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Abstract

We prove that Kilian’s four-message succinct argument system is post-quantum secure in the
standard model when instantiated with any probabilistically checkable proof and any collapsing
hash function (which in turn exist based on the post-quantum hardness of Learning with Errors).
This yields the first post-quantum succinct argument system from any falsifiable assumption.

At the heart of our proof is a new quantum rewinding procedure that enables a reduction
to repeatedly query a quantum adversary for accepting transcripts as many times as desired.
Prior techniques were limited to a constant number of accepting transcripts.

Keywords: succinct arguments; post-quantum cryptography; quantum rewinding

1



Contents
1 Introduction 3

1.1 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Technical overview 5
2.1 Kilian’s protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Our approach to post-quantum security of Kilian’s protocol . . . . . . . . . . . . . . . . . . . 6
2.3 Prior quantum techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 A closer look at Unruh’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 State recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 State repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Approximate state repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8 Quantum strategies for repeated games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.9 Discussion: is collapsing necessary for Kilian’s protocol? . . . . . . . . . . . . . . . . . . . . . 16

3 Preliminaries 18
3.1 Concentration inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Quantum preliminaries and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Jordan’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Interactive arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Collapsing hash functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Collapsing protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Efficient quantum strategies for repeated games 24
4.1 Jordan subspaces and alternating measurements . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Probability estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 A state repair procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 A quantum rewinding lemma 39
5.1 Special sound protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Collapsing vector commitments 41
6.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Merkle trees are collapsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Post-quantum security of Kilian’s protocol 45
7.1 Probabilistically checkable proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2 Kilian’s protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3 Proof of Theorem 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Acknowledgements 48

References 48

2



1 Introduction
Quantum computers pose a growing threat to cryptography. Fully realized, quantum computers
would enable an attacker to break the computational assumptions underlying many of today’s
public-key cryptosystems [Sho94]. Fortunately, a number of plausibly quantum-secure computa-
tional assumptions have emerged (e.g., lattice assumptions [Reg05]) providing a foundation for
secure cryptography in a post-quantum era. But post-quantum cryptography requires more than
quantum-safe assumptions: it also needs security reductions compatible with quantum attackers.
While some classical security reductions directly translate to the quantum setting, many other
security reductions do not translate because they are not compatible with quantum attackers.

Kilian’s protocol [Kil92] is a fundamental result in cryptography for which no security reduction
compatible with quantum attackers is known. Kilian’s protocol is the canonical construction of a
succinct argument: it uses a collision-resistant hash function to transform any probabilistically
checkable proof (PCP) into an interactive protocol that achieves an exponential improvement in
communication complexity over just sending the PCP. This comes at the cost of computational
soundness, i.e., fooling the verification procedure of the protocol is intractable, not impossible. The
security reduction against a classical attacker is via a rewinding argument: the attacker’s state is
saved midway through the protocol execution, and the attacker is run from this state many times
to obtain many (succinct) protocol executions, from which the (long) PCP string can be extracted.

Alarmingly, Kilian’s security reduction completely falls apart if the attacker has a quantum
computer! The reduction has access to only a single copy of the attacker’s state, due to the no-
cloning theorem. Moreover, since quantum measurements are destructive, any attempt to measure
the attacker’s response may irreversibly damage the attacker’s state, potentially rendering it useless.

Translating rewinding-based security reductions to the quantum setting has proved difficult (see
e.g., [ARU14]). While there has been some progress on developing quantum techniques tailored to
specific use cases [Wat06, Unr12, Unr16b], these techniques are not broadly applicable. Importantly,
existing quantum rewinding techniques are limited to recording a constant number of attacker
responses. This is particularly problematic for Kilian’s protocol and beyond: all known techniques
for reducing security of a succinct argument to an underlying (falsifiable) assumption require the
reduction to record a super-constant (and typically polynomial) number of attacker responses.1

One way to avoid rewinding security reductions for succinct arguments is to rely on strong cryp-
tographic assumptions. Kilian’s protocol can be proved secure via a straightline (non-rewinding)
extractor when ported to the random oracle model, and its security in the quantum random oracle
model [BDF+11] follows from prior work [CMS19]. Beyond Kilian’s protocol, there are construc-
tions of succinct arguments that are proved secure directly from underlying post-quantum “knowl-
edge” assumptions [BISW17, BISW18, GMNO18], but these assumptions are not falsifiable.2

In sum, the following question remains open:
Do post-quantum succinct arguments exist under standard assumptions?

1.1 Our results

We answer the question affirmatively by proving that Kilian’s protocol is post-quantum secure,
provided the underlying hash function is collapsing [Unr16b].

1Even if a classical security proof relies on an explicitly post-quantum assumption (e.g., [BBC+18, BLNS20]) this
does not translate to provable post-quantum security as the rewinding security reduction is not quantum-compatible.

2See [Nao03, GW11] for further discussion on falsifiable assumptions.
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Theorem 1.1 (Kilian’s protocol is post-quantum secure). Kilian’s protocol is a post-quantum suc-
cinct argument when instantiated with any PCP and any collapsing hash function. Moreover, if the
underlying PCP is a proof of knowledge, Kilian’s protocol is a post-quantum succinct argument of
knowledge.

Since collapsing hash functions are implied by post-quantum lossy functions [Unr16a], which
exist assuming the quantum hardness of Learning with Errors (QLWE), we obtain post-quantum
succinct arguments for all of NP from the same assumption. This is the first construction of
post-quantum succinct arguments from any falsifiable assumption.

Corollary 1.2 (Post-quantum succinct arguments from QLWE). Assuming quantum hardness of
LWE (QLWE), there exist post-quantum succinct arguments (of knowledge) for all of NP.

The core of our proof is a new quantum extraction procedure that enables a reduction to record
the prover’s responses for an arbitrary number of random challenges. This significantly improves
over prior work, which was limited to recording the prover’s responses for a constant number of
random challenges [Unr12, Unr16b, DFMS19].

Our extraction procedure applies not only to Kilian’s protocol, but any collapsing protocol
[Unr16b, LZ19, DFMS19]. A collapsing protocol refers to any public-coin interactive argument with
the guarantee, roughly, that any (unitary) prover that only gives accepting responses cannot detect
if its last response is measured. We show Kilian’s protocol has this guarantee if it is instantiated
with a collapsing hash function.

Theorem 1.3 (Quantum rewinding, informal). Given black-box access to any quantum adversary
for a collapsing protocol, there is an efficient procedure to repeatedly query the adversary on random
challenges and record an arbitrary number of accepting transcripts.

Beyond our primary application to Kilian’s protocol, our quantum rewinding procedure also
implies that any 𝑘-special sound collapsing protocol is a post-quantum argument of knowledge, for
any polynomially-bounded 𝑘.
Optimal knowledge error. Our rewinding technique achieves asymptotically optimal knowledge
error. As an immediate application, our technique improves a previous result due to [Unr12,
Unr16b], who showed that if a quantum attacker in a 2-special sound collapsing sigma protocol
has success probability 𝜀, then there is an extractor that can output a witness with probability
𝜀 · (𝜀2 − 1/𝐶), where 𝐶 is the size of the challenge space. In particular, there was previously no
guarantee for 1/𝐶 ≤ 𝜀 ≤ 1/

√
𝐶. Our techniques yield an extractor running in time poly(𝜆, 1/𝜀)

that (given 𝜀 as input) outputs a witness with probability Ω(𝜀) provided that 𝜀 ≥ (1 + 𝛿)/𝐶 for
any constant 𝛿 > 0.

4



2 Technical overview

2.1 Kilian’s protocol

Kilian’s protocol compiles any probabilistically checkable proof (PCP) into an interactive protocol
using a Merkle tree built from a collision-resistant hash function. Recall that a PCP is a type of
NP proof 𝜋 that can be verified by reading only a few random positions [BFLS91, FGL+91, AS98,
ALM+98]. The collision-resistant hash function enables the argument prover to send a succinct
Merkle tree commitment to the PCP 𝜋 that it can later open on any subset of positions 𝑄 with a
short opening proof.
The protocol. Let (PPCP,VPCP) be a PCP proof system for an NP relation R, and let {𝐻𝜆}𝜆
be a family of collision-resistant hash functions. The argument prover 𝑃 and argument verifier 𝑉
both receive as input the security parameter 𝜆 and an instance 𝑥, while the prover additionally
receives a corresponding witness 𝑤 (such that (𝑥,𝑤) ∈ R). They interact as follows.

1. 𝑉 samples a collision-resistant hash function ℎCRHF ← 𝐻𝜆 and sends it to 𝑃 .
2. 𝑃 computes a PCP string 𝜋 ← PPCP(𝑥,𝑤), uses ℎCRHF to generate a Merkle tree commitment

cm← Merkle.Commit(ℎCRHF, 𝜋) to 𝜋, and sends cm to 𝑉 .
3. 𝑉 samples random coins 𝑟 ← 𝑅 for the PCP verifier VPCP and sends them to 𝑃 .
4. 𝑃 computes the PCP indices 𝑄 that VPCP(𝑥; 𝑟) would query, generates a Merkle opening proof

pf for 𝜋[𝑄], and sends the response 𝑧 := (𝜋[𝑄], pf) to 𝑉 .3

Once the interaction is complete, 𝑉 accepts if: (1) pf is a valid Merkle opening of cm to 𝜋[𝑄] on
indices 𝑄; and (2) 𝜋[𝑄] is accepted by the PCP verifier VPCP(𝑥; 𝑟). Kilian’s protocol is publicly
verifiable: one can compute whether 𝑉 accepts given only the instance 𝑥 and the four-message
transcript (ℎCRHF, cm, 𝑟, 𝑧).
The classical security reduction. Kilian’s protocol ensures that an efficient extractor, given
a malicious classical prover 𝑃 that convinces 𝑉 with success probability 2𝜀, can output with over-
whelming probability a PCP 𝜋 such that Pr[V𝜋

PCP(𝑥)] ≥ 𝜀/2; the particular constants here are
chosen to simplify the presentation in the following steps.

The extractor works by running 𝑃 through the first round of the protocol, obtaining a transcript
prefix 𝜏 = (ℎCRHF, cm) and 𝑃 ’s intermediate state state𝜏 . Call state𝜏 “𝜀-good” if

Pr
[︃
𝑉 (𝜏, 𝑟, 𝑧) = 1

⃒⃒⃒⃒
⃒ 𝑟 ← 𝑅

𝑧 ← 𝑃 (state𝜏 , 𝑟)

]︃
≥ 𝜀 .

By Markov’s inequality, state𝜏 is 𝜀-good with probability at least 𝜀. If state𝜏 is 𝜀-good, the extractor
constructs a PCP proof 𝜋 as follows.

Start with 𝜋 := 0ℓ where ℓ is the PCP proof length. Repeat the loop:
1. Choose 𝑟 ← 𝑅 uniformly at random.
2. Run 𝑧 ← 𝑃 (state𝜏 , 𝑟).
3. If 𝑉 (𝜏, 𝑟, 𝑧) = 1, parse 𝑧 as (𝜋′[𝑄], pf). Update 𝜋 to match 𝜋′ at the positions in 𝑄.
3The Merkle opening for a PCP index 𝑞 consists of the hash values of every vertex adjacent to the path from 𝑞 to

the root; the Merkle opening proof pf for a set of PCP indices 𝑄 consists of the Merkle openings for each 𝑞 ∈ 𝑄.
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If the PCP has alphabet Σ and proof length ℓ, one can show that if the extractor records
𝑘 = 6ℓ · log(2|Σ|) challenge-response pairs (𝑟1, 𝑧1), . . . , (𝑟𝑘, 𝑧𝑘) for distinct challenges 𝑟𝑖, then with
probability 1− negl(𝜆) the PCP string 𝜋 satisfies Pr[V𝜋

PCP(𝑥)] ≥ 𝜀/2.
This guarantee implies the classical security of Kilian’s protocol. For instance, if the PCP

system has negligible soundness error then the interactive argument has negligible soundness error.

2.2 Our approach to post-quantum security of Kilian’s protocol

In this work, we prove that if the collision-resistant hash function ℎCRHF is a collapsing hash
function [Unr16b], then Kilian’s protocol, without any additional modifications, is secure against
malicious quantum provers. At a very high level, our security proof takes the following steps:

1. Kilian’s protocol is collapsing. We prove that Kilian’s protocol is a collapsing protocol in
the sense of [LZ19, DFMS19] when the underlying hash function is collapsing; we elaborate on
collapsing protocols in Section 2.3.

2. Collapsing protocols admit quantum rewinding. We devise a general-purpose quantum
extraction procedure for collapsing protocols that enables efficiently recording any desired num-
ber of malicious prover responses. This step is our main technical contribution.

Organization. We discuss the importance of the collapsing notion in Section 2.3, but will oth-
erwise defer the details of Step 1 to the body of the paper, since proving that Kilian’s protocol is
collapsing is a straightforward application of techniques from [Unr16b].

Step 2 is the primary focus of this technical overview. We summarize prior work on rewinding for
collapsing protocols in Section 2.3 and explain in Section 2.4 why existing techniques are insufficient
for Kilian. We then describe our extraction procedure in Sections 2.5 to 2.7.

2.3 Prior quantum techniques

We discuss prior techniques for recording responses of a malicious quantum prover in a classical
interactive (public-coin) protocol. While prior works did not explicitly focus on Kilian’s protocol,
the abstract setting is the same. A reduction runs a malicious prover 𝑃 up to the final round of
the protocol, obtaining a fixed transcript prefix 𝜏 and corresponding prover state state𝜏 . Assuming
that 𝑃 (state𝜏 , ·) answers a random challenge 𝑟 ← 𝑅 with success probability 𝜀, the goal is to obtain
some number 𝑘 of accepting transcripts (𝜏, 𝑟1, 𝑧1), . . . , (𝜏, 𝑟𝑘, 𝑧𝑘) with the same prefix 𝜏 .

In the classical setting, this is an elementary task. By repeatedly sampling random challenges
𝑟 ← 𝑅 and running 𝑧 ← 𝑃 (state𝜏 , 𝑟), we can record any desired number of independent and
identically distributed transcripts where an 𝜀-fraction of them are accepting. Put another way:

Given 𝑃 and state𝜏 , one can record 𝑘 accepting transcripts for any desired 𝑘 with
probability 1 in expected time 𝑘/𝜀.

In the quantum setting, it is unlikely that such a statement holds: if state𝜏 is a quantum state
|𝜓⟩, it is not possible in general to run 𝑃 (state𝜏 , ·) multiple times independently. This is because
any measurement applied by 𝑃 may irreversibly alter the state. Indeed, Ambainis, Rosmanis, and
Unruh [ARU14] show that this statement can be false relative to a (quantum) oracle, even if (𝑃, 𝑉 )
is classically secure.
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Collapsing protocols. Nevertheless, there is a class of protocols for which the statement holds
in a limited sense. A public-coin interactive argument is a collapsing protocol [Unr16b, DFMS19,
LZ19] if, given any last-round challenge 𝑟, an efficient prover which produces a superposition |𝜑⟩
of accepting responses cannot distinguish between |𝜑⟩ and the state that results after measuring
the response in the computational basis.4 We remark that [DFMS19, LZ19] defined collapsing
protocols in the context of three-round sigma protocols, but the notion easily extends to public-
coin interactive arguments.

For any collapsing protocol (𝑃, 𝑉 ), Unruh’s lemma [Unr12, DFMS19] gives a weaker version of
the above statement. Suppose a malicious 𝑃 with state |𝜓⟩ has initial success probability 𝜀, i.e.,
𝑃 (|𝜓⟩ , 𝑟) outputs an accepting response 𝑧 on a random 𝑟 ← 𝑅 with probability 𝜀. Then Unruh’s
lemma gives the following guarantee:

Given 𝑃 and |𝜓⟩, one can record 𝑘 accepting transcripts for any desired 𝑘 with proba-
bility 𝑂(𝜀2𝑘−1).

This 𝑂(𝜀2𝑘−1) probability, which does not appear in the classical statement, is over the random-
ness of the challenges and any quantum measurements the malicious prover performs. Notice that
for constant 𝑘, this probability is still large enough to obtain meaningful guarantees. However, se-
curity of Kilian’s protocol needs, at a minimum, 𝑘 = Ω(ℓ/|𝑄|) where ℓ is the PCP length and |𝑄| is
the number of queries of the PCP verifier. Thus, Unruh’s lemma is insufficient since the guarantee
only holds with probability 𝜀Ω(ℓ/|𝑄|), which is negligible for any PCP with useful parameters.

2.4 A closer look at Unruh’s lemma

Unruh’s lemma is a quantum information-theoretic statement about any collection of binary-
outcome projective measurements {A𝑟}𝑟∈𝑅. We write binary-outcome projective measurements
as A𝑟 = (Π𝑟, I−Π𝑟) where Π𝑟 is associated with outcome 1, and I−Π𝑟 with outcome 0.

Let MixM({A𝑟}𝑟) be the corresponding mixture of the projective measurements {A𝑟}𝑟, i.e.,
the procedure that chooses 𝑟 ← 𝑅 uniformly at random, applies measurement A𝑟, and outputs
the outcome 𝑏 ∈ {0, 1}. Unruh’s lemma [Unr12, DFMS19] concerns the measurement outcomes
obtained from sequential applications of MixM({A𝑟}𝑟).

Unruh’s lemma: For any state |𝜓⟩ and any collection of binary-outcome projective
measurements {A𝑟}𝑟∈𝑅, if applying MixM({A𝑟}𝑟) to |𝜓⟩ returns 1 with probability 𝜀,
then starting from |𝜓⟩ and applying MixM({A𝑟}𝑟) for 𝑘 times in succession returns 1 all
𝑘 times with probability 𝜀2𝑘−1.

To use this lemma in the context of an interactive protocol, for each 𝑟 in the challenge space 𝑅
one defines A𝑟 = (Π𝑟, I−Π𝑟) as follows. Let 𝑈𝑟 be the unitary describing the (purified) operation
of 𝑃 in the last round on verifier message 𝑟; let Π𝑉,𝑟 :=

∑︀
𝑧,𝑉 (𝜏,𝑟,𝑧)=1 |𝑧⟩⟨𝑧| be the projection onto

responses 𝑧 that the verifier 𝑉 (𝜏, 𝑟, ·) accepts; and finally set Π𝑟 := 𝑈 †𝑟Π𝑉,𝑟𝑈𝑟.
Intuitively, A𝑟 measures whether 𝑃 causes 𝑉 to accept on challenge 𝑟. Therefore, the probability

𝜀 in Unruh’s lemma (the probability MixM({A𝑟}𝑟) applied to |𝜓⟩ returns 1) is the probability that
4More precisely, |𝜑⟩ =

∑︀
𝑦,𝑧

𝛼𝑦,𝑧 |𝑦, 𝑧⟩ where each 𝑧 in the superposition satisfies 𝑉 (𝜏, 𝑟, 𝑧) = 1 for some fixed
partial transcript 𝜏 , and 𝑦 is the state on other registers. Measuring the response means measuring the register
containing 𝑧.
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𝑃 (|𝜓⟩ , ·) successfully answers a random challenge 𝑟 ← 𝑅 in the interactive protocol. We sometimes
refer to 𝜀 as the success probability of |𝜓⟩.

Thus Unruh’s lemma shows that it is possible to “observe” 𝑘 accepting executions with proba-
bility 𝜀2𝑘−1, in the following sense: whenever MixM returns 1, one can apply 𝑈𝑟 for the 𝑟 sampled by
MixM, and measure the adversary’s response register to obtain 𝑧 such that (𝜏, 𝑟, 𝑧) is an accepting
transcript. Importantly, because Unruh’s lemma only concerns binary-outcome projective measure-
ments, we require an additional collapsing property from the underlying protocol to (undetectably)
record any accepting responses. Thus, applied to a collapsing protocol, Unruh’s lemma implies an
extractor can record 𝑘 accepting transcripts with probability 𝜀2𝑘−1 − negl(𝜆), since this additional
measurement of the response register is (computationally) undetectable when MixM returns 1.
Consecutive measurements can destroy a state. The 𝜀2𝑘−1 probability comes in part from
the fact that Unruh’s lemma only captures the probability that 𝑘 consecutive trials succeed.5 This
is a strong requirement: even in the classical setting, 𝑘 consecutive trials succeed with probability
𝜀𝑘. Classically this can be resolved by performing 𝑁 = 𝑘/𝜖 trials to obtain roughly 𝑘 successful
trials. One might hope that this would also work in the quantum setting: perhaps repeatedly
applying MixM({M𝑟}𝑟) some poly(𝑘, 1/𝜀) times suffices to obtain 𝑘 successful trials overall.

Unfortunately, this does not work. Adapting a counterexample of Zhandry [Zha20, Section 5],
suppose the initial state |𝜓⟩ is |0⟩, and for any desired success probability 𝜀, define each A𝑟 =
(Π𝑟, I−Π𝑟) so that Π𝑟 is the rank-one projection onto

√
𝜀 |0⟩+

√
1− 𝜀 |𝑟⟩. Clearly, MixM applied

to |𝜓⟩ returns 1 with probability 𝜀, but one can verify that if repeated applications of MixM use
distinct challenges 𝑟, then the expected number of 1 outcomes is at most 1/(2 − 2𝜀) regardless
of the number of trials; for small 𝜀 this is close to 1/2. This counterexample is a barrier if there
are a super-polynomial number of challenges, as each trial will use a distinct 𝑟 with overwhelming
probability. Note that, in this example, the bound 1/(2− 2𝜀) arises because the (expected) success
probability of the state after 𝑗 trials is exponentially small in 𝑗. In other words, the repeated
applications of MixM “damage” the state.

