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Abstract—Decentralizing trust is a fundamental principle
in the design of end-to-end encryption and cryptocurrency
systems. A common issue in these applications is that users
possess critical secrets. If these secrets are lost, users can
lose precious data or assets. This issue remains a pain point
in the adoption of these systems. Existing approaches such
as backing up user secrets through a centralized service or
distributing them across # mutually distrusting servers to
preserve decentralized trust are either introducing a central
point of attack or face usability issues by requiring users
to authenticate # times, once to each of the # servers.

We present N-for-1-Auth, a system that preserves dis-
tributed trust by enabling a user to authenticate to #

servers independently, with the work of only one authenti-
cation, thereby offering the same user experience as in a
typical centralized system.

I . I N T R O D U C T I O N

Decentralizing trust is a fundamental principle in de-
signing modern security applications. For example, there
is a proliferation of end-to-end encrypted systems and
cryptocurrencies, which aim to remove a central point of
trust [1–11]. In these applications, users find themselves
owning critical secrets, such as the secret keys to decrypt
end-to-end encrypted data or the secret keys to spend dig-
ital assets. If these secrets are lost, the user permanently
loses access to his/her precious data or assets.

To explain the problem that N-for-1-Auth addresses,
let us take the example of Alice, a user of an end-to-end
encryption application denoted as the “E2EE App” (or
similarly, a cryptocurrency system). For such an E2EE
App, Alice installs an E2EE App Client on her device,
such as her cell phone. The client holds her secret key to
decrypt her data. For the sake of usability and adoption,
Alice should not have to deal with backing up the key
herself. We are concerned with the situation when Alice
loses her cell phone. Though she can get a new SIM card
by contacting the provider, she loses the secret keys stored
on the phone. With WhatsApp [4] and Line [8], end-to-
end encrypted chat applications, Alice can use centralized
services such as Google Drive and iCloud to backup her
chat history. However, such a strategy jeopardizes the end-
to-end encryption guarantees of these systems because
users’ chats become accessible to services that are central
points of attack. This is further reaffirmed by Telegram’s

CEO Pavel Durov who said in a blog post: “(Centralized
backup) invalidates end-to-end encryption for 99% of
private conversations”. To preserve decentralized trust,
many companies [7, 12–16] and academic works [17–20]
have proposed to secret-share the user’s secrets across #
servers, so that compromising some of the servers does
not reveal her secrets.

However, a significant issue with this approach is the
burden of authentication. After Alice loses her cell phone
with all her secrets for the E2EE App, she can only au-
thenticate with other factors, such as email, short message
services (SMS), universal second-factor (U2F), and se-
curity questions. How does Alice authenticate to the #
servers to retrieve her secret? If Alice authenticates to
only one server and the other servers trust this server,
the first server now becomes a central point of attack. To
avoid centralized trust, as the # servers cannot trust each
other, Alice has to authenticate to each server separately.
For email verification, Alice has to perform # times the
work—reading # emails. To avoid a central point of
attack, the E2EE App should require multiple factors,
which further multiplies Alice’s effort.

One might think that doing # times the work, albeit
undesirable for the user, is acceptable in catastrophic
situations such as losing one’s devices. The issue here is
that Alice has to perform this work not only when she
is recovering her secrets, but also when she is joining
the system, because her key’s secret shares must be reg-
istered with the # servers using the multiple factors of
authentication, and those servers must check that Alice
indeed is the person controlling those factors. Even for
# = 2 in which there is only one additional email and
text message, it is a completely different user experience
that adds friction to a space already plagued by usability
issues (e.g., “Why Johnny can’t encrypt?” [21, 22]). Many
academic works [23, 24] reaffirm the importance of the
consistency of user experience and minimizing user effort
for better adoption.

Therefore, this initial bar of entry is a deterrent against
widespread adoption. To validate that this is an important
and recurring problem, we presented N-for-1-Auth to
prominent companies in the end-to-end encryption and
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Fig. 1: Enrollment workflow.
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Fig. 2: Authentication workflow.

cryptocurrency custody spaces, who supported our thesis.
We summarize their feedback in §I-B.

A few strawman designs seem to address this burden
for Alice but are actually unviable. One strawman is
to build a client app that automatically performs the
# authentications for Alice. In the case of email/SMS
authentication, the client app parses the emails or text
messages Alice receives from the # servers. However, this
either requires the client app to have intrusive permissions
(e.g., reading Alice’s email) that can affect the security
of other applications Alice uses or requires very specific
APIs available on the email/SMS server side (e.g., Gmail
offering such APIs), which do not exist today for major
providers and we find unreasonable. Another strawman
[17–20, 25] is to have Alice possess or remember a master
secret and then authenticate to each of the # servers by
deriving a unique secret to each server, thereby avoiding
the issue of having to do the work surrounding email/SMS
authentication. However, Alice has to then safeguard this
secret, as losing it could lead to an attacker impersonating
her to the # servers. In this case, we return to the original
problem of Alice needing a reliable way to store this
authentication secret.

A. N-for-1-Auth

We present N-for-1-Auth, which alleviates this burden
by enabling a user to authenticate to # servers indepen-
dently by doing only the work of authenticating with
one, as illustrated in Figs. 1 and 2. This matches the
usual experience of authenticating to an application with
centralized trust.

N-for-1-Auth supports many authentication factors that
users are accustomed to, including email, SMS, U2F, and
security questions, as discussed in §IV. Specifically, N-
for-1-Auth requires no changes to the protocols of these
forms of authentication.

N-for-1-Auth offers the same security properties as the

underlying authentication protocols even in the presence
of a malicious adversary that can compromise up to #−1
of the # servers. N-for-1-Auth additionally offers relevant
privacy properties for the users. Users of authentication
factors may want to hide their email address, phone num-
ber, and security questions from the authentication servers.
This is difficult to achieve in traditional (centralized) au-
thentication.We discuss the concrete privacy properties
of N-for-1-Auth for each factor in §IV.

N-for-1-Auth provides an efficient implementation for
several factors and is 8× faster than a naive implementa-
tion without our application-specific optimizations. For
example, when # = 5, our email authentication protocol
takes 1.38 seconds to perform the TLS handshake and
takes an additional 0.43 seconds to send the email pay-
load, which is efficient enough to avoid a TLS timeout
and successfully communicate with an unmodified TLS
email server.

B. The case for N-for-1-Auth

We presented N-for-1-Auth to top executives of several
prominent companies (which we are not ready to disclose
at this moment) in the end-to-end encryption or cryp-
tocurrency custody space. We received valuable feedback
from them, which we used to improve N-for-1-Auth.
• Many companies mentioned the need for fault tolerance,

which can be addressed in two steps. First, N-for-1-Auth
can incorporate threshold secret-sharing, as discussed in
§VIII, which enables a subset of servers to recover the
secret. Second, each server can set up backup machines
within their trust domain/cloud.

• Some companies mentioned the need for more authen-
tication factors, e.g., TOTP (time-based one-time pass-
codes) and SSO (single sign-on) [26, 27], which can be
integrated into N-for-1-Auth in similar ways—TOTP
follows a similar format to security questions in which
the client stores the TOTP key, and SSO can be inte-
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grated using N-for-1-Auth’s TLS-in-SMPC protocol.
• Some companies mentioned the need to hide user con-

tact information from the other servers, which we ad-
dress in §IV.

Overall, we hope that N-for-1-Auth can provide practical
value to this space of distributed trust.

C. Summary of techniques
We now describe how N-for-1-Auth maintains the same
user experience while decentralizing trust.
One passcode, T servers. Consider email authentica-
tion. How do # servers coordinate to send one email
with an authentication passcode that they agree on?

First, no server should know the passcode, otherwise
this server can impersonate the user. We want to ensure
that N-for-1-Auth provides the same security as the tradi-
tional solution in which # servers each send a different
email passcode to the user.

