such servers (with encryption between
hops), the network protects users from a subset of compro-
mised proxy servers and provides anonymity in the presence
of a passive network adversary. Mix nets and their varia-
tions [22, 43–46, 48, 49, 52, 54, 61, 62, 73, 74, 82] facilitate
anonymous communication but are generally considered slow.
To boost performance (by sacrificing strong anonymity), some
systems use onion routing instead of a mix net. In onion rout-
ing, users encrypt their messages several times (in onion-like
layers) and send them to a chain of servers. Tor [25], the

most popular onion routing system, anonymizes web traffic
with millions of daily users [75]. Tor provides security in
many real-world settings, but is vulnerable to traffic analysis.
State-of-art attacks [42, 51, 70] de-anonymize users over 90%
accuracy. The high-bandwidth broadcast setting is particu-
larly vulnerable: if only one user sends large volumes of data,
an adversary can identify them by bandwidth usage alone.

DC-nets. Another group of anonymous communications
systems use techniques from the dining cryptographer net-
works (DC-nets) [15] mentioned in Section 2. We note in
Section 2 that DC-Nets are vulnerable to disruption: any
malicious participant can clobber a broadcast by sending a
“bad” share. Dissent [19] augments the dining cryptographers
technique for anonymous group messaging with a system for
accountability. Dissent supports only about 40 users; Dissent
in Numbers [86] uses an any-trust model to handle up to
5,000 participants. While Dissent can support relatively large
messages (up to 16 MB), latency exceeds one hour per round.

Riposte [18] enables anonymous broadcast (in the style
of Twitter) with many users. Riposte uses a DC-net based
on DPFs and an auditing server for preventing disruptors.
However, Riposte requires 11 hours to process broadcasts
with 1 million users and 160 byte messages and assumes all
users are broadcasting.

A more recent work, Blinder [1] extends Riposte with
multi-party computation for disruption prevention. Blinder’s
threat model differs from both Spectrum and Riposte by re-
quiring an honest majority of servers and a minimum of five
servers to run. Like Spectrum, Blinder is resilient to active
attacks by a malicious server.

Express [28] is a system designed for “mailbox” anony-
mous communication (writing anonymously to a designated
mailbox). Express also uses DPFs for efficient write requests.
However, Express can only be instantiated in a two-server
deployment and does not generalize to multiple servers using
existing cryptographic techniques. Express is not a broad-
casting system, and while it is possible to adapt it to work in
a broadcast setting (as we have done), it is not designed to
withstand active attacks by the servers and does not account
for client-server collusion, making it relatively insecure for
such an application (see Appendix A).

7 Conclusion

We present a new system for achieving anonymous broadcast
with strong security guarantees. Spectrum supports high-
bandwidth, low-latency transmission from a small set of pub-
lishers to a large set of subscribers by introducing a way to
obliviously enforce access control to broadcast channels. Our
main construction uses only symmetric-key primitives which
ensures efficiency in practical deployments. Our experimen-
tal results show that Spectrum can be used for uploading
gigabyte-sized documents anonymously among 10,000 in a
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matter of hours. Moreover, we achieve this on commodity
hardware available at scale, making Spectrum a practical tool
for anonymous broadcasting with plausible applications in
the real world.
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A The Audit Attack

While many broadcast systems claim privacy with a malicious
server, they trade robustness to do so. When a message is
expected, a server can act as if a user was malicious to prevent
aggregation of their request, learning whether that user was
responsible for the expected message. If a system aborts in
such circumstances, it no longer has the claimed disruption-
resistance property. Some systems such as Atom [43] and
Blinder [1] solve this by using verifiable secret-sharing in
an honest-majority setting; however, this can be costly in
practice; others do not prevent this attack.

Express. Express is designed for private readers, but it can be
trivially adapted for broadcast (see Sections 5 and 6). How-
ever, a malicious server can then exploit the verification pro-
cedure [28, Section 4.1] to exclude a user, changing their
request to an invalid distributed point function. This excludes
the message from the final aggregation, de-anonymizing a
broadcaster with probability at least 1

(1−ε)N per round (where
ε is the fraction of corrupted clients). Over even a few rounds,
this can lead to a successful de-anonymization of a publisher
without detection (honest servers cannot tell if a server is
cheating and therefore cannot abort protocol).

