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Identity-certifying Authority-aided Identity-based
Searchable Encryption Framework in Cloud System

Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Yu-Chi Chen, and Masahiro Mambo

Abstract—In the era of cloud computing, massive quantities of
data are encrypted and uploaded to the cloud to realize a variety
of applications and services while protecting user confidentiality.
Accordingly, the formulation of methods for efficiently searching
encrypted data has become a critical problem. Public-key encryp-
tion with keyword search is an efficient solution that allows the
data owner to generate encrypted keywords for a given document
while also allowing the data user to generate the corresponding
trapdoor for searching. Huang and Li proposed a public-key
authenticated encryption with keyword search (PAEKS) scheme
to resist keyword guessing attacks, where the data owner not only
encrypts keywords but also authenticates them.However, existing
PAEKS-related schemes carry a trade-off between efficiency,
storage cost, and security.In this paper, we introduce a novel
framework, called identity-certifying authority-aided identity-
based searchable encryption, which has the advantage of reducing
storage space while remaining the efficiency and security.We for-
mally define the system model and desired security requirements
to represent attacks in a real scenario. In addition, we propose a
provably secure scheme based on the gap bilinear Diffie–Hellman
assumption and experimentally evaluate our scheme in terms of
its performance and theoretical features against its state-of-the-
art counterparts.

Index Terms—identity-certifying authority, cloud system,
identity-based encryption, keyword search.

I. INTRODUCTION

W ITH the maturation of cloud computing technology,
enterprises have increasingly uploaded massive quanti-

ties of data to the cloud to reduce their storage and computing
burden. For example, convenience store chains upload data
from each branch to the cloud for analysis, and hospitals
upload patient data to the cloud for management. In addition,
since the introduction of the concept of Industry 4.0 by Lasi et
al. [1], firms have begun integrating cloud systems into their
data collection and production processes. However, privacy
concerns remain. Data on shipments, patient records, and
even factory inventory are highly sensitive, and companies
may be reluctant to directly upload them to a cloud system
that they cannot fully trust. Consequently, data are often
encrypted before being uploaded to a cloud system in order
to avoid information leakage, but such encrypted data pose a
computational challenge for cloud systems.
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Symmetric searchable encryption (SSE), introduced by
Song et al. [2], is one solution to the aforementioned problem.
In SSE, a data owner (DO) can generate encrypted keywords
for each encrypted file by using a symmetric key that is
shared with the data user (DU) before their data are uploaded
to the cloud system. Subsequently, the DU can generate a
trapdoor for specified keywords and submit them to the cloud
system to search for encrypted files that are related to these
keywords. Because of these properties, SSE is well suited
to cloud computing, and various SSE approaches have been
proposed [3]–[6]. However, SSE is restricted to the key sharing
problem of symmetric cryptosystems. Specifically, the DO and
DU must agree on a shared key before encrypting keywords
and generating trapdoors, respectively.

To further increase the range of application and reduce the
communication overhead of negotiating keys, Boneh et al.
[7] introduced a searchable encryption method in a public-
key setting, called public key encryption with keyword search
(PEKS). Instead of using a shared key as done in SSE, in
PEKS, the DO encrypts keywords by using the DU’s public
key, and the DU generates corresponding trapdoors by using
his or her secret key. After the pioneering work by Boneh
et al., PEKS immediately caught the attention of researchers,
and many studies have applied PEKS to various applications
[8]–[12]. However, in 2006, Byun et al. [13] observed that
because the entropy of keywords is low, any malicious party,
through a so-called keyword guessing attack, can randomly
select keywords to generate the ciphertext and test whether
the ciphertext is passable; thus, the malicious party can obtain
the information associated with the keywords in the trapdoor.
In particular, to resolve the keyword guessing attack launched
by a malicious cloud server (CS) as part of a so-called
insider keyword guessing attack (IKGA), Chen et al. [14]–
[16] have first proposed solutions for dual-server setting, and
their methods were improved upon by Tso et al. [17].

Huang and Li [18] recently introduced the concept of public
authenticated encryption with keyword search (PAEKS) under
a single-server setting, where the trapdoor works only for
ciphertext that is authenticated by the DO using his or her
secret key; therefore, a malicious CS cannot randomly generate
ciphertext and further perform IKGA. Inspired by Huang
and Li’s work [18], scholars have proposed several PAEKS
schemes [19]–[22]. However, because PAEKS schemes are
based on public key settings and do not provide implicit
authentication, they require a trusted public key infrastructure
to bind public keys with the respective identities of entities
through issuing certificates; nevertheless, this process incurs
additional overhead. Several approaches are available for in-
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tuitively solving this problem in PAEKS:

1) Identity-based authenticated encryption with keyword
search (IBAEKS) [23]: In IBAEKS schemes, the user
can apply to a trusted key generation center (KGC) for
the secret key of a specific identity; they can then use
the identity as their public key. Thus, in IBAEKS, no
additional steps are required to prove the validity of the
public key.

2) Certificate-based authenticated encryption with keyword
search (CBAEKS) [24], [25]: In CBAEKS schemes, the
user can apply to a trusted certification authority for
the certificate of a pair comprising a specific identity
and public key. Unlike the certificates used in PAEKS
schemes, the certificate in CBAEKS not only implicitly
authenticates the validity of the identity and public key
but also acts as a partial secret key.

3) Certificateless authenticated encryption with keyword
search (CLAEKS) [26]–[28]: The solution of CLAEKS is
similar to that of IBAEKS, except that the user generates
a pair comprising public and secret values, in addition to
obtaining the secret key of their identity from the KGC.
The user finally uses the identity and public value as the
full public key and uses the secret key and secret value
as the full secret key.

Although the three aforementioned approaches solve the
problem in PAEKS, each approach has its disadvantages in
safety, storage, or efficiency. Specifically, in IBAEKS [23],
because the KGC can gain access to any user’s secret key,
key escrow problems occur when the KGC is malicious. By
contrast, although CBAEKS [24], [25] and CLAEKS [26]–[28]
solve the key escrow problem, the users in these schemes re-
quire an additional generated certificate and a pair comprising
a public and secret value. The larger key size in these schemes
also entails larger ciphertext and trapdoor sizes. Consequently,
users require more storage space to store keys, certificates,
ciphertext, and trapdoors in CBAEKS and CLAEKS than they
do in PAEKS and IBAEKS. Therefore, existing methods carry
a three-way trade-off between efficiency, storage cost, and
security.

Accordingly, to ameliorate this trade-off, we present a
novel identity-certifying authority (ICA)-aided identity-based
searchable encryption (IBSE) framework (hereafter referred to
as ICA-IBSE). Our contributions are summarized as follows:

• To master the trade-off between efficiency and security,
on the basis of Chow et al. [29] and Emura et al. [30],
who have used an identity-certifying authority in identity-
based encryption, we propose our ICA-IBSE scheme,
which inherits the advantages of IBAEKS in terms of
convenience and storage requirements and eliminates
the disadvantage of IBAEKS regarding the key escrow
problem.