N-for-1-Auth’s solution is to have the # servers jointly
generate a random passcode for email authentication in
secure multiparty computation (SMPC) [28–31]. In this
way, none of them learn the passcode. However, an im-
mediate question arises: how do they send this jointly
generated passcode to the user’s email address securely?

In the traditional workflow for sending email, one party
connects to the user’s email service provider (e.g., Gmail)
via TLS. The TLS server endpoint is at the email service
provider, and the TLS client endpoint is at the sender’s
email gateway. The mismatch in our setting is that the
sender now comprises # servers who must not see the
contents of the email.
Sending TLS-encrypted traffic from SMPC. Our in-
sight is that using a new primitive—TLS-in-SMPC—with
which the # servers can jointly act as a single TLS client
endpoint to communicate with the user’s email server
over a TLS connection, as Fig. 3 shows. When connect-
ing with the user’s email server, the # servers run a
maliciously secure SMPC that takes the place of a tra-
ditional TLS client. What comes out of the SMPC is
TLS-encrypted traffic, which one of the servers simply
forwards to the user’s email provider. N-for-1-Auth’s
TLS-in-SMPC protocol stores TLS secrets inside SMPC
such that none of the servers can break the security guar-
antees of TLS. Therefore, the server that forwards the
traffic can be arbitrary and does not affect security.

The user’s email server, which is unmodified and runs
an unmodified version of the TLS server protocol, then
decrypts the traffic produced by the TLS-in-SMPC pro-
tocol and receives the email. The email is then seen
by the user, who can enter the passcode into a client
app to authenticate to the # servers, thereby completing

Server 1

Server 2 Server 3

N-for-1-Auth TLS 
SMPC Endpoint

Unmodified
TLS Server

TLS Connection

Fig. 3: TLS-in-SMPC’s system architecture.

N-for-1-Auth’s email authentication.

Support for different authentication factors. Beyond
email, N-for-1-Auth supports SMS, U2F, and security
questions. In addition, due to the generality of N-for-1-
Auth’s TLS-in-SMPC construct, N-for-1-Auth can also
support any web-based authentication such as OAuth [27],
which we discuss how to incorporate in §VII. However,
we focus on the aforementioned factors in this work.
Each factor has its unique challenges for N-for-1-Auth,
particularly in ensuring N-for-1-Auth does not reduce
the security of these factors. More specifically, replay
attacks are a common threat to authentication protocols.
In our system, when a malicious server receives a response
from the user, this server may attempt to use the response
to impersonate the user and authenticate with the other
servers. We systematically discuss how to defend against
such replay attacks in §IV.

End-to-end implementation for TLS-in-SMPC. TLS
is an intricate protocol that involves many cryptographic
operations. If we run the TLS endpoint using a mali-
ciously secure SMPC library off the shelf, our experiments
in §VI-E show that it would be at least 8× more expen-
sive than our protocol. We designed our TLS-in-SMPC
protocol and optimized its efficiency with a number of
insights based on the TLS protocol itself, and integrated
it with the wolfSSL library.

I I . S Y S T E M O V E RV I E W

In this section we describe the system at a high level.

System setup. An N-for-1 authentication system con-
sists of many servers and users. Each user has a number
of authentication factors they can use to authenticate.
N-for-1-Auth recommends users to use multiple second
factors when authenticating to avoid having any single
factor act as a central point of attack. The user holds a
secret that they wish to distribute among the # servers.
Based on our discussion with companies in §I-B, a com-
mon setup is when the # servers are comprised of one
server hosted by the end-to-end encryption/cryptocurrency
custody service provider and # − 1 other helper servers.
Each user can download a stateless client application or
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use a web client to participate in these protocols. This
minimalist client app does not retain secrets or demand
intrusive permissions to data in other applications such
as a user’s emails or text messages; it simply serves as
an interface between the user and the servers. We place
such limitations on the client app since we assume the
device hosting the app can be lost or stolen, and we want
to hide the user’s sensitive data from our client app.

Workflow. The system consists of two phases:
– Enrollment (Fig. 1). When the user wants to store a

secret on the servers, the user provides the servers with
a number of authentication factors, which the servers
verify using N-for-1-Auth’s authentication protocols
described in §IV. Then, after authenticating with these
factors, the client secret-shares the secret and distributes
the shares across the servers.

– Authentication (Fig. 2). The user runs the N-for-1-Auth
protocols for the authentication factors. Once the user is
authenticated, the # servers can perform computation
over the secret for the user, which is application-specific,
as we describe in §V.

Though in use cases such as key recovery, the authenti-
cation phase only occurs in catastrophic situations, users
must enroll their factors when joining the system, which
typically requires # times the effort and is a different
user experience from enrolling to a centralized system.

N-for-1 Authentications. We describe N-for-1-Auth’s
authentication protocols for several factors in §IV.
– Email: The # servers jointly send one email to the

user’s email address with a passcode. During authenti-
cation, the servers expect the user to enter this passcode.

– SMS: The # servers jointly send one message to the
user’s phone number with a passcode. During authenti-
cation, the servers expect the user to enter this passcode.

– U2F: The # servers jointly initiate one request to a
U2F device. During authentication, the servers expect a
signature, signed by the U2F device, over this request.

– Security questions: The user initially provides a series
of questions and answers to the servers. During au-
thentication, the servers ask the user these questions
and expect answers consistent with those that are set
initially. Passwords are a special case of security ques-
tions and can also be verified using this protocol.

Applications. We describe how N-for-1-Auth supports
two common applications in §V , but N-for-1-Auth can
also be used in other systems with decentralized trust.
– Key recovery: The user can backup critical secrets

by secret-sharing them among the # servers. Upon
successful authentication, the user can then retrieve

these secrets from the servers.
– Digital signatures: The user can backup a signing

key (e.g., secret key in Bitcoin) by secret-sharing it
among the # servers. Upon successful authentication,
the servers can sign a signature over a message the
user provides, such as a Bitcoin transaction.

Example. We illustrate how to use N-for-1-Auth with a
simple example. Alice enrolls into N-for-1-Auth through
the client app. She provides three authentication factors:
her email address, her phone number, and her U2F token.
The client app then contacts the # servers and enrolls
these factors. The # servers then send one email and
one text message, both containing a random passcode,
and one request to Alice’s U2F device. Alice then enters
the passcodes on the client app and confirms on her U2F
device. When all the # servers have verified Alice, the
client app then secret-shares the key with the servers,
and the servers store the shares. Alice performs the same
authentication when she wants to recover the secrets.

A. Threat model

N-for-1-Auth’s threat model, illustrated in Fig. 4, is as
follows. Up to #−1 of the # servers can be malicious and
collude with some users, but at least one server is honest
and does not collude with any other parties. The honest
users do not know which server is honest. The malicious
servers may deviate from the protocol in arbitrary ways,
including impersonating the honest user, as Fig. 4 shows.
For ease of presentation, we assume that servers do not
perform denial-of-service (DoS) attacks, but we discuss
how to handle these attacks in §VIII.

Users can also be malicious and collude with mali-
cious servers. Malicious users may, for example, try to
authenticate as an honest user. We assume that an honest
user uses an uncompromised client app, but a malicious
user may use a modified one. The client app does not
carry any secrets, but it must be obtained from a trusted
source, as in the case of the software clients in E2EE or
cryptocurrency systems. The client app either has hard-
coded the TLS certificates of the # servers, or obtains
them from a trusted certificate authority or a transparency
ledger [32, 33]. This enables clients and servers to connect
to one another securely using the TLS protocol.