2.5 State recovery

Given the above discussion, a natural approach is to try to recover the original state after the
application of MixM({M𝑟}𝑟). In particular, it would suffice to build a procedure that would allow
recovering a state |𝜓⟩ after it has been perturbed by some binary projective measurement B. In our
setting, |𝜓⟩ corresponds to the malicious prover’s intermediate state, and B is the measurement M𝑟

applied by MixM({M𝑟}𝑟). Applying M𝑟 to |𝜓⟩ disturbs the state, leaving some post-measurement
state |𝜑⟩, and our aim is to somehow return the state back to |𝜓⟩. If we could do this in general (for
any efficient binary projective measurement B) this would enable “perfect” quantum rewinding.

Unfortunately, this is impossible in general, but to build intuition for our eventual approach,
we will show how to achieve this assuming we have access to a hypothetical additional power. In
particular, suppose we can perform the binary projective measurement

Equals|𝜓⟩ = ( |𝜓⟩⟨𝜓| , I− |𝜓⟩⟨𝜓|)

onto the one-dimensional subspace spanned by the initial state |𝜓⟩. If Equals|𝜓⟩ returns the outcome
1, then the post-measurement state is |𝜓⟩. In the remainder of this section, we use Equals|𝜓⟩ to
develop a procedure that recovers the state |𝜓⟩ with probability close to 1.

5Technically, 𝜀2𝑘−1 only applies for random uncorrelated challenges, which may not be distinct. Unruh also gives
a bound that applies for distinct random challenges.
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The qubit case. First we consider the case where |𝜓⟩ is a single qubit: |𝜓⟩ lies in the two-
dimensional space C2. If B = (Π, I−Π) is nontrivial, then Π = |𝜑⟩⟨𝜑| and I − Π = |𝜑⊥⟩⟨𝜑⊥| for
some pair of orthogonal states |𝜑⟩ , |𝜑⊥⟩ ∈ C2. This is shown in Fig. 1.

|𝜓⟩

|𝜓⊥⟩

|𝜑⟩

|𝜑⊥⟩

√
𝑝

√
1− 𝑝

Figure 1: The quantum states |𝜓⟩ and |𝜓⊥⟩ correspond to outcomes 1 and 0 of Equals|𝜓⟩ =
( |𝜓⟩⟨𝜓| , I− |𝜓⟩⟨𝜓|), respectively. The quantum states |𝜑⟩ and |𝜑⊥⟩ correspond to outcomes 1
and 0 of B = (Π, I−Π), respectively.

From Fig. 1 we see that | ⟨𝜑|𝜓⟩ |2 = ⟨𝜓| |𝜑⟩⟨𝜑| |𝜓⟩ = ‖Π |𝜓⟩‖2 = 𝑝. By making a suitable choice
of phase, we can write

|𝜑⟩ = √𝑝 |𝜓⟩+
√︀

1− 𝑝 |𝜓⊥⟩ ,
|𝜓⟩ = √𝑝 |𝜑⟩+

√︀
1− 𝑝 |𝜑⊥⟩ .

Suppose that we have applied B to the state |𝜓⟩ and obtained the outcome 1. (The case of outcome
0 is symmetric.) The post-measurement state is then |𝜑⟩. A natural idea to recover the original
state |𝜓⟩ is to apply Equals|𝜓⟩ to |𝜑⟩:

∙ With probability 𝑝, we obtain the outcome 1 and the state is |𝜓⟩.
∙ With probability 1− 𝑝 we obtain the outcome 0 and the state is |𝜓⊥⟩ (which only holds because

the space is two-dimensional).

In the first case we are done. But even in the second case we are not “stuck”: if we apply B
again, then with probability 1 − 𝑝 we return to the state |𝜑⟩, and with probability 𝑝 we move to
the state |𝜑⊥⟩. This leads to a “state recovery” procedure, which follows a technique first used by
Marriott and Watrous for QMA amplification [MW05].6 After potentially disturbing the state |𝜓⟩
by applying B, we can recover |𝜓⟩ by simply alternating the measurements

Equals|𝜓⟩,B,Equals|𝜓⟩,B, . . .

until Equals|𝜓⟩ returns 1, at which point the state must be |𝜓⟩. In fact, the state of the system
and the measurement outcomes throughout the procedure are remarkably easy to characterize. For
instance, the effect of each Equals|𝜓⟩ measurement can be deduced from Fig. 1:

∙ Applying Equals|𝜓⟩ to |𝜑⟩ returns 1 with probability 𝑝 resulting in |𝜓⟩, and returns 0 with prob-
ability 1− 𝑝 resulting in |𝜓⊥⟩.
6The goal of [MW05] was not to reconstruct a particular quantum state, but to estimate the probability 𝑝.
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∙ Applying Equals|𝜓⟩ to |𝜑⊥⟩ returns 0 with probability 𝑝 resulting in |𝜓⊥⟩, and returns 1 with
probability 1− 𝑝 resulting in |𝜓⟩.

The effect of B on |𝜓⟩ and |𝜓⊥⟩ is analogous. Letting 𝑏𝑖 denote the outcome of the 𝑖-th measurement,
starting from |𝜓⟩ and applying B,Equals|𝜓⟩, . . . in alternating fashion (now counting the initial B
as part of the sequence), the outcome sequence 𝑏1, 𝑏2, . . . follows a classical distribution MWDist(𝑝)
(for “Marriott–Watrous”):

1. Initialize 𝑏0 = 1 (the initial state |𝜓⟩ corresponds to the 1 outcome of Equals|𝜓⟩).
2. For each 𝑖 ∈ N, set 𝑏𝑖 := 𝑏𝑖−1 with probability 𝑝, and 𝑏𝑖 := 1− 𝑏𝑖−1 otherwise.

With this characterization, we can analyze the procedure’s running time. The procedure fails to
terminate at the first application of Equals|𝜓⟩, corresponding to 𝑏2 = 0, with probability 2𝑝(1− 𝑝).
If this occurs, the next application of Equals|𝜓⟩ returns 0 with probability 1−2𝑝(1−𝑝). Continuing
with this argument, the probability the procedure fails to terminate after 2𝑇 total measurements
is

2𝑝(1− 𝑝)(1− 2𝑝(1− 𝑝))𝑇−1 < 1/𝑇 ,

where the inequality holds for any probability 𝑝.
Extending to more qubits. The analysis above relies on the fact that, in two dimensions, the
system throughout the alternating measurement procedure is easily seen to lie in one of the four
states {|𝜓⟩ , |𝜓⊥⟩ , |𝜑⟩ , |𝜑⊥⟩}. In higher dimensions, the behavior of the system is potentially more
complex.7 We can nevertheless prove that the procedure terminates after 2𝑇 measurements with
probability at most 1/𝑇 .

To analyze the multi-qubit case, we use Jordan’s lemma, a tool in quantum information theory
that extends two-dimensional analyses of a pair of projectors to higher dimensions. Specifically, any
two projectors ΠA,ΠB induce a decomposition of the ambient Hilbert space into two-dimensional
subspaces 𝒮𝑗 such both ΠA and ΠB act as rank-one projectors within each subspace.8

More precisely, for each “Jordan subspace” 𝒮𝑗 , there exist orthogonal vectors |𝑣A
𝑗,1⟩ , |𝑣A

𝑗,0⟩ that
span 𝒮𝑗 , such that ΠA |𝑣A

𝑗,1⟩ = |𝑣A
𝑗,1⟩ and ΠA |𝑣A

𝑗,0⟩ = 0; similarly, there exist orthogonal vectors
|𝑣B
𝑗,1⟩ , |𝑣B

𝑗,0⟩ that span 𝒮𝑗 such that ΠB |𝑣B
𝑗,1⟩ = |𝑣B

𝑗,1⟩ and ΠB |𝑣B
𝑗,0⟩ = 0. Defining the eigenvalue of

𝒮𝑗 as 𝑝𝑗 := |⟨𝑣𝑗 |𝑤𝑗⟩|2, within each subspace 𝒮𝑗 we recover a two-dimensional picture, as in Fig. 2.
We refer to 𝑝𝑗 as the “eigenvalue” of 𝒮𝑗 because |𝑣A

𝑗,1⟩ is an eigenvector of the Hermitian matrix
ΠAΠBΠA with eigenvalue 𝑝𝑗 (and |𝑣B

𝑗,1⟩ is an eigenvector of ΠBΠAΠB with eigenvalue 𝑝𝑗).
7In the current setting, since Equals|𝜓⟩ projects onto a rank-one subspace, it turns out that even in higher

dimensions the behaviour of this particular system will be two-dimensional, moving between states |𝜓⟩ , (Π −
𝑝I) |𝜓⟩ ,Π |𝜓⟩ , (I − Π) |𝜓⟩ (appropriately normalized). Our more general treatment will be useful later on when
we replace Equals|𝜓⟩ with a projection onto a higher-dimensional subspace.

8There are also one-dimensional subspaces, which we ignore here for the purpose of exposition; in any case, these
can be treated as “degenerate” two-dimensional subspaces.
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|𝑣A
𝑗,1⟩

|𝑣A
𝑗,0⟩

|𝑣B
𝑗,1⟩

|𝑣B
𝑗,0⟩

√
𝑝𝑗

√︀
1− 𝑝𝑗

Figure 2: The states |𝑣A
𝑗,1⟩ and |𝑣A

𝑗,0⟩ correspond to 1 and 0 outcomes of (ΠA, I−ΠA), respectively;
|𝑣B
𝑗,1⟩ and |𝑣B

𝑗,0⟩ correspond to 1 and 0 outcomes of (ΠB, I−ΠB), respectively.

By Jordan’s lemma, a quantum state |𝜑⟩ satisfying ΠB |𝜑⟩ = |𝜑⟩ can be written as

|𝜑⟩ =
∑︀
𝑗𝛼𝑗 |𝑣B

𝑗,1⟩ ,

where 𝛼𝑗 is the amplitude of the state on the Jordan subspace 𝒮𝑗 . Starting from |𝜑⟩, if we alternate
the binary projective measurements (ΠA, I−ΠA) and (ΠB, I−ΠB), then the distribution of the
resulting measurement outcomes follows MWDist(𝑝𝑗) with probability |𝛼𝑗 |2.

To see why this distribution arises, consider the projective measurement MJor = (ΠJor
𝑗 )𝑗 that

projects onto the Jordan subspaces {𝒮𝑗}𝑗 and returns 𝑗 as the outcome, i.e., each ΠJor
𝑗 is a pro-

jection onto the 𝒮𝑗 subspace. Since MJor acts as the identity within every Jordan subspace 𝒮𝑗 , a
consequence of Jordan’s lemma is that MJor commutes with both (ΠA, I−ΠA) and (ΠB, I−ΠB).
Inserting the measurement MJor at any point in the sequence of alternating measurements cannot
change the earlier measurement outcomes, and the distribution above arises from commuting MJor
to the beginning of the procedure.

With Jordan’s lemma in hand, our analysis of the “state recovery” procedure in the two-
dimensional setting extends to higher dimensions by associating (ΠA, I−ΠA) with Equals|𝜓⟩ and
(ΠB, I−ΠB) with B. Since the procedure’s running time is determined solely by the measure-
ment outcomes, we recover the original state |𝜓⟩ after 2𝑇 alternating measurements except with
probability ∑︀

𝑗 |𝛼𝑗 |2 · 2𝑝𝑗(1− 𝑝𝑗)(1− 2𝑝𝑗(1− 𝑝𝑗))𝑇−1 ≤ 1
𝑇

∑︀
𝑗 |𝛼𝑗 |2 = 1/𝑇 .

Summarizing, we obtain the following general lemma for binary projective measurements A,B:

Setup: Fix measurements A = (ΠA, I−ΠA) and B = (ΠB, I−ΠB) and a state |𝜓⟩ in
the span of ΠA. Apply B to |𝜓⟩ and let |𝜑⟩ be the post-measurement state.
Alternate: Starting from |𝜑⟩, apply A,B,A,B, . . . until A returns 1. The procedure
requires 𝑂(1) measurements in expectation.

In particular, if A is our hypothetical Equals|𝜓⟩ measurement, then after the procedure terminates,
we recover the state |𝜓⟩.
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2.6 State repair

Perhaps unsurprisingly, we cannot efficiently implement the measurement Equals|𝜓⟩, and in general
we cannot recover the original state |𝜓⟩ 9. However, our goal is to efficiently extract successful
attacker responses, which “only” requires that the probability A𝑟 for a random 𝑟 ← 𝑅 returns 1
(the “success probability”) does not significantly decay with repeated applications. One of our key
observations is that we can satisfy this requirement without having to recover the original state.

Observation: Restoring the state’s success probability suffices for extraction.

We refer to the process of restoring the success probability as state repair. Jumping ahead, the
repaired state in our state repair procedure may be far in trace distance from the original state |𝜓⟩.

Below we explain how to modify the “state recovery” procedure from the previous subsection
into a “state repair” procedure. Informally, we replace Equals|𝜓⟩ with a measurement Test𝜀 having a
relaxed guarantee on post-measurement states: when Test𝜀 returns 1, the post-measurement state
has the same success probability as |𝜓⟩.
Defining Test𝜀. To define a projective measurement Test𝜀 suitable for performing “state repair”,
it suffices to identify a linear space for which every |𝜓⟩ in the space has success probability at least
𝜀. We achieve this by identifying a particular operator 𝐸 with an extremely useful property: any
eigenstate of 𝐸 with eigenvalue 𝑝 corresponds to a state |𝜓⟩ with success probability 𝑝. We then
define Test𝜀 to be the projection onto the direct sum of eigenspaces of 𝐸 with eigenvalue 𝑝 ≥ 𝜀.

Our choice of 𝐸 must somehow capture the probability that a random A𝑟 for 𝑟 ← 𝑅 returns
1 when applied to a state |𝜓⟩. Thus, a natural place to start is to consider the purification of
MixM({A𝑟}𝑟∈𝑅), i.e., the procedure that applies M𝑟 for random 𝑟 ← 𝑅. For this, in addition to
the original Hilbert space ℋ, we need an ancilla register ℛ. We initialize this register to a uniform
superposition |+𝑅⟩ over the indices 𝑟 ∈ 𝑅. We then define a binary projective measurement CProj
(for “controlled projection”) that applies {M𝑟 = (Π𝑟, I−Π𝑟)}𝑟 controlled on ℛ:

CProj := (ΠCProj, I−ΠCProj) where ΠCProj :=
∑︀
𝑟∈𝑅 |𝑟⟩⟨𝑟|

ℛ ⊗Π𝑟 .

Letting MixM({M𝑟}𝑟; |𝜓⟩) denote the application of MixM({M𝑟}𝑟) to |𝜓⟩, observe that applying
CProj to |+𝑅⟩ℛ ⊗ |𝜓⟩ and tracing out ℛ is equivalent to MixM({M𝑟}𝑟; |𝜓⟩).

We remark that the measurement CProj represents a “superposition query” to the adversary
𝑃 (|𝜓⟩ , ·). This is a qualitative departure from the techniques of [Unr12, DFMS19], which only
make classical queries to the adversary. Superposition queries have been used in [VZ21] in the
context of proofs of quantum knowledge. We find it interesting that superposition queries also arise
in an essential way when extracting only classical knowledge.

We are now ready to define the operator 𝐸:

𝐸 := |+𝑅⟩⟨+𝑅|ℛ ·ΠCProj · |+𝑅⟩⟨+𝑅|ℛ where |+𝑅⟩⟨+𝑅|ℛ denotes |+𝑅⟩⟨+𝑅|ℛ ⊗ Iℋ .

As desired, any eigenstate of 𝐸 with positive eigenvalue 𝑝 is of the form |+𝑅⟩ |𝜒⟩ where |𝜒⟩ ∈ ℋ
has success probability 𝑝:

Pr
[︁
MixM({M𝑟}; |𝜒⟩) = 1

]︁
= ‖ΠCProj |+𝑅⟩ |𝜒⟩‖2 = (⟨+𝑅| ⊗ ⟨𝜒|)𝐸(|+𝑅⟩ ⊗ |𝜒⟩) = 𝑝 .

9One may notice that, for the setting of interactive arguments, |𝜓⟩ was generated by an efficient procedure.
Nevertheless, there is no efficient procedure to re-generate the particular |𝜓⟩ that corresponds to the partial transcript
seen so far. This is because |𝜓⟩ is the collapsed state leftover after measuring the prover’s commitment message, and
this may yield different outcomes every time.
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We stress that this implication only goes in one direction, as it is not true that every state |𝜓⟩ with
success probability 𝑝 corresponds to an eigenstate |+𝑅⟩ |𝜓⟩ of 𝐸 with eigenvalue 𝑝. The precise
relationship is summarized in the following observation:

Key fact: For every state |𝜓⟩ with success probability 𝑝, |+𝑅⟩ |𝜓⟩ can be written as a
linear combination of eigenstates of 𝐸

|+𝑅⟩ |𝜓⟩ =
∑︀
𝑗 𝛼𝑗 |+𝑅⟩ |𝜒𝑗⟩

where each |+𝑅⟩ |𝜒𝑗⟩ has eigenvalue/success probability 𝑝𝑗 , and 𝑝 =
∑︀
𝑗 |𝛼𝑗 |

2𝑝𝑗 .

We now define Π𝜀 as the projector onto the span of eigenstates of 𝐸 with eigenvalue at least 𝜀.
Let the corresponding binary-outcome measurement be Test𝜀 := (Π𝜀, I−Π𝜀). Importantly, Test𝜀
satisfies the following properties.

∙ Property 1: applied to any 2𝜀-successful state, Test𝜀 returns 1 with probability 𝜀.
By the “key fact” above, any state |+𝑅⟩ |𝜓⟩ where |𝜓⟩ has success probability 2𝜀 is a linear
combination of eigenstates

∑︀
𝑗 𝛼𝑗 |+𝑅⟩ |𝜒𝑗⟩ where 2𝜀 =

∑︀
𝑗 |𝛼𝑗 |

2𝑝𝑗 . By Markov’s inequality, there
must be at least probability mass 𝜀 on eigenstates with eigenvalue/success probability at least 𝜀.

∙ Property 2: when Test𝜀 returns 1, the post-measurement state is 𝜀-successful. This
follows from the definition of Π𝜀, since any state in the image of Π𝜀 is a linear combination of
eigenstates |+𝑅⟩ |𝜒𝑗⟩ where every |𝜒𝑗⟩ has success probability at least 𝜀.

A state repair procedure. We now present a state prepare procedure using Test𝜀. We stress
that the following procedure is not yet sufficient to implement an efficient extraction procedure,
since we have not specified how to implement Test𝜀.

Start with state |+𝑅⟩ |𝜓⟩ ∈ (ℛ,ℋ) where |𝜓⟩ has success probability 2𝜀.
1. Initialization. Apply the measurement Test𝜀 and abort if the outcome is 0.
2. Measure-and-repair. Repeat the following loop as many times as desired.

(a) (Measure step) Sample a random 𝑟 ← 𝑅 and apply A𝑟 to ℋ to obtain an outcome 𝑏. Call
this step “successful” if 𝑏 = 1.

(b) (Repair step) Repair the state by applying Test𝜀,A𝑟,Test𝜀,A𝑟, . . . until Test𝜀 outputs 1.

Since the state |𝜓⟩ at the beginning of the procedure has success probability at least 2𝜀, the
initialization step aborts with probability at most 1− 𝜀.

We now analyze the execution of this procedure conditioned on the event that the initialization
step does not abort. We argue that the procedure can repeatedly iterate the measure-and-repair
loop. By construction, the state after any (non-aborting) Initialization step or Repair step is in the
span of Π𝜀. Thus, the state at the beginning of the Measure step is always in the span of Π𝜀. Since
any state in the span of Π𝜀 is of the form |+𝑅⟩ |𝜒⟩ where |𝜒⟩ has success probability 𝜀, the Measure
step is equivalent to an application of MixM({A𝑟}𝑟) that succeeds with at least 𝜀 probability.
Recap. We summarize what our state repair procedure implies for extraction. Suppose we are
given a malicious prover 𝑃 (|𝜓⟩ , ·) for a collapsing interactive protocol who successfully answers a
random challenge 𝑟 ← 𝑅 with success probability 𝜀. Moreover, assume that we can implement
Test𝜀. Then for any desired 𝑐 ∈ N, if the initialization step does not abort, then we can repeat the
measure-and-repair iteration 𝑐 times and achieve the following:
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∙ in each iteration we ask 𝑃 a random challenge 𝑟 ← 𝑅, and record an accepting transcript (𝜏, 𝑟, 𝑧)
with probability at least 𝜀; and
∙ in expectation, the total number of measurements performed is 𝑂(𝑐).

While this is promising, we are far from done, because we do not know of a way to efficiently
implement Test𝜀. Hence, in Section 2.7, we show how to replace Test𝜀 with an efficient measurement
ApproxTest𝜀 that approximates the behavior of Test𝜀. While the idea behind ApproxTest𝜀 is natural,
proving that ApproxTest𝜀 suffices for extraction is the most technically challenging part of this work.

2.7 Approximate state repair

Approximating Test𝜀. While we do not know how implement Test𝜀, we have already developed a
way to approximate Test𝜀: the alternating measurements technique we used for state repair doubles
as a way to estimate the success probability! Note that estimating success probability (not repairing
the state) was the motivation for alternating measurements in [MW05, Zha20].

Let |+𝑅⟩ |𝜒𝑗⟩ be an eigenstate of 𝐸 = |+𝑅⟩⟨+𝑅|ℛΠCProj |+𝑅⟩⟨+𝑅|ℛ with eigenvalue 𝑝𝑗 ; recall
from Section 2.6 that |𝜒𝑗⟩ has success probability 𝑝𝑗 .

An important observation is that the eigenspectrum of 𝐸 corresponds to the decomposition of
(ℛ,ℋ) induced by Jordan’s lemma for ΠCProj and |+𝑅⟩⟨+𝑅|ℛ: any state in the span of |+𝑅⟩⟨+𝑅|ℛ
that is in the Jordan subspace 𝒮𝑗 must be an eigenstate |+𝑅⟩ |𝜒𝑗⟩ of 𝐸 with eigenvalue 𝑝𝑗 .

