
Spectrum: High-bandwidth Anonymous Broadcast with Malicious Security

Zachary Newman
MIT CSAIL

zjn@mit.edu

Sacha Servan-Schreiber
MIT CSAIL
3s@mit.edu

Srinivas Devadas
MIT CSAIL

devadas@csail.mit.edu

Abstract
We present Spectrum, a high-bandwidth, metadata-private

file broadcasting system with malicious security guarantees.
In Spectrum, a small number of broadcasters share a docu-
ment with many subscribers via two or more non-colluding
servers. Subscribers generate cover traffic, hiding which users
are broadcasters and which users are simply consumers.

To drastically improve latency and throughput, Spectrum
optimizes for few broadcasters and many subscribers, com-
mon in real-world broadcast settings. To prevent malicious
clients from disrupting broadcasts with malformed requests,
we introduce a new blind access control technique that allows
servers to reject malicious users. We also ensure security
against malicious servers which collude with clients.

We implement and evaluate Spectrum. Compared to the
state-of-the-art in cryptographic anonymous communication
systems, Spectrum’s peak throughput is 4–12,500× faster
(and commensurately cheaper) in a broadcast setting. De-
ployed on two commodity servers, Spectrum allows broad-
casters to share 1 GB in 13h 20m with an anonymity set of
10,000 (for a total cost of about $6.84). This corresponds to
an anonymous upload of two full-length 720p documentary
movies. Operational costs scale roughly linearly in the size of
the file and total number of users, and Spectrum parallelizes
trivially with more hardware.

1 Introduction

Free and democratic society depends on an informed public,
which sometimes depends on whistleblowers shedding light
on misdeeds and corruption. Over the last century, whistle-
blowers have exposed financial crimes and government cor-
ruption [51, 59, 65], risks to public health [34, 42], presi-
dental misconduct [11, 36, 58, 69], war and human rights
crimes [4, 30, 77], and digital mass surveillance by U.S. gov-
ernment agencies [12]. Political philosophers debate [2, 27]
the ethics of whistleblowing, but agree it often has a positive
impact.

These whistleblowers take on risks in bringing misdeeds
to light. The luckiest enjoy legal protections [78] or finan-
cial reward [79]. But many face exile [12] or incarcera-
tion [40, 60, 64]. Recently, activist Alexei Navalny was
sentenced to prison after releasing of documents accusing
Russian president Vladimir Putin of corruption and embez-
zlement [70].

Many whistleblowers turn to encrypted messaging apps
to protect themselves [35, 38, 74]. Secure messaging apps
Signal [19] and SecureDrop [6] have proven to be an im-
portant resource to whistleblowers and journalists [35, 74].
Encryption works, but cannot provide privacy from powerful
adversaries capable of observing network metadata.

The source, destination, timing, and size of encrypted data
can leak information about its contents. For example, prose-
cutors used SFTP metadata in the case against Chelsea Man-
ning [86]; a federal judge found Natalie Edwards guilty on
evidence of metadata from an encrypted messaging app [40].
Whistleblowing systems must provide users metadata privacy.

Many metadata-hiding systems provide application-
specific solutions to this problem. Some recent research sys-
tems [1, 22, 33, 44–46, 48, 76, 80] provide precise security
guarantees for both anonymous messaging and “Twitter”-
like broadcast applications. However, these systems slow
dramatically with large numbers of users or large messages.
Tor [29] is widely used, but unsuitable for high-bandwidth
applications. We compare to related work in Section 8.

Contributions. In this work, we introduce Spectrum, the
first anonymous broadcast system supporting high-bandwidth,
many-user settings with security against actively malicious
clients and servers. It optimizes for the many-subscriber and
few-broadcaster setting, which reflects the real-world usage
of broadcast platforms. Spectrum’s costs scale with the num-
ber of broadcasts in the system rather than the total number
of users, a primary cause of latency in prior work. With Spec-
trum, users can share very large messages in comparison with
prior work.

1

This paper contributes:

1. design and security analysis of Spectrum, a system for
high-bandwidth broadcasting with strong robustness and
privacy guarantees,

2. a notion of blind access control for anonymous communi-
cation using distributed point functions [37], along with a
construction and a black-box transformation to efficiently
support arbitrarily large messages,

3. BlameGame, a blame protocol to “upgrade” anony-
mous broadcast protocols for security against active de-
anonymization attacks, and

4. an open-source implementation of Spectrum, evaluated in
comparison to other state-of-the-art anonymous communi-
cation systems.

Limitations. Spectrum shares some limitations with
other metadata-private systems. First, Spectrum provides
anonymity among honest online users and requires all users
to contribute cover messages to a broadcast (to perfectly hide
network metadata), uploading as much data as a broadcaster
to provide anonymity. However, these cover messages can
provide cover for multiple broadcast messages at the same
time, with little overhead for each additional message (Sec-
tion 4). Additionally, Spectrum achieves peak performance
with exactly two servers (as do recent works in anonymous
broadcast [22, 33]) due to the speed of the relevant crypto-
graphic primitives [9].

2 Anonymous broadcast

In this section, we describe anonymous broadcast and its
challenges, along with our system design and techniques.

Setting and terminology. In anonymous broadcast, one or
more users (broadcasters) share a message (e.g., file) while
preventing network observers or other users from learning
its source. In Spectrum, passive users generate cover traffic
(dummy messages) to increase the size of the anonymity set
(the set of users who could have plausibly sent the broadcast
message). These passive users are subscribers, consuming
broadcasts. Users use a client to communicate with the sys-
tem. Because the message sources are anonymous, the servers
publish distinct messages in different channels or slots. Every
broadcaster has exactly one channel, which they anonymously
publish to in every iteration of the protocol.

2.1 DC-nets
Chaum [17] presents DC-nets, which enable a rudimentary
form of anonymous broadcast assuming all parties are honest.
As in prior work [1, 22, 33, 84], we instantiate a DC-net with
two or more servers and many clients (in contrast to Chaum’s
work, which assumes that all parties participate in the DC-
net). The motivation behind employing a small number of

servers rather than using a fully decentralized DC-net is due
to the improved efficiency that can be achieved as well as the
ability to guarantee robustness against malicious clients.

DC-nets use secret-sharing to obscure the source of data
in the network. One of the clients (the broadcaster) wishes to
share a file; all other clients (subscribers) provide cover traffic.
In a two-server DC-net, the 8th client samples a random bit
string A8 and sends secret share A8 ⊕<8 to ServerA and secret
share A8 to ServerB. Servers can recover <8 by combining
their respective shares:

<8 = (<8 ⊕ A8) ⊕ (A8).

If exactly one of # clients shares a message <8 = <̂ while all
other clients share <8 = 0, the servers can recover <̂ (without
learning which client sent <8 = <̂) by aggregating all shares:
agg� =

⊕
8 (A8 ⊕ <8) and agg� =

⊕
8 A8 . Because all sub-

scribers send shares of zero, only the broadcaster’s message
emerges from the aggregation. That is,

<̂ = agg�⊕ agg� .

To see this, observe that:

<̂ =

ServerA︷ ︸︸ ︷
#⊕
8

(A8 ⊕<8) ⊕

ServerB︷︸︸︷
#⊕
8

A8 =

(commutativity of xor)︷ ︸︸ ︷
#⊕
8

(A8 ⊕ A8) ⊕
#⊕
8

<8

= 0⊕ . . .⊕m ⊕ . . .⊕ 0︸ ︷︷ ︸
origin of <̂ is hidden

.

This scheme protects client anonymity, as each server sees
a uniformly random share from each client. Revealing the
aggregation hides which client submitted <̂.

DC-net challenges. While DC-nets allow fast anonymous
broadcast, users can undetectably disrupt the broadcast by
sending non-zero shares. A major challenge with DC-
nets is preventing malicious clients from disrupting broad-
casts [1, 22, 33, 45]; a primary cause of high latency in prior
work [1, 21, 22, 44, 45, 84] (see related work; Section 8).
Also, while DC-nets enable one broadcaster to transmit a
message, many clients may wish to broadcast to separate
channels, or slots. Repeating the protocol in parallel is inef-
ficient, requiring bandwidth linear in the number of broad-
casters. Even prior works which overcome this challenge
require more channels than broadcasters (sometimes expo-
nentially [33] more channels than broadcasters) to prevent
collisions. Additionally, other works [1, 22] require that each
user broadcasts a message for security, a waste of bandwidth
in many realistic settings.

2.2 Main ideas in realizing Spectrum
Spectrum builds on top of DC-nets, improving efficiency and
preventing disruption by malicious clients.

2

Preventing disruption. In Spectrum, we prevent broadcast
disruption by developing a new tool: anonymous access con-
trol (Section 3.1.1), which we build from the Carter-Wegman
MAC [83], and adapt to our setting by using a new obser-
vation about its properties. Servers check access to each
“channel” to ensure that only a user with a “broadcast key”
can write to that channel.

Practical efficiency. Spectrum capitalizes on the asymmetry
of real-world broadcasting: there are typically fewer broad-
casters than there are subscribers. While some prior works
repeat many executions of the DC-net protocol more effi-
ciently than the naive scheme, they still reserve space for
every client. As a consequence, the total computation on each
server is quadratic in the number of clients, leading to high la-
tency and much “wasted” work. Spectrum derives anonymity
from all clients, but only the total number of broadcasters
(rather than the total number of users in the system) influences
the per-client work on each server.

Preventing “audit” attacks. Anonymous broadcast servers
can covertly exclude a client in order to de-anonymize the
corresponding user. While vanilla DC-nets do not have this
problem, prior anonymous broadcast systems leave out a
client’s share if they are found to be ill-formed. This is done to
defend against disruption. However, it also makes it possible
for a malicious server to exclude a user by framing them
as malicious. In the broadcast setting, excluding a user can
effectively de-anonymize them. Abraham et al. [1] make the
same observation and defend against the attack by requiring
an honest-majority out of five or more servers; Corrigan-
Gibbs and Ford [21] prevent it with an expensive, after-the-
fact blame protocol. Other prior works [22, 33] are vulnerable.
Spectrum is the first system to efficiently defend against this
attack using minimal assumptions—we only require that at
least one server is honest—while still preventing disruption
(rather than blaming users afterwards). We achieve this by
introducing BlameGame, a lightweight blame protocol which
applies to other anonymous broadcast systems as well (see
Section 4.3).

2.3 System overview
Spectrum is built using two or more broadcast servers (only
one must be honest to guarantee anonymity; see Section 2.4)
and many clients consisting of broadcasters and subscribers.
One or more broadcaster(s) wish to share a message (as in the
DC-net example). The subscribers generate cover traffic to
increase the anonymity set. Each broadcaster has exactly one
channel, or slot, for their message. Subscribers do not have
a channel. Spectrum publishes a message to each channel
in every execution, but hides whether a user published a
message, and if so, which one. Spectrum has three phases.

Setup. During setup, all broadcasters register with the servers.
All users perform a setup-free anonymous broadcast protocol

Verification

Secret Sharing

Server A Server B

OK! OK!

+

0 00

A B

A B

Server A Server B

A B =
Broadcast

Share
Aggregation

S

S S

SSS

Figure 1: In Spectrum, users upload secret shares to the servers.
Servers validate and combine these shares to recover the broadcast
message while hiding its provenance.

to establish a channel in Spectrum. Specifically, each broad-
caster shares a public authentication key with the servers,
which will be used to enforce anonymous access to write to
a channel. At the end of the setup phase, the servers pub-
lish all parameters, including the number of channels and the
maximum size of each broadcast message per round.

Main protocol. The protocol proceeds in one or more rounds
(overview in Figure 1; details in Section 4.2). In each round,
every client sends request shares to each server. The broad-
casters send shares of their messages while the subscribers
send empty shares. To enforce access control, the servers per-
form an efficient audit over the received shares: they (oblivi-
ously) check that each writer to a channel knows the secret
channel broadcast key, or, alternately, is writing a zero mes-
sage. If the message shares pass the audit, the servers aggre-
gate them as in the vanilla DC-net (Section 2.1). Otherwise,
the servers perform a blame protocol (see BlameGame, de-
scribed below). Finally, the servers combine their aggregated
shares to recover the messages.