• We define the system model and security requirements of
the ICA-IBSE framework before applying it to a practical
case. Moreover, we provide the security proofs to show
that under the defined security models, our scheme is
secure if the gap bilinear Diffie–Hellman (GBDH) as-
sumption holds.
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Fig. 1. The proposed ICA-IBSE framework

• We further provide a theoretical comparison and perfor-
mance evaluation of our scheme against state-of-the-art
schemes [20], [21], [23]–[26], [28]. The results indicate
that our scheme is more efficient and that it performs
better at reducing the storage requirement for the public
key, ciphertext, and trapdoor.

II. PROBLEM FORMULATION

A. System Model

The ICA-IBSE system model comprises five entities,
namely the ICA, KGC, CS, DO, and DU, which are displayed
in Fig. 1.

• ICA: This authority is responsible for validating the DO’s
and DU’s identities and issuing trapdoor information and
an identity certificate to them.

• KGC: By validating the correctness of the identity cer-
tificate, the KGC generates the DO’s and DU’s partial
secret key without knowing any information about their
identity.

• CS: The CS has sufficient storage and computing capacity
and is mainly responsible for storing encrypted data along
with the corresponding encrypted keywords and searching
for data.

• DO: The DO first requests their certificate from the ICA
and further generates their partial secret key by interacting
with the KGC. Finally, the DO obtains their secret key by
using trapdoor information. The DO can generate massive
quantities of encrypted data along with the corresponding
encrypted keywords, which are uploaded to the CS to
reduce the storage requirement.

• DU: The DU generates their secret key as the DO does.
Subsequently, the DU can issue trapdoors, generated by
using their secret key, to the CS to retrieve the encrypted
data associated with the specified keyword.
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B. Adversary Model

In the following analysis, we consider adversary threats
from different perspectives. We assume that the DO and DU
are fully trusted, as is the case with most PEKS schemes. The
DO and DU cannot collude with other parties to reveal their
secret keys. In addition, we assume that the ICA and KGC
cannot collude with each other to generate the DU’s and DO’s
secret keys.
• The KGC and CS are honest but curious, which means

that they will attempt to retrieve the sensitive information
of the keywords from encrypted keywords and trapdoors.

• The ICA is malicious. In addition to attempting to obtain
keyword information as the KGC and CS do, the ICA
can generate a potentially malicious ICA key pair.

• The communication channels between the DO and DU
and the cloud server are insecure, which means that all
transmitted information is eavesdropped upon by any
one party (i.e., ICA, KGC, and a malicious outsider).
However, the communication channels between the DO
and DU and the ICA and KGC are secure. In other
words, we assume that the communication channels are
encrypted and authenticated (e.g., by using TLS 1.3 [31]).

III. DEFINITION AND SECURITY MODELS

A. ICA-IBSE Framework

A typical ICA-IBSE scheme comprises seven algorithms
and a protocol, which are described as follows:

Setup(1λ): The security parameter λ is taken as the input,
and the system parameter pp is the output. Here, we
assume that the keyword space W and the identity space
ID are defined by the system parameter pp.

ICA-Setup(pp): The system parameter pp is taken as the
input, and the public–secret key pair (pkICA, skICA) of
the ICA is the output.

KGC-Setup(pp): The system parameter pp is taken as the
input, and the public–secret key pair (pkKGC , skKGC )
of the KGC is the output.

ICA-Cert(pp, pkICA, skICA, ID): The system parameter pp,
ICA’s public key pkICA, ICA’s secret key skICA, and a
user’s identity ID ∈ ID are taken as the inputs, and
a certificate certID and a piece of trapdoor information
tfID are the outputs, which are sent to the ID through a
secure channel.

〈User-Obtain-Key(pp, pkKGC , ID , certID , tfID),
KGC-Issue-Key(pp, pkKGC , skKGC , pkICA)〉: This is an
interactive key-issuing protocol between a user and the
KGC that comprises two algorithms: User-Obtain-Key
and KGC-Issue-Key. The user first generates the first-
round message M1 ← User-Obtain-Key and submits it to
the KGC. Subsequently, the KGC returns a second-round
message M2 ← KGC-Issue-Key to the user. At the end
of the protocol, the user can locally output a secret key
skID or ⊥.

Encrypt(pp, skDO ,DU , w): The system parameter pp, DO’s
secret key skDO , DU’s identity DU , and a keyword w ∈
W are taken as the inputs, and a searchable ciphertext
ctw associated with keyword w is the output.

Trapdoor(pp,DO , skDU , w): The system parameter pp,
DO’s identity DO , DU’s secret key skDU , and a keyword
w ∈ W are taken as the inputs, and a trapdoor tdw
associated with keyword w is the output.

Test(pp, ctw, tdw): The system parameter pp, a searchable
ciphertext ctw, and a trapdoor tdw are taken as the inputs,
and 1 is the output if ctw is matched with tdw; otherwise,
0 is the output.

Definition 1 (Correctness and Consistency of ICA-IBSE). For
all security parameters λ ∈ N, all DOs DO ∈ ID, all DUs
DU ∈ ID, and all keywords w,w′ ∈ W , ICA-IBSE is defined
to be correct if, when w = w′, we have

Pr[Test(pp, ctw, tdw′) = 1] = 1

and ICA-IBSE is defined to be consistent if, when w 6= w′, we
have

Pr[Test(pp, ctw, tdw′) = 0] = 1− negl(λ),

where pp ← Setup(1λ); (pkICA, skICA) ← ICA-Setup(pp);
(pkKGC , skKGC ) ← KGC-Setup(pp); (certi, tdi) ←
ICA-Cert(pp, pkICA, skICA, i); and ski ←
〈User-Obtain-Key(pp, pkKGC , i, certi, tdi),
KGC-Issue-Key(pp, pkKGC , skKGC , pkICA)〉, for
i = {DO , DU}, ctw = Encrypt(pp, skDO ,DU , w), and
tdw′ ← Trapdoor(pp,DO , skDU , w

′).

B. Security Models

To model the different aspects of the attacks described
in Section II-B, we revise the security model in [32] and
[21] to account for multichosen keyword attacks (MCKAs)
and IKGAs. MCKAs, recently introduced by Qin et al. [21],
ensure that no adversary can obtain any information from
two tuples of encrypted keywords; IKGAs ensure that no
insider adversary (i.e., the CS) can obtain any information on
keywords from the trapdoor, even when an insider can conduct
tests.

Before presenting our security models, we first define the
following oracles that are simulated by the challenger for the
adversary:

Certificate Oracle Ocert: For any identity ID ∈ ID,
the challenger outputs (certID , tfID) ←
ICA-Cert(pp, pkICA, skICA, ID) to the adversary.

Secret Key Oracle Osk: For any first-round
message M1, the challenger runs M2 ←
KGC-Issue-Key(pp, pkKGC , skKGC , pkICA) and returns
M2 to the adversary.

Ciphertext Oracle Oct: For any keyword w ∈ W , the
challenger outputs ctw ← Encrypt(pp, skDO ,DU , w) to
the adversary.

Trapdoor Oracle Otd: For any keyword w ∈ W , the chal-
lenger outputs tdw ← Trapdoor(pp,DO , skDU , w) to the
adversary.

