
Adaptive Security via Deletion in Attribute-Based Encryption:

Solutions from Search Assumptions in Bilinear Groups

Rishab Goyal∗ Jiahui Liu† Brent Waters‡

Abstract

One of the primary research challenges in Attribute-Based Encryption (ABE) is constructing and
proving cryptosystems that are adaptively secure. To date the main paradigm for achieving adaptive
security in ABE is dual system encryption. However, almost all such solutions in bilinear groups rely
on (variants of) either the subgroup decision problem over composite order groups or the decision linear
assumption. Both of these assumptions are decisional rather than search assumptions and the target
of the assumption is a source or bilinear group element. This is in contrast to earlier selectively secure
ABE systems which can be proven secure from either the decisional or search Bilinear Diffie-Hellman
assumption. In this work we make progress on closing this gap by giving a new ABE construction for
the subset functionality and prove security under the Search Bilinear Diffie-Hellman assumption.

We first provide a framework for proving adaptive security in Attribute-Based Encryption systems.
We introduce a concept of ABE with deletable attributes where any party can take a ciphertext encrypted
under the attribute string x ∈ {0, 1}n and modify it into a ciphertext encrypted under any string
x′ ∈ {0, 1,⊥}n where x′ is derived by replacing any bits of x with ⊥ symbols (i.e. “deleting” attributes
of x). The semantics of the system are that any private key for a circuit C can be used to decrypt a
ciphertext associated with x′ if none of the input bits read by circuit C are ⊥ symbols and C(x′) = 1.

We show a pathway for combining ABE with deletable attributes with constrained pseudorandom
functions to obtain adaptively secure ABE building upon the recent work of Tsabary [Tsa19]. Our
new ABE system will be adaptively secure and be a ciphertext-policy ABE that supports the same
functionality as the underlying constrained PRF as long as the PRF is “deletion conforming”. Here we
also provide a simple constrained PRF construction that gives subset functionality.

Our approach enables us to access a broader array of Attribute-Based Encryption schemes sup-
port deletion of attributes. For example, we show that both the Goyal et al. (GPSW) [GPSW06] and
Boyen [Boy13] ABE schemes can trivially handle a deletion operation. And, by using a hardcore bit
variant of GPSW scheme we obtain an adaptively secure ABE scheme under the Search Bilinear Diffie-
Hellman assumption in addition to pseudo random functions in NC1. This gives the first adaptively
secure ABE from a search assumption as all prior work relied on decision assumptions over source group
elements.

1 Introduction

Attribute-Based Encryption (ABE), since its introduction by Sahai and Waters [SW05], has significantly pro-
pelled the concept of secure communication. The traditional notion of Public Key Encryption (PKE) [DH76,
RSA78, GM84] was meant to enable a one-to-one private communication channel with a specific targeted

∗MIT. Email: goyal@utexas.edu. Research supported in part by NSF CNS Award #1718161, an IBM-MIT grant, and by
the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR00112020023. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views
of the United States Government or DARPA. Work done in part while at UT Austin supported by IBM PhD Fellowship, and
at the Simons Institute for the Theory of Computing supported by Simons-Berkeley research fellowship.
†University of Texas at Austin. Email: jiahui@cs.utexas.edu.
‡University of Texas at Austin and NTT Research. Email: bwaters@cs.utexas.edu. Supported by NSF CNS-1908611, CNS-
1414082, DARPA SafeWare, Packard Foundation Fellowship, and Simons Investigator Award.

1

user over an insecure network. ABE, on the other hand, provides a more fine-grained access control over
plaintext delivery where it allows the encryptor to specify a policy f which is attached to the ciphertext. In
such systems, each user decryption key is associated with an attribute string x such that it can recover the
encrypted message only when f(x) = 1, that is when the policy f accepts the attribute x.1

