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Abstract—The State-Separating Proofs (SSP) frame-
work by Brzuska et al. (ASIACRYPT’18) proposes
a novel way to perform modular, code-based game-
playing proofs. In this work, we demonstrate the poten-
tial of SSP for guiding the development of formally ver-
ified security proofs of composed real-world protocols
in the EasyCrypt proof assistant. In particular, we show
how to extract an EasyCrypt formalization skeleton from
an SSP formalization. As a concrete example, we study
the Cryptobox protocol, a KEM-DEM construction that
combines DH key agreement with authenticated en-
cryption. We develop a Cryptobox formalization using
SSP both on paper and in EasyCrypt, exploring the
usefulness of the SSP method in conjunction with an
automated proof construction and verification tool.

I. Introduction

With State-Separating Proofs [1], Brzuska et al. in-
troduced a new proof methodology that enables com-
posed proofs in a traditional, code-based game-playing
style. The SSP approach was inspired by the miTLS
project [2][3] which aims to connect a fully functional
TLS implementation with a formally verified proof. In the
SSP methodology, cryptographic games are modelled as
packages which can be re-used in the composition of other
games, reductions or adversaries. As a consequence, SSPs
are well suited for modular proofs and thus for the analysis
of large, composed protocols.

EasyCrypt [4] is a proof assistant for code-based game-
playing style proofs of cryptographic primitives and proto-
cols. It has been used in the past to formally verify complex
protocols involving key composition such as authenticated
key exchange [5] or the AWS key management system [6]
with taming proof complexity as a recurring issue. Given
the similarities between EasyCrypt module composition
and SSP package composition, it is natural to evaluate
if SSP can help mitigate proof complexity in EasyCrypt.
This paper sheds light on the relation between SSP and
EasyCrypt by examining the interplay between the SSP
methodology with its natural proof structure and the
syntax and semantics of EasyCrypt.

We conduct our matching of composable pen-and-paper
proof methodology and formal verification along a security
proof of the Cryptobox protocol, a minimal, but complete
real-world protocol that allows us to make use of some
of SSPs features such as easy key-composition and multi-

instance games. Cryptobox is a simple combination of
Curve25519 for key agreement and XSala20Poly1305 for
authenticated encryption and which was introduced by
Bernstein as part of the NaCl library [7]. While the
Cryptobox protocol itself is used in practice, e.g. in the
Threema instant messaging app [8], the combination of
Curve25519 and an accompanying authenticated encryp-
tion scheme is found in other protocols such as the Noise
protocol (framework) [9] and the upcoming Hybrid Public
Key Encryption (HPKE) standard [10].
The side effect of our work are two security proofs for

Cryptobox: a pen-and-paper proof as well as a formally
verified one in EasyCrypt. Our example demonstrates that
the SSP methodology can help keep the complexity of the
formal proof in check by structuring and guiding the proof
and a systematic approach to formalising composition with
state.

A. Our Contributions

Our contributions in this work are the following.
• We provide an evaluation of the potential of SSP for
guiding the development of formally verified security
proofs of complex real-world protocols in EasyCrypt
and show how SSP supports EasyCrypt proofs. In
particular, an EasyCrypt formalization skeleton can be
extracted from a pen-and-paper SSP formalization.
We moreover identify and discuss a number or tech-
nical challenges on the EasyCrypt side that hinder the
full adoption of SSP, including cloning-based module
instantiation and error handling.

• We provide the first formal analysis of Cryptobox
as an independent construction, both on paper and
formally verified using EasyCrypt. Since we use generic
security assumptions about the underlying primitives
and due to the fact that SSP proofs are gener-
ally reusable, both proofs are valid not only for
Cryptobox, but any composition of 1) a key agree-
ment primitive relying on the Oracle Diffie-Hellman
assumption and 2) a nonce-based symmetric encryp-
tion scheme.

All formal definitions and proofs are available for review
from https://gitlab.com/fdupress/ec-cryptobox.

https://gitlab.com/fdupress/ec-cryptobox


B. Related Work
Multiple protocols with similarities to Cryptobox have

been analyzed and proven secure both on paper and using
formal verification tools. We will only mention a selection
here. The work on miTLS and specifically their work on
the complete TLS handshake protocol [2] provides a com-
posed and formally verified proof of TLS. Their modular
proof design inspired SSP and is a strong indicator that
SSP makes a good guide for formally verified proofs. The
authors of the original SSP paper [1, Section 4], provide a
pen-and-paper proof of a KEM-DEM construction which
is structurally identical to our proof of Cryptobox. How-
ever, in contrast to our Cryptobox proof, their model is
restricted to the single-instance setting without the adver-
sarial ability to create corrupt key instances. Lipp provides
an analysis of the HPKE standard using CryptoVerif [11].
Moreover, the security has been analyzed in the symbolic
setting. Kobeissi et al. [12] introduced “Noise Explorer”, a
comprehensive tool for generation and formal analysis of
protocols built using the Noise framework. Girol [13] used
the Tamarin Prover to conduct a similar analysis of the
Noise framework.

C. Outline
In Section II we provide a brief overview over the

SSP methodology. Section III introduces the Cryptobox
protocol as well as the notion of public-key authenticated
encryption (PKAE) security and the assumptions we will
use to prove Cryptobox PKAE-secure. Alongside the pen-
and-paper proof, the section also discusses the EasyCrypt
formalization of model and proof and presents our main
theorem of PKAE security of Cryptobox. Section IV
presents our proof of the theorem both on paper and
in EasyCrypt. In Section V we discuss the strengths and
shortcomings of EasyCrypt with regard to implementing
SSP-style proof. Finally, we provide a brief conclusion in
Section VI.

II. State-Separating Proofs
In this Section, we give an intuitive overview over the

SSP methodology as introduced in [1].

A. Packages
SSP endeavours to make code-based game-playing

proofs more modular by organizing pseudocode and the
state they operate on into packages. Intuitively, packages
organize pseudocode in a similar way as code is organized
by programming languages to facilitate code-reuse and -
modularization.

a) Oracles and Package State: A package P consists
of a set of oracles {O1,O2, . . . } = P.Ω and a set of state
variables P.Σ that contains the shared state variables the
oracles operate on. The state P.Σ is only accessible from
oracles O ∈ P.Ω. Abusing notation slightly, we use O
to denote both the oracle itself and its name. We will
disambiguate where necessary.

The names of the oracles O ∈ P.Ω of a package P define
its output interface out(P) and denote the oracles that
can be queried (or called) by oracles of other packages.
We also say that P provides these packages. To avoid
issues concerning recursion, oracles of a package cannot
call oracles of the same package.
Every package P also has an input interface in(P), which

defined as the set of names of oracles called by oracles
provided by P.

b) Package Parameters: A package can have param-
eters. We use subscript to denote that a package P has
parameters α: Pα. In contrast to a package P’s state P.Σ,
P’s parameters are considered visible by other packages.
Note, that given a package P, we consider Pα and Pβ
different packages if α 6= β. As many of our packages
model indistinguishability games with a distinguishing bit
b, we model b as a special package parameter, which is
only visible to the oracles of the package in the same way
as the package state. We use superscript to denote that a
package P has a distinguishing bit b: Pb.

B. Notation and Package Composition
a) Notation and conventions: There are two nota-

tions for package composition, inline and graph-based.
While the inline notation can be convenient to refer to
smaller compositions, the graph-based one is more practi-
cal for larger composed packages. The graph-based nota-
tion uses gray boxes to represent packages and arrows to
indicate the oracles the packages provide. Where relevant,
oracles will be annotated with the corresponding oracle
names.
To make the graphs more expressive, we use blue to

depict “idealized” packages, i.e. packages with a distin-
guishing bit b, where b = 1 and orange to depict “real”
packages, where b = 0.

b) Composition: The strength of SSP lies in the
ability to model traditional games by composing packages.
There are two ways to compose packages: sequentially or in
parallel. We can compose two packages P, P′ sequentially, if
we have in(P) ⊆ out(P′). We use P→ P′ to denote sequen-
tial composition of two packages using inline notation.1
See Figure 1a for the graph-based notation. The resulting

P P'

(a) sequential

P

P'

(b) parallel

Fig. 1: Package composition.

package Q := P → P′ is defined as the package with
Q.Σ := P.Σ∪P′.Σ and Q.Ω := P.Ω, where the pseudocode of
the oracles provided by P′ is inlined into those provided by

1In the original SSP paper, “◦” is used instead of “→”. We prefer
“→”, because it more closely resembles the graph-based notation.



P in the places they are called. Also, in case state variable
names collide, we add the package name as prefix to the
names of the colliding state variable. For a more formal
definition of inlining, we refer the reader to the original
definition in [1]. In addition we have out(Q) := out(P) and
in(Q) := in(P′).

Two packages P, P′ can be composed in parallel, denoted
P
P′ , if we have in(P) ∩ out(P′) = ∅. We use P

P′ to denote
parallel composition in inline notation. For the graph-
based equivalent, see Figure 1b. The resulting package
Q := P

P′ is defined as the package with Q.Σ := P.Σ ∪ P′.Σ
and Q.Ω := P.Ω ∪ P′.Ω. Consequently, we have out(Q) :=
out(P) ∪ out(P′) and in(Q) := in(P) ∪ in(P′).