Riposte. The threat model of Riposte does not consider at-
tacks in which servers deny a write request. As a result, a
malicious server can eliminate clients undetectably by simply
computing a bad input to the audit protocol which causes the
request to be discarded by both servers. While this attack
can be mitigated by using a multiple servers and assuming an
honest majority (as in Blinder [1]), this weakens the threat
model and reduces performance.

Application of BlameGame. The BlameGame protocol ap-
plies immediately to both Riposte and Express to address this
“audit attack” by allowing (honest) servers to assign blame
to either a client or server if an audit fails. The only cost (as
in Spectrum) is a slight increase in communication overhead
which, importantly, is independent of the encoded message in
the request.

B Extensions

In this section we describe two practical extensions to Spec-
trum.

Subscriber Anonymity
The scheme presented in Algorithm 1 provides publisher
anonymity; we now consider the problem of subscriber
anonymity. With multiple channels, clients could download
all broadcasts to hide which one they want to read. However,
with L channels, this requires L · |m | communication. To
do better, we use private information retrieval (PIR), a well-
studied cryptographic primitive designed for this purpose.
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Private Information Retrieval. PIR was introduced as a
technique to efficiently query a database without leaking in-
formation about the retrieved item [16, 41]. Modern PIR
schemes trade off communication and server computation.
With a state-of-the-art multi-server PIR scheme [6, 20], a
client could retrieve one of L |m |-bit channels with O

(
log L

)
bandwidth overhead. Despite this low bandwidth, the com-
putational overhead is linear in the size of the database (i.e.,
O(L · |m |)). In recent online/offline PIR schemes [20], clients
and servers perform a one-time pre-computation, reducing
the computational overhead of subsequent retrieval queries.
When subscribers download several chunks from the same
channel, Spectrum is well suited for such a scheme. Any PIR
scheme can be applied “out-of-the-box” to ensure anonymity
for subscribers when downloading from the published broad-
casts. We also describe a purely practical PIR optimization
for a deployment of Spectrum with a few channels (e.g., 10
channels).

Trick: PIR amortization. In simple PIR schemes, a client
sends one of 2L possible queries to each server. When the
number of clients N exceeds 2L , servers can pre-compute
responses to all possible client queries. Then, the (amortized)
server-side computation per client is O(1). For example,
with 1,000,000 users and 10 channels, the server-side work is
reduced by ≈ 1000×.

Content Moderation
In many cases, anonymity is in direct conflict with content
moderation and curation. Anonymous platforms are espe-
cially susceptible to issues with Child Sexual Abuse Material
(CSAM), terrorism, and hate speech [34, 65].

Spectrum allows content moderation without compromis-
ing anonymity. Because Spectrum is permissioned, the
servers can ban a publisher by changing the key of a channel
with such content. Users can use the moderation mechanisms
deployed on Twitter, Reddit, and similar broadcast platforms
(e.g., voting or machine-learning [34]) to remove this mate-
rial.

C Spectrum Analysis

In this section we formalize the high-level security goals
of Section 3.3 with L channels and message space {0,1}` . Our
protocol must be correct, complete, sound, and private. Let
G = (g,p) be a group of order p with generator g in which the
Discrete Logarithm problem is assumed to be computationally
hard [77].

Correctness. Spectrum is correct if messages recovered from
Cover are all empty (zero):

Pr


reqs← Cover();
msgs← {Accept(τ) | τ ∈ reqs}
s.t. Recover(msgs) = 0L


= 1.

Additionally, the protocol must recover the input of Broadcast
in the appropriate slot (empty elsewhere): for all messages
m ∈ {0,1}` , channel j ∈ [L], and key α,

Pr



reqs← Broadcast(m, j,α);
msgs← {Accept(τ) | τ ∈ reqs};
res← Recover(msgs)
s.t. res[ j] = m∧ res[ j ′] = 0L for j ′ , j



= 1.