Since its inception in 2005, the notion of Attribute-Based Encryption has received tremendous amount
of attention. Initial developments in the context of provably secure ABE constructions as well as new proof
techniques were driven by bilinear map-based realizations. The earliest such constructions (e.g. [SW05,
GPSW06]) were proven secure under only a relaxed notion of security called selective security where an
attacker is required to declare the descriptor f∗ that will be associated with the challenge ciphertext at the
beginning of the game, i.e. even before seeing the public parameters. This relaxation enabled the use of
a so-called “partitioning” strategy for proving security. Intuitively, availability of the challenge descriptor
f∗ to the reduction algorithm, before it needs to sample the system public-secret parameters, enables the
reduction algorithm to shape its view of the system parameters into a partition. Such a partitioned view of
the parameters allows the reduction algorithm to generate a secret key skx for every attribute x as long as
f∗(x) = 0 (that is, whenever f∗ rejects the attribute x), while simultaneously being able to translate a dis-
tinguishing attack on a challenge ciphertext associated with f∗ into breaking a number theoretic assumption.
Unfortunately, such a partitioning strategy does not naturally translate [LW14] to the case of full or adaptive
security where an attacker gets to choose the challenge function f∗ after it sees the public parameters as
well as makes a polynomial number of secret key queries. In this scenario the best known partitioning-style
reductions will simply have to guess the function f∗ to be chosen by the attacker and abort the reduction
if the guess does not align with the actual choice of the attacker. This guessing approach incurs a security
loss in the reduction proportional to the number of functions to choose from, and thus necessitates the use
of a subexponentially secure variant of the underlying number theoretic assumption.

The shortcomings of the partitioning paradigm suggested the need for a new set of proof techniques for
attaining adaptive security. The most well-known proof technique in that direction is Waters’ dual system
methodology [Wat09] which led to the first adaptively secure ABE scheme whose security was proven under
a static assumption by Lewko et al. [LOS+10]. Their approach allowed for adaptive security by moving
beyond partitioning proofs.2 Subsequently, several other works achieved adaptive security in ABE systems
with various desiderata [OT10, LW11, LW12, Wee14, Att14]. One prominent trait of all these dual system
solutions is that they almost exclusively rely on (variants of) the decision subgroup decision assumption or the
decision linear assumption. Briefly, the decision linear assumption over a prime order bilinear group G states
that given g, v, w, va, wb ∈ G it is hard to distinguish between ga+b and a random group element in G. This is
a potentially stronger assumption due to the facts that (1) it is decisional and (2) the target of the assumption
ga+b is in the bilinear group.3 In contrast earlier selectively secure schemes (such as [SW05, GPSW06]) can
be proven secure under the Search Bilinear Diffie-Hellman assumption which states that given g, ga, gb, gc

it is difficult to compute e(g, g)abc. In our work we work toward closing this gap by constructing new ABE
systems provably secure from search assumptions.

We start by building upon a recent breakthrough due to Tsabary [Tsa19] for proving adaptively secure
ABE systems from the Learning with Errors (LWE) assumption [Reg05]. Until this work all prior ABE
systems (that go beyond Identity-Based Encryption) from the LWE assumption (e.g. [GVW13, Boy13,
BGG+14, GVW15]) relied on a partitioning argument and were thus selectively secure. Tsabary’s ABE
construction is for the family of subset predicates where both private keys and ciphertexts are associated
with subsets over [N] and a secret key for subset S can decrypt a ciphertext for subset T iff S ⊆ T .4 While
the subset predicate class is rather limited in comparison to the functionalities mentioned earlier, the work

1For readers familiar with the notions of “ciphertext-policy” ABE and “key-policy” ABE, we will be using the ciphertext-policy
vernacular in the sequel.

2Notably, earlier works of Gentry [Gen06] and Gentry-Halevi [GH09] moved beyond partitioning for IBE and Hierarchical IBE.
3If e : G× G→ GT is a bilinear map, then we refer to elements in G as being in the source group or bilinear group.
4Tsabary actually presents their construction as realizing t-CNF for any constant t. However, this can be viewed as a special
application of ABE for subsets. For this reason we will interpret their construction in terms of subset semantics for the
purposes of this introduction.

2

is remarkable given the lack of progress towards realizing adaptive security from LWE for so many years.
(It was known [BV16, GKW16] how to prove security in a slightly weaker model where the attacker sees the
public parameters, but is not allowed any private key queries before committing to f∗; however, these works
do not appear to give any further insight into achieving full/adaptive security.)