C. Games and Adversaries
We can now use packages to model both games and

adversaries as used in traditional game-playing proofs.
For the sake of simplicity, we will restrict ourselves to
indistinguishability games in the context of this paper.
Generally, a game is simply a package G with in(G) = ∅.
When composing a game from other packages, we will
usually choose a name prefixed with G to indicate that
the composed package is a game.
Since we can compose other packages with a game

that match their output interface, we simply model an
adversary against a game G as a package AG with
in(A) = out(G). We sometimes call this adversary a G-
distinguisher. Additionally, an adversary(-package) pro-
vides a single oracle RUN, which, when called, starts
the adversary’s behaviour and returns their output upon
completion. We use r = AG → G to compare the result of
a call to the RUN oracle with a given value r.
Using our definitions for games and adversaries, we can

now define the adversarial advantage in distinguishing two
games A and B with out(A) = out(A) as follows.

Adv(A; A, B) := |Pr[1 = A → A]− Pr[1 = A → B]|

More specifically, it denotes the difference in probability of
the event that an adversary A returns 1 when interacting
with either of the two games.
If both games have the same name and are only dis-

tinguished by their distinguishing bit b, e.g. G0, G1, we will
sometimes write G0 εG(A)

≈ G1 , where εG(A) := Adv(A; G0, G1)
is the advantage function of the adversary A. To improve
readability, we use superscript to denote package parame-
ters α of the game(s) Gα in the superscript of the advantage
function εαG .

To denote, that two packages A and B are perfectly
equivalent, i.e. that for all adversaries A, we have that
Adv(A; A, B) = 0, we write A

perf.
≡ B .

III. Cryptobox, assumptions and security
After introducing state-separating proofs, we will now

turn our attention to the Cryptobox protocol. This section
gives an overview over the protocol itself (Section III-A)

and its security notion (Section III-B) the assumptions
used (Section ?? and ??) as well as the security statement
(Section III-E) that we are going to prove in Section
IV. Every concept is first described using SSP and then
compared to our EasyCrypt formalization.

A. Protocol: Cryptobox

Cryptoboxθ,η,Hash is a nonce-based public key authen-
ticated encryption (PKAE) scheme consisting of key pair
generation pkgen as well as encryption and decryption
algorithms enc and dec, as shown in Figure 2 and 3.

Alice Bob
gb, a,m ga, b

n←$ {0, 1}noncelen

k ← Hash(gab)
c← enck(m,n)

n, c

k ← Hash(gab)
deck(c, n)

Fig. 2: Cryptobox message flow

Our definition of Cryptoboxθ,η,Hash is parametrized by:
• A Diffie-Hellman (DH) scheme θ = (dhgen, exp) con-
sisting of a probabilistic algorithm dhgen for DH key
pair generation and a deterministic algorithm exp that
takes as input a DH public and secret key and returns
their exponentiation. The concrete operation depends
of the structure of the underlying group.

• A nonce-based symmetric encryption scheme (NB-
SES) η = (kgen, enc, dec) consisting of probabilistic
key generation kgen and deterministic encryption enc
and decryption dec; and

• A hash function Hash that maps pairs of DH public
keys to NBSES symmetric keys.

Cryptoboxθ,η,Hash uses the DH scheme to generate a
DH secret from the recipient’s public key and sender’s
private key (for encryption), and a hash of the DH secret as
symmetric key for a nonce-based authenticated encryption
scheme.

pkgen()
kp← θ.dhgen()
return kp

enc(sks, pkr,m, n)
r ← θ.exp(pkr, sks)
k ← Hash(r)
c← η.enc(m,n, k)
return c

dec(skr, pks, c, n)
r ← θ.exp(pks, skr)
k ← Hash(r)
m← η.dec(c, n, k)
return m

Fig. 3: Nonce-based PKAE scheme Cryptoboxθ,η,Hash.

These definitions are formally in EasyCrypt as shown in
Figure 4. Figure 4 illustrates the two main mechanisms
through which EasyCrypt definitions can be made para-
metric.



theory CryptoBox
// Theory Parameters: θ
type pkey, skey.

op dkp : (skey× pkey)distr.
axiom dkpIp sk sk′ pk :

(sk, pk) ∈ dkp⇒
(sk′, pk) ∈ dkp⇒
sk = sk′.

op exp : pkey→ skey→ pkey.
axiom expC sk1 sk2 pk1 pk2 :

(sk1, pk1) ∈ dhgen⇒
(sk2, pk2) ∈ dhgen⇒
exp pk1 sk2 = exp pk2 sk1.

// Theory Parameters: η
type key, nonce, ptxt, ctxt.

op dkey : key distr.
axiom dkey_ll : is_lossless dkey.

module type NBSES =⌊
proc enc(p : ptxt, n : nonce, k : key) : ctxt
proc dec(c : ctxt, n : nonce, k : key) : ptxt⊥

// Theory Parameters: Hash
op hash : pkey→ key.

// Definition for Cryptobox

module CryptoBox (E : NBSES) =

proc pkgen() =⌊
kp←$ dkp;
return kp;

proc enc(sk, pk, p,n) =⌊ ssk← exp pk sk;
c⊥ ← E.enc(p,n, hash ssk);
return c⊥;

proc dec(sk, pk, c, n) =⌊ ssk← exp pk sk;
p⊥ ← E.dec(c, n, hash ssk);
return p⊥;

Fig. 4: Cryptoboxθ,η,Hash in EasyCrypt.

Theory parameters: All types, distributions and opera-
tors are declared, and potentially restricted by axioms,
but are left abstract. All definitions, axioms, lemmas
and proofs can later be specialized at no cost to any
concrete type, distribution and operator that meet the
typing and axiomatic

Functor parameters: Interfaces to stateful and prob-
abilistic systems can be specified as module types
(such as NBPES), which specify a set of procedures.
Such module types can be used to modularly con-
struct schemes on top of primitives in a black-box
way—modules such as CryptoBox can be parameter-
ized by modules specified only by their type, and their
procedures may make use of procedures provided by
their module parameters. Once such a parameterized
module (or functor) is defined, it is possible to apply it
to any module that implements the expected module
type.

In the rest of this paper, we do not explicitly re-list
theory parameters in all listings, instead making them
explicit parameters of the listing itself. We note that
associated axiomatic restrictions are also elided from pa-
rameterized theories. We only display each of them in the
top-level theory where it appears—and which is also the
only theory where they remain as unproved axioms in our
fully-instantiated proof.

B. Goal: PKAE Security
We prove that the Cryptoboxθ,η,Hash scheme, as de-

scribed in Figure 3, is indistinguishable from an ideal
public-key authenticated encryption functionality that

uses private state to provide perfect security. Rather than
formalizing this notion simply for a single key, as is usual,
we instead define security for the more complex setting
of multiple key pairs, some of which may be controlled
by the adversary. Both the multi-instance setting and the
adversarially controlled keys are more idiomatic in the
SSP context, making the resulting model and proof more
composable and thus more easily reusable.
We first define a separate package PKEYkgen to capture

the management of public keys (Section III-B1), then
define the security of PKAE when keypairs are managed
by the adversary through the PKEYkgen package (Sec-
tion III-B2).

GEN()
(pk, sk)←$ kgen
assert PK[pk] 6= false
PK[pk]← true
SK[pk]← sk

return pk

CSETPK(pk)
assert PK[pk] 6= true
PK[pk]← false
return ()

GETSK(pk)
assert SK[pk] 6= ⊥
return SK[pk]

HONPK(pk)
assert PK[pk] 6= ⊥
return PK[pk]

Fig. 5: Oracles of
PKEY0

kgen (w/o blue
code) and PKEYkgen
packages.

1) Key management: Since we
consider multiple sessions in paral-
lel, we need key management for the
different session keys. To this extent,
we will introduce key packages. A
key package manages all keys of a
specific type in the system. In par-
ticular, the package stores all keys
and generates honest keys. The indi-
vidual keys are identified by handles.
For the concrete case of PKAE

security, we introduce a package
PKEYkgen for asymmetric key pairs,
with public keys as handles. The
PKEYkgen package generates and
stores asymmetric keys. Honest keys
will be sampled according to key
generation algorithm kgen while cor-
rupt key pairs are generated by the
adversary who only registers the
public keys. Note that the package
prevents adaptive key corruption.
The package maintains two maps:
PK for the corruption status of pub-
lic keys in the system, and SK for honest secret keys.
Initially, all entries of PK and SK are assumed to be ⊥.

Definition 1 (PKEYkgen Package). Let kgen be a key
generation algorithm. The package PKEYkgen has interfaces
in(PKEYkgen) = ∅ and out(PKEYkgen) = {GEN,CSETPK,
GETSK,HONPK} and state Σ = {SK,PK}.

There will be two versions of this package. We first in-
troduce a real package version PKEY0

kgen whose oracles are
shown in Figure 5 (all except the blue line of code). This
version is realistic but provides a trivial attack vector: If a
freshly sampled honest public key collides with an existing
registered corrupt key, the public key will nevertheless be
registered as honest. Since the GEN oracle returns the
public key, an adversary is now aware of the key collision.
However, such key collisions are rare and we don’t want to
deal with them in later proofs. We thus replace PKEY0

kgen
with its idealized counterpart PKEYkgen that aborts the
execution in the case of a key collision.



