
N-for-1 Auth: N-wise Decentralized Authentication via One Authentication

Weikeng Chen
weikengchen@berkeley.edu

UC Berkeley

Ryan Deng
rdeng2614@berkeley.edu

UC Berkeley

Raluca Ada Popa
raluca.popa@berkeley.edu

UC Berkeley

Abstract—Decentralizing trust is a prominent principle
in the design of end-to-end encryption and cryptocurrency
systems. A common issue in these applications is that users
possess critical secrets, and users can lose precious data or
assets if these secrets are lost. This issue remains a pain-
point in the adoption of these systems. Existing approaches
to solve this issue such as backing up user secrets through
a centralized service or distributing them across # mutu-
ally distrusting servers to preserve decentralized trust are
either introducing a central point of attack or face usability
issues by requiring users to authenticate # times – once to
each of the # servers. We present T-for-1 Auth, a system
which enables a user to authenticate to # servers indepen-
dently, with the work of only one authentication. #-for-1
Auth provides the same user experience in the distributed
trust setting to the user experience in a typical centralized
system.

I . I N T R O D U C T I O N

Decentralizing trust is a core principle in the design of
modern security applications. For example, there is a
proliferation of end-to-end encrypted systems and cryp-
tocurrencies, which aim to remove a central point of trust
[1–10]. In these applications, users find themselves own-
ing critical secrets, such as the secret keys to decrypt
end-to-end encrypted data or the secret keys to spend
digital assets. If these secrets are lost or stolen, the user
can lose access to his/her precious data or assets.

To explain concretely the problem that #-for-1 Auth
addresses, let us take the example of Alice, a user of an
end-to-end encryption application denoted as the “E2EE
App” (or similarly, a cryptocurrency system). For such an
E2EE App, Alice typically installs a E2EE App Client on
her device such as her cell phone. The client contains her
secret key to decrypt her data. For the sake of usability and
adoption, Alice should not have to deal with backing up
the secret key herself, or interface with the application in
ways that a typical user is not used to. We are concerned
with the situation when Alice loses her cell phone, thus
losing access to her secret key. With WhatsApp [4] and
Line [8], which are end-to-end encrypted chat applications,
Alice uses centralized services such as Google Drive
and iCloud to backup her chat history. However, such a
strategy jeopardizes the end-to-end encryption guarantees
of these systems because users’ chats become accessible

to services that are central points of attack. This is further
reaffirmed by Telegram’s CEO Pavel Durov who said in
a blog post: “(Centralized backup) invalidates end-to-
end encryption for 99% of private conversations”. To
preserve decentralized trust, many companies [7, 11–15]
and academic works [16–19] have proposed to secret-
share her secrets across # servers, such that compromising
some of the servers does not reveal her secrets.

However, a significant issue with this approach is the
burden of authentication. After Alice loses her cell phone
with all her secrets for the E2EE App, she loses her ability
to decrypt her data and to authenticate with the E2EE
App servers. The E2EE App must rely on existing factors
such as email, SMS, U2F, security questions and others
to authenticate Alice. How does Alice authenticate to the
servers to retrieve her secret? If Alice authenticates to
only one server and the other servers trust this server, the
first server now becomes a central point of attack. To avoid
centralized trust, since the # servers cannot trust each
other, Alice has to authenticate to each server separately.
Consider email verification. This means that Alice has to
perform # times the work—reading # emails. For the
sake of distributed trust, the E2EE App should require
multiple factors (email, SMS, U2F, security questions,
and others), which further multiplies Alice’s effort.

One might think that doing # times the work, albeit
undesirable for the user, is acceptable in catastrophic
situations such as losing one’s devices. The issue here is
that Alice has to perform this work not only when she
is recovering her secrets, but also when she is joining
the system whether or not she will lose her devices. The
reason is that her key’s secret shares must be registered
with the # servers using the multiple factors of authen-
tication and those servers must check that Alice indeed
is the person controlling those factors. In addition, even
for # = 2 in which there might be only one additional
email and text message, this is a completely different user
experience that adds friction. The end-to-end encryption
space has already been plagued by usability issues [20,
21]. Academic works [22, 23] argue the importance of
the consistency of user experience as well as minimizing
user effort for the adoption of such systems. To give a

1

concrete example, PreVeil, an end-to-end encryption com-
pany attempted to deploy such a protocol, but according
to their CEO, “We considered applying the principle of
distributed trust to recovering individual keys by storing
shards of keys across independent systems, but the user
experience of using such an approach, in essence authenti-
cating to multiple systems one at a time, is confusing and
cumbersome.” As a result, users who do not take special
actions to backup their key when joining the system lose
access to their data [4–9, 24]. This initial bar of entry
to use the system is a deterrent that prevents widespread
adoption of end-to-end encryption.

There are a number of natural strawman designs that
can address this burden for Alice, but they are unviable.

One potential solution is to build a client app that can
automatically perform the # authentications for Alice. In
the case of email/SMS authentication, the client app would
need to parse the emails or text messages Alice receives
from the # servers. However, this either requires the client
app to have intrusive permissions or requires very specific
APIs on the email/SMS server side (which are currently
undeveloped), which we believe to be unreasonable for
users of these applications. Another class of approaches
[16–19, 25] is to have Alice possess or remember a master
secret, and then authenticate to each of the # servers by
deriving a unique secret to each server, thereby avoiding
the issue of having to do the work surrounding email/SMS
authentication. However, Alice has to then safeguard this
secret, as losing it could lead to an attacker impersonating
as her to the # servers. In this case, we return back to
the original problem of Alice needing a reliable way to
store this authentication secret.

A. T-for-1 Auth Authentication
We present #-for-1 Auth, which alleviates this burden
by enabling a user to authenticate to # servers by doing
only the work of authenticating with one. This matches
the experience of authenticating to an application with
centralized trust.
#-for-1 Auth supports many second factors that users

are accustomed to, including email, SMS, security ques-
tions, and authentication tokens (e.g., YubiKey). Impor-
tantly, #-for-1 Auth requires no changes to the protocols
of these forms of authentication. We discuss #-for-1
Auth’s authentication protocols for each factor in §IV.
#-for-1 Auth provides the same security properties

as the underlying authentication protocols even in the
presence of a malicious adversary that can compromise
up to # −1 of the # servers. We discuss the threat model
in more detail in §II-A.
#-for-1 Auth strives to provide meaningful privacy

properties for the users. Users of second-factor authen-
tication may want to hide their email address, phone
number, and security questions from the authentication
servers. This is difficult to achieve in traditional (central-
ized) authentication. #-for-1 Auth only reveals minimal
metadata to the servers. We discuss #-for-1 Auth’s pri-
vacy properties for each second factor in §IV.
#-for-1 Auth provides an efficient implementation for

several second factors and is 10× faster than a naive
implementation that does not leverage these application-
specific optimizations. For example, #-for-1 Auth’s email
authentication protocol is efficient enough to avoid a
TLS timeout and can successfully communicate with an
unmodified TLS email server.

B. Techniques
We now discuss the techniques #-for-1 Auth uses to
maintain the same user experience while decentralizing
trust.
One passcode, T servers. Let us consider email au-
thentication. How do # servers coordinate to send one
email with a passcode that they agree on?

First, no server should know the passcode, otherwise
this server can impersonate the user. We want to ensure
that #-for-1 Auth provides the same security as the tradi-
tional solution in which # servers each send a different
email passcode to the user.
#-for-1 Auth’s solution is to have the # servers jointly

generate a random passcode for email authentication in-
side secure multiparty computation (SMPC) [26–29]. In
this way, none of the servers learn the passcode. However,
an immediate question arises: how do these # servers
send this jointly generated passcode to the user’s email
address securely?

In the traditional workflow for sending email, one party
connects to the user’s email service provider (e.g., Gmail)
via TLS. The TLS server endpoint is at the email service
provider, and the TLS client endpoint is at the sender’s
mail gateway server. The mismatch in our setting is that
the sender is now composed of # servers who must not
see the contents of the email.
Sending TLS-encrypted traffic from SMPC. Our in-
sight is that using a new primitive—TLS-in-SMPC—with
which the # servers can jointly act as a single TLS client
endpoint to communicate with the user’s email server
over a TLS connection, as Fig. 1 shows. When connect-
ing with the user’s email server, the # servers establish
a maliciously secure SMPC that takes the place of a
traditional TLS client. What comes out of the SMPC is
TLS-encrypted traffic, which one of the servers simply
forwards to the user’s email provider. #-for-1 Auth’s

2

TLS-in-SMPC protocol generates TLS secrets in a secure
distributed manner such that none of the servers learn
the full TLS secret or the derived TLS keys. Therefore,
the server that forwards the traffic can be arbitrary and
does not affect security, since none of the servers know
the TLS keys used to encrypt and authenticate the traffic.

Server 1

Server 2 Server 3

N-for-1 Auth TLS
SMPC Endpoint

Unmodified
TLS Server

TLS Connection

Fig. 1: TLS-in-SMPC’s system architecture.

The user’s email server, which is unmodified and runs
an unmodified version of the TLS server protocol, then
decrypts the traffic produced by the TLS-in-SMPC pro-
tocol and receives the email. The email is then seen by
the user, who can enter the passcode into a client app to
authenticate to the # servers, thereby completing #-for-1
Auth’s email authentication.
Support for different authentication factors. Beyond
email, #-for-1 Auth supports text message, security ques-
tions, and authentication tokens that use the universal
second factor (U2F) protocol. Each factor has its unique
challenges for #-for-1 Auth, particularly in ensuring #-
for-1 Auth does not reduce the security of these factors.
More specifically, replay attacks are a common threat to
authentication protocols. In our system, when a malicious
server receives a response from the user, this server may
attempt to use the response to impersonate the user and
authenticate with the other servers. #-for-1 Auth system-
atically discusses how to defend against replay attacks
for generic authentication protocols in §IV.
End-to-end implementation for TLS-in-SMPC. TLS
is an intricate protocol that involves many cryptographic
operations. If we naively run the TLS endpoint using a
maliciously-secure SMPC library off the shelf, our experi-
ments in §VI-E show that the online phase latency is 45 s.
Take Gmail as an example, which has a TLS handshake
timeout of 10 s. With the naive implementation, Gmail’s
server will terminate the connection due to timeout, thus
making the system impractical.

We designed our TLS-in-SMPC protocol and optimized
it for concrete efficiency with a number of insights based
on the TLS protocol itself. We provide an end-to-end
implementation that allows # servers to successfully
connect with existing TLS endpoints.

Contributions. #-for-1 Auth’s contributions are as fol-
lows:
• The design and end-to-end implementation of proto-

cols that enable decentralized trust while preserving
the same user experience for several common second
factors such as email, SMS, security questions, and
hardware tokens.