BlameGame. If any client’s request fails the audit, the servers
perform BlameGame, a simple blame protocol (detailed in
Section 4.3). BlameGame determines whether a client failed
the access control check or if a server tampered with the client
request in an attempt to frame a client as malicious. If the
client is blamed, the servers drop the client’s request and
proceed with the main Spectrum protocol. Otherwise, if a
server is blamed, the honest server(s) abort. Clients cannot
use this protocol to slow down execution of Spectrum (see
Section 6.2).

2.4 Threat model and security guarantees

Spectrum is instantiated with two (or more) broadcast servers
and many clients (broadcasters and subscribers). Clients send
shares of a message to the servers for aggregation.

3

Threat model
• No client is trusted. Clients may deviate from protocol,

collude with other clients, or collude with a subset of mali-
cious servers.

• Only one server must be honest and trusted by clients for
privacy. Any subset of servers may deviate from protocol
or collude with a subset of malicious clients.

Assumptions. As with prior work [1, 22, 45], we assume
the entire network is observed. We only require one non-
colluding server. We make black-box use of public key in-
frastructure (e.g., TLS [63]) to encrypt data between clients
and servers. We make use of several standard cryptographic
assumptions: (1) hardness of the discrete logarithm prob-
lem [32], (2) the decision Diffie-Hellman assumption [7] for
more than two servers, (3) the existence of collision-resistant
hash functions, and (4) pseudorandom generators. We also as-
sume a setup-free anonymous broadcast system [1, 22, 45, 84]
for bootstrapping Spectrum.

Guarantees. Under the above threat model and assumptions,
we obtain the following guarantees.

• Anonymity. An adversary controlling a strict subset of
servers and clients cannot distinguish between honest
clients: broadcasters and subscribers look the same.

• Availability. If all servers follow the protocol, the system re-
mains available (even if many clients are malicious). If any
server halts or deviates from the protocol, then availability
is not guaranteed and the protocol aborts.

Non-goals. As with prior works, we do not protect against
denial-of-service attacks by a large number of clients (but we
note that standard techniques, such as CAPTCHA [81], anony-
mous one-time-use tokens [26], or proof-of-work [31, 41]
apply). Like all anonymous broadcast systems, intersection
attacks on metadata participation in the protocol) can iden-
tify users, so Spectrum requires that users stay online for the
duration of the protocol.

3 Spectrum with one channel

In this section, we introduce Spectrum with a single broad-
caster (and therefore a single channel), two servers, and many
subscribers. Figure 1 depicts an example. This setup mirrors
the simplest DC-net protocol of Section 2.1. In Section 4 we
extend Spectrum to many broadcasters and many servers.

3.1 Preventing disruption

The single-channel version of Spectrum follows the DC-net
construction of Section 2.1. We denote by F any finite field of
prime order (e.g., integers mod ?). We assume that all mes-
sages are elements in F (Section 5.1 shows how to efficiently

support large binary messages). Each server receives secret-
shares of a message <8 , where <8 = 0 ∈ F for subscribers and
<8 = <̂ ∈ F for the broadcaster. To prevent disruption, we
enforce the following rule: for each channel, the broadcaster
(with knowledge of a pre-established access key) can send
a non-zero message; all subscribers (who do not have the
access key) can only share a zero message. We give a new
technique enabling the servers to verify the rule efficiently
without learning anything except for the validity of the pro-
vided secret-shares.

3.1.1 New tool: anonymous access control

We adapt the Carter-Wegman MAC [15, 83] to provide a
secret-shared “access proof” accompanying the message
shares. Each client sends a secret-shared proof that it is send-
ing either: (1) a share of a broadcast message with knowledge
of the access key; or (2) a cover message (i.e., <8 = 0) that
does not affect the final aggregate computed by the servers.
Crucially, this proof does not reveal which of these conditions
holds when the servers verify it.

Carter-Wegman MAC. Let F be any finite field of suffi-
ciently large size for security. Sample a random authentica-
tion key (U,W) ∈ F×F. We define a Carter-Wegman MAC as:

MAC(U,W) (<) = U ·< +W ∈ F.

A verifier can check the authenticity of a message <′ given a
tag C by computing C ′←MAC(U,W) (<′) and checking if C = C ′.
Forgery (different messages < ≠ <′ but same tag C = C ′) is
infeasible and the probability of guessing the authentication
key (U,W) is negligible [67]. Observe that MAC(U,W) is a
linear function of the message, which makes it possible to
verify a secret-shared tag for a secret-shared message. We
demonstrate this with two servers ServerA and ServerB. Let
C = MAC(U,W) (<). If < is additively secret-shared as < =

<� +<� ∈ F, and C is secret shared as C = C� + C� ∈ F, the
servers (knowing U and W) can verify that the tag corresponds
to the secret-shared message:
• ServerA computes ��← (C�−U ·<�) ∈ F.
• ServerB computes ��← (C� −U ·<�) ∈ F.
• Servers swap �� and �� and check if ��+�� = W ∈ F.
The final condition only holds for a valid tag. Neither server
learns anything about the message < in the process (apart
from the tag validity) since both the message and tag remain
secret-shared between servers.

It turns out that MAC(U,W) is almost sufficient to prevent
disruption. If both the servers and the broadcaster know
the key (U,W), the broadcaster can compute a tag C which the
servers can check for correctness as above. However, there are
two immediate problems to resolve. First, subscribers cannot
generate valid tags on zero messages without knowledge of
(U,W). Second, a malicious server can share (U,W) with a
malicious client who can then covertly disrupt a broadcast.

4

Request
Size

Audit
Size

Audit
Rounds

Server
Work

Malicious
Security

Disruption
Handling

Blame
Protocol Comments

Blinder [1] |< | ·
√
_ · |< | log# # · |< | 3 Prevent N/A Requires 5+ servers and MPC

Dissent [21] |< | · ! +# N/A N/A ! · |< | 3 Detect Expensive Blame quadratic in #

PriFi [5] |< | · ! +# N/A N/A ! · |< | 3 Detect Expensive Similar to Dissent

Riposte [22] |< | +
√
#

√
1 # · |< | 7 Prevent 7 Requires a separate audit server

Express [33] |< | + ! _ 1 ! · |< | 7 Prevent 7 Exactly 2 servers

Two-Server |< | + log(!) _ 1 ! · |< | 3 Prevent Lightweight With tree-based DPF [9]

Multi-Server |< | +
√
! _ 1 ! · |< | 3 Prevent Lightweight With seed-homomorphic DPF [8, 22]

Table 1: Per-request asymptotic efficiency of Spectrum (highlighted) and prior anonymous broadcasting systems for ! broadcasters, # total
users, |< |-sized messages, and global security parameter _. O(·) notation suppressed for clarity. Spectrum’s advantages include: a request size
depending on !, not # (Section 3.3), a request size efficient in ! (Section 5.1), a new protocol for fast, small audits (Section 3.1.1), and a new,
fast blame protocol for malicious security and disruption resistance (Section 4.3).

Allowing forgeries on zero messages. To allow subscribers
to send the zero message without knowing the secret MAC
key, we leverage the following insight from the SPDZ [24]
multi-party computation protocol. The W value acts solely
as a “nonce” to prevent forgeries on the message 0 ∈ F [82].
Because of this, we can eliminate W while still having the
desired unforgeability property of the original MAC for
all non-zero messages. When evaluated over secret shares,
MACU (<) = U ·< ∈ F maintains security for all < ≠ 0. This
satisfies our requirement: Subscribers can send < = 0 and a
valid tag C = 0 without knowing U. That is, subscribers can
“forge” a valid tag but only for < = 0.

This makes MACU sufficient to prevent disruptors: a broad-
caster can secret-share a non-zero message and valid tag using
the broadcast key U while a subscriber can only secret-share
the message <8 = 0 (and corresponding tag) without knowl-
edge of the authentication key. Any other messages would
yield an invalid tag, which will be caught by the servers when
performing the above audit.

Preventing client-server collusion. To address the second
problem, we need to prevent the servers from learning the
access key U while still preserving the ability to verify access.
We resolve this by shifting the entire verification “to the
exponent” of a group G (over F) where the discrete logarithm
problem is assumed to be computationally intractable [75].
That is, servers obtain a verification key 6U ∈ G but not U.
Subscribers do not have any key. All verification proceeds as
before. Each client generates secret-shares (C�, C�) of a tag C
and shares (<�,<�) of the message <. With these, servers
enforce access control as:
• ServerA computes ��← (6U)<�/6C� .
• ServerB computes ��← (6U)<�/6C� .
• Servers swap �� and �� and check if �� · �� = 60 = 1G.

Security. The unforgeability properties are inherited from
the Carter-Wegman MAC. Client anonymity (i.e., secrecy

0

Publisher

 Other Anon. Network
(low-bandwidth)

MAC PK

Spectrum
(high-bandwidth)

1

2
MAC PK MAC PK

3

MAC (SK, PK)
0

Figure 2: 1 A broadcaster creates a new “channel” by sending a
broadcast key to the servers via a (slow, low-bandwidth) anony-
mous network (e.g., Riposte [22]). 2 The broadcaster can then
broadcast using Spectrum (fast, high-bandwidth). 3 The servers
(anonymously) verify that each client request is valid using the
broadcast verification key—only the broadcaster can write to the
channel.

of the message <8) follows from the additive secret-sharing.
Client-server collusion is prevented by only the broadcaster
knowing the broadcast key U. We formally argue security
in Section 6.

3.2 Putting things together

In this section we combine the two-server DC-net construc-
tion for anonymous broadcast with the anonymous access
control technique of Section 3.1.1 to realize Spectrum with a
single channel, generalizing to multiple channels in Section 4.

Setup: broadcast key distribution. The setup in Spec-
trum involves the broadcaster anonymously “registering” with
the servers by giving them the authentication key 6U. The
servers must not learn the identity of the broadcaster when
receiving this key, which leads us to a somewhat circular
problem: broadcasters need to anonymously broadcast a key
in order to broadcast anonymously. We solve this one-time
setup problem as follows (illustrated in Figure 2). All clients
use a slower anonymous broadcast system suitable for low-

5

bandwidth content at system setup time [1, 22, 45, 84]. The
broadcaster shares a authentication key while subscribers
share nothing. Keys are small (e.g., 32 bytes) and therefore
practical to share with existing anonymity systems. Moreover,
once the keys for the broadcaster are established, they may be
used indefinitely. This process is similar to a “bootstrapping”
setup found in related work [3, 21, 33, 48, 80, 84] and we
note that Spectrum is agnostic to how this setup takes place.

Step 1: Sharing a message. As in the DC-net scheme, the
broadcaster generates secret-shares of the broadcast message
<̂ in the field F. All other clients (subscribers) generate
secret-shares of the message 0. The only difference is that
in Spectrum, the broadcaster knows the access key U while
subscribers do not. Let H = U if the client is the broadcaster
and H = 0 otherwise. Each client proceeds as follows.
1.1: Sample random <�,<� ∈ F such that < = <�+<� ∈ F.
1.2: Compute C← H ·< ∈ F. // MAC tag (Section 3.1.1)

1.3: Sample random C�, C� ∈ F such that C = C�+ C� ∈ F.
1.4: Send (<�, C�) to ServerA and (<�, C�) to ServerB.
The above amounts to secret-sharing the message and access
control MAC tag with the two servers.

Step 2: Auditing shares. Servers collectively verify access
control using the shares of the message and tag.
2.1: ServerA computes 6��← (6U)<�/6C� .
2.2: ServerB computes 6�� ← (6U)<�/6C� .
2.3: Servers swap 6�� and 6�� and check if 6�� · 6�� = 60.
The above follows the access control verification (Sec-
tion 3.1.1). All shares that fail the audit are discarded by
both servers. In Section 4, we show how to prevent “audit
attacks,” where a server tampers with a client request so that
this check fails.

Step 3: Recovering the broadcast. Servers collectively
recover the broadcast message by aggregating all received
shares that pass the audit.
3.1: ServerA computes agg�←

∑
8<�,8 ∈ F.

3.2: ServerB computes agg�←
∑
8<�,8 ∈ F.

3.3: Servers swap agg� and agg�.
3.4: Servers compute <̂← agg�+agg� ∈ F.
This recovers the broadcast message as in the vanilla DC-net
scheme. The recovered message is then made public to all
clients.