Lemma 1. Let kgen be a key generation algorithm with
public key space kspace. Then for any PKEY adversary
APKEY making at most q queries to GEN and c queries to
CSETPK,

Adv(APKEY; PKEY0
kgen, PKEYkgen)

≤ max
{C⊆kspace : |C|≤c}

{q · Pr[pk ∈ C|(pk, sk)←$ kgen]}.

Proof. Since the packages are identical except for the as-
sertion in PKEYkgen, it is sufficient to bound the probability
that a sampled public key collides with a registered corrupt
one. The statement follows then from a union bound on the
collision probabilities of the individual key samplings.

For the rest of this paper, we will use PKEYkgen only.

abstract theory PKey〈pkey,skey,dkp〉

// Interface Specification

module type PKEYout =
proc gen() : pkey⊥
proc csetpk(pk : pkey) : unit
proc getsk(pk : pkey) : skey⊥
proc honpk(pk : pkey) : bool⊥

// Idealization

module PKEY =

var hm : pkey ⇀ bool
var skm : pkey ⇀ skey

proc gen() =

r⊥ ← ⊥;
(sk, pk)←$ dkp;
if pk /∈ hm⌊ hm[pk]← true;

skm[pk]← sk;
r⊥ ← pk;

return r⊥;

proc csetpk(pk) =⌊
if pk /∈ hm⌊

hm[pk]← false;

proc getsk(pk) =⌊
return skm[pk];

proc honpk(pk) =⌊
return hm[pk];

Fig. 6: The PKEYkgen package in
EasyCrypt.

The formalization
in EasyCrypt, shown in
Figure 6 is relatively
straightforward:
we use a module
type PKEYout to
model the package’s
output interface—the
set of procedures,
algorithms, or oracles
it must implement;
and specify the
package itself as a
module, which includes
its state (maps hm
and skm capturing
the pen-and-paper
maps PK and SK
respectively), and its
four oracles.
Defining idealization

and realization
requires a bit more
care: the semi-formal
language used in pen-
and-paper SSPs uses
an assert construct
to forbid executions
that violate a given
condition, which may
not be efficiently

decidable by an adversary with only restricted access to
state. EasyCrypt’s core imperative language, however, is
simple by design nd does not allow exceptional control-
flows. A procedure in EasyCrypt must have a single
exit point. This allows the program logics themselves
to remain as simple as possible. We must therefore
encode as control-flow all assertions from the pen-and-
paper packages, stopping execution and returning a
distinguished error symbol ⊥ in case the asserted facts do
not hold. Beyond making definitions more complex locally,

PKENC(pks, pkr,m, n)
sks ← GETSK(pks)
honpkr ← HONPK(pkr)
h← sort(pks, pkr)
assert M [h, n] = ⊥
if b ∧ honpkr then
c←$Dc(|m|)

else
c← ν.enc(sks, pkr,m, n)

M [h, n]← (m, c)
return c

PKDEC(pkr, pks, c, n)
skr ← GETSK(pkr)
honpks ← HONPK(pks)
m← ⊥
if b ∧ honpks then
h← sort(pks, pkr)
m← getmsg(M [h, n], c)

else
m← ν.dec(skr, pks, c, n)

return m

Fig. 7: Oracles of the PKAEbν package. sort is a sorting
function on DH public keys. The deterministic function
getmsg(m, c) returns m if c = c′ and ⊥ otherwise.

this also requires care when defining interfaces—which
must now be typed to account for the possibility of
errors—and consumer packages—which must now check
errors, and often must ensure that queries that error out
do not modify the package state.
2) The PKAEbν package: is the central package for

defining real and ideal functionalities for public-key au-
thenticated encryption, and a game interface that pre-
cisely specifies the adversary’s capabilities. The package
is parametrized by nonce-based public-key encryption
scheme ν and PKAEbν maintains a map M from handle-
nonce pairs to plaintext-ciphertext pairs. If b = 0, then
encryption and decryption are always computed using ν.
If however b = 1, then the map M is used for log-based
encryption under honest keys, with ν used for encryption
under corrupt keys.

Definition 2 (PKAEbν Package). The PKAEbν package is
used to define the PKAE security of a nonce-based public-
key encryption scheme ν. It has interfaces in(PKAEbν) =
{GETSK,HONPK} and out(PKAEbν) = {PKENC, PKDEC}
and state Σ = {M}. The oracles of PKAEbν are shown in
Figure 7.

PKENC, 
PKDEC

PKAEb
GETSK, HONPK

PKEY
GEN, CSETPK

Fig. 8: PKAE game GPKAEbν

We express security of
ν as the indistinguisha-
bility of the realization
and idealization, even in a
context where the adver-
sary can generate an ar-
bitrary number of honest
key pairs, and register an
arbitrary number of dis-
honest key pairs. To do
so, we express the PKAE
security game by extending the output interface with some
of the key management interfaces as shown in Figure 8.

Definition 3 (PKAE Security). Let ν = (pkgen, enc, dec)
be a nonce-based public key encryption scheme. For GPKAE
distinguisher AGPKAE, we define the PKAE advantage

ενGPKAE(A) := Adv(AGPKAE; GPKAE0
ν , GPKAE1

ν)



for the game pair GPKAEbν in Fig. 8 with output interface
out(GPKAEbν) = {GEN,CSETPK,PKENC,PKDEC}.

Looking ahead, we will show that Cryptoboxθ,η,Hash is
PKAE-secure when constructed from an AE-secure nonce-
based symmetric encryption scheme and an ODH-secure
DH scheme.

We now turn to formalizing these definitions in Easy-
Crypt. Figure 21 corresponds to Definition 2, defining the
interfaces (as module types PKAEin and PKAEout) and
state (as a separate module PKAEb with a single global
variable PKAEb.log, a partial map from handle-nonce pairs
to plaintext-ciphertext pairs), along with the package’s
realization PKAE0 and idealization PKAE1.
In order to define these, we need to also extend the

abstract specification of the types the scheme operates on.
We assume a length operation on plaintexts, which always
returns a natural number, and some distribution dctxt
over ciphertexts, parameterized by an integer—this allows
us to specify the ideal encryption of some plaintext p as
sampling in dctxt (length p). In addition, as per the pen-
and-paper proof, we assume some mapping sort from pairs
of public keys to pairs of public keys that deterministically
sorts its arguments. As before, given a concrete type for
public keys, it will later be possible to simply instantiate
the entire proof to any sort operator that fulfills the con-
dition (for example, lexicographic ordering on the public
keys’ canonical representation), only having to prove that
the axiom sortP indeed holds on the concrete operation.

With these definitions in place, formally defining the
GPKAE game is as simple as defining the composite pack-
ages from Definition 3. We do so in an ad-hoc way in
Figure 9, staying away from any generic composition
constructs. This allows us to keep proofs simple and fo-
cused, and avoids issues such as those issues regarding the
commutativity of composition for independent packages
discussed, for example, in relation to the formalization of
Universal Composability [14].
C. Assumption: AE Security

(Symmetric) AE security is defined very similarly to
that of public-key authenticated encryption: we assume
that the primitive is indistinguishable from a log-based
ideal functionality. As with public keys and PKEYkgen, we
abstract key management (and the storage of keys) into a
KEYbkspace package.
1) The KEYbkspace package: Let kspace be a key space.

KEYbkspace provides oracles SET for setting honest keys,
CSET for corrupting keys, GET for retrieving keys, as well
as HON for checking their honesty status. All oracles are
idempotent: if called with the same handle, they will yield
the same output regardless of any interaction taking place
between the two calls. The KEYbkspace package maintains
two maps K and H from handles to keys and honesty
status, respectively. Initially, both maps are empty. The
package has an idealization bit b that controls the treat-
ment of honest keys. If b = 0, then SET stores the input

key. Otherwise, the oracle stores a key sampled freshly
from some distribution kspace. The distinguishing bit b
thus determines how keys are generated when the SET
oracle is called and allows us to remove need for a key
generation oracle completely.

Definition 4 (KEYbkspace Package). Let kspace be a dis-
tribution over some key space. The KEYbkspace package has
interfaces in(KEYbkspace) = ∅ and out(KEYbkspace) = {SET,
CSET,GET,HON} and state Σ = {K,H}. The oracles are
shown in Figures 10 and 11.

Formalizing these definitions in EasyCrypt is straight-
forward, as shown in Figure 22. In the formalization, we
use a single map to capture bothH andK—projecting out
unneeded parts in get and hon. Anticipating on discussions
of the proof (in Section IV), this allows us to maintain the
invariant that H and K are always defined on the same
domain by construction instead of having to derive it from
the oracles’s semantics.
2) The AEbη package: The AEbη package is parameter-

ized by a nonce-based symmetric encryption scheme η =
(kspace, enc, dec). The AEbη package provides oracles ENC
for computing encryptions under keys retrieved using a
handle from KEY1

kspace, and similarly DEC for decryption.
The ENC oracle prevents nonce reuse. Similar to PKAEbν ,
AEbη maintains a map M from handle-nonce pairs to
plaintext-ciphertext pairs used for ideal encryption and
decryption.

