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Abstract: We propose Veksel, a simple generic
paradigm for constructing efficient non-interactive coin
mixes. The central component in our work is a con-
cretely efficient proof π1-many that a homomorphic com-
mitment c∗ is a rerandomization of a commitment c ∈
{c1, . . . , c`} without revealing c. We formalize anony-
mous account-based cryptocurrency as a universal com-
posability functionality and show how to efficiently in-
stantiate the functionality using π1-many in a straight-
forward way (Veksel). We instantiate and implement
π1-many from Strong-RSA, DDH and random oracles
targeting ≈ 112 bits of security. The resulting NIZK has
constant size (|π1-many| = 5.3KB) and constant prov-
ing/verification time (≈ 90ms), on an already accumu-
lated set. Compared to Zerocash [5]—which offers com-
parable marginal verification cost and an anonymity set
of every existing transaction—our transaction are larger
(6.2 KB) and verification is slower. On the other hand,
Veksel relies on more well-studied assumptions, does not
require an expensive trusted setup for proofs and is ar-
guably simpler (from an implementation standpoint).
Additionally we think that π1-many might be interesting
in other applications, e.g. proving possession of some
credential posted on-chain.

Keywords: blockchains, UC, zero-knowledge, accumula-
tors, implementation

1 Introduction
Cryptocurrencies allow for fully decentralized and pub-
licly verifiable currency systems. An interesting problem
in cryptocurrencies is that of guaranteeing some level of
privacy by making impossible to an observer to learn
anything about the “flow of money". While users in the
network only require known pseudonyms to be identi-
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fied, we know that they are not sufficient to achieve an
acceptable level of privacy [27, 29].

Several prior works address this problem (ZeroCash,
Monero, OmniRing). The main challenge they face is to
build solutions that are private but can still scale. An
important requirement for scalability are the efficiency
of spending and verifying transactions as well as their
size. Often this boils down to the efficiency and proof
size of their underlying non-interactive zero-knowledge
schemes (or NIZKs) these works rely on.

Some protocols (e.g., Monero1 and OmniRing [25])
inherently trade efficiency against privacy requirements.
They need to keep a relatively small anonymity set (a
ring of signatures, in their specific constructions) for
each transaction: a set of “coins” that a spending trans-
action can refer to. Other solutions (e.g. ZCash [22]) do
not have this limitation, but have other caveats such
as relying on an expensive trusted-setup and crypto-
graphic assumptions that are not well-studied yet (e.g.
the knowledge of exponent assumption).

In this work we address the question of how to de-
sign cryptocurrencies whose efficiency does not degrade
with privacy requirements. Addressing this question, we
also focus on solutions that rely on “minimal” crypto-
graphic assumptions. In particular we want to design so-
lutions that rely on transparent proof systems, i.e. that
do not require a trusted setup and avoid the use of non-
standard assumptions such as knowledge-of-exponent.

On the way, we study the problem of formaliz-
ing and obtaining privacy in account-based cryptocur-
rencies. We believe that this model is of interest be-
cause many existing cryptocurrencies (e.g. Ethereum)
are account-based. Additionally, some of the approaches
in literature to balance privacy and accountability are
account-based [14]. In this setting where users maintain
fixed accounts over time, however, we cannot hope to
achieve the same levels of privacy of the UTXO (Un-
spent Transaction Output) model where each trans-
fer can refer to freshly created pseudonyms. Though
weaker, this privacy model is still interesting in some
applications. To the best of our knowledge it has not
been formally investigated before.

1 https://www.getmonero.org/
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1.1 Contribution

Our main contribution is a concrete construction for
a cryptocurrency with privacy-preserving properties
that supports arbitrary-sized anonymity sets. We obtain
small concrete transaction sizes compared to other solu-
tions in literature (see Figure 1) and efficient marginal
costs of verification and spending (see Figure 2 and
Section 6). Our construction relies on standard crypto-
graphic assumptions and on transparent non-interactive
zero-knowledge proofs (secure in the random oracle
model). Our concrete efficiency relies on improvements
on the state of art of zero-knowledge arguments over ac-
cumulators that may be of independent interests (more
details below). We implement our construction in Rust;
its code is open source and available at [1].

On the way we make the following contributions:
– We formalize privacy-preserving cryptocurrencies

with accounts (Section 3) through a UC functional-
ity.

– We provide a highly general and modular construc-
tion for this functionality (Section 4). By a mod-
ular description, our construction can be further
improved by simply replacing some of its building
blocks without having to prove its security again. Its
more concrete version is described (in light of follow-
ing sections) in Appendix A. Our solution support
coins of arbitrary value and can be extended to the
UTXO setting (see Appendix D).

– We describe a new concrete transparent NIZK to
prove a one-out-of-many relation [21], to prove that
one public commitment is rerandomized from a set
of existing commitments. Our techniques rely on
commit-and-prove2 zero-knowledge proof accumu-
lators in unknown-order groups [6] and on optimized
relations in Bulletproofs [10]. One challenge we need
to solve is how to commit (and accumulate) to coins.
Since coins are also “commitments” it is not imme-
diate to have an efficient proof system that sup-
ports this double level of commitments. In our so-
lutions we adopt a new SNARK-friendly elliptic
curve that is compatible with Curve25519. We be-
lieve this curve (which we dub Jabberwock) and its
surrounding techniques can be of independent inter-
est.

2 As in [12] we label as “commit-and-prove” a proof system that
works efficiently over a commitment representation and can thus
be composed with others of the same type.

1.2 Prior Works

Monero Anonymity Set Concrete Tx Size
QuisQuis 24 13 KB

Lelantus210 210 2.7 KB
Lelantus214 214 3.9 KB
Lelantus216 216 5.6 KB
Omniring210 210 1.0 KB
Omniring214 214 1.3 KB
Omniring216 216 1.4 KB
Zerocash Any < 1 KB
Zerocoin Any 45 KB
Veksel Any < 6.3 KB

Fig. 1. Tx. size for different anonymity sets

Spend Verify Tx Size Amounts
Monero O(n) O(n) O(n) Yes
QuisQuis O(n) O(n) O(n) Yes
Lelantus O(n) O(n) O(logn) Yes
Omniring O(n) O(n) O(logn) Yes
Zerocash O(logn) O(logn) O(1) Yes
Zerocoin O(1) O(1) O(1) No
Veksel O(1) O(1) O(1) Yes

Fig. 2. Asymptotic marginal cost of verification / spending

Groth & Kohlweiss: In [20], Groth and Kohlweiss
constructed an efficient proof with size O(logn) for the
relation {r : ∃i st Comm(0; r) = ci} given Pedersen com-
mitments c1, . . . , cn. Using this they showed how to
exploit the homomorphic property of the commitment
scheme to create concretely efficient anonymous trans-
actions. Similar techniques has since been widely ex-
plored in Omniring [25], RingCT3.0 [30] and Lelantus
[23]. These works have different concrete efficiency, but
share the same asymptotic efficiency: O(logn) transac-
tion size and inherent O(n) spending/verification time
since the size of the statement proved in zero-knowledge
is linear in the anonymity set. Due to the linear verifica-
tion time these approaches only scale to anonymity sets
of size ≈ 216 in practice, even with batch verification
techniques.

Zerocoin: Zerocoin [28] uses an RSA accumulator to
‘compress’ the set of coins, a coin is spend by opening
the unique serial number of the coin and proving its
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membership in the accumulator in zero-knowledge. This
enables O(1) spending/verification assuming the coins
have been aggregated ahead of time. Unfortunately the
“double discrete-log” proof in Zerocoin relies on cut-
and-choose and is therefore concretely in-efficient: over
45 KB for 128-bits of security. Additionally Zerocoin
does not enable coins to have arbitrary denominations.

Zerocash: Zerocash [5] applies the same technique
of “compressing the statement" using an accumulator
(Merkle tree) which enables it to achieve logarithmic
marginal spending/verification cost. Zerocash verifies
the Merkle path inside a zk-SNARK (Groth16 [19] in
Zcash implementation), which hides the index of the
coin to be spend and compresses the membership proof
down to O(1) with very small constants. In terms of con-
crete efficiency the Zcash implementation of Zerocash is
currently the most efficient decentalized payment sys-
tem with a “full” anonymity set.

QuisQuis: QuisQuis [17] seeks to mitigate the issue
of an ever-growing set of ‘spending tags’ which must be
maintained by the nodes in Zerocash to avoid double
spending. This is achived by having the spender essen-
tially do a shuffle locally: the spender picks n other un-
spend coins along with the coin he wishes to spend, then
proves that she can spend one of the n+1 coins, correctly
rerandomize the remaining n coins and post the n new
rerandomized coins on the chain. Since QuisQuis relies
on posting the new set of outputs to the chain, the trans-
action size of this approach is O(n). The anonymity set
also inherently consists (at best) of the set of unspend
outputs (as oppose to the set of all coins created).

