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Abstract. Blockchain has been widely used in finance, logistics, copy-
right and other fields with its outstanding characteristics such as non-
centralization, collective maintenance, openness, transparency and non-
tamperability. However, as transactions are stored in plaintext in the
blockchain for public verification, the anonymity and privacy of users
can not be guaranteed and this hampers many financial applications.
How to protect the privacy of transactions is worthy further research.
In this paper, we have proposed two regulatory and efficient confidential
transaction schemes using homomorphic encrytion and zero-knowledge
proof. The first one improves the efficiency of the existing ElGamal based
scheme while preserves its privacy. The second one employs the Paillier
encryption with homomorphic property and it empowers regulators with
greater power to obtain transaction-related specific content. The core
of ElGamal based scheme is the Modified ElGamal algorithm, which
changes the form of the standard ElGamal algorithm and expands it
into four ciphertexts such that (m, r) in the transaction can be decrypted.
The Paillier based scheme is mainly to combine Paillier encryption with
ElGamal encryption. Contrast to other ElGamal based scheme, the com-
bination makes any token amount can be directly decrypted without cal-
culating a discrete logarithm problem. As any (m, r) in transactions can
be decrypted directly, game theory is applied to further reduce transac-
tion size. In our construction, transactions are about 1.1KB.

Keywords: confidential transactions · zero-knowledge proof · regula-
tory · game theory · modified ElGamal · modified Paillier
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1 Introduction

In most blockchain systems such as Bitcoin [Sat08] and Ethereum [Woo14], the
content of a transaction is broadcast in plaintext. After the miner collects and
verifies the validity, the transaction is stored on-chain, and each node can access
all the on-chain contents. These characteristics also bring the problem of pri-
vacy protection [DSPSNAHJ18]. With the much concerning with privacy prob-
lem, it is extremely important to protect the privacy of on-chain content. The
privacy of transactions can be divided into two aspects: one is anonymity, mean-
ing that the sender and receiver of a transaction are anonymous; the other is
confidentiality, meaning that the amount is known only to both parties in the
transaction. To achieve confidential transaction, many scholars have carried out
relevant research, and many projects, such as Zcash [SCG+14], Monero [NM+16],
Zether [BAZB20], have proposed a variety of solutions using cryptography tools.
However, enhancing the privacy of transactions brings new challenges to the
regulation of transactions [Fin18]. Cryptographic techniques are used in many
blockchain applications and academic studies to ensure the privacy of partici-
pants, but in some cases the overuse or even abuse of privacy protections can
make it difficult to regulate and audit on-chain transactions. So, under the con-
dition of protecting user privacy, new research needs to give regulators greater
authority to access transaction information, and find a balance between regula-
tion and privacy to achieve controlled privacy.

This paper proposes two new schemes using homomorphic encryption and
zero-knowledge proofs. The first one is an improvement to the existing ElGamal
based schemes in efficiency while keeping privacy. And the second one is based
on homomorphic Paillier encryption algorithm and empowers regulators greater
powers to obtain transaction-related specific content. The core of ElGamal based
scheme is the Modified ElGamal algorithm, which changes the standard ElGa-
mal algorithm to be additive homomorphic and expands it into four ciphertexts
such that (m, r) in the transaction can be decrypted. The Paillier based scheme
is mainly to combine Paillier encryption with ElGamal encryption. Contrast to
other Elgamal based scheme, the combination make larger token amounts can
be directly decrypted without calculating a discrete logarithm problem. As any
(m, r) in transactions can be decrypted directly, game theory is applied to fur-
ther reduce transaction size. The transactions in both schemes are confidential
for nodes, but can be publicly verified by nodes. The Paillier based scheme is
a regulator-friendly scheme where the regulator can supervise every on-chain
transaction, effectively eliminate the illegal transactions such as money laun-
dering. An efficient, privacy preserving and regulatory transaction system will
promote the adoption of blockchain applications.

1.1 Related Work

1.1.1 The Importance of Privacy Protection. In Cryptocurrencies, at-
tackers can analyze a user’s trading habits through transaction records stored
on-chain. In the application of finance [Pae17], attackers can not only analyze
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the user’s personal trading habits with the help of the on-chain content, but
also infer macro trends of the whole market, which is damage to users’ privacy,
and leaks the core data of financial enterprises in some ways. In energy indus-
try, transaction records may leak energy exchange information, which is very
important and sensitive information for a country. In short, for the original sys-
tem with completely transparent records, analysts can analyze the transaction
rules by records, and obtain amount and relationship in the transactions, which
makes the user’s privacy seriously threatened. Therefore, many privacy protec-
tion related researches have emerged that can divide existing solutions into two
categories, depending on the use of commitment scheme.

One is to use the Pedersen Commitment [Ped92] scheme, the main prob-
lem with such schemes is the commitment opening must be transferred to the
receiver off-chain. Maxwell [Max15] first proposed the concept of confidential
transactions and apply them to Bitcoin, using Pedersen Commitment and OR-
proofs to establish a payment mechanism that hides the amount, and applies
range proof to ensure the correctness of the transaction. Mimblewimble/Grin
[Poe16,FOS19], [Gri] improves Maxwell’s work by reducing signature consump-
tion. Another research direction is anonymity. A lot of work has been done to
enhance anonymity through Coinjoin [Max13]. The third direction is to improve
privacy and anonymity. Monero [NM+16] uses a similar approach to Maxwell
to achieve privacy protection, also based on UTXO model, which enhances the
anonymity of transactions using ring signatures [MP15] and StealthAddress.
However, the signature size used by Monroe increases linearly as ring mem-
bers increase. Zcash [SCG+14] offers two trading modes, one is a transparent
transaction similar to Bitcoin, the other is confidential transaction using zk-
SNARKs [zks] proofs, but zk-SNARKs requires generating a larger Common
Reference Strings (CRS) in advance.

The other is to use ElGamal encryption scheme which has been studied
more recently. The advantage of this scheme is that the ciphertext part can
not only keep the amount confidential, perform homomorphic calculation, but
also decrypt the transaction amount. Quisquis [FMMO19] proposed by Fauzi et
al. is an anonymous confidential transaction system designed to solve problems
that exist in Monroe and Zcash, such as the growing number of UTXO set.
Quisquis combines UTXO and account models, using a one-time account and
shuffle method to anonymity, while using ElGamal encryption to complete confi-
dentiality. Bünz et al. [BAZB20] proposed Zether, a smart contract on Ethereum.
They modified standard ElGamal encryption to be additive homomorphic and
used the ElGamal encryption to hide balances and transfer amount, and ac-
quired anonymity using ring signature. Chen et al. [CMTA20] proposed PGC
and twisted ElGamal by changing the standard ElGamal algorithm, and the
second part of twisted ElGamal is Pedersen Commiment which can directly be
used in Bulletproofs [BBB+18] protocol. All the three schemes design accom-
panying zero-knowledge proofs using Sigma protocol and Bulletproofs, but in
different ways to solve the interoperation of ElGamal encryption and Bullet-
proof. Quisquis introduced ElGamal commitment, and used Sigma protocol to
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prove consistency of ElGamal commitment and Pedersen commitment are com-
mitted to the same amount, then used Bulletproofs to the Pedersen commitment.
Zether proposed Σ−Bullets, which directly combined the Sigma protocol with
Bulletproofs. Given an arithmetic circuit, the linear combination of the wires in
the circuit is equal to some witness of a Sigma protocol. This enhancement in
turn enables proofs on many different encodings such as ElGamal encryptions,
Pedersen commitments in different groups or using different generators. PGC
modified the standard ElGamal algorithm, which private key is independent
of the commitment, so that Bulletproofs could be used directly on the twisted
ElGamal algorithm.

1.1.2Regulatory Studies. While trading systems provide privacy protection,
transactions should also comply with regulatory requirements. A simple regu-
latory solution is to have the participant provide private key for the regulator,
but this exists a huge security risk and is inconsistent with the privacy policy.
Zcash has two features [Zca] that enable the disclosure of shielded transaction
information. Both of them need to generate a key which can be provided to
a regulator, thereby allowing them to view the details of the transaction. As
mentioned in PGC, the range proof and zero-knowledge proof can be used to de-
termine that the regulatory requirements are met. However, the specific amount
of the transaction cannot be obtained by the regulator, and the content of regu-
lation is limited, resulting in some audit, statistical and other functions cannot
be completed.

1.2 Problems with the existing scheme

1.2.1 Commitment Based Scheme. Many current works for implementing
confidential transactions are implemented by homomorphism commitments, such
as Pedersen commitment, FO commitment. But additional channel is needed to
transfer the opening (m, r) of the commitment, which can be encrypted and
stored on-chain or transmitted over private channels. In order to decrypt the
on-chain commitment directly, people come up with a solution that combines
the ElGamal encryption and the Bulletproofs.

1.2.2 Combine ElGamal Encryption and Bulletproofs. Zether poposed
Σ-Bullets which is an extension of Bulletproofs. The ciphertexts of Zether-
ElGamal are (C1 = gr, C2 = pkrgm), and calculate gm = C2/C

sk
1 . C2 part

cannot be directly used for Bulletproofs, need Sigma protocol to prove that both
the pkrgm and the Bulletproofs are encrypted to the same (m, r). However, this
requires the special design and analysis of a more complex Sigma protocol. A
similar approach is used in Quisquis.

PGC modified the Zether-ElGamal encryption to directly use Bulletproof
in a black-box manner, changing the Zether-ElGamal to Pedersen Commit-
ment (pkr, grhm). However, this scheme also requires brute-force to calculate
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m [Sha71], which is based on discrete logarithms and can be calculated only if
the transaction amount m is small (less than 232).

In addition to the limitation of the transaction amount of Zether, PGC and
Quisiquis, new randomness r also need to be selected to re-encrypt sender’s bal-
ance. There are three disadvantages: (1) that private key is required to prove the
equality for re-encryption, which may bring some security risks (2) re-encryption
adds extra computation (3) the newly added ciphertexts increase the transaction
size.