3.3 Towards the full protocol
The single-channel scheme presented in Section 3.2 achieves
anonymous broadcast while also preventing broadcast disrup-
tion by malicious clients. Two problems remain, however.
First, while the single-channel scheme is fast and secure with
one broadcaster, it does not efficiently extend to multiple
broadcasters. Second, a malicious server can perform an

audit attack by tampering with the audit to make it fail for
one or more clients—and learn whether one of them was a
broadcaster (see Section 4.3).

Supporting multiple channels. To support multiple chan-
nels, we use distributed point functions (DPFs) to “compress”
secret-shares across multiple instances of the DC-net scheme.
DPFs avoid the linear bandwidth overhead of repeating DC-
nets for each broadcaster and have been successfully used
for anonymous broadcast in other systems [1, 22, 33]. How-
ever, without access control, these DPFs must expand to a
large space to prevent collisions [22, 33]. We show that our
construction for single-channel access control extends to the
multi-channel setting, where each broadcaster has a key asso-
ciated with their allocated channel.

Preventing audit attacks. At a high level, our approach is
to commit each server to the shares they receive from a client.
In the case of an audit failure, each server efficiently proves
that it adhered to protocol to blame the client; if it cannot do
so, any honest server aborts Spectrum.

4 Many channels and malicious security

In this section, we extend the single-channel protocol of Sec-
tion 3.2 to the multi-channel setting. We first show how to
use a distributed point function (DPF) [37] to support many
broadcast channels with little increase in bandwidth overhead
(compared to the one-channel setting), an idea introduced by
Corrigan-Gibbs et al. [22]. We prevent disruption by aug-
menting DPFs with the anonymous access control technique
from Section 3.1.1. Prior works [9, 10, 22, 33] describe tech-
niques for verifying that a DPF is well-formed but do not
provide a way to enforce access control. Spectrum does both.

4.1 Tool: distributed point functions
A point function % is a function that evaluates to a mes-
sage < on a single input 9 in its domain [!] and evalu-
ates to zero on all other inputs 8 ≠ 9 (equivalently, a vector
(0,0, . . . ,<, . . . ,0)). We define a distributed point function: a
point function encoded and secret-shared among = keys:

Definition 1 (Distributed Point Function (DPF) [22, 37]).
Fix integers !, = ≥ 2, a security parameter _, and a message
spaceM. Let e 9 ∈ {0,1}! be the 9 th row of the !×! identity
matrix. An =-DPF consists of (randomized) algorithms:

• Gen(1_,< ∈M, 9 ∈ [!]) → (:1, . . . , :=),
• Eval(:8) → m.

These algorithms must satisfy the following properties:
Correctness. A DPF is correct if evaluating and summing

the output of Gen gives the corresponding point function:

Pr
[
(:1, . . . , :=) ← Gen(1_,<, 9)
s.t.

∑=
9=1 Eval(: 9) = < · e 9

]
= 1.

6

�������

+
Broadcast(, 2,)

�������� ��������

�����������

������� �������

�������� ��������

������� �������

11

2

3 5

OK
4

����������� ����������������������

OK! OK!

B
Channels

AS S

BS

DPF.Eval(k)

AS

DPF.Eval(k)A B

Figure 3: Spectrum with multiple broadcasters and subscribers. 1 We trace one broadcaster’s message. 2 Each client sends secret shares to
the servers consisting of a DPF key and access tag. 3 Servers verify the correctness of each client request by exchanging audit messages.

4 Servers locally aggregate all shares that pass the audit. 5 After processing requests from all clients, servers combine their aggregated shares
to reveal the broadcast messages.

Privacy. A DPF is private if any subset of evaluation keys
reveals nothing about the inputs: there exists an efficient
simulator Sim which generates output computationally indis-
tinguishable from strict subsets of the keys output by Gen.

We use a DPF with domain [!]; each index in the domain
corresponds to a specific broadcaster/channel. Each broad-
caster must write their message < to the channel 9 , but not
elsewhere: we can think of this as a point function % with
%(9) = <. Then, we can efficiently encode secret-shares of
% using a DPF, which is much more efficient than simply
secret-sharing its vector representation (as in repeated DC-
nets). Evaluated DPF shares can still be combined locally
in the manner of a DC-net, and our access control protocol
carries over with slight modification (Section 4.2).

DPFs are concretely efficient. The key size for state-of-the-
art 2-DPFs [10] is O(log! + |< |) (assuming PRGs); for the
general case [9], when = > 2, the key size is O(

√
! + |< |) un-

der the decisional Diffie-Hellman assumption [7]. Server-side
work to expand each DPF uses fast symmetric-key operations
in the two-server case [9, 10] and group operations in the
multi-server case [22]. For instance, with ! = 220, the DPF
key size for the two-server construction is 325 B and for the
= > 2 construction 64 kB (plus the message size).

4.2 Spectrum with many channels
In this section, we present the full Spectrum protocol with !
channels and = ≥ 2 servers. Broadcasters reserve a channel in
the setup phase. Clients encode their message at their channel
(if any) using a DPF; the servers anonymously audit access to
all channels before recovering messages.

Setup. The setup in this setting is similar to the setup de-
scribed in Section 3.2. Each broadcaster anonymously pro-
vides a public verification key 6U8 to the servers, to be as-
sociated with a channel. In addition to their key, any user

with content to broadcast might upload a brief description or
“teaser” of their content; the servers can choose which to pub-
lish, or users could perform a privacy-preserving vote [20].
We leave detailed exploration of the fair allocation of broad-
cast slots to users to future work. Post-setup, both servers
hold a vector of ! verification keys (6U1 , . . . , 6U!), where
each key corresponds to a channel.

Step 1: Sharing a message. Let H = U 9 and 9 ′ = 9 if the
client is a broadcaster for the 9 th channel (H = 0 otherwise).
Only broadcasters have < ≠ 0. Each client runs:
1.1: (:1, . . . , :=) ← DPF.Gen(1_,<, 9 ′). // gen DPF keys

1.2: Compute C← < · H ∈ �.

1.3: Sample (C1, . . . , C=)
'← F such that

∑=
8=1 C8 = C ∈ F.

1.4: Send share (:8 , C8) to the 8th server, for 8 ∈ [=].

Step 2: Auditing shares. Upon receiving a request share
(:8 , C8) from a client, each server computes:
2.1: mi ← DPF.Eval(:8) ∈ F! . // expanded messages

2.2: �←∏!
9=1 (6U9)mi [9] . // � = 6 〈mi , (U1 ,...,U!) 〉

2.3: �8← �/6C8 .
2.4: Send �8 to all other servers.

All servers check that
∏=
8 �8 = 6

0 = 1G. If this condition does
not hold, then the client’s request is dropped by all servers.
In Section 4.3, we show how to detect a malicious server that
tampers with a clients request, causing the audit to fail.

Step 3: Recovering the broadcast. Each server keeps an
accumulator mi of ! entries, initialized to 0 ∈ F! . Let (={
(: 9 , C 9) | 9 ≤ #

}
be the set of all valid requests that pass the

audit of Step 2. Each server:
3.1: Computes mi ←

∑
(:,C) ∈(DPF.Eval(:) ∈ F! .

3.2: Publicly reveals mi . // shares of the aggregate.

Using the publicly revealed shares, anyone can recover the !
broadcast messages as m̂ =

∑=
8 mi ∈ F! .

7

4.3 BlameGame: preventing audit attacks
While many broadcast systems claim privacy with a malicious
server, they trade robustness to do so. When a message is
expected, a server can act as if a user was malicious to prevent
aggregation of their request, learning whether that user was
responsible for the expected message. If a system aborts in
such circumstances, it no longer has the claimed disruption-
resistance property. Some systems such as Atom [45] and
Blinder [1] solve this by using verifiable secret-sharing in
an honest-majority setting; however, this can be costly in
practice. Others do not prevent this attack.

4.3.1 Audit attacks in prior work.

Express. Express is designed for private readers, but it can be
trivially adapted for broadcast (see Sections 7 and 8). How-
ever, a malicious server can then exploit the verification pro-
cedure [33, Section 4.1] to exclude a user, changing their
request to an invalid distributed point function. This excludes
the message from the final aggregation, de-anonymizing a
broadcaster with probability at least 1

(1−n)# per round (where
n is the fraction of corrupted clients). Over even a few rounds,
this can lead to a successful de-anonymization of a broad-
caster without detection (non-colluding servers cannot tell if
a server is cheating and therefore cannot abort the protocol).

Riposte. The threat model of Riposte does not consider at-
tacks in which servers deny a write request. As a result, a
malicious server can eliminate clients undetectably by simply
computing a bad input to the audit protocol which causes the
request to be discarded by both servers. While this attack
can be mitigated by using multiple servers and assuming an
honest majority (as in Blinder [1]), this weakens the threat
model and reduces practical performance.

4.3.2 BlameGame.

BlameGame is a network overlay protocol that verifies who
received what during a protocol execution. This allows honest
servers to discover and blame malicious servers which attempt
such an audit attack.

The BlameGame protocol applies immediately to both Ri-
poste and Express to address this audit attack by allowing
(non-colluding) servers to assign blame to either a client or
a server if an audit fails. The only cost (as in Spectrum) is
a slight increase in communication overhead which, impor-
tantly, is independent of the encoded message in the request.

A naive way to instantiate the functionality of BlameGame
is using a trusted third party (TTP). The TTP receives all
shares from the client and distributes them to each of the
servers accordingly. If an audit fails, the TTP reveals all the
shares it received from the client, which allows each server
to determine whether the shares were bad (i.e., the client was
malicious) or whether a server caused the failure by tampering

with its share (i.e., the server was malicious). BlameGame
achieves this functionality without relying on a TTP. Instead,
we realize BlameGame using verifiable encryption and a
public bulletin board.

Background. We use a verifiable encryption scheme [14]
where a party with a secret key generates a proof that a cipher-
text decrypts to a certain message (generated with DecProof,
verified with VerProof; formally defined in Appendix B).
Many public-key encryption schemes (e.g., Paillier [23] and
ElGamal [32]) are verifiable. Further, BlameGame makes
black-box use of a Byzantine broadcast protocol [13] (most
of these protocols optimistically terminate after one round if
the client is honest).

BlameGame. BlameGame commits clients and servers to
specific requests used in the audit. If the audit fails, honest
servers reveal (with a publicly verifiable proof) the share they
were given, which allows other servers to verify the results
of the audit locally, which implicates the client. Dishonest
servers cannot give valid proofs for their shares.

Setup. All servers make a key pair (pk8 ,sk8) and publish pk8 .

Step 1: Generating commitments. Let g8 be the client’s
request secret-share for destination server 8. The client runs:

1.1: �8← Enc(pk8 , g8). // Encryption under pk8.

1.2: Byzantine broadcast all �8 to all servers.1

Server 8 recovers g8 ← Dec(sk8 ,�8); clients may go offline
at this point. All servers are committed to the encryption of
their secret-shares.

Step 2: Proving innocence. Each server publishes their
share of the request g8 and a proof of correct decryption:

2.1: (c8 , g8) ← E .DecProof(sk8 ,�8).
2.2: Send (c8 , g8) to all servers.

Step 3: Assigning blame. Using the posted shares and
proofs, each server assigns blame:

3.1: Collect (c8 , g8 ,f′8) and �8 , from servers 8 ∈ [=].
3.2: Check that VerProof(pk8 , c8 ,�8 , g8) = yes, for 8 ∈ [=].
3.3: Check the audit using all the shares (g1, . . . , g=).
3.4: Assign blame:

if 3.2 fails for any 8: abort; // bad server

else if 3.3 passes: abort; // bad server

else if 3.3 fails: drop the client request. // bad client

BlameGame commits clients to specific requests and checks
that the servers acted in accordance with those requests. The
protocol aborts if and only if a server was malicious—clients
cannot impact availability. This detects any attempt at an audit
attack. We argue the security of BlameGame in Section 6.2.

1An optimization in Section 5.1 makes the size of each �8 constant.

8

5 Optimizations and extensions

Here, we describe extensions and optimizations to Spectrum.