1.3 Technical Overview

1.3.1 Basic Setting

At a basic level our approach to decentralized payments
is similar to that of Zerocoin[28], however we aim at
supporting coins of arbitrary (hidden) denominations,
in this sense we diverge from the simpler setting in [28]
[21] where all coins have the same denomination. For
sake of providing intuition, in this section we describe
the account-based model where each party has a com-
mitment (bali)i stored on-chain and locally holds the
private balance vi that is the opening of bal.

To transfer a certain amount v, a sender party S
will create a coin spendable by the recipient R, that is
a commitment to a triple consisting of: a) v the value

of the coin (payment amount) b) the identity of the re-
cipient c) a random spending tag t. The sender then
broadcasts this commitment together with an encryp-
tion through pkR of its opening. Naturally the sender
should also be able to show they can afford the transfer;
we temporarily ignore this issue and discuss how to ap-
proach it later in this section. Once they have observed
that someone created a new coin, all users keep track of
it in a set Scoins of existing coins.

In order to claim the transfer—to collect the coin—
user R will need to do two things: (i) show that it knows
the opening of one among the existing coins; (ii) reveal
its tag t so that the coin cannot be spent again. The first
step requires some care because we want the transfer to
be somewhat private, i.e. with the exception of S and R,
no observer of the system should learn anything about
the coin being collected. To do that we need to apply a
zero-knowledge proof showing we know the opening of
some coin in Scoins such that this coin encodes tag t.

Because we require each coin to denote a custom
transferred amount, we now have and additional chal-
lenge. When parties observe that R collects a coin, they
should have a way to update R’s balance balR without
having R reveal the value of the coin. While this could
be done using the homomorphic properties of commit-
ments by “adding” the coin3 to the balance, we cannot
reveal the coin itself either (that would, at the least,
leak the sender!). Thus we let R produce a rerandom-
ization4 cn∗ of the collected coin; parties can now use
homomorphically add the latter to balR.

Following the approach outlined above, collecting
a coin requires R to prove in zero-knowledge that the
rerandomized coin cn∗ opens to same amount as one of
the coins in Scoins

5. In the remainder of this section we
describe our technical solutions to efficiently produce
and verify this proof.

3 We temporarily ignore the issue that a coin also commits to
other elements, such as the tag t, when performing this homo-
morphic operation; this can be simply addressed. We refer the
reader to our main construction.
4 In an homomorphic commitment scheme we can always
achieve rerandomization by adding a commitment to 0.
5 Obviously cn∗ should also open to the same tag and recipient
as the collected coin in Scoins. These are public values and we do
not to include them in the “zero-knowledge” part of the proof.
We solve this instead by exploiting the homomorphic properties
of commitments. See main construction.
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1.3.2 Our techniques

As a first step towards our goal, we let parties keep a
compressed digest to the set Scoins, through algebraic
accumulators [2, 6, 8, 11]. Thus, given a set S, we can
produce A = accum(S), a binding (but usually not hid-
ing) compressing commitments to S. An important fea-
tures of accumulators is that it allows to prove member-
ship of elements “inside” A efficiently (that is, with short
certificates and fast verification). In order to efficiently
prove the desired relation in zero-knowledge we adopt
a modular approach and we split it in two components,
set membership and rerandomization. We thus apply
two proof systems that are specifically efficient for each
of the two relation components. To ensure that they
refer to the same content, we use a commit-and-prove
approach, and link them through a hiding commitment
to the coin cnk we are collecting. We now describe this
process in more detail.

Recall that coins are commitments to pairs of
amounts and additional information (tags and recipient
identity). We denote by Comm©(·; ·) the commitment
procedure that produces coins and by Comm�(·; ·) the
commitment procedure we use to link the two proofs
mentioned above. The first parameter in each is the
message we are committing to (which possibly has ad-
ditional structure) while the second parameter denotes
the randomness. For our concrete case, the two commit-
ment schemes can be thought of as variants of Peder-
sen commitments in different groups. In order to prove
that a coin ck is legit without revealing it, R first pro-
duces a commitment c ← Comm�(cnk, rc) where rc is
some freshly sampled randomness. Then R broadcasts
c together with two proofs (πset-mem, πrerand) with the
following semantics:
– πset-mem: “I know (cnk, rc) such that cnk ∈ Set(A)

and c = Comm�(cnk, rc)”.
– πrerand: “I know (cnk, rc, r) such that cn∗ = cnk +

Comm©(0; r) and c = Comm�(cnk, rc)”.

In addition to the above, user R needs to prove knowl-
edge of an actual opening of cn∗ that refers to the
revealed tag, identity R and some secret value v. In
our concrete construction we use standard sigma pro-
tocols to prove knowledge of (v, r) such that cn∗ =
fvgH(t||R)hr, where H is a collision resistant function
that maps to a valid exponent for g. In a sense we prove
only a partial opening of cn∗ since gH(t||R) can be sub-
tracted publicly from cn∗.

We now discuss how we efficiently instantiate
πset-mem and πrerand. We choose to efficiently instantiate

πset-mem with some of the components in [6]—which de-
scribes efficient commit-and-prove zkSNARKs over ac-
cumulated sets—and πrerand with Bulletproofs, a trans-
parent zero-knowledge schemes with short proofs that
are compatible with some instantiations of [6].

We need some care in applying these techniques.
Notice that the proof of rerandomization involves
two different types of commitments in the statements
(Comm© and Comm�). Since their output may corre-
spond to different groups, this can make it hard to ef-
ficiently instantiate the rerandomize relation for Bul-
letproofs. To solve these efficiency challenges we re-
strict what coins we can use in our systems (what coins
are permissible) and describe a new SNARK-friendly
curve whose arithmetic can be efficiently described as
field operations when instantiating Bulletproofs over
Ristretto25519.

Figure 3 illustrates a simplified version of our ap-
proach. We refer the reader to Section 5 for details.

2 Preliminaries

2.1 Notation

When describing an NP relation that we prove through
a zero-knowledge argument, we use a semicolon to dis-
tinguish between public input and private witness as in
R(x;w). In the context of commitments we use a semi-
colon to distinguish between the committed value and
the masking randomness as in Comm(ck, u; r) where u is
the committed value.

We assume all cryptographic algorithms implicitly
take an input their respective public parameters when-
ever this yields no unambiguity, For example we may
write Comm(u; r) to denote Comm(ck, u; r) whenever ck
is obvious from the context.

Universal Composability: We denote by ♦ compo-
sitions of UC functionalities and protocols e.g. ΠA♦FB
denotes the protocol A in the B-hybrid model. We de-
note by A ≥ B that ‘A implements B’, i.e. the exists
an efficient simulator SimA st. A c≈ SimA♦B for any en-
viroment; thoughout this paper we only consider PPT
enviroments.

2.2 Commitments

We use the following syntax for commitments:
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cn cn∗A c = Comm�(cn; rc)A = Accum(Scoins)

πrerand
c = Comm�(cn; rc)

cn∗ = cn + Comm©(0; r)

πset-mem
c = Comm�(cn; rc)

cn ∈ Set(A)

Fig. 3. The π1-many = (πset-mem, πrerand) argument consists of two sub-proofs: a) A set membership proof, proving that c =
Comm�(cn; rc) commits to cn ∈ A. b) A rerandomization proof, showing that the same c = Comm�(cn; rc) commits to cn =
cn∗ − Comm©(0; r) where cn∗ is a part of the statement (public).

Definition 1 (Commitments). A commitment scheme
C is a pair of algorithms (Setup,Comm) with syntax:

– Setup(1λ)→ ck : generates a commitment key ck;
– Comm(ck,m; r)→ cm : produces commitment comm

to message m with randomness r.

As it is standard, we call message space the set of of
m-s for which Comm is defined and commitment space
its range, Rng(Comm). We require commitments to be
perfectly hiding—the distribution of Comm(ck,m; r) is
identical to the uniform distribution over the commit-
ment space—and computationally binding—no efficient
adversary can produce two pairs (m, r), (m′, r′) such
that m 6= m′ and Comm(ck,m; r) = Comm(ck,m′; r′).
Sometimes we want to require binding only with re-
spect to messages from a set P of permissible messages,
a subset of the message space. In that case we say the
scheme is binding “with respect to set P”.