1.3 Our Contributions: Modified ElGamal

We proposed the Modified ElGamal, new ciphertexts are C1 = pkr0 , C2 =
gr0hm, C3 = pkr1 , C4 = r0g

r1 , public key pk = gsk, decryption calculation
r0 = C4/C

sk−1

3 , hm = C2/C
sk−1

1 . However, hm requires brute-force to compute
m, which can be quickly calculated when m is small (less than 232). And in
most cases, the transaction amount m is known to both parties, and the receiver
only needs to decrypt hm with the sk and verify it with the known m. The
benefits of this are as following:(1) we can run the bulletproofs on C2 directly,
without a complicated Sigma protocol like Zether;(2) (m, r0) can be calculated,
without additional channel to transmit, and re-encryption is not required for
range proof of sender’s balance;(3) Achieving the same functionality with fewer
on-chain contents. In terms of on-chain data complexity and time complexity for
a confidential transaction, our scheme is superior to the existing schemes such
as Zether and PGC.

1.4 Our Contributions: Modified Paillier

It is observed that when using ElGamal based scheme to decrypt the transaction
amount, a discrete logarithm problem needs to be calculated, which will be
much more difficult when the transaction amount is very large. For most trading
systems, especially for larger companies, the volume of trade is much larger than
232. For example, the minimum unit of Ethereum is Wei (1Ether = 1018wei).
It is difficult to obtain transaction amounts on such a large scale by brute-force
attack. On the basis of previous studies, we propose a new scheme, where (C1 =
pkr0 mod n2, C2 = kmhr0 mod n2, C3 = pkr1 mod n2, C4 = kr0hr1 mod n2) can
be decrypted according to the Paillier [Pai99] encryption, and amount m and
the randomness r0 can both be decrypted directly. As (m, r) can be decrypted,
the receiver can use them to check if the ciphertexts are right. If the ciphertexts
are found illegal, the receiver can submit a ZK-proof to the blockchain and make
the transaction invalid. the sender will lose his tokens and cause no harm to the
system. By game theory, the sender will not construct illegal ciphertext and it is
unnecessary to generate proofs for the legality of ciphertexts. The new solution
ensures the security and correctness of the transaction while greatly reducing
on-chain data.

In order to give the regulators more power than ordinary users and complete
the regulation more effectively, we propose a new method that can compute the
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private key securely. Under the condition of guaranteeing the privacy of users’
transactions, the supervision party can master all the on-chain transactions, and
achieve controllable privacy. According to Paillier encryption, the user’s private
key sk = L(pku mod n2)/L(hu mod n2) can be calculated by the system’s pri-
vate key u, which can be used only if it is authorized by multiple trusted parties.

2 Preliminaries

2.1 Basic Notations.

In this article, λ denotes the security parameter, and a negligible probability is
written as negl(λ). Let GroupGen be a polynomial time algorithm, input as 1λ.
The output of the GroupGen for the Modified ElGamal scheme is (p, g,G), p is a
large prime number, G is a cyclic group of order p, g is the generator of the group
G, Zp represents the integer ring of modulus p. The output of the GroupGen
for the Modified Paillier scheme is (k, n,Z∗n2), n is the modulus of the product
of two large prime numbers, Z∗n2 represents the multiplication group of natural
numbers less than n2 which are mutual prime with n2. Let x ←R Zp represent
a randomness x from Zp.

2.2 Assumptions

Definition 1 (Decisional Diffie-Hellman Assumption). Let G be the group
with the order of large prime p, and g be the generator of G, and randomly select
x, y, z ∈ Zp. Then the following two distributions
· Random quadruple R = (g, gx, gy, gz) ∈ G4

· Quadruple D = (g, gx, gy, gxy) ∈ G4(called Diffie-Hellman quadruple, short for
DH quadruple).
is computationally indistinguishable and is called the DDH assumption.

Specifically, for any adversary A, A′s advantage in distinguishing R from D
is negligible:

AdvA (λ) = |Pr [A (R) = 1]− Pr [A (D) = 1]| 6 negl(λ)

Definition 2 (Discrete Log Relation). Given g, a generator of G, and h,
a random element in G, loggh is considered difficult to compute. The specific
definition is as follows:

If for all PPT adversary A, we have

Pr [A(g, h) = x s.t. gx = h] 6 negl (λ)

It can be said that the discrete logarithm problem is difficult in G.
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2.3 Commitment

The non-interactive commitment scheme is composed of the sender and the
receiver, mainly divided into three stages. In the key generation stage, input
security parameters λ and output public parameters pp such as the public key
and private key. In the commitment stage, input the message m from message
space Mpp, and randomness r from randomness space Rpp, and calculate the
commitment Com = Com(m, r). In the opening stage, the sender can send
(m, r) to the receiver by encrypted ways or some private secure channel so that
the receiver can verify the correctness of the commitment. Formal commitment
schemes are defined by the following three algorithms.

Setup
(
1λ
)

: Input the security parameter λ, and output the public parameter
pp, which defined the message space Mpp, and the randomness space Rpp, and
the commitment space C.

Com(m, r) : The sender makes a commitment to the message m and ran-
domness r, calculates C = Com (m, r), and sends C to the receiver.

Open(C,m, r) : The sender sends (m, r) to the receiver, who verifies that the
commitment is correct, outputs accept or reject.

Definition 3 (Homomorphism Commitment). Homomorphism commitment
means that the commitment scheme satisfies homomorphism, that is, for mes-
sages m1,m2 ∈ Zp, randomness r1, r2 ∈ Zp, which satisfies the following for-
mula:

Com (m1, r1)⊗ Com (m2, r2) = Com (m1 +m2, r1 + r2)

This means that the commitment scheme satisfies additive homomorphism,
where ⊗ represents an operator, such as multiplication.

Definition 4 (Hiding Commitment). A hiding commitment scheme refers
to Com (m, r) do not leak any information related to m, protecting the safety
of the sender. Let A be an adversary against hiding, and the advantage of the
adversary is defined as

AdvA (λ) = Pr

[
β′ = β

∣∣∣∣∣ pp← Setup(1λ);m0,m1 ← A(pp);
β ←R {0, 1}, r ←R Rpp, C = Com (mβ , r) ;

β′ ← A(c)

]
− 1/2

If AdvA (λ) = 0 for the adversary with unbounded power, then this com-
mitment satisfies perfect hiding, that is the distribution of Com (m0, r0) is the
same as Com (m1, r1); If AdvA (λ) = negl (λ), this commitment satisfies the
statistical hiding that is the distribution of Com (m0, r0) and Com (m1, r1) is
statistically indistinguishable; If AdvA (λ) = negl (λ) for adversary with PPT
power, this commitment satisfies computational hiding, that is the distribution
of Com (m0, r0) and distribution Com (m1, r1) is computationally indistinguish-
able.
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Definition 5 (Binding Commitment). A binding commitment scheme refers
to a commitment C can not be opened into two different (m, r), protecting the
safety of the receiver. A′s advantage is defined as

AdvA(λ) = Pr

[
Com(m0, r0) = Com(m1, r1)

∧m0 6= m1

∣∣∣∣∣ pp← Setup(1λ);
(C,m0, r0,m1, r1)← A(pp)

]
If AdvA (λ) = 0 for the unbounded adversary, this commitment scheme

satisfies perfect binding. If AdvA(λ) = negl(λ) for the unbounded adversary,
this commitment scheme satisfies statistical binding; If for any PPT adversary,
AdvA(λ) = negl(λ), this commitment scheme satisfies computational binding.

Pedersen Commitment [Ped92]. In the cyclic group G of prime order p, and
g, h ∈ G are randomly selected.

Commitment: For the input message m ∈ Zp, and randomness r ∈ Zp and
calculate C ← gmhr ∈ G.

Opening: Using (m, r) to verify the correctness of commitment C. If C =
gmhr, the receiver accepts the commitment to message m, otherwise rejects. Un-
der the discrete logarithm assumption, Pedersen commitment is perfect hiding
and computational binding. Pedersen commitment also satisfies additive homo-
morphism.

Fujisaki-Okamoto Commitment [FO97]. Suppose sender and receiver do
not know the decomposition of n, g ∈ Z∗n, h ∈ (g), the order of g and h is
large prime, which makes it infeasible to calculate the discrete logarithm in
the generated cyclic group. Sender doesn’t know loggh and loghg, randomly
selected from r ∈ {−2sn + 1, 2sn − 1}, calculate E(m, r) = gmhr mod n, send
receiver E(m, r) as a commitment to m. Sender doesn’t know the decomposition
of n and loggh, it’s impossible to find m1 6= m2 satisfy E(m1, r1) = E(m2, r2);
receiver is also unable to obtain any information about m from E(m, r), which
is statistically secure, and the commitment scheme is referred to as the Fujisaki-
Okamoto commitment, or FO commitment.

2.4 Combined Signature and Encryption Schemes

A combined signature and encryption scheme is a combination of a signature
scheme and a public key encryption scheme that share a key generation algorithm
and hence the same keypair (pk, sk). Paterson et al. [PSST11] revisited this topic
and gave a generic construction of combined public key scheme from identity-
based encryption. The scheme comprises signature scheme (Setup,KeyGen, Sign,
V erify) and PKE scheme (Setup,KeyGen,Enc,Dec). When defining a secu-
rity game against a component of the scheme, the nature of any oracles depends
on the required security of the other components. This means that the PKE
component is IND-CPA secure even in the presence of a signing oracle, while
the signature component is EUF-CMA secure even in the presence of encryption
oracle. The formal security definition of the scheme as following:
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IND-CPA security in the presence of a signing oracle. Let (KeyGen, Sign,
V erify, Encrypt,Decrypt) be a combined signature and encryption scheme. In-
distinguishability of the encryption component under an adaptive chosen plain-
text attack in the presence of an additional signing oracle is defined through the
following game between a challenger and an adversary A. The advantage of A
can be defined in the following experiment:

Adv (λ) = Pr

[
β′ = β

∣∣∣∣∣
pp← Setup(λ); (pk, sk)← keyGen(pp);

m0,m1 ← AOsign(pk);
β ←R {0, 1};C ← Enc(pk,mβ);

β′ ← AOsign(C)

]
− 1/2

The signature oracle Osign returns the result of signing the message m using
the private key sk. The encryption scheme is IND-CPA secure, if no adversary
wins the security game by non-negligible advantage, the encryption component
is IND-CPA secure in the presence of a signing oracle.