Issue Key KGC Oracle Oik-KGC: When the adversary
makes this query, the challenger randomly chooses
ID ← ID and computes (certID , tfID) ←
ICA-Cert(pp, pkICA, skICA, ID). In addition, it runs
M1 ← User-Obtain-Key(pp, pkKGC , ID , certID , tfID),
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and returns M1 to the adversary, stores ID to IDList ,
and updates Qkey ← Qkey +1. Here, Qkey is the number
of instances Oik-KGC is queried, and IDList is a list of
identities whose corresponding M1 values have been
obtained by the adversary through querying Oik-KGC.

Ciphertext KGC Oracle Oct-KGC: For any keyword w ∈ W ,
DO index doi, and DU index dui, the challenger first
checks whether doi ∈ [Qkey ] and dui ∈ [Qkey ]. If not,
the challenger forces the adversary to output a random
bit b′ ∈ {0, 1}. Otherwise, the challenger retrieves
the doi-th identity’s secret key skIDList[doi] and dui-th
identity IDList [dui] in IDList and subsequently outputs
ctw ← Encrypt(pp, skIDList[doi], IDList [dui], w) to the
adversary.

Trapdoor KGC Oracle Otd-KGC: For any keyword w ∈ W ,
DO index doi, and DU index dui, the challenger first
checks whether doi ∈ [Qkey ] and dui ∈ [Qkey ]. If
not, the challenger forces the adversary to output a
random bit b′ ∈ {0, 1}. Otherwise, the challenger re-
trieves the doi-th identity IDList [doi] and dui-th iden-
tity’s secret key skIDList[dui] and subsequently outputs
tdw ← Trapdoor(pp, IDList [doi], skIDList[dui], w) to the
adversary.

The CS can directly obtain the entirety of ciphertext and all
trapdoors from the DO and DU individually; hence, intuitively,
the CS has greater attack capability relative to eavesdroppers
on the channel. Therefore, we only consider attacks from the
CS and not from parties other than the CS, ICA, or KGC.
We formulate six games (MCKA-CS, MCKA-KGC, MCKA-
ICA, IKGA-CS, IKGA-KGC, and IKGA-ICA) to model the
MCKA or IKGA from the CS, KGC, or ICA. In this paper,
MCKA and IKGA games are represented using blue solid and
red dotted lines, respectively.

First, in the MCKA-CS and IKGA-CS games, the adversary
is restricted to issuing queries to Ocert on some challenged
identities DO ,DU ∈ ID. Furthermore, the adversary cannot
issue queries to oracles Oct on the challenged keywords wb,i ∈
W and cannot issue queries to oracles Otd on the challenged
keywords wb ∈ W for the challenged identities DO ,DU ∈
ID, where b ∈ {0, 1} and i ∈ {1, · · · , n}. We consider that
ICA-IBSE is MCKA-CS secure if the advantage

AdvMCKA-CS
ICA-IBSE (λ) = |Pr[b = b′]− 1/2|

is negligible for any adversary, and we consider that ICA-IBSE
is IKGA-CS secure if the advantage

AdvIKGA-CS
ICA-IBSE (λ) = |Pr[b = b′]− 1/2|

is negligible for any adversary.

MCKA-CS / IKGA-CS Game

pp← Setup(1λ); random b ∈ {0, 1};
(pkICA, skICA)← ICA-Setup(pp); (pkKGC , skKGC )← KGC-Setup(pp);

w̃0 = (w0,1, · · · , w0,n), w̃1 = (w1,1, · · · , w1,n),DO , DU ←
AOcert(·),Osk(·),Oct(·),Otd(·)(pp, pkICA, pkKGC );

˜ct∗ = (ct∗1, · · · , ct∗n), where ct∗i ← Encrypt(pp, skDO ,DU , wb,i),
for i = 1, · · · , n;

w0, w1,DO , DU ← AOcert(·),Osk(·),Oct(·),Otd(·)(pp, pkICA, pkKGC );
td∗ ← Trapdoor(pp,DO , skDU , wb);

b′ ← AOcert(·),Osk(·),Oct(·),Otd(·)(pp, pkICA, pkKGC );

In MCKA-ICA and IKGA-ICA games, we model a ma-
licious ICA that can generate a potentially malicious ICA
key pair (pkICA, skICA). However, to model the state of
affairs where the ICA cannot interact with the KGC, we
restrict the ICA to access Secret Key Oracle Osk. In addition,
the adversary is restricted to issue queries to oracles Oct

on challenged keywords wb,i ∈ W and to issue queries
to oracles Otd on challenged keywords wb ∈ W for some
challenged identities DO ,DU ∈ ID, where b ∈ {0, 1} and
i ∈ {1, · · · , n}. We consider that ICA-IBSE is MCKA-ICA
secure if the advantage

AdvMCKA-ICA
ICA-IBSE (λ) = |Pr[b = b′]− 1/2|

is negligible for any adversary, and we consider that ICA-IBSE
is IKGA-ICA secure if the advantage

AdvIKGA-ICA
ICA-IBSE (λ) = |Pr[b = b′]− 1/2|

is negligible for any adversary.

MCKA-ICA / IKGA-ICA Game

pp← Setup(1λ); random b ∈ {0, 1};
(pkICA, skICA)← ICA-Setup(pp); (pkKGC , skKGC )← KGC-Setup(pp);

w̃0 = (w0,1, · · ·w0,n), w̃1 = (w1,1, · · · , w1,n),DO , DU ←
AOct(·),Otd(·)(pp, pkKGC );

˜ct∗ = (ct∗1, · · · , ct∗n), where ct∗i ← Encrypt(pp, skDO ,DU , wb,i),
for i = 1, · · · , n;

w0, w1,DO , DU ← AOct(·),Otd(·)(pp, pkKGC );
td∗ ← Trapdoor(pp,DO , skDU , wb);
b′ ← AOct(·),Otd(·)(pp, pkKGC );

Finally, the MCKA-KGC and IKGA-KGC games differ
from the preceding games in terms of their setups. Specif-
ically, the adversary is given KGC’s secret key. Moreover,
we use Qkey to count the number of KGC queries to
Issue Key KGC Oracle Oik-KGC, and we use IDList to store
the corresponding identity of the secret key that is returned by
this oracle. To simulate the state of affairs where the adversary
does not know the identity of the user, after the adversary
completes the first query phase, the adversary outputs two
arbitrary indices α, β ∈ [Qkey ] instead of two identities
DO ,DU ∈ ID. Subsequently, by using the indices, the
challenger chooses IDList [α] and IDList [β] from IDList as
the DO and DU, respectively. Furthermore, the adversary is
restricted to issuing queries toOct-KGC on challenged keywords
wb,i ∈ W and to issuing queries to Otd-KGC on challenged
keywords wb ∈ W for the challenged indices (α, β), where
b ∈ {0, 1} and i ∈ {1, · · · , n}. We consider that ICA-IBSE is
MCKA-KGC secure if the advantage

AdvMCKA-KGC
ICA-IBSE (λ) = |Pr[b = b′]− 1/2|

is negligible for any adversary, and we consider that ICA-IBSE
is IKGA-KGC secure if the advantage

