
Mixup Data Augmentation for Deep Learning
Side-Channel Attacks

Karim M. Abdellatif

Ledger, France
karim.abdellatif@ledger.fr

Abstract. Following the current direction in Deep Learning (DL), more
recent papers have started to pay attention to the efficiency of DL in
breaking cryptographic implementations. Several works focus on tech-
niques to boost the efficiency of existing architectures by data augmen-
tation, regularization, etc. In this work, we investigate using mixup data
augmentation [21] in order to improve the efficiency of DL-based Side-
Channel Attacks (SCAs). We validated the soundness of the mixup on
real traces collected from the ChipWhisperer board [14] and from the AS-
CAD database [1]. The obtained results have proven that using mixup
data augmentation decreases the number of measurements needed to re-
veal the secret key compared to the non-augmented case.

Keywords: Deep Learning · Side-Channel Attacks · Data Augmenta-
tion · Mixup · AES.

1 Introduction

Hardware security has become an important system and application metric. It
is considered as a key requirement for smart cards, smart phones, Internet of
Things (IoT) devices, hardware wallets, and so on. With the increase in the
number and forms of such systems, the devices that store critical information
become more approachable to malicious attackers. These devices are potentially
susceptible to physical attacks that aim at breaking cryptosystems by gaining
information from their implementation instead of using theoretical weaknesses.

Physical threats appear at circuit level, where an attacker can measure or
physically influence the computation/operation performed by the circuit. Side
channel attacks exploit additional sources of information (physical observations),
including timing information [9], power consumption [8], electromagnetic emis-
sions (EM) [16], remote monitoring [23], etc.

Different SCAs like Differential Power Analysis (DPA) [1] and Correlation
Power Analysis (CPA) [3] have been invented and demonstrated to be realistic
threats to many critical embedded systems. They exploit the correlation between
the intermediate data in algorithms and the power consumption of implementa-
tions to reveal sensitive information.

2 Karim M. Abdellatif

Recently, profiled side-channel attacks using machine learning techniques
have received a significant amount of attention in the SCA community. Such
attacks [10] proved to be very efficient compared to classical attacks, like tem-
plate attacks [3]. The strength of such attacks come from their capability to fully
characterize the DUT. The attacker has a full control over a cloned device, which
can be used to build the profiling model. This model is then used by the attacker
to target similar devices to extract the secret information. The standard machine
learning algorithms like Random Forest[15, 11] and Support Vector Machine [5]
have been the common choice for such attacks.

More recently, as an efficient alternative to machine learning techniques, DL
has been used as a powerful technique for side-channel attacks [13, 2]. The re-
lated practical results have showed that such technique is very efficient even
under the presence of countermeasures. Cagli et al. [2] presented a deep-learning
based approach utilizing Convolutional Neural Networks (CNNs) to perform a
successful attack, even in presence of trace misalignments. Masking-based coun-
termeasures were also shown to be broken using Multi-Layer Perception (MLP)
and CNN as shown in [4, 12].

Moreover, to strengthen DL-based SCAs, recent works showed techniques to
further improve their attacking strength. The authors in [7] showed that adding
zero-mean Gaussian noise is helping to generalize the DL model and improves the
success of the attack. Cagli et al. [2] showed that applying Data Augmentation
(DA) techniques can overcome the jitter and noise countermeasures.

Our Contributions. In this paper, we present using mixup DA technique
for improving DL-based SCAs. To the best of our knowledge, this has not been
studied yet. Experimental validation is performed on real traces from ChipWhis-
perer [14] and ASCAD database [1]. The idea of Mixup is to generate new traces
from the main traces that can boost the DL performance. We show that using
such DA methodology improves the performance of DL-based SCAs by reducing
the number of traces needed for a successful key recovery.

Paper Organization. This paper is organized as follows. Section 2 pro-
vides a background on the previous work on data augmentation. Afterwards,
we explain mixup data augmentation for SCAs in Section 3. Section 4 and
Section 5 highlight the experimental results of using mixup DA on ASCAD
and ChipWhisperer, respectively. Section 6 presents a short discussion about
the obtained results. Finally, we provide the conclusion and further works in
Section 7.

2 Data Augmentation

Data augmentation (DA) has been demonstrated to achieve considerable perfor-
mance improvement for deep learning (DL) by increasing accuracy and stability
with overfitting reduction [6, 22, 19]. From the prospective of SCAs, DA was in-
vestigated as a solution to break jitter-based countermeasures [2]. In [2], authors

Mixup Data Augmentation for Deep Learning Side-Channel Attacks 3

applied random shift to existing traces to perform DA and they proved avoiding
overfitting, resulting in a better training of CNN.

The methodology of random shifting presented by [2] was based on a ded-
icated code. However, in [20], the authors used ImageDataGenerator1 class in
the Keras DL library to provide DA.