Tsabary’s idea is to start with a selectively secure Attribute-Based Encryption scheme with certain special
partial evaluation properties, and combine it with an adaptively secure Constrained Pseudorandom Function
(CPRF) [BGI14, BW13, KPTZ13] that satisfies complementary “conforming” properties. Intuitively, the
central idea in the work can be interpreted as a mechanism to leverage adaptive security of the CPRF for
proving adaptive security of the resulting ABE system, while relying on the underlying selectively secure
ABE scheme mostly for the encryption-decryption capability. Tsabary cleverly executed the above idea, and
showed that combining these primitives in the right manner the resulting ABE system is adaptively secure,
and the policy class it supports matches the constraint class of the underlying CPRF. For instantiating the
entire framework, Tsabary derived a simple construction for constrained PRFs for subset constraints with
requisite conforming properties from CPRF construction by [DKNY18], thereby giving an adaptively secure
ABE scheme for subset predicates.

The framework requires the starting selectively secure ABE system to support partial ciphertext eval-
uation. Such a partial computation feature is not supported in many existing ABE systems, with the
Boneh et al. [BGG+14] construction being the only known construction providing requisite capability. In
particular, none of the bilinear map schemes such as [GPSW06], or the simpler (albeit less powerful) LWE-
based ABE scheme of Boyen [Boy13] support partial evaluation.

This work. In this work, we provide a framework to both broaden and simplify the adaptively secure
ABE transformation. At the core of our work is the observation that while [Tsa19] relies on the partial
ciphertext evaluation framework of Boneh et al. [BGG+14], there is hardly any computation performed on
the ciphertext. Concretely, the transformation the partial evaluation performed on the ciphertext exactly
corresponds to the CPRF constrain operation. Now in a CPRF scheme for subset constraints over a universe
of elements [N], the CPRF master key msk consists of N + 1 regular PRF keys k0, k1, . . . , kN . And, to
evaluate the CPRF on a set S ⊆ [N], the evaluator computes the following:

CPRF(msk, S) = F (k0, S)
⊕
i∈S

F (ki, S).

For constraining the master key to a constraint set T ⊆ [N] such that evaluation works on all input sets
S ⊆ T , all we need to do is “delete” all the regular PRF keys kj for which j /∈ T — thus no elaborate
computation is required in constraining the key.

Our work builds around this key insight wherein we introduce the complementary notions of ABE with
deletable attributes and deletion conforming CPRFs. At a high level, a key-policy ABE with deletable
attributes allows encryption to a non-binary attribute string x ∈ {0, 1,⊥}n, where ⊥ represents a “deleted”
attribute. The semantics of such an ABE scheme are that a user decryption key for a policy circuit C can
decrypt the ciphertext associated with attribute x as long as the circuit C does not touch any of the deleted
input wires and C(x) = 1.5 Moreover, any user given just the public parameters can take a ciphertext ct
for attribute string x and produce another ciphertext ct′ encrypting the same message but for an attribute
string x′, where x′ is the same as x except it can have some further attribute bits deleted (i.e., changed to
⊥s). Armed with these abstractions we are able to compile these into an adaptively secure ciphertext-policy
ABE scheme using a transformation that follows [Tsa19] in spirit.

The potential benefits of our approach are twofold. First, we show that the framework of ABE with
deletable attributes encompasses a much broader range of ABE systems. Notably, this includes the early
bilinear map based GPSW construction [GPSW06] as well as the LWE-based scheme of Boyen [Boy13].6

5Here by not touching an input wire, we mean that the circuit must not read/depend upon that particular input wire.
6We recently learned of the existence of an attack [ABN+20] on Boyen’s ABE scheme. We still include the proof that it is
deletable to demonstrate wider applicability of our framework, but do not claim extension of Boyen’s scheme as an instantiation
from LWE. To instantiate our framework under LWE, we believe that one could show the [BGG+14] scheme to be deletable.