Definition 5 (AEbη Package). The AEbη package is
parametrized with a nonce-based symmetric encryption
scheme η. It has interfaces in(AEbη) = {GET,HON} and
out(AEbη) = {ENC,DEC} and state Σ = {M}. The oracles
of AEbη are shown in Figure 13.

As with PKAE, security here is against an adversary
that can also generate honest keys and register corrupt
keys. We express this as the game GAEbη shown in Figure 12.

Definition 6 (AE Security). Let η = (kgen, enc, dec)
be a nonce-based symmetric encryption scheme. For GAE
distinguisher AGAE, we define the AE advantage

εηGAE(A) := Adv(AGAE; GAE0
η, GAE1

η)

for the game pair GAEbη in Figure 12 with output interface
out(GAEbη) = {ENC,DEC,GEN,CSET}.

Formal definitions in EasyCrypt for the syntax and
oracles of the AE package, and for those of the GAE game
defining security, are shown in Figure 23 and 24 in the
appendix.

D. Assumption: ODH
The oracle Diffie-Hellman assumption is defined simi-

larly to the AE assumption above. We introduce a stateless
ODHθ,Hash package that is parametrized by a DH scheme
θ = (dhgen, exp) and a hash function Hash. ODHθ,Hash



abstract theory PKAE.PKAESec〈dkp〉

import PKey〈pkey,skey,dkp〉

module type GPKAEout =
proc gen() : pkey⊥
proc csetpk(pk : pkey) : unit

include PKAEout

module GPKAE0 (E : NBPES) =
proc gen = PKEY.gen
proc csetpk = PKEY.csetpk

include PKAE0(E,PKEY)

module GPKAE1 (E : NBPES) =
proc gen = PKEY.gen
proc csetpk = PKEY.csetpk

include PKAE1(E,PKEY)

Fig. 9: Defining PKAE security in EasyCrypt.

CSET(h, k)
assert K[h] = ⊥
H[h]← false
K[h]← k

GET(h)
assert K[h] 6= ⊥
return K[h]

HON(h)
assert H[h] 6= ⊥
return H[h]

Fig. 10: Oracles common to the KEYbkspace packages.

KEY0
kspace.SET(h, k)

assert K[h] = ⊥
H[h]← true
K[h]← k

KEY1
kspace.SET(h, k)

assert K[h] = ⊥
H[h]← true
K[h]←$ kspace

Fig. 11: KEYbkspace.SET for b = 0 (left) and b = 1 (right).

provides an oracle ODH for producing a new ODH sample
that is stored in KEYbkspace.

Definition 7 (ODHθ,Hash Package). Let θ be a DH
scheme and Hash a hash function with range hkey. The
ODH package ODHθ,Hash has interfaces in(ODHθ,Hash) =
{GETSK,HONPK,SET,CSET} and out(ODHθ,Hash) =
{ODH} and state Σ = ∅. The oracles are shown in
Figure 14.

We can now define security of a Diffie-Hellman scheme
θ and hash function Hash in terms of an ODH game pair
that differs only in the underlying KEYbkspace package.

GET, HON
ENC, DEC

AE0

SET, CSET
KEY1

GET, HON
ENC, DEC

AE1

SET, CSET
KEY1

Fig. 12: AE game GAEbη.

ENC(h,m, n)
assert M [h, n] = ⊥
k ← GET(h)
honh ← HON(h)
if b ∧ honh then
c←$Dc(|m|)

else
c← η.enc(m,n, k)

M [h, n]← (m, c)
return c

DEC(h, c, n)
k ← GET(h)
honh ← HON(h)
m← ⊥
if b ∧ honh then
m← getmsg(M [h, n], c)

else
c← η.dec(c, n, k)

return m

Fig. 13: Oracles of the AEbη package.

SET, CSET
EXP GETPK, GETSK

ODH

GET, HON KEY0

SET, CSET
EXP

ODH

GET, HON KEY1

PKEY
GEN, CSETPK

GETPK, GETSK

PKEY
GEN, CSETPK

Fig. 15: ODH game GODHbθ,Hash.

Definition 8 (ODH Security). Let θ = (dhgen, exp) be a
DH scheme and Hash a hash function with range hkey. For
GODH distinguisher AGODH, we define the ODH advantage

εθ,Hash
GODH(A) := Adv(AGODH; GODH0

θ,Hash, GODH1
θ,Hash)

for the game pair GODHbθ,Hash in Figure 15 with output
interface out(GODHbθ,Hash) = {GEN,ODH,GET,HON}.

ODH(X,Y )
x← GETSK(X)
honY ← HONPK(Y )
h← sort(X,Y )
k ← Hash(θ.exp(Y, x))
if honY then

SET(h, k)
else

CSET(h, k)
return h

Fig. 14: Oracles of
ODHθ,Hash.

Interestingly, this definition of se-
curity gives rise to a simpler formal-
ization in EasyCrypt than for public-
key and symmetric authenticated en-
cryption: security is indistinguisha-
bility of the ODHθ,Hash package com-
posed with two different KEYbkspace
packages, as opposed to AE where
the behaviour of the AEbη pack-
age itself changes. Figure 25 shows
the EasyCrypt formalization of the
ODHθ,Hash package, whose security is
formally captured—again using ad-
hoc compositions—in Figure 26 in
the appendix.

E. Theorem: PKAE Security of Cryptoboxθ,η,Hash

With the PKAE security notion and the assumptions
in place, we can now turn to the PKAE security of
Cryptoboxθ,η,Hash.

Theorem 1 (PKAE Security of Cryptoboxθ,η,Hash). Let
θ be a DH scheme with keypair distribution dhgen, η
be a nonce-based symmetric encryption scheme with key
distribution kgen, and Hash be a hash function mapping θ’s
public keys to η’s keys. Let AGPKAE be a PKAE distinguisher.
Then there exist reductionsRGODH andRGAE (Figure 16b and
16c) such that

ε
Cryptoboxθ,η,Hash
GPKAE (AGPKAE) ≤ εθ,Hash

GODH(AGPKAE → RGODH)
+ εηGAE(AGPKAE → RGAE).



In Section IV, we detail the semi-formal state-separating
proof, and relate it to the corresponding formal steps in
EasyCrypt. We then detail the additional steps needed in
EasyCrypt to fully close off the machine-checked proof,
including considerations of state initialization.

IV. PKAE Security Proof for Cryptoboxθ,η,Hash

This section will give an overview of the proof of Theo-
rem 1. We first introduce an alternative modular descrip-
tion of GPKAEbCryptoboxθ,η,Hash

. The security proof will then
proceed in a sequence of four game hops that are shown
in Fig. 16: The first and last steps establish perfect in-
distinguishability between the monolithic PKAE security
games GPKAEbCryptoboxθ,η,Hash

and the modular description
using ODHθ,Hash and AEbη packages together with wrapper
MOD-PKAE. Steps 2 and 3 are computational equivalence
steps that reduce indistinguishability of the games to the
ODH and AE assumption of the underlying ODH and AE
schemes. We will now go over the steps in more detail
and compare to the EasyCrypt formalization before we
conclude the proof of Theorem 1 in Section IV-F.

A. Implementing Cryptoboxθ,η,Hash

PKENC(pks, pkr,m, n)
h← ODH(pks, pkr)
c← ENC(h,m, n)
return c

PKDEC(pkr, pks, c, n)
h← ODH(pkr, pks)
m← DEC(h, c, n)
return m

Fig. 17: Oracles of
MOD-PKAE package.

Given that Cryptoboxθ,η,Hash is
constructed from a DH scheme and
an NBSES, it is natural to describe
the resulting PKAE scheme and the
security game GPKAEbCryptoboxθ,η,Hash

in
a modular way before proving that
it has PKAE security according to
Def. 3. We therefore consider the
modular version in Figure 18 with
the wrapper MOD-PKAE in Fig. 17.

Definition 9 (MOD-PKAE package).
The MOD-PKAE package has interfaces
in(MOD-PKAE) = {ODH,ENC,DEC}
and out(MOD-PKAE) = {PKENC,PKDEC}. The oracles of
MOD-PKAE are shown in Fig. 17.

In our EasyCrypt formalization, we do not define the
MOD-PKAE package as standalone. Instead, we consider the
GPKAEbCryptoboxθ,η,Hash

game over MOD-PKAE. As when formal-
izing the ODHθ,Hash package, we split the input interface
to make it easier to change one of the component modules
without having to redefine a wrapper that differs only in
the oracles provided by that module. Note again, also,
the need for explicit failure handling. This complicates the
code’s presentation slightly compared to the SSP version
from Figure 17.

B. Step 1: Perfect Equivalence of Real Games
As a first step towards showing indistinguishability

of GPKAE0
Cryptoboxθ,η,Hash

and GPKAE1
Cryptoboxθ,η,Hash

, we show
equivalence of GPKAE0

Cryptoboxθ,η,Hash
and its deconstructed

version GPKAE-H0 in Figure 18.