Security properties. N-for-1-Auth is built on top of
existing authentication factors and maintains the same
security properties that the existing factors provide under
this threat model. This assertion rests on the security
of N-for-1-Auth’s TLS-in-SMPC protocol. Formally, we
define in App. A an ideal functionality FTLS that models
the TLS client software that communicates with a trusted,
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Fig. 4: N-for-1-Auth’s threat model. The red area indicates
a group of malicious parties who collude with one another.

unmodified TLS server. Based on FTLS, we define the
security of our TLS-in-SMPC protocol using a standard
definition for (standalone) malicious security [34]:

Definition II.1 (Security of TLS-in-SMPC). A protocol
Π is said to securely compute FTLS in the presence of
static malicious adversaries that compromise up to # − 1
of the # servers, if, for every non-uniform probabilistic
polynomial-time (PPT) adversary A in the real world,
there exists a non-uniform PPT adversary S in the ideal
world, such that for every � ⊆ {1, 2, ..., #},
{IDEALFTLS ,� ,S (I) (®G)} ®G,I

2≈ {REALΠ,� ,A(I) (®G)} ®G,I
where ®G denotes all parties’ input, I denotes an auxil-
iary input for the adversary A, IDEALFTLS ,� ,S (I) (®G) de-
notes the joint output of S and the honest parties, and
REALΠ,� ,A (®G) denotes the joint output of A and the
honest parties.

We present our TLS-in-SMPC protocol in §III, and we
prove that it securely realizes FTLS in App. A.

I I I . T L S I N S M P C

In N-for-1-Auth’s email/SMS authentication protocols, the
# servers need to establish a secure TLS connection with
an unmodified TLS server. In this section, we describe
TLS-in-SMPC, a protocol that achieves this goal.

Background: secure multiparty computation. The
goal of secure multiparty computation (SMPC) [28–31] is
to enable # parties to collaboratively compute a function
5 (G1, G2, ..., G# ), in which the 8-th party has private input
G8 , without revealing G8 to the other parties.

SMPC protocols are implemented using either arith-
metic circuits such as in SPDZ [35] or boolean circuits
such as in AG-MPC [36, 37]. These protocols consist of
an offline phase and an online phase. The offline phase
is independent of the function’s input and can be run
beforehand to reduce the online phase latency.

A. Overview
In TLS-in-SMPC, # servers jointly participate in a TLS
connection with an unmodified TLS server. Since these
# servers do not trust each other, any one of them must
not be able to decrypt the traffic sent over the TLS con-
nection. Therefore, the insight is for these # servers to
jointly create a TLS client endpoint within SMPC that can
communicate with the TLS server over a TLS connection.

As Fig. 3 shows, the # servers run a TLS client within
SMPC, which establishes a TLS connection with the
unmodified TLS server. The TLS session keys are only
known by the TLS server and the TLS client within SMPC.
Hence, the # servers must work together to participate
in this TLS connection.

All packets are forwarded between the SMPC and the
unmodified TLS server via one of the servers. The specific
server that forwards the packets does not affect security
since none of the servers know the TLS session keys.
That is, none of the servers can decrypt the packets being
forwarded or inject valid packets into the TLS connection.
The TLS-in-SMPC protocol consists of two phases:
• TLS connection establishment: The # servers jointly

generate the client-side secret for Diffie-Hellman key
exchange. After receiving the server-side secret, they
derive the TLS session keys inside SMPC.

• Data exchange: The # servers, within SMPC, use the
session keys to encrypt or decrypt a message.

Challenge. A straightforward implementation of the
TLS-in-SMPC protocol is to use any malicious SMPC
protocol off the shelf. If this protocol does not support
offline precomputation or is ill-suited for the type of com-
putation being performed, the online latency may cause a
timeout that terminates the connection. For example, we
found that Gmail’s SMTP servers have a TLS handshake
timeout of 10 s. Our implementation is efficient enough
to consistently meet this timeout, as discussed in §VI.

B. TLS connection establishment
We discuss how N-for-1-Auth’s TLS-in-SMPC protocol
handles key exchange and how it differs from traditional
Diffie-Hellman key exchange. We do not discuss RSA
key exchange as it is not supported in TLS 1.3.
Background: Diffie-Hellman key exchange [38]. Let
� be the generator of a suitable elliptic curve of prime
order ?. The key exchange consists of three steps:
1) In the ClientHello message, the TLS client samples

U←$Z+? and sends U · � to the TLS server.
2) In the ServerHello message, the TLS server samples

V←$Z+? and sends V · � to the TLS client.
3) The TLS client and server compute UV ·� and—with
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other information—derive the TLS session keys, as
specified in the TLS standards [39, 40].

Step 1: Distributed generation of client randomness
" · M. To generate the client randomness U · � used
in the ClientHello message without revealing U, each
server samples a share of U and provides a corresponding
share of U · �, as follows:
1) For all servers, the 8-th server P8 samples U8 ←$Z+?

and broadcasts U8 · �, by first committing to U8 · �
and then revealing it.

2) P1 computes and sends
∑#
8=1 U8 ·� to the TLS server.

This step can be done before the connection starts.
Step 2: Distributed computation of key exchange
result "# · M. The # servers need to jointly com-
pute UV · �, which works as follows: each server
computes U8 (V�) first, and then the SMPC protocol
takes U8 (V�) as input from server P8 and computes
UV · � =

∑=
8=1 U8 (V�). The result is used to derive the

TLS session keys, which we discuss next.
Step 3: Distributed key derivation. The next step is to
compute the TLS session keys inside SMPC using a key
derivation function [41]. The # servers, within SMPC,
derive the handshake secrets from UV · � and the hash
of the ClientHello and ServerHello messages, and
then derive the handshake keys and IVs within SMPC.

We identify that the hashes of the communication tran-
script messages, which is needed for key derivation, can
be computed outside SMPC, which reduces the over-
head. That is, the forwarding server broadcasts these TLS
messages to the other servers. Each server computes the
hashes, and all servers input these hashes to the SMPC
instance. This approach is secure because TLS already
prevents against man-in-the-middle attacks, which means
that these messages are not sensitive.
Step 4: Verifying the TLS connection. The TLS server
sends a response containing its certificate, a signature
over V · �, and verification data, which the TLS client
verifies and replies. Performing this verification in SMPC
is slow because (1) the certificate format is difficult to
parse without revealing access patterns and (2) verifying
signatures involves hashing and prime field computation,
both of which are slow in SMPC.

In N-for-1-Auth, we are able to remove this task from
SMPC. The insight is that the handshake keys, which
encrypts the response, are only designed to hide the TLS
endpoints’ identity, which is unnecessary because in our
setting, the servers must confirm the TLS server’s identity.
Several works show that revealing the keys does not
affect other guarantees of TLS [42–45]. We formalize
this insight in our definition of the ideal functionality

FTLS, as described in App. B.
Therefore, verifying the TLS server’s response is as fol-

lows: after all the # servers receive and acknowledge all
the messages from ServerHello to ServerFinished
sent by the TLS server and forwarded by the first server,
the SMPC protocol reveals the TLS handshake keys to
all the # servers. Each server decrypts the response and
verifies the certificate, signature, and verification data
within it. Then, the # servers can use the handshake key,
and then within SMPC assemble the client handshake
verification data, which is then sent to the TLS server.
Lastly, the # servers derive the application keys, which
are used for data exchange, from the handshake secrets
and the hash of the transcript inside SMPC.
Step 5: Precomputation for authenticated encryption.
The authenticated encryption scheme used in data ex-
change may allow some one-time precomputation that
can be done as part of the TLS connection establishment.
For example, for AES-GCM N-for-1-Auth can precom-
pute the AES key schedule and secret-share the GCM
power series. We provide more details in §III-C.
Efficient implementation. The key exchange protocol
consists of point additions and key derivations. We ob-
serve that point additions can be efficiently expressed
as an arithmetic circuit whose native field is exactly the
point’s coordinate field, and key derivations can be ef-
ficiently expressed as a boolean circuit. Our insight to
achieve efficiency here is to mix SMPC protocols by first
implementing point additions with SPDZ using MASCOT
[46] for the offline phase, and then transferring the result
to AG-MPC [36, 37] for key derivation via a maliciously
secure mixing protocol [47–49]. Both SPDZ and AG-
MPC support offline precomputation, which helps reduce
the online latency and meet the TLS handshake timeout.