5.1 Handling large messages efficiently

We described Spectrum in Section 4.2 with messages as ele-
ments of a field F, which we check to perform access control.
While a 100 B field suffices for audit security, large messages
require much larger fields (or repeating the protocol many
times). These approaches require proportionally greater band-
width and computation to audit. Instead, we turn a 2-server
DPF over F into a DPF over ℓ-bit strings, preserving security
(see Section 6.1). Our main idea to avoid this overhead is
based on the following insight: handling large messages as bit
strings (rather than elements of F) makes for more efficient
server-side processing. However, auditing access control re-
quires the shares to be in F. Our black-box transformation
uses a pseudorandom generator (PRG) to expand the auditable
seed into a larger message. Clients create DPF keys encoding
a short PRG seed, rather than a message. The servers perform
their checks over this PRG seed, verifying that either the user
knows the broadcast key or the seed expands to a non-zero
value. Then, they expand the seed to a much longer message.
This means that the audit is performed efficiently over small
elements, but the clients still encode large messages for much
less cost.

Consider the following approach to encoding shares of the
message in the two-server setting. The client samples two
random PRG seeds (B�, B�) ∈ F. The share of each message
is then <� = (B�, <̄) and <� = (B�, <̄) where <̄ = � (B�) ⊕
� (B�) ⊕<. Servers can recover the message by combining
shares as:

< = � (B�) ⊕� (B�) ⊕ <̄.

Sharing the message in this way allows us to expand the DPF
into PRG seeds. Further, in the 2-server setting, we have
� (B) ⊕� (B) = 0 for all B ∈ S; we can check for B� = B� to
allow empty writes.

The transformation. Let DPF be a DPF over the field F and
let DPFbit be a DPF over {0,1}. Let � : F→ {0,1}ℓ be a
PRG. To write to channel 9 , a user computes:

1. B̄
'← F. // random nonzero PRG seed

2. (:�, :�) ← DPF.Gen(B̄, I).
3. B∗

�
← DPF.Eval(:�) [9], B∗�← DPF.Eval(:�) [9].

4. <̄← � (B∗
�
) ⊕� (B∗

�
) ⊕<.

5. (:bit
�
, :bit
�
) ← DPFbit.Gen(1, 9).

6. Send (<̄, :�, :bit
�
) to ServerA, (<̄, :�, :bit

�
) to ServerB.

Every server evaluates the DPF keys to a vector s, of PRG
seeds, and a vector b, of bits. Each seed and bit other than the
9 th is identical on both servers (a secret-share of zero);2at 9 ,

we get B∗
�
≠ B∗

�
. Servers evaluate the DPF by expanding each

s[8] to an ℓ-bit string and XORing <̄ only when b[9] = 1. If
we define multiplication of a binary string by a bit as 1 · <̄ = <̄

and 0 · <̄ = 0, ServerA computes:

mG := (� (s�[1]) ⊕ b�[1] · <̄, . . . ,� (s�[!]) ⊕ b�[!] · <̄) .

ServerB does the same. Then:

m�[8] ⊕m� [8] =
{
� (s[8]) ⊕� (s[8]) = 0ℓ 8 ≠ 9

� (B∗
�
) ⊕� (B∗

�
) ⊕ <̄ = < 8 = 9 .

To send an empty message, a user can use the DPFs to write
the 0 message, and choose a uniformly random “masked
message” <̄. This results in identical DPF keys for each
server, so the zero message is written in both slots.
Servers perform the audit (in F) over the expanded PRG seeds
and bits as in Section 3.2. Observe that the final output is
non-zero only if: (1) some PRG seed, (2) some bit, or (3)
the masked message <̄ is different on each server. Auditing
s and b as before checks (1) and (2); servers check (3) by
comparing hashes of <̄. As before, the 0 MAC tag passes the
audit for an empty message, and broadcasters can provide a
correct tag for (1) and (2), checking.

Many servers. This construction generalizes to the =-server
setting. The intuition is the same: only “non-zero” PRG
seeds should expand to write non-zero messages. However,
we need a PRG with special properties for this to hold with
= > 2. Namely, we use a “seed-homomorphic PRG” [8],
which preserves additive relationships between seeds B8 and
their expansions:∑

8∈[=]
B8 = 0 =⇒

∑
8∈[=]

� (B8) = 0.

This lets us check the small seeds for access, rather than the
large messages, giving efficiency gains. We give the full
transformation in Appendix A. Applying this transformation
to a square-root DPF yields the =-server DPF of Corrigan-
Gibbs et al. [22], but now with access control.

BlameGame. We note that by far the largest part of the
transformed DPF keys is <̄, the masked full-length message.
In Section 4.3, we describe users sending each DPF key to
each server. However, <̄ is the same across all DPF keys. This
means that users can just send <̄ once to each server (servers
must compare hashes of <̄ to detect client equivocation). This
means that the overhead of BlameGame is independent of the
broadcast message length.

5.2 Private broadcast downloads
Content published using an anonymous broadcast system is
likely to be politically sensitive. While Spectrum hides the

2To simplify presentation, we use an equivalent definition of DPFs in
which the servers subtract (rather than add) their DPF evaluations to obtain
the point function output.

9

broadcasters, it provides no such protection to the subscribers
downloading the content. In a setting with many channels, we
might allow the subscribers to download one channel while
hiding which channel they download: the exact setting of
private information retrieval (PIR) [18].

In (multi-server) PIR, a client submits queries to two or
more servers, receiving responses which they combine to
recover one document in a “database.” The queries hide
which document was requested. In Spectrum, clients can
use any PIR protocol to hide which channel they download.
Modern PIR uses minimal bandwidth for queries [9, 10]. We
evaluate specific PIR schemes in Section 7.2.

5.3 Efficiency analysis
Here, we analyze the efficiency of Spectrum and BlameGame
(Sections 4.2 and 4.3) with the above optimizations.

Communication efficiency in Spectrum. Spectrum can use
any DPF construction with outputs in a finite field using the
transformation of Section 5.1 to support ℓ-bit messages with
only an additive O(ℓ) overhead to the DPF key size. Using
optimized two-server DPF constructions [9, 10], clients send
requests of size O(log! + |< |) (where ! is the number of
channels). With more than two servers, the communication is√
! + |< | when using the seed-homomorphic PRG based DPF

construction [22]. The communication between servers when
performing an audit is constant.

Computational efficiency in Spectrum. Each server per-
forms O(! · |< |) work for each of the # clients when ag-
gregating the shares and performing the audit. The work on
each client is O(log!+ |< |) when using two-server DPFs and
O(
√
! + |< |) otherwise [9].

6 Security analysis

Here, we analyze the security of Spectrum with respect to the
guarantees outlined in the threat model of Section 2.4.

6.1 Security of Spectrum

Client anonymity. Spectrum provides client anonymity. We
formally argue client anonymity by constructing a simula-
tor for the view of a network adversary A corrupting any
strict subset of servers and clients. Intuitively, such an adver-
sary cannot differentiate between any pair of honest clients
because their communications look the same: (1) network
traffic from non-colluding parties is encrypted, (2) the DPF
keys look indistinguishable as long as one server is not con-
trolled by the adversary, and (3) the message tags that the
adversary sees are secret-shared.

Claim 1. If at least one server is honest, then no proba-
bilistic polynomial time (PPT) adversary A observing the

entire network and corrupting any subset of the other servers
and an arbitrary number of clients, can distinguish between
an honest broadcaster and an honest subscriber within the
anonymity set of all honest clients.

Proof. We construct a simulator Sim for the view of A when
interacting with an honest client. Let Ŝim be the DPF simula-
tor (see Definition 1). Sim proceeds as follows:
1. Take as input (G, 6), (6U1 , . . . , 6U!), F, and subset of cor-

rupted server indices � ⊂ [=].
2. Sample A8

'← F for 9 ∈ [=] such that
∑
8 A8 = 0.

3. {:8 | 8 ∈ �} ← Ŝim(�). // see Definition 1

4. Output View =
({
(A ′
8
, :8) | 8 ∈ �

}
, {6A 9 | 9 ∈ [=] \ �}

)
.

Analysis. The view includes:
• DPF keys :8 for each corrupted server 8.
• Tag shares A ′

8
from the client at each corrupted server 8.

• Audit shares 6A 9 from every server 9 .
The DPF keys are computationally indistinguishable from
real DPF keys by the security of the DPF simulator [37]. We
must argue that the MAC tag and audit shares are correctly
distributed. Let " = (U1, . . . , U!). Recall that during an audit,
each server 9 publishes 6 〈mi ,"〉−C 9 where mi is the output
of DPF.Eval(:8) and C 9 is a secret-share of the MAC tag C.
For a subscriber, 〈mi ,"〉 (the inner product) gives a secret
share of 0 and C 9 is a secret share of 0, so this value is a
(multiplicative) share of 60. For a broadcaster publishing
to channel 9 , 〈mi ,"〉 gives a secret share of < · U 9 = C, so
this value is a multiplicative secret share of 60 as well. This
is exactly the same distribution of the audit and tag shares.
(Because each client message is encrypted and fixed-size,
we simulate network traffic as uniformly random encrypted
data.) �

Disruption resistance in Spectrum. We prove that a client
cannot disrupt a broadcast on the 9 th channel without know-
ing the channel broadcast key U 9 by reduction to the discrete
logarithm problem [32] in G. Intuitively, any algorithm that
could reliably write any message without knowing the corre-
sponding broadcast key could find discrete logarithms with
the same probability, leading to a contradiction.

Claim 2. To write to channel 9 and pass the audit performed
by the servers constitutes a proof-of-knowledge of U 9 .

Proof. Assume towards contradiction that some adversarial
client can generate (potentially ill-formed) DPF keys that
evaluate to a non-zero vector and and corresponding access
tag that passes the audit with non-negligible probability. Then,
we can use this client to solve the discrete logarithm problem
in G: given 6U

∗
, choose random U8 ∈ F for 8 ∈ [!−1]. Give

the client
(
6U1 , . . . , 6U!−1 , 6U

∗)
and get in return DPF keys

(:1, . . . :=) and access tag C. Given these DPF keys, we can
compute m = (<1, . . . ,<!). Let " = (U1, . . . , U!−1, U

∗). If

10

the shares pass the audit, we have 〈m,"〉 = C ≠ 0. However,
" includes U∗, so we can solve for U∗ because all U8 and C
are known. Then, the discrete logarithm adversary succeeds
exactly when the adversarial client succeeds, which happens
non-negligibly. �

Security of DPF transformation. The construction from
Section 5.1 maintains security. This construction transforms
a DPF DPF into a DPF DPF′ over ℓ-bit messages.

Claim 3. If Spectrum with DPF preserves client anonymity,
Spectrum with DPF′ preserves client anonymity.

Proof. We build a simulator for Sim′ for DPF′ from the sim-
ulator Sim for DPF. Sim′ simply runs Sim twice and picks an
ℓ-bit message uniformly at random. We have that the simu-
lator’s random message is computationally indistinguishable
from the real message (otherwise, this breaks the security of
the PRG used in the transformation). Then, if any efficient al-
gorithm can distinguish between the small messages, it could
also distinguish between the outputs of Sim for DPF. �

Claim 4. If Spectrum with DPF has disruption resistance,
Spectrum with DPF′ has disruption resistance.

Proof. Assume towards contradiction that there exists an effi-
cient algorithm A that makes non-zero output for DPF′ that
passes the audit without U. We can produce a non-zero mes-
sage and its tag for DPF as follows. Run A to get a DPF key
for each server: two DPF keys :1, :2 and a masked message
<′, along with tag C = (C1, C2) for :1 and :2, respectively. If
this passes the audit, the masked messages are the same (by
the collision resistance of the audit hash function). Then,
because the key for DPF′ writes non-zero, at least one of
the two DPF keys must write non-zero, and both must pass
the audit. Pick the non-zero key (by evaluating both) and
its corresponding tag. This key/tag pair passes the audit for
DPF. �

6.2 Security of BlameGame
We must show the following properties for BlameGame: that
(1) that an honest client will never be blamed, (2) a misbe-
having client will always be blamed, (3) an honest server will
never be blamed, and (4) a misbehaving server (during the
audit phase) will always be blamed.

To see (1): if a server can blame an honest client, they must
have produced a proof of decryption for a message that makes
the audit fail (and which the client did not send); this violates
the soundness of the verifiable encryption scheme.