AdvIKGA-KGC
ICA-IBSE (λ) = |Pr[b = b′]− 1/2|

is negligible for any adversary.
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MCKA-KGC / IKGA-KGC Game

pp← Setup(1λ); IDList = ∅;Qkey := 1; random b ∈ {0, 1};
(pkICA, skICA)← ICA-Setup(pp); (pkKGC , skKGC )← KGC-Setup(pp);

w̃0 = (w0,1, · · · , w0,n), w̃1 = (w1,1, · · · , w1,n), α, β ←
AOik-KGC(·),Oct-KGC(·),Otd-KGC(·)(pp, pkICA, pkKGC , skKGC ) for α, β ∈ [Qkey ];
˜ct∗ = (ct∗1, · · · , ct∗n), where ct∗i ← Encrypt(pp, skIDList[α], IDList [β], wb,i),

for i = 1, · · · , n;
w0, w1, α, β ← AOik-KGC(·),Oct-KGC(·),Otd-KGC(·)(pp, pkICA, pkKGC , skKGC )

for α, β ∈ [Qkey ];
td∗ ← Trapdoor(pp, IDList [α], skIDList[β], wb);

b′ ← AOik-KGC(·),Oct-KGC(·),Otd-KGC(·)(pp, pkICA, pkKGC , skKGC );

IV. IDENTITY-CERTIFYING AUTHORITY-AIDED
IDENTITY-BASED SEARCHABLE ENCRYPTION

FRAMEWORK

In this section, we first introduce the requisite preliminaries
(including some background on the pairing and signature)
before proposing a concrete construction. We also analyze the
correctness and consistency of the proposed scheme.

A. Preliminaries
Symmetric Bilinear Groups. Let q be a λ-bit prime, and let
G1 and GT be two cyclic groups of the same prime order q,
where g ∈ G1 is a generator. In addition, let ê : G1 × G1 →
GT be a bilinear pairing (a map). We consider that the tuple
(q, g,G1,GT , ê) is a symmetric bilinear group if the following
properties are satisfied:
• Bilinearlity: for all g1, g2 ∈ G1 and a, b ∈ Zq ,
ê(ga1 , g

b
2) = ê(g1, g2)ab;

• Nondegeneracy: gT := ê(g, g) is a generator of GT (i.e.,
gT 6= 1 holds);

• Computability: ê is efficiently computable.
Digital Signature Scheme. A digital signature scheme Sig
with the message space M comprises three algorithms:

Sig.KeyGen(1λ): The security parameter λ is taken as the
input, and a verification key vkSig and signing key skSig
are the outputs.

Sig.Sign(skSig,m): The signing key skSig and a message m ∈
M are take as the inputs, and a signature σsig is the
output.

Sig.Verify(vkSig,m, σSig): The verification key vkSig, a mes-
sage m ∈M, and a signature σSig are taken as the inputs,
and 1 is the output if the signature is valid; otherwise, ⊥
is the output.

A signature scheme Sig is considered to be correct if for all
λ, all messages m ∈M, all (vkSig, skSig)← Sig.KeyGen(1λ),
and all σSig ← Sig.Sign(skSig,m), the following holds:

Pr[Sig.Verify(vkSig,m, σSig) = 1] = 1.

In addition, we consider that Sig is secure against an ex-
istential unforgeability under an adaptive chosen message
attack (EU-CMA) if, for any adversary A, AdvEU-CMA

Sig (λ) =
Pr[Sig.Verify(vkSig,m

∗, σ∗Sig) = 1] is negligible. Here, the
adversary A is allowed to query the signing oracle Osign(·)
on any message m 6= m∗ ∈ M and allowed to obtain the
corresponding signature σSig.

EU-CMA Game

(vkSig, skSig)← Sig.KeyGen(1λ);
(m∗, σ∗Sig)← AOsign(·)(vkSig);

B. Our Construction

Let the identity space ID of the ICA-IBSE scheme be
ID = Zq and the keyword space W of the ICA-IBSE
scheme be W = {0, 1}n for some n. In addition, let Sig :
(Sig.KeyGen,Sig.KeyGen,Sig.Verify) be an EU-CMA-secure
digital signature with message space M = {0, 1}m for some
m.

Setup(1λ): This algorithm chooses two multiplicative
cyclic groups G1,GT with prime order q; a genera-
tor g ∈ G1; a pairing ê : G1×G1 → GT ; and three
cryptographic hash functions H : {0, 1}∗ → G1,
h1 : {0, 1}∗ × {0, 1}∗ × GT × {0, 1}∗ → Z∗q , and
h2 : Z∗q ×G1 → Z∗q . It sets the system parameter to
be

pp := {1λ,G1,GT , ê, q, g,H, h1, h2}.
ICA-Setup(pp): This algorithm runs (vkSig, skSig) ←

Sig.KeyGen(1λ). It then outputs
pkICA := vkSig; skICA := skSig.

KGC-Setup(pp): The KGC picks x← Z∗q and computes
Y = gx. It then outputs

pkKGC := Y ; skKGC := x.
ICA-Cert(pp, pkICA, skICA, ID): The ICA computes

uID = H(ID), picks yID,1 ← Z∗q , and computes
uID,1 = gyID,1 . In addition, it computes uID,2 =
uIDuID,1 ∈ G1 and σSig ← Sig.Sign(skSig, uID,2).
Finally, it outputs

certID := (uID,2, σSig); tfID := yID,1.
〈User-Obtain-Key(pp, pkKGC , ID , certID , tfID),

KGC-Issue-Key(pp, pkKGC , skKGC , pkICA)〉: The
user and the KGC run the following steps:

1) The user sets M1 = certID = (uID,2, σSig) and
sends M1 to the KGC.

2) After receiving M1, the KGC verifies the correct-
ness of σSig. If Sig.Verify(vk.Sig, uID,2, σSig) =
⊥, the KGC sets M2 = ⊥. Otherwise, it computes
M2 = yID,2 = uxID,2. Finally, it returns M2 to the
user.

3) If M2 = ⊥, the user outputs ⊥. Otherwise, it
computes eID = yID,2 · Y −yID,1 and outputs

skID := eID .
Encrypt(pp, skDO ,DU , w): The data owner ran-

domly selects r ← Z∗q , and computes c1 =

gr, c2 = grh2(h1(DO,DU ,k,w),c1), where k =
ê(skDO , H(DU )). Subsequently, it outputs

ctw := (c1, c2).
Trapdoor(pp,DO , skDU , w): The DU outputs

tdw := h1(DO ,DU , k, w),
where k = ê(H(DO), skDU ).

Test(pp, ctw, tdw): The CS checks whether c2 =

c
h2(tdw,c1)
1 . It returns 1 if the equation is satisfied

and returns 0 if otherwise.
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C. Correctness and Consistency of ICA-IBSE

We analyze the correctness and consistency of the proposed
ICA-IBSE scheme as follows.

1) For i = {DO ,DU }, we have

ski = yi,2 · Y −yi,1

= uxi,2 · Y −yi,1

= uxi · uxi,1 · Y −yi,1

= H(i)x · Y yi,1 · Y −yi,1

= H(i)x.

2) Considering the Test algorithm for a ciphertext ctw =
(c1, c2) and a trapdoor tdw′ , we have

grh2(h1(DO,DU ,k,w),c1) = c2 = c
h2(tdw′ ,c1)
1

= grh2(tdw′ ,c1)

= grh2(h1(DO,DU ,k′,w′),c1)

3) In addition, we have

k = ê(skDO , H(DU )) = ê(H(DO)x, H(DU ))

= ê(H(DO), H(DU )x) = ê(H(DO), skDU )

= k′.