We chose MASCOT instead of other preprocessing
protocols [35, 50] based on homomorphic encryption
because many curves used in TLS have a coordinate field
with low “2-arity”, which is incompatible with the packing
mechanisms in homomorphic encryption schemes.

C. Data exchange
The rest of the TLS-in-SMPC protocol involves data
encryption and decryption. An opportunity to reduce the
latency is to choose the TLS ciphersuites carefully, as
shown by both our investigation and prior work [43, 51].

During key exchange, typically the TLS server offers
several TLS ciphersuites that it supports, and the TLS
client selects one of them to use. In order to minimize
latency, when given the choice, our protocol always selects
the most SMPC-friendly ciphersuite that is also secure.
Cost of different ciphersuites in SMPC. The cost of
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TLS ciphersuites in SMPC has rarely been studied. Here,
we implement the boolean circuits of two commonly used
ciphersuites, AES-GCM-128 and Chacha20-Poly1305—
which are part of the TLS 1.3 standard and supported in
many TLS 1.2 implementations—and measure their cost.

After common optimizations, the main overhead rests
on the amortized cost of (1) AES without key schedule
and (2) Chacha20 in terms of the number of AND gates
in boolean circuits. The amortized cost per 128 bits for
AES is 5120 AND gates while Chacha20 takes 96256
AND gates due to integer additions. Thus, it is preferred
to choose AES-GCM-128 when available.
Efficient GCM tag computation. We adapt from
DECO [43] a protocol to efficiently compute the GCM
tag to # parties. After deriving the TLS application key
within SMPC, the servers compute the GCM generator
� = � (0) and the power series of �: �, �2, �3, ..., �!
within SMPC. The power series is secret-shared among
the # servers. To compute the GCM tag for some data
(1, (2, ..., (! (authenticated data or ciphertexts), each
server computes a share of the polynomial

∑!
8=1 (8 ·�8 and

combines these shares with the encryption of initialization
vector (IV) within SMPC.

We optimize the choice of !, which has not been done
in DECO. For efficiency, ! needs to be chosen carefully.
A small ! will increase the number of encryption opera-
tions, and a large ! will increase the cost of computing
the GCM power series. Formally, to encrypt message of
# bytes with AES (the block size is 16 bytes), we find
! that minimizes the overall encryption cost:

!opt = argmin!

[
(! − 1) · 16384 + 1280 + 5120
+" · 5120 + d #+"16 e · 5120

]
.

where " = d #
16· (!−2)−1 e is the number of data packets

in the TLS layer.1 For example, for # = 512, choosing
! = #/16 = 32 is 2.3× the cost compared with !opt = 5.
Circuit implementation. We synthesize the circuit files
in TLS-in-SMPC using Synopsys’s Design Compiler and
tools in TinyGarble [52], SCALE-MAMBA [53], and
ZKCSP [54]. The circuits have been open-sourced here.

https://github.com/n-for-1-auth/circuits

I V. N - F O R - 1 - AU T H AU T H E N T I C AT I O N

In this section we describe how a user, using the client
app, authenticates to # servers via various authentication
factors. We also describe the enrollment phase needed
to set up each protocol. After passing the authentication,

1Besides the actual payload data, the GCM hash also adds on two
additional blocks (record header and the data size) and one bit (TLS
record content type), which explains the term 16 · (! − 2) − 1.

the user can invoke the applications described in §V.

General workflow. In general, N-for-1-Auth’s authen-
tication protocols consist of two stages:
– The servers jointly send one challenge to the client.
– The client replies with a response to each server, which

will be different for each server.
Depending on the application, users may want to change
their authentication factors, in which they would need to
authenticate with the servers beforehand.

Preventing replay attacks. The client needs to provide
each server a different response to defend against replay
attacks. If the user sends the same response to different
servers, a malicious server who receives the response can
attempt to beat the user to the honest servers. The honest
servers will expect the same message that the malicious
server sends, and if the malicious server’s request reaches
the honest servers first, the honest servers will consider
the malicious server authenticated instead of the honest
user. Since up to # − 1 of the servers can collude with
one another, in this scenario, the malicious server can
reconstruct the shares and obtain the secret.

To prevent replay attacks, we designed the authenti-
cation protocols in a way such that no efficient attacker,
knowing # − 1 out of the # responses from an honest
user, can output the remaining response correctly with a
non-negligible probability.

A. N-for-1-Auth Email

N-for-1-Auth’s email authentication protocol sends the
user only one email which contains a passcode. If the
user proves knowledge of this passcode in some way, the
# servers will consider the user authenticated. N-for-1-
Auth’s email authentication protocol is as follows:
1) The 8-th server P8 generates a random number B8 and

provides it as input to SMPC.
2) Inside SMPC, the servers computes B =

⊕#

8 B8 , where
⊕ is bitwise XOR, and outputs PRF(B, 8) to P8 , where
PRF is a pseudorandom function.

3) The # servers run the TLS-in-SMPC protocol to
create a TLS endpoint acting as an email gateway
for some domain. The TLS endpoint opens a TLS
connection with the user’s SMTP server such as
gmail-smtp-in.l.google.com for abc@gmail.com,
and sends an email to the user with the passcode B over
this TLS connection. Note that the protocol sends the
email using the intergateway SMTP protocol, rather
than the one used by a user to send an email.

4) The user receives the email and enters B into the client
app, which computes PRF(B, 8) and sends the result
to P8 . If the user response matches the output that the
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server received in step 2, then P8 considers the user
authenticated.

Enrollment. The enrollment protocol is as follows:
1) The client opens a TLS connection with each of the

# servers and secret-shares the user’s email address
and sends the 8-th share to server P8 .

2) The # servers reconstruct the user’s email address
within SMPC and then jointly send a confirmation
email to the user, with a passcode.

3) The client proves knowledge of the passcode using
N-for-1-Auth’s email authentication protocol, converts
the secret into # secret shares, and sends the 8-th
share to server P8 .

4) If the user is authenticated, each server stores a share
of the user’s email address and a share of the secret.

Avoiding misclassification as spam. A common issue
is that this email might be misclassified as spam, which
can be handled using standard practices as follows.
– Sender Policy Framework (SPF). N-for-1-Auth can fol-

low the SPF standard [55], in which the sender domain,
registered during the setup of N-for-1-Auth, has a TXT
record indicating the IP addresses of email gateways
eligible to send emails from this sender domain.

– Domain Keys Identified Mail (DKIM). The DKIM stan-
dard [56] requires each email to have a signature from
the sender domain under a public key listed in a TXT
record. N-for-1-Auth can have the server generate the
keys and sign the email, both in a distributed manner.

Our experiments show that supporting SPF is sufficient
to avoid Gmail labeling N-for-1-Auth’s email as spam.
Privacy. We continue with the example of Alice from
the introduction, in which she authenticates to # servers,
one of which is her E2EE App Server and the other
# − 1 are helper servers. Based on our interaction with
companies, the E2EE App Server does not want to reveal
Alice’s contact information to the other helper servers.
To achieve this, for N-for-1-Auth’s email authentication
protocol, Alice’s email address is secret-shared among
these # servers, and the E2EE App Server maintains
a mapping from Alice’s email address to the index at
which the shares are stored. During authentication, the
E2EE App Server provides this index to the other helper
servers. In addition, the helper servers only need to know
the email provider’s mail gateway address instead of
the full email address.2 The gateway address is needed
because in the SMTP protocol, the sender (in this case

2For example, many companies use Google or Microsoft for email
service on their domains. In this case, for a user with email address
A@B.com, the helper servers know neither A nor B.com, but only which
email service provider is used by B.com.

handle, appId,
challenge

handle, appId,
challenge, origin

counter, 
signature

counter, origin, 
signature

U2F device Client app Server

Fig. 5: Protocol of universal second factor (U2F).

the # servers) needs to contact the user’s gateway server
for them to receive the email. This property is useful in
the case of data breaches as compromising the helper
servers does not reveal Alice’s email.