To see (2): if a misbehaving client sends a plain text that
will fail the audit, but BlameGame blames a server, then either
the encryption verification failed (for an honest server, this
violates the correctness of the verifiable encryption scheme)
or the audit passed (which is a contradiction). Therefore,
BlameGame must blame the client.

To see (3): if a server blames an honest server, then either
the encryption verification failed (for an honest server, this vi-
olates the correctness of the verifiable encryption scheme) or
the audit passed. However, the simulated audit passed during
BlameGame uses the same shares as the honest server used
during Spectrum but the two audits had different outcomes;
because verification is deterministic, this is a contradiction.

To see (4): if a server misbehaves during the audit phase,
but BlameGame blames an honest client, then the encryption
verification must have passed and the BlameGame audit must
fail. Because the client is honest, encryption verification must
produce a value that makes the audit pass (otherwise, we
violate the integrity of the verifiable encryption scheme).

If the server behaves honestly, but doesn’t accumulate the
clients’s evaluated messages, then all messages in all channels
are corrupted. This constitutes a failure in availability, but
is no worse than the outcome if a server goes offline. If a
malicious server sends a bad share of their messages to the
other servers, they achieve the same result.

Overhead of BlameGame. BlameGame has a small amount
of bandwidth and computation overhead. This includes extra
bandwidth used to broadcast additional shares and time to ver-
ify decryption. Clients send a shared message mask once to
each server; DPF keys add about 100 bytes per client request
(details in Section 5.1). The servers must run BlameGame
for each misbehaving client. However, verifying decryption
takes tens of microseconds, and running the audit is similarly
quick (see Section 7.2). Because the servers delay most of the
work until after the audit, a misbehaving client often requires
fewer cycles than an honest one (but slightly more network
communication).

7 Evaluation

We build and evaluate Spectrum, comparing it to state-of-the-
art anonymous broadcasting works. This section shows that
Spectrum:
• In the best-case setting with only one client sharing a large

message (Figures 4 and 7), outperforms existing work (by
4× or greater). This means 100,000 users upload 1 MB in
10 minutes, rather than days.

• In the “worst-case” setting where all clients broadcast
small messages (Figure 5), achieves comparable perfor-
mance to the next fastest work, Blinder. For 10 kB mes-
sages, Spectrum is 1.5–2× faster than the CPU variant of
Blinder and 20× slower than the (much costlier to run)
GPU variant. As message sizes get larger or fewer clients
broadcast, Spectrum performs better than other systems.

• Increases throughput linearly by sharding (Figure 6), giv-
ing potential parallelization speedups of 10× or more (in-
cluding in the above “worst-case” setting).

• Has very little overhead associated with BlameGame: per
request, 140 B of extra network data and 10 µs to compute.

11

We compare Spectrum to Riposte, Blinder, Express, and
Dissent (see related work; Section 8).

Riposte [22] is designed for anonymous broadcasting where
all users broadcast at all times. Riposte uses three servers
(one trusted for audits) but generalizes to many servers (where
at least one is honest). Riposte was designed for smaller
messages and the source code fails to run with messages of
size 5 kB or greater.

Blinder [1] builds on Riposte but requires an honest majority
of at least 5 servers. Like Riposte, Blinder also assumes that
all users are broadcasting. Blinder supports using a server-
side GPU to increase throughput.

Express [33] is an anonymous communication system de-
signed for anonymous “dropbox”-like applications. It does
not support broadcast as-is, but can be easily modified to do
so. We include Express in our comparison as a recent, high-
performance system decoupling broadcasters and subscribers.

Dissent [21, 84] Dissent has a setup phase (like Spectrum’s),
a DC-net phase, and a blame protocol. We give measurements
both with and without the blame protocol and exclude the
setup phase. Without the blame protocol, the system runs a
plain DC-net without any disruption resistance and is quite
fast. If any user sends an invalid message, Dissent runs the
(expensive) blame protocol (up to once per malicious user).

We use data from the Blinder paper [1, Fig. 4] as the released
source contained nontrivial compilation errors. The Dissent
code (last modified in 2014) ran with up to 1000 users and
10 kB messages, but hung indefinitely after increasing either
(though the authors report 128 kB messages with 5000 users).
Linearly scaling our measurements, we find them broadly
consistent (3× faster) with the authors’ reported measure-
ments for 128 kB messages with the same number of users in
a similar setting [84, Fig. 7].

7.1 Setup

Implementation. We build Spectrum in ∼8000 lines of open-
source [56] Rust code, using AES-128 (CTR) as a PRG and
BLAKE3 [57] as a hash. Because our DPF has relatively
few “channels” !, a DPF with O(!)-sized keys (adapted
from Corrigan-Gibbs et al. [22]) gives the best concrete per-
formance. For the multi-server extension (Section 5.1 and ap-
pendix A), we use a seed-homomorphic PRG [8] with the
Jubjub [39] curve. We encrypt traffic with TLS 1.3 [63].

Environment. We run VMs on Amazon EC2 to simulate a
WAN deployment. Each is a c5.4xlarge3 8-core instance
with 32 GiB RAM, running Ubuntu 20.04 ($0.68 per hour in
September 2021). We run clients in us-east-2 (Ohio) and
servers in us-east-1 (Virginia) and us-west-1 (California).
Network RTTs were 11 ms between Virginia and Ohio, 50 ms
between Ohio and California, and 61 ms between Virginia and

0 1 2 3 4 5
Message Size (MB)

100

200

Th
ro

ug
hp

ut
(c

lie
nt

s p
er

 se
c)

Spectrum
Express

Figure 4: Throughput (client requests per second; higher better) for
a one channel deployment (one broadcaster and many subscribers).
Shaded region represents 95% confidence interval.

California. Inter-region bandwidth was 524 Mbit/s (shared
between many clients simulated on the same machine).

7.2 Results
Across the below settings, we find Spectrum is 4–7× faster
than Express, 2× faster than Blinder (CPU) and 13–17×
slower than Blinder (GPU) in settings favorable to Blinder,
500–7500× faster than Blinder (CPU) and 250–520× faster
than Blinder (GPU) in settings favorable to Spectrum, and
16–12,500× faster than Riposte. We run 5 trials per setting,
shading the 95% confidence interval (occasionally invisible).

One channel. In Figure 4, we report the throughput (client
requests per second) for both Spectrum and Express in the
one-channel setting. As expected, throughput scales inversely
with the message size for both Spectrum and Express. How-
ever, we find that Spectrum, compared to Express, is 4–7×
faster on messages between 100 kB and 5 MB. Riposte and
Blinder have no analog for the single-channel setting. (Dis-
sent does support a one-channel setting, but did not run with
messages of this size.)

Many channels. Riposte and Blinder’s throughput depends
only on the number of users. To compare, we fix 100,000
users and vary the number of channels for both Spectrum
and Express from 1000 (best-case for Spectrum) to 100,000
(worst-case). Even with many simultaneous broadcast chan-
nels, Spectrum outperforms Express, Riposte, and Blinder
(CPU) (see Figure 5). As the number of channels approaches
100,000, Spectrum’s advantage shrinks, performing up to 20×
worse than Blinder’s GPU deployment (10× faster than the
CPU variant). Therefore, in a setting where every user broad-
casts to their own channel simultaneously, there is less benefit
to using Spectrum (as expected). However, many real-world
applications have a high number of passive subscribers per
publisher [54, 85].

Timing breakdown. Table 2 shows the breakdown of server-
side computation observed on one run. We find that the bulk
of time is spent evaluating the PRG to expand the messages:
for each client, we must expand to the length of a message,

3See https://aws.amazon.com/ec2/instance-types/c5.4xlarge

12

https://aws.amazon.com/ec2/instance-types/c5.4xlarge

103 104 105

101

102

103

Th
ro

ug
hp

ut
(c

lie
nt

s p
er

 se
c)

1 KB messages

103 104 105

101

102

Th
ro

ug
hp

ut
(c

lie
nt

s p
er

 se
c)

5 KB messages

103 104 105

101

102

Th
ro

ug
hp

ut
(c

lie
nt

s p
er

 se
c)

10 KB messages

Spectrum
Express

Riposte
Blinder (CPU)

Blinder (GPU)

Figure 5: Throughput (requests per second; higher better) for broad-
casts with 100,000 users: Express and Spectrum benefit from fewer
channels. (Blinder numbers reported by the authors.) Shaded region
represents 95% confidence interval.

which might be megabyte. “Idle” includes time waiting for au-
dit messages from the other server; “Other” includes network
processing and TLS decryption.

PRG Hash Combine Idle Other

69% 4% 2% 7% 25%

Table 2: Timing breakdown for server-side operations.

Overhead. In any anonymous broadcast scheme, every
client (even subscribers) must upload data corresponding to
the message length |< | to ensure privacy. For DC-net based
schemes, the client sends a size-|< | request to each server.
We measure the concrete request sizes of Spectrum and com-
pare to this baseline in Table 3. Client request overhead
is small: about 70 B, roughly 75× smaller than in Express.
Moreover, in Spectrum, request audits are under 100 B, a
120× improvement over Express [33]. BlameGame imposes
little overhead (both in terms of bandwidth and computation).
Because BlameGame runs only when a request audit fails,
these overheads occur for few requests in most settings. Fur-
ther, in many cases the BlameGame overhead is lower than
the cost of the PRG evaluation: it is cheaper to handle a
malicious client than an honest one.

Request Size Request Audit Aggregation
per client per client once per server

|< |+ 70 bytes 70 bytes |< |+ 3 bytes

BlameGame Backup Request Audit Decryption
(per failed audit) per client per client once per client

140 bytes 200 bytes 10 µs

Table 3: Upper bound on request size for one channel and |< |-bit
messages. BlameGame only runs if the first request audit fails.

2 4 6 8 10
Virtual Machines per Logical Server

1000

2000

Th
ro

ug
hp

ut
(c

lie
nt

s p
er

 se
c)

Spectrum
Linear scaling

Figure 6: Spectrum is highly parallelizable: for 500 channels of
100 kB messages, 10 VMs per “server” gives a 10× speedup. Shaded
region represents 95% confidence interval.

Many servers. In Section 5.1 and Appendix A, we note
that our construction of Spectrum generalizes from 2 to =
servers (with at least one non-colluding). As in Riposte [22],
there is a corresponding performance hit, since we require a
seed-homomorphic pseudorandom generator (PRG) [8] (see
Section 5.1 and Appendix A). These PRGs are the bottleneck;
we measure them on one core of an AMD Ryzen 4650G CPU.
For our AES-128 PRG, maximum throughput is 5.7 GB/s;
for a seed-homomorphic PRG [8], throughput is 300 kB/s
(20,000× slower). For 64 channels of 160 B messages, Spec-
trum was 3× slower with the seed-homomorphic PRG. With
more channels and larger messages, this number approaches
20,000×. We find no additional slowdown between 2 to
10 servers. Future work may find faster seed-homomorphic
PRGs.

Scalability. We may trust machines administered by the
same organization equally, viewing several worker servers as
one logical server. Client requests trivially parallelize across
such workers: running 10 workers per logical server leads to
a 10× increase in overall throughput (Figure 6). In a cloud
deployment, Spectrum handles the same workload in less time
for negligible additional cost by parallelizing the servers.

Latency. In Figure 7, we measure the time to broadcast a
single document for these systems with varying number of
users. For Spectrum, we use a 1 MB message. For Blinder, we
use numbers reported by the authors [1, Fig. 4], multiplied
to the same message size (the authors explicitly state that
repeating the scheme many times is the most efficient way
to send large messages). For Dissent, we benchmark both
with no blame round (i.e., no client misbehaved), and with

13

103 104 105

Clients

10 1

100

101

102

103

104

105

106

Ti
m

e
(s

)

Spectrum 1MB
Dissent (honest) 10KB
Dissent (blame) 10KB
Blinder (CPU) 1MB
Blinder (GPU) 1MB
Riposte 1KB

Figure 7: Latency for uploading a single document with varying
numbers of users. Blinder numbers as reported by the authors [1, Fig.
4] and linearly scaled to 1 MB messages. Shaded regions represent
95% confidence interval.