Together, these properties are sufficient for protocol correct-
ness: the write tokens from Cover are an identity element
for Recover, and the write tokens from Broadcast yield the
message m at the correct index with the identity elsewhere.

Completeness of GenAudit and CheckAudit. Spectrum is
complete if the output of Cover passes the audit: for all lists
of channel broadcast keys Γ = (gα1 ,. . . ,g

αL ) with α j ∈ Fp ,

Pr


reqs← Cover();
audits← {GenAudit(Γ,τ) | τ ∈ reqs}
s.t. CheckAudit(audits) = yes


= 1.

Additionally, the output of Broadcast must pass the audit: for
all lists of keys Γ = (gα1 ,. . . ,g

αL ), all channel indices j ∈ [L],
and all messages m ∈ {0,1}` ,

Pr


reqs← Broadcast(m, j,α j );
audits← {GenAudit(Γ,τ) | τ ∈ reqs}
s.t. CheckAudit(audits) = yes


= 1.

Soundness of GenAudit and CheckAudit. Spectrum is sound
if no adversary can generate write requests that pass the audit
and perform any write operation without the authentication
key α j for channel α j , except with negligible probability.

Since the adversary “guesses” write requests at each round,
we first define an oracle which reveals whether a set of write
tokens passes the audit with the given broadcast keys:

F (Γ,reqs) = CheckAudit({GenAudit(Γ,τ) | τ ∈ reqs}).

For all security parameters λ, all subsets of indices I ⊆ [L],
and for all probabilistic polynomial time (PPT) adversaries
A with oracle access to F (Γ,·):

Pr



α = (α1,. . . ,αL )
R
← FL ;

Γ← (gα1 ,. . . ,gαL );
reqs←AF (Γ, ·) (1λ ,α[I]);
toks← {GenAudit(Γ,τ) | τ ∈ reqs};
msgs← {Accept(τ) | τ ∈ reqs}
s.t. Recover(msgs)[i] , 0 for i < I
∧ CheckAudit(toks) = yes



≤ negl(λ)

where negl is a negligible function. That is, generating a
valid write request that passes the audit, without knowledge
of the broadcast key associated with the channel index, is
only possible with negligible probability.
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Privacy. Spectrum is private if no adversary controlling
all-but-one of the servers can learn which honest clients are
publishers: for all fixed Γ = (gα1 ,. . .gαL ) and for all (strict)
subsets of indices I ⊂ [L], the following distributions are
computationally indistinguishable:

{
reqs[i], audit

}
i∈I
≈c

{
reqs′[i], audit′

}
i∈I

where the variables are sampled as

reqs← Broadcast(m, j,α j )
audit← {GenAudit(Γ,τ) | τ ∈ reqs}
reqs′← Cover()
audit′← {GenAudit(Γ,τ′) | τ′ ∈ reqs′}.

That is, no subset of malicious servers can distinguish be-
tween a cover request and a broadcast request.

Additionally, because all requests are combined at the end
of the round, we also require that revealing the combination
of all requests preserves privacy for users. We formalize
this property as follows. For all PPT adversaries A, for all
messages m and indices j, there exists a negligible function
negl such that

Pr



b
R
← {0,1};

reqs0← Broadcast(m, j,α j );
reqs1← Cover();
res← Recover

({
Accept(reqsb),Accept(reqsb̄)

})
;

b′←A(res) : b = b′



≤
1
2
+negl(λ).

That is, combine does not reveal the ordering of the requests.

Theorem 1 (Security). The construction in Definition 1 sat-
isfies the correctness, completeness, soundness, and privacy
properties for Algorithm 1 defined in Appendix C.

Proof. We prove the theorem for the two-server case. The
n-server case follows a similar argument.