2.3 Accumulators

Definition 2 (Accumulator scheme). An accumulator
scheme Acc over universe Uλ(Acc) (where λ is a secu-
rity parameter) consists of a quadruple of PPT algo-
rithms Acc = (Setup,Accum,PrvMem,VfyMem) with the
following syntax:
Setup(1λ)→ (pp) generates public parameters pp.
Accum(pp, S)→ A deterministically computes accumu-

lator A for set S ⊆ Uλ(Acc).
PrvMem(pp, S, x)→W computes witness W that proves

x is in accumulated set S.

VfyMem(pp, A, x,W )→ b ∈ {0, 1} verifies through wit-
ness whether x is in the set accumulated in A. We
do not require parameter x to be in Uλ(Acc) from
the syntax.

An accumulator scheme should satisfy correctness—the
accumulator works as expected—and soundness—no ef-
ficient adversary can choose a set S and then find a
witness that checks on Acc.Accum(pp, S) and u 6∈ S6.

Remark 1 (Efficient Insertion). Throughout this work
we assume an additional (deterministic) algorithm
Acc.Add for a scheme Acc such that for all λ, x ∈
Uλ(Acc), S ⊆ Uλ(Acc) A′ = Acc.Add(A, x) is such that,
if A = Acc.Accum(S) then A′ = Acc.Accum(S ∪ {x}).

2.4 NIZKs

In this work we use and assume transparent NIZKs, i.e.
whose algorithms use a reference string urs sampled uni-
formly.

Definition 3. A NIZK for a relation family R =
{Rλ}λ∈N is a tuple of algorithms ZK = (Prove,VerProof)
with the following syntax:
– ZK.Prove(urs, R, x, w) → π takes as input a string

urs, a relation description R, a statement x and a
witness w such that R(x,w); it returns a proof π.

6 These definitions are standard and we refer the reader to [3]
for a formal treatment.
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– ZK.VerProof(urs, R, x, π)→ b ∈ {0, 1} takes as input
a string urs, a relation description R, a statement x
and a proof π; it accepts or rejects the proof.

We require a NIZK to be complete, that is, for any
λ ∈ N, R ∈ R and (x,w) ∈ R it holds with over-
whelming probability that VerProof(urs, R, x, π) where
urs←$ {0, 1}poly(λ) and π ← Prove(urs, R, x, w).

We also require knowledge-soundness and zero-
knowledge to hold. Informally, the former states we can
efficiently “extract” a valid witness from a proof that
passes verification; the latter states that the proof leaks
nothing about the witness (this is modeled through a sim-
ulator that can output a valid proof for an input in the
language without knowing the witness). We use variants
of these notions with certain composability properties,
e.g. requiring auxiliary inputs and relation generators.
For a full formal treatment of these, we refer the reader
to Sections 2.2 and 2.5 in [6].

Whenever the relation family is obviously defined, we
talk about a “NIZK for a relation R”.

Remark 2 (Relations and Public Inputs). In the algo-
rithms above we have both a relation R and a public
input x as inputs. The reason is that in a soundness
experiment, R may be constrained to be from a certain
distribution on R whereas x can be be chosen arbitrarily
by the adversary. See for example Section 2.2 in [6]. In
our constructions we often assume prover and verifier
to implicitly take as input the relation description7.

In the proof of security of our construction we require an
additional property for one of our NIZKs, simulation-
extractability. Namely, extractability should hold even
with respect to an adversary that has access to sim-
ulated proofs. We refer the reader to [18] for formal
definitions.

Trusted Accumulator-Model. In our concrete con-
structions we will use NIZKs for relations parametrized
by accumulators. This requires a tweak in the sound-
ness definition: a malicious adversary should be able to
select an arbitrary set, but the accumulator over that
set should be computed honestly. Given an accumulator
scheme Acc, we informally talk about this specific no-
tion as “security under the Trusted Accumulator-Model
for Acc”. We do not provide formal details since this

7 This parameter is usually short. For example, in Section 5.1
we let relations be described by a specific accumulator.

model corresponds to the notion of partial-extractable
soundness in Section 5.2 in [6]8; we refer the reader to
this work for further details. This weaker model fits our
applications where an accumulator of existing coins is
maintained by the network.

Modular NIZKs through Commit-and-Prove.
We use the framework for black-box modular composi-
tion of commit-and-prove NIZKs (or CP-NIZKs) in [12]
and [6]. Informally is a CP-NIZK is a NIZK that can ef-
ficiently prove properties of committed inputs through
some commitment scheme C�. Let x be a public input
and c� a commitment. Such a scheme can for example
prove knowledge of (u, ω, r) such that c� = Comm�(u; r)
and that relation Rinner(x;u, ω) holds. We can think of
ω as a non-committed part of the witness. Besides the
proof, the verifier’s inputs are x and c�.

In Section 5.2 we will make use of the following
folklore composition to obtain efficient NIZKs from CP-
NIZKs. Fixed a commitment scheme and given two CP-
NIZKs CP,CP′ respectively for two “inner” relations R
and R′, we can prove their conjunction (for a shared
witness u) R∗(x, x′, u, ω, ω′) = R(x, u, ω) ∧ R′(x′, u, ω′)
like this: the prover commits to u as c� ← Comm�(u, r);
generates proofs π and π′ from the respective schemes;
it outputs combined proof π∗ := (c�, π, π′). The veri-
fier checks each proof over respective inputs (x, c�) and
(x′, c′�).

The following theorem (informally stated) is a direct
consequence of Theorem 3.1 in [12].

Theorem 1 (Black-Box Composition of CP-NIZKs).
The construction above is a secure NIZK for the con-
junction relation R∗.

We can see Bulletproof [10] as a CP-NIZK since it works
efficiently over an implicit commitment representation
(this is further discussed in [12]). We use this fact in our
instantiations in Section 5.

8 We notice that their model uses a slightly different language
and formalizes accumulators as (binding-only) commitments for
commit-and-prove NIZKs.
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3 A Functionality for Anonymous
Account-Based Payments

Here we describe our functionality for account-based
payments with privacy requirements.

The functionality in Figure 4 captures both notions
of anonymity (the adversary cannot link honest cre-
ate/collects), ‘balance conservation‘ (no money can be
created in the system) and security of balances (the
adversary cannot ‘steal money’ from honest parties)
and “Faerie gold”-type attacks where a corrupted party
can create multiple coins accepted by honest parties of
which only a subset can be spent.

In our construction we will make use of an ideal-
ized communication FComm functionality described in
Figure 5.

Remark 3 (Simplifications in FComm). In practice
the simultaneously delivery in FComm is impossible to
implement, however we deliberately simplify the func-
tionality since the omitted details in the modelling of
the distributed ledger seem unlikely to affect the secu-
rity of our anonymous transactions and it simplifies
explication.

Remark 4 (Implementation of FComm). In practice
the anonymous message delivery (of M) in FComm can
be achieved by having the sender encrypt the message
to the receiver using a public-key encryption scheme
wherein the correct public key for a ciphertext is indis-
tinguishable from a random public key. The same tech-
nique is used in Zerocash. Standard Elgamal encryption
is one such scheme. The authenticated broadcast (of B)
can be achieved by using digital signatures.

The use of port ids in Figure 5 to identify which player
sends a message avoids the explicit use of public keys
in the constructions, however in practice FComm will be
instantiated by identifying a peer by its public key and
signing the broadcast messages.

4 A Construction for Anonymous
Account-Based Payments

In this section we provide our main construction. Our
description tries to be as general as possible and to push
all features that can be seen as optimizations to our in-
stantiations in Section 5. The bulk of our construction is

FAnon

Initialize: On input Balance, C on infl:
1. Corrupt the players in C.
2. Set Coins← [], Events← [].
3. Store the initial balances Balance.
4. Assert MAX-MONEY ≥

∑n
i=1Balance[i].