Lemma 2 (Perfect equivalence of real games). Let θ be a
DH scheme with key pair distribution dhgen, η be a nonce-
based symmetric encryption scheme with key distribution
kgen, and Hash be a hash function mapping θ’s public keys
to η’s keys. Then for any PKAE distinguisher AGPKAE,

GPKAE0
Cryptoboxθ,η,Hash

perf.
≡ GPKAE-H0.

The typical method for proving perfect equivalence of
two games in SSP, considering the fully inlined games,
is to carry out a sequence of game transformations to
demonstrate that one game can be converted into the other
and vice versa. This reasoning relies on two invariants: a
relational invariant that relates the state of the left game
to that of the right game (often expressing equality be-
tween state variables); and a one-sided invariant which es-
tablishes well-formedness properties of the modular game’s
state.
1) Proving oracle equivalences: In the case of this proof,

the relational invariant simply captures the fact that the
state variables of PKAE0

Cryptoboxθ,η,Hash
are distributed across

AE0
η and KEY0

kspace.
Proving that this relational invariant is preserved by

all oracles, however, is not trivial. In particular, two
distinct queries to ENC with the same public keys in
PKAE0

Cryptoboxθ,η,Hash
would recompute the symmetric key,

whereas the same queries in the modular game would
first SET the key in KEY0

kspace—which cannot be related
to any of the state variables of PKAE0

Cryptoboxθ,η,Hash
, then

used the stored key in the second query. To show that
the ENC oracles exposed by the two games are equivalent,
we therefore need to know—and capture in our one-sided
invariant—that the keys stored in KEY0

kspace are exactly
those generated by PKAE0

Cryptoboxθ,η,Hash
. Our choice of han-

dles ensures that we in fact have sufficient information to
express this invariant by allowing us to relate a symmetric
key to the keypairs it was generated from (see Lemma 4).

a) One-sided invariant for PKEYkgen: The PKEYkgen
package is constructed in such a way that a public key is
in the range of SK iff it is associated to true in PK, and
that all keypairs stored in SK are valid outputs of key
generation algorithm kgen.

Lemma 3 (PKEYkgen invariant). Let kgen a key generation
algorithm. Then the following invariant holds in the initial
state, and is preserved by each oracle O ∈ out(PKEYkgen).
1) ∀pk, sk : SK[pk] = sk ⇒ (pk, sk) ∈ kgen
2) ∀pk : SK[pk] 6= ⊥ ⇔ PK[pk]

Proof. The initial state for PKEYkgen are empty maps PK
and SK. The invariant clearly holds in the inital state.
The only oracles that could then break this invariant are
GEN and CSETPK—since the other oracles do not write
to PK or SK. It is trivial to see that they don’t.

b) One-sided invariant for GODH0
θ,Hash: The one-sided

invariant for GODH0
θ,Hash captures the well-formedness of
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(a) Step 1: Perfect equivalence of real games GPKAE0
Cryptoboxθ,η,Hash and GPKAE-H0 (Lemma 2).
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(b) Step 2: Games GPKAE-H0 and GPKAE-H1 with reduction to ODH security (Lemma 5).
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(c) Step 3: Games GPKAE-H1 and GPKAE-H2 with reduction to AE security (Lemma 6).
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(d) Step 4: Perfect equivalence of ideal games GPKAE-H2 and GPKAE1
Cryptoboxθ,η,Hash (Lemma 7).

Fig. 16: Overview of PKAE security proof steps for Cryptoboxθ,η,Hash.

PKENC, 
PKDEC MOD-

PKAE

ODH
SET, CSET

GETSK, HONPK
ODH

ENC, DEC
GET, HON

AEb

KEYb

PKEY
GEN, CSETPK

Fig. 18: Modular descriptions GPKAE-H0 (b = 0) and
GPKAE-H2 (b = 1) of GPKAEbCryptoboxθ,η,Hash

.

the symmetric keys stored in KEY0
kspace by the ODHθ,Hash

package.

Lemma 4 (GODH0
θ,Hash invariant). Let θ a Diffie-Hellman

scheme and Hash a hash function. Consider GODH0
θ,Hash

with state GODH0
θ,Hash.Σ = {PK,SK,K,H}. Then the fol-

lowing invariant holds in the initial state, and is preserved
by every oracle O ∈ out(GODH0

θ,Hash):
1) well-formedness of keys
∀pks, pkr, sks : SK[pks] = sks
⇒ K[sort(pks, pkr)] = ⊥
∨K[sort(pks, pkr)] = Hash(θ.exp(pkr, sks)

2) no orphan keys
∀pks : PK[pks] = ⊥
⇒ ∀pkr : K[sort(pks, pkr)] = ⊥

Proof. The initial state for GODH0
θ,Hash are empty maps

SK, PK, K, and H, and the invariant holds in that state.
As GEN, CSETPK, GET, and HON do not modify K, and
only monotonically extend SK and PK, the invariant is
trivially maintained by those oracles. The only oracle we
need to study in more detail is hence ODH. Assume that
the invariant holds before a call to ODH with parameters
pks, pkr, and let h = sort(pks, pkr). After the call, we
need to show that both parts of the invariant still hold.
We only need consider executions where the asserts hold,
and we therefore also know that there exists sks such that
SK[pks] = sks (from GETSK), and that PK[pkr] 6= ⊥
(from HONPK).
The oracle call modifies at most one entry in K, namely

K[h], with h = sort(pks, pkr) for pks such that PK[pks]
(from Lemma 3 and the GETSK assert) and such that
PK[pkr] 6= ⊥. The second case of the invariant is therefore
trivially preserved, and we only need consider the first



theory Cryptobox.Proof
module type GMODPKAEPKey

in =⌊
proc gen() : pkey⊥
proc csetpk(pk : pkey) : unit

module type GMODPKAEODH
in =

b proc exp(pkr : pkey, pks : pkey) : (pkey× pkey)⊥

module type GMODPKAEAE
in =⌊

proc enc(h : pkey× pkey,m : ptxt,n : nonce) : ctxt⊥
proc dec(h : pkey× pkey, c : ctxt, n : nonce) : ptxt⊥

module GMODPKAE (PK : GMODPKAEPKey
in )

(D : GMODPKAEODH
in )

(E : GMODPKAEAE
in ) =

proc gen = PK.gen
proc csetpk = PK.csetpk

proc pkenc(pks,pkr,m, n) =
h⊥ ← D.exp(pks, pkr)
if h⊥ 6= ⊥⌊

c⊥ ← E.enc(h,m, n)
return c⊥

proc pkdec(pkr,pks, c, n) =
h⊥ ← D.exp(pks, pkr)
if h⊥ 6= ⊥⌊

c⊥ ← E.dec(h, c, n)
return c⊥

Fig. 19: A parametric deconstruction of Cryptoboxθ,η,Hash
in EasyCrypt.

case. If K[h] 6= ⊥ initially, no update takes place and
the invariant is preserved. If K[h] = ⊥ initially, then
K[h] receives the value Hash(θ.exp(pkr, sks)) (via SET or
CSET).

We note that the first case in the invariant captures
both honest and dishonest keys. In the case of honest
keys, we further know (from Lemma 3) that both keypairs
involved are valid outputs of dhgen, and we know that
θ.exp(pkr, sks) = θ.exp(pks, skr); in the case of dishonest
keys, if the one honest public key is not in fact the
first argument, we can use the fact that sort(pks, pkr) =
sort(pkr, pks) to still leverage the invariant. These two
observations allow us to keep the invariant simple while
still supporting the reasoning required by the overall
equivalence proof we discuss now.

Lemma 2 follows now from a sequence of simple game
transformations that are omitted here, using the invariants
above. For the sake of completeness, the proof is shown in
Appendix B.
2) Formalizing oracle equivalences: The arguments

above can be formalized almost as they are in EasyCrypt.
In particular, we express and prove formal invariants
package-by-package starting from the rightmost packages:
due to the strict state separation, we know that a package
that is used as a component of a composed package will
never see its invariant broken. The proof for a composed

package therefore only needs to consider fully the parts
of its invariants that relate the states of its various com-
ponents—for example, the ODH invariant expressed in
Lemma 4 relates the state of KEY0

kspace to that of PKEYkgen,
but we can leverage the PKEY invariant from Lemma 3
in formalizing the proof of its preservation, just as we do
on paper.
For each oracle, we prove a formal statement in Easy-

Crypt’s pRHL, of the following form, where:
• S is the relational invariant (which states, in this case,
that the states of E and PKEY are the same on both
sides of the equivalence, and that the PKAE log on
the left hand side is equal to the AE log on the right
hand side; and

• I is the full one-sided invariant discussed above, ap-
plied to the right-hand side game’s memory.