Because k = k′, when w = w′, we have
h1(DO ,DU , k, w) = h1(DO ,DU , k′, w′) and
c2 = c

h2(tdw′ ,c1)
1 ; therefore, correctness is satisfied.

Conversely, when w 6= w′, because the probability that
h1(DO ,DU , k, w) = h1(DO ,DU , k′, w′) is negligibly low,
we have c2 6= c

h2(tdw′ ,c1)
1 ; therefore, consistency is also

satisfied.

V. SECURITY ANALYSIS OF ICA-IBSE

In this section, we demonstrate that our scheme is secure
against various forms of attacks.
Gap Bilinear Diffie–Hellman Assumption [33], [34]. Given
a symmetric bilinear group tuple Φ = (q, g,G1,GT , ê),
we consider that the GBDH assumption holds if, for any
probabilistic polynomial-time algorithm (PPT) adversary A,
the advantage (defined as follows) is negligible:

AdvGBDH
Φ (A, qDBDH) :=

Pr[T = ê(g, g)abc | a, b, c ∈ Zq;T ← AODBDH(Φ, ga, gb, gc)],

where ODBDH denotes a decision bilinear Diffie–Hellman
oracle that takes (ga, gb, gc, T ) as its input and outputs 1
if ê(g, g)abc = T and 0 if otherwise; qDBDH denotes the
maximum number of queries by A to ODBDH.

Theorem 1. The proposed construction is MCKA-CS secure if
the underlying signature scheme Sig is EU-CMA secure under
the hard GBDH assumption.

Proof. Suppose that some PPT algorithm A can break the
MCKA-CS security of the proposed scheme. If so, then the
following proof demonstrates that some other algorithm B can
use A to solve the GBDH assumption.

Before the beginning of the game, B is given a GBDH
instance (g, ga, gb, gc), where a, b, c ∈ Z∗q are random choices.

Initialization. B first generates the system parameter pp =
{1λ,G1,GT , ê, q, g,H, h1, h2} according to the scheme. Sub-
sequently, it chooses `1, `2 ≤ qH randomly as the indices
of the challenged identities for the DO and DU, respectively.
Here, qH is the maximum number of queries that could be
queried by the H-oracle for different identities. B also runs
(pkICA, skICA)← ICA-Setup(pp) and sets pkKGC = ga. Fur-
thermore, B sets initials on four lists (cert-list, H-list, h1-list,
and h2-list) and randomly chooses a bit b ∈ {0, 1}. Finally, B
returns (pp, pkICA, pkKGC ) to A.
Phase 1. In this phase, A is allowed to query the following
oracles adaptively at polynomially many instances.

• H-oracle: On the ith nonrepeated query ID i ∈ ID, B
first searches the H-list for the entry (i, ID i, µIDi

, uIDi
).

If no such entry exists, then B executes the following
under the following conditions:

– If i /∈ {`1, `2}: B randomly chooses µIDi
∈ Z∗q ,

computes uIDi
= gµIDi , adds (i, ID i, µIDi

, uIDi
) to

H-list, and returns uIDi to A.
– if i = `1: B sets uIDi = gb, adds (i, ID i,⊥, uIDi) to
H-list, and returns uIDi

to A.
– if i = `2: B sets uIDi

= gc, adds (i, ID i,⊥, uIDi
) to

H-list, and returns uIDi
to A.

• h1-oracle: On the query (ID i, IDj , k, w), B searches h1-
list for the entry ((ID i, IDj , k, w), h) and returns h. Note
that we assume that ((ID i, IDj , k, w), h) is identical to
((IDj , ID i, k, w), h) for h1-list. If no such entry exists,
B runs the following steps:

– retrieve uIDi
and uIDj

by calling H(ID i) and
H(IDj), respectively.

– check if ODBDH(pkKGC , uIDi
, uIDj

, k) = 1.
– if {i, j} = {`1, `2} and the DBDH oracle returns 1,

return k as the answer to the GBDH problem and abort.
– randomly choose h ∈ Z∗q , add (ID i, IDj , k, w), h) to
h1-list, and return h to A.

• h2-oracle: On the query (h, c1), B searches h2-list for the
entry ((h, c1), h̃) and returns h̃. If no such entry exists,
B randomly chooses h̃ ∈ Z∗q , adds ((h, c1), h̃) to h2-list,
and returns h̃ to A.

• Ocert(·): when A queries for a certificate correspond-
ing to ID , B first goes through H-list for a tuple
(∗, ID , ∗, ∗). If no such tuple is found, B calls H(ID) first
and obtains (i, ID , µID , uID). Subsequently, B samples
yID,1 ← Z∗q and computes uID,1 = gyID,1 , uID,2 =
uIDuID,1, and σSig ← Sig.Sign(skICA, uID,2). B also
sets certID = (uID,2, σSig) and tfID = yID,1 and
adds (certID , tfID , ID) to cert-list. Finally, B returns
(certID , tfID) to A.

• Osk(·): when A queries for a secret key with a first-round
message M1, B parses M1 = (uID,2, σSig). B returns ⊥
if Sig.Verify(pkICA, uID,2, σSig) = ⊥. Otherwise, B ex-
tracts tfID = yID,1 from (certID = (uID,2, σSig), tfID =
yID,1, ID) ∈ cert-list. Here, we note that because Sig is
EU-CMA secure, if the verification passes, it necessarily
exists in cert-list. Subsequently, B goes through H-list
for the tuple (i, ID , µID , ∗).
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– if i /∈ {`1, `2}: B computes yID,2 = pk
yID,1+µID

KGC .
Subsequently, B sets M2 = yID,2 and returns it to A.

– if i ∈ {`1, `2}: B aborts the game and outputs a random
element in GT .

• Oct(·): when A queries for a ciphertext with
(ID i, IDj , w), B executes the following steps:
– retrieve (i, ID i, µIDi

, uIDi
) and (j, IDj , µIDj

, uIDj
)

from H-list for ID i and IDj , respectively.
– randomly select r ∈ Z∗q .
– if {i, j} = {`1, `2}: search h1-list for the tuple

((ID i, IDj ,⊥, w), h); if no such tuple exists, randomly
choose h ∈ Z∗q and add ((ID i, IDj ,⊥, w), h) to h1-
list.

– if otherwise (i.e., i /∈ {`1, `2} or j /∈ {`1, `2}): either
compute k = ê(pk

µIDi

KGC , uIDj
) if i /∈ {`1, `2} or

compute k = ê(uIDi
, pk

µIDj

KGC ) if j /∈ {`1, `2}. Note
that if i /∈ {`1, `2} and j /∈ {`1, `2}, B can randomly
set k = ê(pk

µIDi

KGC , uIDj
) or k = ê(uIDi

, pk
µIDj

KGC ).
– search h1-list for the tuple ((ID i, IDj , k, w), h). If no

such tuple exists, randomly choose h ∈ Z∗q and add
((ID i, IDj , k, w), h) to h1-list.

– compute c1 = gr and c2 = grh̃, where h̃ is retrieved
from h2-list (i.e., h̃ = h2(h, c1)).