EUF-CMA security in the presence of a decryption oracle. Let (KeyGen,
Sign, V erify,Encrypt,Decrypt) be a combined signature and encryption scheme.
Existential unforgeability of the signature component under an adaptive chosen
message attack in the presence of an additional decryption oracle is defined
through the following game between a challenger and an adversary A. The ad-
vantage of A can be defined in the following experiment:

Adv (λ) = Pr

[
V erify(pk,m∗, σ∗) = 1

∧m∗ 6∈ Q

∣∣∣∣∣
pp← Setup(λ);

(pk, sk)← keyGen(pp);
(m∗, σ∗)← AOsign(pp, pk)

]
− 1/2

The set Q represents a request to the signing oracle and returns the signed
result Sign(sk,m) when the input is m. The encryption scheme is EUF-CMA
secure, if no adversary wins the security game by non-negligible advantage, the
signature component is EUF-CMA secure in the presence of a decryption oracle.

2.5 Zero-knowledge Proof

The zero-knowledge proof system consists of two parties, called Prover(P ) and
V erifier(V ), where P knows a secret, and after several rounds of interaction
between P and V , V believes that P really has the secret, without revealing any
information except that the statement is true. For example, P can convince V
that a confidential transaction is valid without revealing the exact amount of
the transaction. Zero-knowledge proof can be consist of the following three PPT
algorithms (Setup, P, V ).

Setup algorithm inputs 1λ, outputs the public parameter pp used in the proof,
such as the common reference string(CRS). Let R ⊆ X×W be the discriminable
NP relation in polynomial time, w ∈ W is the witness to statement x, and the
NP language L dependent on the public parameter pp can be defined as
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Lpp = {x|∃w : (x,w) ∈ R}

P and V are a pair of interactive algorithms that use tr ← 〈P (s), V (t)〉 to
represent the interaction between P and V , where the input for P is s and the
input for V is t. We write 〈P (s), V (t)〉 = b depending on whether the verifier
rejects, b = 0, or accepts, b = 1.

Any zero-knowledge proof should satisfy the following three requirements:
(1) Completeness: If the statement is true, the honest verifier will pass the

verification. The verifier always returns TRUE if the prover’s input is TRUE.
That is, for any (x,w) ∈ R, the following relation holds:

Pr [〈P (x,w) , V (x)〉 = 1] ≥ 1− negl (λ)

(2) Soundness: If the statement is false, the verifier cannot pass with any
cheating methods. If the input is wrong, the verifier always returns FALSE, that
is, for any x /∈ L, all dishonest prover P ∗, the following relation holds:

Pr [〈P ∗ (x) , V (x)〉 = 1] ≤ negl (λ)

(3) Zero-knowledge: No one else can get any information about the input
other than the corresponding statement.

Definition 6 (Computational Witness-Extended Emulation). (Setup, P, V )
has witness-extended emulation [BCC+16], if there is an expected polynomial
time emulator E for all deterministic polynomial time P , and for all interactive
adversaries A1,A2, there exists a negligible function negl (λ) such that:

Pr

[ pp← Setup(λ);
(x, s)← A1(pp);

tr ← 〈P ∗(x, s), V (x)〉;
A2(tr) = 1

]
− Pr

[ pp← Setup(λ);
(x, s)← A1(pp);

(tr, w′)← EO(x);
(x,w′) ∈ Rpp;
A2(tr) = 1

]
≤ negl(λ)

Where the O = 〈P ∗ (x,w) , V (x)〉 permits rewinding to a specific point and
resuming with fresh randomness for the verifier from this point onwards.

In this definition, s can be interpreted as the state of P ∗, including the
randomness. So, whenever P ∗ is able to make a convincing argument in state s,
E can extract the witness. This is why we call it an argument of knowledge.

Definition 7 (Public coin). An argument of knowledge (Setup, P, V ) is public
coin if all messages sent from V are chosen uniformly at random and indepen-
dently of the P’s messages.

Definition 8 (Range Proof). For a commitment scheme (Setup,Com) over
message space Mpp and randomness space Rpp, a zero-knowledge range proof is
a argument of knowledge for the following relation:

L = {C|∃m ∈Mpp, r ∈ Rpp s.t. C = Com (m, r) ∧ m ∈ [a, b]}
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Definition 9 (Sigma Protocol). Sigma Protocol [Dam02] is used by P to
prove that P knows some secrets. The main procedure of the protocol is as follows:

(1) Commitment: P calculates a commitment c.
(2) Challenge: V sends a random challenge e to P.
(3) Response: After receiving challenge e, P calculates response z and sends

it to V .
(4) Verification: V checks the response and outputs to accept or reject.

A sigma protocol satisfies standard completeness, special soundness and zero-
knowledge.

Definition 10 (Standard completeness). For any x and the correct (c, e, z)
and (c, e′, z′), where e 6= e′, the witness w can be calculated.

Definition 11 (Perfect Special Honest Verifier Zero-Knowledge). A pub-
lic coin argument of knowledge (Setup, P, V ) is a perfect special honest verifier
zero-knowledge argument if there exists a PPT simulator S for the interactive
adversaries A1,A2 satisfying the following relations.

Pr

[
(x,w) ∈ R;
A2 (tr) = 1

∣∣∣∣∣ pp← Setup (λ) ;
(x,w)← A1 (pp) ;

tr ← 〈P ∗ (x,w) , V (x)〉

]
= Pr

[
(x,w) ∈ R;
A2 (tr) = 1

∣∣∣∣∣ pp← Setup (λ) ;
(x,w)← A1 (pp) ;

tr ← S(x)

]

In the definition, the proof system is zero-knowledge if the adversary cannot
distinguish between real scheme and simulated scheme.

3 Security model

For the sake of simplicity as Quisquis [FMMO19], we focus solely on the trans-
action layer of a cryptocurrency and assume network-level or consensus-level
attacks are out of scope. Intuitively, The confidential transaction system should
provide authenticity, confidentiality and soundness. Correctness requires that the
adversary cannot create a transaction, and the transaction can only be generated
by the honest sender, that is, the attacker cannot make a transfer from the hon-
est account. For an adversary, the only way to success is to calculate the sk of the
honest account. Confidentiality requires that only the sender and receiver can
obtain the amount of a confidential transaction, and that the encrypted amount
is indistinguishable from m0 or m1 with non-negligible advantage. Soundness re-
quires that the sender cannot generate an illegal but verified transaction, which
against cheating on his own. The main purpose of the security experiment is
to capture the way an adversary can interact with the honest user in the trad-
ing system. For example, the adversary can establish a transaction through the
honest user or generate a valid transaction by himself.

An adversary can initiate a specific transaction using transact queries by an
honest user, or inject a malicious transaction. It can also get the private key
through disclose queries for any account in the system, except for the account
in the challenge stage. Below we describe oracles adversaries can access.
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Oregister: Adversary A queries this oracle to register an honest account, and
challenger CH puts the result of the query into an initially empty list called
Thonest. After receiving the query, CH responds as follows: CH generates the
sequence number i and a keypair (pki, ski), returns (i, pki, ski, balance, C) to A,
and records it in Thonest.

Odisclose(pk): A queries this oracle with an honest public key, if pki in Thonest,
removes it from Thonest to Tcorrupt, which records some dishonest account. Then
CH returns (i, pki, skibalance, C) to A. This kind of oralce captures that the
adversary can control an honest account.

Overify(tx): A queries this oracle with a transaction tx. If it is a valid trans-
action, CH returns 1; otherwise, CH returns 0.

Oinject(pks, pkr, v): A queries this oracle with parameter (pks, pkr, v) to gen-
erate a confidential transaction, where pks ∈ Tcorrupt. If V erifyTX(tx) = 1,
CH updates the state of relevant account. This means that A can generate a
transaction itself (possibly a malicious transaction).

4 Our Construction

4.1 Confidential Transaction System

Setup(1λ) : Input a security parameter λ to generate relevant parameters for
encryption and zero-knowledge proof.

CreateAddress(1λ) : Input a security parameter λ, and execute PKE.KeyGen(pp)
to get a keypair(pk, sk), then generate the account according to the encryption
scheme designed in this paper, calculate C0 = Enc(PK,m0, r0) as the initial
balance of the account, where m0 = 0. It then outputs (pk, sk) and uses the
public key as the address for subsequent transactions.

Transact(sks, pks, pkr,m) : On input sender’s keypair (pks, sks) and re-
ceiver’s address pkr, suppose the sender transfer m to the receiver. And E∗s =
(pkr

∗

s , g
r∗hm

∗
) represent the sender’s current balance, the specific transaction

process is as follows:
Sender: Sender first checks whether m ∈ [0, 2n − 1] and m∗ ∈ [0, 2n − 1],

and encrypts m with pks and pkr respectively to get Es = (C1 = pkr0s , C2 =
gr0hm), Er = (C1 = pkr0r , C2 = gr0hm, C3 = pkr1r , C4 = r0g

r1), the ciphertext
of the transaction amount has five parts. The ciphertext of the balance consists
of two parts: E′s = (pkr

∗−r0
s , gr

∗−r0hm
∗−m) = (pkrs

′
, gr

′
hm
′
), and r0 can be

calculated. Since the r0 of each transaction can be solved, it is considered that
the randomness in the sender’s balance is known and r′ can be calculated. The
sender is also required to use zero-knowledge proofs to prove (1) range proofs for
the transaction amount m, the transaction amount is within the specified range,
and get π1 (2) range proofs for sender’s current balance, which is a positive
value, and get π2 (3) the randomness in Er1 and Er2 have the same r0, and
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the corresponding π3 is generated. More formally, a user proves the following
statement:

Srange1 = {(pks, Es) : ∃r0, r1,m s.t. Es = Enc(pks,m, r0, r1) ∧m ∈ [0, 2n − 1]}

Srange2 = {(pks, E′s) : ∃r′,m′ s.t. E′s = Enc(pks,m
′, r′) ∧m′ ∈ [0, 2n − 1]}

Sequal = {(pkr, Er1, Er2) : ∃r0,m s.t. Er1 = pkr0r ∧ Er2 = gr0hm}

Here, only part of the ciphertext of the receiver is proved to be valid, because
(1) Er1 and Er2 with the same randomness can compute the correct transaction
amount m (2) the correctness of r0 can be ensured by receiver’s verification,
without increase on-chain content (3) adversary gets no benefit from construct-
ing pkr0s and does not change the balance in the commitment. Then run the
signature algorithm to the transaction with the sender’s private key. And the
final transaction is tx = (pks, pkr, Es, E

′
s, Er, π1, π2, π3) and corresponding sig-

nature Sig. There is no need for the sender to prove the ciphertext is correct,
that is, the ciphertext of Es and Er is encrypted with the same (m, r0) with the
public keys of both parties. Instead, it is the receiver to verify the correctness of
ciphertext. If it is a malicious transaction, the receiver call the smart contract
to punish the sender, eliminating the sender’s idea of evil from the sources.