{S ∧ I} GPKAE0(. . .).O ∼ GMODPKAE(. . .).O {S ∧ I}

Such a statement is formally interpreted as: for any pair
of memories m1 and m2 related by S and such that I holds
on m2, the results m′1 and m′2 of running the left-hand
game on m1 and, respectively, the right-hand game on m2
are related by S and I holds on m′2.
As an example, we prove the following formal state-

ment in EasyCrypt’s pRHL, where pkey_invariant and
odh_invariant are the formal counterparts of the invariants
from Lemmas 3 and 4.
One main difference between the EasyCrypt formaliza-

tion and the full SSP-style argument is that the for-
malization does not explicitly consider the intermediate
games discussed in Appendix B. Instead, we show that the
two oracles are equivalent by proving that they produce
similar output and state given similar input and state
(where the notion of similarity is that captured by the
relational invariant). The proof being machine-checked, we
can afford more complex proof steps without losing trust
in their correctness.
This difference in reasoning is, however, eclipsed by

a much more significant mismatch between the memory
models of SSP and EasyCrypt, which is invisible when con-
sidering only definitions. In SSP, a parametrized package
is identified by its parameters: if α = β, then Pα = Pβ ,
and we know in particular that a single copy of the state
is shared by both Pα and Pβ . In EasyCrypt, instantiating
theory parameters (those types and operators left abstract
in the definition of a theory, and which we denoted using a
parameter-like notation in Section III) requires the use of
cloning. Cloning creates a fresh copy of the theory before
instantiating its parameters. This creates, in particular,
a fresh copy of the theory’s modules and of their global
state. In this case, the PKey theory is first instantiated
when defining PKAE security, and is instantiated again
when defining ODH security. This creates two copies of the
state-containing module PKey.PKEY. We emphasize that



this would in no way allow us to prove a false statement.
However, it may lead us to a situation where we would be
unable to prove an otherwise true statement if not dealt
with carefully. We choose here to make slight modifications
to the EasyCrypt definitions for PKAE security and ODH
security, parameterizing the games with a PKEY module so
we can “re-state” the ODH assumption using the copy of
PKey.PKEY that arises from the definition of PKAE secu-
rity. (We show the “real” version of Figure 26 in Figure 20.)
In addition, some of the oracle equivalences—where one
instance of a module is replaced with another—require
slightly more work as we first need to change the mod-
ule that serves as the game’s state before effecting the
transformation itself. We discuss more elegant solutions
in Section V.

abstract theory ODH.ODHSec〈dkp,dkey〉

import PKey〈pkey,skey,dkp〉

import Key〈pkey×pkey,key,dkey〉

module type GODH =

proc gen() : pkey⊥
proc csetpk(pk : pkey) : unit

proc get(h : pkey× pkey) : key⊥
proc hon(h : pkey× pkey) : bool⊥

include ODHout

module GODHb (PK : PKEY) (K : KEY) =

proc gen = PK.gen
proc csetpk = PK.csetpk

proc get = K.get
proc hon = K.hon

include ODH(PK,K)

module GODH0(PK : PKEY) = GODHb(PK,KEY0)
module GODH1(PK : PKEY) = GODHb(PK,KEY1)

Fig. 20: Re-defining ODHθ,Hash security in EasyCrypt.

3) From oracle equivalence to game equivalence: The
reasoning described above only proves that the oracles
provided by both games are equivalent if they run in sim-
ilar states in which the one-sided invariant holds. Proving
perfect equivalence, however, requires us to consider an
adversarial run.

Doing so in SSP is easy: all state variables are initially
assumed to be the empty map (or some default value for
variables of other types), and what we have already proved
is sufficient to close the reasoning.

Carrying out this step in EasyCrypt is not as easy:
the initial memory to consider is part of the theorem
statement, and is usually and quite simply universally
quantified, with the adversary—or experiment—left in
charge of initializing its relevant locations. Here, we choose
to restrict the initial memory to be one of those considered
by SSP, where global maps are initialized to be empty. The
duplication of memory mentioned above does cause issues

here as well, and care must be taken to avoid “polluting”
the theorem statement with initialization assumptions for
memory locations irrelevant to the theorem itself.

C. Step 2: Reduction to ODH Security
Now that we have a modular description of the

GPKAE0
Cryptoboxθ,η,Hash

game, we can start applying our as-
sumptions. First, we identify the GODH0

θ,Hash game as
subgame, see Fig. 16b. Then we use the ODH security of
the Diffie-Hellman scheme θ and the hash function Hash
to idealize GODH0

θ,Hash and thus KEY0
kspace.

Lemma 5 (Reduction to ODH security). Let θ be a
DH scheme with key distribution dhgen, η a nonce-based
symmetric encryption scheme with key generation kgen,
and Hash a hash function mapping θ’s public keys to η’s
keys with ODH advantage εθ,Hash

GODH . Then for any PKAE
distinguisher AGPKAE there exists a reductionRGODH such that

Adv(AGPKAE; GPKAE-H0, GPKAE-H1) ≤ εθ,Hash
GODH (AGPKAE → RGODH).

Proof. Follows from ODH security with reduction RGODH
shown in Figure 16b.

This proof step and the next are almost no-ops in
EasyCrypt: defining the reduction is almost as simple as
drawing the grey box in the graph was, and can be done
in a single line, which simply redraws the boundaries of the
system, leveraging the fact that, for example, any module
of type GODH provides oracles gen and csetpk with the
appropriate signature, and is also therefore a module of
type ODHPKey

in .

module AODH (G : GODH) =
GMODPKAE(GODH,GODH,AE0(GODH)).

With the reduction defined as above, and with parallel
compositions defined in an ad hoc way by passing through
oracles, EasyCrypt can syntactically (relying only on inlin-
ing and syntactic equivalence reasoning) discharge oracle
equivalences for the relevant module-level equalities.

D. Step 3: Reduction to AE Security
Similarly to step 2, we identify the GAE0

η game in Fig.
16c and idealize it.

Lemma 6 (Reduction to AE security). Let θ be a DH
scheme with keypair distribution dhgen, η be a nonce-
based symmetric encryption scheme with key distribution
kgen and AE advantage εηGAE, and Hash be a hash function
mapping θ’s public keys to η’s keys. Then for any PKAE
distinguisher AGPKAE, there exists a reductionRGAE such that

Adv(AGPKAE; GPKAE-H1, GPKAE-H2) ≤ εηGAE(AGPKAE → RGAE).

Proof. Follows from AE security with reduction RGAE
shown in Figure 16c.

As with the previous step, to formally prove this lemma,
we simply re-draw adversary boundary and prove oracle



equivalences syntactically, defining the reduction as fol-
lows.

module AAE (G : GAE) =
GMODPKAE(PKEY,ODH(PKEY,G),G).

E. Step 4: Perfect Equivalence of Ideal Games
The final step proves indistinguishability of

GPKAE1
Cryptoboxθ,η,Hash

and GPKAE-H2.

Lemma 7 (Perfect equivalence of ideal games). Let θ be a
DH scheme with keypair distribution dhgen, η be a nonce-
based symmetric encryption scheme with key distribution
kgen, and Hash be a hash function mapping θ’s public keys
to η’s keys. Then for any PKAE distinguisher AGPKAE,

GPKAE-H2
perf.
≡ GPKAE1

Cryptoboxθ,η,Hash
.

As for the first perfect equivalence, we reason about
oracle equivalences using relational and one-sided invari-
ants. We only detail the one-sided invariant for GODH1

θ,Hash
here: those for the KEY and PKEY packages are as for the
first proof. The invariant for GODH1

θ,Hash is slightly more
complex than for Lemma 4: here, in addition to expressing
the well-formedness of symmetric keys (corrupt only), our
invariant is used to also relate the honesty of a symmetric
key to the honesty of the public keys that serve as its
handle.

Lemma 8 (GODH1 invariant). Let θ a Diffie-Hellman
scheme and Hash a hash function. Consider GODH1

θ,Hash
with state GODH1

θ,Hash.Σ = {PK,SK,K,H}. Then the
following invariant holds initially, and is preserved by every
oracle O ∈ out(GODH1

θ,Hash):
1) well-formedness of corrupt keys
∀pks, pkr, sks : SK[pks] = sks ∧ ¬PK[pkr]
⇒ K[sort(pks, pkr)] = ⊥
∨ (K[sort(pks, pkr)] = Hash(θ.exp(pkr, sks)) ∧

¬H[sort(pks, pkr)]
2) honest keys for honest handles
∀pks, pkr : PK[pks] ∧ PK[pkr]
⇒ H[sort(pks, pkr)] = ⊥
∨H[sort(pks, pkr)]

3) no orphan keys
∀pks : PK[pks] = ⊥ ⇒ ∀pkr : K[sort(pks, pkr)]

Proof. The proof is analogous to that of Lemma 8.

The proof of Lemma 7 follows from a similar code
equivalence argument as Lemma 2 that makes use of
Lemma 8. We formalize it in the same way in EasyCrypt.

F. Proof of Theorem 1
Proof. Let θ be a DH scheme with keypair distribution
dhgen, η be a nonce-based symmetric encryption scheme
with key distribution kgen, and Hash be a hash function
mapping θ’s public keys to η’s keys. Let moreover AGPKAE
be an arbitrary PKAE distinguisher. Then

Adv(A; GPKAE0
Cryptoboxθ,η,Hash

, GPKAE1
Cryptoboxθ,η,Hash

)

= Adv(AGPKAE; GPKAE-H0, GPKAE1
Cryptoboxθ,η,Hash

) Lemma 2

≤ Adv(AGPKAE; GPKAE-H1, GPKAE1
Cryptoboxθ,η,Hash

) Lemma 5

+ εθ,Hash
GODH (AGPKAE →RGODH)

≤ Adv(AGPKAE; GPKAE-H2, GPKAE1
Cryptoboxθ,η,Hash

) Lemma 6

+ εθ,Hash
GODH (AGPKAE →RGODH) + εηGAE(AGPKAE →RGAE)

= εθ,Hash
GODH (AGPKAE →RGODH) + εηGAE(AGPKAE →RGAE) Lemma 7

which concludes our proof.