• The design and implementation of TLS-in-SMPC, a pro-
tocol for running a TLS client endpoint within SMPC,
with a number of optimizations for concrete efficiency.

• An experimental evaluation of #-for-1 Auth’s proto-
cols.

I I . S Y S T E M O V E RV I E W

In this section we describe the system at a high level.

System setup. An N-for-1 authentication system consists
of many servers and users. Each user has a number of
authentication factors they can use to authenticate. #-for-
1 Auth recommends users to use multiple second factors
when authenticating to avoid a central point of trust. The
user holds a secret that they wish to store on #-for-1
Auth’s servers in a decentralized manner.

Each user can download a stateless client application
or use a web client to participate in these protocols.
Here, this minimalist client app does not retain secrets or
demand intrusive permissions to data in other applications
such as a user’s emails or text messages; it simply serves
as an interface between the user and the servers. We place
such limitations on the client app since we assume the
device hosting the app can be lost or stolen and to hide
the user’s sensitive data from our client app, respectively.

Workflow. The system consists of two phases:
– Registration (Fig. 2). When the user wants to store a

secret on the servers, the user provides the servers with
a number of authentication factors, which the servers
verify using #-for-1 Auth’s authentication protocols
described in §IV. Then, after authenticating with these
factors, the client secret-shares the user secret and
distributes the shares across the servers.

– Authentication (Fig. 3). The user runs the #-for-1
Auth protocols for the authentication factors. Once
the user is authenticated, the # servers can perform
some computation over the secret for the user, which
is application-specific, as we describe in §V.
Although in some use cases such as key recovery, the

authentication step only occurs in catastrophic situations,
all users must perform this authentication step with the #
servers when registering with the system. This authentica-
tion typically requires # times the effort and is a different
user experience when compared to authenticating with a

3

Server 1 Server 2 Server 3

User

Second factorsUser secret

N-for-1 auth
for account verification

(a) Servers authenticate the user
through authentication factors.

Server 1 Server 2 Server 3

User

Second factorsUser secret

Secret-share
the user secret

(b) The user secret-shares the user
secret among the servers.

Fig. 2: Registration workflow.

Server 1 Server 2 Server 3

User

Second factorsUser secret

N-for-1 auth
for secret retrieval

(a) Servers authenticate the user
via authentication factors.

Server 1 Server 2 Server 3

User

Second factorsUser secret

User secret
reconstruction

(b) The user reconstructs the se-
cret from shares.

Fig. 3: Authentication workflow.

centralized system.
N-for-1 Authentications. We describe #-for-1 Auth’s
authentication mechanisms for several factors.
– Email (§IV-A). The # servers jointly send one email

to the user’s email address with a passcode. During
authentication, the servers expect the user to enter this
passcode correctly.

– SMS (§IV-B). The # servers jointly send one text mes-
sage via short message service (SMS) to the user’s
phone number with a passcode. During authentication,
the servers expect the user to enter this passcode.

– U2F (§IV-C). The # servers collaboratively initiate
one request to a universal second factor (U2F) device.
During authentication, the servers expect a digital sig-
nature, signed by the U2F device, over this request.

– Security questions (§IV-D). The user initially provides
a series of questions and corresponding answers to
the servers. During authentication, the # servers ask
the user to answer these questions and expect answers
consistent with those initially provided by the user.
We note that passwords are a special case of security
questions and can be verified using this protocol.

Applications (§V). We describe how #-for-1 Auth sup-
ports two common applications, but #-for-1 Auth can also
be used in other decentralized systems for authentication.
– Key recovery. The user can backup critical secrets by

secret-sharing the secrets among the # servers. Upon
successful authentication, the user can then retrieve
these secrets from the servers.

– Digital signatures. The user can backup a signing
key (e.g., secret key in Bitcoin) by secret-sharing it
among the # servers. Upon successful authentication,
the servers can sign a signature over a message the
user provides, such as a Bitcoin transaction.

Example. We illustrate how to use #-for-1 Auth with
a simple example. Alice registers with #-for-1 Auth

through the client app. She provides them with three
second factors: her email address, her phone number,
and her U2F public key and key handle. The client app
then contacts the # servers and then secret-shares the
second factor information to them. The # servers then
send one email and one text message, both containing a
random passcode, and also send one request to Alice’s
U2F device. Alice then enters the passcodes on the client
app, and responds to the request sent to her U2F device
by the client app. When all the # servers have verified
Alice, the client app then secret-shares the key with the
servers, and the servers store the shares.

A. Threat model and security guarantees

#-for-1 Auth’s threat model, illustrated in Fig. 4, is as
follows:

Up to # − 1 of the # servers can be malicious and
collude with some users, but at least one server is honest
and does not collude with any other parties. The honest
users do not know which server is honest. The malicious
servers may deviate from the protocol in arbitrary ways,
including impersonating the honest user, as Fig. 4 shows.
For ease of presenting our protocols, we assume that
servers do not perform denial-of-service (DoS) attacks,
but we discuss how to handle these attacks in §VIII.

Users can also be malicious and collude with mali-
cious servers. Malicious users may, for example, try to
authenticate as an honest user. We assume that an honest
user uses an uncompromised client app, but a malicious
user may use a modified one. The client app does not
carry any secrets, but it must be obtained from a trusted
source or checked against a trusted hash, as in the case of
the software clients in end-to-end encrypted or cryptocur-
rency systems. The client app either has hardcoded the
TLS certificates of the # servers, or obtains them from a
trusted certificate authority or a transparency ledger [30,
31]. This enables clients and servers to connect to one

4

another securely using the TLS protocol.
#-for-1 Auth is built on top of existing second-factor

authentication and maintains the same security properties
that the existing protocols provide under this threat model.

Server 1 Server 2 Server 3

User 1 User 2 User 3

= Impersonates the user

Fig. 4: #-for-1 Auth’s threat model. The red area indicates
a group of malicious parties who collude with one another.

At a high level, the core security guarantee of #-for-1
Auth is as follows. For a given authentication factor that
is not compromised, even if an attacker compromised
− 1 out of the # servers and tries to authenticate as an
honest user, the attacker will not succeed to authenticate
in #-for-1 Auth.

This guarantee rests on the security of #-for-1 Auth’s
TLS-in-SMPC protocol, which we now define. Formally,
we define in App. A an ideal functionality FTLS that
models the TLS client software that communicates with
a trusted, unmodified TLS server. Based on FTLS, we
define the security of our TLS-in-SMPC protocol using
a standard definition for (standalone) malicious security
[32]:

Definition II.1 (Security of TLS-in-SMPC). A protocol
Π is said to securely compute FTLS in the presence of
static malicious adversaries that compromise up to # − 1
of the # servers, if, for every non-uniform probabilistic
polynomial-time (PPT) adversary A in the real world,
there exists a non-uniform PPT adversary S in the ideal
world, such that for every � ⊆ {1, 2, ..., #},
{IDEALFTLS ,� ,S (I) (®G)} ®G,I

2≈ {REALΠ,� ,A(I) (®G)} ®G,I
where ®G denotes all parties’ input, I denotes an aux-
iliary input for the adversary A, IDEALFTLS ,� ,S (I) (®G)
denotes the joint output of S and the honest parties,
REALΠ,� ,A (®G) denotes the joint output of A and the
honest parties, and

2≈ refers to computational indistin-
guishability.

We present our TLS-in-SMPC protocol in §III, and we
prove that it securely realizes FTLS in App. A according
to this definition.

I I I . T L S I N S M P C

In #-for-1 Auth’s authentication protocols via email and
SMS, the #-for-1 Auth servers need to establish a secure
TLS connection with an unmodified TLS server. In this
section, we describe TLS-in-SMPC, a protocol that allows
the #-for-1 Auth servers to achieve this goal.
Background: secure multiparty computation. The
goal of secure multiparty computation (SMPC) [26–29] is
to enable # parties to collaboratively compute a function
5 (G1, G2, ..., G#), in which the 8-th party has private input
G8 , without revealing G8 to the other parties.

SMPC protocols are typically implemented using ei-
ther arithmetic circuits such as in SPDZ [33] or boolean
circuits such as in AG-MPC [34]. These protocols consist
of an offline phase and an online phase. The offline phase
is independent of the function’s input and can therefore
be run beforehand to reduce the online phase latency.

A. Overview
In TLS-in-SMPC, # servers jointly participate in a TLS
connection with an unmodified TLS server. Since these
servers do not trust each other, any one of them must
not be able to decrypt the traffic sent over the TLS con-
nection. Therefore, the insight is for these # servers to
jointly create a TLS client endpoint within SMPC that
can communicate with the TLS server over TLS.

As Fig. 1 shows, the #-for-1 Auth servers run a TLS
client within SMPC, which establishes a TLS connection
with the unmodified TLS server. The TLS session keys
are only known by the TLS server and the TLS client
within SMPC. Hence, the # servers must work together
to participate in this TLS connection.

All packets are forwarded between the SMPC and the
unmodified TLS server through the first #-for-1 Auth
server. The specific server that forwards the packets does
not affect security since none of the servers possess the
TLS session keys. Therefore, none of the servers can
decrypt the packets being forwarded or inject valid packets
into the TLS connection. The TLS-in-SMPC protocol
has two components:
• Key exchange: The #-for-1 Auth servers collabora-

tively generate the client-side secret for Diffie-Hellman
key exchange. After receiving the server-side secret,
they derive the TLS session keys inside SMPC.

• Message encryption and decryption: The #-for-1
Auth servers, within SMPC, use the session keys to
encrypt or decrypt a message.

Challenges. A straightforward implementation of the
TLS-in-SMPC protocol is to use an existing malicious
SMPC protocol off the shelf. However, the overhead of

5

running a TLS client within SMPC causes a timeout that
terminates the connection. Our experiments show that
Gmail’s SMTP servers have a TLS handshake timeout of
10 s, and Apache’s default timeout is 60 s. In §VI-E, we
show that this approach does not meet the TLS handshake
timeout while our implementation consistently meets the
timeout.

In the rest of the section, we describe our protocol,
which consists of two parts: key exchange and message
encryption/decryption.

B. Key exchange
We discuss how #-for-1 Auth’s TLS-in-SMPC protocol
handles key exchange and how it differs from traditional
Diffie-Hellman key exchange. We do not discuss RSA
key exchange as it is not supported in TLS 1.3.
Background: Diffie-Hellman key exchange [35]. Let
� be the generator of a suitable elliptic curve of prime
order ?. The key exchange consists of three steps:
1) In the ClientHello message, the TLS client samples

U←$Z+? and sends U · � to the TLS server.
2) In the ServerHello message, the TLS server samples

V←$Z+? and sends V · � to the TLS client.
3) The TLS client and server compute UV ·� and—with

other information—run the key derivation function to
obtain the TLS session keys, as specified in the TLS
standards [36, 37].