V erifyTX(tx, sig) : Verify the validity of Sig with the sender’s public key,
verify E′s = E∗s/Es and π1, π2, π3. If all the verifications pass, miners confirm that
the transaction is valid and record it on the blockchain via consensus protocol.

ConfirmTX(tx) : After the receiver obtains the on-chain transaction infor-
mation, verify E′s = E∗s/Es and validity of π1, π2. Then decrypt Er = (C1 =

pkr0r , C2 = gr0hm, C3 = pkr1r , C4 = r0g
r1) to get r0 = C4/C

sk−1

3 , hm = C2/C
sk−1

1 ,
receiver check if gr0hm = gr0hm. If the verification pass, tx is a valid transaction,
and the reveiver update corresponding balance and randomness. If not, then this
is a malicious transaction, indicating that the sender changes the randomness r0
in C4 so that the receiver cannot solve the correct randomness, but the receiver
can calculate pkr0 and compare with on-chain content to determine whether it
is a malicious transaction. During the challenge stage, the receiver can prove
that the transaction is malicious with proof of fraud, and the honest receiver
will execute the reportTX(TX). If the receiver does not report the transaction
until the end of the challenge stage, the transaction is considered valid.

Report(tx) : When the receiver finds that is a malicious transaction, the re-
ceiver reports the transaction to the smart contract. Record the wrong r0 on the
blockchain and prove that r0 is actually calculated by the on-chain ciphertext.
More formally, a user proves the following statement:

Senc =
{

(skr, r0) : ∃r0, s.t. C4 = E
sk−1
r

r3 r0

}
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where Er3 represents the third ciphertext of Er, and generates a zero-knowledge
proof π4. After the smart contract verification, it is confirmed that this is a
malicious transaction, and then it performs a homomorphism calculation on the
receiver’s account E∗s = E′s ·Es, returns to the state before the malicious trans-
action is completed, and destroys the token corresponding to this transaction.
Because normal user only needs to input transaction amount m when perform-
ing confidential transactions, the reason for the above malicious transaction is
that the attacker changed the randomness in r0g

r1 to make it different from the
randomness in gr0hm, it can be considered that this kind of transaction must
be maliciously constructed by the sender, so the smart contract can destroy the
token in the transaction to punish the malicious sender.

ReadBalance(E, sk) Taking the sender as an example, input the private key
sks of the sender and the corresponding ciphertext Es to obtain the balance
m = Dec (Es, sks) of the sender.

Above all, the attack cannot succeed in this process, from the perspective of
Game Theory, an adversary will not execute an attack that is unprofitable or
even at a loss, and does not effect on the honest receiver, so we can assume that
malicious transactions won’t appear and the system can operate safely.

4.2 Security Proof

Theorem 1. The confidential transaction system satisfies correctness if there
is no PPT adversary to win the following game with non-negligible advantage.

Proof of correctness.

Game 0. A real experiment for correctness. The interaction between adver-
sary A and Challenger CH is as follows.

1. Setup: CH generates the system, sends the public key and other public
parameters to A.

2. Training: A queries the following oracles Oregister, Odisclose (pk) ,
Overify (tx) , Otransact (pks, pkr, v) , Oinject (pks, pkr, v) adaptively, and CH an-
swers these queries with corresponding results.

3. Challenge: If the adversary generates a legitimate transaction through an
honest user, then the adversary succeeds, otherwise fails.

Game 1. Game 1 is the same as Game 0, except that the extractor runs every
time an adversary creates a malicious transaction. If an adversary generates a
transaction through Otransact (pks, pkr,m), the extractor can extract the witness
w = (sks, balance,m, r).

Game 2. Game 2 is the same as Game 1, except that CH randomly selects
an honest user that the adversary wants to forge at the beginning, such as pkj
from Thonest. If the adversary obtains the private key of pkj in the training stage
or pks 6= pkj in the challenge stage, CH terminates and starts Game 2 again.
Obviously, Game 2 executes a round in polynomial time, let W be the event
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that CH does not terminate, the probability of Pr[W ] ≥ 1
Qhonest

. Qhonest is the
number of the honest set.

Game 3. Game 3 is the same as Game 2, except that the real zero-knowledge
proof system is replaced with the simulator and generates a simulated π. When
the adversary accesses the oracle Otransact (pks, pkr,m), the oracle runs tx ←
Transact(sks, pks, pkr,m), but the zero-knowledge proof parameters such as
CRS are replaced by simulated parameters.

The above experiments show that the system is zero-knowledge and the ad-
versary cannot obtain additional information from the interaction. If A suc-
ceeds it means that A controls an honest account to execute a transaction,
w = (sks, balance,m, r) can be obtained from the extractor, indicating that A
calculates the sender’s private key sks from public parameter, which is impossible
according to Theorem 6.

Theorem 2. The confidential transaction system satisfies confidentiality, if there
is no PPT adversary to win the following game with non-negligible advantage.

If the adversary can tell E = (C1 = pkr0 , C2 = gr0hmβ , C3 = pkr1 , C4 = r0g
r1)

is encrypted to m0 or m1. The adversary can only distinguish from the evidence
π of zero knowledge proof, or according to the final ciphertext discrimination.
The difference between Em0

and Em1
is the randomness and the encrypted mes-

sage mβ , and we conclude that the adversary cannot distinguish the ciphertext
based on hiding property of commitment.

Proof of confidentiality.

Game 0. A real experiment, the interaction between adversary A and Chal-
lenger CH is as follows.

1. Setup: CH generates the system, sends the public key and other public
parameters to A.

2. Training Stage 1: A queries the following oracles Oregister, Odisclose (pk) ,
Overify (tx) , Otransact (pks, pkr, v) , Oinject (pks, pkr, v) adaptively, and CH an-
swers these queries with corresponding results.

3. Challenge: The adversary selects pks, pkr, and two transaction amounts
m0,m1, where pks, pkr ∈ Thonest. Both m0,m1 can form a legal transaction
issued by pks. CH selects random bits β, runs tx← Transact(sks,
pks, pkr,mβ), and sends tx to A.

4. Training Stage 2: A queries the following oracles Oregister, Odisclose (pk) ,
Overify (tx) , Otransact (pks, pkr, v) , Oinject (pks, pkr, v) adaptively, and CH an-
swers these queries as stage 1. But at this time A is denied to use pks and pkr to
query the oracle Odisclose (pk), and pks to query the oracle Otransact (pks, pkr, v).

5. Guess: A outputs β′ and wins if β = β′.
Game 1. Game 1 is the same as game 0, except that the real zero-knowledge

proof system is replaced with the simulator and generates a simulated π. Based
on the property of NIZK, we can conclude that Game 0 and Game 1 are indis-
tinguishable.
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Game 2. Game 2 is the same as game 1, except that changing the encryption
of m0 in Game 1 to the encryption of m1, Game 1 and Game 2 are indistin-
guishable because of the hiding property of the commitment.

Game 3. Game 3 is the same as game 2, except that simulator is replaced
with the real zero-knowledge proof system. Game 2 and Game 3 are indistin-
guishable because of the property of NIZK. So we have:

|Pr(G3)− Pr(G0)| < negl(λ)

Theorem 3. The confidential transaction system satisfies soundness if there is
no PPT adversary to win the following game with non-negligible advantage.

Soundness requires that the sender cannot generate an illegal but verified
transaction and cannot cheat on his own. A successful attack by an adversary
means that the transferred amount is greater than the account balance, and the
transaction is valid, indicating that the adversary has constructed another pair
of opening (m′, r′) that can also open the commitment. The binding property of
commitment shows that the adversary cannot success.

The specific proof process is similar to the correctness proof, omitted here.

4.3 Regulation of Transactions

We use zero-knowledge proof to regulate the legality of transactions, mainly
proving the following two aspects: the total amount of transactions within a pe-
riod of time is in a certain range, and a transaction can be opened in accordance
with the requirements of the regulatory.

For each transaction Ei needs to prove relationship as blow:

Ssum = {(pk,Ei,MAX) : ∃sk s.t. sum = Σn
i=1Ei ∧Dec(sum, sk) < MAX}

Ei = (C1 = pkr0i , C2 = gr0hmi , C3 = pkr1i C4 = r0g
r1), according to additive

homomorphic of Modified ElGamal, we can calculate the sum of these values,
mi and ri satisfy summ = Σn

i=1mi, sumr = Σn
i=1ri, and prove that the sum of

values in a given range.
If the user opens a particular transaction, the relation to prove can be ex-

pressed as:

Sopen = {(pk,E,m) : ∃sk s.t. pkr = (C2/h
m)sk ∧ pk = gsk}

That is, the private key is used to prove that the amount m corresponding to
this transaction is indeed encrypted in the ciphertext.

5 Instantiation of the Conifdential Transaction System

In this section, we instantiate our transaction system by instantiating the newly
proposed Modified ElGamal encryption and Schnorr signature and then design-
ing a zero-knowledge proof scheme with bulletproofs.
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5.1 Instantiation of Signature and Encryption Part

5.1.1 Modified ElGamal

· Setup(1λ) : run (p, g,G)← GroupGen
(
1λ
)
, select h←R G∗, set(p, g, h,G)

as public parameter pp and m, r ∈ Zp.
· KeyGen(pp): select sk ←R Zp and calculate pk = gsk.

· Enc(pk,m, r) : calculate C1 = pkr0 , C2 = gr0hm, C3 = pkr1 , C4 = r0g
r1 ,

output E = (C1, C2, C3, C4).

· Dec(sk, C): according to E = (C1, C2, C3, C4), calculate hm = C2/C
sk−1

1 ,

r0 = C4/C
sk−1

3 , m can be calculated from hm.

In general, the transaction amount m is known to both parties of the transac-
tion, so user can take known m into calculation. If user wants to quickly calculate
m from hm, then m needs to be small enough(less than 232), and most transac-
tions are less than 232, so user can uses the algorithm of fast discrete logarithm
to compute m efficiently.

Obviously, the new algorithm satisfies correctness and homomorphism, and
at the same time, it satisfies IND-CPA security based on DDH assumption in
the standard model. The specific proof is given in Appendix.