Create coin: Input (Create, i, v) on Pj :
1. Assert Balance[j] ≥ v.
2. Set Balance[j]← Balance[j]− v.
3. If i /∈ C send (Create, j) on leak.
4. If i ∈ C send (Create, j, i, v) on leak.
5. Receive fresh id on infl.
6. Set Events[id]← (Create, j, i, v)

Collect coin: Input (Collect, id′) on Pi:
1. Assert (id′, v, j, i) in Coins.
2. Remove (id′, v, j, i) from Coins.
3. If j /∈ C send (Collect, i) on leak.
4. If j ∈ C send (Collect, id′, j, i, v) on leak.
5. Receive fresh id on infl.
6. Set Events[id]← (Collect, j, i, v)

Process: Input (Process, id) on infl:
1. If Events[id] = (Create, j, i, v)

(a) Output (id, v) on Pi
(b) Add (id, v, j, i) to Coins

2. If Events[id] = (Collect, j, i, v)
(a) Set Balance[i]← Balance[i] + v.
(b) Output Balance[i] on Pi

3. Remove Event[id]

Fig. 4. Ideal functionality for account based anonymous trans-
actions. The functionality enables the enviroment to learn when
an account creates a transaction, but not the link between cre-
ate/pickup unless the sender is corrupted. If an assertion is vio-
lated, the message is ignored and the state of functionality reverts
to before receiving the message.
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FComm

Initialize: Given C on infl
1. Set msg ← []
2. Corrupt the players in C

Message: Input (Msg, B,M, d) on Pi:
1. If d ∈ C output (Msg, i, B,M, d) on leak.
2. If d /∈ C output (Msg, i, B, |M |) on leak.
3. Receive fresh id on infl.
4. Add (id, i, B,M, d) to msg

Deliver: Input (Deliver, id) on infl:
1. Assert (id, i, B,M, d) ∈ msg
2. For j ∈ [1, n]:

(a) If d = j output (B,M) on Pj
(b) If d 6= j output B on Pj

3. Remove (id, i, B,M, d) from msg

Fig. 5. Models broadcast and private messages. The model of
totally ordered broadcast above is very simplistic, in particular it
assumes that every player receives the messages simultaneously
and that messages have instant ‘finality’ (no ‘rollbacks’).

in Figure 6. We describe a more concrete and optimized
version in Appendix A.

4.1 An Auxiliary Interface

We present our construction using the following in-
termediate syntax for a “Decentralized Unlinkable-
Payments” scheme (DUP).

Definition 4. A DUP scheme consists
of a tuple of PPT algorithms DUP =
(Setup,CreateCoin,CollectCoin,Vfy,Process) with the fol-
lowing syntax:
Setup(1λ)→ (pp,L0, (sti)i∈[m]) Generates public pa-

rameters, an initial ledger L0 and the initial private
state of all users;

CreateCoin(pp, stS , pkR, v)→ (st′S , auxcoin, txcreate)
Makes a coin c of value v payable to user R; it
embeds the coin in a public transaction txcreate;
auxcoin contains information sent privately to R; it
also outputs a new private state st′S.

CollectCoin(pp, stR, auxcoin,L)→ (st′R, txclct) It takes
as input a a private state stR, a string auxcoin and
a ledger L; it outputs a new private state st′R and a
“collect” transaction txclct.

Vfy(pp, tx,L)→ accept/reject It verifies a transaction tx
with respect to ledger L.

Process(pp, tx,L)→ L′ It processes a transaction tx with
respect to ledger L and returns a new ledger.

4.2 Building Blocks

Commitment schemes We assume a commitment
scheme C© = (Setup©,Comm©). We concretely instanti-
ate it later in Figure 8 as a Pedersen commitment over
pairs. We also make the following assumptions:
– We assume that we can commit to pairs and they

are homomorphic with respect to pairs, that is
Comm((a, b); r)+Comm((c, d); r′) = Comm((a+c, b+
d); r + r′).

– Given a value v, a tag t and an identityR we assume
that the concatenation t||R is such that (v, t||R) is
always a pair in the message space of the commit-
ment scheme.

– We assume all commitment invocations take as in-
put the public commitment key ck although not
explicitly included. We assume the same for zero-
knowledge proofs over commitment in the protocol.

Zero-Knowledge Arguments We assume the fol-
lowing zero-knowledge arguments. We assume the com-
mitment key to be part of the relation description. Al-
though we keep it implicit, one should think of the fol-
lowing relations as parametrized by it.
We use three zero knowledge proofs for the following
tasks:
– Knowledge of opening: at collection time, we prove

knowledge of opening of a coin we are collecting. For
technical reasons (see construction) we require the
second component to be zero, that is this argument
shows knowledge of opening to a pair (v, 0).

– Ranges: whenever we transfer an amount
(CreateCoin), we prove that we can afford the trans-
fer. We also prove that the transferred amount is
non-negative (so that we are not subtracting a neg-
ative value from our balance increasing it!). This
involves proving that the opening of two distinct
commitments—an updated balance and a coin—are
both in a range [0, Bmax] where we consider Bmax a
parameter of the construction. Although the com-
mitments we assume here bind to pairs of values
(a, b) (rather than single value), we are interested
only in ensuring that the first component a is in
range.

– One coin out of many: whenever we claim an
amount (CollectCoin), we also need to prove that the
coin we are collecting actually exists. We want to do
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this without revealing that coin we are collecting,
thus we prove that a rerandomized commitment c∗
(which we revealed publicly) actually refers to “one
out of many” in the set of existing coins.

Formally we assume the following NIZKs:
ZKOpen is an extractable NIZK argument for the rela-
tion

Ropn(c; v, r) = 1 ⇐⇒ c = Comm©((v, 0); r)

ZKDblRange is a NIZK argument for the relation

RDRng(c, c′; (a, b), r, (a′, b′), r′) = 1 ⇐⇒
a ∈ [0, Bmax] ∧ a ∈ [0, Bmax]
∧ c = Comm©((a, b); r)
∧ c′ = Comm©((a′, b′); r′)

ZK-1-many is a simulation-extractable NIZK argument
for the relation9

R1-many(c∗, S; c, r∗) = 1 ⇐⇒
c ∈ S ∧ c∗ = c + Comm©((0, 0); r∗)

For simplicity we assume a single uniform reference
string urs for all of them that can be sampled from a
space large enough parametrized by the security param-
eter λ and the maximum balance Bmax

4.3 Construction Description

Ledger, states and transactions We assume
a ledger to be structured as a triple L =
(Snull, Scoins,

(
bal)i∈[m]

)
containing: a set Snull of “nul-

lified” coin tag–recipient identity t||R; an set Scoins of
coins created so far; a tuple of commitments

(
bal)i∈[m]

)
to the balances of parties. Within the construction we
implicitly parse the ledger according to this syntax.
We let states contain the opening of their commit-
ted balances. Notice that, for technical reasons, bali
is not a commitment to a single scalar B represent-
ing the balance amount. Instead a private state sti—
the opening of bali—is a triple (B, auxt, ri) such that

9 Notice that, in contrast with the first two relations, relation
R1-many does not require showing any opening of the commit-
ments c and c∗. This implies that a honest prover does not need
to know these openings. Although we do not use this property
in our construction, this could be useful in efficiently delegating
to a service (such as a wallet) that, for example, we trust enough
not to publicly reveal which coin we are collecting, but enough
not to steal our coin.

bali = Comm((B, auxt), ri), that is it opens to the pair
(v, auxt) where auxt depends on the transfers that user
i carried out till any given moment in time (see con-
struction for details). Transactions can be of two types,
Create or Collect; we prepend a type description to each
transaction.

4.3.1 Implementing ΠAnon♦FComm through the
Interface in Figure 6

We do not formally describe the initialization stage. We
assume that honest parties receive initial public param-
eters, ledger for a common initial balance v0 and initial
private states as described in Setup in Figure 6. The rest
of the protocol looks as follows:
Create Coin: On input (Create, j, v) on ΠAnon.Pi

1. Run (sti, auxcoin, txcreate)← CreateCoin(pp, sti, j, v)
2. Broadcast txcreate and send coin privately

by outputting (Msg, txcreate, auxcoin,R) on
FComm.PS

Receive Coin: On input (Msg, j, txcreate, auxcoin) on
FComm.Pi:
1. Assert Vfy(pp, tx,L) = 1
2. Update L ← Process(pp, txcreate,L)
3. Parse auxcoin as (v, t, rc)
4. If t ∈ MyTags return early.
5. Add t to MyTags.
6. Sample local id randomly.
7. Store mycoins[id]← auxcoin
8. Output (id, v) on Pi

Collect Coin: On input (Collect, id′) on ΠAnon.Pi:
1. Assert ∃ entry mycoins[id′]
2. Update (sti, txclct)← Collect(sti,mycoins[id′],L)
3. Remove mycoins[id′]
4. Output (Msg, txclct,⊥,⊥) on FComm.PR

Process Tx: On input (Msg,S, tx) on FComm.Pi:
1. Assert Vfy(pp, tx,L) = 1
2. Update L ← Process(pp, tx,L)

Completeness of the construction above follows by ob-
servation; we prove its security in the Appendix in Sec-
tion B.