3

As it turns out, showing that these schemes support attribute deletion is extremely simple — e.g., in
GPSW one just has to literally “delete” ciphertext components associated with the corresponding attributes.
Furthermore, following this paradigm leads to the first fully secure ABE scheme from a search problem in
bilinear map setting. This is done by applying a very minor tweak to original GPSW which is to hide the
message under a hardcore bit. With this tweak, we can show that the resulting scheme is adaptively secure
under the Search Bilinear Diffie-Hellman (BDH) assumption [BF01] in addition to assuming pseudorandom
functions in NC1 which is a minicrypt assumption. We also note that pseudorandom functions in NC1 are
implied by the Bilinear decisional Diffie-Hellman assumption; thus we can alternatively base our security
entirely on that assumption. We emphasize that all prior work on adaptively secure ABE from bilinear maps
relied on decision assumptions over the source group.

A second (and perhaps more nuanced) benefit of trading off partial evaluation for deletion is in simplicity.
Given that deletion is a more restricted operation arguing security is inherently simpler when we only
perform deletion on input wires, compared to arbitrary partial circuit evaluation. We remark that there
can be a tradeoff in the direction of functionality. While our construction using deletion matches the
subset functionality given in [Tsa19], it is entirely possible that in the future we may find a larger class of
functionalities that are supported by a partial computation framework and not by deletion. Doing so is an
intriguing open question.

1.1 Technical Overview

Following the framework developed in [Tsa19], our work provides a mechanism to leverage adaptive security
of a constrained PRF for upgrading the security of an ABE system from selective to adaptive. Concretely, we
show that starting with a selectively secure key-policy ABE (KP-ABE) system that permits attribute deletion,
we could pair it with an adaptively secure CPRF scheme to build an adaptively secure ciphertext-policy ABE
(CP-ABE) system. Such a pairing mandates the CPRF scheme to satisfy certain special properties that we
refer to as deletion conforming. The transformation flips the semantics of the underlying ABE system from
key-policy to ciphertext-policy, and the constraint class associated with the CPRF maps directly to the
predicate class for the resulting ciphertext-policy ABE system.

We now provide an overview of our framework and techniques. The overview is broken into four parts
— first, we introduce the concept of attribute deletion for key-policy ABE systems; second, we define the
complementary notion of deletion conforming CPRFs, and describe a simple construction for the family of
subset constraints; third, we show how these aformentioned KP-ABE and CPRFs systems (for the right
functionalities) be combined to construct an adaptively secure CP-ABE scheme; and lastly, we provide two
concrete instantiations for KP-ABE with deletable attributes from standard assumptions.

A Key-Policy ABE with Deletable Attributes. We begin by informally introducing the concept of
attribute deletion with formal definitions provided in Section 3. Recall that in the key-policy setting, the
semantics of an ABE scheme are that every ciphertext ctx is associated with an attribute string x ∈ {0, 1}n,
while every secret decryption key skC is associated with a policy circuit C : {0, 1}n → {0, 1}. Here the
functionality provided by the scheme is that decryption recovers the encrypted messages whenever the
policy circuit accepts the attribute (i.e., C(x) = 1). An ABE system with deletable attributes provides two
additional capabilities — (1) the encryption algorithm can now compute ciphertexts for non-binary attribute
strings x ∈ {0, 1,⊥}n as well, where the ‘⊥’ symbol is interpreted as an ‘unset ’ attribute bit, (2) given any
ciphertext ctx, one can publicly reduce it to another ciphertext ctx′ encrypting the same message with the
associated attribute string x′ so long as x′ can be obtained by having some attribute bits of x deleted (i.e.,
changed from set to unset).

Formally, such schemes have a special Delete algorithm that take as input the public parameters pp, a
ciphertext ctx, and an index set I ⊆ [n] and it outputs a modified ciphertext ct′. Here the set I denotes
the indices of attribute bits that the user wants to delete, and let Restrict(x, I) denote the string x′ that is
obtained by deleting attribute bits of x that lie in set I. The correctness requirement in presence of attribute
deletion is expanded as follows: a secret key skC can decrypt a ciphertext ctx if the circuit C does not read

4

any of the unset input wires in attribute x, and evaluating C on x outputs 1. (For example, consider the
following circuit: C(x) = x2 ⊕ x3, where xi denotes the i-th bit of x. For such a circuit C, we have that
a corresponding secret key skC can not be used to decrypt a ciphertext ctx whenever either x2/x3 = ⊥, or
x2 ⊕ x3 6= 1. That is, if x2 = x3 6= ⊥, then decryption succeeds irrespective of how other attribute bits are
set.)