Then, by the analysis in Section 2.5, if we start from |+𝑅⟩ |𝜒𝑗⟩ and apply the binary projective
measurements CProj = (ΠCProj, I−ΠCProj) and M|+𝑅⟩ = ( |+𝑅⟩⟨+𝑅| , I− |+𝑅⟩⟨+𝑅|) in an alternat-
ing fashion:

CProj,M|+𝑅⟩,CProj,M|+𝑅⟩, . . . ,

then the corresponding measurement outcomes 𝑏1, 𝑏2, 𝑏3, . . . are distributed so that 1𝑏𝑖=𝑏𝑖+1 (the
indicator for the event 𝑏𝑖 = 𝑏𝑖+1, where we define 𝑏0 := 1) is an independent Bernoulli random
variable with expectation 𝑝𝑗 for all 𝑖 ≥ 0.

Following [MW05, Zha20], this yields a simple, non-projective procedure ApproxTest𝜀,𝑡:

Initial state: |+𝑅⟩ |𝜓⟩ for state |𝜓⟩ with success probability at least 2𝜀.
1. Apply 2𝑡 measurements CProj,M|+𝑅⟩, . . . ,CProj,M|+𝑅⟩. Denote the binary outcome of the 𝑖-th

measurement by 𝑏𝑖 and additionally set 𝑏0 := 1.
2. Compute 𝑝 := 1

2𝑡 · |{𝑖 ∈ {1, . . . , 2𝑡} : 𝑏𝑖−1 = 𝑏𝑖}| and output 1 if 𝑝 ≥ 𝜀.

To analyze the distribution of outcomes from applying ApproxTest𝜀,𝑡 to an arbitrary state of
the form |+𝑅⟩ |𝜓⟩, we employ the method from Section 2.5 of projecting onto the Jordan subspaces
{𝒮𝑗}𝑗 for the projectors ΠCProj and |+𝑅⟩⟨+𝑅|. Since any state |+𝑅⟩ |𝜓⟩ can be written as a linear
combination

∑︀
𝑗 𝛼𝑗 |+𝑅⟩ |𝜒𝑗⟩ of eigenstates of 𝐸, the result of applying ApproxTest𝜀,𝑡 to |+𝑅⟩ |𝜓⟩

can be described as follows, where Test𝜀 is included for comparison:

∙ Test𝜀: Sample 𝑗 with probability |𝛼𝑗 |2, and then return 1 if 𝑝𝑗 ≥ 𝜀 and 0 otherwise.

∙ ApproxTest𝜀,𝑡: Sample 𝑗 with probability |𝛼𝑗 |2; flip 2𝑡 independent Bernoulli random variables
with parameter 𝑝𝑗 ; let 𝑝 be the fraction of flips that return 1; output 1 if 𝑝 ≥ 𝜀 and 0 otherwise.

Thus, we have from Section 2.6 a working extraction procedure based on Test𝜀, and now a way to
efficiently approximate Test𝜀 to any desired precision using ApproxTest𝜀,𝑡. However, turning this
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intuition into a working extraction procedure requires overcoming a number of technical challenges,
stemming from the fact that ApproxTest𝜀,𝑡 as defined above is not a projective measurement.
Challenge: ApproxTest𝜀,𝑡 is not projective. In Section 2.5 we claimed that if a state |𝜓⟩
initially in the span of some projector ΠA is disturbed by an binary-outcome measurement B, then by
performing alternating measurements, we can return our state to the span of ΠA in 2𝑇 measurements
except with probability 1/𝑇 . It is not clear that such a statement holds if A = (ΠA, I−ΠA) is
replaced by a non-projective measurement.

Concretely, we need to analyze the behavior of the alternating measurement procedure

ApproxTest𝜀,𝑡,A𝑟,ApproxTest𝜀,𝑡,A𝑟, . . .

where ApproxTest𝜀,𝑡 itself is an alternating measurements procedure, i.e., ApproxTest𝜀,𝑡 runs

CProj,M|+𝑅⟩,CProj,M|+𝑅⟩, . . . .

The core technical challenge is to prove that the guarantees of alternating measurements used
in Section 2.6 extend to “nested” alternating measurements.
Can we appeal to trace distance? One might hope to show that for large 𝑡, the post-
measurement states of ApproxTest𝜀,𝑡 and Test𝜀 are close. If ApproxTest𝜀,𝑡 |𝜓⟩ were sufficiently close
in trace distance to Test𝜀 |𝜓⟩ for all |𝜓⟩, then we could show that any property of the procedure
Test𝜀,A𝑟,Test𝜀,A𝑟, . . . still applies if we swap out Test𝜀 for ApproxTest𝜀,𝑡, up to a small loss.

Unfortunately, a simple example illustrates why such a claim about the trace distance is false.
Suppose we have an eigenstate |+𝑅⟩ |𝜒𝑗⟩ of the operator 𝐸 with eigenvalue 𝑝𝑗 = 𝜀. Then since
Test𝜀 projects onto eigenspaces of 𝐸 with eigenvalue ≥ 𝜀, applying Test𝜀 to this state returns 1 with
probability 1. However, applying ApproxTest𝜀,𝑡 returns 1 with essentially 1/2 probability, since it
performs 𝜀-weighted coin flips and only accepts if the fraction of 1’s is at least 𝜀.
Expanding the Hilbert space. Since a trace distance argument is unlikely to work, the next
idea is to simply force ApproxTest𝜀,𝑡 to be projective by expanding the Hilbert space. The hope
is that by making the measurement projective, we regain our ability to apply Jordan’s lemma.
Specifically, we introduce 2𝑡-qubit ancilla registers ℒ to store the 2𝑡 outcomes of CProj and M|+𝑅⟩,
which we perform coherently, meaning that instead of actually performing the measurements, we
apply corresponding unitaries to CNOT the measurement results onto the ancilla registers ℒ. To
ensure the measurement is projective, we must also uncompute all the (coherent applications of)
CProj and M|+𝑅⟩ once we obtain the probability estimate 𝑝.
Technical challenge: ApproxTest𝜀,𝑡 is only meaningful if ℒ is |02𝑡⟩. Unfortunately, expand-
ing the Hilbert space introduces a new problem. If ApproxTest𝜀,𝑡 computes its estimate of 𝑝 using a
2𝑡-qubit ancilla register ℒ, then we have to ensure the register ℒ is set to |02𝑡⟩, or else the estimate
of 𝑝, computed based on the contents of the ℒ register, may be meaningless. A natural idea would
be to ensure that, before any application of ApproxTest𝜀,𝑡, we trace out the potentially non-zero
registers ℒ and manually reset them to |02𝑡⟩. However, doing this is equivalent to performing the
original non-projective version of ApproxTest𝜀,𝑡, and we would be back where we started.
Resolution: project ℒ onto |02𝑡⟩. Instead we modify the measurement A𝑟 (which originally
acts as identity on the ℒ registers) to additionally project ℒ onto |02𝑡⟩. This modified measurement
A𝑟,𝑏 returns 1 if and only if A𝑟 returns 𝑏 and the binary projective measurement of ℒ onto |02𝑡⟩
returns 1; in particular, A𝑟,𝑏 is still a binary projective measurement. Proving that the state is
repaired after the projective version of ApproxTest𝜀,𝑡 returns 1 requires a very careful analysis of
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the properties of the Jordan decomposition induced by (projective) ApproxTest𝜀,𝑡 and A𝑟,𝑏. The
analysis of this procedure is the most technical component of the paper; see Section 4.3 for details.

2.8 Quantum strategies for repeated games

Our quantum rewinding techniques can be cast in the language of single-player games, i.e., a referee
asks a player a random question 𝑟 ← 𝑅, the player responds with some 𝑧, and wins if 𝑓(𝑟, 𝑧) = 1
for some predicate 𝑓 . Mapped onto this setting, the quantum rewinding task is to transform any
efficient quantum strategy for winning the game once into an efficient strategy that can win in
many rounds in an 𝑛-fold sequential repetition of this game, where in each repetition the referee
only measures whether the player has won. Importantly, we are only given one copy of the quantum
state used by the one-time strategy.

In the context of rewinding, we set 𝑓(𝑟, 𝑧) := 𝑉 (𝜏, 𝑟, 𝑧) to be the verifier predicate with partial
transcript 𝜏 . The strategy of the prover in the last round of the protocol is then an efficient
strategy for the one-time game. To obtain multiple accepting transcripts, a rewinding extractor
plays the sequential repetition of the game. Note that by measuring 𝒵 in the computational basis
if the player has won, the extractor obtains an accepting response 𝑧; collapsing ensures that this
additional measurement is not detectable by an efficient strategy.

This gives a conceptually simple characterization of the quantum rewinding task, which may
be of independent interest. In the body of the paper, we develop general techniques that apply to
any single-player game (see Section 4).

2.9 Discussion: is collapsing necessary for Kilian’s protocol?

Since collision-resistant hash functions (CRHFs) suffice in the classical setting, a natural question
is whether Kilian’s protocol (in its original formulation using Merkle trees) is post-quantum secure
when instantiated with any post-quantum CRHF. We do not know the answer, but believe that
the existing evidence points to collision resistance being insufficient for Kilian’s protocol.

Ambainis et al. [ARU14] give a counter-example showing that, in general, collision resistance
alone is likely not enough for rewinding in interactive protocols. The counter-example works by
giving a construction of an equivocal hash function.10 This is a hash function that is collision
resistant, but where it is possible to break the security of the hash function as a commitment
scheme. For example, it is possible to send a hash image 𝑦, and then upon receiving an arbitrary
prefix 𝑧, “open” that image to a pre-image 𝑥 of 𝑦 with prefix 𝑧. Such equivocal hash functions
do not exist classically, due to a rewinding argument, but Ambainis et al. [ARU14] show how to
construct them relative to a quantum oracle. Amos et al. [AGKZ20] later give a construction
relative to a classical oracle.

While Ambainis et al. use equivocal hash functions to give unsound interactive proofs, the
results do not immediately apply to the case of Kilian’s protocol. This is because Merkle trees do
not necessarily preserve equivocality of the component hash function. In particular, equivocating
Merkle trees would seem to require equivocating the underlying hash function on either the left
half or the right half of the input. On the other hand, only a very short prefix can be equivocated
by the existing works.11

10The terminology “equivocal” is due to [AGKZ20].
11Ambanis et al. allow for a richer class of equivocations than just prefixes, but they must still be short relative to

the input length.
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Nevertheless, we observe that a slight variant of Merkle trees does preserve the equivocality of
the underlying hash function. Namely, if each node is obtained by hashing the children together
with an arbitrarily long auxiliary string. By setting the length of the auxiliary strings sufficiently
long, one can equivocate on a prefix long enough to arbitrarily choose the child nodes. This allows
for full equivocality of Merkle trees, while still preserving collision resistance. More generally, it
yields a vector commitment that is collision resistant, but equivocal and therefore insufficient for
the post-quantum security of Kilian’s protocol.

We leave as an interesting open question whether Kilian’s protocol instantiated with vanilla
Merkle trees using a post-quantum CRHF is sufficient for post-quantum security. We note, however,
that if Kilian’s protocol instantiated with a CRHF is not post-quantum secure, then it means
the CRHF is not collapsing. As shown by Zhandry [Zha19], such a CRHF would yield strong
cryptographic objects, namely “quantum lightning”, which have no known instantiations under
well-studied assumptions.12

12More precisely, Zhandry [Zha19] shows that non-collapsing CRHFs imply infinitely-often secure quantum light-
ning, a slightly weaker notion.
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3 Preliminaries
The security parameter is denoted by 𝜆. A function 𝑓 : N → [0, 1] is negligible, denoted 𝑓(𝜆) =
negl(𝜆), if it decreases faster than the inverse of any polynomial. A probability is overwhelming
if is at least 1 − negl(𝜆) for a negligible function negl(𝜆). For any positive integer 𝑛, let [𝑛] :=
{1, 2, . . . , 𝑛}. For a set 𝑅, we write 𝑟 ← 𝑅 to denote a uniformly random sample 𝑟 drawn from 𝑅.

3.1 Concentration inequalities

We denote by Bin(𝑛, 𝑝) the binomial distribution with 𝑛 trials and success probability 𝑝 (sum of 𝑛
independent Bernoullis with parameter 𝑝). We use the following Chernoff bounds.

Proposition 3.1 (additive Chernoff bound). For 𝛿, 𝜖 > 0, define 𝑛𝜖,𝛿 := log(1/2𝛿)
2𝜖2 . If 𝑛 ≥ 𝑛𝜖,𝛿 then

Pr
𝑋←Bin(𝑛,𝑝)

[︂
𝑝− 𝜖 ≤ 𝑋

𝑛
≤ 𝑝+ 𝜖

]︂
≥ 1− 𝛿 .

Proposition 3.2 (multiplicative Chernoff bound). Let 𝑥1, . . . , 𝑥𝑁 ∈ {0, 1} and define 𝜇 := 𝐾
𝑁

∑︀𝑁
𝑖=1 𝑥𝑖.

Let 𝑋1, . . . , 𝑋𝐾 be independent uniformly random samples from 𝑥1, . . . , 𝑥𝑁 . Then

Pr
[︃
𝐾∑︁
𝑖=1

𝑋𝐾 ≥ (1 + 𝛿)𝜇
]︃
≤ 𝑒−𝛿2𝜇/3 .

3.2 Quantum preliminaries and notation

Quantum information. A (pure) quantum state is a vector |𝜓⟩ in a complex Hilbert space ℋ
with ‖|𝜓⟩‖ = 1; in this work, ℋ is always finite-dimensional. We denote by S(ℋ) the space of
Hermitian operators on ℋ. A density matrix is a Hermitian operator 𝜌 ∈ S(ℋ) with Tr(𝜌) = 1. A
density matrix represents a probabilistic mixture of pure states (a mixed state); the density matrix
corresponding to the pure state |𝜓⟩ is |𝜓⟩⟨𝜓|. Typically we divide a Hilbert space into registers,
e.g. ℋ = ℋ1 ⊗ℋ2. We sometimes write, e.g., 𝜌ℋ1 to specify that 𝜌 ∈ S(ℋ1).

A unitary operation is represented by a complex matrix 𝑈 such that 𝑈𝑈 † = I. The operation
𝑈 transforms the pure state |𝜓⟩ to the pure state 𝑈 |𝜓⟩, and the density matrix 𝜌 to the density
matrix 𝑈𝜌𝑈 †.

A projector Π is a Hermitian operator (Π† = Π) such that Π2 = Π. A projective measurement is
a collection of projectors P = (Π𝑖)𝑖∈𝑆 such that

∑︀
𝑖∈𝑆 Π𝑖 = I. This implies that Π𝑖Π𝑗 = 0 for distinct

𝑖 and 𝑗 in 𝑆. The application of a projective measurement to a pure state |𝜓⟩ yields outcome 𝑖 ∈ 𝑆
with probability 𝑝𝑖 = ‖Π𝑖 |𝜓⟩‖2; in this case the post-measurement state is |𝜓𝑖⟩ = Π𝑖 |𝜓⟩ /

√
𝑝𝑖. We

will sometimes refer to the post-measurement state Π𝑖 |𝜓⟩ /
√
𝑝𝑖 as the result of applying P = (Π𝑖)𝑖∈𝑆

to |𝜓⟩ and post-selecting (i.e., conditioning) on outcome 𝑖. A state |𝜓⟩ is an eigenstate of P if it is
an eigenstate of every Π𝑖.

A two-outcome projective measurement is called a binary projective measurement, and is written
as P = (Π, I−Π), where Π is associated with the outcome 1, and I−Π with the outcome 0.

General (non-unitary) evolution of a quantum state can be represented via a completely-positive
trace-preserving (CPTP) map 𝑇 : S(ℋ) → S(ℋ′). We omit the precise definition of these maps in
this work; we will only use the facts that they are trace-preserving (for every 𝜌 ∈ S(ℋ) it holds
that Tr(𝑇 (𝜌)) = Tr(𝜌)) and linear.
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For every CPTP map 𝑇 : S(ℋ) → S(ℋ) there exists a unitary dilation 𝑈 that operates on an
expanded Hilbert space ℋ ⊗ 𝒦, so that 𝑇 (𝜌) = Tr𝒦(𝑈(𝜌 ⊗ |0⟩⟨0|𝒦)𝑈 †). This is not necessarily
unique; however, if 𝑇 is described as a circuit then there is a dilation 𝑈𝑇 represented by a circuit
of size 𝑂(|𝑇 |).

For Hilbert spaces 𝒜,ℬ the partial trace over ℬ is the unique CPTP map Trℬ : S(𝒜⊗ℬ)→ S(𝒜)
such that Trℬ(𝜌𝐴 ⊗ 𝜌𝐵) = Tr(𝜌𝐵)𝜌𝐴 for every 𝜌𝐴 ∈ S(𝒜) and 𝜌𝐵 ∈ S(ℬ).

A general measurement is a CPTP map M : S(ℋ) → S(ℋ ⊗ 𝒪), where 𝒪 is an ancilla reg-
ister holding a classical outcome. Specifically, given measurement operators {𝑀𝑖}𝑁𝑖=1 such that∑︀𝑁
𝑖=1𝑀𝑖𝑀

†
𝑖 = I and a basis {|𝑖⟩}𝑁𝑖=1 for 𝒪, M(𝜌) :=

∑︀𝑁
𝑖=1(𝑀𝑖𝜌𝑀

†
𝑖 ⊗ |𝑖⟩⟨𝑖|

𝒪). We will sometimes
implicitly discard the outcome register. A projective measurement is simply a general measurement
where the 𝑀𝑖 are projectors. A measurement induces a probability distribution over its outcomes
given by Pr[𝑖] = Tr

(︁
|𝑖⟩⟨𝑖|𝒪M(𝜌)

)︁
; we denote sampling from this distribution by 𝑖← M(𝜌).

The trace distance between states 𝜌,𝜎, denoted 𝑑(𝜌,𝜎), is defined as 1
2 Tr

(︁√︀
(𝜌− 𝜎)2

)︁
. The

trace distance is contractive under CPTP maps, i.e. for any CPTP map 𝑇 , 𝑑(𝑇 (𝜌), 𝑇 (𝜎)) ≤ 𝑑(𝜌,𝜎).
It follows that for any measurement M, the statistical distance between the distributions M(𝜌) and
M(𝜎) is bounded by 𝑑(𝜌,𝜎). We have the following gentle measurement lemma, which bounds how
much a state is disturbed by applying a measurement whose outcome is almost certain.

Lemma 3.3 (Gentle Measurement [Win99]). Let 𝜌 ∈ S(ℋ) and P = (Π, I−Π) be a binary pro-
jective measurement on ℋ such that Tr(Π𝜌) ≥ 1− 𝛿. Let 𝜌′ be the state after applying P to 𝜌 and
post-selecting on obtaining outcome 1. Then

𝑑(𝜌,𝜌′) < 2
√
𝛿.

Quantum algorithms. In this work, a quantum adversary is a family of quantum circuits
{Adv𝜆}𝜆∈N represented classically using some standard universal gate set. A quantum adversary
is polynomial-size if there exists a polynomial 𝑝 and 𝜆0 ∈ N such that for all 𝜆 > 𝜆0 it holds that
|Adv𝜆| ≤ 𝑝(𝜆) (i.e., quantum adversaries have classical non-uniform advice).

In this work we refer to the expected running time of quantum algorithms. This means that there
is a classical control algorithm that applies quantum circuits of a fixed size and decides whether to
terminate based on the classical outputs of those circuits. The expected running time is then the
expected number of unit operations, classical or quantum, applied during this execution.
Black-box access. A circuit 𝐶 with black-box access to a unitary 𝑈 , denoted 𝐶𝑈 , is a standard
quantum circuit with special gates that act as 𝑈 and 𝑈 †. We also use 𝐶𝑇 to denote black-box
access to a map 𝑇 , which we interpret as 𝐶𝑈𝑇 for a unitary dilation 𝑈𝑇 of 𝑇 ; all of our results
will be independent of the choice of dilation. This allows, for example, the “partial application”
of a projective measurement, and the implementation of a general measurement via a projective
measurement on a larger space.

3.3 Jordan’s lemma

We state Jordan’s lemma and, for completeness, provide a proof that roughly follows [Reg06].

Lemma 3.4 ([Jor75]). For any two Hermitian projectors ΠA and ΠB on a Hilbert space ℋ, there
exists an orthogonal decomposition of ℋ =

⨁︀
𝑗 𝒮𝑗 into one-dimensional and two-dimensional sub-

spaces {𝒮𝑗}𝑗 (the Jordan subspaces), where each 𝒮𝑗 is invariant under both ΠA and ΠB. Moreover:
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∙ in each one-dimensional space, ΠA and ΠB act as identity or rank-zero projectors; and
∙ in each two-dimensional subspace 𝒮𝑗, ΠA and ΠB are rank-one projectors. In particular, there

exist distinct orthogonal bases {|𝑣A
𝑗,1⟩ , |𝑣A

𝑗,0⟩} and {|𝑣B
𝑗,1⟩ , |𝑣B

𝑗,0⟩} for 𝒮𝑗 such that ΠA projects onto
|𝑣A
𝑗,1⟩ and ΠB projects onto |𝑣B

𝑗,1⟩.
Proof. Since ΠA and ΠB are both Hermitian, their sum ΠA + ΠB is also Hermitian. By the spectral
theorem for Hermitian matrices, it follows that the eigenvectors of ΠA + ΠB span ℋ. Let |𝜓⟩ be an
eigenvector with eigenvalue 𝑝 (i.e., ΠA |𝜓⟩+ ΠB |𝜓⟩ = 𝑝 |𝜓⟩). There are two cases to consider.

If ΠA |𝜓⟩ lies in span(|𝜓⟩), then ΠB |𝜓⟩ must also be in span(|𝜓⟩), so span(|𝜓⟩) is a one-
dimensional subspace invariant under both ΠA and ΠB. Since ΠA and ΠB are projectors, their
eigenvalues are 0 or 1, so in span(|𝜓⟩) they act as identity or rank-zero projectors.