Step 1: Distributed generation of client randomness
" · M. To generate the client randomness U · � used in
the ClientHello message without revealing U, #-for-1
Auth’s TLS-in-SMPC protocol has each server sample a
share of U and provide a corresponding share of U · �.
Formally, the protocol works as follows:
1) For all #-for-1 Auth servers, the 8-th server P8 samples

U8 ←$Z+? and broadcasts U8 · �, by first committing
U8 · � and then revealing it.

2) P1 computes and sends
∑#
8=1 U8 ·� to the TLS server.

Note that this step can be done in the offline phase.
Step 2: Distributed computation of key exchange re-
sult "# · M. As in Diffie-Hellman key exchange, the
#-for-1 Auth servers need to jointly compute UV · �,
which works as follows: each #-for-1 Auth server
computes U8 (V�) first, and then the SMPC protocol
takes U8 (V�) as input from server P8 and computes
UV · � =

∑=
8=1 U8 (V�). The result is used to derive the

TLS session keys, which we discuss next.
Step 3: Distributed key derivation. The next step is
to compute the TLS session keys inside SMPC using a
key derivation function [38]. The protocol is as follows:
1) The # servers, within SMPC, derive the handshake

secrets from UV ·� and the hash of the ClientHello
and ServerHello messages.

2) The # servers compute the client handshake verifi-
cation data inside SMPC, using UV · � and the hash
of the messages from ClientHello all the way to
ServerFinished.

3) The # servers derive the application keys from the
handshake secrets and the hash of the messages from
ClientHello to ServerFinished inside SMPC.
The application keys are later used to encrypt and
decrypt the TLS payload inside SMPC.

We identify that the hashes of most of the TLS mes-
sages can be computed outside SMPC, which reduces the
latency of the protocol. That is, the first #-for-1 Auth
server broadcasts these TLS messages to the other servers.
Each server computes the hashes, and all servers input
these hashes to the SMPC instance.

This approach is secure because, informally, the TLS
protocol is designed to prevent man-in-the-middle attack-
ers, which permits us to share a number of TLS messages
among these # servers.
Step 4: Validate the TLS server’s response. Typically,
in TLS, the TLS server sends a response containing its
certificate, a signature over V · �, and verification data,
which the TLS client verifies. Performing this verification
in SMPC is slow because (1) the certificate is in a format
that is difficult to parse without revealing access patterns
and (2) verifying signatures involves hashing and modular
exponentiation operations, both of which are slow in
SMPC.

In #-for-1 Auth, we are able to remove this task from
SMPC. The insight is that the server handshake key,
which encrypts the response, is only designed to hide the
TLS server’s identity. This property is unnecessary in our
system because, in #-for-1 Auth’s setting, the servers
must confirm the TLS server’s identity. Consider the
example from before in which the servers authenticate
via Alice’s email address. In #-for-1 Auth’s TLS-in-
SMPC protocol, the servers must confirm that they are
sending an email to Alice’s email service provider for
security.

Revealing this key is known to be secure, as Bhargavan,
Blanchet, and Kobeissi’s symbolic analysis of TLS 1.3
[39] shows, meaning that it does not affect the other
security properties of TLS. We offer a more detailed
discussion on this in App. A and formalize this insight in
our definition of the ideal functionality FTLS, as described
in App. B.

Therefore, verifying the TLS server’s response is as
follows: after all the #-for-1 Auth servers receive and

6

acknowledge all the handshake messages sent by the
TLS server, namely all the messages from ServerHello
to ServerFinished forwarded by the first server, the
SMPC protocol reveals the TLS server handshake key to
all the # servers. Each server uses the handshake key to
decrypt the response and verifies the certificate, signature,
and verification data within it.
Efficient implementation. The key exchange protocol
mainly involves point additions and key derivations. We
observe that point additions can be efficiently expressed
as an arithmetic circuit whose native field is exactly
the point’s coordinate field, and key derivations can be
expressed as a boolean circuit. Our insight to achieve
efficiency here is to reflect the nature of these compu-
tations into a blend of SMPC protocols, each targeting
one of them. Hence, we implement point additions with
SPDZ using MASCOT [40] for the offline phase. The
result of point additions are then transferred to AG-MPC
[34] for key derivation, via a maliciously secure mixing
protocol [41–43]. Both SPDZ and AG-MPC push most of
the heavy cryptography operations into the offline phase,
which helps reduce the online latency.

We choose MASCOT instead of more commonly used
homomorphic-encryption-based preprocessing protocols
such as Overdrive [44] and SPDZ-2 [33] because the
latter do not work well for our setting. This is because
many curves used in TLS have a coordinate field with low
“2-arity”, which is incompatible with the packing mecha-
nisms in homomorphic encryption schemes; MASCOT
does not suffer from this limitation.

Another aspect of our efficient implementation is of-
floading computation into an offline preprocessing phase,
which minimizes the online latency of the protocol. We
discuss that in §VI-E, not doing so will result in a protocol
that is too slow to meet the TLS handshake timeout.

C. Message encryption and decryption
The rest of the TLS-in-SMPC protocol involves message
encryption and decryption. An opportunity to reduce the
latency is to choose the TLS ciphersuites carefully, as
shown by both our investigation and prior work [45, 46].

During key exchange, typically the TLS server offers
several TLS ciphersuites that it supports, and the TLS
client selects one of them to use. When given the choices,
our protocol always selects the most SMPC-friendly ci-
phersuite that is also secure, to minimize latency.
Cost of different ciphersuites in SMPC. The cost of
TLS ciphersuites in SMPC has rarely been studied. Here,
we implement the boolean circuits of three commonly
used ciphersuites and measure their cost, as Tab. I shows.

The three ciphersuites we consider are AES-GCM-128,

Chacha20-Poly1305, and AES-CCM-128. They are part
of the TLS 1.3 standard and supported in many TLS 1.2
implementations. We compare their cost in terms of the
total number of gates and the number of AND gates in
boolean circuits. From Tab. I, we can see that CCM is
the most efficient, which is due to the following reasons:

Total gates # AND gates
AES-GCM-128 62214 21504

Chacha20-Poly1305 300430 91405
AES-CCM-128 58376 9984

Tab. I: Amortized cost per 128 bits in boolean circuits of
commonly used TLS authenticated encryption.

– Although AES-CCM invokes AES twice as many times
when compared with AES-GCM, AES-GCM involves
operations in a large field �� (2128), which results in
more AND gates.

– Chacha20 and Poly1305 involve integer addition over
232 and 2130−5, respectively, which are more expensive
in boolean circuits than AES-GCM and AES-CCM.

Circuit implementation. We optimize these ciphers
for fewer AND gates by synthesizing the circuits using
Synopsys’s Design Compiler and tools in TinyGarble
[47], SCALE-MAMBA [48], and ZKCSP [49].

I V. T - F O R - 1 AU T H AU T H E N T I C AT I O N

In this section we describe how a user, using the client
app, authenticates to # servers via various authentication
factors. We also describe the registration phase needed
to set up each protocol. After passing the authentication,
the user can invoke the applications described in §V.
General workflow. In general, #-for-1 Auth’s authen-
tication protocols consist of two stages:
– The servers jointly send one challenge to the client.
– The client replies with a response to each server, which

could be different for each server.
Depending on the application, users may want to update
their authentication methods, in which they would need
to authenticate with the servers before updating.
Preventing replay attacks. The client needs to provide
each server a different response to defend against replay
attacks. If the user sends the same response to different
servers, a malicious server who receives the response can
attempt to beat the user to the honest servers. The honest
servers will expect the same message that the malicious
server sends, and if the malicious server’s request reaches
the honest servers first, the honest servers will consider
the malicious server authenticated instead of the honest
user. Since up to # − 1 of the servers can collude with

7

one another, in this scenario, the malicious server can
reconstruct the shares and obtain the secret.

To prevent this attack, we designed the authentica-
tion protocols in a way such that no efficient attacker,
knowing # − 1 out of the # responses from an honest
user, can output the remaining response correctly with a
non-negligible probability.

A. T-for-1 Auth Email
#-for-1 Auth’s email authentication protocol sends the
user only one email which contains a passcode. If the
user proves knowledge of this passcode in some way, the
servers will consider the user authenticated. #-for-1
Auth’s email authentication protocol is as follows:
1) The 8-th server P8 generates a random number B8 and

provides it as input to SMPC.
2) Inside SMPC, the servers computes B =

⊕#

8 B8 , where
⊕ is bitwise XOR, and outputs PRF(B, 8) to P8 , where
PRF is a pseudorandom function.

3) The # servers run the TLS-in-SMPC protocol de-
scribed in §III to create a TLS endpoint acting as
an email gateway for some domain. The TLS end-
point opens a TLS connection with the user’s SMTP
server such as gmail-smtp-in.l.google.com
for abc@gmail.com, and sends an email to the user
with the passcode B over this TLS connection. Note
that the protocol sends the email using the intergate-
way SMTP protocol, rather than the one commonly
used by a user to send an email.

4) The user receives the email and enters B into the client
app, which computes PRF(B, 8) and sends the result
to P8 .

5) For P8 , if the user response matches the output that
the server received in step 2, then P8 considers the
user authenticated.

Registration. The registration protocol is as follows:
1) The client opens a TLS connection with each of the

servers and secret-shares the user’s email address
and sends the 8-th share to server P8 .

2) The # servers reconstruct the user’s email address
within SMPC and then jointly send a confirmation
email to the user, with a passcode.

3) The client proves the knowledge of the passcode using
#-for-1 Auth’s email authentication protocol, converts
the secret into # secret shares, and sends the 8-th share
to server P8 .

4) If the user is authenticated, each server stores the share
of the user’s email address and the share of the user’s
secret.

Avoiding misclassification as spam. A common issue

for email verification is that the email might be misclas-
sified as spam. We can resolve this issue by following
standard practices described below.
– Sender Policy Framework (SPF). Our system can fol-

low the SPF standard [50], in which the sender domain,
registered during the setup of #-for-1 Auth, has a TXT
record indicating the IP addresses of email gateways
who are allowed to send emails from this sender do-
main.

– Domain Keys Identified Mail (DKIM). The DKIM stan-
dard [51] requires each email to have a valid signature
from the sender domain, under the RSA public way
indicated in a TXT record. #-for-1 Auth can generate
a RSA secret key in a distributed way [52–55] and
secret-share the key among the servers. To send an
email, the # servers reveals the email’s hash from
SMPC, and they jointly sign the email using the secret-
shared secret key. To avoid leaking the passcode from
this hash, the protocol adds random data in the email
header.

Privacy. #-for-1 Auth’s email authentication protocol
reveals only minimal “metadata“ to the # servers. Specifi-
cally, the # servers only need to know the email provider’s
mail gateway address instead of the full email address.1

The full email address is secret-shared among the #

servers and therefore hidden from them. The gateway
address is needed because in the SMTP protocol, the
sender (in this case the # servers) needs to contact the
user’s gateway server for them to receive the email.