V. Discussion

In this paper, we choose not to illustrate EasyCrypt’s
ability to discharge statistical proof steps. Although this
is possible, the current mechanisms to do so are not at all
aligned with the SSP philosophy. In particular, using the
relevant tactic (fel, after the failure event lemma) requires
that the oracles be silenced when the adversary’s query
budget is exceeded.
We also choose to leave informal the reduction from

single instance assumptions. EasyCrypt currently lacks rea-
sonable mechanisms to carry out such reductions. Existing
proof efforts [14], [5], [15] in contexts that support multiple
instances of a primitive or session use a single module
whose state is an indexed map of all the sessions’ states.
This is unwieldy, and requires a more robust solution.
Although the semantics of SSP and that of EasyCrypt

align well at a high-level, our efforts identify a few points
of friction.
Cloning-based instantiation, causes issues through the

duplication of state. Here, we choose to solve it by making
the security definitions parametric, allowing us to select
which copy of the state-containing package we wish to
use for stating security definitions and assumptions. A
lighter weight mechanism would allow a piece of code to be
parameterized by a set of typed memory locations to use
as its globals. Such a mechanism would allow EasyCrypt
to detect when two games are syntactically equivalent
except for the memory locations they use, and streamline
reasoning about equivalences in this context.
The simplicity of EasyCrypt’s imperative pWhile lan-

guage means its logics remain simple. However, this sim-
plicity is a source of friction in formalizing larger protocols
compositionally, with error handling a main source of
verbosity and proof tedium. Here we do not propose that
EasyCrypt should extend the syntax and semantics of its
pWhile language. Instead, we believe that implementing
program transformations and tactics that check equiva-
lences for exceptional paths before letting the user focus
their proof efforts on the programs’ core is the right
solution.



VI. Conclusion

Our work demonstrates how the SSP methodology helps
structure proofs of composed protocols using formal ver-
ification tools beyond the miTLS efforts in F ? using
the concrete example of the Cryptobox protocol. We see
further benefit of SSPs in providing a semi-formal connec-
tion between different formal verification tools through a
shared underlying SSP structure for proofs. An obvious
open question is how to incorporate the SSP methodology
into EasyCrypt or other proof assistants like Cryptoverif in
a systematic way, if possible at all given the obstacles we
identified, and to develop more automation. Concurrent
efforts in developing formal semantics for SSPs2, and
further refining the EasyCrypt module system and its se-
mantics [16] seem to complement our more practical study
in applying the SSP methodology directly in EasyCrypt,
and further connecting those efforts could yield interesting
new techniques and tools.
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abstract theory PKAE〈pkey,skey,nonce,ptxt,ctxt,hash〉

// Theory Parameters
op length : ptxt→ N.
op dctxt : Z→ ctxt distr.

op sort : pkey→ pkey→ (pkey× pkey).
axiom sortP X1 X2 Y1 Y2 :

sort X1 Y1 = sort X2 Y2 ⇔
((X1 = X2 ∧Y1 = Y2) ∨ (X1 = Y2 ∧Y1 = X2)).

// Syntax, Interfaces and Package State
module type PKAEin =⌊

proc getsk(pk : pkey) : skey⊥
proc honpk(pk : pkey) : bool⊥

module type PKAEout =⌊
proc pkenc(pks : pkey, pkr : pkey,p : ptxt,n : nonce) : ctxt⊥
proc pkdec(pks : pkey,pkr : pkey, p : ctxt, n : nonce) : ptxt⊥

module type PKAE (E : NBPES) (PK : PKAEin) =⌊
include PKAEout

module PKAEb =⌊
var log : (pkey× pkey)× nonce ⇀ (ptxt× ctxt)

// Realization

module PKAE0 (E : NBPES) (PK : PKAEin) =

proc pkenc(pks, pkr,p, n) =

c← ⊥
hs ← PK.honpk(pks);
hr ← PK.honpk(pkr);
if hs 6= ⊥ ∧ hr 6= ⊥

h← sort pks pkr;
sk⊥ ← PK.getsk(pks);
if sk⊥ 6= ⊥ ∧ (h,n) /∈ PKAEb.log⌊

c⊥ ← E.enc(sk,pkr, p, n);
PKAEb.log[h, n]← (p, c);

return c;

proc pkdec(pks, pk)r, c, n) =

p← ⊥
hs ← PK.honpk(pks);
hr ← PK.honpk(pkr);
if hs 6= ⊥ ∧ hr 6= ⊥ sk⊥ ← PK.getsk(pkr);

if sk⊥ 6= ⊥⌊
p⊥ ← E.dec(sk, pks, c,n);

return p;

// Idealization

module PKAE1 (E : NBPES) (PK : PKAEin) =

proc pkenc(pks, pkr, p,n) =

c← ⊥
hs ← PK.honpk(pks);
hr ← PK.honpk(pkr);
if hs 6= ⊥ ∧ hr 6= ⊥

h← sort pks pkr;
sk⊥ ← PK.getsk(pks);
if sk⊥ 6= ⊥ ∧ (h, n) /∈ PKAEb.log

if hr// Recipient key is honest⌊
c⊥ ←$ dctxt (length p);

else // Recipient key is corrupt⌊
c⊥ ← E.enc(sk, pkr,p, n);

PKAEb.log[h,n]← (p, c);
return c;

proc pkdec(pks, pk)r, c,n) =

p⊥ ← ⊥
hs ← PK.honpk(pks);
hr ← PK.honpk(pkr);
if hs 6= ⊥ ∧ hr 6= ⊥

sk⊥ ← PK.getsk(pkr);
if sk⊥ 6= ⊥

if hs// Sender key is honest⌊
h← sort pks pkr;
p⊥ ← getp c PKAEb.log[h, n];

else // Sender key is corrupt⌊
p⊥ ← E.dec(sk,pks, ecvarc, n);

return p⊥;

Fig. 21: The PKAE theory in EasyCrypt. getp c (m, c′)⊥ returns m if c = c′ and ⊥ otherwise.

abstract theory Key〈handle,key,dkey〉

// Interface Specification
module type KEYout =

proc set(h : handle, k : key) : unit
proc cset(h : handle, k : key) : unit
proc get(h : handle) : key⊥
proc hon(h : handle) : bool⊥

// Package State
module KEYb =⌊

var keys : handle ⇀ bool× key

module KEY0 =

proc set(h, k) = if h /∈ KEYb.keys⌊
KEYb.keys.[h]← (true, k);

proc cset(h, k) =⌊
if h /∈ KEYb.keys⌊

KEYb.keys.[h]← (false, k);

proc get(h) =⌊
return π⊥2 (KEYb.keys.[h]);

proc hon(h) =⌊
return π⊥1 (KEYb.keys.[h]);

module KEY1 =

proc set(h, k) = k←$ dkey
if h /∈ KEYb.keys⌊

keys.[h]← (true, k);

proc cset(h, k) =⌊
if h /∈ KEYb.keys⌊

keys.[h]← (false, k);

proc get(h) =⌊
return π⊥2 (KEYb.keys.[h]);

proc hon(h) =⌊
return π⊥1 (KEYb.keys.[h]);

Fig. 22: The KEYbkspace theory in EasyCrypt.



abstract theory AE〈handle,key,nonce,ptxt,ctxt〉

// Syntax and Interface Specifications
module type AEin =⌊

proc get(h : handle) : key⊥
proc hon(h : handle) : bool⊥

module type AEout =⌊
proc enc(h : handle,p : ptxt,n : nonce) : ctxt⊥
proc dec(h : handle, c : ctxt,n : nonce) : ptxt⊥

module type AE (K : AEin) =⌊
include AEout

// Package State
module AEb =⌊

var log : (handle× nonce) ⇀ ptxt× ctxt

module (AE0 : AE) (E : NBSES) (K : AEin) =

proc enc(h,p, n) =

r← ⊥;
k⊥ ← K.get(h);
if k⊥ 6= ⊥ ∧ AEb.log[h, n] = ⊥⌊ c← E.enc(p, n, k);

AEb.log[h, n]← (p, c);
r← c;

return r;

proc dec(h, c,n) =
p← ⊥;
k⊥ ← K.get(h);
if k⊥ 6= ⊥⌊

p← E.dec(c, n, k);
return p;

module (AE1 : AE) (E : NBSES) (K : AEin) =

proc enc(h, p, n) =

r← ⊥;
k⊥ ← K.get(h);
if k⊥ 6= ⊥ ∧ AEb.log[h, n] = ⊥

b⊥ ← K.hon(h);
if b⊥⌊

c←$ dctxt(length p);
else⌊

c← E.enc(p, n, k);
AEb.log[h, n]← (p, c);
r⊥ ← c;

return r;

proc dec(h, c, n) =

m← ⊥;
k⊥ ← K.get(h);
if k⊥ 6= ⊥

b⊥ ← K.hon(h);
if b⊥⌊

p← getp c AEb.log[h,n];
else⌊

p← E.dec(c,n, k);
return p;