B. N-for-1-Auth SMS
N-for-1-Auth’s SMS protocol sends the user one text
message, which contains a passcode. The enrollment and
authentication protocols resemble the email authentication
protocol except that the passcode is sent via SMS.

We leverage the fact that many mobile carriers, includ-
ing AT&T [57], Sprint [58], and Verizon [59], provide
commercial REST APIs to send text messages. The #
servers, who secret-share the API key, can use N-for-1-
Auth’s TLS-in-SMPC protocol to send a text message to
the user through the relevant API.
Privacy. Similar to email, N-for-1-Auth secret-shares the
user’s phone number among the # servers, allowing the
user’s phone number to be hidden from the helper servers.
Here, only the sender’s carrier and the user’s carrier sees
the user’s phone number, but the helper servers cannot.

C. N-for-1-Auth U2F
Universal second factor (U2F) [60] is an emerging au-
thentication standard in which the user uses U2F devices
to produce signatures to prove the user’s identity. Devices
that support U2F include YubiKey [61] and Google Titan
[62]. The goal of N-for-1-Auth’s U2F protocol is to have
the user operate on the U2F device once.
Background: U2F. A U2F device attests to a user’s
identity by generating a signature on a challenge requested
by a server under a public key that the server knows. The
U2F protocol consists of an enrollment phase and an
authentication phase, described as follows.

In the enrollment phase, the U2F device generates an
application-specific keypair and sends a key handle and
the public key to the server. The server stores the key
handle and the public key.

In the authentication phase, as Fig. 5 shows, the server
generates a random challenge and sends over the key
handle, the application identifier (appId), and a challenge
to a U2F interface such as a client app, which is then,
along with the origin name of the server, forwarded to the
U2F device. Then, upon the user’s confirmation, such as
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Fig. 6: The Merkle tree for U2F challenge generation.

tapping a button on the device [61, 62], the U2F device
generates a signature over the request. The signature also
includes a monotonic counter to discover cloning attacks.
The server receives the signature and verifies it using the
public key stored in the enrollment phase.

To avoid the user having to perform a U2F authentica-
tion for each server, an intuitive approach is to have the
servers generate a joint challenge which is then signed
by the U2F device. The client can secret-share the signa-
ture, and the servers can then reconstruct and verify the
signature within SMPC. However, signature verification
in SMPC can be prohibitively expensive.
An insecure strawman. We now describe an insecure
strawman, which will be our starting point in designing
the secure protocol. Let the # servers jointly generate a
random challenge. The strawman lets the client obtain
a signature over this challenge from U2F and sends the
signature to each server. Then, each server verifies the
signature, and the servers consider the user authenticated
if the verification passes for each server.

This approach suffers from the replay attack described
in §IV. When a malicious server receives the signature
from the client, this server can impersonate the honest
user by sending this signature to the other servers.
N-for-1-Auth U2F’s protocol. Assuming server P8
chooses a random challenge value B8 , our protocol must
satisfy two requirements: (1) the challenge signed by the
U2F device is generated using all the servers’ random-
ness B1, B2, ..., B# ; and (2) the client can prove to server
P8 that the signed challenge uses B8 without revealing
information about other parties’ randomness.

We identify that aggregating the servers’ randomness
via a Merkle tree combined with cryptographic commit-
ments, as Fig. 6 shows, satisfies these requirements. We
now briefly describe these two building blocks.

In a Merkle tree, if the client places the servers’ ran-
domness B1, B2, ..., B# into the leaf nodes, as Fig. 6 shows,
then the root hash value is a collision-resistant represen-
tation of all the servers’ randomness, which we will use
as the challenge for the U2F device to sign over.

However, Merkle trees are not guaranteed to hide the
leaf nodes’ values. To satisfy the second requirement,
as Fig. 6 shows, we use cryptographic commitments

28 = Commit(B8; A8) instead of B8 as the leaf nodes’
values, in which A8 is a random string chosen by the
client. The commitments provide two guarantees: (1) the
server, from the commitment 28 , does not learn B8 and
(2) the client cannot open 28 to a different B′

8
≠ B8 .

Next, the client obtains the signature of the root hash
from U2F and sends each server the following response:
(1) the signature, (2) a Merkle tree lookup proof that the
8-th leaf node has value 28 , and (3) commitment opening
secrets A8 and B8 . Here, only the client and the 8-th server
know the server randomness B8 .

The detailed authentication protocol is as follows:
1) Each server opens a TLS connection with the client

and sends over a random value B8 .
2) The client builds a Merkle tree as described above and

in Fig. 6 and obtains the root hash. The client requests
the U2F device to sign the root hash as the challenge,
as Fig. 5 shows, following the U2F protocol.

3) The user then operates on the U2F device once, which
produces a signature over the root hash. The client
app then sends the signature, the Merkle tree lookup
proof, and the commitment opening information to
each server.

4) Each server verifies the signature, opens the commit-
ment, verifies that the commitment is indeed over the
initial value B8 provided by server P8 , and checks the
Merkle tree lookup proof. If everything is verified,
then P8 considers the user authenticated.

This protocol prevents replay attacks as described above
since the client’s response to P8 contains the opening
secret B8; other servers cannot determine this value with
a non-negligible probability.
Enrollment. The enrollment protocol is as follows:
1) The client and the servers engage in the standard U2F

enrollment protocol [60], in which the servers obtain
the key handle and the public key.

2) The client and the servers run N-for-1-Auth’s U2F
authentication protocol as described above.

Privacy. The U2F protocol already provides measures
to hide a device’s identity [63], which N-for-1-Auth lever-
ages to provide privacy for the user.

D. N-for-1-Auth security questions
The last N-for-1-Auth authentication factor we present
is security questions. Although many of the properties
provided by N-for-1-Auth’s security questions protocol
have been achieved by prior works [17–20, 25], we briefly
describe this protocol for completeness.

Typically, security questions involve the user answering
a series of questions that (ideally) only the user knows
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Fig. 7: The overall online/offline phase latencies and the garbled circuit size of the TLS-in-SMPC protocol for # = 2, 3, 4, 5
servers when sending an email with passcode (the mail body is 34 bytes).

all of the answers to [64–67]. During enrollment, the user
provides several questions and their answers to the client
app. The client then hashes the answers, and then sends
secret-shares of the hashes to the # servers. Then, during
authentication, the user is asked to answer these questions.
The client, similar to before, hashes the provided answers
and provides secret-shares to the # servers who then,
within SMPC, reconstruct these hashes and compare with
the hashes originally stored from enrollment. If all the
hashes match, the user is considered authenticated.

Privacy and other benefits over traditional security
questions. Traditionally, security questions avoid ask-
ing users for critical personal secrets, such as their SSN,
because the user may feel uncomfortable sharing such
personal information. Hashing and other cryptographic
techniques do not help much since the answer is often
in a small domain and can be found via in an offline
brute-force attack. However in N-for-1-Auth, since the
hashes of the answers are secret-shared among the #

servers, no server knows the full hash and therefore of-
fline brute force attacks are impossible. The privacy of
the user’s answers (or their hash) from the servers can
encourage users to choose more sensitive questions and
enter more sensitive answers that the user would oth-
erwise be uncomfortable sharing. To hide these more
sensitive questions, we can leverage an existing industry
practice, factor sequencing [68], by showing these more
sensitive questions only after the user correctly answers
less sensitive questions. Furthermore, to mitigate online
brute force attacks, in addition to standard rate-limiting
mechanisms which N-for-1-Auth supports, they can set
other authentication factors as prerequisites. That is, only
when the user authenticates against prerequisite factors
can the user even see the security questions.