3 Mixup Data Augmentation for SCAs

Mixup data augmentation was first proposed by [22]. It trains a neural network
on convex combinations of pairs of examples and their labels. In a nutshell,
mixup can be presented as follows:

x̂ = λxi + (1− λ)xj (1)

ŷ = λyi + (1− λ)yj (2)

where (xi,yi) and (xj ,yj) are two examples taken randomly from the training
data (x is like an image and y is its hot encoding label) and λ ∼ Beta (α,α) for
each pair of examples, with α a hyperparameter. For the sake of clarity, Fig. 1
shows an example of Mixup in case of λ = 0.5.

x1=[12, 4, 6]
y1=[1,0]

x2=[4, 2, 10]
y2=[0,1]

Mixup
x=[8, 3, 8]
y=[0.5,0.5]

^
^

λ= 0.5

Fig. 1: Example of Mixup

Zhang et al. [22] used the value α = 1, which results in a uniform distribution
between 0 and 1. It was found also by [22] that on larger datasets such as
ImageNet [17], a smaller value of α was required due to underfitting.

The motivation behind mixup comes from the linearity between training
examples. As a conclusion from [22], the linearity is an effective inductive bias
for most models. Indeed, mixup was shown to be useful across a wide variety of
tasks and models [22, 18].

Therefore, mixup extends the training data-set by the prior linear knowledge
between dataset samples. It can be implemented in a few lines of code, and
introduces minimal computation overhead.

4 Karim M. Abdellatif

r

Sbox[p + k] ⊕ r

Fig. 2: ASCAD dataset

In order to investigate the effect of mixup data augmentation, we target CNN
and MLP models which are the most common DL methods used by the SCA
community. For each method (MLP or CNN), we compare the model efficiency
(accuracy and key rank) with and without data augmentation. The key rank is
calculated by the guessing entropy which gives the average ranking of the secret
key K within a vector of key guesses. The vector of key guesses gx,1, , gx,k
for the x th measurement is calculated by mapping each key guess k to a label y
with probability Px,y and applying the maximum-likelihood principle over 1 to
N, where N is the number of traces.

4 Experimental Results on ASCAD

ASCAD is a public database introduced by Benadjila et al. in [1]. It is used
as a common database for research on DL-based SCAs. It is based on a first
order protected Software AES implementation running on an 8-bit ATMega8515
board. It is composed of two set of traces: a profiling set of 50k traces and attack
set of 10k traces.

Each trace of ASCAD dataset consists of 700 samples focusing on the ma-
nipulation of the third byte of the masked state Sbox(p⊕ k)⊕ r, where p, k and
r are respectively the plaintext, the key and the mask values.

To evaluate the amount of leakage in ASCAD database, we use the Signal-
to-Noise-Ratio (SNR), which is calculated by Eq. 3. It gives the ratio between
the deterministic data-dependent leakage and the remaining noise. Fig. 2 shows
the leakage detection (left) and a trace example of ASCAD dataset (right).

SNR =
V ar(E(X|Y))

E(V ar(X|Y))
(3)

where X is the captured trace, Y is the label that is determined, E is the
expectation, V ar is the variance of a random variable.

DL-based techniques like CNN and MLP have showed a high efficiency for
attacking this kind of countermeasures as shown in [1, 12]. Combining the two
leakages of Sbox(p ⊕ k) ⊕ r and r will be performed by the DL architecture in
order to act as a first order profiling.

Mixup Data Augmentation for Deep Learning Side-Channel Attacks 5

ASCAD contains 50k traces which are used for profiling. We use Mixup DA
(see Eq. 1 and Eq. 2), using α = 0.2 to generate 100k additional traces from the
50k traces already available. The choice of this value for α is motivated by the
results of [17].

4.1 MLP performance

Different MLP architectures were reported in the previous works for ASCAD
database as shown in [1, 12]. Our MLP model is shown in List. 1.1. It is com-
posed of five dense layers and one SoftMax layer. We added Dropout layers to
avoid overfitting. Batch size equals 128, the number of epochs is 100, and the
learning rate is 0.0001. We used the model accuracy as a metric to evaluate the
efficiency of the DL model.

1 def mlp_ascad(node =600, hidden_layer_nb =4):

2 model = Sequential ()

3 model.add(Dense(node , input_dim =700, activation=’relu’))

4 for i in range(hidden_layer_nb):

5 model.add(Dense(node , activation=’relu’))

6 Dropout (0.2)

7 model.add(Dense (256, activation=’softmax ’))

8 optimizer = RMSprop(lr =0.00001)

9 model.compile(loss=’categorical_crossentropy ’, optimizer=

optimizer , metrics =[’accuracy ’])

10 return model

Listing 1.1: ASCAD MLP

Profiling using 150k traces
Profiling using 50k traces

Fig. 3: MLP performance on ASCAD

6 Karim M. Abdellatif

—–Profiling using 150k traces
—–Profiling using 50k traces

Fig. 4: MLP success rate of ASCAD

As shown in Fig. 3, the architecture performance in case of using data aug-
mentation (profiling using 150k traces) outperforms the case of not using data
augmentation (profiling using 50k traces). In order to evaluate the attack ef-
ficiency, the correct key rank was computed as shown in Fig. 4. The number
of traces needed for a successful key recovery in case of using mixup DA is 10
compared to 55 traces in case of non-augmented profiling.