– return ctw = (c1, c2).
• Otd(·): whenA queries for a trapdoor with (ID i, IDj , w),
B executes the following steps:
– retrieve (i, ID i, µIDi , uIDi) and (j, IDj , µIDj , uIDj )

from H-list for ID i and IDj , respectively.
– randomly select r ∈ Z∗q .
– if {i, j} = {`1, `2}: search h1-list for the tuple

((ID i, IDj ,⊥, w), h). If no such tuple exists, randomly
choose h ∈ Z∗q and add ((ID i, IDj ,⊥, w), h) to h1-
list.

– if otherwise (i.e., i /∈ {`1, `2} or j /∈ {`1, `2}), either
compute k = ê(pk

µIDi

KGC , uIDj ) if i /∈ {`1, `2} or
compute k = ê(uIDi

, pk
µIDj

KGC ) if j /∈ {`1, `2}. Note
that if i /∈ {`1, `2} and j /∈ {`1, `2}, B can randomly
set k = ê(pk

µIDi

KGC , uIDj
) or k = ê(uIDi

, pk
µIDj

KGC ).
– search h1-list for the tuple ((ID i, IDj , k, w), h). If no

such tuple exists, randomly choose h ∈ Z∗q and add
((ID i, IDj , k, w), h) to h1-list.

– return tdw = h.
Challenge. At the end of Phase 1, A outputs the
challenged tuple (w̃0 = {w0,1, · · · , w0,n}, w̃1 =
{w1,1, · · · , w1,n},DO ,DU ) and B executes the following
steps:
• obtain (i,DO ,⊥, uDO) and (j,DU ,⊥, uDU ) by calling
H(DO) and H(DU ), respectively. If {i, j} 6= {`1, `2},
abort the game.

• for i = 1, · · · , n, execute the following steps. First,
randomly choose ri ∈ Z∗q . Second, search h1-list
for the tuple ((DO ,DU ,⊥, wb,i), hi); if no such en-
try is found, randomly choose hi ∈ Z∗q and add
((DO ,DU ,⊥, wb,i), hi) to h1-list. Third, compute ct∗i =

(c∗1,i, c
∗
2,i), where c∗1,i = gri , c∗2,i = grih̃i , and h̃i is

retrieved from h2-list (i.e., h̃i = h2(hi, c
∗
1,i)).

• return challenged ciphertext ˜ct∗ = (ct∗1, · · · , ct∗n).
Phase 2. In this phase, A can keep the query oracles identical
to those in Phase 1.
Guess. Finally, A outputs b′ ∈ {0, 1} as its guess. B searches
h1-list for k∗ such that ODBDH(ga, gb, gc, k∗) = 1 and returns
k∗ as answer.
Analyze. Because B follows the proposed scheme, with the ex-
ception that the hash functions are modeled by random oracles,
its simulation is identical to that of the real scheme. Because `1
and `2 are independent of A’s perspective, the probability that
B does not abort the game (i.e., {i, j} /∈ {`1, `2} in querying
h1-oracle and {DO ,DU } = {ID`1 , ID`2} in Challenge) is
2
qH

, where qh1
is the maximum number of queries that could

be made to the h1 oracle for different inputs. Furthermore,
because h1 is modeled as a random oracle, the adversary’s
advantage is negligible unless (DO ,DU , k∗, wb,i, h) appears
on h1-list such that k∗ = ê(g, g)abc. If this tuple appears
on h1-list, then B is necessarily able to solve the GBDH
problem. Therefore, if there exists some A that can break the
MCKA-CS-secure scheme at a nonnegligible advantage ε, then
there exists some B that can break the GBDH problem at a
nonnegligible advantage ε′ ≥ ε · 2

qH
.

Theorem 2. The proposed scheme is IKGA-CS secure if the
underlying signature scheme Sig is EU-CMA secure under the
hard GBDH assumption.

Proof. The proof is similar to the proof of Theorem 1, except
for the Challenge phase. Thus, we describe only the proof for
the Challenge phase.
Challenge. At the end of Phase 1, A outputs a challenged
tuple (w0, w1,DO ,DU ), and B executes the following steps:

• obtain (i,DO ,⊥, uDO) and (j,DU ,⊥, uDU ) by calling
H(DO) and H(DU ), respectively. If {i, j} 6= {`1, `2},
abort the game.

• search h1-list for the tuple ((DO ,DU ,⊥, wb), h). If no
such tuple is found, randomly choose h ∈ Z∗q and add
((DO ,DU ,⊥, wb), h) to h1-list.

• return challenged trapdoor td∗ = h.

Theorem 3. The proposed scheme is MCKA-ICA and IKGA-
ICA secure if it is MCKA-CS and IKGA-CS secure, respec-
tively.

Proof. This proof is intuitive. Because the adversary in
MCKA-ICA and IKGA-ICA is a weaker variant of that
in MCKA-CS and IKGA-CS, respectively, Theorem 1 and
Theorem 2 entail Theorem 3. Note that because B need not
reply to the certificate query for A, the signature scheme Sig
need not be EU-CMA secure.

Theorem 4. The proposed scheme is MCKA-KGC secure
under the hard GBDH assumption.

Proof. Suppose that some PPT algorithm A can break the
MCKA-KGC security of the proposed scheme. If so, then the
following proof demonstrates that some other algorithm B can
use A to solve the GBDH problem.
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Before the beginning of the game, B is given a GBDH
instance (g, ga, gb, gc), where a, b, c ∈ Z∗q are random choices.
Initialization. B first generates the system parameter pp =
{1λ,G1,GT , ê, q, g,H, h1, h2} according to the scheme. Sub-
sequently, it sets Qkey := 1 and sets the initials of an empty
list IDList to count the number of A queries to Oik-KGC and
store the corresponding identity of the secret key returned by
this oracle. B also runs (pkICA, skICA) ← ICA-Setup(pp)
and (pkKGC , skKGC ) ← KGC-Setup(pp) and chooses two
arbitrary indices `1, `2 ≤ MaxQkey

, where MaxQkey
is the max-

imum number of queries that can be queried by the Oik-KGC
oracle. In addition, B sets the initials for three additional
lists (H-list, h1-list, and h2-list) and randomly chooses a bit
b ∈ {0, 1}. Finally, B returns (pp, pkICA, pkKGC , skKGC ) to
A.
Phase 1. In this phase, A is allowed to query the following
oracles adaptively at polynomially many instances.
• H-oracle: On the ith nonrepeated query ID i, B first

searches H-list for the entry (i, ID i, µIDi
, uIDi

). If no
such entry exists, then B randomly chooses µIDi

∈ Z∗q ,
computes uIDi

= gµIDi , adds (i, ID i, µIDi
, uIDi

) to H-
list, and returns uIDi to A.

• h1-oracle: On the query (ID i, IDj , k, w), B first searches
h1-list for the entry ((ID i, IDj , k, w), h) and returns h.
Notably, we assume that ((ID i, IDj , k, w), h) is identical
to ((IDj , ID i, k, w), h) for h1-list. If no such entry exists,
B executes the following steps:
– retrieve uIDi

and uIDj
by calling H(ID i) and

H(IDj), respectively.
– check if ODBDH(pkKGC , uIDi

, uIDj
, k) = 1.

– if {i, j} = {`1, `2} and the DBDH oracle returns 1,
return k as the answer to the GBDH problem and abort.