For security, such schemes must satisfy a special deletion indistinguishability property (in addition to the
regular IND-CPA security). Briefly, deletion indistinguishability states that the distributions of ciphertexts
generated by either running the encryption algorithm directly, or the encryption algorithm followed by the
deletion algorithm should be computationally indistinguishable as long as they encrypt the same message
and w.r.t. the same attribute string. That is, we have the following:

{Delete(pp,Enc(pp,m, x), I)} ≈c {Enc(pp,m, x′)} , where x′ = Restrict(x, I).

Here the distributions must remain indistinguishable even if the distinguisher gets the ABE master key.
Intuitively, the goal of such a deletable key-policy ABE system is to enable arbitrary attribute deletion

on ciphertexts while extending the usual policy circuit evaluation functionality over to partial/incomplete
input strings. Typically, evaluating circuits on incomplete inputs is regarded as an invalid operation, but
here our abstraction relies on the fact that as long as all the input wires actually used by the circuit are set
(i.e., are 0/1), then we could still legally evaluate the circuit and define its output for partial inputs. As
we describe later on, such a attribute deletion framework is already powerful enough for realizing adaptive
security in ABE systems for subset predicates.

Deletion Conforming CPRFs. A regular constrained PRF (CPRF) [BGI14, BW13, KPTZ13] consists
of a pseudorandom function (PRF) CPRF(·, ·) with a key msk. The constrained property states that given
master key msk, there is a way to generate a constrained key ckf for any constraint function f such that
CPRF(msk, x) = CPRF(ckf , x) whenever f(x) = 1. Also, the standard constrained pseudorandomness prop-
erty states that an attacker cannot distinguish PRF evaluations CPRF(msk, xi) from uniformly random values
on all inputs xi for which f(xi) = 0, even after it gets to see the constrained key ckf . The CPRF scheme
is said to be adaptively secure if the adversary can choose the challenge constraint function f after making
polynomially many PRF evaluation queries. In this work, similar to [Tsa19], we instead require the CPRF
to achieve adaptive key simulation security. Key simulation property states that there exists an efficient key
simulation algorithm KeySim such that an attacker cannot distinguish a simulated key c̃kf ← KeySim(f)
from a honestly constrained key ckf for any adaptively chosen challenge constraint f as long as all its PRF
evaluation queries xi are not satisfied by the constraint f , i.e. f(xi) for all evaluation queries xi. Tsabary
provided a CPRF construction for subset constraints which satisfies both adaptive pseudorandomness and
key simulation security properties.7 As a side contribution, in the main body we show that the standard
constrained pseudorandomness already implies key simulation security.

Inspired by our deletable attribute framework for ABE systems, we define the notion of deletion con-
forming CPRFs, or DCCPRF in short. Intuitively, it states a CPRF system is deletion conforming if any
constrained key ckf in such a scheme can be deterministically computed by simply “deleting” specific bits
of the master key msk (i.e., replacing some bits of the master key with the special ⊥ symbol). Additionally,
it must be the case that the PRF evaluation algorithm for any given input x be simplified into a circuit Cx
such that evaluating Cx on a master key msk and a constrained key ckf matches on all valid inputs (i.e., all
x such that f(x) = 1). Here evaluating the circuit on a constrained key is defined similar to that for partial
inputs as in the deletable KP-ABE setting, since a constrained key could have partially unset key bits (i.e.,
contain ⊥ symbols). All these notions are formally defined later in Section 4.

As mentioned previously, here we construct a deletion conforming CPRF for subset constraints. A subset
constraint family is defined over a universe of elements [N] := {1, . . . , N}, where input to the PRF is a set
S ⊆ [N] (which could be represented as an N -bit binary string), and each constraint function is associated
with another set T ⊆ [N] such that an input set S satisfies the constraint iff S ⊆ T . A CPRF scheme for

7As we pointed out before, Tsabary gives a construction for t-CNF (for constant t) constraint functions, but this can be viewed
as a special case of subset constraints.