If ΠA |𝜓⟩ does not lie in span(|𝜓⟩), then span(|𝜓⟩ ,ΠA |𝜓⟩) is a two-dimensional subspace. This
subspace is invariant under ΠA, which acts as a projector onto |𝑣A

𝑗,1⟩ := ΠA |𝜓⟩. Moreover, this
subspace can be written as span(|𝜓⟩ ,ΠB |𝜓⟩), and by an identical argument, ΠB projects this
subspace onto |𝑣B

𝑗,1⟩ := ΠB |𝜓⟩.
By setting |𝑣A

𝑗,0⟩ := 𝒮𝑗 ∩ ker(ΠA) (i.e. the state in 𝒮𝑗 orthogonal to |𝑣A
𝑗,1⟩)) and |𝑣B

𝑗,0⟩ :=
𝒮𝑗 ∩ ker(ΠB), we obtain two different orthogonal bases {|𝑣A

𝑗,1⟩ , |𝑣A
𝑗,0⟩} and {|𝑣B

𝑗,1⟩ , |𝑣B
𝑗,0⟩} for 𝒮𝑗

where ΠA projects onto |𝑣A
𝑗,1⟩ and ΠB projects onto |𝑣B

𝑗,1⟩.

3.4 Interactive arguments

For interactive classical algorithm 𝑉 and interactive (potentially) quantum circuit 𝐴, we denote by
⟨𝐴(|𝜓⟩), 𝑉 ⟩ the random variable corresponding to the output of 𝑉 when interacting with 𝐴(|𝜓⟩);
note that since 𝑉 is classical, the communication in this interaction is also classical. For a general
formal treatment of interactive quantum circuits, see [VW16].
Definition 3.5. A (post-quantum) interactive argument for a relation R with soundness 𝑠 is a pair
of interactive classical polynomial-time algorithms ARG = (𝑃, 𝑉 ) such that the following holds.

∙ Completeness. For every 𝜆 ∈ N and (𝑥,𝑤) ∈ R, Pr
[︁
⟨𝑃 (1𝜆, 𝑥, 𝑤), 𝑉 (1𝜆, 𝑥)⟩ = 1

]︁
= 1.

∙ Soundness. For every 𝜆 ∈ N, 𝑥 /∈ ℒ(R), and polynomial-size interactive quantum circuit 𝑃 ,

Pr
[︁
⟨𝑃 , 𝑉 (1𝜆, 𝑥)⟩ = 1

]︁
≤ 𝑠(𝜆) .

We say that ARG is succinct if the total amount of communication between 𝑃 and 𝑉 is at most
𝑐(𝜆, log |𝑥|) for some fixed polynomial 𝑐.

In this work a round is a back-and-forth interaction consisting of a verifier message followed by
a prover message.

We also consider interactive arguments that satisfy the stronger property of knowledge sound-
ness. Below we write 𝐸𝑃 for an extractor with “black-box” access to 𝑃 ; we will give this a precise
meaning shortly. Our definition loosely follows that of [Unr12].
Definition 3.6. ARG = (𝑃, 𝑉 ) has knowledge soundness with knowledge error 𝜅 if there ex-
ists an expected polynomial time quantum extractor 𝐸 such that for every polynomial-size in-
teractive quantum circuit 𝑃 , quantum state |𝜓⟩, 𝜆 ∈ N, instance 𝑥, and parameter 𝜀(𝜆) ≤
Pr
[︁
⟨𝑃 (𝑥, |𝜓⟩), 𝑉 (1𝜆, 𝑥)⟩ = 1

]︁
the following holds:

Pr
[︀
(𝑥,𝑤) ∈ R | 𝑤 ← 𝐸𝑃 (𝑥;|𝜓⟩)(1𝜆, 𝑥, 11/𝜀)

]︀
= Ω(𝜀(𝜆)− 𝜅) .

20



We describe the differences between our definition and the definition of quantum proofs of
knowledge given in [Unr12].

∙ Our definition asks that the extractor succeed with probability linear in (𝜀(𝜆) − 𝜅), whereas
Unruh’s definition only requires the extractor’s success probability be (𝜀(𝜆) − 𝜅)𝑑/𝑝(𝜆) for a
constant 𝑑 ∈ N and polynomial 𝑝.

∙ Our definition is incomparable to Unruh’s definition when |𝜓⟩ is a general quantum state, since
we require that the extractor be given as input a lower bound 𝜀 on the success probability of the
adversary. This arises due to a technical requirement in our security proof.

∙ When |𝜓⟩ is a computational basis state (or any other efficiently-constructible state), our defini-
tion is stronger than Unruh’s definition since in this case the extractor can compute for itself a
lower bound on the success probability of the adversary by simply running the adversary many
times (independently, from the beginning of the protocol).

To define black-box access to 𝑃 , we will need to consider in more detail how an interactive
quantum circuit is specified.

Definition 3.7 (Interactive quantum circuits). A 𝑚-round interactive quantum circuit 𝐴 is a
sequence of unitary quantum circuits (𝑈 (1), . . . , 𝑈 (𝑚)) where 𝑈 (𝑖) operates on registers (ℐ,ℛ𝑖,𝒵𝑖).

The size of an interactive quantum circuit is the sum of the sizes of the circuits implementing
𝑈 (1), . . . , 𝑈 (𝑚).

Let 𝑃 := (𝑈 (1), . . . , 𝑈 (𝑚)); then 𝐸𝑃 is a quantum circuit with special gates corresponding to
𝑈 (𝑖)(𝑟) and (𝑈 (𝑖)(𝑟))† for 𝑖 ∈ [𝑚].

The requirement that the 𝑈 (𝑖) be unitary is without loss of generality, in the sense that any
quantum circuit not of this form can be “purified” into a circuit of this form which is only a constant
factor larger with the same observable behavior. Using this formulation, we can sample the random
variable ⟨𝑃 , 𝑉 ⟩ equivalently as:

1. Initialize the register ℐ to |𝜓⟩, and 𝜏 := ().
2. For 𝑖 = 1, . . . ,𝑚,

(a) Sample 𝑟𝑖 ← 𝑅𝑖. Initialize the ℛ𝑖 register to |𝑟𝑖⟩.
(b) Apply unitary 𝑈 (𝑖) to (ℐ,ℛ𝑖,𝒵𝑖).
(c) Measure 𝒵𝑖 in the computational basis to obtain response 𝑧𝑖. Append (𝑟𝑖, 𝑧𝑖) to 𝜏 .

3. Return the output of 𝑉 (𝜏).

In particular, the interaction is public coin. Note again that we restrict the operation of 𝐴 in each
round to be unitary except for the measurement of 𝒵𝑖 in the computational basis.

3.5 Collapsing hash functions

Let ℋ = {𝐻𝜆}𝜆∈N be such that each 𝐻𝜆 is a distribution over functions ℎ : {0, 1}𝑛(𝜆) → {0, 1}ℓ(𝜆).

Definition 3.8. ℋ is post-quantum collision resistant if for every polynomial-size quantum adver-
sary Adv,

Pr
[︃

𝑥 ̸= 𝑥′ ∧
ℎ(𝑥) = ℎ(𝑥′)

⃒⃒⃒⃒
⃒ ℎ← 𝐻𝜆

(𝑥, 𝑥′)← Adv(ℎ)

]︃
= negl(𝜆) .
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Definition 3.9. ℋ is collapsing [Unr16b] if for every security parameter 𝜆 and polynomial-size
quantum adversary Adv,⃒⃒⃒

Pr[HCollapseExp(0, 𝜆,Adv) = 1]− Pr[HCollapseExp(1, 𝜆,Adv) = 1]
⃒⃒⃒
≤ negl(𝜆) .

For 𝑏 ∈ {0, 1} the experiment HCollapseExp(𝑏, 𝜆,Adv) is defined as follows:

1. The challenger samples ℎ← 𝐻𝜆 and sends ℎ to Adv.
2. Adv replies with a (classical) binary string 𝑦 ∈ {0, 1}ℓ(𝜆) and a 𝑛(𝜆)-qubit quantum state on

registers 𝒳 . (The requirement that 𝑦 is classical can be enforced by having the challenger
immediately measure these registers upon receiving them.)

3. The challenger computes ℎ in superposition on the 𝑛(𝜆)-qubit quantum state, and measures the
bit indicating whether the output of ℎ equals 𝑦. If ℎ does not equal 𝑦, the challenger aborts and
outputs ⊥.

4. If 𝑏 = 0, the challenger does nothing. If 𝑏 = 1, the challenger measures the 𝑛(𝜆)-qubit state in
the standard basis.

5. The challenger returns contents of the registers 𝒳 to Adv.
6. Adv outputs a bit 𝑏′, which is the output of the experiment.

Claim 3.10 ([Unr16b]). If ℋ is collapsing then ℋ is collision resistant.

Proof. A proof can be found in [Unr16b, Lemma 25], but for convenience we include a proof here.
Let Adv be an adversary that breaks collision resistance of ℋ with probability at least 𝜀(𝜆). We

construct an adversary Adv′ that breaks collapsing of ℋ with probability at least 𝜀(𝜆)/2.
The adversary Adv′ works as follows. First, given as input ℎ ← 𝐻𝜆, Adv′ computes (𝑥, 𝑥′) ←

Adv(ℎ). If (𝑥, 𝑥′) is not a valid collision (they are equal or they map to different outputs under
ℎ) then Adv′ sends to the challenger an arbitrary classical bitstring 𝑦 and an arbitrary quantum
state on register 𝒳 , and then outputs 0 at the conclusion of the experiment. If (𝑥, 𝑥′) is a valid
collision (they are distinct and they map to the same ouput under ℎ), then Adv′ sends 𝑦 := ℎ(𝑥)
and the quantum state |𝜓⟩ := 1√

2(|𝑥⟩+ |𝑥′⟩) on register 𝒳 ; when the challenger returns the contents
of 𝒳 , Adv′ applies the binary projective measurement P = ( |𝜓⟩⟨𝜓| , I− |𝜓⟩⟨𝜓|), and outputs the
measurement outcome 𝑏.

In HCollapseExp(0, 𝜆,Adv′), the adversary Adv′ outputs 1 with probability at least 𝜀(𝜆), since
as long as Adv outputs a valid collision (𝑥, 𝑥′), the measurement P is applied to 1√

2(|𝑥⟩+ |𝑥′⟩) and
must return 1. In HCollapseExp(1, 𝜆,Adv′), the adversary Adv′ outputs 1 with probability at most
𝜀(𝜆)/2, since as long as Adv outputs a valid collision (𝑥, 𝑥′), the measurement P is applied to either
|𝑥⟩ or |𝑥′⟩, and thus returns 1 with probability at most 1/2. The overall difference in the two
probabilities is 𝜀(𝜆)/2.

3.6 Collapsing protocols

Definition 3.11 ([Unr16b, LZ19, DFMS19]). We say that a protocol is collapsing if for every
polynomial-size interactive quantum adversary 𝑃 and polynomial-size quantum distinguisher Adv,⃒⃒⃒

Pr
[︁
CollapseExp(0, 𝑃 ,Adv) = 1

]︁
− Pr

[︁
CollapseExp(1, 𝑃 ,Adv) = 1

]︁⃒⃒⃒
≤ negl(𝜆) .

For 𝑏 ∈ {0, 1}, the experiment CollapseExp(𝑏, 𝑃 ,Adv) is defined as follows:
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1. The challenger simulates ⟨𝑃 , 𝑉 ⟩, stopping just before the measurement of 𝒵𝑚. Let 𝜏 ′ =
(𝑟1, 𝑧1, . . . , 𝑟𝑚−1, 𝑧𝑚−1, 𝑟𝑚) be the transcript up to this point (i.e., excluding the final prover
message).

2. The challenger applies a unitary 𝑈 that computes the bit 𝑉 (𝜏 ′,𝒵𝑚) into a fresh ancilla, measures
the ancilla, and applies 𝑈 †. If the measurement outcome is 0, the experiment aborts.

3. If 𝑏 = 0, the challenger does nothing. If 𝑏 = 1, the challenger measures the 𝒵𝑚 register in the
computational basis and discards the result.

4. The challenger sends all registers to Adv. Adv outputs a bit 𝑏′, which is the output of the
experiment.
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4 Efficient quantum strategies for repeated games
We consider a classical single-player game 𝒢 played with quantum strategies. This section makes
use of the notion of quantum interaction and interactive quantum algorithms; for details on how
to model this formally, see [VW16].

Definition 4.1. A game 𝒢 = (𝑅,𝑍, 𝑓) consists of a question set 𝑅, answer set 𝑍, and win predicate
𝑓 : 𝑅 × 𝑍 → {0, 1}. An (efficient) quantum strategy for 𝒢 is an interactive quantum algorithm 𝑆
with initial state 𝜌.

The value of a strategy (𝑆,𝜌), denoted 𝜔𝒢(𝑆,𝜌), is the probability that a player using strategy
(𝑆,𝜌) in the following game causes the referee to output 1: the referee sends the player a question
𝑟 ← 𝑅, and the player answers with (classical) 𝑧 ∈ 𝑍; the referee outputs 𝑓(𝑟, 𝑧).

We now define a quantum experiment in which the player’s answer can be an arbitrary quantum
state on 𝒵, and the referee determines whether the player wins by computing 𝑓(𝑟,𝒵) in superpo-
sition and measuring the output; it then uncomputes 𝑓 and returns 𝒵 to the player. The key
difference between the classical and quantum experiments is that the only measurement performed
in the quantum experiment is on the output of 𝑓 , whereas a quantum player in a classical interac-
tion must measure to send a classical 𝑧. While this does not affect the value of a game when played
once, it is crucial when the game is repeated sequentially.

In more detail, our quantum experiment consists of the following quantum interaction:

1. The referee samples a question 𝑟 ← 𝑅 and sends it to the player.
2. The player responds with a quantum state on register 𝒵.
3. The referee computes 𝑓(𝑟,𝒵) in superposition, measures the result to obtain an outcome 𝑏 ∈
{0, 1}, and uncomputes 𝑓 . The referee then returns 𝒵 to the player.

It is easily verified that the probability a player following strategy (𝑆,𝜌) wins in the above exper-
iment is 𝜔𝒢(𝑆,𝜌), as in the classical experiment. Without loss of generality, we can assume that
the strategy 𝑆 is implemented by a unitary 𝑈𝑆 .

We now consider the 𝑛-fold sequential repetition of the quantum experiment. Formally, the
interaction consists of 𝑛 sequential rounds, where in the 𝑖th round:

1. The referee samples a question 𝑟𝑖 ← 𝑅 and sends it to the player.
2. The player responds with a quantum state on 𝒵.
3. The referee computes 𝑓(𝑟𝑖,𝒵) in superposition, measures the result to obtain an outcome 𝑏𝑖 ∈
{0, 1}, and uncomputes 𝑓 . The referee then returns 𝒵 to the player, along with 𝑏𝑖.

Definition 4.2 (Value of a strategy in a repeated game). The value of a strategy (𝑆,𝜌) in the above
experiment is denoted 𝜔𝑛𝒢(𝑆,𝜌), and is equal to E[

∑︀𝑛
𝑖=1 𝑏𝑖], the expected number of wins across all

trials. Note that 𝜔1
𝒢(𝑆,𝜌) = 𝜔𝒢(𝑆,𝜌).

When 𝜌 is a classical state, the 𝑛-fold repetition 𝑆𝑛 of any strategy 𝑆 trivially achieves
𝜔𝑛𝒢(𝑆𝑛,𝜌) = 𝑛 · 𝜔𝒢(𝑆,𝜌). For quantum 𝜌, this may not be true, since the state is in general
disturbed by the referee’s measurement. In this section we show that, given any quantum strat-
egy (𝑆,𝜌) for the one-round experiment, there is an efficient quantum algorithm 𝑆′ that makes
black-box use of 𝑈𝑆 (and 𝑈 †𝑆) such that 𝜔𝑛𝒢(𝑆′,𝜌) ≈ 𝑛 · 𝜔𝒢(𝑆,𝜌).
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Theorem 4.3. For any single-player quantum game 𝒢 = (𝑅,𝑍, 𝑓) with classically efficient predi-
cate 𝑓 , 𝑛 ∈ N, 𝜂0 ∈ [0, 1], there is a quantum oracle algorithm 𝐴𝒢,𝑛,𝜂0 such that for all (𝑆,𝜌),

𝜔𝑛𝒢(𝐴𝑆𝒢,𝑛,𝜂0 ,𝜌) ≥ 𝑛 · (𝜔𝒢(𝑆,𝜌)− 𝜂0)

and 𝐴 runs in expected time �̃�(|𝑓 | · 𝑛/𝜂0) and makes an expected �̃�(𝑛/𝜂0) queries to 𝑈𝑆 , 𝑈 †𝑆.

We prove the theorem using two key subroutines, ValEst and ValRepair, which do the following:

∙ ValEst𝑆 applied to 𝜌 is an approximate measurement of 𝜔𝒢(𝑆,𝜌). That is, it produces an outcome
𝑝 where E[𝑝] = 𝜔𝒢(𝑆,𝜌), and conditioned on obtaining outcome 𝑝 the post-measurement state
𝜌′ satisfies 𝜔𝒢(𝑆,𝜌′) ≈ 𝑝.

∙ ValRepair𝑆𝑝 is a procedure that repairs a state that has been perturbed by the referee’s mea-
surement. In more detail, if 𝜌 is the state of the system after applying ValEst𝑆 and obtaining
outcome 𝑝, and playing a one-round experiment with strategy (𝑆,𝜌) results in leftover state 𝜌′,
then applying ValRepair𝑆𝑝 to 𝜌′ outputs a repaired state 𝜌* in the sense that 𝜔𝒢(𝑆,𝜌*) ≈ 𝑝.

We remark that our implementations of ValEst𝑆 and ValRepair𝑆𝑝 make black-box use of 𝑈𝑆 , 𝑈 †𝑆 .
Given a strategy (𝑆,𝜌) for the one-round experiment, our 𝑛-time strategy is as follows.

Repeat for 𝑖 ∈ [𝑛]:
(a) Apply 𝑝𝑖 ← ValEst𝑆 .
(b) Receive 𝑟𝑖 ∈ 𝑅; run 𝑆(𝑟𝑖) coherently to compute 𝒵 and send it to the referee.
(c) Receive 𝒵 and measurement result 𝑏𝑖 ∈ {0, 1} from the referee.
(d) Apply ValRepair𝑆𝑝𝑖 .

The guarantee of ValEst implies that E[𝑝1] = 𝜔𝒢(𝑆,𝜌), and that Pr[𝑏𝑖 = 1] ≈ E[𝑝𝑖] for all 𝑖. The
guarantee of ValRepair implies that 𝑝1 ≈ 𝑝2 ≈ · · · ≈ 𝑝𝑛 with high probability. Together these imply
Theorem 4.3, by linearity of expectation.
Organization. In Section 4.1 we present general technical lemmas that are useful for analysing
algorithms which consist of alternating applications of two binary projective measurements; both
ValEst and ValRepair are of this type. In Section 4.2 we describe and analyze our ValEst procedure,
which is a variant of procedures from [MW05, Zha20]. In Section 4.3 we describe and analyze
ValRepair. Finally, in Section 4.4 we prove Theorem 4.3.

4.1 Jordan subspaces and alternating measurements

We provide general tools for analysing alternating projection algorithms, which were introduced
by Marriott and Watrous [MW05] for witness-preserving amplification of QMA. In more detail,
given two binary-outcome projective measurements A = (ΠA, I−ΠA) and B = (ΠB, I−ΠB) on
a Hilbert space ℋ, an alternating projection algorithm applies the measurements in alternating
fashion (A,B,A,B, . . .) until a stopping condition is met (e.g., a certain number of measurements
have been performed or some outcome has been observed). We can describe the distribution of
measurement outcomes using Jordan’s lemma (Lemma 3.4).
Jordan decomposition. Applying Jordan’s lemma (Lemma 3.4) to (ΠA,ΠB) induces an orthog-
onal decomposition ℋ =

⨁︀
𝑗 𝒮𝑗 into one- and two-dimensional Jordan subspaces 𝒮𝑗 .

Within each two-dimensional Jordan subspace 𝒮𝑗 , we define four states |𝑣A
𝑗,1⟩ , |𝑣A

𝑗,0⟩ , |𝑣B
𝑗,1⟩ , |𝑣B

𝑗,0⟩:
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∙ |𝑣A
𝑗,1⟩ is a state in 𝒮𝑗 ∩ image(ΠA).

∙ |𝑣B
𝑗,1⟩ is a state in 𝒮𝑗 ∩ image(ΠB).

∙ |𝑣A
𝑗,0⟩ is a state in 𝒮𝑗 ∩ ker(ΠA) (orthogonal to |𝑣A

𝑗,1⟩).
∙ |𝑣B

𝑗,0⟩ is a state in 𝒮𝑗 ∩ ker(ΠB) (orthogonal to |𝑣B
𝑗,1⟩).

These states are unique up to phase. Let

𝑝𝑗 :=
⃦⃦⃦
⟨𝑣A
𝑗,1|𝑣B

𝑗,1⟩
⃦⃦⃦2

=
⃦⃦⃦
⟨𝑣A
𝑗,0|𝑣B

𝑗,0⟩
⃦⃦⃦2

.