– randomly choose h ∈ Z∗q , add (ID i, IDj , k, w), h) to
h1-list, and return h to A.

• h2-oracle: On the query (h, c1), B searches h2-list for the
entry ((h, c1), h̃) and returns h̃. If no such entry exists,
then B randomly chooses h̃ ∈ Z∗q , adds ((h, c1), h̃) to
h2-list, and returns h̃ to A.

• Oik-KGC(·): When A issues a issue key query, B first
samples ID ← ID such that ID does not exist in H-
list. Subsequently, B executes the following steps under
the following conditions:
– if Qkey /∈ {`1, `2}: B obtains uID by querying H(ID).
– if Qkey = `1: B sets uID = gab and adds (ID ,⊥, uID)

to H-list.
– if Qkey = `2: B sets uID = gc and adds (ID ,⊥, uID)

to H-list.
In addition, B randomly chooses yID,1 ← Z∗q , computes
uID,1 = gyID,1 , and computes uID,2 = uIDuID,1 ∈ G
and σSig ← Sig.Sign(skICA, uID,2). Finally, B returns
M1 = (uID,2, σSig) to A, sets IDList [Qkey ] = ID , and
updates Qkey = Qkey + 1.

• Oct(·): when A queries for a ciphertext with (i, j, w),
where i, j ∈ [Qkey ], B executes the following steps:
– retrieve (IDList [i], µIDList[i], uIDList[i]) and

(IDList [j], µIDList[j], uIDList[j]) from H-list for
IDList [i] and IDList [i], respectively.

– randomly select r ∈ Z∗q .
– if {i, j} = {`1, `2}: search h1-list for the tu-

ple ((IDList [i], IDList [j],⊥, w), h). If no such tu-
ple exists, randomly choose h ∈ Z∗q and add
((IDList [i], IDList [j],⊥, w), h) to h1-list.

– if otherwise (i.e., i /∈ {`1, `2} or j /∈ {`1, `2}), either
compute k = ê(pk

µIDList[i]

KGC , uIDList[j]) if i /∈ {`1, `2} or
compute k = ê(uIDList[i], pk

µIDList[j]

KGC ) if j /∈ {`1, `2}.
Note that if i /∈ {`1, `2} and j /∈ {`1, `2}, B can
randomly set k = ê(pk

µIDList[i]

KGC , uIDList[j]) or k =

ê(uIDList[i], pk
µIDList[j]

KGC ).
– search h1-list for the tuple

((IDList [i], IDList [j], k, w), h). If no such
tuple exists, randomly choose h ∈ Z∗q and add
((IDList [i], IDList [j], k, w), h) to h1-list.

– compute c1 = gr and c2 = grh̃, where h̃ is retrieved
from h2-list (i.e., h2(h, c1)).

– return ctw = (c1, c2).
• Otd(·): when A queries for a trapdoor with (i, j, w),

where i, j ∈ [Qkey ], B executes the following steps:

– retrieve (IDList [i], µIDList[i], uIDList[i]) and
(IDList [j], µIDList[j], uIDList[j]) from H-list for
IDList [i] and IDList [i], respectively.

– if {i, j} = {`1, `2}: search h1-list for the tu-
ple ((IDList [i], IDList [j],⊥, w), h). If no such tu-
ple exists, randomly choose h ∈ Z∗q and add
((IDList [i], IDList [j],⊥, w), h) to h1-list.

– if otherwise (i.e., i /∈ {`1, `2} or j /∈ {`1, `2}), either
compute k = ê(pk

µIDList[i]

KGC , uIDList[j]) if i /∈ {`1, `2} or
compute k = ê(uIDList[i], pk

µIDList[j]

KGC ) if j /∈ {`1, `2}.
Note that if i /∈ {`1, `2} and j /∈ {`1, `2}, B can
randomly set k = ê(pk

µIDList[i]

KGC , uIDList[j]) or k =

ê(uIDList[i], pk
µIDList[j]

KGC ).
– search h1-list for the tuple

((IDList [i], IDList [j], k, w), h). If no such
tuple exists, randomly choose h ∈ Z∗q and add
((IDList [i], IDList [j], k, w), h) to h1-list.

– return tdw = h.
Challenge. At the end of Phase 1, A outputs the challenged
tuple (w̃0 = {w0,1, · · · , w0,n}, w̃1 = {w1,1, · · · , w1,n}, α, β),
and B executes the following steps:

• obtain (IDList [α],⊥, uIDList[α]) and
(IDList [β],⊥, uIDList[β]) by calling H(IDList [α])
and H(IDList [β]), respectively. If {α, β} 6= {`1, `2},
abort the game.

• for i = 1, · · · , n, perform the following steps. First,
randomly choose ri ∈ Z∗q . Second, search h1-list for
the tuple ((IDList [α], IDList [β],⊥, wb,i), hi). If no such
tuple is found, randomly choose hi ∈ Z∗q and add
((IDList [α], IDList [β],⊥, wb,i), hi) to h1-list. Third,
compute ct∗i = (c∗1,i, c

∗
2,i), where c∗1,i = gri , c∗2,i = grih̃i

and h̃i is retrieved from h2-list (i.e., h̃i = h2(hi, c
∗
1,i)).

• return the challenged ciphertext ˜ct∗ = (ct∗1, · · · , ct∗n).

Phase 2. In this phase, A can keep the query oracles identical
to those in Phase 1.
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Guess. Finally, A outputs b′ ∈ {0, 1} as its guess. B searches
h1-list for k∗ such that ODBDH(ga, gb, gc, (k∗)x

−1

) = 1 and
returns (k∗)x

−1

as the answer.
Analysis. Because B follows the proposed scheme, except
that the hash functions are modeled by random oracles, its
simulation is identical to that of the real scheme. Because `1
and `2 are independent of A’s perspective, the probability that
B does not abort the game ({α, β} = {IDList [`1], IDList [`2]}
in Challenge) is 2

MaxQkey
. Furthermore, because h1 is modeled

as a random oracle, the adversary’s advantage is negligible,
unless (IDList [α], IDList [β], k∗, wb,i, h) appears in h1-list
such that (k∗)x

−1

= ê(g, g)abcx(x−1) = ê(g, g)abc. If this
tuple appears in h1-list, then B is necessarily able to solve
the GBDH problem. Therefore, if there exists such an A that
can break the MCKA-KGC-secure scheme at a nonnegligible
advantage ε, then there exists some B that can break the GBDH
problem at a nonnegligible advantage ε′ ≥ ε · 2

MaxQkey
.

Theorem 5. The proposed scheme is IKGA-KGC secure under
the hard GBDH assumption.

Proof. The proof is similar to the proof of Theorem 4, except
for the Challenge phase. Therefore, only the proof for the
Challenge phase is presented.
Challenge. At the end of Phase 1, A outputs the challenged
tuple (w0, w1, α, β) and B executes the following steps:
• obtain (IDList [α],⊥, uIDList[α]) and

(IDList [β],⊥, uIDList[β]) by calling H(IDList [α])
and H(IDList [β]), respectively. If {α, β} 6= {`1, `2}, B
aborts the game.

• search h1-list for the tuple
((IDList [α], IDList [β],⊥, wb), h). If no such tuple
is found, randomly choose h ∈ Z∗q and add
((IDList [α], IDList[β],⊥, wb), h) to h1-list.