V. A P P L I C AT I O N S

Once the # servers have authenticated the user, they
can perform some operations for the user using their
secret that is secret-shared during enrollment, such as

key recovery as in our motivating example. To show
the usefulness of N-for-1-Auth, we now describe two
applications that can benefit from N-for-1-Auth.
Key recovery. The user can backup a key by secret-
sharing it as the user secret during the enrollment phase.
When the user needs to recover the key, the servers can
send the shares back to the user, who can then recon-
struct the key from the shares. Key recovery is widely
used in end-to-end encrypted messaging apps, end-to-end
encrypted file sharing apps, and cryptocurrencies.
Digital signatures. Sometimes, it is preferred to obtain
a signature under a secret key, rather than retrieving the
key and performing a signing operation with it. This has
wide applications in cryptocurrencies, in which the user
may not want to reconstruct the key and have it in the
clear. Instead, the user delegates the key to several servers,
who sign a transaction only when the user is authenticated.
The user can also place certain restrictions on transactions,
such as the maximum amount of payment per day, which
can be enforced by the # servers within SMPC. In N-
for-1-Auth, the user secret-shares the signing key in the
enrollment phase. Before performing a transaction, the
user authenticates with the servers. Once authenticated,
the user presents a transaction to the # servers, who
then sign it using a multi-party ECDSA protocol [69–73].
An alternative solution is to use multisignatures [74],
which N-for-1-Auth can also support, but this option
in unavailable in certain cryptocurrencies [3] and may
produce very long transactions when # is large.

V I . E VA L U AT I O N

In this section we discuss N-for-1-Auth’s performance
by answering the following questions:
1) Is N-for-1-Auth’s TLS-in-SMPC protocol practical?

Can it meet the TLS handshake timeout? (§VI-C)
2) How efficient are N-for-1-Auth’s authentication pro-

tocols? (§VI-D)
3) How does N-for-1-Auth compare with baseline imple-

mentations and prior work? (§VI-E and §VI-F)
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Component Offline Phase Latency (s) Online Phase Latency (s)
# = 2 # = 3 # = 4 # = 5 # = 2 # = 3 # = 4 # = 5

TLS connection establishment 7.43 8.16 11.11 14.83 0.67 0.92 1.08 1.38
� Client randomness generation 0.30 0.30 0.30 0.30 — — — —
� Key exchange result computation 0.02 0.06 0.09 0.15 0.25 0.35 0.37 0.47
� Key derivation 6.55 7.05 9.73 13.1 0.37 0.51 0.64 0.83
� GCM power series (! = 5) 0.49 0.65 0.87 1.15 0.03 0.04 0.05 0.06
� AES key schedule 0.07 0.10 0.12 0.13 0.02 0.02 0.02 0.02
Sending an email of 34 bytes in TLS 2.52 2.90 3.37 3.69 0.38 0.39 0.41 0.43
Sending a SMTP heartbeat in TLS 0.43 0.49 0.57 0.63 0.06 0.07 0.07 0.07

Tab. I: Breakdown of the TLS-in-SMPC latencies for sending an email with passcode (the mail body is 34 bytes).

A. Implementation
We use MP-SPDZ [75], emp-toolkit [37, 76] and wolfSSL
[77] to implement N-for-1-Auth’s TLS-in-SMPC protocol.
We implemented the online phase of elliptic-curve point
additions within SMPC from scratch in C++.

B. Setup
We ran our experiments on c5n.2xlarge instances on
EC2, each equipped with a 3.0 GHz 8-core CPU and
21 GB memory. To model a cross-state setup, we set a
20 ms round-trip time and a bandwidth of 2 Gbit/s be-
tween servers (including the TLS server) and 100 Mbit/s
between clients and servers.

C. TLS-in-SMPC’s performance
For the TLS-in-SMPC protocol, we measured the offline
and online phases’ latencies and the size of the garbled
circuits sent in the offline phase and show the results in
Fig. 7. From the figure, we see that the offline and online
phase latencies and the total circuit size grow roughly
linearly to the number of servers.

We consider # from 2 to 5 in this experiment. In
practice, companies with decentralized key management
such as Curv [12] and Unbound Tech [13] currently use
two mutually distrusting parties, and Keyless [16] uses
three in their protocol. For all values of # that we tested,
the protocol always meets the TLS handshake timeout.

A large portion of the offline cost is in transmitting the
garbled circuits used in AG-MPC, as Fig. 7 shows. N-
for-1-Auth’s servers run the offline phase before the TLS
connection is established to avoid this extra overhead. To
load these circuits to the memory efficiently, one can use
a memory planner optimized for secure computation [78].
Malicious users can perform DoS attacks by wasting
computation done in the offline phase. N-for-1-Auth can
defend against such attacks using well-studied techniques,
such as proof-of-work or payment [79, 80].
Latency breakdown. In Tab. I we show a breakdown
of the offline and online phase latencies for the TLS-

Offline Phase Online Phase
Latency (s) Latency (s)

Email 10.96 (2.90) 1.29 (0.39)
SMS 12.26 (4.10) 1.48 (0.56)
U2F — 0.03
Security Questions 0.03 0.04
Tab. II: Latencies of N-for-1-Auth (# = 3). Numbers in
parentheses are the cost given an established TLS connection.

in-SMPC protocol. From the table, we see that most of
the computation is in the offline phase, and the online
phase has a small latency. Therefore, if we run an SMPC
protocol off the shelf that does not precompute the offline
phase, from Tab. I we see that for # = 5, the key exchange
has a latency of 14.83 s and cannot meet a TLS handshake
timeout of 10 s.

We see from Tab. I that the latency for establishing the
TLS connection dominates. However, N-for-1-Auth can
create a persistent connection with the email receiving
gateway server, allowing this to be a one-time cost, which
is particularly useful for popular email service providers
like Gmail. With an established connection, sending an
email with # = 5 only takes 3.69 s in the offline phase and
0.43 s in the online phase, which is drastically smaller. To
maintain this connection, N-for-1-Auth servers can send
SMTP heartbeats (a NOOP command). Our experiment
with Gmail show that one heartbeat per 120 s is sufficient
to maintain a long-term connection for at least 30 minutes.

D. N-for-1-Auth’s authentication performance
We measured the offline and online phase latencies of the
N-for-1-Auth protocols and present the results in Tab. II.
We now discuss the results in more detail.
Email/SMS. Using a message of 34 characters, the
N-for-1-Auth email protocol (without DKIM signatures)
sends 165 bytes via TLS-in-SMPC, and N-for-1-Auth’s
SMS protocol sends 298 bytes via TLS-in-SMPC, esti-
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mated using AT&T’s SMS API documentation [57].

U2F. We implement the collision-resistant hash and
commitments with SHA256. The computation time for
the client and the server is less than 1 ms. The protocol
incurs additional communication cost, as the client sends
each server a Merkle proof of 412 bytes. We note that
all of the overhead comes from the online phase.

Security questions. Checking the hashed answer of
one security question can be implemented in AG-MPC,
which takes 255 AND gates.

E. Comparison with off-the-shelf SMPC
We compare N-for-1-Auth’s implementation with an off-
the-shelf implementation in emp-toolkit [37, 76]. We
estimate this cost by implementing the computation of
UV · � in key exchange, which offers a lower bound on
its performance of TLS and is already much slower than
N-for-1-Auth. With # = 5 servers, the overall latency is
at least 8× slower compared with N-for-1-Auth’s TLS-in-
SMPC implementation. This is because computing UV ·�
involves expensive prime field operations, which use 107

AND gates. With # = 5 servers, this step already takes
150 s in the offline phase and 8.6 s in the online phase.