101 103 105

Channels

101

103

105

Th
ro

ug
hp

ut
(c

lie
nt

s p
er

 se
c)

Message size
1KB
10KB
100KB

Channels Query Response
Size Size

10 1.25 B |< |
100 12.5 B |< |
1000 125 B |< |
10000 1.25 kB |< |
100000 12.5 kB |< |

Figure 8: Server capacity (one core) to answer PIR queries for private
client downloads, along with bandwidth usage. For ! channels, the
client requests one out of ! documents, each of size |< |.

one blame round (if any client misbehaves). Express does not
have a notion of “rounds” so we omit it here. We find that
for one channel of large messages, Spectrum is much faster
than other systems (except Dissent with no blame protocol
for much smaller messages).

Client privacy. In Section 5.2, we outline how private
information retrieval (PIR) [18] techniques provide client
privacy for multiple channels. Figure 8 shows the server-side
CPU capacity to process these requests for 1 kB, 10 kB, and
100 kB messages and 1–100,000 channels. We measure one
core of an AMD Ryzen 4650G CPU for a simple 2-server
PIR construction [18], finding good concrete performance.

7.3 Discussion

Our evaluation showcase the use of Spectrum for a real-
world anonymous broadcasting deployment using commodity
servers. Compared to the state-of-the-art in anonymous broad-
casting, Spectrum achieves speedups in settings with a large
ratio of passive subscribers to broadcasters. Based on our
evaluation, with 10,000 users, Spectrum could publish: a

PDF document (1 MB) in 50s, a podcast (50 MB) in 40m, or
a documentary movie (500 MB, the size of Alexei Navalny’s
documentary on Putin’s Palace at 720p [70]) in 6h 40m.

Operational costs. We estimate costs for a cloud-based de-
ployment of Spectrum using current Amazon EC2 prices,
reported in US dollars. Servers upload about 100 bytes per
query (in the above settings, at most 1 GB per day); inbound
traffic is free on EC2. We exclude the cost of subscriber
downloads, which is identical regardless of anonymous broad-
cast system: once published, the subscribers can download
the content as normal. Most of our data transfer needs are
inbound, from the clients to the servers, which is free on EC2.
We focus on compute costs: $6.84 per GB published through
Spectrum (with 10,000 users). In a cloud deployment, paral-
lelizing yields better throughput at almost no additional cost.
We compare costs to publish 1 GB among 10,000 users with
other systems in Table 4.

System Cost (USD)

Blinder (GPU) $2,000,000.00
Blinder (CPU) $250,000.00
Riposte $218,000.00
Dissent (blame protocol, one round)* $76,000.00
Dissent (honest clients) $134.00
Express $30.22
Spectrum $6.84

Table 4: Cost to upload one 1 GB document anonymously with
10,000 users, based on the best observed rate for each system with
that many users. *Extrapolated from 1000 users.

8 Related work

We provide a comparison to related work in anonymous broad-
casting in Table 1. Existing systems for anonymous broad-
cast are suitable for 140 B to 40 kB [1, 22, 33] broadcasts,
which is 2–8 orders of magnitude smaller than large data
dumps [59, 65, 66] common today. Anonymity systems such
as Tor [29] allow for greater throughput but fail to provide
strong anonymity: if one whistleblower uploads large docu-
ments through Tor, metadata (visible to any Tor nodes) can
be used to uniquely identify them. (Tor operators discourage
high-bandwidth applications [28].)

Mix Networks and Onion Routing. In a mix net [16], users
send an encrypted message to a proxy server, which collects
and forwards these messages to their destinations in a ran-
dom order. Chaining several such hops protects users from
compromised proxy servers and a passive network adversary.
Mix nets and their variations [25, 46, 47, 49, 50, 53, 55, 61,
62, 71, 72, 80] scale to many servers but are slow and use
lots of extra bandwidth. Because the messages are re-sent

14

many times, mix nets are poorly suited to high-bandwidth ap-
plications (requiring long dummy messages from each user).
Atom [45] uses mix nets with zero-knowledge proofs to hor-
izontally scale anonymous broadcast to millions of users.
(Spectrum achieves about 12,500× the throughput [45, Fig.
9].) Riffle [44] uses a hybrid verifiable shuffle; in the broad-
cast setting, it shares a 300 MB file with 500 users in 3 hours
(Spectrum supports about 10,000 users in that time). To boost
performance (by sacrificing strong anonymity), some systems
use onion routing instead of a mix net.

In onion routing, users encrypt their messages several times
(in onion-like layers) and send them to a chain of servers.
Each server removes a layer of encryption and forwards the
message onward. Unlike mix nets, onion routing is asyn-
chronous and privacy relies on the difficulty of network mon-
itoring. Tor [29], the most popular onion routing system,
has millions of daily users [73]. Tor provides security in
many real-world settings, but is vulnerable to traffic analy-
sis [43, 52, 68]. State-of-art attacks [43, 52, 68] de-anonymize
users over 90% accuracy; The high-bandwidth broadcast set-
ting is particularly vulnerable: if only one user sends large
volumes of data, an adversary can identify them—Tor dis-
courages high bandwidth applications for this and other rea-
sons [28].

DC-nets. Another group of anonymous communications
systems use dining cryptographer networks (DC-nets) [17]
(Section 2). In DC-nets, users broadcast anonymously by
establishing random secrets between pairs of users in a many-
way one-time pad; they can recombine “empty” shares with
shares of a single broadcast share to recover the broadcast but
hide the identity of the broadcaster. DC-nets are vulnerable
to disruption: any malicious participant can clobber a broad-
cast by sending a “bad” share. Dissent [21, 84] augments
the DC-nets technique with a system for accountability. Like
Spectrum, Dissent performs best if relatively few users are
broadcasting. The core data sharing protocol is a standard DC-
net, which is very fast and supports larger messages. Further,
it supports many servers at little additional cost. However,
Dissent is not suitable for many-user applications where dis-
ruption is a concern. If any user misbehaves, Dissent must
undergo an expensive blame protocol (quadratic in the total
number of users). This approach detects, rather than prevents,
disruption. The user is evicted after this protocol, but an ad-
versary controlling many users can cause many iterations of
the blame protocol.

PriFi [5] builds on the techniques in Dissent to create in-
distinguishability among clients in a LAN. Outside servers
help disguise traffic using low-latency, precomputed DC-nets.
Like Dissent, PriFi catches disruption after-the-fact using a
blame protocol (as often as once per malicious user). The
PriFi blame algorithm is much faster, but still scales with all
users in the system (in Spectrum, each malicious user incurs
constant server-side work).

Riposte [22] enables anonymous Twitter-style broadcast

with many users using a DC-net based on DPFs and an au-
diting server to prevent disruptors. We find that Riposte is
16× slower than Spectrum with 10,000 users. Further, Ri-
poste assumes that all users are broadcasting and therefore
gets quadratically slower in the total number of users, while
Spectrum slows linearly.

A more recent work, Blinder [1] uses multi-party compu-
tation to prevent disruption. Blinder’s threat model requires
an honest majority of at least five servers. Like Spectrum,
Blinder is resilient to active attacks by a malicious server. It
is fast for small messages when most users have messages to
share, but much slower for large messages. Blinder allows
trading money for speed with a GPU.

Express [33] is a system for “mailbox” anonymous com-
munication (writing anonymously to a designated mailbox).
Express also uses DPFs for efficient write requests. How-
ever, it only runs in a two-server deployment. Express is
not a broadcasting system, and while it is possible to adapt
it to work in a broadcast setting, it is not designed to with-
stand active attacks by the servers and is insecure for such an
application (see Section 4.3 for details).

9 Conclusions

We present a new system for anonymous broadcast with
strong anonymity and security guarantees. Spectrum sup-
ports high-bandwidth, low-latency transmission from a small
set of broadcasters to a large set of subscribers by applying
new tools to an old technique. Our main construction uses
only symmetric-key primitives, which ensures efficiency in
practical deployments. Our experimental results show that
Spectrum can be used for uploading gigabyte-sized docu-
ments anonymously among 10,000 users in 14 hours.

10 Acknowledgments

We thank Kyle Hogan, Albert Kwon, Derek Leung, and Henry
Corrigan-Gibbs for helpful feedback and discussion on early
drafts of this paper.

References

[1] Ittai Abraham, Benny Pinkas, and Avishay Yanai. Blin-
der: Scalable, robust anonymous committed broad-
cast. In Proceedings of the 2020 ACM SIGSAC Con-
ference on Computer and Communications Security,
CCS ’20, pages 1233–1252, New York, NY, USA,
2020. Association for Computing Machinery. ISBN
9781450370899. doi: 10.1145/3372297.3417261. URL
https://doi.org/10.1145/3372297.3417261.

[2] C. Fred Alford. Whistleblowers and the narrative of
ethics. Journal of social philosophy, 32(3):402–418,
2001.

15

https://doi.org/10.1145/3372297.3417261

[3] Sebastian Angel and Srinath Setty. Unobservable com-
munication over fully untrusted infrastructure. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 551–569, 2016.

[4] Raymond Walter Apple Jr. 25 years later; lessons
from the Pentagon Papers. The New York Times, 23
June 1996. URL https://www.nytimes.com/1996/
06/23/weekinreview/25-years-later-lessons-
from-the-pentagon-papers.html. Accessed:
2020-05-01.

[5] Ludovic Barman, Italo Dacosta, Mahdi Zamani, En-
nan Zhai, Apostolos Pyrgelis, Bryan Ford, Joan Feigen-
baum, and Jean-Pierre Hubaux. Prifi: Low-latency
anonymity for organizational networks. Proc. Priv.
Enhancing Technol., 2020(4):24–47, 2020. doi: 10.
2478/popets-2020-0061. URL https://doi.org/10.
2478/popets-2020-0061.

[6] Charles Berret. Guide to SecureDrop, 2016. URL
https://www.cjr.org/tow_center_reports/
guide_to_securedrop.php.

[7] Dan Boneh. The decision Diffie-Hellman problem.
In Algorithmic Number Theory, Third International
Symposium, ANTS-III, Portland, Oregon, USA, June
21-25, 1998, Proceedings, pages 48–63, 1998. doi:
10.1007/BFb0054851. URL https://doi.org/10.
1007/BFb0054851.

[8] Dan Boneh, Kevin Lewi, Hart Montgomery, and Ananth
Raghunathan. Key homomorphic PRFs and their ap-
plications. In Annual Cryptology Conference, pages
410–428. Springer, 2013.

[9] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function
secret sharing. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology – EUROCRYPT 2015,
pages 337–367, Berlin, Heidelberg, 2015. Springer.
ISBN 978-3-662-46803-6.

[10] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function se-
cret sharing: Improvements and extensions. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 1292–1303, 2016.

[11] Russ Buettner, Susanne Craig, and Mike McIntire.
Long-concealed records show Trump’s chronic
losses and years of tax avoidance. The New
York Times, 2020 (Accessed 2020-10-27). URL
https://www.nytimes.com/interactive/2020/
09/27/us/donald-trump-taxes.html.

[12] Bryan Burrough, Sarah Ellison, and Suzanna Andrews.
The Snowden saga: A shadowland of secrets and
light. Vanity Fair, 2014 (Accessed: 2020-10-27). URL

https://www.vanityfair.com/news/politics/
2014/05/edward-snowden-politics-interview.

[13] Christian Cachin, Klaus Kursawe, Frank Petzold, and
Victor Shoup. Secure and efficient asynchronous broad-
cast protocols. In Joe Kilian, editor, Advances in Cryp-
tology - CRYPTO 2001, 21st Annual International Cryp-
tology Conference, Santa Barbara, California, USA,
August 19-23, 2001, Proceedings, volume 2139 of
Lecture Notes in Computer Science, pages 524–541.
Springer, 2001. doi: 10.1007/3-540-44647-8_31. URL
https://doi.org/10.1007/3-540-44647-8_31.

[14] Jan Camenisch and Victor Shoup. Practical verifiable
encryption and decryption of discrete logarithms. In
Dan Boneh, editor, Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 17-21,
2003, Proceedings, volume 2729 of Lecture Notes in
Computer Science, pages 126–144. Springer, 2003.
doi: 10.1007/978-3-540-45146-4_8. URL https:
//doi.org/10.1007/978-3-540-45146-4_8.