We adopt the convention that the phases of these states are chosen to satisfy

|𝑣A
𝑗,1⟩ = √𝑝𝑗 |𝑣B

𝑗,1⟩+
√︁

1− 𝑝𝑗 |𝑣B
𝑗,0⟩ and |𝑣B

𝑗,1⟩ = √𝑝𝑗 |𝑣A
𝑗,1⟩+

√︁
1− 𝑝𝑗 |𝑣A

𝑗,0⟩ . (1)

Notice that if |𝜓⟩ is the post-measurement state after A has returned 1, then |𝜓⟩ =
∑︀
𝑗 𝛼𝑗 |𝑣A

𝑗,1⟩
for some choice of amplitudes {𝛼𝑗}𝑗 . Likewise, if |𝜓⟩ is the post-measurement state after B has
returned 1, then |𝜓⟩ =

∑︀
𝑗 𝛼𝑗 |𝑣B

𝑗,1⟩ for some choice of amplitudes {𝛼𝑗}𝑗 .
We can view each one-dimensional subspace 𝒮𝑗 as a degenerate two-dimensional subspace. If

ΠA acts as the identity on 𝒮𝑗 then we label the vector spanning the subspace |𝑣A
𝑗,1⟩; if ΠA is the

zero projection on 𝒮𝑗 then we label the vector |𝑣A
𝑗,0⟩. We use a similar convention for ΠB (so the

vector spanning a one-dimensional subspace has two labels). We set 𝑝𝑗 := 1 if both ΠA and ΠB act
as the identity or both act as zero, and 𝑝𝑗 := 0 otherwise. One can verify that the discussion above
for two-dimensional subspaces holds for one-dimensional subspaces under this convention.
Distribution of measurement outcomes. Consider the following (classical) probability dis-
tribution MWDist(𝑇, 𝑝) (for “Marriott–Watrous distribution”), parameterized by a probability
𝑝 ∈ [0, 1] and positive integer 𝑇 .

MWDist(𝑇, 𝑝):
1. For each 𝑖 ∈ [𝑇 ], set 𝑎𝑖 := 1 with probability 𝑝 and 𝑎𝑖 := 0 otherwise.
2. Let 𝑏0 := 1. For 𝑖 ∈ [𝑇 ], define 𝑏𝑖 := 𝑏𝑖−1 ⊕ 𝑎𝑖.
3. Output 𝑏1, 𝑏2, . . . , 𝑏𝑇 .

The following two lemmas characterize the distribution of measurement outcomes of an alternating
measurement procedure. The analysis closely follows that of [MW05, Reg06].

Lemma 4.4. The measurement outcomes that result from applying 𝑇 alternating measurements
A,B,A,B . . . to |𝑣B

𝑗,1⟩ are distributed according to MWDist(𝑇, 𝑝𝑗).

Proof. This is a consequence of two symmetric claims that follow directly from Eq. (1).

∙ If A is applied to |𝑣B
𝑗,𝑏⟩, then with probability 𝑝𝑗 the outcome is 𝑏 and the post-measurement

state is |𝑣A
𝑗,𝑏⟩, and with probability 1− 𝑝𝑗 the outcome is 1− 𝑏 and the post measurement state

is |𝑣A
𝑗,1−𝑏⟩.

∙ If B is applied to |𝑣A
𝑗,𝑏⟩, then with probability 𝑝𝑗 the outcome is 𝑏 and the post-measurement

state is |𝑣B
𝑗,𝑏⟩, and with probability 1− 𝑝𝑗 the outcome is 1− 𝑏 and the post measurement state

is |𝑣B
𝑗,1−𝑏⟩.
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It is convenient to think of the initial state |𝑣B
𝑗,1⟩ as the post-measurement state after B returns 1.

Letting 𝑏0 := 1, for any 𝑖 ∈ [𝑇 ] the 𝑖-th measurement outcome 𝑏𝑖 is equal to 𝑏𝑖−1 with probability
𝑝𝑗 and equal to 1− 𝑏𝑖−1 with probability 1− 𝑝𝑗 , giving the distribution MWDist(𝑇, 𝑝𝑗).

We can generalize Lemma 4.4 to characterize the measurement outcomes when we begin with
any state in image(ΠB), which must be of the form

∑︀
𝑗 𝛼𝑗 |𝑣B

𝑗,1⟩.

Lemma 4.5. The measurement outcomes that result from applying 𝑇 alternating measurements
A,B,A,B, . . . to the state

∑︀
𝑗 𝛼𝑗 |𝑣B

𝑗,1⟩ have the following distribution:
1. sample 𝑝𝑗 with probability |𝛼𝑗 |2;
2. output MWDist(𝑇, 𝑝𝑗).

Proof. Consider the Jordan subspace measurement MJor[ΠA,ΠB] := (ΠJor
𝑗 )𝑗 on ℋ, where

ΠJor
𝑗 := |𝑣A

𝑗,1⟩⟨𝑣A
𝑗,1|+ |𝑣A

𝑗,0⟩⟨𝑣A
𝑗,0| = |𝑣B

𝑗,1⟩⟨𝑣B
𝑗,1|+ |𝑣B

𝑗,0⟩⟨𝑣B
𝑗,0| .

In words, MJor[ΠA,ΠB] is the projective measurement onto the Jordan subspaces {𝑆𝑗}𝑗 that outputs
a Jordan subspace label 𝑗.

Suppose that we perform the measurement MJor[ΠA,ΠB] on
∑︀
𝑗 𝛼𝑗 |𝑣B

𝑗,1⟩, and subsequently per-
form 𝑇 alternating measurements A,B,A,B, . . .. The outcome of MJor[ΠA,ΠB] is 𝑗 with proba-
bility |𝛼𝑗 |2, and the subsequent alternating measurement outcomes are distributed according to
MWDist(𝑇, 𝑝𝑗) by Lemma 4.4. It remains to prove that the distribution of measurement outcomes
is unchanged even if we skip the MJor[ΠA,ΠB] measurement.

This is because MJor[ΠA,ΠB] commutes with both A and B. To see that MJor[ΠA,ΠB] commutes
with A, observe that the corresponding measurement operators are diagonal in the basis {|𝑣A

𝑗,𝑏⟩}𝑗,𝑏,
since ΠA =

∑︀
𝑗 |𝑣A

𝑗,1⟩⟨𝑣A
𝑗,1| by Jordan’s lemma and ΠJor

𝑗 = |𝑣A
𝑗,0⟩⟨𝑣A

𝑗,0|+ |𝑣A
𝑗,1⟩⟨𝑣A

𝑗,1| for all 𝑗 by definition.
MJor[ΠA,ΠB] commutes with B by an identical argument for the basis {|𝑣B

𝑗,𝑏⟩}𝑗,𝑏.
As a consequence, we can commute MJor[ΠA,ΠB] to occur after the 𝑇 alternating measurements

A,B,A,B, . . ., at which point MJor[ΠA,ΠB] has no effect on the measurement outcomes.

Almost projective measurements. We state a property of general measurements due to [Zha20]
that captures when a measurement is “close” to being projective, in the sense that sequential
applications of the measurement yield similar outcomes.

Definition 4.6. A real-valued measurement M on ℋ is (𝜀, 𝛿)-almost-projective if applying M
twice in a row to any state 𝜌 ∈ S(ℋ) produces measurement outcomes 𝑝, 𝑝′ where

Pr
[︀⃒⃒
𝑝− 𝑝′

⃒⃒
≤ 𝜀

]︀
≥ 1− 𝛿 .

We briefly discuss how alternating measurements A,B constitutes a (𝜀, 𝛿)-almost projective
approximation of MJor[ΠA,ΠB]. While we will not make use of this fact directly (we prove a variant
of it in Lemma 4.9), we will introduce some concepts and notation that are useful later. For
�⃗� ∈ {0, 1}𝑛+1, and letting 𝑄𝑛 := {0, 1/𝑛, 2/𝑛, . . . , 1}, define

NReps(⃗𝑏) := |{𝑗 ∈ {1, . . . , 𝑛} : 𝑏𝑗−1 = 𝑏𝑗}|
𝑛

∈ 𝑄𝑛 .

That is, NReps(⃗𝑏) is the number of pairs of consecutive repeated bits in �⃗�, divided by 𝑛; for example
𝑝(0, 0, 1, 1, 1, 0) = 3/5. The following proposition is immediate from the definition of MWDist:
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Proposition 4.7. If �⃗� ∼ MWDist(𝑇, 𝑝) then NReps(1, �⃗�) ∼ Bin(𝑇, 𝑝)/𝑇 .

Consider the measurement procedure M that applies 𝑇 measurements A,B,A,B, . . . in an alter-
nating fashion, and outputs NReps(𝑏1, . . . , 𝑏𝑇 ), where the 𝑏𝑖 are the measurement outcomes. Then
by Lemma 4.5, for |𝜓⟩ =

∑︀
𝑗 𝛼𝑗 |𝑣B

𝑗,1⟩, E𝑝←M(|𝜓⟩)[𝑝] = |𝛼𝑗 |2𝑝𝑗 . Moreover, if 𝑇 ≈ 1
𝜀 log 1

𝛿 then M
is (𝜀, 𝛿)-almost projective. This is because sequential applications of M are equivalent to a single
application of M of length 2𝑇 ; (𝜀, 𝛿)-almost projectivity follows by a Chernoff bound.

4.2 Probability estimation

We describe a measurement procedure ValEst that estimates 𝜔𝒢(𝑆,𝜌), following techniques of
[MW05, Zha20]. The procedure is a variation on the “approximate projective implementation”
procedure of [Zha20], and we show that it is (𝜀, 𝛿)-almost projective. We also show that if ValEst(𝜌)
produces an outcome ≥ 𝑝 with high probability, then 𝜔𝒢(𝑆,𝜌) cannot be much smaller than 𝑝.

A player with unitary strategy 𝑈𝑆 and initial state 𝜌 in the game 𝒢 = (𝑅,𝑍, 𝑓) receives a
random challenge 𝑟 ← 𝑅, applies 𝑈𝑆 to |𝑟⟩⟨𝑟|ℛ ⊗ 𝜌𝒵,ℐ , and sends 𝒵 to the referee; here ℛ is
supported on {|𝑟⟩}𝑟∈𝑅, 𝒵 is supported on {|𝑧⟩}𝑧∈𝑍 , and ℐ denotes the player’s internal registers.

The procedure ValEst is parameterized by 𝜀, 𝛿 ∈ [0, 1] and a game 𝒢, and has black-box access
to the player’s unitary 𝑈𝑆 and its inverse 𝑈 †𝑆 , and operates on registers (𝒵, ℐ).

We set
𝑡 := 𝑡(𝜀, 𝛿) := max{⌈𝑛𝜀/2,𝛿/4/2⌉, log5/8(𝛿/2)} = 𝑂

(︂1
𝜀

log 1
𝛿

)︂
,

where 𝑛𝜀,𝛿 is a parameter defined in Proposition 3.1 for the Chernoff bound. Let ℛ′ be a register
with basis {|𝑟⟩}𝑟∈𝑅 ∪ {|⊤⟩ , |⊥⟩}. We define the state |+𝑅⟩ on ℛ′,ℛ as

|+𝑅⟩ := 1
2 |⊤, 0⟩+ 1

2 |⊥, 0⟩+ 1√︀
2|𝑅|

∑︁
𝑟∈𝑅
|𝑟, 𝑟⟩ ,

where ⊤ and ⊥ are arbitrary symbols distinct from the elements of 𝑅, and 0 ∈ 𝑅.

Remark 4.8. We introduce the auxiliary (control) register ℛ′ for two reasons:
(a) ℛ′ has two additional basis elements |⊤⟩ , |⊥⟩. These are special symbols which correspond to

“automatically” winning or losing the game, respectively. This forces our probability estimates
to be scaled within the range [1/4, 3/4], which can easily be rescaled to [0, 1] before outputting
a final value. This modification ensures that the procedure terminates within a polynomial
number of steps except with negligible probability.

(b) Tracing out the ℛ′ register leaves the classical mixed state 1
2 |0⟩⟨0| +

1
2|𝑅|

∑︀
𝑟 |𝑟⟩⟨𝑟| on ℛ; this

ensures that 𝑈𝑆 behaves as if it were invoked on random |𝑟⟩ (or 0, with probability 1/2).

We are now ready to define the procedure ValEst.
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ValEst𝑈𝒢,𝜀,𝛿:

1. Initialize registers (ℛ′,ℛ) to |+𝑅⟩;

2. Define M𝒢 := (Π𝒢 , I−Π𝒢) where Π𝒢 := 𝑈 †𝑆Π𝑓𝑈𝑆 for

Π𝑓 :=
∑︁

𝑟,𝑧,𝑓(𝑟,𝑧)=1
|𝑟, 𝑧⟩⟨𝑟, 𝑧|ℛ

′,𝒵 + |⊤⟩⟨⊤|ℛ
′
⊗ 𝐼𝒵 .

3. For 𝑖 = 1, . . . , 𝑡:
(a) Apply M𝒢 , obtaining outcome 𝐿2𝑖−1 ∈ {0, 1}.
(b) Apply M|+𝑅⟩ :=

(︁
|+𝑅⟩⟨+𝑅|ℛ

′,ℛ , I− |+𝑅⟩⟨+𝑅|ℛ
′,ℛ
)︁
, obtaining outcome 𝐿2𝑖 ∈

{0, 1}.
4. If 𝐿2𝑡 = 1, skip to Step 5. Otherwise, apply M𝒢 ,M|+𝑅⟩ to 𝒜 in an alternating fashion

until M|+𝑅⟩ → 1, or a further 2𝑡 measurements have been applied.
5. Discard ℛ and ℛ′; output 𝑝 := 2 · NReps(1, 𝐿1, . . . , 𝐿2𝑡)− 1/2.

Lemma 4.9. The measurement ValEst := ValEst𝑆𝒢,𝜀,𝛿 has the following properties:

(i) ValEst is an oracle circuit of size 𝑂(|𝑓 | · 1
𝜀 log 1

𝛿 ) that applies 𝑈𝑆 and 𝑈 †𝑆 𝑂(1
𝜀 log 1

𝛿 ) times;

(ii) for every 𝜌 ∈ S(𝒵, ℐ), E𝑝←ValEst(𝜌)[𝑝] = 𝜔𝒢(𝑆,𝜌);

(iii) ValEst is (𝜀, 𝛿)-almost projective;

(iv) for every 𝑝 ∈ R, if Pr𝑝′←ValEst(𝜌)[𝑝′ ≥ 𝑝] ≥ 1− 𝛾 then 𝜔𝒢(𝑆,𝜌) ≥ 𝑝− 𝛾 − 𝜀− 𝛿;

(v) for every 𝜌 ∈ S(𝒵, ℐ), 𝜔𝒢(𝑆,ValEst(𝜌)) ≥ 𝜔𝒢(𝑆,𝜌)− 𝛿.

Proof. Item (i) follows directly from the description; we proceed to prove Items (ii) to (v). It suffices
to prove each property for pure states |𝜓⟩ ∈ 𝒵 ⊗ ℐ, as the statement for mixed states follows by
convexity.

Consider a decomposition of ℛ′ ⊗ℛ⊗𝒵 ⊗ ℐ into the Jordan subspaces for projectors Π𝒢 and
|+𝑅⟩⟨+𝑅|ℛ

′,ℛ⊗I𝒵,ℐ (henceforth we will write the projector |+𝑅⟩⟨+𝑅|ℛ
′,ℛ⊗I𝒵,ℐ as |+𝑅⟩⟨+𝑅|ℛ

′,ℛ).
Following our notation for Jordan subspaces in Section 4.1, we will associate M𝒢 with A and M|+𝑅⟩
with B, so that in the 𝑗-th Jordan subspace:

∙ Π𝒢 is a projection onto |𝑣A
𝑗,1⟩,

∙ |+𝑅⟩⟨+𝑅|ℛ
′,ℛ is a projection onto |𝑣B

𝑗,1⟩, and

∙ 𝑝𝑗 =
⃦⃦⃦
⟨𝑣A
𝑗,1|𝑣B

𝑗,1⟩
⃦⃦⃦2

.

Write |+𝑅⟩ℛ,ℛ
′
⊗ |𝜓⟩𝒵,ℐ =

∑︀
𝑗 𝛼𝑗 |𝑣B

𝑗,1⟩. Note that

∑︁
𝑗

|𝛼𝑗 |2𝑝𝑗 = ‖Π𝒢 |+𝑅⟩ |𝜓⟩‖2 = 𝜔𝒢(𝑆, |𝜓⟩)
2 + 1

4 .

By Lemma 4.5, 𝑝← ValEst(|𝜓⟩) is distributed as:
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1. Choose 𝑗 with probability |𝛼𝑗 |2.
2. Sample 𝐿1, . . . , 𝐿2𝑡 ← MWDist(𝑝𝑗 , 2𝑡).
3. Output 𝑝 := 2𝑝(1, 𝐿1, . . . , 𝐿2𝑡)− 1/2.

Hence in particular we have that

E[𝑝] = 2
∑︁
𝑗

|𝛼𝑗 |2 E[NReps(1, 𝐿1, . . . , 𝐿2𝑡)]− 1/2 = 2
∑︁
𝑗

|𝛼𝑗 |2𝑝𝑗 − 1/2 = 𝜔𝒢(𝑆, |𝜓⟩) ,

which establishes (ii).
We now prove (iv). Suppose that Pr𝑝′←ValEst(|𝜓⟩)[𝑝′ ≥ 𝑝] ≥ 1− 𝛾. Then

𝛾 ≥ Pr
𝑝←ValEst(|𝜓⟩)

[𝑝 < 𝑝] =
∑︁
𝑗

|𝛼𝑗 |2 Pr
�⃗�←MWDist(𝑝𝑗 ,2𝑡)

[𝑝(1, �⃗�) < 𝑝/2 + 1/4] ≥
∑︁

𝑗,𝑝𝑗<𝑝/2+1/4−𝜀
|𝛼𝑗 |2(1− 𝛿) ,

by Proposition 4.7. Rearranging, ∑︁
𝑗,𝑝𝑗<𝑝/2+1/4−𝜀

|𝛼𝑗 |2 ≤ 𝛾 + 𝛿 .

Hence
𝜔𝒢(𝑆, |𝜓⟩) = 2

∑︁
𝑗

|𝛼𝑗 |2𝑝𝑗 − 1/2 ≥ 𝑝− 𝛾 − 𝜀− 𝛿 .

Next we prove (iii). Let 𝐷 be the distribution on 𝑄2𝑡 ×𝑄2𝑡 arising from two sequential appli-
cations of ValEst with initial state |𝜓⟩ (recall that 𝑄2𝑡 = {0, 1

2𝑡 ,
2
2𝑡 , . . . , 1}). Let 𝐷′ be sampled as

follows.

1. Choose 𝑗 with probability |𝛼𝑗 |2.
2. Sample 𝐿1, . . . , 𝐿4𝑡 ← MWDist(𝑝𝑗 , 4𝑡).
3. Sample 𝐿′1, . . . , 𝐿′2𝑡 ← MWDist(𝑝𝑗 , 2𝑡).
4. Compute 𝑝 := 𝑝(1, 𝐿1, . . . , 𝐿2𝑡) and 𝑝′ := 𝑝(1, 𝐿′1, . . . , 𝐿′2𝑡).
5. Output (𝑝, 𝑝′).

The statistical distance between 𝐷 and 𝐷′ is bounded by Pr[∀𝑖 ∈ [𝑡, 2𝑡], 𝐿2𝑖 = 0]. This can be shown
by coupling the outcomes of the first 4𝑡 measurements with 𝐿1, . . . , 𝐿4𝑡 drawn by 𝐷′. If this bad
event does not occur, the first application of ValEst terminates in some state |+𝑅⟩ℛ

′,ℛ |𝜑⟩𝒵,ℐ , and
so tracing out (ℛ′,ℛ) and then reinitializing it to |+𝑅⟩ at the beginning of the second application of
ValEst has no overall effect on the state. In this case, therefore, we can view the two applications of
ValEst as a single alternating measurement procedure of length 2𝑖+ 2𝑡 conditioned on the outcome
of the 2𝑖-th measurement being 1. Then by Lemma 4.5, in this case 𝐷 and 𝐷′ are identically
distributed.

We now bound Pr[∀𝑖 ∈ [𝑡, 2𝑡], 𝐿2𝑖 = 0]. Suppose that 𝑗 is sampled in the first step. For each
𝑖 ∈ [𝑡+1, . . . , 2𝑡], the probability that 𝐿2𝑖 = 1 given that 𝐿2𝑖−2 = 0 is 2𝑝𝑗(1−𝑝𝑗). Note that for every
subspace 𝑗 where |𝑣B

𝑗,1⟩ is nonzero, 𝑝𝑗 =
⃦⃦⃦
Π𝒢 |𝑣B

𝑗,1⟩
⃦⃦⃦2
∈ [1/4, 3/4]; in particular, this holds for all

subspaces 𝑗 such that 𝛼𝑗 ̸= 0. Hence for any 𝑗 sampled with positive probability, 2𝑝𝑗(1−𝑝𝑗) ≥ 3/8.
It follows that the probability that 𝐿2𝑖 = 0 for all 𝑖 ∈ [𝑡, 2𝑡] is at most (5/8)𝑡 ≤ 𝛿/2.

Finally we show that
Pr

(𝑝,𝑝′)←𝐷′
[|𝑝− 𝑝′| > 𝜀] < 𝛿/2 ,
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which will complete the proof. Observe that for 𝑗 sampled in the first step, 𝑝, 𝑝′ ∼ Bin(2𝑡, 𝑝𝑗)/2𝑡.
Hence by Proposition 3.1 (Chernoff bound), Pr[|𝑝− 𝑝𝑗 | > 𝜀/2] < 𝛿/4, and similarly for 𝑝′. The
equation follows by a union bound.

It remains to prove Item (v). Recall that for any state 𝜌 ∈ S(𝒵, ℐ), we have that

𝜔𝒢(𝑆,𝜌) = 2
∑︁
𝑗

𝑝𝑗 Tr
(︁
ΠJor
𝑗 ( |+𝑅⟩⟨+𝑅| ⊗ 𝜌)

)︁
− 1/2.

Let ValEst′ be defined identically to ValEst except that it does not discard ℛ,ℛ′. Since for all
𝑗, ΠJor

𝑗 commutes with M𝒢 ,M|+𝑅⟩, we have

Tr
(︁
ΠJor
𝑗 ValEst′(𝜌)

)︁
= Tr

(︁
ΠJor
𝑗 ( |+𝑅⟩⟨+𝑅|ℛ

′,ℛ ⊗ 𝜌)
)︁
.