F. Comparison with DECO
DECO [43] is a work that runs TLS in secure two-party
computation. As discussed in §VII, their implementation
is not suitable for N-for-1-Auth because it is restricted
to two parties and has extra leakage due to a different
target setting. During the TLS handshake, DECO uses a
customized protocol based on multiplicative-to-additive
(MtA) [71] to add elliptic curve points, while N-for-1-
Auth uses SPDZ. We are unaware of how to extend
DECO’s protocol to # ≥ 3. In addition, when comparing
with DECO, N-for-1-Auth’s AES implementation reuses
the AES key schedule across AES invocations, which
reduces the number of AND gates per AES invocation
from 6400 to 5120, an improvement of 20%.

V I I . R E L AT E D W O R K

Decentralized authentication. Decentralized authenti-
cation has been studied for many years and is still a hot
research topic today. The main goal is to avoid having
centralized trust in the authentication system. One idea is
to replace centralized trust with trust relationships among
different entities [81, 82], which has been used in the
PGP protocol in which individuals prove the identities
of each other by signing each other’s public key [83,
84]. Another idea is to make the authentication system
transparent to the users. For example, blockchain-based
authentication systems, such as IBM Verify Credentials

[85], BlockStack [86], and Civic Wallet [87], and certifi-
cate/key transparency systems [32, 33, 88–91] have been
deployed in the real world.

A recent concurrent work [92] also addresses decen-
tralized authentication for cryptocurrency by integrating
U2F and security questions with smart contracts. Their
construction does not support SMS/email authentication
due to limitations of smart contracts, and does not work
with cryptocurrency that does not support smart contracts
like Bitcoin. In sum, their approach targets a different
setting than N-for-1-Auth, as we focus on the usability
issues of having the user perform #-times the work.
Password-based secret generation. There has been
early work on generating strong secrets from passwords
using several mutually distrusting servers, such as [25].
However, [25] focuses on passwords while N-for-1-Auth
focuses on second factors, which brings its own set of
unique challenges as N-for-1-Auth needs to be compatible
with the protocols of these second-factors. In addition,
[25] requires the user to remember a secret, which has
its own issues as the secret can be lost. We note that
these works are complementary to N-for-1-Auth, which
can provide secure key backup for these passwords.
Decentralized storage of secrets. In industry, there are
many companies that use decentralized trust to store user
secrets, such as Curv [12], Partisia [93], Sepior [15], Un-
bound Tech [13], and Keyless [16]. These companies use
SMPC to store, reconstruct, and apply user secrets in a
secure decentralized manner. However, in principle a user
still needs to authenticate with each of these company’s
servers since theses servers do not trust each other. There-
fore, in these settings a user still needs to do # times the
work in order to access their secret. N-for-1-Auth’s proto-
cols can assist these commercial decentralized solutions
to minimize the work of their users in authentication.
TLS and SMPC. There are works using TLS with
secure two-party computation (S2PC), but in a prover-
verifier setting in which the prover proves statements
about information on the web. BlindCA [51] uses S2PC
to inject packets in a TLS connection to allow the prover
to prove to the certificate authority that they own a cer-
tain email address. However, it issue is that the prover
possesses all of the secrets of the TLS connection, and
all of their traffic sent to the server must go through a
proxy owned by the verifier. DECO [43] uses TLS within
S2PC, but its approach also gives the prover the TLS
encryption key, which our setting does not allow. Overall,
both of these works are restricted to two parties based
on their intended settings, while N-for-1-Auth supports
an arbitrary number of parties.
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In addition, a concurrent work [44] also enables running
TLS in secure multiparty computation, and their technical
design in this module is similar to ours3, but [44] does
not propose or contribute authentication protocols for dis-
tributed trust settings and their applications. N-for-1-Auth
offers contributions beyond the TLS-in-SMPC module,
proposing the idea of performing # authentications with
the work of one, showing how this can be achieved by
running inside SMPC the SMTP protocol or the HTTP
protocol in addition to TLS, to support authentication
factors, and demonstrating applications in the end-to-end
encryption and cryptocurrency space. In addition, within
the TLS-in-SMPC protocol, we provide an end-to-end
implementation compatible with an existing TLS library,
wolfSSL, and show that it works for N-for-1-Auth’s au-
thentication protocols. Specifically, [44] emulated certain
parts of the TLS protocol, and they only evaluated the
online phase and did not measure the offline cost, which
is important for real-world deployment. In contrast, we
also benchmark the offline phase of our protocol.
OAuth. OAuth [27] is a standard protocol used for
access delegation, which allows users to grant access to
applications without giving out their passwords. While
OAuth has several desirable properties, it does not work
for all of N-for-1-Auth’s second factors, notably SMS text
messages and email service providers that do not support
OAuth, and is therefore less general and flexible than
N-for-1-Auth. In addition, if a user authenticates through
OAuth and wants distributed trust, they have to perform
the authorization # times, once for each server. N-for-1-
Auth can incorporate OAuth as a separate authentication
factor—the # servers can secret-share the OAuth client
secret and then, using TLS-in-SMPC, obtain the identity
information through the OAuth API.

V I I I . D I S C U S S I O N

Handling denial-of-service attacks. In this paper, we
consider denial-of-service attacks by the servers to be out
of scope, as discussed in §II-A. There are some defenses
against these types of attacks, as follows:
– Threshold secret sharing. A malicious server can refuse

to provide its share of the secret to prevent the user
from recovering it. To handle this, the user can share the
secret in a threshold manner with a threshold parameter
C which will allow the user’s secret to be recoverable
as long as C servers provide their shares. This approach
has a small cost, as a boolean circuit for Shamir se-
cret sharing only takes 10240 AND gates by using
characteristic-2 fields for efficient computation.

3We implemented additional optimizations in AES and GCM.

– Identifiable abort. Some new SMPC protocols allow for
identifiable abort, in which parties who perform DoS
attacks by aborting the SMPC protocol can be identified
[94, 95]. N-for-1-Auth can support identifiable abort
by incorporating these SMPC protocols and standard
identification techniques in its authentication protocols.

I X . C O N C L U S I O N

N-for-1-Auth is an authentication system that decentral-
izes trust across # servers and allows users to authenticate
to the servers while only performing the work of a single
authentication. N-for-1-Auth offers authentication pro-
tocols that achieve this property for various commonly
used authentication factors. At the core of N-for-1-Auth
is a TLS-in-SMPC protocol, which we designed to be
efficient enough to meet the TLS timeout and success-
fully communicate with an unmodified TLS server. We
hope that N-for-1-Auth will facilitate the adoption of new
systems with decentralized trust.
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A P P E N D I X

In this section we provide a security proof for TLS-in-
SMPC, following the definition in §II-A.

A. Overview
We model the security in the real-ideal paradigm [34],
which considers the following two worlds:
• In the real world, the # servers run protocol Π, N-

for-1-Auth’s TLS-in-SMPC protocol, which establishes,
inside SMPC, a TLS client endpoint that connects to
an unmodified, trusted TLS server. The adversary A
can statically compromise up to # − 1 out of the #
servers and can eavesdrop and modify the messages
being transmitted in the network, although some of
these messages are encrypted.

• In the ideal world, the honest servers, including the
TLS server, hand over their information to the ideal
functionality FTLS. The simulator S obtains the input
of the compromised parties in ®G and can communicate
with FTLS. FTLS executes the TLS 1.3 protocol, which
is assumed to provide a secure communication channel.

We then prove the security in the {FSMPC,FrpRO}-hybrid
model, in which we abstract the SPDZ protocol and the
AG-MPC protocol as one ideal functionality FSMPC and
abstract the random oracle used in commitments with an
ideal functionality for a restricted programmable random
oracle FrpRO, which is formalized in [96, 97].
Remark: revealing the server handshake key is safe.
In the key exchange protocol described in §III-B, the
protocol reveals the server handshake key and IV to all
the N-for-1-Auth servers after they have received and
acknowledged the handshake messages. This has benefits
for both simplicity and efficiency as TLS-in-SMPC does
not need to validate a certificate inside SMPC, which
would be expensive.