Fig. 23: The AEbη theory in EasyCrypt.

abstract theory AE.AESec〈dkey〉

import Key〈handle,key,dkey〉

module type GAE =
proc set(h : handle, k : key) : unit
proc cset(h : handle, k : key) : unit

include AEout

module GAEb (AE : AE) =
proc set = KEY1.set
proc cset = KEY1.cset

include AE(KEY1)

module GAE0 = GAEb(AE0)
module GAE1 = GAEb(AE1)

Fig. 24: Defining AEbη security in EasyCrypt.



abstract theory ODH〈pkey,skey,key〉

// Interface Specifications

module type ODHPKey
in =⌊ proc getsk(pk : pkey) : skey⊥

proc csetpk(pk : pkey) : unit
proc honpk(pk : pkey) : bool⊥

module type ODHKey
in =⌊

proc set(h : pkey× pkey, k : key) : unit
proc cset(h : pkey× pkey, k : key) : unit

module type ODHout =⌊
proc exp(pks : pkey,pkr : pkey) : (pkey× pkey)⊥

module type ODH (PK : ODHPKey
in ) (K : ODHKey

in ) =⌊
include ODHout

// Realization

module ODH (PK : ODHPKey
in ) (K : ODHKey

in ) =

proc exp(pks,pkr) =

r⊥ ← ⊥;
hs⊥ ← PK.honpk(pks);
hr⊥ ← PK.honpk(pkr);
if hs⊥ 6= ⊥ ∧ hr⊥ 6= ⊥

sks⊥ ← PK.getsk(pks);
if sks⊥ 6= ⊥

h← sort pks pkr;
k← exp pkr sks;
if hr⌊

K.set(h, k);
else⌊

K.cset(h, k);
r⊥ ← h;

return r⊥;

Fig. 25: The ODHθ,Hash package in EasyCrypt.

abstract theory ODH.ODHSec〈dkp,dkey〉

import PKey〈pkey,skey,dkp〉

import Key〈pkey×pkey,key,dkey〉

module type GODH =

proc gen() : pkey⊥
proc csetpk(pk : pkey) : unit

proc get(h : pkey× pkey) : key⊥
proc hon(h : pkey× pkey) : bool⊥

include ODHout

module GODHb (K : KEY) =

proc gen = PKEY.gen
proc csetpk = PKEY.csetpk

proc get = K.get
proc hon = K.hon

include ODH(PKEY,K)

module GODH0 = GODHb(KEY0)
module GODH1 = GODHb(KEY1)

Fig. 26: Defining ODHθ,Hash security in EasyCrypt.



B. Proof of Lemma 2 (continued)
This section explains the code equivalence steps in the

proof of Lemma 2, using the invariants shown in Lemma
3 and 4. Remember that we want to prove that

GPKAE0
Cryptoboxθ,η,Hash

perf.
≡ GPKAE-H0.

The proof proceeds in a sequence of game hops. We first
show a simplification of the GODH0

θ,Hash game in Lemma
9. The idea is that in this game, the symmetric keys in
the map K as well as their honesty H can be overwritten
(by the same value as we will show) at every call to ODH.
After applying said Lemma 9 to GPKAE-H0, we continue to
simplify the game until the oracles are unified with those
of GPKAE0

θ,Hash.
For the simplification of GODH0

θ,Hash, we introduce a
new package ODHKEY0 which is a simplified version of
ODHθ,Hash → KEY0

kspace.

Definition 10 (ODHKEY0 package). The ODHKEY0 pack-
age has interfaces in(ODHKEY0) = {GETSK,HONPK}
and out(ODHKEY0) = {ODH,GET,HON}. The oracles of
ODHKEY0 are shown in Fig. 27.

ODH(X,Y )
x← GETSK(X)
honY ← HONPK(Y )
h← sort(X,Y )
k ← Hash(θ.exp(pkr, sks))
H[h]← honY

K[h]← k

return h

GET(h)
= KEY0.GET(h)

HON(h)
= KEY0.HON(h)

Fig. 27: Oracles of the ODHKEY0 package.

We are now ready to state the game equivalence:

Lemma 9. Let θ be a DH scheme with keypair distribution
dhgen. Then for any ODH distinguisher AGODH,

GODH0
θ,Hash

perf.
≡ GODH-H0

for game GODH-H0 in Figure 28.

EXP,
GET,
HON

GETSK, HONPK
ODHKEY

PKEY
GEN, CSETPK

Fig. 28: Game GODH-H0.

Proof. Since all oracles are identical in both games except
for ODH, we focus on this one. Consider Fig. 29. The
leftmost column shows the ODH oracle of ODHθ,Hash after
inlining KEY0

kspace. The rightmost column contains the
corresponding oracle of ODHKEY0. We start by simplifying
the left column. Observe that the branching on honY is
not necessary and can be removed. This yields the middle
column.

Next, we will use the invariant to show that overwriting
K[h] with Hash(θ.exp(pkr, sks)) will never erase a differ-
ent key. Thus we can remove the check for K[h] = ⊥,
resulting in the rightmost column. There can be two
outcomes for the check. Either K[h] = ⊥ to begin with,
then removing the check yields the same outcome. Or
K[h] had some value key. We need to show that key =
Hash(θ.exp(pkr, sks)) already. We know that x = SK[pks]
and that honY 6= ⊥, but there are two options for
honY = PK[pkr]. If honY = true, then by Lemma 3,
SK[pkr] 6= ⊥. Assume that SK[pkr] = skr. By the first
invariant in Lemma 4, K[h] = Hash(θ.exp(pkr, sks)) be-
fore the oracle call as desired. In case honY = PK[pkr] =
false, the second invariant guarantees that again K[h] =
Hash(θ.exp(pkr, sks)). This concludes our proof.

Proof of Lemma 2. We start by applying Lemma 9. This
replaces ODHθ,Hash and KEY0

kspace by ODHKEY0. Next,
we want to compare the oracles of MOD-PKAE and
PKAE0

Cryptoboxθ,η,Hash
. We start by considering the oracles

of MOD-PKAE, PKENC and PKDEC, and inline ODHKEY and
AE0. The result is shown in the leftmost column of Fig.
30. The comparison is going to be with PKAE0

Cryptoboxθ,η,Hash
with η inlined, shown in the rightmost column of Fig.
30. Going from the left to the middle column through
simplifications (removing redundant variable assignments
and asserts), we can see that the resulting program is
already very similar to our target in the right column.
Renaming variables and swapping computations aligns the
programs, which concludes our proof.



ODH:

ODH(pks, pkr)
assert SK[pks] 6= ⊥
x← SK[pks]
assert PK[pkr] 6= ⊥
honY ← PK[pkr]
h← sort(pks, pkr)
k ← Hash(θ.exp(pkr, x))
if honY then

if K[h] = ⊥
H[h]← true
K[h]← k

else
if K[h] = ⊥
H[h]← false
K[h]← k

return h

w/o honY check:

ODH(pks, pkr)
assert SK[pks] 6= ⊥
x← SK[pks]
assert PK[pkr] 6= ⊥
honY ← PK[pkr]
h← sort(pks, pkr)
k ← Hash(θ.exp(pkr, x))

if K[h] = ⊥
H[h]← honY

K[h]← k

return h

ODHKEY:

ODH(pks, pkr)
assert SK[pks] 6= ⊥
x← SK[pks]
assert PK[pkr] 6= ⊥
honY ← PK[pkr]
h← sort(pks, pkr)
k ← Hash(θ.exp(pkr, sks))

H[h]← honY

K[h]← k

return h

Fig. 29: Code equivalence of games ODH and ODHKEY0 → PKEY.

MOD-PKAE:

PKENC(pks, pkr,m, n)
x← GETSK(pks)
honY ← HONPK(pkr)
h′ ← sort(pks, pkr)
k′ ← Hash(θ.exp(pkr, sks))
H[h′]← honY

K[h′]← k′

h← h′

assert M [h, n] = ⊥
assert K[h] 6= ⊥
k ← K[h]
assert H[h] 6= ⊥
honh ← H[h]
c′ ← η.enc(m,n, k)
M [h, n]← (m, c′)
c← c′

return c

simplified MOD-PKAE:

PKENC(pks, pkr,m, n)
x← GETSK(pks)
honY ← HONPK(pkr)
h′ ← sort(pkr, pks)
k′ ← Hash(θ.exp(pks, skr))

assert M [h′, n] = ⊥

c′ ← η.enc(m,n, k′)
M [h′, n]← (m, c′)
c← c′

return c

PKAE0,Cryptobox:

PKENC(pks, pkr,m, n)
sks ← GETSK(pks)
honpkr ← HONPK(pkr)
h← sort(pks, pkr)
assert M [h, n] = ⊥

k ← Hash(θ.exp(pkr, sks))

c′ ← η.enc(m,n, k)
c← c′

M [h, n]← (m, c)
return c

Fig. 30: Code equivalence of games GPKAE-H0 and GPKAE0
Cryptobox for oracle PKENC.
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