• return the challenged trapdoor td∗ = h.

VI. THEORETICAL COMPARISON AND PERFORMANCE
EVALUATION

In this section, we detail the theoretical comparison of
our scheme with other state-of-the-art schemes, specifically
the PAEKS schemes CWZH19 [20] and QCHLZ20 [21],
the IBAEKS scheme LHSYS19 [23], the CBAEKS schemes
LLZ19 [25] and LLW21 [24], and the CLAEKS schemes
HMZKL19 [28] and PSE20 [26]. The features of these
schemes are listed in Table I. We also evaluate the performance
of our proposed scheme against that of the LHSYS19 [23],
QCHLZ20 [21], and LLW21 [24] schemes.

A. Theoretical Comparison

We compare the schemes with respect to their communica-
tion cost and computational cost. The comparison results are
presented in Table II. For communication cost, we use |Zq|,
|G1|, and |GT | to denote the bit lengths of group elements in
Zq , G1, and GT , respectively. In addition, we use |ID | and
|h| to denote the bit lengths of a user’s identity and output
of the hash function, respectively. Note that in the CBAEKS

Fig. 2. Computation cost of encrypting keywords

Fig. 3. Computation cost of generating trapdoor

Fig. 4. Computation cost of performing test
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TABLE I
FEATURES OF COMPARED SCHEMES

Schemes Type Certificateless Implicit Authentication No Key Escrow No Key Distribution No Secure Channel1

HMZKL18 [28] CLAEKS Yes Yes Yes No No
LHSYS19 [23] IBAEKS Yes Yes No No No
CWZH19 [20] PAEKS No No Yes No Yes

LLZ19 [25] CBAEKS No Yes Yes Yes Yes
PSE20 [26] CLAEKS Yes Yes Yes No No
QCH20 [21] PAEKS No No Yes No Yes
LLW21 [24] CBAEKS No Yes Yes Yes Yes

Ours ICA-IBSE Yes2 Yes Yes No No
1channel between KGC and DO/DU.
2certificates in ICA-IBSE are used to generate secret keys only once; by contrast, certificates in PAEKS are continually used for authentication, and those
in CBAEKS are continually used for encrypting or generating the Trapdoor.

TABLE II
COMMUNICATION AND COMPUTATIONAL COST OF COMPARED SCHEMES

Schemes
Communication Cost Computation Cost

Public Key Secret Key Ciphertext Trapdoor KeywordEnc TrapdoorGen Test

HMZKL18 [28] 2|G1|+ |ID | 2|Zq | 2|G1| |GT | 5TE + TH + 2Th TP + 3TE + TH + 2Th TP + TE

LHSYS19 [23] |ID | |G1| 2|G1|+ |GT | 2|G1| 2TP + 3TE + 2TH TP + 2TE + 2TH 2TP + 2TE

CWZH19 [20] |G1| |Zq | 3|G1| 2|G1| 5TE + Th 5TE + Th TE

LLZ19 [25] 2|G1| |Zq | 3|G1|+ |h| |G1| 2TP + 3TE + TH + 4Th TP + 3TE + 2TH + 3Th TP + Th

PSE20 [26] 2|G1|+ |ID | |G1|+ |Zq | 2|G1| |h| TP + 3TE + TH TP + TE + TH TE

QCHLZ20 [21] |G1| |Zq | |G1|+ |h| |G1| TP + 3TE + TH + Th 2TE + TH TP + Th

LLW21 [24] 3|G1| 2|Zq | |G1|+ 2|Zq |+ |h| |G1|+ |Zq | 5TE + 4Th 2TE + 2Th 2TE + 2Th

Ours |ID | |G1| 2|G1| |h| TP + 2TE + TH + 2Th TP + TH + Th TE + Th

|G1|, |GT |, |Zq |, |ID |, and |h| denote the bit length of the elements of G1,GT ,Zq , identity ID , and output of hash function, respectively.
TP , TE , TH , and Th denote the time costs of pairing, modular exponential, hash-to-point, and hash operations, respectively.

TABLE III
BIT LENGTH OF ELEMENTS AND RUNNING TIME OF OPERATIONS

Bit-length (bit) Running time (ms)

|G1| |GT | |Zq | |h| TH Th TP TE

512 1024 160 256 1.858 0.014 0.002 0.000016

TABLE IV
EXPERIMENTAL PLATFORM

Description Data

CPU AMD Ryzen 5-2600 3.4GHz
CPU processor number 6
Operation system Ubuntu 18.04
Linux kernel version 5.3.0-59-generic
Random access memory 16.3GB
Solid state disk 232.9GB

schemes [24], [25], the size of the public key is the sum of the
sizes of the public key and certificate. For computational cost,
we use the symbols KeywordEnc and TrapdoorGen to denote
the cost of encryption and trapdoor generation per keyword,
respectively. We also use the symbol Test to denote the cost
of performing a test of whether a ciphertext is matched with a
trapdoor. In this theoretical comparison, we consider only four
time-consuming operations, namely bilinear pairing, modular
exponential, hash-to-point, and hash operations, which are
denoted as TP , TE , TH , and Th, respectively.

B. Performance Evaluation

To evaluate the performance of our scheme, we fully imple-
ment our proposed scheme and the LHSYS19 [23], QCHLZ20
[21], and LLW21 [24] schemes. The source codes are
available at https://github.com/zyliu-crypto/
ICA-IBSE. We conduct the experiment in the environment
described in Table IV. Specifically, we use the SHA3-256
library3 for the general cryptographic hash function, and we
use the PBC library4 for operations over groups. In particular,
we adopt Type-A pairing with a 160-bit group order, 512-bit
group element for G1, and 1024-bit group element for GT .
Table III details the time cost per operation and the space
taken up by different elements.

The results are presented in Figs. 2, 3, and 4, indicating
that our scheme efficiently encrypts keywords and generates
trapdoors. These results demonstrate that our scheme, although
slower than the LLW21 scheme [24], is faster than the
LHSYS19 [23] and QCHLZ20 [21] schemes in encrypting
keywords and generating trapdoors. However, although our
scheme is theoretically faster than the QCHLZ20 scheme [21]
in Test (i.e., TE + Th < Tp + Th in Table II), during the
implementation, we must perform additional operations to
convert the output of the hash function to some element in
Z∗q , which takes time. Therefore, our scheme is faster than the
LLW21 scheme [24] only in terms of Test.

3https://github.com/brainhub/SHA3IUF
4https://crypto.stanford.edu/pbc/

https://github.com/zyliu-crypto/ICA-IBSE
https://github.com/zyliu-crypto/ICA-IBSE
https://github.com/brainhub/SHA3IUF
https://crypto.stanford.edu/pbc/
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VII. CONCLUSION

In this paper, we present a novel ICA-IBSE scheme that
masters the trade-off between efficiency (in terms of low stor-
age requirement) and convenience (which IBAEKS achieves
by avoiding the key escrow problem). A concrete framework is
presented, and security proofs are provided, which demonstrate
that the ICA-IBSE scheme can resist MCKAs and IKGAs
under random oracles. Moreover, we experimentally verify that
our scheme not only reduces storage requirements but is also
practicable relative to its state-of-the-art counterparts.
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