B. T-for-1 Auth SMS

#-for-1 Auth’s SMS protocol sends the user one text
message, which contains a passcode. The registration and
authentication protocols resemble #-for-1 Auth’s email
authentication protocol except that the passcode is sent
via SMS.

We leverage the fact that many mobile carriers, includ-
ing AT&T [56], Sprint [57], and Verizon [58], provide
commercial REST APIs to send text messages. The #
servers, who secret-share the API key, can use #-for-1
Auth’s TLS-in-SMPC protocol to send a text message to
the user through the relevant API.

Privacy. #-for-1 Auth secret-shares the user’s phone
number among the # servers, allowing the user’s phone
number to be hidden from them, which is difficult to
achieve in traditional SMS authentication. We note that

1For example, many companies and schools use Google or Microsoft
for email service on their domains. In this case, for a user with email
address A@B.com, the # servers know neither A nor B.com, but only
which email provider is used by B.com.

8

handle, appId,
challenge

handle, appId,
challenge, origin

counter,
signature

counter, origin,
signature

U2F device Client app Server

Fig. 5: Protocol of universal second factor (U2F).

the user’s phone number is still revealed to the sender’s
carrier and the user’s carrier, which is unavoidable.2

C. T-for-1 Auth U2F
Universal second factor (U2F) [59] is an emerging au-
thentication standard in which the user uses U2F devices
to produce signatures to prove the user’s identity. Devices
that support U2F include YubiKey [60] and Google Titan
[61]. The goal of #-for-1 Auth’s U2F protocol is to have
the user operate on the U2F device once.
Background: U2F. A U2F device attests to a user’s
identity by generating a digital signature on a challenge
requested by a server under a public key that the server
knows. The U2F protocol consists of a registration phase
and an authentication phase, described as follows.

In the registration phase, the U2F device generates an
application-specific keypair and sends a key handle and
the public key to the server. The server stores the key
handle and the public key.

In the authentication phase, as Fig. 5 shows, the server
generates a random challenge and sends over the key
handle, the application identifier (appId), and a challenge
to a U2F interface such as a client app, which is then,
along with the origin name of the server, forwarded to the
U2F device. Then, upon the user’s confirmation, such as
tapping a button on the device [60, 61], the U2F device
generates a signature over the request. The signature also
includes a monotonic counter to discover cloning attacks.
The server receives the signature and verifies it using the
public key stored in the registration phase.

If the user needs to be authenticated by # mutually
distrusting servers, naturally the user needs to do # op-
erations on the U2F device, such as tapping the button
times, which is burdensome. We want to reduce the
amount of work the user performs to a single operation
on the U2F device.

A straightforward approach to achieve is to have the
servers generate a joint challenge which is then signed by
the client. After the U2F device produces a signature over
the jointly generated challenge, the client can secret-share

2To reduce exposure, the user can provide their mobile carrier to the
servers. The servers can then use the same mobile carrier’s API when
available, so that only one mobile carrier sees the message.

Root hash

ℋ

Challenge to U2F

ℋ

𝑐!

𝑐" = Commit(𝑠"; 𝑟")

𝑐# 𝑐$ 𝑐%

Fig. 6: The Merkle tree for U2F challenge generation.

the signature, and the servers can then reconstruct and
verify the signature within SMPC. However, signature
verification in SMPC can be prohibitively expensive.
An insecure strawman. We now describe an insecure
strawman that does not use SMPC, which will be our
starting point in designing the secure protocol. Let the #
servers jointly generate a random challenge. The straw-
man lets the client obtain a signature over this challenge
from the U2F device and sends the signature to each
server. Then, each server verifies the signature against
the random challenge, and the servers consider the user
authenticated if the verification passes for each server.

This approach suffers from the replay attack described
in §IV. When a malicious server receives the signature
from the client, this server can now impersonate the honest
user by sending this signature to the honest servers.
T-for-1 Auth U2F’s protocol. Assuming server P8
chooses a random challenge value B8 , our protocol must
satisfy two requirements: (1) the challenge signed by the
U2F device is generated using all the servers’ randomness
B1, B2, ..., B# ; and (2) the client can prove to server P8 that
the signed challenge uses B8 without revealing information
about other parties’ randomness.

We identify that aggregating the servers’ randomness
via a Merkle tree combined with cryptographic commit-
ments, as Fig. 6 shows, satisfies these requirements. We
now briefly describe these two building blocks.

A Merkle tree is a data structure in which a non-leaf
node’s value is a collision-resistant hash of the two chil-
dren’s values. If the client places the servers’ randomness
B1, B2, ..., B# into the leaf nodes, as Fig. 6 shows, then
the value at the root of the tree, i.e., the root hash, is a
collision-resistant representation of all the servers’ ran-
domness, which we will use as the challenge for the U2F
device to sign over.

However, Merkle trees are not guaranteed to hide the
leaf nodes’ values. To satisfy the second requirement,
as Fig. 6 shows, we use cryptographic commitments
28 = Commit(B8; A8) instead of B8 as the leaf nodes’

9

values, in which A8 is a random string chosen by the
client. The commitments provide two guarantees: (1) the
server, from the commitment 28 , does not learn B8 and
(2) the client cannot open 28 to a different B′

8
≠ B8 .

Next, the client obtains the signature of the root hash
from the U2F device and sends each server the following
response: (1) the signature, (2) a Merkle tree lookup proof
that the 8-th leaf node has value 28 , and (3) commitment
opening secrets A8 and B8 . Here, only the client and the
8-th server know the server randomness B8 .

The detailed authentication protocol is as follows:
1) Each of the #-for-1 Auth servers opens a TLS con-

nection with the client and sends over a random value
B8 .

2) The client builds a Merkle tree as described above
and in Fig. 6 and obtains the root hash.

3) The client requests the U2F device to sign the root
hash as the challenge, as Fig. 5 shows; here, in the
U2F request, the client app indicates the origin field
to be an unique name that represents all the servers’
identities to prevent man-in-the-middle attacks.

4) The user then operates on the U2F device once, which
produces a signature over the root hash. The client
app then sends the signature, the Merkle tree lookup
proof, and the commitment opening information to
each server.

5) Each server verifies the signature, opens the commit-
ment, verifies that the commitment is indeed over the
initial value B8 provided by server P8 , and checks the
Merkle tree lookup proof. If everything is verified,
then P8 considers the user authenticated.

This protocol prevents replay attacks as described above
since the client’s response to P8 contains the opening
secret B8; other servers cannot determine this value with
a non-negligible probability.
Registration. The registration protocol is as follows:
1) The client and the servers engage in the standard U2F

registration protocol [59], in which the servers obtain
the key handle and the public key.

2) The client and the servers run #-for-1 Auth’s U2F
authentication protocol as described above.

Privacy. The U2F protocol already provides measures
to hide a device’s identity, such as using different keys
for each service and using the same attestation keys for
many devices, which #-for-1 Auth leverages to provide
privacy for the user.

D. T-for-1 Auth security questions
The last #-for-1 Auth authentication method we present
is security questions. Thought it is simpler than the other

ones that we have presented and it is similar to pass-
word authentication, we find it useful and present it for
completeness.

Typically, security questions involve the user answering
a series of personal questions that ideally only the user
knows all of the answers to [62–65]. During registration,
the user picks a series of questions and provides answers
to them. Then, during authentication, the user is asked
to answer these questions. If the answers match what
the user provided during registration, the user considered
authenticated.

In #-for-1 Auth, the questions and the hashes of the
answers are secret-shared among the servers. The authen-
tication protocol for #-for-1 Auth’s security question is
as follows:
1) The client establishes a TLS connection with each

server and requests the security question for that user.
The servers send over their shares of each question,
and the client reconstructs the questions and displays
them to the user.

2) Once the user inputs the answers, the client hashes
the answers, secret-shares the hash into # shares, and
sends the 8-th share to server P8 . Upon receiving the
shares, the servers run a SMPC protocol that recon-
structs the hash and compares it with the stored hash.
If every answer the user provides matches what the
servers have, the user is considered authenticated.

To defend against brute-force attacks in which a malicious
attacker tries to guess the answers to security questions
of honest users, #-for-1 Auth can implement standard
rate-limiting mechanisms.
Registration. The registration protocol is as follows:
1) The client opens a connection with each of the #-

for-1 Auth servers. For each security question, the
user provides corresponding answer. The client secret-
shares each security question and answer, and it sends
the 8-th share to server P8 .

2) The client secret-shares the user secret B and sends
the 8-th share B8 to server P8 .

Privacy and advantages over traditional security
questions. The #-for-1 Auth security questions have
desirable properties over traditional security questions.
Previously, security questions have to avoid asking users
for critical personal secrets, such as their SSN, because
the user may feel uncomfortable to share such personal
information with the website during registration. Hashing
and other cryptographic techniques do not help since the
answer is often in a small domain and can be found via in
an offline brute-force attack. However, in #-for-1 Auth,
none of the servers can see the answer or the hash of

10

the answer, which may encourage a user to choose more
sensitive questions and enter more sensitive answers that
the user would otherwise be uncomfortable sharing. The
privacy aspect that #-for-1 Auth’s security question proto-
col offers also defends against offline attacks against hash
functions since the hash is secret-shared and unknown to
the attacker, even if they compromise some servers. In
addition, if the user wants to minimize the exposure of
sensitive security questions, or avoid online brute force
attacks, the user can set other authentication factors or
less-sensitive security questions as prerequisites. That
is, only when the user authenticates against prerequisite
factors can the user see the sensitive security questions.
We note that preventing offline attacks of passwords is
not new, but we discuss it for completeness.

V. A P P L I C AT I O N S

Once the # servers have authenticated the user, they can
perform some operations for the user using the user’s
secret that is secret-shared during registration, such as
key recovery as in our motivating example in §II. To
show the usefulness of #-for-1 Auth, we now describe
four applications that can benefit from #-for-1 Auth.

Key recovery. The user can backup a key by secret-
sharing it as the user secret during the registration phase.
When the user needs to recover the key, the servers can
send the shares back to the user, who can then reconstruct
the key from the shares. Key recovery is widely used in
end-to-end encrypted messaging apps such as WhatsApp
and Signal [4, 5], end-to-end encrypted file sharing apps
such as Keybase [9], and cryptocurrencies such as Bitcoin
and Ethereum [1, 2].