4.2 CNN performance

For CNN, we consider the architecture shown in List. 1.2. It is composed of two
convolutional blocks and two fully-connected layers. The first convolutional layer
has a filter size of 32 and the second layer decreases the filter size by a factor of
2. Batch size equals 128, the number of epochs is 100, and the learning rate is
0.0001.

1 def cnn_ascad ():

2 input_shape = (700 ,1)

3 img_input = Input(shape=input_shape)

4 x = Conv1D (32, 32, activation=’relu’, padding=’same’,

name=’block1_conv1 ’)(img_input)

5 Dropout (0.1)

6 x = AveragePooling1D (2, strides=2, name=’block1_pool ’)(x)

7 x = Conv1D (16, 16, activation=’relu’, padding=’same’,

name=’block2_conv1 ’)(x)

8 Dropout (0.1)

9 x = AveragePooling1D (2, strides=2, name=’block2_pool ’)(x)

10 x = Flatten(name=’flatten ’)(x)

11 x = Dense (400, activation=’relu’, name=’fc1’)(x)

12 x = Dense (400, activation=’relu’, name=’fc2’)(x)

Mixup Data Augmentation for Deep Learning Side-Channel Attacks 7

13 x = Dense (256, activation=’softmax ’, name=’predictions ’)(

x)

14 inputs = img_input

15 model = Model(inputs , x, name=’cnn_test ’)

16 optimizer = RMSprop(lr =0.00001)

17 model.compile(loss=’categorical_crossentropy ’, optimizer=

optimizer , metrics =[’accuracy ’])

18 return model

Listing 1.2: ASCAD CNN

Profiling using 150k traces
Profiling using 50k traces

Fig. 5: CNN performance on ASCAD

The result for the accuracy is shown in Fig. 5. The obtained results for the
architecture performance confirm the previous results in case of MLP. Moreover,
mixup DA reaches the key rank to 0 in less than 45 measurements compared to
200 traces in case of not using any DA (see Fig. 6).

8 Karim M. Abdellatif

—–Profiling using 150k traces
—–Profiling using 50k traces

Fig. 6: Success rate

5 Experimental results on CW

In addition to using ASCAD, we present experimental results on traces from
ChipWhisperer. A first order protected AES was implemented on ChipWhisperer-
lite [14]. We collected 100k traces for profiling and 5k traces for testing. Fig. 7
shows the SNR and trace sample (POI). By using mixup DA, additional 200k
traces were generated.

Mask

Sbox[p + k] ⊕ Mask

Fig. 7: CW leakage

5.1 MLP performance

We used the same architecture shown in List. 1.1 but we increased the number
of epochs to be 200. As shown in Fig. 8, the architecture performance in case
of using the mixup DA (profiling using 300k traces) outperforms the case of
not using DA (profiling using 100k traces). Also, from Fig. 9, the number of
needed traces for a successful key recovery with mixup DA is less than the non-
augmented case.

Mixup Data Augmentation for Deep Learning Side-Channel Attacks 9

Profiling using 300k traces
Profiling using 100k traces

Fig. 8: MLP performance of CW

hh

—–Profiling using 300k traces
—–Profiling using 100k traces

Fig. 9: MLP Success rate of CW

5.2 CNN performance

For CNN, we also consider the same architecture shown in List. 1.2. However, the
number of epochs is increased to 500. The results for the accuracy are shown
in Fig. 10. The obtained results for the architecture performance confirm the
previous results in case of MLP. In addition, mixup data DA reaches the key
rank to 0 with 60 traces compared to 350 traces in case of not using the mixup
DA (see Fig. 11).

10 Karim M. Abdellatif

Profiling using 300k traces
Profiling using 100k traces

Fig. 10: CNN performance

—–Profiling using 300k traces
—–Profiling using 100k traces

Fig. 11: CNN success rate of CW

6 Discussion

From the previous results of MLP and CNN on ASCAD and Chipwhisperer
traces, we can find the positive impact of mixup DA on the attack success.
On the other hand, the mixup which was used in this work is based on Eq.
1 and Eq. 2 and it is a linear combination between any two samples from the
dataset. However, several non-linear methods were proposed in [18] like vertical
and horizontal concatenations, random elements,..., and noisy mixup. The two

Mixup Data Augmentation for Deep Learning Side-Channel Attacks 11

datasets used in this work (ASCAD and Chipwhisperer) are based on a first
order protected AES (masked AES). However, Jitter-based countermeasures are
based on creating non-synchronized traces, which make the attack more difficult.
Therefore, it is motivating to implement non-linear mixup DA for jitter-based
countermeasures.