5 Efficient Instantiations of Our
Arguments

In this section we describe how to instantiate our con-
struction from the previous section through transparent
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Setup(1λ)→ (pp,L0, (sti)i∈[m])
ck← Setup©(1λ)

urs←$UZK(1λ, Bmax)

for i = 1..m do

// Create balances for all parties at default v0

ri ←$F

bali ← Comm©(v0; ri)

sti := (v0, 0, ri)

L0 :=
(
∅, ∅, (bali)i∈[m]

)
return

(
pp := ck,L0, (sti)i∈[m]

)
CreateCoin(pp, stS ,R, v)→ (st′S , auxcoin, txcreate)

Parse stS as (B, auxt, rS)

t←$ {0, 1}λ; rc ←$F

c← Comm©((v, t||R); rc)

oc := ((v, t||R), rc)

// Update balance subtracting coin from current balance

bal′i ← Comm©((B, auxt); rS)− c

o′ := ((B − v, auxt − t||R), rS − rc)

// Prove coin amount is positive and that S can afford it

πcreate ← ZKDblRange.Prove(urs, c, bal′; oc, o′)

st′S := (B − v, auxt − t||R, rS − rc)

Let auxcoin := (v, t, rc)

txcreate := (Create, c, πcreate)

return (st′S , auxcoin, txcreate)

CollectCoin(pp, stR, auxcoin,L)→ (st′R, txclct)
Parse stS as (B, auxt, rR)

// reconstruct coin

Parse auxcoin as (v, t, rc)

c← Comm©((v, t||R); rc)

// Rerandomize coin

r∗ ←$F; c∗ ← c + Comm©((0, 0); r∗)

// Prove one out of many w.r.t. accumulator

π1-many ← ZK-1-many.Prove(urs, c∗, Scoins; r∗)

// Prove “partial” opening of c∗

cv ← c∗ − Comm©((0, t||R); 0)

πopn ← ZKOpen.Prove(urs, cv ; v, rc + r∗)

st′R := (B + v, auxt + t||R, rR)

txclct := (Collect, c∗, t,R, πclct := (π1-many, πopn))

return (st′R, txclct)

Process(pp, tx,L)→ L′

Run Vfy(pp, tx,L) and abort if it fails

if type(tx) = Create then

Parse tx as (Create, c, πcreate)

// add coin to set

S′coins ← Scoins ∪ {c}

// homomorphically update balance of sender

bal′S ← balS − c

elseif type(tx) = Collect then

Parse tx as (Collect, c∗, t,R, πclct)

// add tag to nullifier set

S′null ← Snull ∪ {t||R}

// homomorphically update balance of receiver

cv ← c∗ − Comm©((0, t||R); 0)

bal′R ← balR + cv

Let L′ be L updated with new set and balance

return L′

Vfy(pp, tx,L)→ accept/reject
if type(tx) = Create then

Parse tx as (Create, c, πcreate)

Assert ZKDblRange.Vfy(urs, c, balS − c, , πcreate) = 1

elseif type(tx) = Collect then

Parse tx as (Collect, c∗, t,R, πclct := (π1-many, πopn))

Assert ZK-1-many.Vfy(urs, c∗, Scoins, π1-many) = 1

cv ← c∗ − Comm©((0, t||R); 0)

Assert ZKOpen.Vfy(urs, cv) = 1

Assert t||R 6∈ Snull

Fig. 6. Procedures describing the bulk of our construction; we use them as auxiliary syntax when we show our construction in more de-
tail in Section 4.3.1. These procedures have no side-effects (except for sampling randomness) and return pure functions of their inputs.



Veksel: Simple, efficient, anonymous payments with large anonymity sets from well-studied assumptions 11

and efficient proof systems. We describe this at different
levels of abstraction.

First we replace a set (of coins) with a compressed
representation, an accumulator. Thus we replace rela-
tion R1-many with RA1-manycc that works over an accumu-
lator A. We then proceed how to decompose the latter
efficiently through a commit-and-prove approach. In the
rest of the section we describe our specific instantiations
using: RSA accumulators, zero-knowledge techniques on
them from [6], and Bulletproofs.

Our main technical challenge is how to have com-
mitments over coins (which are themselves commit-
ments) that support efficient proofs over them. We do
this introducing a new SNARK-friendly curve (in the
pairing-free group of Curve25519) and embedding its
arithmetic in a Bulletproof relation in an optimized
manner (see also Appendix C).

On notation. We will use and describe two commit-
ments schemes in this section, C© and C�. The scheme
C© is the scheme we use in our construction for pay-
ments in the previous section; we can think of its out-
put as coins and we denote them by a circle as in c◦.
The elements of the accumulated set are the output of
Comm©. The commitment scheme C� is the one we use
for commit-and-prove NIZKs (see also construction for
Theorem 1). We denote its output as Comm�.

5.1 One-out-of-many Relations over
Accumulators

Here we define a variant of the one-out-of-many relation
R1-many introduced in Section 4.2. Instead of taking as
input a set we let the relation be parametrized by an
accumulator, a binding commitment to the set. Thus
we can reduce prover and verifier’s complexity to that
of proving PrvMem and VfyMem which both run in con-
stant time in our instantiation.

Given an accumulator scheme Acc and an accumu-
lator A, the relation RA1-many is defined as:

RA1-many(c∗◦; c◦, r∗◦,W ) = 1 ⇐⇒
Acc.VfyMem(A, c,W )
∧ c∗◦ = c◦ + Comm©((0, 0); r∗◦)

5.2 One-out-of-many from
Commit-and-Prove NIZKs

Here we use the construction in Theorem 1. For that we
need CP-NIZKs that work over commitments to c◦. As
usual we denote the commitment scheme for CP-NIZKs
as C�.

Permissible Set. We assume a permissible set P of
coins c◦. This allows us to model security requirements
in a fine-grained way, e.g. we assume computational
binding of C� to hold only for coins in P and similarly
the soundness of the accumulator (we ensure this implic-
itly; see Figure 7). In this section we keep the permissi-
ble set abstract but we specify it completely in Section
5.3.1.

Breaking Down RAsetmem. We can decompose the
above through two commit-and-prove schemes for the
following two relations. The first one proves set mem-
bership, but does not guarantee that the coin is permis-
sible (this is for technical reasons we explain in Section
5.4). The other relation guarantees that we can open (in
C�) to a rerandomized permissible commitment (in C©).

RAsetmem(c�; c◦, r�,W ) = 1 ⇐⇒
((Acc.VfyMem(A, c◦,W )
∨ c◦ 6∈ P))
∧ c� = Comm�(c◦; r�)

Rrrnd&prms(c�; c◦, r�, r∗◦) = 1 ⇐⇒
c∗◦ = c◦ + Comm©((0, 0); r∗◦)
∧ c◦ ∈ P
∧ c� = Comm�(c◦; r�)

We can now obtain a proof scheme for RA1-many by
composing ZKCPAsetmem and ZKCPrrnd&prms and apply-
ing Theorem 1 in the Trusted-Accumulator Model10.

Corollary 1. Let Acc be an accumulator scheme and
C� a commitment scheme that is computationally bind-
ing w.r.t. set P. Then the composition of ZKCPAsetmem
and ZKCPrrnd&prms as for Theorem 1 is a NIZK for
RA1-many in the Trusted-Accumulator Model for Acc.

10 The latter requires the composition results for “partially-
extractable” NIZKs in [6].
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5.3 Instantiating Accumulators and
Commitment Schemes

We first describe our accumulator and commitment
schemes construction and then describe the concrete
groups in which they operate in Section 5.3.1.

We assume a group of unknown order G? for our
accumulator construction. For our commitments we as-
sume two groups G© and G�. The two groups are re-
lated as we assume we can represent G© elements as
pairs (F|G�|,F|G�|) (see also Section 5.3.1).

Our accumulator schemes supports sets of G© el-
ements with a special structure (the first component
should be prime, the standard encoding for elements in
accumulators in groups of unknown order). The com-
mitment scheme Comm© has as message space pairs
(F|G©|,F|G©|) and commitment space G©. The scheme
G� has as message space elements in G©.

Constraints on Permissible Set. The permissible
set P is a set of pairs in (F|G�|,F|G�|. We require that the
permissible set P is such that there are no “collisions in
the second components” that is: for all (x,y) ∈ P there
exists no y′ 6= y such that (x,y′) ∈ P. This is the case
for permissible sets over elliptic curves such as the one
we define in Section 5.3.1.

Constructions. We now proceed to describe our con-
structions for accumulators and commitments. We de-
note by G a group generation function which we assume
returns a group description together with a generator.