5

such a constraint family can be built using a combinatorial strategy as introduced in [DKNY18], where the
CPRF master key msk consists of N + 1 regular PRF keys k0, k1, . . . , kN , and the CPRF output on a set S
is computed by first selecting all PRF keys ki such that the associated index i ∈ S, which is then followed
by independent PRF evaluation under all selected keys and finally XORing all the evaluations together.8

Concretely, the evaluator proceeds as follows:

CPRF(msk, S) = F (k0, S)
⊕
i∈S

F (ki, S).

Note that a constrained key for a subset T can be simply set as the corresponding subset of underlying
PRF keys, that is ckT = {k0} ∪ {ki}i∈T . Observe that for every input set S satisfying the constraint
set T (i.e., S ⊆ T), the constrained key ckT already contains the necessary PRF keys for performing the
PRF evaluation, thus correctness of evaluation for constrained keys follows immediately. Next, the proof of
adaptive constrained pseudorandomness security follows from a simple observation that a reduction algorithm
can simply guess an index i ∈ {0, 1, . . . , N} which is meant to denote the index of the regular PRF key that is
not required for answering the constrained key query, but is needed for evaluating the CPRF on the challenge
input. Since N is a polynomial, thus such a reduction strategy gives a proof of adaptive security with just
polynomial security loss.

Finally, to complete our overview of CPRFs, we just need to argue that our CPRF construction satisfies
the desired deletion conforming properties. This mostly follows by inspection of our aformentioned construc-
tion thereby aligning with our goal of simplicity and precision. Concretely, note that a constrained key ckT
can simply be deterministically obtained by “deleting” all the regular PRF keys ki for which i /∈ T . Also,
for any input set S, the corresponding CPRF evaluation circuit can be described as: first, it reads the input
wires (encoding the appropriate PRF key) corresponding to set S, and then evaluates the circuit F (·, S)
on each block of input wires, which is finally followed up by XORing them together. Observe that since
this circuit does not even read/touch the input wires corresponding to PRF keys ki for which i /∈ S, thus
evaluating the circuit on a master key msk and constrained key ckT is well-defined and gives the same output
whenever S ⊆ T . Thus, this completes the proof sketch for the above CPRF to be deletion conforming.
More details on our construction are provided in Section 7.

Building adaptively secure Ciphertext-Policy ABE. Moving on to our main transformation, our
approach is to decouple the adaptivity and functionality (delivering the message to users) requirements of
a CP-ABE scheme, and deal with them separately. Following Tsabary’s paradigm, we rely on our deletion
conforming CPRFs for enabling the reduction algorithm to be able to answer the adaptive key queries, while
still using the selectively secure deletable KP-ABE system for guaranteeing that the message is hidden. At
a very high level, the idea is to handle the adaptivity problem outside of the underlying KP-ABE system,
while using its attribute deletion capabilities to compute the CP-ABE challenge ciphertext from a KP-ABE
challenge ciphertext that was selectively obtained. Below we sketch our transformation.

The public parameters of the CP-ABE system contains the deletable (KP-)ABE parameters del.pp, while
the master secret key consists of a DCCPRF master key prf.msk as well as the deletable ABE master key
del.msk. Recall that in a CP-ABE system, each secret key is associated with an attribute string x ∈ {0, 1}N .
To sample a secret key for attribute x, the key generator first computes a tag value t as the CPRF evaluation
with input x, i.e. t = CPRF(prf.msk, x). Let Cx denote the simplified explicit circuit that performs the
CPRF evaluation on input x, i.e. Cx(key) = CPRF(key, x). The key generator then creates a policy circuit
fx,t, given the tag value t and circuit description Cx, as:

fx,t(z) =

{
1 if Cx(z) 6= t,

0 otherwise.

The (CP-ABE) secret key skx for attribute x now corresponds to a (KP-ABE) secret key for the above policy
circuit, i.e. skx = del.skfx,t . To encrypt a message m under a policy circuit g, the encryptor first samples

8In the construction the master key consists of N + 1 PRF keys instead of N keys just so that pseudorandomness holds for
empty set as well.

6

a simulated constrained key p̃rf.skg with g being used as the constraint function, and then it computes the
ciphertext as an KP-ABE encryption of message m with attribute string set as skg. The resulting decryption
algorithm is exactly the decryption algorithm of the underlying KP-ABE scheme.