Then we have

𝜔𝒢(𝑆,ValEst(𝜌)) = 2
∑︁
𝑗

𝑝𝑗 Tr
(︁
ΠJor
𝑗 ( |+𝑅⟩⟨+𝑅|ℛ

′,ℛ ⊗ ValEst(𝜌))
)︁
− 1/2

= 2
∑︁
𝑗

𝑝𝑗 Tr
(︁
ΠJor
𝑗 ( |+𝑅⟩⟨+𝑅|ℛ

′,ℛ ⊗ Trℛ,ℛ′(ValEst′(𝜌)))
)︁
− 1/2

≥ 2
∑︁
𝑗

𝑝𝑗 Tr
(︁
ΠJor
𝑗 ( |+𝑅⟩⟨+𝑅|ℛ

′,ℛ ⊗ Trℛ,ℛ′( |+𝑅⟩⟨+𝑅|ℛ
′,ℛ · ValEst′(𝜌)))

)︁
− 1/2

= 2
∑︁
𝑗

𝑝𝑗 Tr
(︁
ΠJor
𝑗 |+𝑅⟩⟨+𝑅|ℛ

′,ℛ · ValEst′(𝜌)
)︁
− 1/2

≥ 2
∑︁
𝑗

𝑝𝑗 Tr
(︁
ΠJor
𝑗 ValEst′(𝜌)

)︁
− 1/2− 𝛿

= 2
∑︁
𝑗

𝑝𝑗 Tr
(︁
ΠJor
𝑗 𝜌

)︁
− 1/2− 𝛿 = 𝜔𝒢(𝑆,𝜌)− 𝛿 ,

where the final inequality follows because Tr
(︀
|+𝑅⟩⟨+𝑅|ValEst′(𝜌)

)︀
is at least the probability that

ValEst terminates with M|+𝑅⟩ → 1, which is at least 1− 𝛿.

4.3 A state repair procedure

We construct a procedure RepairM(𝑝) parameterized by an almost-projective measurement M and
with input 𝑝 ∈ R that (under certain conditions) outputs a state 𝜌 satisfying the guarantee:
“applying M to 𝜌 produces an outcome ≈ 𝑝 with high probability”. We then obtain ValRepair by
plugging in the almost-projective measurement ValEst for M.

The procedure. Formally, our state repair procedure RepairM,P
𝑇 is a CPTP map on a register ℋ,

parameterized by:

∙ a positive integer 𝑇 ,
∙ an oracle for an (𝜀, 𝛿)-almost-projective measurement M on ℋ, and
∙ an oracle for an 𝑁 -outcome projective measurement P = (Π𝑘)𝑁𝑘=1 on ℋ,
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and taking classical inputs (𝑘, 𝑝) where 𝑘 ∈ [𝑁 ] and 𝑝 ∈ R.
Recall that the measurement M = (𝑀𝑞)𝑞∈𝐼 , where 𝐼 ⊆ R is the set of outcomes of M, can be

implemented as a unitary 𝑈M on (ℋ,𝒲) for some ancilla register 𝒲, followed by some projective
measurement (ΠM,𝑞)𝑞∈𝐼 on 𝒲. Formally, for each 𝑞 ∈ 𝐼, the unitary 𝑈M and projector ΠM,𝑞 satisfy
𝑀𝑞𝜌𝑀

†
𝑞 = Tr𝒲(ΠM,𝑞𝑈M(𝜌 ⊗ |0⟩⟨0|𝒲)𝑈 †M) for all 𝜌 ∈ S(ℋ). We are now ready to give the state

repair procedure.

RepairM,P
𝑇 (𝑘, 𝑝):

1. Define measurements

A𝑝 := (ΠA,𝑝, I−ΠA,𝑝) where ΠA,𝑝 :=
∑︁

𝑞∈[𝑝±𝜀]
𝑈 †MΠM,𝑞𝑈M ,

B𝑘 := (ΠB,𝑘, I−ΠB,𝑘) where ΠB,𝑘 := Π𝑘 ⊗ |0⟩⟨0|𝒲 .

2. Initialize 𝒲 to |0⟩.
3. Apply the measurement A𝑝. If the outcome is 1, skip to Step 5.
4. Apply the measurements B𝑘,A𝑝,B𝑘,A𝑝, . . . in alternating fashion until either (1) A𝑝 →

1 occurs or (2) 𝑇 applications of (B𝑘,A𝑝) have been applied (whichever comes first).
5. Apply 𝑈M to (ℋ,𝒲), and discard the 𝒲 registers.

The following lemma describes the effect of the repair procedure.

Lemma 4.10 (State repair). Let M be an (𝜀, 𝛿)-almost projective measurement on ℋ, P = (Π𝑘)𝑁𝑘=1
be a projective measurement on ℋ with 𝑁 outcomes, 𝑇 be a positive integer. Consider the following
quantum measurement procedure RepairExpt on ℋ:

1. Measure the initial state: apply M, obtaining outcome 𝑝;
2. Damage the state: apply P, obtaining outcome 𝑘;
3. Repair the state: run RepairM,P

𝑇 (𝑘, 𝑝) and let 𝑅 denote the total number of calls to M and P.
4. Output 𝑝.

Then RepairExpt is (2𝜀,𝑁(𝛿 + 1/𝑇 ) + 4
√
𝛿)-almost projective, and E[𝑅] ≤ 𝑁 + 4𝑇

√
𝛿 + 1.

Proof of Lemma 4.10. We write out in full the steps applied in RepairExpt:

RepairExpt:
1. Apply M, obtaining outcome 𝑝;
2. Apply P, obtaining outcome 𝑘 ∈ [𝑁 ].
3. Initialize 𝒲 to |0⟩.
4. Apply the measurement A𝑝. If the outcome is 1, skip to Step 6.
5. Apply the measurements B𝑘,A𝑝,B𝑘,A𝑝, . . . in alternating fashion until either (1) A𝑝 → 1 occurs

or (2) 𝑇 applications of (B𝑘,A𝑝) have been applied (whichever comes first).
6. Apply 𝑈M to (ℋ,𝒲), and discard the 𝒲 registers.

From this point on, we refer to Steps 4 to 6 as Repair′(𝑘, 𝑝), which maps ℋ⊗𝒲 → ℋ.
Define the (𝑁 + 1)-outcome projective measurement P′ := ((ΠB,𝑘)𝑁𝑘=1,Π⊥) on ℋ⊗𝒲 where Π⊥ :=
Iℋ ⊗ (I− |0⟩⟨0|)𝒲 . Next consider the following experiment Expt1 (differences highlighted in red).
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Expt1:
1. Apply M, obtaining outcome 𝑝;
2. Initialize 𝒲 to |0⟩.
3. Apply P′, obtaining outcome 𝑘 ∈ [𝑁 ] ∪ {⊥}.
4. Apply Repair′(𝑘, 𝑝).

Expt1 and RepairExpt are equivalent, since Expt1 can be obtained by performing the following
changes to RepairExpt:

∙ Swap the order of Step 2 and Step 3 in RepairExpt. This does not change the resulting experiment
since P acts trivially on 𝒲.
∙ Then, apply P′ instead of P to obtain 𝑘. This causes no change since P′(𝜎ℋ ⊗ |0⟩⟨0|𝒲) =

P(𝜎ℋ)⊗ |0⟩⟨0|𝒲 for all 𝜎 ∈ S(ℋ).

We now define another experiment Expt2 as follows (differences from Expt1 highlighted in red).

Expt2:
1. Apply M, obtaining outcome 𝑝;
2. Initialize 𝒲 to |0⟩.
3. Apply A𝑝 to (ℋ,𝒲) and postselect on obtaining outcome 1.
4. Apply P′, obtaining outcome 𝑘 ∈ [𝑁 ] ∪ {⊥}.
5. Apply Repair′(𝑘, 𝑝).

It will be convenient hereafter to treat M and P′ as CPTP maps that write their output to a
new output register, i.e., M : S(ℋ) → S(ℋ ⊗𝒪1) and P′ : S(ℋ) → S(ℋ ⊗𝒪2). For the remainder
of the proof, fix an initial state 𝜌 ∈ S(ℋ). Let 𝜌1 denote the state on (ℋ,𝒲,𝒪1) directly before
Step 3 in Expt1 applied to 𝜌. Let 𝜌2 denote the state on the same registers directly before Step 4
in Expt2 applied to 𝜌. We show that these states are close in trace distance.

Claim 4.11. The trace distance between 𝜌1 and 𝜌2 is at most 2
√
𝛿.

Proof. Let Π′A :=
∑︀
𝑝∈𝐼 |𝑝⟩⟨𝑝|

𝒪1 ⊗Πℋ,𝒲A,𝑝 . We have that

𝜌2 = Π′A𝜌1Π′A
Tr
(︀
Π′A𝜌1

)︀ .

Note that Tr(Π′A𝜌1) = Tr
(︁
Π′A(M(𝜌)⊗ |0⟩⟨0|𝒲)

)︁
is equal to the probability that applying M twice

in succession to 𝜌 yields outcomes 𝑝, 𝑝′ such that |𝑝−𝑝′| ≤ 𝜀, and hence is at least 1− 𝛿. The claim
follows by the gentle measurement lemma (Lemma 3.3).

To complete the proof of the lemma, we make use of the following key claim about Expt2.
Roughly speaking, we show that in Expt2, if we obtain outcome 𝑝 ∈ 𝐼 in Step 1 and an outcome 𝑘 ̸=
⊥ in Step 4 (which occurs with probability at least 1−2

√
𝛿 due to Claim 4.11) where the probability

of obtaining 𝑘 was 𝛽, then the final state 𝜌* after Step 5 has the following guarantee: applying M
to 𝜌* produces an outcome 𝑝′ within 2𝜀 of 𝑝 except with probability inversely proportional to 𝛽.
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Claim 4.12. Fix 𝑝 ∈ 𝐼, 𝑘 ∈ [𝑁 ]; let |𝜑A⟩ be an arbitrary state in image(ΠA,𝑝) ⊆ ℋ⊗𝒲, and define
|𝜑B⟩ := ΠB,𝑘 |𝜑A⟩ /

√
𝛽 where 𝛽 := ‖ΠB,𝑘 |𝜑A⟩‖2. Applying Repair′(𝑘, 𝑝) to |𝜑B⟩ ∈ ℋ ⊗𝒲 yields the

state 𝜌* ∈ S(ℋ) where
Pr

𝑝′←M(𝜌*)
[|𝑝′ − 𝑝| > 2𝜀] ≤ (𝛿 + 1/𝑇 )/𝛽,

and Repair′(𝑘, 𝑝) applies 1 + 1/𝛽 measurements in expectation.

We show how Lemma 4.10 follows from Claim 4.12, and subsequently prove Claim 4.12.
Write 𝜌2 =

∑︀
𝑝∈𝐼 |𝑝⟩⟨𝑝|

𝒪1 ⊗ 𝜌ℋ,𝒲𝑝 ; note that Tr(ΠA,𝑝𝜌𝑝) = Tr(𝜌𝑝) due to the post-selection in
Step 3. By the definition of P′ : S(ℋ)→ S(ℋ⊗𝒪2),

P′(𝜌2) =
∑︁
𝑝∈𝐼
|𝑝⟩⟨𝑝|𝒪1 ⊗

(︃
Π⊥𝜌ℋ,𝒲𝑝 Π⊥ ⊗ |⊥⟩⟨⊥|𝒪2 +

𝑁∑︁
𝑘=1

ΠB,𝑘𝜌
ℋ,𝒲
𝑝 ΠB,𝑘 ⊗ |𝑘⟩⟨𝑘|𝒪2

)︃
.

By Claim 4.11, Tr(Π⊥𝜌2) ≤ Tr(Π⊥𝜌1) + 2
√
𝛿 = 2

√
𝛿. For 𝑝 ∈ 𝐼, write 𝜌𝑝 =

∑︀
𝑖 𝑞𝑖 |𝜓𝑖⟩⟨𝜓𝑖| for

unit states |𝜓𝑖⟩ ∈ ℋ ⊗𝒲 ; note that |𝜓𝑖⟩ ∈ image(ΠA,𝑝). For all 𝑖 and any 𝑘 ∈ [𝑁 ], we can define
|𝜓𝑖,𝑘⟩ := ΠB,𝑘 |𝜓𝑖⟩ /‖ΠB,𝑘 |𝜓𝑖⟩‖ and apply Claim 4.12 with |𝜑A⟩ set to |𝜓𝑖⟩ to obtain

Pr
𝑝′←M(𝜌*

𝑖,𝑝,𝑘
)
[|𝑝′ − 𝑝| > 2𝜀] ≤ (𝛿 + 1/𝑇 )/‖ΠB,𝑘 |𝜓𝑖⟩‖2 ,

where 𝜌*𝑖,𝑝,𝑘 ∈ S(ℋ) is the state after applying Repair′(𝑘, 𝑝) to |𝜓𝑖,𝑘⟩.
To conclude, we show that Expt2 is (2𝜀,𝑁(𝛿 + 1/𝑇 ) + 2

√
𝛿)-almost projective; the statement

for RepairExpt will then follow by Claim 4.11. Let𝒪3 be a new ancilla register that will store the out-
come of the second application of Expt2, and consider the projector Πbad :=

∑︀
𝑝

∑︀
𝑝′ /∈[𝑝±2𝜀] |𝑝, 𝑝′⟩⟨𝑝, 𝑝′|

𝒪1,𝒪3

corresponding to the event that applying Expt2 twice yields outcomes (𝑝, 𝑝′) more than 2𝜀 apart.
Since the outcome of Expt2 is determined by the outcome of M, we have by convexity

Tr(Πbad ·M(Expt2(𝜌))) ≤ 𝑁(𝛿 + 1/𝑇 ) + 2
√
𝛿 .

Hence by Claim 4.11,

Tr(Πbad ·M(RepairExpt(𝜌))) ≤ 𝑁(𝛿 + 1/𝑇 ) + 4
√
𝛿 ,

which completes the proof that RepairExpt is (2𝜀,𝑁(𝛿 + 1/𝑇 ) + 4
√
𝛿)-almost projective.

By Claim 4.11 and Claim 4.12, and law of total expectation, it holds that

E[𝑅] ≤ 𝑑(𝜌′1,𝜌′2) · 𝑇 + Tr
(︀
Π⊥𝜌′2

)︀
· 𝑇 +

∑︁
𝑝∈𝐼,𝑘∈[𝑁 ]

Tr(ΠB,𝑘𝜌𝑝)(1 + Tr(𝜌𝑝)/Tr(ΠB,𝑘𝜌𝑝))

≤ 2𝑇
√
𝛿 + 2𝑇

√
𝛿 +

∑︁
𝑝∈𝐼,𝑘∈[𝑁 ]

(Tr(ΠB,𝑘𝜌𝑝) + Tr(𝜌𝑝))

≤ 𝑁 + 4𝑇
√
𝛿 + 1 ,

which concludes the proof, given Claim 4.12.

Proof of Claim 4.12. For this proof, we write A,B for A𝑝,B𝑘 and ΠA,ΠB for ΠA,𝑝,ΠB,𝑘 respectively.
Consider a decomposition of ℋ ⊗ 𝒲 into the Jordan subspaces {𝒮𝑗}𝑗 for projectors ΠA and

ΠB. Following our standard notation for Jordan subspaces, in the 𝑗-th Jordan subspace 𝒮𝑗 , ΠA is
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a projection onto |𝑣A
𝑗,1⟩ and ΠB is a projection onto |𝑣B

𝑗,1⟩, and 𝑝𝑗 = | ⟨𝑣A
𝑗,1|𝑣B

𝑗,1⟩ |2. Recall that we
write ΠJor

𝑗 for the projection onto 𝒮𝑗 .
Since |𝜑A⟩ =

∑︀
𝑗 𝛼𝑗 |𝑣A

𝑗,1⟩ for some choice of {𝛼𝑗}𝑗 , we can write |𝜑B⟩ as

|𝜑B⟩ = 1√
𝛽

∑︁
𝑗

𝛼𝑗ΠB |𝑣A
𝑗,1⟩ = 1√

𝛽

∑︁
𝑗

𝛼𝑗
√
𝑝𝑗 |𝑣B

𝑗,1⟩

Let 𝜌′ ∈ S(ℋ ⊗ 𝒲) be the state immediately before “Apply 𝑈M to (ℋ,𝒲), and discard the
𝒲 registers.” in Repair′(𝑘, 𝑝), so that 𝜌* = Tr𝒲(𝑈M𝜌′𝑈 †M). We first bound Tr(ΠA𝜌′), i.e., the
probability that Repair′(𝑘, 𝑝) stops because A → 1, by analyzing the distribution of measurement
outcomes that result from applying a total of 2𝑇 + 1 alternating measurements A,B,A,B, . . . ,A.
Note that the real Repair procedure terminates after obtaining a 1 outcome for A; we consider the
distribution of a fixed number of measurements for the purpose of analysis.

Let 𝐼(𝑏1, 𝑏2, . . . , 𝑏2𝑇+1) be the smallest 𝑖 such that 𝑏2𝑖+1 = 1, or 𝑇 + 1 if there is no such 𝑖. Let
𝐷 be denote the following distribution:

1. Sample 𝑗 with probability |𝛼𝑗 |2𝑝𝑗/𝛽
2. Sample (𝑏1, 𝑏2, . . . , 𝑏2𝑇+1)← MWDist(2𝑇 + 1, 𝑝𝑗).
3. Output 𝐼(𝑏1, 𝑏2, . . . , 𝑏2𝑇+1).

By Lemma 4.5, the expected number of measurements applied by Repair is 2E[𝐷] + 1, and

Tr
(︀
ΠA𝜌′

)︀
= 1− Pr

𝑖←𝐷
[𝑖 = 𝑇 + 1] .

We now analyse the distribution 𝐷. Suppose that 𝑗 is sampled in Step 1. The probability that
𝑏1 = 1 occurs is then 𝑝𝑗 . Then for each 𝑖 ∈ [𝑇 ], the probability that 𝑏2𝑖+1 = 1 given that 𝑏2𝑖−1 = 0
is 2𝑝𝑗(1 − 𝑝𝑗). Hence conditioned on 𝑗 being sampled, 𝐷 is dominated by the random variable
𝐷′ which takes value 0 with probability 𝑝𝑗 and is distributed as Geo(2𝑝𝑗(1− 𝑝𝑗)) with probability
1− 𝑝𝑗 , where Geo(𝑞) is the geometric distribution with parameter 𝑞.

It follows that E[𝐷] ≤ 1
𝛽

∑︀
𝑗 |𝛼𝑗 |

2𝑝𝑗(1− 𝑝𝑗)E[Geo(2𝑝𝑗(1− 𝑝𝑗))] = 1/(2𝛽), and

Pr
𝑖←𝐷

[𝑖 = 𝑇 + 1] ≤ 1
𝛽

∑︁
𝑗

|𝛼𝑗 |2𝑝𝑗(1− 𝑝𝑗)(1− 2𝑝𝑗(1− 𝑝𝑗))𝑇 ≤
1
𝛽𝑇

,

since 𝑥(1− 2𝑥)𝑇 ≤ 1/𝑇 for all 𝑥 ∈ [0, 1/4]. This establishes that Tr(ΠA𝜌′) ≥ 1− 1
𝛽𝑇 .

To complete the proof of Claim 4.12, we prove that applying M to 𝜌* = Tr𝒲(𝑈M𝜌′𝑈 †M) produces
𝑝′ within 2𝜀 of 𝑝 with probability at least 1− (𝛿 + 1/𝑇 )/𝛽.

Since A and B commute with ΠJor
𝑗 , Tr

(︁
ΠJor
𝑗 𝜌′

)︁
=
⃦⃦⃦
ΠJor
𝑗 |𝜑B⟩

⃦⃦⃦2
= |𝛼𝑗 |2𝑝𝑗/𝛽. In particular, 𝜂 as

defined in Claim 4.13 is equal to 𝛽, and Tr
(︁
ΠJor
𝑗 𝜌′

)︁
= 0 for all 𝑗 with 𝑝𝑗 = 0. By definition, the

last measurement applied during Repair is A, and so since A is projective, 𝜌′ = A(𝜌′) = ΠA𝜌′ΠA +
(𝐼 −ΠA)𝜌′(𝐼 −ΠA), which commutes with ΠA. The statement then follows by Claim 4.13.

Claim 4.13. Suppose 𝜌′ ∈ S(ℋ⊗𝒲) satisfies each of the following:
∙ Tr(ΠA𝜌′) = 1− 𝛾,
∙ 𝜌′ commutes with ΠA, and
∙ Tr

(︁
ΠJor
𝑗 𝜌′

)︁
= 0 for all 𝑗 where 𝑝𝑗 = 0.
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Let
𝜂 := 1∑︀

𝑗,𝑝𝑗>0 Tr
(︁
ΠJor
𝑗 𝜌′

)︁
/𝑝𝑗

,

and 𝜌* := Tr𝒲(𝑈M𝜌′𝑈 †M). Then

Pr
𝑝′←M(𝜌*)

[|𝑝′ − 𝑝| > 2𝜀] ≤ 𝛿/𝜂 + 𝛾 .

Proof. Since 𝜌′ commutes with ΠA, we can write 𝜌′ =
∑︀
𝑖 𝑞𝑖 |𝜑𝑖⟩⟨𝜑𝑖|, where the |𝜑𝑖⟩ are eigenstates

of ΠA. Consider the unitary 𝑈 on ℋ ⊗ 𝒲 that maps |𝑣A
𝑗,𝑏⟩ to |𝑣A

𝑗,1−𝑏⟩ for 𝑏 ∈ {0, 1} for each
2-dimensional Jordan subspace 𝒮𝑗 , and acts as identity on each 1-dimensional subspace. Formally,

𝑈 :=
∑︁

𝑗,𝑝𝑗 /∈{0,1}
(|𝑣A

𝑗,1⟩ ⟨𝑣A
𝑗,0|+ |𝑣A

𝑗,0⟩ ⟨𝑣A
𝑗,1|) +

∑︁
𝑗,𝑝𝑗=1

|𝑣A
𝑗,1⟩⟨𝑣A

𝑗,1|+
∑︁
𝑗,𝑝𝑗=0

|𝑣A
𝑗,0⟩⟨𝑣A

𝑗,0| .