Kurosawa et al. [Kur02] first proved that in the standard ElGamal encryp-
tion, randomness can be reused in the single-plaintext multi-receiver setting,
that is, use pks and pkr to encrypt the same (m, r). Zether and PGC also use
Kurosawa’s result to make their zero-knowledge component more efficient. Our
Modified ElGamal encryption scheme is also secure when reusing randomness.
This technique not only reduces the size of the transaction, but also makes re-
lated zero-knowledge proof more efficient. The specific safety certification is as
follows:

Theorem 4. Modified ElGamal encryption scheme that reuses randomness is
IND-CPA secure based on the DDH assumption.

Game 0. In the real IND-CPA security experiment, the interaction between
challenger CH and adversary A is as blow. Let Si be the probability that A wins
in Game i.

1. Setup. CH generate system and related parameters, sends public keys
pk0 = gsk0 , pk1 = gsk1 to A.

2. Training. A generates messages to obtain encrypted ciphertext (bounded
polynomial times).

3. Challenges. A outputs two messages of equal length m0 and m1. CH selects
random bit β and randomness r0, r1, calculate X0 = pkr00 , X1 = pkr01 , Y =
gr0hmβ , Z0 = pkr10 , Z1 = pkr11 , U = r0g

r1 , and send X0, X1, Y, Z0, Z1, U to A
4. Guess. A outputs β′, and wins if β′ = β.

The adversary’s advantage in Game 0 can be defined as below.

AdvA (λ) = Pr [S0]− 1/2



Two Efficient Regulatory Confidential Transaction Schemes 19

Game 1. Same as Game 0, except that CH picks a random bit β and random-
ness r0, r1, s0, s1, compute X0 = pkr00 , X1 = pkr01 , Y = gs0hmβ , Z0 = pkr10 , Z1 =
pkr11 , U = r0g

s1 and send X0, X1, Y, Z0, Z1, U to A.

In Game 1, ciphertext distribution is independent of β, so A has no message
about β, Pr [S1] = 1/2. Random quad (g, gs0 , gsk0,1 , gsk0,1·r0), (g, gs1 , gsk0,1 , gsk0,1·r1)
can be expressed as follows. In the quad (g, ga, gb, gc), assume that c = c′b, a =
c′′+c′, ciphertext can be expressed as (gc

′
0b0 , gc

′
0b1 , gc

′
0(gc

′′
0 hm), gc

′
1b0 , gc

′
1b1 , gc

′
1(gc

′′
1 a0)),

and (g, gc
′
0+c

′′
0 , gb0,1 , gc

′
0b0,1), (g, gc

′
1+c

′′
1 , gb0,1 , gc

′
1b0,1) constitute a random quad.

Next, it is proved that the difference between Pr[S0] and Pr[S1] is negligi-
ble. We construct adversary B with the same advantage as A to attack DDH
assumption. Given a quad

(
g, ga, gb, gc

)
, B determines whether it is a random

quad or a DH quad. B is constructed as follows.

1. Setup. B generates system and related parameters, treats gb0 , gb1 as the
public keys pk0 and pk1, b0 and b1 are corresponding private keys, which is
unknown to B. Then B sends pk0 = gb0 , pk1 = gb1 to A.

2. Training. A generates messages to obtain encrypted ciphertext (bounded
polynomial times).

3. Challenges.A outputs two messages of equal lengthm0,m1 and sends them
to B. B selects random bits β, calculate X0 = gc0 , X1 = gc1 , Y = ga0hmβ , Z0 =
gc
′
0 , Z1 = gc

′
1 , U = a0g

a1 , sends X0, X1, Y, Z0, Z1, U to A.

4. Guess. A outputs β′, and wins if β′ = β.

If the quad
(
g, ga, gb, gc

)
is a DH quad, that is, (g, gr0 , gsk0,1 , gsk0,1·r0),

(g, gr1 , gsk0,1 , gsk0,1·r1) consist of a DH quad, then B is the same view as Game 0,
where c = ab. If

(
g, ga, gb, gc

)
is a random quad, that is, (g, gs0 , gsk0,1 , gsk0,1·r0),

(g, gs1 , gsk0,1 , gsk0,1·r1) consist of a random quad, then B is the same view as
Game 1. Therefore, if A can distinguish between B representing Game 0 and
Game 1 with non-negligible advantage, then B can break the DDH assumption
with the same advantage.

5.1.2 Signature scheme In the signature part, Schnorr signature [Sch91] that
satisfies EUF-CMA security [PS00] was selected for two reasons: Schnorr signa-
ture is the same as Modified ElGamal algorithm in the key generation process,
and signature procedure and the encryption procedure are unrelated to each
other. In addition, Schnorr signature is efficient and multi-signature scheme that
can be constructed easily. At present, multi-signature scheme is widely used in
blockchain [BDN18].

5.2 Zero-knowledge Proof

5.2.1 Range Proof for Transaction Amount. The transaction generated
by the sender Es = (C1 = pkr0s , C2 = gr0hm, C3 = pkr1s , C4 = r0g

r1), we can
directly use Bulletproofs for C2 = gr0hm with logarithmic proof size and output
the evidence π1. You can refer to the original Bullteproofs [BBB+18] for more
details.
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5.2.2 Range Proof for Sender’s Balance According to additive homo-
morphism of Modified ElGamal, we can calculate the balance of sender by
E′s = E∗s/Es = gr

∗−rhm
∗−m = gr

′
hm
′
. Where r∗ can be considered as al-

ready known, because r0 of each received transaction can be calculated from
E = (pkr0 , gr0hm, pkr1 ,
r0g

r1), and the randomness of self-initiated transaction is also known, so r′,m′ is
computable. So we can directly use Bulletproofs for gr

′
hm
′
, and get the evidence

π2.

5.2.3 Aggregating Logarithmic Proofs The two range proofs can also be
combined. Both (m, r) of the two transactions are known. Using the method of
aggregate range proofs, multiple range proofs can only increase the proof size at
logarithmic level. The relationship can be written as

Srange = {(Cs2, C ′s2,m, r0,m′, r′) : Cs2 = gr0hm∧C ′s2 = gr
′
hm
′
∧m ∈ [0, 2n−1]∧m′ ∈ [0, 2n−1]}

Where (m, r0) is the transaction amount and the corresponding randomness.

5.2.4 Validity of Er1 and Er2. Here we need to prove that Er1 and Er2 use
the same randomness r0, and the relationship to be proved is

Sequal = {(pkr, Er1, Er2) : ∃r0,m s.t. Er1 = pkr0r ∧ Er2 = gr0hm}

We construct a non-interactive Sigma protocol using the Fiat-Shamir heuris-
tic [FS86]:

(1) P selects randomness a, b, and calculates A1 = pkar , A2 = gahb

(2) P computes random challenge e = Hash(Er1, Er2, A1, A2)
(3) P calculates s1 = a+ er0, s2 = b+ em, and sends A1, A2, s1, s2 to V
(4) V calculates

pks1r = A1(Er1)e

gs1hs2 = A2(Er2)e

If the two equality verifications are both true, then output the evidence π3.

Security Proof of Sigma protocol

Completeness: From the above process, the correctness is clear if the P
and V are executed as specified in the protocol.

Special Soundness: For certain (A1, A2), suppose there are two different
accepting transcripts (e, s = (s1, s2)) and (e′, s′ = (s′1, s

′
2)), e 6= e′, then r0,m

can be extracted by the following method. We have s1 = a+ er0, s
′
1 = a+ e′r0,

from which we can get r0 = (s1 − s′1) / (e− e′). And we can extract m with the
same method.
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Special Honest-Verifier Zero-Knowledge: Assuming there is a polynomial-
time simulator S, where the simulator picks a random challenge e and response
s1, s2, and computes A1 = pks1r (Er1)−e, A2 = gs1hs2(Er2)−e, it is clear that
(A1, A2, Er1, Er2, s1, s2) is a valid transcript, and for any probabilistic polynomial-
time verifier, these parameters are computationally indistinguishable from the
parameters in the real protocol.

5.2.5 Prove that r0 is calculated by on-chain ciphertext. When a receiver
finds a malicious transaction, receiver can use the private key as witness to prove
the wrong randomness are indeed solved by the on-chain ciphertext, and send it
to smart contract, the relationship to prove is

Senc =
{

(skr, r0) : C4 = E
sk−1
r

r3 r0

}
A non-interactive Sigma protocol is as below:

(1) P selects a randomness a, and calculates A1 = Ear3, A2 = pkar
(2) P computes random challenge e = Hash(Er3, C4, A1, A2)

(3) P calculates s = a+ e · sk−1, and sends A1, A2, s to V

(4) V calculates

Esr3 = A1(C4/r0)e

pksr = A2 · ge

If the two equality verifications are both true, then output the evidence π4.
After the smart contract verified and confirmed that this is a malicious trans-
action, it can be homomorphically calculated again to subtract the transaction
amount and at the same time punish the malicious sender.

Security Proof of Sigma protocol

Completeness: From the above process, the correctness is clear if the P
and V are executed as specified in the protocol.

Special Soundness: For certain A1, suppose there are two different ac-
cepting transcripts (e, s) and (e′, s′), e 6= e′, then sk can be extracted by the
following method. We have s = a + e · sk, s′ = a + e′ · sk, which can get
sk = (s− s′) / (e− e′).

Special Honest-Verifier Zero-Knowledge: Assuming there is a polynomial-
time simulator S, where the simulator picks a random challenge e and response
z, and computes A1 = Esr3(gr0)−e, it is clear that (A1, Er3 , s) is a valid tran-
script , and for any probabilistic polynomial-time verifier , these parameters are
computationally indistinguishable from the parameters in the real protocol.
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6 Scheme Based On Modified Paillier

6.1 Handling Large Transaction Amounts

The feasibility of the above scheme is based on the fact that the transaction
amount m is small (less than 232), because when m is relatively large, the diffi-
culty of calculating m from hm will increase greatly, affecting the immediacy of
a transaction. Taking Ethereum as an example, the smallest transaction unit is
wei(1Ether = 1018wei). If large transactions generated with this precision are
calculated by brute-force enumeration, it will be slower. So we need a method
that can quickly and directly decrypt the transaction amount m. From the per-
spective of regulation, the regulator needs to know the specific amount and
destination of each transaction. The regulator needs to access the total amount
of transactions in an account over a period to monitor criminal acts such as
money laundering. But the method based on zero-knowledge proof unable to
get the specific amount, Zcash chooses a new keypair which they can provide to
a third party. It works but increases the complexity of transaction system and
on-chain content, which also brings additional troubles to regulation and audit
of transactions.