[15] J Lawrence Carter and Mark N Wegman. Universal
classes of hash functions. Journal of Computer and
System Sciences, 18(2):143–154, 1979.

[16] David Chaum. Untraceable electronic mail, return ad-
dresses, and digital pseudonyms. Communications of
the ACM, 24(2):84–90, 1981.

[17] David Chaum. The dining cryptographers problem: Un-
conditional sender and recipient untraceability. Journal
of Cryptology, 1(1):65–75, 1988.

[18] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and
Madhu Sudan. Private information retrieval. In Pro-
ceedings of IEEE 36th Annual Foundations of Computer
Science, pages 41–50. IEEE, 1995.

[19] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling,
Luke Garratt, and Douglas Stebila. A formal security
analysis of the Signal messaging protocol. In 2017
IEEE European Symposium on Security and Privacy
(EuroS&P), pages 451–466. IEEE, 2017.

[20] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private,
robust, and scalable computation of aggregate statistics.
In 14th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 17), pages 259–282,
2017.

[21] Henry Corrigan-Gibbs and Bryan Ford. Dissent: Ac-
countable anonymous group messaging. In Proceedings
of the 17th ACM Conference on Computer and Commu-
nications Security, pages 340–350. ACM, 2010.

16

https://www.nytimes.com/1996/06/23/weekinreview/25-years-later-lessons-from-the-pentagon-papers.html
https://www.nytimes.com/1996/06/23/weekinreview/25-years-later-lessons-from-the-pentagon-papers.html
https://www.nytimes.com/1996/06/23/weekinreview/25-years-later-lessons-from-the-pentagon-papers.html
https://doi.org/10.2478/popets-2020-0061
https://doi.org/10.2478/popets-2020-0061
https://www.cjr.org/tow_center_reports/guide_to_securedrop.php
https://www.cjr.org/tow_center_reports/guide_to_securedrop.php
https://doi.org/10.1007/BFb0054851
https://doi.org/10.1007/BFb0054851
https://www.nytimes.com/interactive/2020/09/27/us/donald-trump-taxes.html
https://www.nytimes.com/interactive/2020/09/27/us/donald-trump-taxes.html
https://www.vanityfair.com/news/politics/2014/05/edward-snowden-politics-interview
https://www.vanityfair.com/news/politics/2014/05/edward-snowden-politics-interview
https://doi.org/10.1007/3-540-44647-8_31
https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1007/978-3-540-45146-4_8

[22] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières.
Riposte: An anonymous messaging system handling
millions of users. In 2015 IEEE Symposium on Security
and Privacy, pages 321–338. IEEE, 2015.

[23] Ivan Damgård, Mads Jurik, and Jesper Buus Nielsen.
A generalization of Paillier’s public-key system with
applications to electronic voting. International Journal
of Information Security, 9(6):371–385, 2010.

[24] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah
Zakarias. Multiparty computation from somewhat ho-
momorphic encryption. In Annual Cryptology Confer-
ence, pages 643–662. Springer, 2012.

[25] George Danezis, Roger Dingledine, and Nick Math-
ewson. Mixminion: Design of a Type III anonymous
remailer protocol. In 2003 Symposium on Security and
Privacy, 2003., pages 2–15. IEEE, 2003.

[26] Alex Davidson, Ian Goldberg, Nick Sullivan, George
Tankersley, and Filippo Valsorda. Privacy Pass: By-
passing internet challenges anonymously. Proc. Priv.
Enhancing Technol., 2018(3):164–180, 2018.

[27] Candice Delmas. The ethics of government whistle-
blowing. Social Theory and Practice, pages 77–105,
2015.

[28] Roger Dingledine. BitTorrent over Tor isn’t a good
idea, Apr 2010. URL https://blog.torproject.
org/bittorrent-over-tor-isnt-good-idea.

[29] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The second-generation onion router. Technical
report, Naval Research Lab Washington DC, 2004.

[30] Emily Dreyfuss. Chelsea Manning walks back
into a world she helped transform, 2017. URL
https://www.wired.com/2017/05/chelsea-
manning-free-leaks-changed/.

[31] Cynthia Dwork and Moni Naor. Pricing via processing
or combatting junk mail. In Advances in Cryptology
- CRYPTO ’92, 12th Annual International Cryptology
Conference, Santa Barbara, California, USA, August
16-20, 1992, Proceedings, pages 139–147, 1992. doi:
10.1007/3-540-48071-4_10. URL https://doi.org/
10.1007/3-540-48071-4_10.

[32] Taher ElGamal. A public key cryptosystem and a signa-
ture scheme based on discrete logarithms. IEEE Trans-
actions on Information Theory, 31(4):469–472, 1985.

[33] Saba Eskandarian, Henry Corrigan-Gibbs, Matei
Zaharia, and Dan Boneh. Express: Lower-
ing the cost of metadata-hiding communication
with cryptographic privacy. In 30th USENIX

Security Symposium (USENIX Security 21), Van-
couver, B.C., August 2021. USENIX Associa-
tion. URL https://www.usenix.org/conference/
usenixsecurity21/presentation/eskandarian.

[34] Cassi Feldman. 60 Minutes’ most famous whistle-
blower. CBS News, 2016 (Accessed 2020-10-
27). URL https://www.theguardian.com/world/
2010/nov/28/how-us-embassy-cables-leaked.

[35] Lorenzo Franceschi-Bicchierai. Snowden’s favorite
chat app is coming to your computer. Vice, 2015
(Accessed: 2020-10-27). URL https://www.vice.
com/en/article/signal-snowdens-favorite-
chat-app-is-coming-to-your-computer.

[36] Anita Gates and Katharine Q. Seelye. Linda
Tripp, key figure in Clinton impeachment, dies.
The New York Times, 2020 (Accessed 2020-10-27).
URL https://www.nytimes.com/2020/04/08/us/
politics/linda-tripp-dead.html.

[37] Niv Gilboa and Yuval Ishai. Distributed point func-
tions and their applications. In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology –
EUROCRYPT 2014, pages 640–658, Berlin, Heidelberg,
2014. Springer. ISBN 978-3-642-55220-5.

[38] Robert D’A Henderson. Operation Vula against
apartheid. International Journal of Intelligence and
Counter Intelligence, 10(4):418–455, 1997.

[39] Daira Hopwood. Jubjub supporting evidence. https:
//github.com/daira/jubjub, 2017 (accessed 2020-
04-16).

[40] Bastien Inzaurralde. The Cybersecurity 202: Leak
charges against Treasury official show encrypted apps
only as secure as you make them. The Washington Post,
2018.

[41] Markus Jakobsson and Ari Juels. Proofs of work and
bread pudding protocols. In Secure Information Net-
works: Communications and Multimedia Security, IFIP
TC6/TC11 Joint Working Conference on Communica-
tions and Multimedia Security (CMS ’99), September
20-21, 1999, Leuven, Belgium, pages 258–272, 1999.

[42] Laurie Kazan-Allen. In memory of Henri Pez-
erat. http://ibasecretariat.org/mem_henri_
pezerat.php, 2009 (Accessed: 2020-10-27).

[43] Albert Kwon, Mashael AlSabah, David Lazar, Marc
Dacier, and Srinivas Devadas. Circuit fingerprinting
attacks: Passive deanonymization of tor hidden services.
In 24th USENIX Security Symposium (USENIX Security
15), pages 287–302, 2015.

17

https://blog.torproject.org/bittorrent-over-tor-isnt-good-idea
https://blog.torproject.org/bittorrent-over-tor-isnt-good-idea
https://www.wired.com/2017/05/chelsea-manning-free-leaks-changed/
https://www.wired.com/2017/05/chelsea-manning-free-leaks-changed/
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/3-540-48071-4_10
https://www.usenix.org/conference/usenixsecurity21/presentation/eskandarian
https://www.usenix.org/conference/usenixsecurity21/presentation/eskandarian
https://www.theguardian.com/world/2010/nov/28/how-us-embassy-cables-leaked
https://www.theguardian.com/world/2010/nov/28/how-us-embassy-cables-leaked
https://www.vice.com/en/article/signal-snowdens-favorite-chat-app-is-coming-to-your-computer
https://www.vice.com/en/article/signal-snowdens-favorite-chat-app-is-coming-to-your-computer
https://www.vice.com/en/article/signal-snowdens-favorite-chat-app-is-coming-to-your-computer
https://www.nytimes.com/2020/04/08/us/politics/linda-tripp-dead.html
https://www.nytimes.com/2020/04/08/us/politics/linda-tripp-dead.html
https://github.com/daira/jubjub
https://github.com/daira/jubjub
http://ibasecretariat.org/mem_henri_pezerat.php
http://ibasecretariat.org/mem_henri_pezerat.php

[44] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan
Ford. Riffle. Proceedings on Privacy Enhancing Tech-
nologies, 2016(2):115–134, 2016.

[45] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas,
and Bryan Ford. Atom: Horizontally scaling strong
anonymity. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 406–422. ACM,
2017.

[46] Albert Kwon, David Lu, and Srinivas Devadas. XRD:
Scalable messaging system with cryptographic privacy.
arXiv preprint arXiv:1901.04368, 2019.

[47] David Lazar, Yossi Gilad, and Nickolai Zeldovich.
Karaoke: Distributed private messaging immune to pas-
sive traffic analysis. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
18), pages 711–725, 2018.

[48] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Yo-
del: strong metadata security for voice calls. In Proceed-
ings of the 27th ACM Symposium on Operating Systems
Principles, pages 211–224, 2019.

[49] Stevens Le Blond, David Choffnes, Wenxuan Zhou, Pe-
ter Druschel, Hitesh Ballani, and Paul Francis. Towards
efficient traffic-analysis resistant anonymity networks.
ACM SIGCOMM Computer Communication Review, 43
(4):303–314, 2013.

[50] Stevens Le Blond, David Choffnes, William Caldwell,
Peter Druschel, and Nicholas Merritt. Herd: A scal-
able, traffic analysis resistant anonymity network for
VoIP systems. In Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communication,
pages 639–652, 2015.

[51] Jason Leopold, Anthony Cormier, John Templon,
Tom Warren, Jeremy Singer-Vine, Scott Pham,
Richard Holmes, Azeen Ghorayshi, Michael Sal-
lah, Tanya Kozyreva, and Emma Loop. The
FinCEN Files. BuzzFeed News, 2020 (Accessed:
2020-10-27). URL https://www.buzzfeednews.
com/article/jasonleopold/fincen-files-
financial-scandal-criminal-networks.

[52] Shuai Li, Huajun Guo, and Nicholas Hopper. Measuring
information leakage in website fingerprinting attacks
and defenses. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
pages 1977–1992, 2018.

[53] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha,
Rahul Govind, Aniket Kate, and Andrew Miller. Honey-
BadgerMPC and AsynchroMix: Practical asynchronous
MPC and its application to anonymous communication.

In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pages 887–
903, 2019.

[54] Ethan May. Streamlabs Q1 2019 live streaming
industry report. https://blog.streamlabs.com/
youtube-contends-with-twitch-as-streamers-
establish-their-audiences-6a53c7b28147,
2019. Accessed: 2020-04-10.

[55] Prateek Mittal and Nikita Borisov. ShadowWalker: Peer-
to-peer anonymous communication using redundant
structured topologies. In Proceedings of the 16th ACM
conference on Computer and communications security,
pages 161–172, 2009.

[56] Zachary Newman and Sacha Servan-Schreiber. Spec-
trum implementation. https://www.github.com/
znewman01/spectrum-impl, 2021.

[57] Jack O’Connor, Samuel Neves, Jean-Philippe Aumas-
son, and Zooko Wilcox-O’Hearn. BLAKE3: One
function, fast everywhere, 2020 (accessed: 2020-
04-16). URL https://github.com/BLAKE3-team/
BLAKE3-specs/blob/master/blake3.pdf.

[58] John O’Connor. “I’m the guy they called Deep
Throat”. Vanity Fair, 2006 (Accessed: 2020-10-
27). URL https://www.vanityfair.com/news/
politics/2005/07/deepthroat200507.

[59] Paradise Papers reporting team. Paradise Papers: Tax
haven secrets of ultra-rich exposed. BBC News, 2017
(Accessed: 2020-10-27).