In particular, if |𝜑𝑖⟩ =
∑︀
𝑗,𝑝𝑗>0 𝜁𝑗 |𝑣A

𝑗,0⟩, then 𝑈 |𝜑𝑖⟩ =
∑︀
𝑗,𝑝𝑗>0 𝜁𝑗 |𝑣A

𝑗,1⟩ ∈ image(ΠA). Moreover, ΠJor
𝑗

commutes with 𝑈 for all 𝑗.
Let 𝜎 := ΠA𝜌′ + 𝑈(I−ΠA)𝜌′𝑈 †. 𝜎 does not appear during the procedure; it is defined for the

purpose of analysis. Intuitively, 𝜎 is the result of rotating, within each Jordan subspace, the part
of 𝜌′ in image(I−ΠA) into image(ΠA). By unitary invariance of the trace,

Tr(𝜎) = Tr
(︀
ΠA𝜌′

)︀
+ Tr

(︁
𝑈(I−ΠA)𝜌′𝑈 †

)︁
= Tr

(︀
𝜌′
)︀

= 1 .

For all 𝑗, we have Tr
(︁
ΠJor
𝑗 𝜎

)︁
= Tr

(︁
ΠJor
𝑗 𝜌′

)︁
since ΠJor

𝑗 commutes with both 𝑈 and ΠA. The trace
distance between 𝜎 and 𝜌′ is at most Tr((I−ΠA)𝜌′) = 𝛾. Finally, by definition of 𝑈 , Tr(ΠA𝜎) = 1.

We will now show that the outcome of M(Tr𝒲(𝑈M𝜎𝑈 †M)) is in the range 𝑝±2𝜀 with probability
𝛿/𝜂, which will complete the proof by contractivity of the trace distance. Define the linear operator
𝐶 :=

∑︀
𝑗,𝑝𝑗>0

1√
𝑝𝑗
|𝑣B
𝑗,1⟩ ⟨𝑣A

𝑗,1|. Notice that ΠA𝐶 is the projection onto image(ΠA)∩(
⨁︀

𝑗,𝑝𝑗>0 𝒮𝑗) since

ΠA𝐶 =
∑︁
𝑗,𝑝𝑗>0

1
√
𝑝𝑗
|𝑣A
𝑗,1⟩⟨𝑣A

𝑗,1| |𝑣B
𝑗,1⟩ ⟨𝑣A

𝑗,1| =
∑︁
𝑗,𝑝𝑗>0

|𝑣A
𝑗,1⟩⟨𝑣A

𝑗,1| .

Let 𝜎′ := 𝐶𝜎𝐶†/Tr
(︁
𝐶𝜎𝐶†

)︁
. We have that

Tr
(︁
𝐶𝜎𝐶†

)︁
= Tr

(︁
𝐶†𝐶𝜎

)︁
=

∑︁
𝑗,𝑝𝑗>0

1
𝑝𝑗

Tr
(︁
|𝑣A
𝑗,1⟩⟨𝑣A

𝑗,1|𝜎
)︁

=
∑︁
𝑗,𝑝𝑗>0

1
𝑝𝑗

Tr
(︁
ΠJor
𝑗 𝜌′

)︁
= 1/𝜂,

and Tr(ΠB𝜎′) = 1. By the definition of ΠB, this implies that 𝜎′ = 𝜎′′⊗ |0⟩⟨0|𝒲 for some 𝜎′′ ∈ S(ℋ).
We also have that ΠA𝜎′ΠA = 𝜂ΠA𝐶𝜎𝐶†ΠA = 𝜂𝜎, where the second equality follows from the fact
that 𝜎 ∈ S(image(ΠA) ∩ (

⨁︀
𝑗,𝑝𝑗>0 𝒮𝑗)) by construction.

Recall that (1) applying 𝑈M to a state of the form 𝜌′′⊗ |0⟩⟨0|𝒲 , then applying the projective mea-
surement (ΠM,𝑞)𝑞∈𝐼 on 𝒲 and tracing out 𝒲 is equivalent to applying the (𝜀, 𝛿)-almost-projective
measurement M = (𝑀𝑞)𝑞∈𝐼 to 𝜌′′ and (2) ΠA =

∑︀
𝑞∈[𝑝±𝜀] 𝑈

†
MΠM,𝑞𝑈M. So we have:

𝜌* = Tr𝒲(𝑈M𝜎𝑈 †M) = 1
𝜂

Tr𝒲(𝑈MΠA𝜎′ΠA𝑈
†
M)
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= 1
𝜂

Tr𝒲

⎛⎝ ∑︁
𝑞,𝑞′∈[𝑝±𝜀]

ΠM,𝑞𝑈M(𝜎′′ ⊗ |0⟩⟨0|𝒲)𝑈 †MΠM,𝑞′

⎞⎠
= 1
𝜂

∑︁
𝑞∈[𝑝±𝜀]

Tr𝒲
(︁
ΠM,𝑞𝑈M(𝜎′′ ⊗ |0⟩⟨0|𝒲)𝑈 †M

)︁

= 1
𝜂

∑︁
𝑞∈[𝑝±𝜀]

𝑀𝑞𝜎
′′𝑀 †𝑞 =

∑︀
𝑞∈[𝑝±𝜀]𝑀𝑞𝜎

′′𝑀 †𝑞

Tr
(︁∑︀

𝑞∈[𝑝±𝜀]𝑀𝑞𝜎′′𝑀
†
𝑞

)︁ .

That is, 𝜌* is the state after applying M to 𝜎′′ conditioned on obtaining an outcome in the range
𝑝±𝜀, which occurs with probability 𝜂. But then by (𝜀, 𝛿)-almost projectivity, the outcome of M(𝜌*)
is in the range 𝑝± 2𝜀 with probability 1− 𝛿/𝜂.

4.4 Proof of Theorem 4.3

We now prove Theorem 4.3. For 𝑟 ∈ 𝑅, define M𝑓,𝑟 :=
(︁
Π𝒵,ℐ𝑓,𝑟 , I−Π𝒵,ℐ𝑓,𝑟

)︁
where

Π𝒵,ℐ𝑓,𝑟 := 𝑈 †𝑆,𝑟
∑︁

𝑧,𝑓(𝑟,𝑧)=1
|𝑧⟩⟨𝑧|𝒵 𝑈𝑆,𝑟 ,

where 𝑈𝑆,𝑟 is a unitary implementation of the action of 𝑆 on message 𝑟.
We set ValEst and ValRepair as follows:

∙ Let ValEst𝑆𝒢,𝜀,𝛿 be a CPTP map from (𝒵, ℐ) to (𝒵, ℐ) as in Lemma 4.9.

∙ Let ValRepair𝑆𝒢,𝜀,𝛿,𝑇,𝑟 := Repair
ValEst𝑆𝒢,𝜀,𝛿,M𝑓,𝑟

𝑇 be a CPTP map from (𝒵, ℐ) to (𝒵, ℐ) as in Lemma 4.10
(that is, with ℋ = (𝒵, ℐ)).

The algorithm 𝐴 operates on registers (𝒵, ℐ) and works as follows.

𝐴𝑆𝒢,𝑛,𝜂0
:

1. Let 𝜀 := 𝜂0/(2𝑛+ 2), 𝛿 := 𝜂2
0/𝑐𝑛

2 for some universal constant 𝑐.
2. (Main loop.) For 𝑖 = 1, . . . , 𝑛,

(a) Measure 𝑝𝑖 ← ValEst𝑆𝒢,𝜀,𝛿 on registers (𝒵, ℐ).
(b) Receive 𝑟𝑖 ∈ 𝑅 from the referee and apply 𝑈𝑆,𝑟𝑖 to (𝒵, ℐ).
(c) Send the register 𝒵 to the referee.
(d) Receive the (partially measured) register 𝒵 from the referee, along with the out-

come 𝑏𝑖 ∈ {0, 1}.
(e) Apply 𝑈 †𝑆,𝑟𝑖 to (𝒵, ℐ).
(f) Apply ValRepair𝑆𝒢,𝜀,𝛿,𝑇,𝑟𝑖(𝑝, 𝑏) to (𝒵, ℐ) with 𝑇 := ⌈1/

√
𝛿⌉.

Claim 4.14. For each 𝑖 ∈ [𝑛], 𝑝𝑖+1 ≥ 𝑝𝑖 − 2𝜀 with probability 1−𝑂(
√
𝛿).

Proof. Steps 2(b) to 2(e) are equivalent to applying M𝑓,𝑟𝑖 to (𝒵, ℐ). Since ValEst𝑆𝒢,𝜀,𝛿 is (𝜀, 𝛿)-
almost projective (Lemma 4.9, Item (iii)), the claim follows from applying Lemma 4.10 with M =
ValEst𝑆𝒢,𝜀,𝛿, ℋ = (𝒵, ℐ), P = M𝑓,𝑟𝑖 , 𝑁 = 2, 𝑇 = ⌈1/

√
𝛿⌉ and observing that the entire “Main

loop” amounts to a single invocation of RepairExpt, and is therefore a (2𝜀,𝑂(
√
𝛿))-almost-projective

measurement.13

13On the (𝑖+ 1)-th invocation of the main loop the challenge 𝑟𝑖+1 will generally be different than the challenge 𝑟𝑖
used in the 𝑖-th invocation; however, almost projectivity still applies since 𝑝𝑖+1 is clearly independent of 𝑟𝑖+1.
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Let 𝜌𝑖 be the state on (𝒵, ℐ) at the beginning of the 𝑖-th iteration.

Claim 4.15. For all 𝑖 ∈ [𝑛], 𝜔𝒢(𝑆,𝜌𝑖) ≥ 𝜔𝒢(𝑆,𝜌)− 2𝑖 · 𝜀−𝑂(𝑖 ·
√
𝛿).

Proof. By Claim 4.14, with probability 1−𝑂(𝑖 ·
√
𝛿) it holds that

𝑝𝑖 ≥ 𝑝𝑖−1 − 2𝜀 ≥ 𝑝𝑖−2 − 4𝜀 ≥ · · · ≥ 𝑝1 − 2(𝑖− 1)𝜀 .

Then by Lemma 4.9, Item (iv),

𝜔𝒢(𝑆,𝜌𝑖) ≥ E[𝑝1]− 2𝑖 · 𝜀−𝑂(𝑖 ·
√
𝛿) .

Finally, by Lemma 4.9, Item (ii), E[𝑝1] = 𝜔𝒢(𝑆,𝜌).

Now since 𝜔𝒢(𝑆,ValEst(𝜎)) ≥ 𝜔𝒢(𝑆,𝜎) − 𝛿 for all states 𝜎 by Lemma 4.9, Item (v), we have
that Pr[𝑏𝑖 = 1] ≥ 𝜔𝒢(𝑆,𝜌)− 2𝑖 · 𝜀−𝑂(𝑖 ·

√
𝛿). Hence

𝜔𝑛𝒢(𝐴𝑆𝒢,𝑛,𝜂0 ,𝜌) = E[
∑︁
𝑖∈[𝑛]

𝑏𝑖] =
∑︁
𝑖∈[𝑛]

Pr[𝑏𝑖 = 1]

≥ 𝑛 · (𝜔𝒢(𝑆,𝜌)− (𝑛+ 1)𝜀−𝑂(𝑛 ·
√
𝛿))

≥ 𝑛 · (𝜔𝒢(𝑆,𝜌)− 𝜂0) ,

which completes the proof. The expected running time of this procedure is �̃�(|𝑓 | · 𝑛/𝜂0).
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5 A quantum rewinding lemma
We use Theorem 4.3 to prove a “quantum forking lemma” for collapsing protocols. We denote by
(𝜏,𝜌) ← ⟨𝑃 , 𝑉 ⟩𝑚−1 the partial transcript 𝜏 and intermediate state 𝜌 of the malicious prover 𝑃
after running 𝑚− 1 rounds of the interaction between 𝑃 and 𝑉 . Recall that 𝑅𝑚 denotes the set of
random coins for round 𝑚 of the protocol.

Theorem 5.1. Let (𝑃, 𝑉 ) be an 𝑚-round collapsing protocol. There exists an algorithm Fork
running in expected polynomial time with black-box access to an adversary such that the following
holds. Let 𝑃 be an efficient quantum adversary such that Pr

[︁
⟨𝑃 , 𝑉 ⟩ → 1

]︁
≥ 𝜂. Then for any 𝑛 ∈ N,

𝜂0 ∈ [0, 1],

E

⎡⎢⎣ |𝑊 |
⃒⃒⃒⃒
⃒⃒⃒ (𝜏,𝜌)← ⟨𝑃 , 𝑉 ⟩𝑚−1

�⃗� = (𝑟1, . . . , 𝑟𝑛)← (𝑅𝑚)𝑛

𝑊 ← Fork𝑃 (1𝜆, 11/𝜂0 , 𝜏, �⃗�,𝜌)

⎤⎥⎦ ≥ 𝑛(𝜂 − 𝜂0)− 𝑛2/|𝑅𝑚| − negl(𝜆) .

Moreover, with probability 1, we have {(𝑠𝑖, 𝑧𝑖)}𝑖 ← Fork𝑃 (1𝜆, 11/𝜂0 , 𝜏, �⃗�,𝜌) where:

∙ 𝑉 (𝜏, 𝑠𝑖, 𝑧𝑖) = 1 holds for all 𝑖 ∈ [𝑘],
∙ all 𝑠𝑖 are distinct, and
∙ for each 𝑖 there exists 𝑗 ∈ [𝑛] such that 𝑠𝑖 = 𝑟𝑘.

Fork runs in expected time poly(𝜆) · �̃�(𝑛/𝜂0).

Proof. We define an interactive quantum algorithm 𝐶 that acts as the referee in an 𝑛-round single-
player quantum game as in Section 4. For 𝑟 ∈ 𝑅, define

Π𝑉,𝑟 :=
∑︁

𝑧,𝑉 (𝜏,𝑟,𝑧)=1
|𝑧⟩⟨𝑧| .

𝐶(𝜏, �⃗�):
1. Set 𝑊 := ∅. For 𝑗 = 1, . . . , 𝑛,

(a) Send 𝑟𝑗 ∈ 𝑅 to the player.
(b) Receive register 𝒵 from the player.
(c) Apply the binary measurement M𝑉,𝑟𝑗 :=

(︁
Π𝑉,𝑟𝑗 , I−Π𝑉,𝑟𝑗

)︁
to register 𝒵, obtain-

ing outcome 𝑏.
(d) If 𝑏 = 1, measure 𝒵𝑚 in the computational basis to obtain response 𝑧. If there is

no 𝑧′ such that (𝑟𝑗 , 𝑧′) ∈𝑊 , set 𝑊 ←𝑊 ∪ {(𝑟𝑗 , 𝑧)}.
(e) Return register 𝒵 to the player.

2. Output 𝑊 .

The extractor Fork is obtained by simulating ⟨𝐴𝑈(𝑚)
𝒢,𝑛,𝜂0

, 𝐶(𝜏, �⃗�)⟩, where 𝐴𝒢,𝑛,𝜂0 is the algorithm
guaranteed by Theorem 4.3 with 𝒢 := (𝑅𝑚, 𝑍𝑚, 𝑉 (𝜏, ·, ·)), and 𝑈 (𝑚) is the unitary that the prover
applies in the final round. The properties of the output of Fork (aside from the expected size of
𝑊 ) follow immediately from the definition.

By the collapsing property of (𝑃, 𝑉 ), the measurement in Step 1(d) is undetectable to any
efficient distinguisher; in particular, it is undetectable to 𝐴. We can therefore apply Theorem 4.3
to show that the expected number of successful iterations is at least 𝑛(𝜂 − 𝜂0) − negl(𝜆). The
expected number of repeated 𝑟𝑗 is at most 𝑛2/|𝑅|, which yields the bound.
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Remark 5.2. If the quantum prover 𝑃 has (non-uniform) quantum advice, then in general we can
only run the extractor once.

However, if the malicious quantum prover 𝑃 has (non-uniform) classical advice, we can generate
(𝜏,𝜌) ← ⟨𝑃 , 𝑉 ⟩𝑚−1 as many times as we would like (obtaining a different (𝜏,𝜌) each time). By
running Fork𝑃 on each (𝜏,𝜌), we eventually obtain a set 𝑊 of accepting transcripts with a shared
prefix 𝜏 where |𝑊 | ≥ 𝑛(𝜂 − 𝜂0)− 𝑛2/|𝑅𝑚| with probability arbitrarily close to 1.

5.1 Special sound protocols

Theorem 5.1 immediately implies that any collapsing 𝑘-special sound protocol is an argument of
knowledge. We first define 𝑘-special soundness, and then briefly explain how to apply Theorem 5.1
to obtain this result. Recall that a sigma protocol is a three-message protocol where the prover
moves first.

Definition 5.3 (Special soundness). A sigma protocol (𝑃, 𝑉 ) is 𝑘-special sound if there exists
an extractor Ext such that, given 𝑘 accepting transcripts (𝑎, 𝑟1, 𝑧1), . . . , (𝑎, 𝑟𝑘, 𝑧𝑘) with all 𝑟𝑖 ∈ 𝑅
distinct, Ext(𝑥, 𝑎, (𝑟𝑖, 𝑧𝑖)𝑘𝑖=1) outputs 𝑤 such that (𝑥,𝑤) ∈ R.

Theorem 5.4. Any collapsing 𝑘-special sound protocol is a post-quantum argument of knowledge
with knowledge error 𝑂(𝑘/|𝑅|).

Proof sketch. Let 𝑃 be an adversary that convinces 𝑉 with probability 𝜀 > 4𝑘/|𝑅|. The extractor
𝐸 for (𝑃, 𝑉 ) operates as follows, where Fork is as guaranteed by Theorem 5.1.

1. Obtain first message 𝑎 from 𝑃 ; let 𝜌 be the prover’s state after sending 𝑎.
2. Sample �⃗� = (𝑟1, . . . , 𝑟𝑛)← 𝑅𝑛 uniformly at random, where 𝑛 = 8𝑘/𝜀.
3. Run 𝑊 ← Fork𝑃 (1𝜆, 11/𝜂0 , 𝑎, �⃗�,𝜌), for 𝜂0 = Θ(𝜀) to be chosen.
4. If |𝑊 | ≥ 𝑘, output 𝑤 ← 𝐸ss(𝑥, 𝑎,𝑊 ).

𝜂0 can be chosen such that E[|𝑊 |] ≥ 𝑛(𝜀 − 2𝑘/|𝑅|)/2 ≥ 𝑛𝜀/4, and so the probability that |𝑊 | ≥
𝑛𝜀/8 = 𝑘 is at least 𝜀/8 by Markov’s inequality. The theorem follows by the definition of special
soundness.

For constant 𝑘, Theorem 5.4 states that the post-quantum knowledge error of any 𝑘-special
sound collapsing sigma protocol is 𝑂(1/|𝑅|), which asymptotically matches the classical knowledge
error. Previously, the post-quantum knowledge error of such protocols was only shown to be
𝑂(1/

√︀
|𝑅|) via Unruh’s rewinding lemma [Unr12].

Remark 5.5. Theorem 5.4 alone is insufficient to imply post-quantum security of Kilian’s protocol
(when instantiated with a PCP of knowledge), since Kilian’s protocol is not 𝑘-special sound for any
𝑘 = poly(𝜆). In particular, 𝑘-special soundness requires successful extraction from any set of 𝑘
accepting transcripts with distinct challenges 𝑟𝑖; the extractor for Kilian’s protocol requires that the
𝑟𝑖 are also “sufficiently random”. We therefore prove post-quantum security of Kilian’s protocol in
Section 7 by directly applying Theorem 5.1 to obtain accepting transcripts for randomly sampled 𝑟𝑖.
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6 Collapsing vector commitments
We define collapsing vector commitments (Section 6.1), and then prove that Merkle trees are
collapsing vector commitments when the underlying hash function is collapsing (Section 6.2). Later
on, in Section 7, we will formulate Kilian’s protocol in terms of vector commitments, and establish
its post-quantum security when the vector commitment is collapsing.

6.1 Definition

A (static) vector commitment scheme VC [CF13] consists of the following algorithms.

∙ VC.Gen(1𝜆,Σ, ℓ) is a probabilistic algorithm that takes as input the security parameter 1𝜆, an
alphabet Σ, and a vector length ℓ ∈ N, and outputs a commitment key ck.

∙ VC.Commit(ck,𝑚) is a (possibly probabilistic) algorithm that takes as input a commitment key
ck and a vector 𝑚 ∈ Σℓ, and outputs a commitment string cm and auxiliary information aux.

∙ VC.Open(ck, aux, 𝑄) is a deterministic algorithm that takes as input a commitment key ck, aux-
iliary information aux, and a subset 𝑄 ⊆ [ℓ], and outputs an opening proof pf.

∙ VC.Verify(ck, cm, 𝑄, 𝑣, pf) is a deterministic algorithm that takes as input a commitment key ck,
a commitment cm, a subset 𝑄 ⊆ [ℓ], alphabet symbols 𝑣 ∈ Σ𝑄, and an opening proof pf, and
outputs a bit 𝑏 ∈ {0, 1}.

The vector commitment scheme VC is complete if for every security parameter 𝜆, alphabet Σ, vector
length ℓ ∈ N, and adversary Adv,

Pr

⎡⎢⎢⎢⎣VC.Verify(ck, cm, 𝑄,𝑚[𝑄], pf) = 1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

ck← VC.Gen(1𝜆,Σ, ℓ)
(𝑚 ∈ Σℓ, 𝑄 ⊆ [ℓ])← Adv(ck)

(cm, aux)← VC.Commit(ck,𝑚)
pf ← VC.Open(ck, aux, 𝑄)

⎤⎥⎥⎥⎦ = 1 .