To solve the above problems, we propose a confidential transaction system
based on Paillier [Pai99] encryption, which can efficiently calculate the trans-
action amount m even the transaction amount is relatively large (greater than
232). Also, the transaction process does not require the regulator to participate.
The regulator can operate independently and only participate in the transaction
when regulation is needed. So that the transaction is regulated while privacy is
protected and controllable privacy is realized.

6.2 Audit and Regulation of Transactions

With the rapid development of cryptocurrencies, different suggestions have been
put forward on how to regulate them. A basic idea is that the system should
verify the legitimacy of participating entities, that is, users who have completed
authentication can proceed with subsequent transactions. Narula et al. [NVV18]
and Tian et al. [TCD+19] proposed an alternative approach to digital cur-
rency regulation that would require changing the structure of ledger. At present,
some confidential transaction schemes provide too strong anonymity and pri-
vacy, which might be abused in some cases. For example, Pedersen commitment
are used to hide transaction amount, and regulators cannot obtain the specific
transaction information of users in the blockchain network. If users engage in
transactions with high frequency and large amount, such as money laundering,
the regulator will not get any relevant information, which will lead to some
illegal behaviors that are difficult to restrain. Therefore, it is an important chal-
lenge to realize controllable privacy and give the regulator higher authority while
protecting users’ transaction privacy.

According to our investigation, the US Securities and Exchange Commis-
sion (SEC), the US Federal Bureau of Investigation (FBI), the US Financial
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Consumer Protection Bureau (CFPB) and other law enforcement agencies have
taken regulatory actions against financial activities on the blockchain, involving
anti-money laundering, tax evasion and other issues. Especially in the rapid de-
velopment of Decentralized Finance (Defi) in recent years, the need to strengthen
regulation is more urgent. In order to design a practical and efficient regulation
scheme, we choose the idea of verifying the legitimacy of the transaction partici-
pant, and expect to realize the regulatory confidential transaction system at the
minimum cost. Our proposal satisfies the following requirements:

(1) Every user in the system is under regulation, that is, regulation is not an
option for users.

(2) The activities of the regulator and the transactions between users are
independent of each other, that is, the implementation of regulation and audit
does not require users to be online, and users do not have to go through the
regulator when conducting transactions.

(3) Make the minimum change to the existing user account structure. As far
as users are concerned, there is no difference between the new regulatory scheme
and the existing scheme.

The following are detailed introductions from cryptographic algorithms to
the construction of the regulated confidential transaction system.

6.3 Confidential Transaction System Based on Modified Paillier

6.3.1 Modified Paillier

· Setup : Generate two large prime p, q, where p = 2p′ + 1, q = 2q′ + 1, p 6=
q and p′, q′ are primes. Set λ′ = p′q′, now the order of Z∗n is ψ(n) = 4λ′.
Z∗n is consisting of Z∗p and Z∗q , Z∗n can be calculated by Chinese Remainder
Theorem(CRT). Then randomly select gp′ ∈ Gp′ , gq′ ∈ Gq′ , and Gp′ ,Gq′ are the
subgroup of Z∗p and Z∗q with order p′ and q′. We can compute the generator g1 ∈
Z∗n2 of cyclic group Gp′q′ by Chinese Remainder Theorem, g1 = gp′ mod p, g1 =
gq′ mod q, the order of Gp′q′ is p′q′, and g1 satisfy gcd(L(gu1 mod n2), n) == 1
simultaneously. Compute u = lcm(p − 1, q − 1) and k = gu1 mod n2 , select
randomness r ∈ Z∗n2 , compute h = gr1 mod n2, the public key is pk = hsk. Now
the public key of the homomorphic algorithm is pk, the private key is sk, the
system parameter (k, h, n) is public, and u is the system private key.

· Enc(m, r0, r1) : For message m, m ∈ Zn, select random number r0, r1 < n,
and calculate C1 = pkr0 mod n2, C2 = kmhr0 mod n2, C3 = pkr1 mod n2, C4 =
kr0hr1 mod n2. The ciphertext is (C1, C2, C3, C4), and C2, C4 are in the form of
FO commitment.

· Dec(C1, C2, C3, C4, sk): Compute Cm = C2/C
sk−1

1 = km mod n2,

m = L(Cm mod n2)/L(k mod n2) to recoverm, and compute Cr0 = C4/C
sk−1

3 =
kr0 mod n2, r0 = L(Cr0 mod n2)/L(k mod n2) to recover r0

Obviously, the new algorithm satisfies correctness and homomorphism, and
at the same time, it satisfies IND-CPA security based on DDH assumption in
the standard model. The specific proof is given in Appendix B.
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6.3.2 Combine FO Commitment and Bulletproofs

Unlike the Modified ElGamal is the form of the Pedersen commitment, which
can directly use Bulletproofs. The ciphertext obtained by Modified Paillier en-
cryption is the form of FO commitment, which requires the extra proof that the
Pedersen commitment contains the same (m, r) with FO commitment, and then
use Bulletproofs to Pedersen commitment. This requires a new Sigma protocol
that differs from above and similar to Zether. The relations need to prove as
below:

(1) Transaction amount m is non-negative and within the correct range (less
than 264)

(2) The sender’s balance is non-negative
Sender does not prove the correctness of the ciphertext, but receiver ver-

ify. If the receiver receives a malicious transaction, the transaction can be re-
ported. According to the idea of Game Theory, the sender will actively eliminate
evil thoughts. So all the sender needs to do is recording the ciphertext of the
transaction (C1 = pkr0 mod n2, C2 = kmhr0 mod n2, C3 = pkr1 mod n2, C4 =
kr0hr1 mod n2) and aggregate range proofs evidence on the blockchain, greatly
reducing the data amount.

6.4 Construction of Transaction System

The transaction system is similar to the scheme using Modified Elgamal. The
main difference lies in the way of dealing with malicious transactions, because
the scheme based on Modified Paillier can accurately calculate the transaction
amount m, while the algorithm based on Modified Elgamal have to calculate m
from hm by brute-force enumeration, and the wrong hm may not be able to cal-
culate m. Therefore, if the amount calculated is different from the commitment
amount, the malicious transaction can be reported by the calculation evidence.
The specific transaction process is as follows.

Setup(1λ) : Input a security parameter λ to generate relevant parameters for
encryption and zero-knowledge proof.

CreateAddress(1λ) : Input a security parameter λ, and execute PKE.KeyGen(pp)
to get a keypair(pk, sk). then generate the account according to encryption de-
signed in this paper, calculate C0 = Enc(PK,m0, r0) as the initial balance of
the account, where m0 = 0. It then outputs (pk, sk) and uses public key as the
address for subsequent transactions.

Transact(sks, pks, pkr,m) :On input sender’s keypair (pks, sks) and re-
ceiver’s address pkr, suppose sender transferm to receiver. And E∗s = (pkr

∗

s , k
m∗hr

∗
)

represent sender’s current balance, the specific transaction process is as follows:
Sender:Sender first checks whether m ∈ [0, 2n − 1] and m∗ ∈ [0, 2n − 1],

and encrypts m with pks and pkr respectively to get Es = (C1 = pkr0s , C2 =
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kmhr0), Er = (C1 = pkr0r , C2 = kmhr0 , C3 = pkr1r , C4 = kr0hr1), the ciphertext
of the transaction has five parts. The ciphertext of the balance consists of two
parts: E′s = (pkr

∗−r0
s , km

∗−mhr
∗−r0 = km

′
hr
′
) , and r0 can be calculated. Since

the r0 of each transaction can be solved, it is considered that the randomness
in the sender’s balance is known and r′ can be calculated. The sender is also
required to use zero-knowledge proof to prove (1) range proofs for the transaction
amount m, the transaction amount is within the specified range, and get π1 (2)
range proofs for sender’s current balance, which is a positive value, and get π2.
More formally, a user proves the following statement:

Srange1 = {(pks, Es) : ∃r0, r1,m s.t. Es = Enc(pks,m, r0, r1) ∧m ∈ [0, 2n − 1]}

Srange2 = {(pks, E′s) : ∃r′,m′ s.t. E′s = Enc(pks,m
′, r′) ∧m′ ∈ [0, 2n − 1]}

Then run signature algorithm to the transaction with sender’s private key.
And the final transaction is tx = (pks, pkr, Es, E

′
s, Er, π1, π2) and corresponding

signature Sig. There is no need for the sender to prove the ciphertext is correct,
that is, the ciphertext of Es and Er is encrypted with the same (m, r0) with the
public keys of both parties. Instead, it is the receiver to verify the correctness of
ciphertext. If it is a malicious transaction, the receiver calls the smart contract
to punish the sender, which make the sender give up the will to construct illegal
transaction.

V erifyTX(tx, sig) :Verify the validity of Sig with the sender’s public key,
verify E′s = E∗s/Es and π1, π2. If all the verifications pass, miners confirm that
transaction is valid and record it on the blockchain via consensus protocol.

ConfirmTX(tx) :After the receiver obtains the on-chain transaction infor-
mation, verify E′s = E∗s/Es and validity of π1, π2. Then decrypt Er = (C1 =

pkr0r , C2 = kmhr0 , C3 = pkr1r , C4 = kr0hr1) to get kr0 = C4/C
sk−1

3 , km =

C2/C
sk−1

1 , receiver checks if kmhr0 = kmhr0 . If the verification pass, tx is a valid
transaction, and the reveiver updates corresponding balance and randomness. If
not, then this is a malicious transaction, indicating that the sender changes the
randomness r0 in C1 so that the receiver cannot solve the correct transaction
amount, or the sender changes the randomness r0 in C4 so that the receiver can-
not solve the correct randomness. The receiver also need to determine whether
pkr0 is the same with the on-chain ciphertext. During the challenge stage, the
receiver can prove that the transaction is malicious with proof of fraud, and the
honest receiver will execute the reportTX(TX) . If the receiver does not report
the transaction until the end of the challenge stage, the transaction is considered
valid.

When the sender and the receiver are both malicious users, that the receiver
does not report after receiving malicious transactions (under normal circum-
stances, the receiver program will automatically call ReportTX(tx) after calcu-
lating the malicious transaction). However, the updated balance of the receiver
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is the true amount corresponding to the on-chain commitment, not the wrong
amount m(which may be greater than m), so the receiver cannot obtain the
amount greater than m.