Digital signatures. Sometimes, it is preferred to obtain
a signature under a secret key, rather than retrieving the
key and performing a signing operation with it. This has
wide applications in cryptocurrencies, in which the user
may not want to reconstruct the key and have it in the
clear. Instead, the user delegates the key to several servers,
who sign a transaction only when the user is authenticated.
The user can also place certain restrictions on transactions,
such as the maximum amount of payment per day. In
#-for-1 Auth, the user secret-shares the signing key in the
registration phase. Before performing a transaction, the
user authenticates with the servers. Once authenticated,
the user presents a transaction to the # servers, who
then sign it using a multi-party ECDSA protocol [66–70].
An alternative solution is to use multisignatures [71],
which #-for-1 Auth can also support, but this option
in unavailable in certain cryptocurrencies [3] and may
produce long transactions when # is large.

V I . E VA L U AT I O N

In this section we discuss #-for-1 Auth’s performance
by answering the following questions:
1) Is #-for-1 Auth’s TLS-in-SMPC protocol practical?

Can it meet the TLS handshake timeout? (§VI-C)
2) How efficient are #-for-1 Auth’s authentication pro-

tocols? (§VI-D)
3) How does #-for-1 Auth compare with baseline im-

plementations and prior work? (§VI-E and §VI-F)

A. Implementation
We use MP-SPDZ [72], emp-toolkit [73] and wolfSSL
[74] to implement #-for-1 Auth’s TLS-in-SMPC protocol.
We also implemented the online phase of elliptic-curve
point additions within SMPC from scratch in C++.

B. Setup
We ran our experiments on c5n.2xlarge instances on
EC2 with a 3.0 GHz CPU and 21 GB memory. To model
a cross-state setup, we set a 20 ms round-trip time and
a bandwidth of 2 Gbit/s between servers (including the
TLS server) and 100 Mbit/s between clients and servers.

C. TLS-in-SMPC’s performance
We measured the offline and online phases’ latencies
and the offline phase’s communication for # servers to
connect to an unmodified TLS server and show the results
in Fig. 7. From the figure, we see that the total offline
and online phase latencies and the offline communication
grow roughly linearly to the number of parties.

We consider # from 2 to 10 in this experiment. In
practice, companies that perform decentralized key recov-
ery such as Curv [11] and Unbound Tech [12] currently
use two mutually distrusting parties, and Keyless [15]
uses three in their protocol. For all values of # that we
tested, the TLS-in-SMPC protocol can consistently meet
the TLS handshake timeout.

As Fig. 7 shows, the offline phase latency dominates,
due to the large amount of communication needed. #-
for-1 Auth’s servers run the offline phase before the TLS
connection is established in order to avoid incurring this
extra overhead during the TLS connection. Malicious
users could attempt to perform DoS attacks by wasting
computation done in the offline phase. #-for-1 Auth
can defend against such DoS attacks using well-studied
techniques, such as proof-of-work or payment [75, 76].
Latency breakdown. In Tab. II we show a detailed
breakdown of the offline and online phase latencies for
#-for-1 Auth’s TLS-in-SMPC protocol. From the table,
we see that most of the computation is done in the offline
phase, and the online phase has a small latency. We also

11

2 4 6 8 10
Number of Servers N

0

50

100

150

200

250

300

L
at

en
cy

(s
)

Total
Key exchange
Message encryption

(a) Offline phase latency.

2 4 6 8 10
Number of Servers N

0

2

4

6

8

10

L
at

en
cy

(s
)

Total
Key exchange
Message encryption

(b) Online phase latency.

2 4 6 8 10
Number of Servers N

0

5

10

15

20

25

Pe
r-

pa
rt

y
co

m
m

un
ic

at
io

n
(G

B
)

Total
Key exchange
Message encryption

(c) Offline phase communication per party.
Fig. 7: The overall online/offline phase latencies and the offline phase communication of the TLS-in-SMPC protocol for
= 2, 4, 6, 8, 10 servers when handling 1 KB of data in message encryption and decryption.

Component Offline Phase Latency (s) Online Phase Latency (s)
= 3 # = 5 # = 10 # = 3 # = 5 # = 10

Key exchange (§III-B) 23.39 27.58 59.65 1.08 1.43 2.15
� Client randomness generation 0.30 0.30 0.30 — — —
� Key exchange result computation 0.06 0.15 0.51 0.35 0.47 0.63
� Key derivation 21.57 24.65 53.03 0.68 0.88 1.39
� Certificate validation 1.46 2.48 5.81 0.05 0.08 0.14
Message encryption/decryption (§III-C) 80.60 121.10 146.06 2.96 3.43 4.46
� AES encryption (64 blocks) 37.07 42.70 54.37 1.42 1.55 1.89
� GCM computation 43.53 78.40 91.69 1.54 1.88 2.57

Tab. II: Breakdown of the TLS-in-SMPC latencies when handling 1 KB of data.

see that key derivation dominates the latency for the
TLS handshake phase. Therefore, if we run an SMPC
protocol off the shelf and do not precompute the offline
phase, from Tab. II we see that even for # = 3, the key
exchange has a latency of 23.39 s and cannot meet a
TLS handshake timeout of 10 s.
Asymptotic efficiency. We discuss the asymptotic ef-
ficiency of TLS-in-SMPC to help understand the linear
growth patterns shown in Fig. 7 and Tab. II. Let # be
the number of parties and _ be the security parameter.
The offline phase latency is $ (_(#2 +�1#)), where the
#2 term captures the cost of point additions in SPDZ,
and the �1# term captures the cost of key derivation and
message encryption in AG-MPC. Since the constant �1
is large, as Fig. 7 shows, empirically the offline phase
latency grows linearly in # .

The online phase latency is $ (_(#3 + �2#
2 + �3#)),

where the #3 + �2#
2 term captures the cost of running

the SPDZ protocol, and the �3# term captures the cost
of running the AG-MPC protocol; similarly, since �3 is
large, empirically the online phase latency grows linearly
in # , as Fig. 7 shows.

D. T-for-1 Auth’s authentication performance
We measured the offline and online phase latencies of the
#-for-1 Auth protocols and present the results in Tab. III.
We now discuss the results in more detail.

Offline Phase Online Phase
Latency (s) Latency (s)

Email (§IV-A) 128.12 4.24
SMS (§IV-B) 134.96 4.45
U2F (§IV-C) — 0.03
Security Questions 0.29 0.04(§IV-D)

Tab. III: Latencies of #-for-1 Auth (# = 10).

Email/SMS. Using a standard authentication message of
around 30 words, the #-for-1 Auth email protocol sends
352 bytes via TLS-in-SMPC (without DKIM signatures),
and #-for-1 Auth’s SMS authentication protocol, using
AT&T’s SMS API [56], sends 419 bytes via TLS-in-
SMPC. The client’s computation time is less than 1 ms.

U2F. We implement the collision-resistant hash and
commitments with SHA256. The computation time for
the client and the server is less than 1 ms. The protocol
incurs additional communication cost, as the client sends
each server a Merkle proof of 412 bytes. We note that
all of the overhead comes from the online phase.

Security questions. Checking the hashed answer of
one security question can be implemented in AG-MPC,
which takes 255 AND gates.

12

E. Comparison with off-the-shelf SMPC
We compare #-for-1 Auth’s implementation with a state-
of-the-art maliciously secure MPC library, AG-MPC [34].
Since implementing TLS inside AG-MPC is a project
in itself, we implemented a subset of TLS in AG-MPC,
which offers a lower bound on the performance of TLS
in AG-MPC. This lower bound is already considerably
slower than #-for-1 Auth. With # = 10 servers, the
offline latency is 10× slower and the online latency is
20× slower compared with #-for-1 Auth’s TLS-in-SMPC
implementation.

When using AG-MPC for the TLS handshake, comput-
ing UV ·� in key exchange involves expensive prime field
operations. With # = 10 servers, these operations use
107 AND gates, which takes half an hour in the offline
phase and 45 s in the online phase. In comparison, for
these operations, #-for-1 Auth’s implementation takes
only 0.51 s for the offline phase and 0.63 s for the online
phase.

F. Comparison with DECO
We also compare with DECO [45], a prior work that
runs TLS in secure two-party computation. As discussed
in §VII, their implementation is not suitable for #-for-1
Auth because it is for two parties and has extra leakage
due to a different target setting.

During TLS handshake, DECO uses a customized pro-
tocol based on multiplicative-to-additive (MtA) [68] to
add elliptic curve points, while #-for-1 Auth uses SPDZ.
We are unaware of how to extend DECO’s protocol to
≥ 3. We implemented DECO’s point-addition protocol
that they described in their paper and find that for # = 2,
#-for-1 Auth’s online phase latency is 0.25 s, whereas
our implementation of DECO’s protocol takes 0.31 s.
The roughly 21% performance improvement comes from
#-for-1 Auth’s ability to push operations to the offline
phase.

In addition, when comparing with DECO, #-for-1
Auth’s AES implementation reuses the AES key schedule
across AES invocations, which reduces the number of
AND gates per AES invocation from 6400 to 5120, a
20% improvement.

V I I . R E L AT E D W O R K

Decentralized authentication. Decentralized authenti-
cation has been studied for many years and is still a hot
research topic today. The main goal is to avoid having
centralized trust in the authentication system. One idea is
to replace centralized trust with trust relationships among
different entities [77, 78], which has been used in the
PGP protocol in which individuals prove the identities

of each other by signing each other’s public key [79,
80]. Another idea is to make the authentication system
transparent to the users. For example, blockchain-based
authentication systems, such as IBM Verify Credentials
[81], BlockStack [82], and Civic Wallet [83], and certifi-
cate/key transparency systems [30, 31, 84–87] have been
deployed in the real world.
Collaborative generation of challenges. There has
been work on generating secure secrets from collabora-
tion among several mutually distrusting servers [18, 25].
However, their work focuses on passwords while #-for-1
Auth focuses on second-factors, which brings its own
set of unique challenges as #-for-1 Auth needs to be
compatible with the protocols of these second-factors.
In addition, [25] requires the user to remember a secret,
which has its own issues as the secret can be lost or
forgotten. We note that these works are complementary
to #-for-1 Auth, as these works can use #-for-1 Auth
to allow users to store their passwords.
Decentralized storage of secrets. In industry, there are
many companies that use decentralized trust to store user
secrets, such as Curv [11], Partisia [88], Sepior [14], Un-
bound Tech [12], and Keyless [15]. These companies use
SMPC to store, reconstruct, and apply user secrets in a
secure decentralized manner. However, in principle a user
still needs to authenticate with each of these company’s
servers since theses servers do not trust each other. There-
fore, in these settings a user still needs to do # times the
work in order to access their secret. #-for-1 Auth’s proto-
cols can assist these commercial decentralized solutions
to minimize the work of their users.
TLS and SMPC. There are existing works using TLS
with secure 2-party computation (S2PC), but they are
in a prover-verifier setting in which the prover proves
statements about information on the web. BlindCA [46]
uses S2PC to inject packets in a TLS connection to
allow the prover to prove to the certificate authority the
ownership of a certain email address. However, it has the
restriction that the prover possesses all of the secrets of
the TLS connection, and all of the prover’s traffic to the
server must go through a proxy owned by the verifier.
DECO [45] uses TLS within S2PC, but its approach
also gives the prover the TLS encryption key, which our
setting does not allow. Overall, both of these works are
limited to two parties and based on their intended settings,
their protocols do not easily extend to # parties, while
#-for-1 Auth supports an arbitrary number of parties.