Correctness. We have:

Recover({Accept(τ) | τ← Cover()})

=
∑

(k ‖t )∈ Cover()

DPF.Eval(k) (def. Accept, Recover)

=
∑

k ∈ DPF.Gen(0`,0)

DPF.Eval(k) (def. Cover)

= (0`)L . (correctness of DPF)

Further, for any message m, channel index j, and broadcast
key α, we have:

Recover({Accept(τ) | τ← Broadcast(m, j,α)})

=
∑

(k ‖t )∈ Broadcast(m, j,α)

DPF.Eval(k) (def. Accept, Recover)

=
∑

k ∈ DPF.Gen(m, j )

DPF.Eval(k) (def. Cover)

= m · e j . (correctness of DPF)

The summation operation in the definition of DPF is com-
mutative and associative, with 0` as the identity element.
Consequently, Spectrum recovers the correct broadcast mes-
sages.

Completeness. Let Γ = (gα1 ,. . . ,gαL ) be any vector of pub-
lic authentication keys. First, consider the completeness
of Cover. Let (τA,τB) ← Cover() where both τ◦ = (k◦‖t◦).
We have DPF keys (kA,kB) ← DPF.Gen(0` ,0) and tags

tA = tB
R
← F. Let β◦← GenAudit(Γ,τ◦). Then,

βA = g
∑L

i=1αi ·SmallEval(kA )−tA (GenAudit(Γ,αA))

βB = g
∑L

i=1αi ·SmallEval(kB )−tB . (GenAudit(Γ,αB))

=⇒ CheckAudit(βA, βB) =
(
βA

?
= βB

)
= yes

since kA = kB and tA = tB (def. GenAudit), and the protocol
is complete for Cover.
Now, consider Broadcast. For all m, j,α j , we have (τA,τB)←
Broadcast(m, j,α j ) where τA = (kA‖tA) and τB = (kB ‖tB).
Then:

α j · (SmallEval(kA)[ j]−SmallEval(kB)[ j]) = tA − tB

(def. Broadcast)

α j ·SmallEval(kA)[ j]− tA = α j ·SmallEval(kA)[ j]− tA
L∑
i=1

αi ·SmallEval(kA)− tA =
L∑
i=1

αi ·SmallEval(kB)− tB

g
∑L

i=1 αi ·SmallEval(kA )−tA = g
∑L

i=1 αi ·SmallEval(kB )−tB

GenAudit(Γ,τA) = GenAudit(Γ,τB)
(def. GenAudit)

since SmallEval(·)[ j ′] = 0 for j ′ , j. Therefore, CheckAudit
outputs yes as required.

Soundness. We show this by a reduction to the security of
the Carter-Wegman MAC scheme based on universal hash-
ing [85] and the collision-resistance of the hash function used
in the audit process. LetA be a PPT adversaryA with oracle
access to F (Γ,·). For contradiction, assume that A generates
a valid write request τA,τB with non-negligible probability.
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Consider any DPF keys (kA,kB) that write a non-zero
value to some channel j. For pair of request tokens τA =
(kA‖tA),τB = (kB ‖tB) that pass the audit, by inspection of
CheckAudit, it must be that:

βA = βB

=⇒ g
∑L

i=1αi ·SmallEval(kA )−tA = g
∑L

i=1αi ·SmallEval(kB )−tB .

In light of this, there are two cases to consider. In case
1, SmallEval(kA)[ j] = SmallEval(kB)[ j]. If the DPF keys
caused a write, then we must have mA , mB but H (mA) =
H (mB). Because we can compute mA and mB from the
output of A, we can use A to build an adversary for the
security game for the collision-resistance of H with the same
probability.
In the other case, we have

SmallEval(kA)[ j] , SmallEval(kB)[ j].

Then, we can extract a linear combination of the broadcast
keys α∗ from the tag shares output by A as

α∗ = t ·
∏
i∈I

(SmallEval(kA)[i]−SmallEval(kB)[i])−1,

where j ∈ I ⊆ [L] (i.e., the request may write to more than
one channel).