Report(tx) When the receiver calculates that the transaction is malicious, he
reports the transaction to the smart contract. Record the wrong m, r0 on the
blockchain and prove that m, r0 is actually calculate from the on-chain cipher-
text. More formally, the receiver proves the following statement:

Senc =
{(
skr, k

m, kr0
)

: ∃km, kr0 s.t. C2 = E
sk−1
r

r1 km ∧ C4 = E
sk−1
r

r3 kr0

}
and generate a zero-knowledge proof π3. After the smart contract verification,
it is confirmed that this is a malicious transaction, and then it performs a ho-
momorphism calculation on the receiver’s account E∗s = E′s · Es, returns to the
state before the malicious transaction is completed, and destroys the token corre-
sponding to this transaction. Because normal user only needs input transaction
amount m when performing confidential transactions. the reason for the above
malicious transaction is that the attacker changed the randomness in C1 or C4

to make it different from the randomness in kmhr0 , it can be considered that
this kind of transaction must be maliciously constructed by the sender, so the
smart contract can destroy the token in the transaction to punish the malicious
sender.

ReadBalance(E, sk) Taking the sender as an example, input the private key
sks of the sender and the corresponding ciphertext Es to obtain the balance
m = Dec (Es, sks) of the sender user.

Above all, attack cannot succeed in this process, from the perspective of
Game Theory, an adversary will not execute an attack that is unprofitable or
even at a loss, and has no effect on the honest receiver, so we can assume that
malicious transactions won’t appear and the system can operate safely.

6.5 Construction of Regulatory System

The transaction procedure is the same as the scheme of Modified ElGamal. The
regulator can calculate user’s private key sk through the system private key u
when regulation and audit are needed. There are two advantages of this method:
(1) It is not necessary to save the user’s private key, but to calculate user’s private
key when it is necessary to regulate or audit a user. (2) There is no interaction
between the regulator and the user, and the operation of regulation and audit
can be completed independently. Compared with the scheme of encrypting the
user’s private key with the public key of the regulator, this scheme does not need
to save user’s private key in the database, does not need to transfer the private
key, and saves the trouble of keeping user’s private key. The system private key
can be saved with multiple signatures to ensure that regulators can not do evil
at will. The algorithms involved in regulation are as follows:
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Setup
(
1λ
)
: Input a security parameter λ to generate relevant parameters

used by the system, including system private key u, system parameter (k, h, n),
etc

GetSysSk (msg, sig1, sig2, sig3): When the message using the system private
key is received, the system will verify the validity of the message, which requires
3 regulators’ signature (to simplify, the regulator set to 3, that is, this is a 3/3
multi-signature scheme), after passing the verification, return the system private
key u and change the state of the system private key to TRUE.

GetUserSk (pk, u): First, determine the user to be regulated or audited and
calculate the corresponding private key according to the public key. The algo-
rithm is sk = L

(
pku mod n2

)
/L
(
hu mod n2

)
. And put the message that the

user’s private key obtained by the regulator on the blockchain, and then the
private key can be used to verify the validity of each transaction. The state of
the system private key is changed to FALSE after use.

GetAmount(Tid, pk, tx, sk): After calculating the private key of the user,
regulator can obtain mi of a specific transaction according to Tid of a transac-
tion, or sum of the transaction amount within a certain period. And then record
relevant information.

AuditTx (pk,m, sum): Audit the information obtained and the total trans-
actions of the user during a certain period. Use relevant audit tools such as range
proof etc. If the audit result is TRUE, the user is honest; FALSE indicates that
the user committed some illegal acts.

6.6 Zero knowledge Proof

6.6.1 Aggregating Logarithmic Proofs. According to additive homomor-
phic of Modified Paillier, sender’s new balance is C ′2 = C∗2/C2 = km

∗−mhr
∗−r =

km
′
hr
′
. Because the km

′
hr
′

is FO commitment, we need to prove that the km
′
hr
′

contains the same (m′, r′) as Pedersen commitment, and then use Bulletproofs
for the Pedersen commitment. Moreover, (m′, r′) is computable, and (m, r) is
the amount and randomness of the transaction, so the aggregate range proof can
directly use (m′, r′), (m, r) as witness. The relationship to be proved consists of
two parts, (1)using Bulletproofs to prove m′ and m is non-negative and within
the correct range (2)proving that the balance m,m′ in FO commitment are equal
to m,m′ in Bulletproofs, and we generalize the protocol by simply requiring that
the prover proves that t̂ =

∑m
i=1 vi · zi + δ(y, z) +Open(T ). The relationship in

(2) can be written as:

{(C2, C
′
2) : ∃ m, r0,m′, r′0 s.t.C2 = kmhr0 ∧ C ′2 = km

′
hr
′
0∧

g
t̂−δ(y,z)−m·z2−m′·z3
1 h

τ−r0z2−r′0z
3

1 = T1,2}, T1,2 = T x1 T
x2

2

A non-interactive Sigma protocol is as below:
(1) P selects a random number a, b, and calculates A1 = kahb mod n2, A2 =

g−a1 h−b1 mod p.
(2) P computes random challenge e = Hash(C ′s, C

′, A1, A2).
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(3) P calculates s1 = a+ e(mz2 +m′z3), s2 = b+ e(r0z
2 + r′0z

3), and sends
A1, A2, s1, s2 to V .

(4) V calculates

ks1hs2 = A1(C2)ez
2

(C ′2)
ez3

g
(t̂− δ(y,z))e−s1
1 hτe−s21 = A2T

e
1,2

Security Proof of Sigma protocol

Completeness: From the above process, the correctness is clear if the P
and V are executed as specified in the protocol.

Special Soundness: For certain (A1, A2), suppose there are two different
accepting transcripts (e, s = (s1, s2)) and (e′, s′ = (s′1, s

′
2)), e 6= e′, then m can

be extracted by the following method. We have s1 = a + e(mz2 + m′z3), s′1 =
a+ e′(mz2 +m′z3), which can imply mz2 +m′z3 = (s1 − s′1)/(e− e′). In order
to extract m′ and m we need to rewind the whole Sigma protocol twice, and
use the same extraction procedure for the Sigma protocol we get the extracted
m,m′. Now we form the equations M1 = mz21 + m′z31 ,M2 = mz22 + m′z32 , and
then extract m′ and m. And we can extract r0, r

′
0 in the same way.

Special Honest-Verifier Zero-Knowledge: Assuming there is a polynomial-
time simulator S, where the simulator picks a random challenge e and response

(s1, s2), and computes A1 = ks1hs2 ·C−ez
2

2 (C ′2)
−ez3

, A2 = g
(t̂− δ(y,z))e−s1
1 hτe−s21 ·

T−e1,2 , it is clear that A1, A2, e, s1, s2 is a validate transcript, and for any proba-
bilistic polynomial-time verifier, these parameters are computationally indistin-
guishable from the parameters in the real protocol.

6.6.2 Prove that (m, r0) is calculated by on-chain ciphertext.

When a receiver finds a malicious transaction, the receiver can use the private
key as witness to prove the wrong transaction amount and randomness are indeed
solved by the on-chain ciphertext, and send it to smart contract, the relationship
to prove is

Senc =
{(
skr, k

m, kr0
)

: C2 = E
sk−1
r

r1 km ∧ C4 = E
sk−1
r

r3 kr0

}
A non-interactive Sigma protocol is as below:
(1) P selects a random number a, and calculates A1 = Ear1, A2 = Ear3, A3 =

pka

(2) P computes random challenge e = Hash(Er1, C2, Er3, C4, A1, A2, A3)
(3) P calculates s = a+ e · sk−1, and sends A1, A2, A3, s to V
(4) V calculates

Esr1 = A1(C2/k
m)e
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Esr3 = A2(C4/k
r0)e

pksr = A3 · he

If the two equality verifications are both true, then output the evidence π4.
After the smart contract verified and confirmed, it can be homomorphically
calculated again to subtract the transaction amount, and at the same time punish
the malicious sender.

Security Proof of Sigma protocol

Completeness: From the above process, the correctness is clear if the P
and V are executed as specified in the protocol.

Special Soundness: For certain (A1, A2), suppose there are two different
accepting transcripts (e, s) and (e′, s′), e 6= e′, then sk can be extracted by the
following method. We have s = a + e · sk, s′ = a + e′ · sk, which can imply
sk = (s− s′) / (e− e′).

Special Honest-Verifier Zero-Knowledge: Assuming there is a polynomial-
time simulator S, where the simulator picks a random challenge e and response s,
and computes A1 = Esr1(hr0)−e, A2 = Esr3(hr1)−e, it is clear that (A1, A2, e, s) is
a validate transcript , and for any probabilistic polynomial-time verifier , these
parameters are computationally indistinguishable from the parameters in the
real protocol.

6.7 Security Analysis

The on-chain content has passed the range proof and legality verification, so it
can be considered that the transaction data obtained by the regulator from the
blockchain is correct. If the ciphertext with error exists on the blockchain, that
is, there is an wrong but verified transaction. The correctness and soundness
of the transaction system ensures that the probability of such a transaction is
negligible. And the ciphertext is the format of FO commitment, which has global
homomorphism. The regulator can first analyze the total transaction amount of
an address in a period, and if there is a problem, analyze the specific transaction
amount. According to the correctness of the transaction system and the correct-
ness of homomorphic encryption, it can be inferred that the scheme is auditable
and meets audit reliability.

6.8 Application Scenario Analysis

The above confidential transaction scheme based on Modified ElGamal can be
directly used in most public blockchain systems with advantages of encryption
and decryption speed. Although the calculation speed is fast, in terms of its
regulability, it is not as effective as the scheme based on Modified Paillier. The
Modified Paillier scheme is more suitable for systems with large transaction
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amount or some consortium blockchain systems. It gives full play to the ad-
vantages of high trading efficiency of consortium blockchain, hands the system
private key to several trusted parties of consortium blockchain, and prevents the
abuse of system private key by multi-signature, and more effective in regulation.
Users can choose the application scheme according to their own needs.