In Figure 7 we describe our accumulator instantia-
tion. This construction is secure under under the Strong-
RSA assumption11 and is based on the construction
from Barić and Pfitzmann [2], later used in the context
of efficient proofs in [6, 8, 11] among other works. In
the accumulator construction we describe explicitly the
structure of the messages (elements in G©) as pairs of
components and we accumulate using first component
only. Notice that we describe the construction through a
variant of the syntax in the preliminaries (Definition 2):
we define only an insertion algorithm and let the setup
return an accumulator A0 to an empty set. We assume
the Strong-RSA property holds for G? (and its group
generation algorithm).

The commitment schems C© and C� are described
in Figure 8. They are both standard Pedersen commit-
ments, but we make the following tweaks: in C© the mes-

11 See [8], Definition 2.

sages are pairs; in C� we describe explicitly the structure
of the messages (elements in G©) as pairs of components
and we commit to the first component discarding the
second. Recall that we can do this in light of the con-
straint on the second component from P. We assume
that the discrete-log assumption holds for G© and G�.

We do not prove security of the schemes in Figures
7 and 8 since it is standard.

Theorem 2 (Security of Schemes in Figures 7 and 8).

– If the Strong-RSA assumption holds for G? then the
construction in Figure 7 is a secure accumulator for
sets S ⊂ P where all the (x,y) ∈ S have all distinct
primes x.

– If the DLOG assumption holds for G◦ (resp. G�) then
C© (resp. C�) is a computationally binding (resp.
binding w.r.t P) and perfectly hiding commitment
scheme with message space (F|G©|,F|G©|) (resp. G©)
and commitment space G© (resp. G�).

Remark 5 (Accumulators without Trapdoors). We
observe that our accumulator scheme construction can
be instantiated in class groups [9] or constructions based
on hyperelliptic curve constructions [15, 26] assuming
the Low-Order Assumption holds for G?. We also refer
the reader to Appendix E in [6].

Remark 6 (Trapdoors in RSA Groups and MPC).
We note that there exist practical MPC protocols to
securely construct RSA moduli, e.g., [13].

5.3.1 Group Instantiations and Set of Permissible
Coins

We now describe concrete instantiations targeting 128-
bits of security.

Group G� The group G�—used in our commit-and-
prove NIZKs— is Ristretto25519, the Ristretto sub-
group of Curve2551912.

Group G© and the Jabberwock Curve The group
G© = E(F|G�|)—used to represent coins and other com-
mitments in our constructions— is derived from an el-
liptic curve over the scalar field F© = F|G�| of the curve

12 https://ristretto.group/
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Setup(1λ)→ (pp, A0)
(G?, g?)← G?(1λ)

return (pp = (G?, g?), A0 = g?)

VfyMem(pp, A, c◦,W )
Parse c◦ as c◦ := (x,y)

Accept iff Wx = A

Add(pp, c◦, A)→ A′

Parse c◦ as c◦ := (x,y)

if c◦ 6∈ P ∨ x not a prime then

return ⊥

else

return Ax

PrvMem(pp, S, c◦)→W

S′ := {x′ : (x′,y′) ∈ S \ {c◦}}

prd←
∏
x
′∈S′

x
′

return gprd
?

Fig. 7. Accumulator Instantiation for Acc.

Setup©(1λ)→ ck◦
(G©, f◦)← G◦(1λ)

Sample random s, s′ in F|G©|

g◦ := fs◦ ;h◦ := fs
′
◦

return ck◦ = (G©, f◦, g◦, h◦)

Setup�(1λ)→ ck�

(G�, g�)← G�(1λ)

Sample random s in F|G�|

h� := gs�

return ck� = (G�, , g�, h�)

Comm©(ck◦, (a, b) ∈ (F|G©|,F|G©|), r)→ c◦

return fa◦ g
b
◦h
r
◦

Comm�(ck�, c◦ ∈ G©, r)→ c�

Parse c◦ as c◦ := (x,y)

return gx� h
r
�

Fig. 8. Commitment Instantiations for C© and C�.

G� (Ristretto25519) with:

|G�| = 2252+27742317777372353535851937790883648493

In particular, we instantiate G© as the Edwards curve
[7, 16] with equation:

x2y2 = 1− 698x2y2

The curve has a cofactor of 4 and a prime order group
of 2250 − 28148165643402996844773726717916548891.

Similar techniques has previously been used in the
C∅C∅ [24] framework and Zcash [22] (JubJub curve13).

Group G? The group G? is a 2048-bit RSA group.

Permissible Set The set P of commitments,
parametrized by an integer µ, consists of points on G©,

13 https://z.cash/technology/jubjub/

where the x-coordinate is a µ-bit prime and the y-
coordinate is the “canonically chosen” square root so
that the point can be described by its x-coordinate
alone.

P = {(x,y) ∈ G© ⊆ (F|G�|,F|G�|) |

x ∈ [2µ−1, 2µ) ∧ y ≡ 0 mod 2}

For our concrete instantiations we use µ = 251 bits.
We note that the results in Section 5.2 hold for any def-
inition of P (with the collision constraint on the second
component described earlier). Other choices of µ are also
possible if one appropriately changes other parameters
in the instantiations.
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5.4 Instantiating Our ZK Building Blocks

5.4.1 ZKCPrrnd&prms

We instantiate ZKCPrrnd&prms (Section 5.2) with a Bul-
letproof relation described in Appendix in Section C.

5.4.2 ZKCPA
setmem

We instantiate ZKCPAsetmem (Section 5.2) through a sim-
plified variant of the (commit-and-prove) SNARK for
set membership in [6], described below.

ZKCPAsetmem.Prove(c�; c◦, r,W )→ π∗

Parse c◦ as c◦ := (x,y)

// Make integer commitment to x

Sample randomness r′

cint ← gx? h
r′
?

πmodEq ← CPmodEq.Prove(cint, c�;x, r′, r)

πroot ← CPAroot.Prove(cint;x, r,W )

return π∗ := (cint, πmodEq, πroot)

The corresponding verifier checks both proofs using
cint and the rest of the public input.

Above we use an integer commitment in the RSA
group G? using an appropriately sampled element h?.
The proof system CPmodEq roughly shows knowledge of
integers x, r′ and of x, r such that x ≡ x mod |F�|,
cint = gx? h

r′

? and c� = gx� h
r
�. The scheme CPAroot proves

knowledge of W ∈ G?, an integer x that opens cint as
above and such that W is a x-root for the accumulator
A (this is roughly Acc.VfyMem), that is Wx = A.

Above we skip some technical details from that are
not relevant to understand our construction at a high-
level. We however elaborate on one of them that is im-
portant in our larger context: the full scheme in [6] cru-
cially relies on x being in some correct range. Without
this guarantee on range, the construction above does not
prove set membership w.r.t. A for elements that are not
permissible (that is why we have “∨c◦ 6∈ P" in RAsetmem).
On the other hand, once we prove c◦ = (x,y) is permis-
sible through ZKCPrrnd&prms, we ensure x is in range,
and our scheme is secure as of the analysis in [6]. For
further details and a proof of the following theorem, we
refer to Section 4 in [6].

Theorem 3. The construction above is a NIZK for
the relation RAsetmem (Section 5.2) in the Trusted-
Accumulator Model for accumulator scheme Acc in Fig-
ure 7.

5.4.3 ZKOpen

We instantiate ZKOpen from Section 4.3.1 with a
Schnorr proof. On public input c◦ (the coin) and a
commitment key ck◦ for C© containing f◦ and h◦, the
schemes proves (in zero-knowledge) knowledge of (v, r)
such that c◦ = fv◦ h

r
◦. This protocol is very standard and

we do not describe it in further details here.

5.4.4 ZKDblRange

We instantiate ZKDblRange with Bulletproofs.

6 Evaluation

6.1 Performance of ZK-1-many

We implemented our instantiation of ZK-1-many in Rust
and experimentally evaluate its performance. Our code
is open source and available at [1]. The performance of
our implementation of ZK-1-many is shown in Figure 9.

Proof Size 5309 B
Proving Time 460 ms

Verification Time 93 ms

Fig. 9. Concrete performance of ZK-1-many from our Rust im-
plementation. All benchmarking is done on a single core of AMD
EPYC 7601 (@ 2.2 GHz).