In addition, a concurrent work [89] also enables running
TLS in secure multiparty computation, and their technical
design in this module is similar to ours, but [89] does not

13

propose or contribute authentication protocols and their
applications. #-for-1 Auth offers contributions beyond
the TLS-in-SMPC module, proposing the idea of perform-
ing # authentications with the work of one, showing how
this can be achieved by running inside SMPC the SMTP
protocol or the HTTP protocol in addition to TLS, to
support authentication factors, and demonstrating appli-
cations in the end-to-end encrypted and cryptocurrencies
space. In addition, within the TLS-in-SMPC protocol, we
provide an end-to-end implementation compatible with an
existing TLS library, and show that it works for #-for-1
Auth’s authentication protocols.
End-to-end encryption systems. In academia, there
are many works in end-to-end encrypted systems such
as DepSky [90], Ghostor [76], M-Aegis [91], Metal [92],
Mylar [93], Plutus [94], ShadowCrypt [95], Sieve [96],
and SiRiUS [97]. End-to-end encryption has also been de-
ployed in industry, such as Keybase [9], LINE [8], Signal
[5], Telegram [6], and WhatsApp [4]. As mentioned in
§V, these systems can use #-for-1 Auth to make the au-
thentication process for key recovery more approachable
for the end users.
Cryptocurrencies. There have also been works in cryp-
tocurrencies such as Bitcoin [1], Ethereum [2], and Zcash
[3]. As mentioned in §V, these systems can use #-for-1
Auth to make the process for obtaining signatures to
authenticate transactions less burdensome for the end
users.
OAuth. OAuth [98] is used for access delegation, which
allows users to grant access to applications without giving
the applications their passwords. While OAuth has several
desirable properties, it does not work for all of #-for-1
Auth’s second factors, notably SMS text messages and
legacy email services which do not support OAuth, and
is therefore less general and flexible than #-for-1 Auth’s
TLS-in-SMPC construct.

V I I I . D I S C U S S I O N

Handling denial-of-service attacks. In this paper, we
consider denial-of-service attacks by the servers to be out
of scope, as discussed in §II-A. Nevertheless, there are
some defenses against these types of attacks, as follows:
– Threshold secret sharing. A malicious server can refuse

to provide its share of the secret to prevent the user
from recovering it. To handle this, the user can share the
secret in a threshold manner with a threshold parameter
C which will allow the user’s secret to be recoverable
as long as C servers provide their shares. This approach
has a small cost, as a boolean circuit for Shamir se-
cret sharing only takes 10240 AND gates by using

characteristic-2 fields for efficient computation.
– Identifiable abort. Some new SMPC protocols allow for

identifiable abort, in which parties who perform DoS
attacks by aborting the SMPC protocol can be identified
[99, 100]. #-for-1 Auth can support identifiable abort
by incorporating these SMPC protocols and standard
identification techniques in its authentication protocols
as described in §IV.

I X . C O N C L U S I O N

#-for-1 Auth is an authentication system that decentral-
izes trust across # servers and allows users to authenticate
to the servers while only performing the work of a single
authentication. #-for-1 Auth offers authentication pro-
tocols that achieve this property for various commonly
used authentication factors. At the core of #-for-1 Auth
is a TLS-in-SMPC protocol, which we designed to be
efficient enough to meet the TLS timeout and success-
fully communicate with an unmodified TLS server. We
hope that #-for-1 Auth will facilitate the adoption of new
systems with decentralized trust.

R E F E R E N C E S

[1] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. https://bitcoin.org/bitcoin.pdf.

[2] Ethereum. https://ethereum.org/.
[3] Zcash: Privacy-protecting digital currency. https://z.

cash/.
[4] WhatsApp. https://www.whatsapp.com/.
[5] Signal. https://signal.org/.
[6] Telegram messenger. https://telegram.org.
[7] PreVeil: Encrypted email and file sharing for the en-

terprise. https://www.preveil.com/.
[8] Line. https://www.line.me/.
[9] Keybase. https://keybase.io/.

[10] algorand. https://www.algorand.com.
[11] Curv: The institutional standard for digital asset secu-

rity. https://www.curv.co.
[12] Unbound tech: Secure cryptographic keys across any

environment. https://www.unboundtech.com/.
[13] BitGo. https://www.bitgo.com/.
[14] Sepior: Threshold cryptographic key management solu-

tions with MPC. https://sepior.com.
[15] Keyless: Zero-trust passwordless authentication. https:

//keyless.io/.
[16] Ali Bagherzandi, Stanislaw Jarecki, Nitesh Saxena, and

Yanbin Lu. “Password-protected secret sharing”. In:
CCS ’11.

[17] Michel Abdalla, Mario Cornejo, Anca Nitulescu, and
David Pointcheval. “Robust Password-Protected Secret
Sharing”. In: ESORICS ’16.

[18] Philip D. MacKenzie, Thomas Shrimpton, and Markus
Jakobsson. “Threshold Password-Authenticated Key Ex-
change”. In: CRYPTO ’02.

[19] Mario Di Raimondo and Rosario Gennaro. “Prov-
ably Secure Threshold Password-Authenticated Key
Exchange”. In: EUROCRYPT ’03.

14

https://bitcoin.org/bitcoin.pdf
https://ethereum.org/
https://z.cash/
https://z.cash/
https://www.whatsapp.com/
https://signal.org/
https://telegram.org
https://www.preveil.com/
https://www.line.me/
https://keybase.io/
https://www.algorand.com
https://www.curv.co
https://www.unboundtech.com/
https://www.bitgo.com/
https://sepior.com
https://keyless.io/
https://keyless.io/

[20] Alma Whitten and J. Doug Tygar. “Why Johnny Can’t
Encrypt: A Usability Evaluation of PGP 5.0”. In:
USENIX Security ’99.

[21] Scott Ruoti, Jeff Andersen, Daniel Zappala, and Kent
E. Seamons. “Why Johnny Still, Still Can’t Encrypt:
Evaluating the Usability of a Modern PGP Client”. In:
arXiv:1510.08555 ’15.

[22] Catherine S. Weir, Gary Douglas, Tim Richardson, and
Mervyn A. Jack. “Usable security: User preferences
for authentication methods in eBanking and the effects
of experience”. In: Interacting with Computers ’10.

[23] Christina Braz and Jean-Marc Robert. “Security and
usability: the case of the user authentication methods”.
In: International Conference of the Association Fran-
cophone d’Interaction Homme-Machine ’06.

[24] Proton Mail. https://protonmail.com/.
[25] W. Ford and B. S. Kaliski. “Server-assisted genera-

tion of a strong secret from a password”. In: IEEE
Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises ’00.

[26] Andrew Chi-Chih Yao. “How to generate and exchange
secrets”. In: FOCS ’86.

[27] Oded Goldreich, Silvio M. Micali, and Avi Wigderson.
“How to play ANY mental game: A completeness theo-
rem for protocols with honest majority”. In: STOC ’87.

[28] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson.
“Completeness theorems for non-cryptographic fault-
tolerant distributed computation”. In: STOC ’88.

[29] David Chaum, Crépeau. Claude, and Ivan Damgård.
“Multiparty unconditionally secure protocols”. In:
STOC ’88.

[30] Certificate transparency. https : / / www . certificate -
transparency.org/.

[31] Key transparency. https : / / github . com / google /
keytransparency.

[32] Yehuda Lindel. “How to simulate it: A tutorial on the
simulation proof technique”. In: Tutorials on the Foun-
dations of Cryptography: Dedicated to Oded Goldreich,
pp. 277–346.

[33] Ivan Damgård, Marcel Keller, Enrique Larraia, Vale-
rio Pastro, Peter Scholl, and Nigel P. Smart. “Practical
covertly secure MPC for dishonest majority - or: Break-
ing the SPDZ limits”. In: ESORICS ’13.

[34] Xiao Wang, Samuel Ranellucci, and Jonathan Katz.
“Global-scale secure multiparty computation”. In:
CCS ’17.

[35] Whitfield Diffie and Martin E. Hellman. “New direc-
tions in cryptography”. In: TIT ’76.

[36] The transport layer security (TLS) protocol version 1.3.
https://tools.ietf.org/html/rfc8446.

[37] The illustrated TLS 1.3 connection. https://tls13.ulfheim.
net/.

[38] Hugo Krawczyk. “Cryptographic extraction and key
derivation: The HKDF scheme”. In: CRYPTO ’10.

[39] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim
Kobeissi. “Verified models and reference implementa-
tions for the TLS 1.3 standard candidate”. In: S&P ’17.

[40] Marcel Keller and Emmanuela Orsini. “MASCOT:
Faster malicious arithmetic secure computation with
oblivious transfer”. In: CCS ’16.

[41] Dragos Rotaru and Tim Wood. “MArBled circuits: Mix-
ing arithmetic and boolean circuits with active security”.
In: INDOCRYPT ’19.

[42] Abdelrahaman Aly, Emmanuela Orsini, Dragos Rotaru,
Nigel P. Smart, and Tim Wood. “Zaphod: Efficiently
combining LSSS and garbled circuits in SCALE”. In:
WAHC ’19.

[43] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul
Rachuri, and Peter Scholl. “Improved primitives
for MPC over mixed arithmetic-binary circuits”. In:
CRYPTO ’20.

[44] Marcel Keller, Valerio Pastro, and Dragos Rotaru.
“Overdrive: Making SPDZ great again”. In: EURO-
CRYPT ’18.

[45] Fan Zhang, Sai Krishna Deepak Maram, Harjasleen
Malvai, Steven Goldfeder, and Ari Juels. “DECO: Lib-
erating web data using decentralized oracles for TLS”.
In: CCS ’20.

[46] Liang Wang, Gilad Asharov, Rafael Pass, Thomas Ris-
tenpart, and abhi shelat. “Blind certificate authorities”.
In: S&P’ 19.

[47] Ebrahim M. Songhori, Siam U. Hussain, Ahmad-Reza
Sadeghi, Thomas Schneider, and Farinaz Koushanfar.
“TinyGarble: Highly compressed and scalable sequential
garbled circuits”. In: S&P ’15.

[48] SCALE-MAMBA. https : / / github . com / KULeuven -
COSIC/SCALE-MAMBA.

[49] Matteo Campanelli, Rosario Gennaro, Steven Goldfeder,
and Luca Nizzardo. “Zero-knowledge contingent pay-
ments revisited: Attacks and payments for services”.
In: CCS ’17.