We can think of α∗ as being a key for a single channel
by merging all channels to which the write occurred into
one, which helps simplify the analysis without changing the
argument (the sum of random values in a field is random).
We can then use A to build an adversary B to forge Carter-
Wegman MAC tags with the same probability of success: this
adversary queries the MAC oracle on message m = 0 to obtain
the nonce γ and then queriesA to obtain α∗. With (α∗,γ), the
adversary forges a valid tag for an arbitrary message m′ , m
and

negl(λ) ≤ Pr[A succeeds] = Pr[B succeeds] =
1
|F|
.

which is a contradiction.

Privacy. To argue privacy, we must show two things. First,
we must argue that the request and audit shares received by a
server reveal no information about the message. Second, we
must show that the output of the protocol hides the order in
which the requests were received and processed.

We first argue that an individual request share in conjunc-
tion with the audit shares reveal no information about whether
the request is a cover or broadcast message.

Fix some authentication key vector Γ and channel index
j. Suppose towards contradiction that some PPT adversary
A could distinguish between the distributions defined for the
Spectrum privacy property: namely a view of one request
share and both audit tokens.

The variables m and Γ are distributed identically in case
of a cover request and a broadcast request. In the two-server
setting, the server sees only one element of reqs; call this
τ (and let τ′ = (k ′‖t ′) indicate the other element). Parsing
τ = (k ‖t), we note that k is either one of the DPF keys from
DPF.Gen(m, j) or DPF.Gen(0,0), and t is distributed uni-
formly at random without the other half of the proof share.
The variable audit comprises one element which can be com-
puted from τ and is identically distributed in both cases (if the
client computed the request shares correctly). Hence, it must
be the case that the adversary was able to distinguish between
the distribution of k for Cover() and Broadcast(m[ j], j,Γ[ j]).
However, this would contradict the computational indistin-
guishability of the DPF simulator. Therefore, we conclude
that the request shares on their own reveal no distinguishing
information about the underlying message.

Second, we must show that the output of the protocol does
not reveal the order in which the requests were accepted
by the servers. Specifically, the recovered messages output
as a result of applying Recover, are distributed identically
regardless of the ordering of inputs to Recover, which follows
directly from the associativity of Recover.

With these two requirements covered, we conclude that the
protocol is private.

�

D BlameGame Analysis

The BlameGame protocol must be complete, sound, and pri-
vate.

Completeness. BlameGame is complete if for all reqs =
(τA,τB) generated according to Broadcast or Cover with en-
cryptions σA = ~τA�pkA and σB = ~τB�pkB ,

Pr


βA← Resolve(skA,Γ,σA);
βB ← Resolve(skB ,Γ,σB);
CheckAudit(βA, βB) = yes


= 1.

Soundness. BlameGame is sound if no adversary (em-
ulating a malicious client or server) can deflect blame
for invalid request tokens. For all reqs = (τA,τB) with
encryptions σA = ~τA�pkA and σB = ~τB�pkB such that
CheckAudit(GenAudit(reqs)) = yes,

Pr
[
φ∗◦←A(sk◦,σ∗◦);
Blame(Γ,τ◦,σ◦,φ∗◦) , server

]
≤ negl(λ).

That is, a malicious server cannot generate acquittal token
φ∗◦ for any encryption σ∗◦ different from ~τ◦�pk◦ that deflects
blame from itself.

Likewise, a malicious client cannot generate a mali-
cious dispute token σ∗◦ that does not pass the audit and
deflects blame from itself. For all reqs = (τA,τB) with

19



encryptions σA = ~τA�pkA and σB = ~τB�pkB such that
CheckAudit(GenAudit(reqs)) = no,

Pr
[
φ◦← Absolve(sk◦,σ◦);
Blame(Γ,τ◦,σ∗◦,φ◦) , client

]
≤ negl(λ).

That is, for all encrypted request tokens reqs which do not
pass the audit, the client cannot “frame” the server as being
culpable for the failure.