6.2 Size of Veksel

π1-many 5309 B
πcreate: Bulletproof with 128 constrains. 736 B
πopn: Schnorr proof with 2 generators. 128 B
t: Spending tag 16 B
EncR(t||v||r): Elgamal encrypted spending info 72 B
Total 6261 B

Fig. 10. Breakdown of estimated transaction (Create and Collect)
size in Veksel.
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We estimate the transaction size of Veksel to be
6261 bytes (breakdown shown in Figure 10), based on:
implementation of π1-many, the formula for the size of a
Bulletproof (used as πcreate) and the size of a generalized
Schnorr for two generators used to ‘partially open’ the
coin (used as πopn). We note that both π1-many and πopn
can be used as signatures of knowledge.
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A Explicit Account-Based
Construction

For the sake of completeness, we describe a concrete and
optimized version of our construction in Section 4. We
assume all the instantiations described in Section 5.3.
The main differences with Figure 6 are:
Set of coins: Rather than explicitly maintaining

Scoins each party keeps the currenct (group of un-
known order) accumulator Acoins containing all
coins Scoins and a membership proof of all coins
that she posseses (an accumulator of all coins ex-
cept hers). Hence Collect transactions can be gener-
ated in O(|mycoins|) time by proving RAcoins

1-many using
Corollary 1. Similarly Collect transactions can be
verified in O(1) time.

Identies: In Figure 6 the abstract identities of the par-
tiesR = (pkσ,pke) takes the concrete form of public
keys (pkσ,pke) for a strongly unforgable signature
scheme (e.g. Schnorr) and IND-CPA + IK-CPA [4]
(key-privacy) secure public key encryption pke (e.g.
Elgmal) respectively.

FComm: To send (Msg, B,M,R) interpret R =
(pk(R)

σ ,pk(R)
e ), encrypt c ← Enc(pk

(R)
e ,M),

then sign σ ← Sign(pk(S)
σ ,pk(S)

σ ||B||c), broadcast
(σ,pk(S)

σ , B, c). Hence in the explicit construction
auxcoin is encrypted with pk(R)

e of the reciever
and the ciphertext is broadcast on a public bul-
letin board (‘blockchain’) with a signature from the
sender S. The network checks the signatures σ on
the transactions.

Compressing t||R: Since |(t||R)| > log2(|G©|) in
general, we use a collision resistance function
H : {0, 1}∗ → F|G©| before committing to the
second component through Comm© i.e. compute

Comm©(v,H(t||R); r). Since these fields are revealed
during ‘collect’ this hash can be recomputed by
the verifier and is never proven in zero-knowledge
(does not affect the efficiency of the proof schemes).
Given the last two items, a coin with value v and
tag t to recipient R is concretely computed as
c ← fv◦ g

H(t||pkR)
◦ hr◦ where r is the randomness and

pkR is the public key of the recipient;
Permissibility A sender must produce a permissible

coin c, to ensure that c ∈ P she keep sampling new
randomness r until she obtains such a coin (e.g., the
x component should be a prime). When validating
a transactions, the network checks that c ∈ P and
adds it the accumulator (see Figure 7).

B Security of Our Construction
Theorem 4 (ΠAnon♦FComm ≥ FAnon). For the three
different NIWI/NIZK arguments in the construction we
require:
ZK-1-many: Simulation sound and zero-knowledge.
ZKOpen: Witness indistinguishable.
ZKDblRange: Witness indistinguishable.

Proof. Construct SimAnon as follows: Get initial bal-
ances (genesis block) (v1, . . . , vn).
Initialize: Input Balance = (v1, . . . , vn) to FAnon. Ini-

tialize the empty ledger L ← ε.
Create coin (honest sender, honest receiver):

On input (Create, j) on FAnon.leak where j /∈ C.
Pick r←$F, pick t←$ {0, 1}λ, let v = 0, let
i = 0, let c ← Comm©((v, t||i); r). Run ZKDblRange
on the statement (c, bal′ = bal − c), where
bal = Comm©(vi; ri) or bal = Comm©(vi; 0)14 using
v, vi, i, t, r, ri as the witness, obtain πcreate. Output
(Msg, j, (Create, c, πcreate), |(t, v, r)|) on FComm.leak
(pick random id for FAnon)

Collect coin (honest sender, honest receiver):
On input (Collect, i) on FAnon.leak where i /∈ C.
Pick r∗←$F, pick t←$ {0, 1}λ, let v = 0, sim-
ulate the ZK-1-many proof for the commitment
c∗ ← Comm©((v, t||i); r) using τ , get π1-many.
Run ZKOpen.Prove with statement (i, t, c∆ =
c∗ − Comm©((0, t||i); 0)) and witness (r, v), get πopn
Output (Msg, i, (Collect, c∗, t, (π1-many, πopn)), 0) on
FComm.leak (pick random id for FAnon)

14 First transaction after genesis.
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Create/collect coin (corrupt sender/receiver):
Since the contents of the coin (id′, j, i, v) is revealed
during both Create and Collect, simulation is trivial.

Deliver On input (Deliver, id) on FComm.infl. Lookup
id (from FComm) and retrieve the associated broad-
cast message B. If Vfy(pp, B,L) = reject ig-
nore the message. If Vfy(pp, B,L) = accept, in-
put (Process, id) on FAnon.infl, update the ledger
L ← Process(pp, B,L) and set of coins Scoins.

Note that the simulator only simulates proofs for
ZK-1-many, for the other proofs a random statement
and witness is sampled, which is intuitively why witness
indistinguishablity is sufficient. Now formally showing
SimAnon♦FAnon

c≈ ΠAnon♦FComm using a sequence of
hybrids:
1. Consider the hybrid H(Create) which extracts (v, i)

from FAnon during Create (rather than fixing
v = 0 and i = 0) and creates coins c ←
Comm©((t, v, i); r) for honest parties with the
real denomination and destination. Observe that
H(Create,v,i) = SimAnon♦FAnon by the perfect hiding
of the commitment and witness indistinguishablity
of ZKRange.

2. Consider H(Create+Collect+Sim), which additionally
extracts (id′, v, j, i) from FAnon during Collect and
retrieves the generated tag t and r (created dur-
ing simulated Create) associated with id′. Recon-
structs the coin c← Comm©((t, v, i); r) (rather than
creating a new randomly generated coin), samples
r∗←$F, defines c∗ ← c+Comm©((0, 0); r∗) and sim-
ulates ZK-1-many with the statement (c∗, Scoins).
Observe that H(Create+Collect+Sim) = H(Create,v,i), by
the perfect hiding of C (distribution over statements
c∗ are the same), note also that the distribution over
witnesses and statements for ZKOpen NIWI is un-
changed.

3. Observe that in H(Create+Collect,Sim), w = (v, t||i, r +
r∗) is a witness for the statement x = (c∗, Scoins).
Define H(Create+Collect) which generates π1-many by
running the prover (rather than simulation) with
the witness w. Observe that H(Create+Collect,Sim) ≈
H(Create+Collect) by simulation indistinguishablity
and simulation soundness of ZK-1-many.

4. Consider H(Create+Collect+CRS) which extends
H(Create+Collect) by sampling the common refer-
ence string for the ZK-1-many NIZK without a
simulation trapdoor. Observe H(Create+Collect) ≈
H(Create+Collect+CRS) by reference string indistin-
guishablity of the ZK-1-many NIZK.

Now use soundness of ZK-1-many,ZKOpen,ZKDblRange
to argue that the outputs on {Pi}i/∈C are indistinguish-
ablity betwen H(Create+Collect+CRS) and the real world
ΠFAnon

♦FComm: Define Balancesim with the initial en-
tries (v1, . . . , vn). Maintain a set C = {(c, o, rc)} of cre-
ated coins computed by extracting from ZKDblRange in
every Create broadcast message B:

In Deliver, if B = (Create, c, πcreate)
1.Extract oc = ((v, t||j), rc) from πcreate
(with statement c)

2.Update Balancesim[i]← Balancesim[i]− v.
3.Add (c, (v, t||j), rc) to C

The set of coins c in C is exactly Scoins. Additionally
maintain a set O = {(c, o, rc)} of opened coins com-
puted by extracting from ZK-1-many and ZKOpen in ev-
ery Collect broadcast message B:

In Deliver, if B = (Collect, c∗, t, (π1-manyπopn)):
1.Extract r∗ from π1-many
(with the statement c∗ and Scoins).

2.Extract v and r′ from πopn
(with the statement c∗, cv, j, t).

3.Compute rc = r′ − r∗

4.Recompute c← Comm©((v, t||j), rc)
5.Define o = (v, t||j)
6.If (c, o, ·) /∈ C, this violates soundness of π1-many
or πopn: since r∗ is the re-randomization and
r′ is the randomness of c∗, it follows that c is
uniquely defined.

7.If (c, o′, r′c) ∈ O for some o′, r′c with o′ 6= o, this
breaks computational binding of the commit-
ment: stop and output (c, o′, o, rc, r

′
c) as a col-

lision in the binding game of the commitment
scheme C.