7 Performance

7.1 Benchmark of the Scheme

We have given the prototype implementation of the scheme. We have imple-
mented a standalone cryptocurrency in C++. To evaluate the specific perfor-
mance of our project in communication and computational costs. Recall that
the confidential transaction we designed consists of the following aspects: (1)
the transaction information tx (2) the sender’s signature sig of the transaction
(3) and the evidence of the aggregate Bulletproofs. For the modified ElGamal, we
implemented the code based on OpenSSL and GMP, and selected elliptic curve
prime256v1 [ope] at 128-bit security level, in which each element in G requires
33Byte (32Byte for the x-coordinate and 1 bit for the sign), and each element in
Zp requires 32Byte. For the Modified Paillier, we implemented the code based
on OpenSSL with 1536-bit security level, in which each element in Gp′q′ requires
384Byte, and each element in Zn requires 192Byte. We implemented it on the
AMD Ryzen 3700X 3.59GHz CPU, and the specific results are as follows.

7.2 Communication and Computational Costs

Scheme Based on Modified ElGamal. The size of a confidential transaction(O)
is (2log2 (2l) + 16)G + 8Zp, where l = 32. It includes 9 elements in G for trans-
action information, 1 element in G for digital signature, aggregation range proof
(2log2 (2l) + 4)G and 5 elements in Zp, and 2G+3Zp elements for validity proof.

Scheme Based on Modified Paillier. The size of a confidential transaction(O)
is (2log2 (2l) + 5)G + 11Gp′q′ + 5Zp + 2Zn, where l = 64. It includes 9 elements
in Gp′q′ for transaction information, 1 element in Gp′q′ for digital signature,
aggregation range proof need (2log2 (2l) + 5)G + Gp′q′ + 5Zp + 2Zn elements.

Table 1. The computation and communication complexity of the transaction

transaction size transaction cost(ms)

big-O byte generation verify

Modified ElGamal (2log2 (2l) + 16)G + 8Zp 1180 230.7 60.2

Modified Paillier (2log2 (2l) + 5)G + 11Gp′q′ + 5Zp + 2Zn 5329 607.3 341.2

PGC (2log2 (2l) + 20)G + 10Zp 1376 40 14
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Table 2. The computation and communication complexity of reporting

Report big-O byte time cost(ms)

Modified ElGamal 2G + 2Zp 130 0.5

Modified Paillier 5Gp′q′ + Zn 2112 202.3
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A Appendix

A.1 Security Proof of Modified ElGamal

Theorem 5. The modified ElGamal encryption scheme is IND-CPA secure based
on the DDH assumption.

Game 0. In the real IND-CPA security experiment, the interaction between
challenger CH and adversary A is as blow. Let Si be the probability that A wins
in Game i.

1. Setup. CH generate system and related parameters, sends public keys
pk = gsk to A.

2. Training. A generates messages to obtain encrypted ciphertext (bounded
polynomial times).

3. Challenges. A outputs two messages of equal length m0 and m1. CH selects
random bit β and randomness r0, r1, calculate C1 = pkr0 , C2 = gr0hmβ , C3 =
pkr1 , C4 = r0g

r1 , and send C1, C2, C3, C4 to A. Now DH quad
(
g, ga, gb, gab

)
corresponding to (g, gr0 , gsk, gr0·sk), (g, gr1 , gsk, gr1·sk).

4. Guess. A outputs β′, and wins if β′ = β.
The adversary’s advantage in Game 0 can be defined as below.

AdvA (λ) = Pr [S0]− 1/2

Game 1. The same as Game 0, except that CH picks a random bit β and
randomness r0, r1, s0, s1, compute C1 = pkr0 , C2 = gs0hmβ , C3 = pkr1 , C4 =
r0g

s1 and send C1, C2, C3, C4 to A.
In Game 1, ciphertext distribution is independent of β, so A has no mes-

sage about β, Pr [S1] = 1/2. (g, gs0 , gsk, gsk·r0), (g, gs1 , gsk, gsk·r1) constitute a
random quad. Assume that c = c′b, a = c′ + c′′, ciphertext can be represented
as (gc

′
0b, gc

′
0(gc

′′
0 hm), gc

′
1b, gc

′
1(gc

′′
1 a0)) and (g, gc

′
0+c

′′
0 , gb, gc

′
0b), (g, gc

′
1+c

′′
1 , gb, gc

′
1b)

constitute a random quad.
Next, it is proved that the difference between Pr[S0] and Pr[S1] is negligi-

ble. We construct adversary B with the same advantage as A to attack DDH
assumption. Given a quad

(
g, ga, gb, gc

)
, B determines whether it is a random

quad or a DH quad. B is constructed as follows.

https://ethereum.github.io/yellowpaper/paper.pdf
https://z.cash/wp-content/uploads/2019/09/Zcash-Regulatory-Brief-201909.pdf
https://z.cash/wp-content/uploads/2019/09/Zcash-Regulatory-Brief-201909.pdf
https://z.cash/technology/zksnarks/
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1. Setup. B generates system and related parameters, treats gb as the public
keys pk, b is the corresponding private key, which is unknown to B. Then B sends
pk = gb to A.

2. Training. A generates messages to obtain encrypted ciphertext (bounded
polynomial times).

3. Challenges. A outputs two messages of equal length m0,m1 and sends
them to B. B selects random bits β, calculate C1 = ga0 , C2 = gc0hmβ , C3 =
ga1 , C4 = a0g

c1 , sends C1, C2, C3, C4 to A.
4. Guess. A outputs β′, and wins if β′ = β.
If the quad

(
g, ga, gb, gc

)
is a DH quad, that is, (g, gr0 , gsk, gr0·sk),

(g, gr1 , gsk, gr1·sk) consist of a DH quad, then B is the same view as Game 0,
where a = bc. If

(
g, ga, gb, gc

)
is a random quad, that is, (g, gc

′
0+c

′′
0 , gb, gc

′
0b),

(g, gc
′
1+c

′′
1 , gb, gc

′
1b) consist of a random quad, then B is the same view as Game

1. Therefore, if A can distinguish between B representing Game 0 and Game 1
with non-negligible advantage, then B can break the DDH assumption with the
same advantage.

A.2 Private key cannot be obtained from public parameters.

Theorem 6. It is known that pk = gsk mod p, the public key is pk, g, p, and
the private key is sk. Computing the private key sk from the public key pk, g, p
belongs to the discrete logarithm problem on the group, where g is the generator
of the group, and pk is the element on the group. It is difficult to calculate loggpk.
So it can be concluded that sk cannot be obtained from the public keys pk, g, p.

B Appendix

B.1 Security Proof of Modified Paillier

Theorem 7. The modified Paillier encryption scheme is IND-CPA secure based
on the DDH assumption.

Game 0. In the real IND-CPA security experiment, the interaction between
challenger CH and adversary A is as blow. Let Si be the probability that A wins
in Game i.

1. Setup. CH generates system and related parameters, sends public keys
pk = gsk to A.

2. Training. A generates messages to obtain encrypted ciphertext (bounded
polynomial times).

3. Challenges. A outputs two messages of equal length m0 and m1. CH se-
lects random bit β and randomness r0, r1, calculates C1 = pkr0 mod n2, C2 =
hr0kmβ mod n2, C3 = pkr1 mod n2, C4 = hr1kr0 mod n2, and sends C1, C2, C3, C4

to A
4. Guess. A outputs β′, and wins if β′ = β.
The adversary’s advantage in Game 0 can be defined as below.
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AdvA (λ) = Pr [S0]− 1/2

Game 1. The same as Game 0, except that CH picks a random bit β
and randomness r0, r1, s0, s1, compute C1 = pkr0 mod n2, C2 = hs0kmβ mod
n2, C3 = pkr1 mod n2, C4 = hs1kr0 mod n2 and send C1, C2, C3, C4 to A.

In Game 1, ciphertext distribution is independent of β, so A has no message
about β, Pr [S1] = 1/2. (h, hs0 , hsk, hsk·r0), (h, hs1 , hsk, hsk·r1) constitute a ran-
dom quad. Assume that c = c′b, a = c′ + c′′, ciphertext can be represented as
(hc
′
0b, hc

′
0(hc

′′
0 km), hc

′
1b, hc

′
1(hc

′′
1 ka0)) and (h, hc

′
0+c

′′
0 , hb, hc

′
0b), (h, hc

′
1+c

′′
1 , hb, hc

′
1b)

constitute a random quad.
Next, it is proved that the difference between Pr[S0] and Pr[S1] is negligi-

ble. We construct adversary B with the same advantage as A to attack DDH
assumption. Given a quad

(
h, ha, hb, hc

)
, B determines whether it is a random

quad or a DH quad. B is constructed as follows.
1. Setup. B generates system and related parameters, treats hb as the public

keys pk, b is the corresponding private key, which is unknown to B. Then B sends
pk = hb to A.

2. Training. A generates messages to obtain encrypted ciphertext (bounded
polynomial times).

3. Challenges. A outputs two messages of equal length m0,m1 and sends
them to B. B selects random bits β, calculate C1 = pkr0 = ha0 = hb·c0 , C2 =
hc0kmβ , C3 = pkr1 = ha1 = hb·c1 , C4 = hc1kc0 , sends C1, C2, C3, C4 to A.

4. Guess. A outputs β′, and wins if β′ = β.
If the quad

(
h, ha, hb, hc

)
is a DH quad, that is, (h, hr0 , hsk, hsk·r0),

(h, hr1 , hsk, hsk·r1) consist of a DH quad, then B is the same view as Game 0,
where c = a · b. If

(
h, ha, hb, hc

)
is a random quad, that is, (h, hs0 , hsk, hsk·r0),

(h, hs1 , hsk, hsk·r1) consist of a random quad, then B is the same view as Game
1. Therefore, if A can distinguish between B representing Game 0 and Game 1
with non-negligible advantage, then B can break the DDH assumption with the
same advantage.

B.2 Private key cannot be obtained from public parameters

Theorem 8. For N = pv11 . . . p
vm
m .λ(N) = lcm(pv1−11 (p1− 1), . . . pvm−1m (pm− 1))

L is a multiple of λ(N). So there is a polynomial time algorithm, when input
(N,L), decomposes N with non-negligible probability.

Set pk = hsk mod n2, user’s public key is h, n2, pk, and private key is sk.
To obtained the private key sk from the public key h, n2, pk, which is a

class[n] problem of pk = 1, we can say the problem is still unsolvable. The
reason for this is that, assuming that from the public key h, n2, pk gives sk such
that pk = hsk mod n2 is true, we can also compute x such that h = pkx mod n2.
So sk · x = 1 mod λ(n2), that λ(n2)|(sk · x− 1), so based on Theorem 7, we can
decomposes n2, which solves the problem of large number decomposition. So the
public key h, n2, pk cannot be used [BAZB20] to obtain [BBB+18] the private
key sk.
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