The traditional definition of security for a vector commitment scheme is position binding, which
states that no efficient attacker can open any location to two different values. In more detail, for
every security parameter 𝜆, alphabet Σ, vector length ℓ ∈ N, and polynomial-size (classical or
quantum) adversary Adv,

Pr

⎡⎢⎣ ∃ 𝑖 ∈ 𝑄1 ∩𝑄2 s.t. 𝑣1[𝑖] ̸= 𝑣2[𝑖]
∧ VC.Verify(ck, cm, 𝑄1, 𝑣1, pf1) = 1
∧ VC.Verify(ck, cm, 𝑄2, 𝑣2, pf2) = 1

⃒⃒⃒⃒
⃒⃒⃒ ck← VC.Gen(1𝜆,Σ, ℓ)(︃

cm, 𝑄1 ⊆ [ℓ], 𝑣1 ∈ Σ𝑄1 , pf1
𝑄2 ⊆ [ℓ], 𝑣2 ∈ Σ𝑄2 , pf2

)︃
← Adv(ck)

⎤⎥⎦ = negl(𝜆) .

While position binding against classical adversaries suffices to prove security of Kilian’s protocol
against classical adversaries, it is not known whether position binding against quantum adversaries
suffices to prove security of Kilian’s protocol against quantum adversaries. (And, as discussed in
Section 1, it is unlikely to.) Hence we rely on an additional collapsing property that we introduce.

Definition 6.1. VC is collapsing if for every security parameter 𝜆, alphabet Σ, vector length ℓ ∈ N,
and polynomial-size quantum adversary Adv,⃒⃒⃒

Pr[VCCollapseExp(0, 𝜆,Σ, ℓ,Adv) = 1]− Pr[VCCollapseExp(1, 𝜆,Σ, ℓ,Adv) = 1]
⃒⃒⃒
≤ negl(𝜆) .

For 𝑏 ∈ {0, 1} the experiment VCCollapseExp(𝑏, 𝜆,Σ, ℓ,Adv) is defined as follows:
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1. The challenger samples ck← VC.Gen(1𝜆,Σ, ℓ) and sends ck to Adv.
2. Adv replies with a classical message (cm, 𝑄 ⊆ [ℓ]), and a quantum state on registers (𝒱,𝒪),

where the 𝒱 registers contain strings 𝑣 ∈ Σ𝑄 and the 𝒪 registers contain opening proofs pf.
3. The challenger computes into an ancilla register the bit VC.Verify(ck, cm, 𝑄,𝒱,𝒪) via some

unitary 𝑈 , measures the ancilla, and then applies 𝑈 † to uncompute. If the measured bit is 0
(verification fails), the challenger aborts and outputs ⊥.

4. If 𝑏 = 0, the challenger does nothing. If 𝑏 = 1, the challenger measures the registers (𝒱,𝒪) in
the standard basis to obtain a string 𝑣 and opening proof pf, which it discards.

5. The challenger returns the contents of the (potentially measured) registers (𝒱,𝒪) to Adv.
6. Adv outputs a bit 𝑏, which is the output of the experiment.

Remark 6.2. The definition of collapse binding for standard commitments implies (classical-style)
binding [Unr16b]. However, we do not know whether our definition of collapsing for vector com-
mitments implies position binding in general, without imposing additional structure on the vector
commitment.

6.2 Merkle trees are collapsing

We describe Merkle trees as an instance of vector commitments (Section 6.1), and then prove that
they are collapsing when the underlying hash function is collapsing.

Construction 6.3. Let ℋ = {𝐻𝜆}𝜆∈N be a function family with input size 𝑛(𝜆) and output
size ℓ(𝜆) = 𝑛(𝜆)/2. Let VC := Merkle[ℋ] be the vector commitment for messages over alphabet
Σ := {0, 1}𝑛(𝜆) that is constructed as follows.

∙ VC.Gen(1𝜆,Σ, ℓ): sample a hash function ℎ← 𝐻𝜆 and output the commitment key ck := (ℓ, ℎ).

∙ VC.Commit(ck,𝑚): use ℎ : {0, 1}𝑛(𝜆) → {0, 1}𝑛(𝜆)/2 to pairwise hash the message 𝑚 to obtain a
corresponding Merkle tree tr with root rt ∈ {0, 1}𝑛(𝜆)/2, and then output cm := rt as a commit-
ment and aux := (𝑚, tr) as auxiliary information.

∙ VC.Open(ck, aux, 𝑄): for each index 𝑖 ∈ 𝑄, deduce the authentication path path𝑖 for index 𝑖 in
the Merkle tree tr, and then output the opening proof pf := (path𝑖)𝑖∈𝑄. (Some of the paths may
have overlaps, in which case the opening proof pf can be compressed accordingly.)

∙ VC.Verify(ck, cm, 𝑄, 𝑣, pf): for each index 𝑖 ∈ 𝑄, check that the authentication path path𝑖 in pf
is for messages of length ℓ, and that it authenticates the value 𝑣𝑖 for location 𝑖 in a Merkle tree
with root cm.

It is well-known that Merkle trees satisfy the position binding property.

Claim 6.4. If ℋ is a collision-resistant hash function with input size 𝑛(𝜆) and output size ℓ(𝜆) =
𝑛(𝜆)

2 against classical (resp., quantum) adversaries then VC := Merkle[ℋ] is a position-binding vector
commitment scheme over alphabet Σ := {0, 1}𝑛(𝜆) against classical (resp., quantum) adversaries.

We now show that if ℋ is a collapsing hash function then VC := Merkle[ℋ] is a collapsing vector
commitment.

Claim 6.5. If ℋ is a collapsing hash function with input size 𝑛(𝜆) and output size ℓ(𝜆) = 𝑛(𝜆)
2

then VC := Merkle[ℋ] is a collapsing vector commitment over alphabet Σ := {0, 1}𝑛(𝜆).
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Proof. The proof is a standard application of the collapsing hash function security property. We
write the proof for the case of a singleton query set 𝑄 = {𝑖}; extending to the general case is
straightforward.

Fix a message length ℓ, and let 𝑑 := ⌈log2 ℓ⌉ be the height of a Merkle tree for messages of
length ℓ. For 𝑗 ∈ {0, 1, . . . , 𝑑}, we define a hybrid experiment H𝑗 as follows:

1. The challenger samples ℎ← 𝐻𝜆 and sends ℎ to Adv.
2. Adv replies with a classical message (rt, 𝑖 ∈ [ℓ]) (a Merkle root and a location) and a quantum

state on registers (𝒱,𝒪1, . . . ,𝒪𝑑), where the register 𝒱 corresponds to strings in Σ𝑄 and each
register 𝒪𝑗 corresponds to the 𝑗-th node in the Merkle opening proof (𝑗 = 1 is a leaf node). For
convenience we set 𝒴1 := 𝒱.

3. The challenger coherently applies VC.Verify using 𝑑 ancilla registers 𝒴2, . . . ,𝒴𝑑+1:
(a) Let 𝑈𝑖 be a unitary on the registers (𝒪1, . . . ,𝒪𝑑,𝒴1, . . . ,𝒴𝑑+1) that works as follows: for

𝑘 = 1, . . . , 𝑑, apply ℎ to (𝒴𝑘,𝒪𝑘) or (𝒪𝑘,𝒴𝑘) (depending on the 𝑘-th bit of 𝑖) and XOR the
result onto 𝒴𝑘.

(b) Apply 𝑈𝑖 and then measure the bit indicating whether 𝒴𝑑+1 equals rt (by applying the binary
projective measurement

(︁
|rt⟩⟨rt|𝒴𝑑+1 , I− |rt⟩⟨rt|𝒴𝑑+1

)︁
). If the measured bit is 0 (verification

fails), then the challenger aborts and outputs ⊥.
4. The challenger measures registers (𝒪𝑑−𝑗+1, . . . ,𝒪𝑑) and (𝒴𝑑−𝑗+1, . . . ,𝒴𝑑+1). (If 𝑗 = 0 then the

challenger does not measure any of the 𝒪 registers.)
5. The challenger applies 𝑈 †𝑖 to uncompute the 𝒴2, . . . ,𝒴𝑑+1 registers, and returns the registers

(𝒱,𝒪1, . . . ,𝒪𝑑) to the adversary Adv.

Hybrid H0 corresponds to the experiment VCCollapseExp(0, 𝜆,Σ, ℓ,Adv) and hybrid H𝑑 corre-
sponds to the experiment VCCollapseExp(1, 𝜆,Σ, ℓ,Adv), for the vector commitment scheme VC :=
Merkle[ℋ]. (See Definition 6.1 for the definition of the collapsing experiment for VC.)

We are left to argue that, for each 𝑗 ∈ {0, 1, . . . , 𝑑 − 1}, H𝑗 and H𝑗+1 are indistinguishable.
Suppose by way of contradiction that for some 𝑗 ∈ {0, 1, . . . , 𝑑−1} the attacker Adv can distinguish
H𝑗 and H𝑗+1 with advantage at least 𝜖. We construct an adversary Adv𝑗 that has distinguishing
advantage at least 𝜖 for ℋ’s collapsing experiment HCollapseExp(𝑏, 𝜆,Adv𝑗) (see Definition 3.9). The
adversary Adv𝑗 works as follows.

1. Receive a hash function ℎ from the challenger.
2. Send ℎ to Adv, and obtain the message (rt, 𝑖) and a quantum state on registers (𝒱,𝒪1, . . . ,𝒪𝑑).
3. Similarly to the challenger in the hybrids, set 𝒱 := 𝒴1, prepare 𝑑 internal ancilla registers
𝒴2, . . . ,𝒴𝑑+1, and apply the same unitary 𝑈𝑖 on (𝒪1, . . . ,𝒪𝑑,𝒴1, . . . ,𝒴𝑑+1).

4. Measure the bit indicating whether 𝒴𝑑+1 equals the Merkle root rt, and aborts if this measure-
ment does not return 1.

5. Measure (𝒪𝑑−𝑗+1, . . . ,𝒪𝑑) and (𝒴𝑑−𝑗+1, . . . ,𝒴𝑑+1).
6. Forward the contents of (𝒪𝑑−𝑗 ,𝒴𝑑−𝑗) to the challenger as the hash function input, and forward
𝒴𝑑−𝑗 as the classical output. (If 𝑏 = 0, the challenger in the collapsing experiment will not
disturb the state on (𝒪𝑑−𝑗 ,𝒴𝑑−𝑗); if instead 𝑏 = 1, the challenger measures (𝒪𝑑−𝑗 ,𝒴𝑑−𝑗) before
returning these registers to Adv𝑗 .)

7. Apply 𝑈𝑖 again and return the registers (𝒱,𝒪1, . . . ,𝒪𝑑) to Adv.
8. Output whatever Adv outputs.
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The proof is concluded by observing that Adv’s view when inside the experiment HCollapseExp(0, 𝜆,Adv𝑗)
corresponds to hybrid H𝑗 and Adv’s view when inside the experiment HCollapseExp(1, 𝜆,Adv𝑗) cor-
responds to hybrid H𝑗+1.
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7 Post-quantum security of Kilian’s protocol
Denote by Kilian[PCP,VC] the instantiation of Kilian’s protocol with PCP system PCP and vector
commitment scheme VC (see Section 7.2 below). We prove the following theorem.

Theorem 7.1. Let PCP be a PCP system for R with negligible soundness error, and let VC be
a collapsing vector commitment. Then Kilian[PCP,VC] is a post-quantum succinct argument for
R. Moreover, if PCP has negligible knowledge error, then Kilian[PCP,VC] is also a post-quantum
succinct argument of knowledge for R.

Corollary 7.2. Assuming the post-quantum hardness of LWE, there exist post-quantum succinct
arguments for NP.

Proof. Collapsing vector commitments can be obtained from collapsing hash functions (Claim 6.5),
which in turn exist based on the post-quantum hardness of LWE [Unr16a]. The corollary follows
from Theorem 7.1 applied to a PCP for NP with suitable efficiency (e.g., [BFLS91]).

The rest of this section is organized as follows: in Section 7.1 we recall the definition of a PCP;
in Section 7.2 we describe Kilian’s protocol and prove that Kilian[PCP,VC] is collapsing if VC is a
collapsing vector commitment; in Section 7.3 we prove Theorem 7.1.

7.1 Probabilistically checkable proofs

A probabilistically checkable proof (PCP) for a relation R with soundness error 𝜀PCP, alphabet Σ,
and proof length ℓ, is a pair of polynomial-time algorithms PCP = (PPCP,VPCP) satisfying the
following.

∙ Completeness. For every instance-witness pair (𝑥,𝑤) ∈ R, PPCP(𝑥,𝑤) outputs a proof string
𝜋 : [ℓ]→ Σ such that Pr

[︁
V𝜋

PCP(1𝜆, 𝑥) = 1
]︁

= 1.

∙ Soundness. For every instance 𝑥 ̸∈ ℒ(R) and proof string 𝜋 : [ℓ] → Σ, Pr
[︁
V𝜋

PCP(1𝜆, 𝑥) = 1
]︁
≤

𝜀PCP.

Probabilities are taken over the randomness 𝑟 of VPCP. The randomness complexity rc is the
number of random bits used by VPCP, and the query complexity qc is the number of locations of 𝜋
read by VPCP. The quantities 𝜀PCP, ℓ,Σ, rc, qc can be functions of the instance size |𝑥|.

We also consider PCPs that achieve a proof of knowledge property, which is a strengthening of
the soundness property.

∙ Proof of knowledge. PCP has knowledge error 𝜅PCP if there exists a polynomial-time extractor
algorithm E such that, for every instance 𝑥 and proof string 𝜋 : [ℓ]→ Σ, if Pr[V𝜋

PCP(𝑥) = 1] > 𝜅PCP

then E(𝑥, 𝜋) outputs 𝑤 such that (𝑥,𝑤) ∈ R.

7.2 Kilian’s protocol

Kilian’s protocol [Kil92] is a public-coin four-message interactive argument ARG = (𝑃, 𝑉 ) obtained
by combining two ingredients:

∙ a PCP system PCP = (PPCP,VPCP) with alphabet Σ, proof length ℓ, randomness complexity rc,
and query complexity qc; and
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∙ a VC scheme VC = (Gen,Commit,Open,Verify) over alphabet Σ.

The construction of the interactive argument, which we denote by (𝑃, 𝑉 ) := Kilian[PCP,VC], is
specified below. The argument prover 𝑃 and argument verifier 𝑉 receive as input a security
parameter 𝜆 (in unary) and an instance 𝑥, while 𝑃 additionally receives as input a witness 𝑤 for 𝑥.

1. 𝑉 samples a commitment key ck← VC.Gen(𝜆, ℓ) and sends ck to 𝑃 .
2. 𝑃 computes a PCP string 𝜋 ← PPCP(𝑥,𝑤), computes a commitment to it (cm, aux)← VC.Commit(ck, 𝜋),

and sends cm to 𝑉 .
3. 𝑉 samples PCP randomness 𝑟 ← {0, 1}rc and sends 𝑟 to 𝑃 .
4. 𝑃 runs the PCP verifier V𝜋

PCP(𝑥; 𝑟) to deduce a set 𝑄 ⊆ [ℓ] of queries made by VPCP, computes
an opening proof pf ← VC.Open(ck, aux, 𝑄), and sends (𝜋[𝑄], pf) to 𝑉 .

5. 𝑉 checks that VPCP(𝑥; 𝑟) accepts when answering its PCP queries via 𝜋[𝑄] ∈ Σ𝑄 and that
VC.Verify(ck, cm, 𝑄, 𝜋[𝑄], pf) = 1. (If VPCP makes any query outside of 𝑄 then reject.)

We show that Kilian[PCP,VC] is a collapsing protocol when VC is collapsing.

Claim 7.3. If VC is a collapsing vector commitment then for all PCP, Kilian[PCP,VC] is a collaps-
ing protocol.

Proof. Consider an adversary Adv for CollapseExp for Kilian. We construct an Adv′ for VCCollapseExp
with the same advantage as follows:
1. Obtain ck from the challenger and send it to Adv. Measure the response cm.
2. Choose 𝑟 ← {0, 1}rc and send it to Adv. Send (cm, 𝑄) and the (unmeasured) state on 𝒵2 to the

challenger, where 𝑄 is the query set corresponding to 𝑟.
3. Receive a state on 𝒵2 and pass it to Adv. Return the output of Adv.

7.3 Proof of Theorem 7.1

Since Kilian’s protocol instantiated with a collapsing vector commitment VC is collapsing (Claim 7.3),
there exists an algorithm Fork𝑃 making black-box queries to any malicious prover 𝑃 for Kilian’s
protocol that satisfies the guarantees of Theorem 5.1. We use Fork𝑃 to implement an extractor 𝐸𝑃
that makes black-box queries to 𝑃 and outputs a PCP string 𝜋 ∈ Σℓ.

𝐸𝑃 (𝑥;|𝜓⟩)(1𝜆, 𝑥, 11/𝜀):
1. Sample a commitment key ck ← VC.Gen(𝜆, ℓ) and query 𝑃 on ck to obtain a commitment cm.

Let 𝜏 := (ck, cm), and let 𝜌 denote the intermediate state of 𝑃 .
2. Set 𝑛 := 60ℓ · log(2|Σ|)/𝜀, sample �⃗� = (𝑟1, . . . , 𝑟𝑛) uniformly at random from ({0, 1}rc)𝑛, and run

(𝜏, (𝑟1, 𝑧1), . . . , (𝑟𝑘, 𝑧𝑘))← Fork𝑃 (1𝜆, 13/𝜀, 𝜏, �⃗�,𝜌). Abort if 𝑘 < 6ℓ · log(2|Σ|).
3. Parse each 𝑧𝑖 as (𝜋[𝑄𝑟𝑖 ], pf), where 𝑄𝑟𝑖 is defined to be the set of indices that VPCP(𝑥) queries

on random coins 𝑟𝑖.
4. Check that {(𝑄𝑟𝑖 , 𝜋[𝑄𝑟𝑖 ]}𝑖∈[𝑘] are consistent, meaning that there does not exist a PCP index 𝑡

with two different values. If this check fails, abort and output ⊥.
5. Output a 𝜋 obtained by combining the answers given in {(𝑄𝑟𝑖 , 𝜋[𝑄𝑟𝑖 ])}𝑖∈[𝑘] and filling in any

unanswered indices arbitrarily.

Claim 7.4. Pr
[︁
⊥ ← 𝐸𝑃

]︁
≤ 1− Ω(𝜀) + negl(𝜆)
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Proof. We first bound the probability that 𝐸 aborts in Step 2. Define 𝜂ck to be the probability
that 𝑃 wins when ck is sampled in the first round; note that Eck[𝜂𝑐𝑘] ≥ 𝜀. By Theorem 5.1,
E[𝑘|ck] ≥ 𝜂ck − 𝛾 · 𝜀 for some 𝛾 < 1. Hence by Markov’s inequality,

Pr[𝑘 < 6ℓ · log(2|Σ|)] = 1− Ω(𝜀) .

By the position-binding property of VC, the probability that 𝐸𝑃 aborts in Step 4 is negl(𝜆).
It follows that Pr

[︁
𝜋 ← 𝐸𝑃

]︁
≥ Ω(𝜀)− negl(𝜆).

For a PCP 𝜋, let win[VPCP, 𝑥](𝜋) := Pr[V𝜋
PCP(𝑥) = 1]. We prove that conditioned on the event

that 𝜋 ← 𝐸𝑃 , we have win[VPCP, 𝑥](𝜋) ≥ 𝑘/(2𝑛) with overwhelming probability.

Claim 7.5. Pr
[︁
(𝜋 ← 𝐸𝑃 ) ∧ (𝜋 ̸= ⊥) ∧ (win[VPCP, 𝑥](𝜋) < 𝑘/(2𝑛))

]︁
≤ negl(𝜆).

Proof. We first argue that for any fixed string 𝜋* ∈ Σℓ where win[VPCP, 𝑥](𝜋*) < 𝑘/(2𝑛), we have:

Pr
[︁
𝜋* = 𝜋 ∧ 𝜋 ← 𝐸𝑃

]︁
≤ (2|Σ|)−ℓ.

The probability 𝐸𝑃 outputs such a 𝜋* is upper bounded by the probability that for randomly
sampled (𝑟1, . . . , 𝑟𝑛), there exist 𝑘 distinct 𝑟𝑖 such that V𝜋*

PCP(𝑥; 𝑟𝑖) = 1. For each 𝑟𝑖, the probability
Pr
[︁
V𝜋*

PCP(𝑥; 𝑟𝑖) = 1
]︁
< 𝑘/(2𝑛), so by a multiplicative Chernoff bound (Proposition 3.2) we have

Pr
𝑟1,...,𝑟𝑛

[exists 𝑘 distinct 𝑖 ∈ [𝑛] such that V𝜋*
PCP(𝑥; 𝑟𝑖) = 1] ≤ 𝑒−𝑘/6 = (2|Σ|)−ℓ .

A union bound over all 𝜋* completes the proof:

Pr
[︁
(𝜋 ← 𝐸𝑃 ) ∧ (𝜋 ̸= ⊥) ∧ (win[VPCP, 𝑥](𝜋) < 𝑘/(2𝑛))

]︁
=

∑︁
𝜋*,win[VPCP,𝑥](𝜋*)<𝑘/(2𝑛)

Pr
[︁
𝜋* = 𝜋 ∧ 𝜋 ← 𝐸𝑃

]︁
≤ |Σ|ℓ/(2|Σ|)ℓ = negl(𝜆).

By combining Claims 7.4 and 7.5 with the fact that 𝑘/(2𝑛) ≥ 𝜀/20, we obtain

Pr
[︁
(𝜋 ← 𝐸𝑃 ) ∧ (win[VPCP, 𝑥](𝜋) ≥ 𝜀/20)

]︁
≥ Ω(𝜀)− negl(𝜆).

If PCP has negligible soundness error, then this implies that 𝜀 = negl(𝜆).
If PCP is a proof of knowledge with negligible knowledge error 𝜅PCP = negl(𝜆) with witness

extractor E, then the following extractor achieves knowledge error 𝜅 = negl(𝜆): run 𝜋 ← 𝐸𝑃 and
output 𝑤 ← E(𝑥, 𝜋).
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