8.Update Balancesim[j]← Balancesim[j] + v.
9.Add (c, o, rc) to O

Conclude that every coin c ∈ Scoins can occure at most
once in the computation of C and that O ⊆ C. Construct
hybrids:
1. H(Create+Collect+CRS+v), which on Process of

Events[id] = (Create, j, i, v) outputs (id, v′) from
O on FAnon.Pi rather than (id, v) from the func-
tionality FAnon. By the previous observation that
the commited values claimed O is a subset of O we
get that:
(a) When the simulator inputs (Process, id) on
FAnon.infl it always leads to an output (id, v)
on FAnon.Pj

(b) By O ⊆ C and the observation that ev-
ery (c, (v, t||j), rc) ∈ C corresponds to a coin
(id′, v, j, i) ∈ Coins for some j.
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In conclusion: H(Create+Collect+CRS) c≈
H(Create+Collect+CRS+v)

2. H(Create+Collect+CRS+v+Balance), which on Process of
Events[id] = (Collect, j, i, v) outputs Balancesim[i]
on FAnon.Pi rather than Balance[i] from the func-
tionality FAnon. Since the balance is just the
sum of outputs for the player this follows from
H(Create+Collect+CRS) c≈ H(Create+Collect+CRS+v) and by
inspection of the ‘bookkeeping’ done in the func-
tionality and hybrid.

Note that all the ports (input/output) of FAnon
are now completely controlled by the simulator
in H(Create+Collect+CRS+v+Balance). Lastly show that
H(Create+Collect+CRS+v+Balance) p= ΠAnon♦FComm: the
FComm functionality ensures that every message to ev-
ery player is delivered in the same order and simul-
tanously for all honest players. Hence the local state
of the ledger Li of every honest player Pi is exactly
the same at all times. The only distinction between
H(Create+Collect+CRS+v+Balance) and ΠAnon♦FComm is
that every player maintains its own local ledger state,
where H(Create+Collect+CRS+v+Balance) mainstains a single
ledger state for simulation.

C Bulletproof Relation for πrerand

Here we describe how we instantiate ZKCPrrnd&prms
from Section 5.2. We use Bulletproofs over group G� =
Curve25519 for a relation (described below) equivalent
to Rrrnd&prms. Let g�, h� from ck� and h◦ from ck◦ (Fig-
ure 8). Given randomness r∗◦ we parametrize the rela-
tion by a fixed group element h̃ = h

r∗◦
◦ . The family of

relations we consider is then:

Rh̃ = {(c�, (x, y), r) : c� = gx� h
r
� ∧ (x, y) ∈ P}

We consider permissible set P from Section 5.3.1
with µ = 251. Below we use · to denote multiplication
by constant (linear operation) and × to denote multi-
plication of two free variables. More details follow.

Statement: The statement is defined by a commit-
ment c� = gx� h

r
� ∈ G� and two field elements (x′,y′) ∈

F� × F�.

C.1 Witness

The witness consists of: a bit-decomposition of the
rerandomization scalar a bitwise decomposition of x (in
c�), a bitwise decomposition of y:

1. A bit-decomposition (r0, . . . , r251) ∈ {0F� , 1F�}252

of the rerandomization randomness r =
∑251
i=0 ri ·

2i ∈ F|G�|.
2. A bit-decomposition (x0, . . . , x249) ∈ {0F� , 1F�}250

of the x-coordinate x =
∑249
i=0 xi · 2

i ∈ F� of the
‘input commitment’ (x,y) ∈ P.

3. A bit-decomposition (y1, . . . , y255) ∈ {0F� , 1F�}251

of the y-coordinate y =
∑255
i=1 yi · 2

i ∈ F� of the
‘input commitment’ (x,y) ∈ P.

C.2 Relation

We denote by × a product between (linear combina-
tions) of variables and by · a linear combination of vari-
ables. Every line represents a single multiplicative con-
straint. The relation has a total of 1514 constraints.

Part 1: Permissibility (758 constrains). Check
that the point (x,y) ∈ P (i.e. is ‘permissible’).

∀i ∈ [0, 251] : 0 = (1− ri)× ri // Bit range check

∀i ∈ [1, 255] : 0 = (1− yi)× yi // Bit range check

∀i ∈ [0, 249] : 0 = (1− xi)× xi // Bit range check

x =
249∑
i=0

xi · 2i // Range check of x

y =
255∑
i=1

yi · 2i // Check y is ‘even’

qx = x× x // Curve check

qy = y × y // Curve check

qx × qy = 1− d · qx × qy // Curve check

Part 2: Rerandomization (756 constrains).
Rerandomization of (x,y) ∈ G© is done by repeated
conditional Edwards addition of h2i

◦ ∈ G© (constants in
the circuit). Recall the group law for addition on Ed-
wards curves:

(x1,y1) +G© (x2,y2) =
(

x1y2 + x2y1
1 + dx1x2y1y2

,
y1y2 − x1x2

1− dx1x2y1y2

)
When d is not a square (as in our case), then the formula
is complete. The circuit is optimized by borrowing tech-
niques from the Zcash specification ([22], sec. A.3.3.7),
employing ‘limb-wise addition’ with 3-bit limbs. The
scalar r =

∑251
i=0 ri·2

i is split into 84 ‘windows’ j ∈ [0, 83)
of 3 bits (b0, b1, b2) = (r3j , r3j+1, r3j+2), the table of
points T (j) = [(ui,vi) = h23j+i

◦ ]i∈[0,8) is precomputed
for each window and the circuit does a lookup in T :
verifying (x(j+1),y(j+1)) = T (j)[b(j)] +G© (x(j),y(j))
where b(j) =

∑2
i=0 2i · bi = r3j + 2 · r3j+1 + 4 · r3j+2.
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Define the constraint R(j)(b0, b1, b2, xin, yin, xout,
yout), consisting of two parts, the table lookup
(enforcing (ub,vb) = T [b]) and the point addition
(enforcing (xout,yout) = (ub,vb) +G© (xin,yin)):

Part 2.1: Table Lookup (3 constraints). Let
(ui,vi) = h23j+i

◦ . Constrain (ub,vb) = T (j)[b] where
b =

∑2
i=0 2i · bi:

b& = b1 × b2
b0 × ( −u0 · b& + u0 · b2 + u0 · b1 − u0 + u2 · b&

− u2 · b1 + u4 · b& − u4 · b2 − u6 · b&
+ u1 · b& − u1 · b2 − u1 · b1 + u1 − u3 · s&

+ u3 · b1 − u5 · b& + u5 · b2 + u7 · b&) =
ub − u0 · b& + u0 · u2 + u0 · b1 − u0 + u2 · b&

− u2 · b1 + u4 · b& − u4 · b2 − u6 · b&
b0 × ( −v0 · b& + v0 · b2 + v0 · b1 − v0 + v2 · b&

− v2 · b1 + v4 · b& − v4 · b2 − v6 · b&
+ v1 · b& − v1 · b2 − v1 · b1 + v1 − v3 · s&

+ v3 · b1 − v5 · b& + v5 · b2 + v7 · b&) =
vb − v0 · b& + v0 · v2 + v0 · b1 − v0 + v2 · b&

− v2 · b1 + v4 · b& − v4 · b2 − v6 · b&

Part 2.2: Point Addition (6 constraints).
Constrain (xout,yout) = (ub,vb) +G© (xin,yin):

(xin + yin)× (vb − ub) = T

xin × vb = A

yin × ub = B

(d ·A)×B = C

(1 + C)× xout = (A+B)
(1− C)× yout = (T −A+B)

Where T,A,B,C,ub,vb, b& are otherwise free
‘intermediate’ variables, local to R(j) (not used
anywhere else).

Part 2.3: Constrain windows (84 × 9 constraints)
Constrain every 3-bit window: define x(0) = x, y(0) = y,
x

(84) = x
′, y(84) = y

′ and add the 84 relations ∀j ∈
[0, 84) : Rj(r3j , r3j+1, r3j+2, x

(j),y(j),x(j+1),y(j+1))

D UTXO Construction
Our construction can be adapted to the UTXO setting
obtaining stronger unlinkability properties: rather than

having one π1-many proof every transaction would refer-
ence two previous coins15 and create two new coins. In
a UTXO instantiation the πcreate and πopn can be com-
bined into a single Bulletproof. The two π1-many proofs
can be optimized as well: the πrerand can be extended
to rerandomize two commitments in parallel, the two
πmodEq proofs can be combined to check congruency of
a random linear combination. We estimate the size of
such a construction to be ≈ 10 KB.

15 Where one of them may be a dummy.
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