Privacy. The privacy requirement of BlameGame is similar to
that of Spectrum. Specifically, the backup request and audit
generated using Resolve must not reveal any information
about the nature of the request. Formally, for public and
private keys

pk←
{
pki | i ∈ [n]

}
sk← {ski | i ∈ [n]}

corresponding to a verifiable encryption scheme, we have that
{

pk, sk[i], enc[i], res
}
i∈I

≈c

{
pk, sk[i], enc′[i], res′

}
i∈I

where the variables are sampled as

enc←
{
~τi�pki | τi ∈ Broadcast(m, j,α j )

}

res← {Resolve(ski ,Γ,enc[i]) | enc[i]}

for the former distribution, and

enc′←
{
~τi�pki | τi ∈ Cover()

}

res′← {Resolve(ski ,Γ,enc′[i]) | enc′[i]}.

for the latter.
In words, the decrypted request and backup audit shares

must not reveal whether the request contains a cover or broad-
cast message.
However, we note that BlameGame does not require any
privacy properties on Absolve, as it may reveal the request for
the purpose of assigning blame.

We now describe the security of BlameGame. Specifically,
we must show that BlameGame aborts Spectrum when a
server deviates from protocol in an attempt to de-anonymize
a publisher.

Theorem 4 (Security). BlameGame satisfies the complete-
ness, soundness, and privacy properties defined in Appendix D
when a server is actively malicious.

Proof. We must first show that the only way in which a mali-
cious server can deviate from protocol is by causing an audit
to fail. We then show that deviating in this way results in the
protocol aborting.

Ways in which a malicious server can deviate. The goal
of a malicious server is to cause a client’s broadcast (or cover)

request to not appear in the final output. Observing which
broadcasts appeared and which did not, reveals information
about whether the dropped request was sent by a publisher.
A malicious server can deviate by either not adding a client’s
request to the local message aggregate, modifying the request,
or by causing the audit step to fail by changing the audit token
generated by GenAudit.

In the first case, the resulting output will be disrupted
(servers will recover a random value) regardless of whether or
not the publisher’s request was dropped, hence revealing no
useful information to the malicious server. The same holds
true if the server tampers with the request itself.

On the other hand, if the server causes CheckAudit to fail,
then the request is dropped by both servers which will result
in a missing broadcast message in the case that the malicious
server successfully guessed which request belonged to a pub-
lisher. This latter scenario is what we must prevent with
BlameGame.

Since the BlameGame protocol is not invoked when
CheckAudit outputs yes (since at least one of the servers will
incorporate the request into the aggregate), in what follows
we condition on CheckAudit outputting no for client-issued
request tokens τA and τB in the Spectrum protocol. With this
in mind, we argue that the required properties are achieved.

Completeness. If the dispute tokens σA and σB are well
formed (are encryptions of request tokens τB and τA, respec-
tively) then swapping the dispute tokens and decrypting them
will result in ServerA decrypting τA and ServerB decrypting
τB . Assuming the client correctly generated and encrypted
the request tokens, then we have that the resulting audit to-
kens βA and βB (resulting from running Resolve) will pass
the audit, i.e., CheckAudit(βA, βB) = yes.

Soundness. If the server deviates from executing Resolve on
the received dispute token σ, then the probability that Spec-
trum is not aborted is negligible in the security parameter. To
see why, if the malicious server causes CheckAudit(βA, βB) =
no for βA and βB computed with Resolve by each server,
then the honest server requests the malicious server to reveal
the decryption of σ. A malicious server that changed β such
that it is different from what GenAudit(Γ,τ) outputs on the
decrypted request τ, is unable to provide a valid proof-of-
decryption to the honest server. Doing so would contradict
the soundness of the verifiable encryption scheme. Therefore,
the honest server detects that either (a) the malicious server
provided an invalid decryption for σ or (b) the malicious
server provided a correct proof-of-decryption but the result-
ing audit token β is different from the one received from the
malicious server. In both cases (a) and (b), the honest server
aborts since it is clear that the malicious server deviated from
protocol. On the other hand, if neither server deviated from
protocol and the second audit fails, both servers will be able
to prove correct decryption of the received tokens σA and σB

and locally ensure that the audit indeed fails by inspecting
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the request (which implies that the encrypted tokens were
generated incorrectly). This places blame on the client since
the encrypted request does not pass the audit.