[60] D. Phillips. Reality Winner, former NSA translator, gets
more than 5 years in leak of Russian hacking report. The
New York Times, 8, 2019.

[61] Ania M Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian
Meiser, and George Danezis. The Loopix anonymity
system. In 26th USENIX Security Symposium USENIX
Security 17), pages 1199–1216, 2017.

[62] Michael K Reiter and Aviel D Rubin. Crowds:
Anonymity for web transactions. ACM transactions on
information and system security (TISSEC), 1(1):66–92,
1998.

[63] Eric Rescorla and Tim Dierks. The Transport Layer
Security (TLS) protocol version 1.3. RFC 1654, RFC
Editor, July 1995. URL https://www.rfc-editor.
org/rfc/rfc1654.txt.

[64] Charlie Savage. Chelsea Manning to be released early
as Obama commutes sentence. The New York Times, 17,
2017.

18

https://www.buzzfeednews.com/article/jasonleopold/fincen-files-financial-scandal-criminal-networks
https://www.buzzfeednews.com/article/jasonleopold/fincen-files-financial-scandal-criminal-networks
https://www.buzzfeednews.com/article/jasonleopold/fincen-files-financial-scandal-criminal-networks
https://blog.streamlabs.com/youtube-contends-with-twitch-as-streamers-establish-their-audiences-6a53c7b28147
https://blog.streamlabs.com/youtube-contends-with-twitch-as-streamers-establish-their-audiences-6a53c7b28147
https://blog.streamlabs.com/youtube-contends-with-twitch-as-streamers-establish-their-audiences-6a53c7b28147
https://www.github.com/znewman01/spectrum-impl
https://www.github.com/znewman01/spectrum-impl
https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
https://www.vanityfair.com/news/politics/2005/07/deepthroat200507
https://www.vanityfair.com/news/politics/2005/07/deepthroat200507
https://www.rfc-editor.org/rfc/rfc1654.txt
https://www.rfc-editor.org/rfc/rfc1654.txt

[65] Michael S Schmidt and LM Steven. Panama law firm’s
leaked files detail offshore accounts tied to world leaders.
The New York Times, 3, 2016.

[66] Scott Shane. WikiLeaks leaves names of diplomatic
sources in cables. The New York Times, 29:2011, 2011.

[67] Victor Shoup. On fast and provably secure message
authentication based on universal hashing. In Annual
International Cryptology Conference, pages 313–328.
Springer, 1996.

[68] Payap Sirinam, Mohsen Imani, Marc Juarez, and
Matthew Wright. Deep fingerprinting: Undermining
website fingerprinting defenses with deep learning. In
Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 1928–
1943, 2018.

[69] David Smith. Trump condemned for tweets
pointing to name of Ukraine whistleblower. The
Guardian, 2019 (Accessed 2020-10-27). URL https:
//www.theguardian.com/us-news/2019/dec/27/
trump-ukraine-whistleblower-president.

[70] The BBC. Putin critic Navalny jailed in Russia despite
protests, 2021 (accessed 2021-02-22). URL https:
//www.bbc.com/news/world-europe-55910974.

[71] The Freenet Project. Freenet, 2020. URL https://
geti2p.net/en/.

[72] The Invisible Internet Project. I2P anonymous network,
2020. URL https://geti2p.net/en/.

[73] The Tor Project. Tor metrics, 2019. URL https://
metrics.torproject.org/.

[74] The Wall Street Journal. Got a tip? https://www.wsj.
com/tips, 2020 (Accessed: 2020-10-28).

[75] Yiannis Tsiounis and Moti Yung. On the security of
ElGamal based encryption. In International Workshop
on Public Key Cryptography, pages 117–134. Springer,
1998.

[76] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Za-
haria, and Nickolai Zeldovich. Stadium: A distributed
metadata-private messaging system. In Proceedings of
the 26th Symposium on Operating Systems Principles,
pages 423–440, 2017.

[77] US Holocaust Memorial Museum. Röhm purge.
Holocaust Encyclopedia, 2020 (Accessed: 2020-
10-27). URL https://encyclopedia.ushmm.org/
content/en/article/roehm-purge.

[78] US Occupational Safety and Health Administration.
The whistleblower protection program. https://www.
whistleblowers.gov/, 2020 (Accessed: 2020-10-
27).

[79] US Securities and Exchange Commission. Of-
fice of the whistleblower. https://www.sec.gov/
whistleblower, 2020 (Accessed: 2020-10-27).

[80] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and
Nickolai Zeldovich. Vuvuzela: Scalable private mes-
saging resistant to traffic analysis. In Proceedings of
the 25th Symposium on Operating Systems Principles,
pages 137–152. ACM, 2015.

[81] Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and
John Langford. CAPTCHA: using hard AI problems
for security. In Advances in Cryptology - EURO-
CRYPT 2003, International Conference on the Theory
and Applications of Cryptographic Techniques, War-
saw, Poland, May 4-8, 2003, Proceedings, pages 294–
311, 2003. doi: 10.1007/3-540-39200-9_18. URL
https://doi.org/10.1007/3-540-39200-9_18.

[82] Lei Wang, Kazuo Ohta, and Noboru Kunihiro. New key-
recovery attacks on HMAC/NMAC-MD4 and NMAC-
MD5. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
pages 237–253. Springer, 2008.

[83] Mark N Wegman and J Lawrence Carter. New hash
functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 22(3):265–
279, 1981.

[84] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan
Ford, and Aaron Johnson. Dissent in numbers: Making
strong anonymity scale. In 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
12), pages 179–182, 2012.

[85] Adam Yosilewitz. State of the stream Q2 2019: Tfue
rises to the top, non-gaming content grows while esports
titles dip, Facebook enters the mix, and we answer what
is an influencer? https://blog.streamelements.
com/state-of-the-stream-q2-2019-facebook-
gaming-growth-gta-v-surges-and-twitch-
influencers-get-more-529ee67f1b7e, 2019.
Accessed: 2020-04-10.

[86] Kim Zetter. Jolt in WikiLeaks case: Feds found
Manning-Assange chat logs on laptop. Wired, 19 De-
cember 2011. URL https://www.wired.com/2011/
12/manning-assange-laptop/. Accessed: 2020-05-
04.

19

https://www.theguardian.com/us-news/2019/dec/27/trump-ukraine-whistleblower-president
https://www.theguardian.com/us-news/2019/dec/27/trump-ukraine-whistleblower-president
https://www.theguardian.com/us-news/2019/dec/27/trump-ukraine-whistleblower-president
https://www.bbc.com/news/world-europe-55910974
https://www.bbc.com/news/world-europe-55910974
https://geti2p.net/en/
https://geti2p.net/en/
https://geti2p.net/en/
https://metrics.torproject.org/
https://metrics.torproject.org/
https://www.wsj.com/tips
https://www.wsj.com/tips
https://encyclopedia.ushmm.org/content/en/article/roehm-purge
https://encyclopedia.ushmm.org/content/en/article/roehm-purge
https://www.whistleblowers.gov/
https://www.whistleblowers.gov/
https://www.sec.gov/whistleblower
https://www.sec.gov/whistleblower
https://doi.org/10.1007/3-540-39200-9_18
https://blog.streamelements.com/state-of-the-stream-q2-2019-facebook-gaming-growth-gta-v-surges-and-twitch-influencers-get-more-529ee67f1b7e
https://blog.streamelements.com/state-of-the-stream-q2-2019-facebook-gaming-growth-gta-v-surges-and-twitch-influencers-get-more-529ee67f1b7e
https://blog.streamelements.com/state-of-the-stream-q2-2019-facebook-gaming-growth-gta-v-surges-and-twitch-influencers-get-more-529ee67f1b7e
https://blog.streamelements.com/state-of-the-stream-q2-2019-facebook-gaming-growth-gta-v-surges-and-twitch-influencers-get-more-529ee67f1b7e
https://www.wired.com/2011/12/manning-assange-laptop/
https://www.wired.com/2011/12/manning-assange-laptop/

A Large message optimization (multi-server)

In Section 5.1, we give a transformation from a 2-server DPF
over a field F to a 2-server DPF over ℓ-bit bitstrings that
preserves the auditability of the first DPF without increasing
the bandwidth overhead proportionally. Here, we show a
more general transformation from =-server DPFs over a field
F to =-server DPFs over a group GH of a polynomially larger
order.

Our transformation uses a seed-homomorphic pseudoran-
dom generator (PRG) [8].

Definition 2 (Seed-Homorphic Pseudorandom Generator).
Fix groups GB ,GH with respective operations ◦B and ◦H . A
seed-homomorphic pseudorandom generator is a polynomial-
time algorithm � : GB→ GH with the following properties:

Pseudorandom. � is a PRG: |GB | <
��GH ��, with output

computationally indistinguishable from random.
Seed-homomorphic. For all B1, B2 ∈ GG , we have � (B1 ◦B

B2) = � (B1) ◦H � (B2).

Let G be a group over a field F and in which the decisional
Diffie-Hellman (DDH) problem [7] is assumed to be hard.
Fix some DPF with messages in F. We saw in Section 4.2
how to implement anonymous access control for such DPFs.
Let � : F→ GH be a seed homomorphic PRG where GH is
over F (Boneh et al. [8] give a construction of such a PRG for
GH = (G)! from the DDH assumption in G).

Then, the larger DPF key for a message < is a DPF key
:1 for a random value B ∈ F, a DPF key :2 for 1 ∈ F, and a
“correction message” <̄ =<◦H� (B)−1 (each key has the same
correction message). For a zero message, the larger DPF key
is two DPF keys :1, :2 for 0 ∈ F and a random correction
message <̄.

To evaluate the DPF key, the server computes B ←
DPF.Eval(:1), 1 ← DPF.Eval(:2), and (<̄)1 ◦H � (B). If
B = 0, then combining the DPF keys gives (<̄)0 ◦H� (0) = 1GH .
Otherwise, we get (<̄)1 ◦H � (B) = <.

To perform access control for the larger DPF, perform

access control for :1 and :2 and then also check for the
equality of the hashes of <̄. We note this construction does
not yield a new DPF, but does add authorization to a large
class of existing DPFs.

B Verifiable Encryption

BlameGame (Section 4.3) uses a verifiable encryption
scheme [14], which allows a prover to decrypt a ciphertext 2
and create a proof that 2 is an encryption of a message <. We
formalize these schemes below:

Definition 3 (Verifiable Encryption). A verifiable public-
key encryption scheme E consists of (possibly random-
ized) algorithms Gen, Enc, Dec, DecProof, VerProof where
Gen,Enc,Dec satisfy IND-CPA security and DecProof,
VerProof satisfy the following properties:

Completeness. For all messages < ∈M,

Pr

(pk,sk) ← Gen(1_);
2← Enc(pk,<);
(c,<) ← DecProof(sk, 2);
VerProof(pk, c, 2,<) = yes

 = 1.

where the probability is over the randomness of Enc.
Soundness. For all PPT adversaries A and for all mes-

sages < ∈M,

Pr

(pk,sk) ← Gen(1_);
2← Enc(pk,<);
(c,<′) ← A(1_,pk,sk, 2);
VerProof(pk, c, 2,<′) = yes

 ≤ negl(_)

for negligible function negl(_), where the probability is over
the randomness of Enc and A.

We note that many public key encryption schemes (e.g.,
ElGamal [32] and Paillier [23]) satisfy Definition 3 out-of-
the-box and can be used to instantiate BlameGame.

20

	Introduction
	Anonymous broadcast
	DC-nets
	Main ideas in realizing Spectrum
	System overview
	Threat model and security guarantees

	Spectrum with one channel
	Preventing disruption
	New tool: anonymous access control

	Putting things together
	Towards the full protocol

	Many channels and malicious security
	Tool: distributed point functions
	Spectrum with many channels
	BlameGame: preventing audit attacks
	Audit attacks in prior work.
	BlameGame.

	Optimizations and extensions
	Handling large messages efficiently
	Private broadcast downloads
	Efficiency analysis

	Security analysis
	Security of Spectrum
	Security of BlameGame

	Evaluation
	Setup
	Results
	Discussion

	Related work
	Conclusions
	Acknowledgments
	Large message optimization (multi-server)
	Verifiable Encryption