Informally, revealing the server handshake key is secure
because these keys are designed only to hide the server’s
identity [39], which is a new property of TLS 1.3 that
does not exist in TLS 1.2. This property is unnecessary
in our setting in which the identity of the unmodified
TLS server is known.

Several works have formally studied this problem and
show that revealing the keys does not affect other guar-
antees of TLS [42–45]. Interested readers can refer to
these works for more information.

B. Ideal functionalities

Ideal functionality. In the ideal world, we model the
TLS interaction with the unmodified, trusted TLS server as
an ideal functionality FTLS. We adopt the workflow of the
standard secure message transmission (SMT) functionality

FSMT defined in [98].
Given the input ®G, FTLS runs the TLS client endpoint,

which connects to the TLS server, and allows the adver-
sary to be a man-in-the-middle attacker by revealing the
messages in the connection to the attacker and allowing
the attacker to modify such messages. In more detail,
1) To start, all the # servers must first provide their parts

of the TLS client input ®G to FTLS.
2) For each session id B83, FTLS launches the TLS client

with input ®G and establishes the connection between
the TLS client and the TLS server.

3) The adversary can ask FTLS to proceed to the next
TLS message by sending a (Proceed, B83) message.
Then, FTLS generates the next message by continuing
the TLS protocol and sends this message to the adver-
sary for examination. The message is in the format
of a backdoor message (Sent, B83, (, ', <) where (
and ' denote the sender and receiver. When the ad-
versary replies with (ok, B83, <′, '′), FTLS sends out
this message <′ to the receiver '′.

4) The adversary can send (GetHandshakeKeys, B83)
to FTLS for the server handshake key and IV after
the server’s handshake response has been delivered.
This is secure as discussed in App. D. FTLS responds
with (reveal, B83, B:4H, B8E, 2:4H, 28E) where B:4H

and B8E are the server handshake key and IV, and
2:4H and 28E are the client handshake key and IV.

5) If any one of the TLS client and server exits, either
because there is an error due to invalid messages or
because the TLS session ends normally, FTLS con-
siders the session with session ID B83 ended and no
longer handles requests for this B83.

6) FTLS ignores other inputs and messages.

Multiparty computation functionality. In the hybrid
model, we abstract SPDZ and AG-MPC as an ideal func-
tionality FSMPC, which provides the functionality of mul-
tiparty computation with abort. We require FSMPC to be
reactive, meaning that it can take some input and reveal
some output midway through execution, as specified in
the function 5 being computed. A reactive SMPC can
be constructed from a non-reactive SMPC scheme by
secret-sharing the internal state among the # parties in
a non-malleable manner, as discussed in [99]. FSMPC
works as follows:
1) For each session B83, FSMPC waits for party P8 to

send (input, B83, 8, G8 , 5 ), in which B83 is the session
ID, 8 is the party ID, G8 is the party’s input, and 5 is
the function to be executed.

2) Once FSMPC receives all the # inputs, it checks if
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all parties agree on the same 5 , if so, it computes
the function 5 (G1, G2, ..., G# ) → (H1, H2, ..., H# ) and
sends (output, B83, 8, H8) to party P8 . Otherwise, it
terminates this session and sends (abort, B83) to all
the # parties.

3) If FSMPC receives (Abort, B83) from any of the #
parties, it sends (abort, B83) to all the # parties.

4) FSMPC ignores other inputs and messages.

Restricted programmable random oracle. We use
commitments in §III-B to ensure that in Diffie-Hellman
key exchange, the challenge U · � is a random element.
This is difficult to do without commitments because the
adversary can control up to # − 1 parties to intentionally
affect the result of U · � =

∑#
8=1 U8 · �. In our security

proof, we leverage a restricted programmable random
oracle [96, 97], which is described as follows:
1) FrpRO maintains an initially empty list of (<, ℎ) for

each session, identified by session ID B83, where <
is the message, and ℎ is the digest.

2) Any party can send a query message (Query, B83, <)
to FrpRO to ask for the digest of message <. If there ex-
ists ℎ such that (<, ℎ) is already in the list for session
B83, FrpRO returns (result, B83, <, ℎ) to this party.
Otherwise, it samples ℎ from random, stores (<, ℎ)
in the list for B83, and returns (result, B83, <, ℎ).

3) Both the simulator S and the real-world adversary
A can send a message (Program, <, ℎ) to FrpRO to
program the random oracle at an unspecified point ℎ,
meaning that there does not exist < such that (<, ℎ)
is on the list.

4) In the real world, all the parties can check if a hash
is programmed, which means that if A programs a
point, other parties would discover. However, in the
ideal world, only S can perform such a check, and
thus S can forge the adversary’s state as if no point
had been programmed.

C. Simulator

We now describe the simulator S . Without loss of gener-
ality, we assume the attacker compromises exactly # − 1
servers and does not abort the protocol, and we also as-
sume that A does not program the random oracle, since
in the real world, any parties can detect that and can then
abort. We now follow the TLS workflow to do simulation.
As follows, we use � to denote the set of identifiers of
the compromised servers.
1) Simulator S provides the inputs of the compromised

servers to FTLS, which would start the TLS protocol.
2) S lets FTLS proceed in the TLS protocol and obtains

the ClientHello message, which contains a random
U · �. Now, S simulates the distributed generation of
U · � as follows:
a) S samples a random ℎ in the digest domain, pre-

tends that it is the honest party’s commitment, and
generates the commitments of U8 · � for 8 ∈ �.

b) S sends (Program, A | | (U · � − ∑
8∈� U8 · �), ℎ)

to FrpRO, where A is the randomness used for
making a commitment, and | | is concatenation.
As a result, S can open the commitment ℎ to be
U · � −∑

8∈� U8 · �.
c) S continues with the TLS-in-SMPC protocol, in

which the # parties open the commitments and
construct U · � as the client challenge.

3) S lets FTLS proceed in the TLS protocol and
obtains the messages from ServerHello to
ClientFinished, which contain V · � and cipher-
texts of the server’s certificate, the server’s signature
of V ·�, and the server verification data. Now S needs
to simulate the rest of the key exchange.
a) S sends (GetHandshakeKeys, B83) to FTLS to

obtain the server/client handshake key and IV.
b) S simulates the computation of the handshake

keys in SMPC by pretending that the SMPC output
is the handshake keys. Note: we already assume
that without loss of generality, the compromised
servers provide the correct UV ·�. If they provide
incorrect values, S would have detected this and
can replace the output with an incorrect key.

c) S then simulates the remaining operations of key
exchange in SMPC, which checks the server veri-
fication data and produces the client verification
data.

4) S simulates the message encryption and decryption
of the application messages by simply pretending the
SMPC output is exactly the ciphertexts taken from
actual TLS messages, also provided by FTLS.

5) In the end, S outputs whatever the adversary A would
output in the real world.

D. Proof of indistinguishability
We now argue that the two worlds’ outputs are com-
putationally indistinguishable. The outputs are almost
identical, so we only need to discuss the differences.
1) In distributed generation of U ·�, the only difference

in the simulated output compared with Π’s is that the
honest party chooses its share as U · � − ∑

8∈� U8�
and uses a programmed hash value ℎ for commitment.
Since U · � is sampled from random by the TLS
client inside FTLS, it has the same distribution as the
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U8 · � sampled by an honest party. The properties of
restricted programmable random oracle FrpRO show
that no parties can detect that ℎ has been programmed.

2) For the remaining operations, the main difference is
that the SMPC is simulated without the honest party’s
secret (in the real-world protocol Π, such secret is
a share of the internal SMPC state that contains the
TLS session keys). The properties of SMPC show that
such simulation is computationally indistinguishable.

As a result, we have the following theorem.
Theorem A.1. Assuming secure multiparty computation,
random oracle, and other standard cryptographic assump-
tions, the TLS-in-SMPC protocol Π with # parties se-
curely realizes the TLS client ideal functionality FTLS
in the presence of a malicious attacker that statically
compromises up to # − 1 out of the # parties.
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