Privacy. For all honest publishers, privacy is guaranteed with
probability L

N ·(1−ε) where ε is the fraction of corrupted clients.
If the first audit fails but the second audit (generated from
the decrypted requests) passes, then privacy follows from
the analysis of Spectrum and privacy of the audit therein. If
the second audit fails, then the request is revealed to both
servers for inspection (in order to adequately assign blame).
However, predicated on the revealed request being generated
correctly (since we are interested in when an honest publisher
gets de-anonymized), the protocol aborts if the second audit
fails (an honest publisher would have encrypted the request
correctly). In this case, both servers see the request which
de-anonymizes the client. Thus, for a fraction of corrupted
clients ε , the probability that the malicious server chooses
the correct request to tamper with before being aborted is

L
N ·(1−ε) .

�

E Verifiable Encryption

Definition 2 (Verifiable Encryption). A verifiable public-
key encryption scheme E consists of (possibly random-
ized) algorithms Gen, Enc, Dec, DecProof, VerProof
where Gen,Enc,Dec satisfy IND-CPA security and DecProof,
VerProof satisfy the following properties:

Completeness. For all messages m ∈M,

Pr



(pk,sk)← Gen(1λ );
c← Enc(pk,m);
(π,m)← DecProof(sk,c);
VerProof(pk,π,c,m) = yes



= 1.

where the probability is over the randomness of Enc.

Soundness. For all PPT adversaries A and for all messages
m ∈M,

Pr



(pk,sk)← Gen(1λ );
c← Enc(pk,m);
(π,m′)←A(1λ ,pk,sk,c);
VerProof(pk,π,c,m′) = yes



≤ negl(λ)

for negligible function negl(λ), where the probability is over
the randomness of Enc and A.

We note that most public key encryption schemes (e.g.,
ElGamal [27] and RSA [64]) satisfy Definition 2 out-of-the-
box and can be used to instantiate BlameGame.

F Distributed Point Functions

Algorithm 3 describes a construction for an n-DPF. The
construction is a simplified version of the DPF used in Ri-
poste [18] (see details and security analysis therein). We use

this construction to instantiate Algorithm 1 with more than
two servers. For the two-server case, there exist more efficient
constructions [9,10] which can be used, although Algorithm 3
can also be instantiated with two-servers using an AES-based
PRG for better concrete efficiency.

The construction uses a seed-homomorphic PRG G : S→ F
where S is the seed space and F is the output space. This
allows us to choose a set of n seeds that “cancel out” when
evaluated and combined. For n = 2, any PRG suffices, as
G(s) ⊕G(s) = 0 when ⊕ is bitwise exclusive-or. This permits
fast instantiations in practice using AES-based PRGs [18].

In Algorithm 3, we also describe the SmallEval algorithm
used in Spectrum which outputs the point encoding of the
DPF and a hash of the encoded message m.

Algorithm 3: n-key DPF Construction

Params : L and PRG G : S→ F.

def Gen(m, j):
if j ∈ [L] then

s′
R
← S // masking seed

b← e j ∈ FL // (. . . , 0, 1, 0, . . . )

s← s′ · e j ∈ FL // (. . . , 0, s′, 0, . . . )
m̂← m−G(s′) // mask the message

else
b← (0,. . . ,0) ∈ FL

s← (0,. . . ,0) ∈ FL

m̂
R
← F

split s into additive secret shares si for i ∈ [n]
split b into additive secret shares ~b�i for i ∈ [n]
ki ← (si ,bi ,m̂) for i ∈ [n]
output (k1,. . . ,kn )

def Eval(k◦):
parse k◦ as (s,b,m̂)
for j ∈ [L] do

m j ← G(s j )+ b j · m̂
output m = (m1,. . . ,mL )

Params :CRHF H : {0,1}` → G.

def SmallEval(k◦):
parse k◦ = (b, s,m̂)
for j ∈ [L] do

ρ j ← (b j , s j ,H (m̂)) // compressed output

output (ρ1,. . . , ρL )
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