[50] Sender policy framework (SPF) for authorizing use of
domains in email. https://tools.ietf.org/html/rfc7208.

[51] DomainKeys identified mail (DKIM) signatures. https:
//tools.ietf.org/html/rfc6376.

[52] Dan Boneh and Matthew Franklin. “Efficient generation
of shared RSA keys”. In: CRYPTO ’97.

[53] Yair Frankel, Philip D. MacKenzie, and Moti Yung.
“Robust efficient distributed RSA-key generation”. In:
STOC ’98.

[54] Carmit Hazay, Gert L. Mikkelsen, Tal Rabin, and Tomas
Toft. “Efficient RSA key generation and threshold Pail-
lier in the two-party setting”. In: CT-RSA ’12.

[55] Megan Chen, Ran Cohen, Jack Doerner, Yashvanth
Kondi, Eysa Lee, Schuyler Rosefield, and Abhi She-
lat. “Multiparty generation of an RSA modulus”. In:
CRYPTO ’20.

[56] AT&T SMS API. https://developer.att.com/sms.
[57] Sprint enterprise messaging developer APIs. https://

sem.sprint.com/developer-apis/.
[58] Verizon’s enterprise messaging access gateway. https:

//ess.emag.vzw.com/emag/login.
[59] What is U2F? https://developers.yubico.com/U2F/.
[60] YubiKey strong two factor authentication. https://www.

yubico.com/.
[61] Titan security key. https : / / cloud .google . com/ titan -

security-key.
[62] Mike Just and David Aspinall. “Personal choice and

challenge questions: A security and usability assess-
ment”. In: SOUPS ’09.

15

https://protonmail.com/
https://www.certificate-transparency.org/
https://www.certificate-transparency.org/
https://github.com/google/keytransparency
https://github.com/google/keytransparency
https://tools.ietf.org/html/rfc8446
https://tls13.ulfheim.net/
https://tls13.ulfheim.net/
https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://tools.ietf.org/html/rfc7208
https://tools.ietf.org/html/rfc6376
https://tools.ietf.org/html/rfc6376
https://developer.att.com/sms
https://sem.sprint.com/developer-apis/
https://sem.sprint.com/developer-apis/
https://ess.emag.vzw.com/emag/login
https://ess.emag.vzw.com/emag/login
https://developers.yubico.com/U2F/
https://www.yubico.com/
https://www.yubico.com/
https://cloud.google.com/titan-security-key
https://cloud.google.com/titan-security-key

[63] Stuart E. Schechter, A. J. Bernheim Brush, and Serge
Egelman. “It’s no secret: Measuring the security and
reliability of authentication via ‘secret’ questions”. In:
S&P ’09.

[64] Ariel Rabkin. “Personal knowledge questions for fall-
back authentication: Security questions in the era of
Facebook”. In: SOUPS ’08.

[65] Michael Toomim, Xianhang Zhang, James Fogarty, and
James A. Landay. “Access control by testing for shared
knowledge”. In: CHI ’08.

[66] Rosario Gennaro, Steven Goldfeder, and Arvind
Narayanan. “Threshold-optimal DSA/ECDSA signa-
tures and an application to Bitcoin wallet security”. In:
ACNS ’16.

[67] Dan Boneh, Rosario Gennaro, and Steven Goldfeder.
“Using level-1 homomorphic encryption to improve
threshold DSA signatures for Bitcoin wallet security”.
In: LATINCRYPT ’17.

[68] Rosario Gennaro and Steven Goldfeder. “Fast multi-
party threshold ECDSA with fast trustless setup”. In:
CCS ’18.

[69] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi
Shelat. “Threshold ECDSA from ECDSA assumptions:
The multiparty case”. In: S&P ’19.

[70] Rosario Gennaro and Steven Goldfeder. “One round
threshold ECDSA with identifiable abort”. In: IACR
ePrint 2020/540.

[71] Bitcoin’s multisignature. https : / / en .bitcoin . it /wiki /
Multisignature.

[72] Multi-Protocol SPDZ (MP-SPDZ). https://github.com/
data61/MP-SPDZ.

[73] Efficient multi-party (EMP) computation toolkit. https:
//github.com/emp-toolkit/.

[74] wolfSSL Embedded SSL/TLS Library — Now Supporting
TLS 1.3. https://https://www.wolfssl.com/.

[75] David Lazar and Nickolai Zeldovich. “Alpenhorn: Boot-
strapping secure communication without leaking meta-
data”. In: OSDI ’16.

[76] Yuncong Hu, Sam Kumar, and Raluca Ada Popa. “Ghos-
tor: Toward a secure data-sharing system from decen-
tralized trust”. In: NSDI ’20.

[77] Raphael Yahalom, Birgit Klein, and Thomas Beth.
“Trust relationships in secure systems: A distributed
authentication perspective”. In: S&P ’93.

[78] Thomas Beth, Malte Borcherding, and Birgit Klein.
“Valuation of trust in open networks”. In: ESORICS ’94.

[79] OpenPGP message format. https://tools.ietf.org/html/
rfc4880.

[80] Biglumber: Key signing coordination. http : / / www.
biglumber.com/.

[81] IBM Verify Credentials: Transforming digital identity
into decentralized identity. https : / / www. ibm . com /
blockchain/solutions/identity.

[82] BlockStack. https://www.blockstack.org/.
[83] Civic Wallet - digital wallet for money and cryptocur-

rency. https://www.civic.com/.
[84] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau,

Edward W. Felten, and Michael J. Freedman. “CONIKS:
Bringing key transparency to end users”. In: SEC ’15.

[85] Joseph Bonneau. “EthIKS: Using Ethereum to audit a
CONIKS key transparency log”. In: FC ’16.

[86] Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopou-
los, Charalampos Papamanthou, Nikos Triandopoulos,
and Srinivas Devadas. “Transparency logs via append-
only authenticated dictionaries”. In: CCS ’19.

[87] Saba Eskandarian, Eran Messeri, Joseph Bonneau, and
Dan Boneh. “Certificate transparency with privacy”. In:
PETS ’17.

[88] Partisia: Digital infrastructure with no single point of
trust. https://partisia.com/key-management/.

[89] Damiano Abram, Ivan Damgård, Peter Scholl, and Sven
Trieflinger. Oblivious TLS via Multi-Party Computation.
Cryptology ePrint Archive, Report 2021/318. https://
eprint.iacr.org/2021/318.

[90] Alysson Bessani, Miguel Correia, Bruno Quaresma,
Fernando André, and Paulo Sousa. “DepSky: Depend-
able and secure storage in a cloud-of-clouds”. In: Eu-
roSys ’11.

[91] Billy Lau, Simon Chung, Chengyu Song, Yeongjin Jang,
Wenke Lee, and Alexandra Boldyreva. “Mimesis Aegis:
A mimicry privacy shield: A system’s approach to data
privacy on public cloud”. In: SEC ’14.

[92] Weikeng Chen and Raluca Ada Popa. “Metal: A
metadata-hiding file-sharing system”. In: NDSS ’20.

[93] Raluca Ada Popa, Emily Stark, Steven Valdez, Jonas
Helfer, Nickolai Zeldovich, and Hari Balakrishnan.
“Building web applications on top of encrypted data
using Mylar”. In: NSDI ’14.

[94] Mahesh Kallahalla, Erik Riedel, Ram P. Swaminathan,
Qian Wang, and Kevin Fu. “Plutus: Scalable secure file
sharing on untrusted storage”. In: FAST ’03.

[95] Warren He, Devdatta Akhawe, Sumeet Jain, Elaine Shi,
and Dawn Song. “ShadowCrypt: Encrypted web appli-
cations for everyone”. In: CCS ’14.

[96] Frank Wang, James Mickens, Nickolai Zeldovich, and
Vinod Vaikuntanathan. “Sieve: Cryptographically en-
forced access control for user data in untrusted clouds”.
In: NSDI ’16.

[97] Eu-Jin Goh, Hovav Shacham, Nagendra Modadugu,
and Dan Boneh. “SiRiUS: Securing remote untrusted
storage”. In: NDSS ’03.

[98] OAuth. https://www.oauth.net/.
[99] Carsten Baum, Emmanuela Orsini, Peter Scholl, and

Eduardo Soria-Vazquez. “Efficient constant-round MPC
with identifiable abort and public verifiability”. In:
CRYPTO ’20.

[100] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. “Se-
cure multi-party computation with identifiable abort”.
In: CRYPTO ’14.

[101] Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni,
Anja Lehmann, and Gregory Neven. “The wonderful
world of global random oracles”. In: EUROCRYPT ’18.

[102] Ran Canetti, Abhishek Jain, and Alessandra Scafuro.
“Practical UC security with a global random oracle”. In:
CCS ’14.

[103] ProVerif: Cryptographic protocol verifier in the for-
mal model. https://prosecco.gforge.inria.fr/personal/
bblanche/proverif/.

16

https://en.bitcoin.it/wiki/Multisignature
https://en.bitcoin.it/wiki/Multisignature
https://github.com/data61/MP-SPDZ
https://github.com/data61/MP-SPDZ
https://github.com/emp-toolkit/
https://github.com/emp-toolkit/
https://https://www.wolfssl.com/
https://tools.ietf.org/html/rfc4880
https://tools.ietf.org/html/rfc4880
http://www.biglumber.com/
http://www.biglumber.com/
https://www.ibm.com/blockchain/solutions/identity
https://www.ibm.com/blockchain/solutions/identity
https://www.blockstack.org/
https://partisia.com/key-management/
https://eprint.iacr.org/2021/318
https://eprint.iacr.org/2021/318
https://www.oauth.net/
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/

[104] RefTLS. https://github.com/Inria-Prosecco/reftls/blob/
master/pv/tls-lib.pvl.

[105] Ran Canetti. “Universally composable security: A new
paradigm for cryptographic protocols”. In: FOCS ’01.

[106] Hemanta K. Maji, Manoj Prabhakaran, and Mike Ro-
sulek. “Complexity of multi-party computation func-
tionalities”. In: IACR ePrint 2013/042.

A P P E N D I X

In this section we provide a security proof for TLS-in-
SMPC, following the definition in §II-A.

A. Overview
We model the security in the real-ideal paradigm [32],
which considers the following two worlds:
• In the real world, the # servers run protocol Π, #-

for-1 Auth’s TLS-in-SMPC protocol, which establishes,
inside SMPC, a TLS client endpoint that connects to
an unmodified, trusted TLS server. The adversary A
can statically compromise up to # − 1 out of the #
servers and can eavesdrop and modify the messages
being transmitted in the network, although some of
these messages are encrypted.

• In the ideal world, the honest servers, including the
TLS server, hand over their information to the ideal
functionality FTLS. The simulator S obtains the input
of the compromised parties in ®G and can communicate
with FTLS. FTLS executes the TLS 1.3 protocol, which
is assumed to provide a secure communication channel.