7 Conclusion and Further works

In this work, we tackle DA for SCAs. We investigated for the first time, the effect
of mixup DA on SCAs. By using MLP and CNN on two different databases, we
showed how such technique can improve the attack efficiency (key rank).

The mixup used in this paper is based on a linear combination between sam-
ples, which won’t be suitable in case of jitter-based countermeasures. Therefore,
studying the non-linear mixup methods proposed by [18] on jitter-based datasets
is very motivating as a future work.

References

1. Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile Du-
mas. Deep Learning for Side-Channel Analysis and Introduction to ASCAD
Database. Journal of Cryptographic Engineering, 10(2):163–188, 2020.

2. Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional Neural Net-
works with Data Augmentation against Jitter-based Countermeasures. In Interna-
tional Conference on Cryptographic Hardware and Embedded Systems, pages 45–68.
Springer, 2017.

3. Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. Template Attacks. In Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems, pages 13–28.
Springer, 2002.

4. Richard Gilmore, Neil Hanley, and Maire O’Neill. Neural Network Based Attack
on a Masked Implementation of AES. In 2015 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), pages 106–111. IEEE, 2015.

5. Annelie Heuser and Michael Zohner. Intelligent Machine Homicide. In Interna-
tional Workshop on Constructive Side-Channel Analysis and Secure Design, pages
249–264. Springer, 2012.

6. Hiroshi Inoue. Data Augmentation by Pairing Samples for Images Classification.
arXiv preprint arXiv:1801.02929, 2018.

7. Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Hanjalic.
Make Some Noise. Unleashing The power of Convolutional neural networks for
profiled side-channel analysis. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 148–179, 2019.

8. Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In
Annual international cryptology conference, pages 388–397. Springer, 1999.

9. Paul C Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and other Systems. In Annual International Cryptology Conference, pages 104–113.
Springer, 1996.

12 Karim M. Abdellatif

10. Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. Power Analysis At-
tack: An Approach Based on Machine Learning. International Journal of Applied
Cryptography, 3(2):97–115, 2014.

11. Liran Lerman, Romain Poussier, Gianluca Bontempi, Olivier Markowitch, and
François-Xavier Standaert. Template Attacks vs. Machine Learning Revisited (and
the curse of dimensionality in side-channel analysis). In International Workshop
on Constructive Side-Channel Analysis and Secure Design, pages 20–33. Springer,
2015.

12. Houssem Maghrebi. Deep Learning based Side Channel Attacks in Practice. IACR
Cryptol. ePrint Arch., 2019:578, 2019.

13. Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking Crypto-
graphic Implementations Using Deep Learning Techniques. In International Con-
ference on Security, Privacy, and Applied Cryptography Engineering, pages 3–26.
Springer, 2016.

14. Newae. Chipwhisperer-Lite, 2020. http://store.newae.com/chipwhisperer-lite-
cw1173-basic-board.

15. Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco Regaz-
zoni. The Curse of Class Imbalance and Conflicting Metrics with Machine Learning
for Side-Channel Evaluations. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2019(1):1–29, 2019.

16. Jean-Jacques Quisquater and David Samyde. Electromagnetic Analysis (ema):
Measures and Counter-Measures for Smart Cards. In International Conference on
Research in Smart Cards, pages 200–210. Springer, 2001.

17. Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet Large Scale Visual Recognition Challenge. International journal of com-
puter vision, 115(3):211–252, 2015.

18. Cecilia Summers and Michael J Dinneen. Improved Mixed-Example Data Aug-
mentation. In 2019 IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 1262–1270. IEEE, 2019.

19. Yuji Tokozume, Yoshitaka Ushiku, and Tatsuya Harada. Learning from Between-
Class Examples for Deep sound Recognition. arXiv preprint arXiv:1711.10282,
2017.

20. Yoo-Seung Won, Dirmanto Jap, and Shivam Bhasin. Push For More: On Compar-
ison of Data Augmentation and SMOTE With Optimised Deep Learning Archi-
tecture For Side-Channel.

21. Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup:
Beyond Empirical Risk Minimization. arXiv preprint arXiv:1710.09412, 2017.

22. Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup:
Beyond Empirical Risk Minimization. arXiv preprint arXiv:1710.09412, 2017.

23. Mark Zhao and G Edward Suh. FPGA-Based Remote Power Side-Channel Attacks.
In 2018 IEEE Symposium on Security and Privacy (SP), pages 229–244. IEEE,
2018.