We then prove the security in the {FSMPC,FrpRO}-hybrid
model, in which we abstract the SPDZ protocol and the
AG-MPC protocol as one ideal functionality FSMPC and
abstract the random oracle used in commitments with an
ideal functionality for a restricted programmable random
oracle FrpRO, which is formalized in [101, 102].
Remark: revealing the server handshake key is safe.
In the key exchange protocol described in §III-B, the
protocol reveals the server handshake key and IV to all
the #-for-1 Auth servers after they have received and
acknowledged the handshake messages. This has benefits
for both simplicity and efficiency as TLS-in-SMPC does
not need to validate a certificate inside SMPC, which
would be expensive.

Informally, revealing the server handshake key is secure
because these keys are designed only to hide the server’s
identity [36], which is a new property of TLS 1.3 that
does not exist in TLS 1.2. This property is unnecessary
in our setting in which the identity of the unmodified
TLS server is known.

Indeed, symbolic analysis of TLS shows that if this
server does not require anonymity, it is safe to reveal the
server handshake key. Bhargavan, Blanchet, and Kobeissi

[39] conduct a symbolic analysis of TLS 1.3 using
ProVerif, an automatic cryptographic protocol verifier
[103]. They prove secrecy, forward secrecy, authentica-
tion, and replay protection in the presence of a more
powerful attacker that sees all the handshake keys before
the TLS server sends any message encrypted by these
keys.

More specifically, in their proofs which have been
open-sourced [104] and can be verified by ProVerif, the
handshake keys are sent out to the network in plaintext,
and the handshake responses of both the client and the
server are unencrypted.

This result confirms that when server anonymity is
not needed, revealing the server handshake key does not
affect the rest of the properties provided by TLS that is
needed for a secure communication channel.

B. Ideal functionalities

Ideal functionality. In the ideal world, we model the
TLS interaction with the unmodified, trusted TLS server as
an ideal functionality FTLS. We adopt the workflow of the
standard secure message transmission (SMT) functionality
FSMT defined in [105].

Given the input ®G, FTLS runs the TLS client endpoint,
which connects to the TLS server, and allows the adver-
sary to be a man-in-the-middle attacker by revealing the
messages in the connection to the attacker and allowing
the attacker to modify such messages. In more detail,
1) To start, all the # servers must first provide their parts

of the TLS client input ®G to FTLS.
2) For each session id B83, FTLS launches the TLS client

with input ®G and establishes the connection between
the TLS client and the TLS server.

3) The adversary can ask FTLS to proceed to the next
TLS message by sending a (Proceed, B83) message.
Then, FTLS generates the next message by continuing
the TLS protocol and sends this message to the adver-
sary for examination. The message is in the format
of a backdoor message (Sent, B83, (, ', <) where (
and ' denote the sender and receiver. When the ad-
versary replies with (ok, B83, <′, '′), FTLS sends out
this message <′ to the receiver '′.

4) The adversary can send (GetSrvHandshakeKey, B83)
to FTLS for the server handshake key and IV after
the server’s handshake response has been delivered.
This is secure as discussed in App. D. FTLS responds
with (reveal, B83, :4H, 8E) where :4H and 8E are the
server handshake key and IV.

5) If any one of the TLS client and server exits, either
because there is an error due to invalid messages or

17

https://github.com/Inria-Prosecco/reftls/blob/master/pv/tls-lib.pvl
https://github.com/Inria-Prosecco/reftls/blob/master/pv/tls-lib.pvl

because the TLS session ends normally, FTLS con-
siders the session with session ID B83 ended and no
longer handles requests for this B83.

6) FTLS ignores other inputs and messages.
Multiparty computation functionality. In the hybrid
model, we abstract SPDZ and AG-MPC as an ideal func-
tionality FSMPC, which provides the functionality of mul-
tiparty computation with abort. We require FSMPC to be
reactive, meaning that it can take some input and reveal
some output midway through execution, as specified in
the function 5 being computed. A reactive SMPC can
be constructed from a non-reactive SMPC scheme by
secret-sharing the internal state among the # parties in
a non-malleable manner, as discussed in [106]. FSMPC
works as follows:
1) For each session B83, FSMPC waits for party P8 to

send (input, B83, 8, G8 , 5), in which B83 is the session
ID, 8 is the party ID, G8 is the party’s input, and 5 is
the function to be executed.

2) Once FSMPC receives all the # inputs, it checks if
all parties agree on the same 5 , if so, it computes
the function 5 (G1, G2, ..., G#) → (H1, H2, ..., H#) and
sends (output, B83, 8, H8) to party P8 . Otherwise, it
terminates this session and sends (abort, B83) to all
the # parties.

3) If FSMPC receives (Abort, B83) from any of the #
parties, it sends (abort, B83) to all the # parties.

4) FSMPC ignores other inputs and messages.
Restricted programmable random oracle. We use
commitments in §III-B to ensure that in Diffie-Hellman
key exchange, the challenge U · � is a random element.
This is difficult to do without commitments because the
adversary can control up to # − 1 parties to intentionally
affect the result of U·� =

∑#
8=1 U8 ·�. In our security proof,

we model the random oracle as a restricted programmable
random oracle, which is described as follows:
1) FrpRO maintains an initially empty list of (<, ℎ) for

each session, identified by session ID B83, where <
is the message, and ℎ is the digest.

2) Any party can send a query message (Query, B83, <)
to FrpRO to ask for the digest of message <. If there ex-
ists ℎ such that (<, ℎ) is already in the list for session
B83, FrpRO returns (result, B83, <, ℎ) to this party.
Otherwise, it samples ℎ from random, stores (<, ℎ)
in the list for B83, and returns (result, B83, <, ℎ).

3) Both the simulator S and the real-world adversary
A can send a message (Program, <, ℎ) to FrpRO to
program the random oracle at an unspecified point ℎ,
meaning that there does not exist < such that (<, ℎ)

is on the list.
4) In the real world, all the parties can check if a hash

is programmed, which means that if A programs a
point, other parties would discover. However, in the
ideal world, only S can perform such a check, and
thus S can forge the adversary’s state as if no point
had been programmed.

C. Simulator
We now describe the simulator S . Without loss of gener-
ality, we assume the attacker compromises exactly # − 1
servers and does not abort the protocol, and we also as-
sume that A does not program the random oracle, since
in the real world, any parties can detect that and can then
abort. We now follow the TLS workflow to do simulation.
As follows, we use � to denote the set of identifiers of
the compromised servers.
1) Simulator S provides the inputs of the compromised

servers to FTLS, which would start the TLS protocol.
2) S lets FTLS proceed in the TLS protocol and obtains

the ClientHello message, which contains a random
U · �. Now, S simulates the distributed generation of
U · � as follows:
a) S samples a random ℎ in the digest domain, pre-

tends that it is the honest party’s commitment, and
generates the commitments of U8 · � for 8 ∈ �.

b) S sends (Program, A | | (U · � − ∑
8∈� U8 · �), ℎ)

to FrpRO, where A is the randomness used for
making a commitment, and | | is concatenation.
As a result, S can open the commitment ℎ to be
U · � −∑8∈� U8 · �.

c) S continues with the TLS-in-SMPC protocol, in
which the # parties open the commitments and
construct U · � as the client challenge.

3) S lets FTLS proceed in the TLS protocol and
obtains the messages from ServerHello to
ClientFinished, which contain V · � and cipher-
texts of the server’s certificate, the server’s signature
of V ·�, and the server verification data. Now S needs
to simulate the rest of the key exchange.
a) S sends (GetSrvHandshakeKey, B83) to FTLS to

obtain the server handshake key and IV.
b) S simulates the computation of the server hand-

shake key in SMPC by pretending that the SMPC
output is the server handshake key. Note: we al-
ready assume that without loss of generality, the
compromised servers provide the correct UV · �.
If they provide incorrect values, S would have
detected this and can replace the output with an
incorrect key.

18

c) S then simulates the remaining operations of key
exchange in SMPC, which checks the server veri-
fication data and produces the client verification
data, by pretending that the SMPC output is the
correct ciphertext of the client verification data,
which is taken directly from the TLS messages
provided by FTLS.

4) S simulates the message encryption and decryption
of the application messages by simply pretending the
SMPC output is exactly the ciphertexts taken from
actual TLS messages, also provided by FTLS.

5) In the end, S outputs whatever the adversary A would
output in the real world.

D. Proof of indistinguishability
We now argue that the two worlds’ outputs are com-
putationally indistinguishable. The outputs are almost
identical, so we only need to discuss the differences.
1) In distributed generation of U ·�, the only difference

in the simulated output compared with Π’s is that the
honest party chooses its share as U · � − ∑

8∈� U8�
and uses a programmed hash value ℎ for commitment.
Since U · � is sampled from random by the TLS
client inside FTLS, it has the same distribution as the
U8 · � sampled by an honest party. The properties of
restricted programmable random oracle FrpRO show
that no parties can detect that ℎ has been programmed.

2) For the remaining operations, the main difference is
that the SMPC is simulated without the honest party’s
secret (in the real-world protocol Π, such secret is
a share of the internal SMPC state that contains the
TLS session keys). The properties of SMPC show that
such simulation is computationally indistinguishable.

As a result, we have the following theorem.
Theorem A.1. Assuming secure multiparty computation,
random oracle, and other standard cryptographic assump-
tions, the TLS-in-SMPC protocol Π with # parties se-
curely realizes the TLS client ideal functionality FTLS
in the presence of a malicious attacker that statically
compromises up to # − 1 out of the # parties.

19

	Abstract
	I Introduction
	I-A bold0mu mumu NNsubsectionNNNN-for-1 Auth Authentication
	I-B Techniques

	II System overview
	II-A Threat model and security guarantees

	III TLS in SMPC
	III-A Overview
	III-B Key exchange
	III-C Message encryption and decryption

	IV bold0mu mumu NNsectionNNNN-for-1 Auth Authentication
	IV-A bold0mu mumu NNsubsectionNNNN-for-1 Auth Email
	IV-B bold0mu mumu NNsubsectionNNNN-for-1 Auth SMS
	IV-C bold0mu mumu NNsubsectionNNNN-for-1 Auth U2F
	IV-D bold0mu mumu NNsubsectionNNNN-for-1 Auth security questions

	V Applications
	VI Evaluation
	VI-A Implementation
	VI-B Setup
	VI-C TLS-in-SMPC's performance
	VI-D bold0mu mumu NNsubsectionNNNN-for-1 Auth's authentication performance
	VI-E Comparison with off-the-shelf SMPC
	VI-F Comparison with DECO

	VII Related work
	VIII Discussion
	IX Conclusion
	Appendix
	A Overview
	B Ideal functionalities
	C Simulator
	D Proof of indistinguishability