First, note that, by the deletion conforming properties, evaluating Cx is well-defined and accurately
matches the corresponding CPRF output on every accepting constrained key. Thus with this observation
we get that correctness of the above construction follows from the fact that whenever g(x) = 1, then

fx,t(p̃rf.skg) = 1 with all but negligible probability, since Cx(p̃rf.skg) = t = Cx(prf.msk) happens only with
negligible probability by pseudorandomness of the underlying CPRF.

Next we describe the intuition behind the proof of adaptive security. Note that initially the challenge
ciphertext for policy g∗ with message m is computed as KP-ABE encryption of message m with a simulated

CPRF constrained key p̃rf.skg∗ as the attribute string. As a first step, we instead switch this to be a honestly
constrained key prf.skg∗ = Constrain(prf.msk, g∗). Since the CPRF satisfies the adaptive key simulation
property, thus this change will be indistinguishable. Note that it is important that the CPRF is adaptively
secure for this reduction to work since to answer the pre-challenge key queries, the reduction algorithm needs
to query for the respective CPRF evaluations. Next, by the deletion conforming property of the constrained
PRF scheme, we have that the constrained key prf.skg∗ can be computed by simply deleting certain specific
key bits of the master key prf.msk. Let Ig∗ denote such a set of indices, i.e. prf.skg∗ = Restrict(prf.msk, Ig∗).
By relying on the deletion indistinguishability property of the KP-ABE scheme, we get that the challenge
ciphertext can instead be computed as first encrypting the message m under attribute string prf.msk, and
then deleting the attribute bits as specified by set Ig∗ by running the KP-ABE deletion algorithm. Finally,
since the attribute string prf.msk is sampled at the beginning of the security game, thus prf.msk can be
selectively specified to the KP-ABE challenger thereby allowing us to argue that the message is also hidden.
Our construction and its proof is formally provided in Section 6.

Perfect correctness? Although at first glance it may seem that imperfect correctness is an inherent and
unavoidable feature of the above framework, we later show in Appendix B that this is not the case where we
provide an alternate construction which is perfectly correct. Very briefly, our idea is to have two deletable
ABE sub-systems working in parallel, instead of just one, where both the ciphertexts and secret keys contain
two copies (one under each ABE sub-system). The only difference is that while sampling a secret key under
both the systems independently, the key generator uses two distinct tag values, where one of the tag values
is computed as is now, whereas the other tag value will be its complement. Such a trick gets around the

imperfect correctness problem since it can never happen that Cx(p̃rf.skg) = t0 as well as Cx(p̃rf.skg) = t1
where t0, t1 are the complementary tag pairs. It turns out that the proof of adaptive security now is more
involved, as we need to first use the existing proof structure to erase the information about the challenge
message from the first deletable ABE sub-ciphertext, then we would have to undo correlations created
between parts of the challenge ciphertext and secret keys, and finally use a similar proof structure to erase
the information about the challenge message from the second deletable ABE sub-ciphertext as well.

Another interpretation. Abstractly, the deletion paradigm described above can be interpreted as a mechanism
to selectively activate the trapdoors embedded inside the secret keys such that whenever trapdoor is activated
then the challenger can simulate the secret keys for all possible attributes. The property such simulated keys
satisfy is that they are indistinguishable from honestly sampled secret keys as long as the challenge policy
does not accept the corresponding key attribute. On a more intuitive level, one could also observe some
similarities between the above framework and the Dual System methodology [Wat09], where switching from
a simulated CPRF key to an honestly constrained CPRF key could be comparable to moving from a normal
to a semi-functional ciphertext, and the secret keys are already sampled in the semi-functional mode.

Deleting attributes in [GPSW06, Boy13]. Finally, we show that existing ABE schemes by Goyal et
al. (GPSW) [GPSW06] from bilinear maps, and by Boyen [Boy13] from LWE9 already lie in the class of

9We want to remind the reader the existence of an attack [ABN+20] on Boyen’s ABE scheme. Deletions in Boyen’s scheme are
merely provided for illustrative purposes in Appendix D.

7

ABE schemes with deletable attributes, thereby displaying the generality of our framework. Below we give
an overview of our deletion algorithms. More details are provided later in Section 8, where we also show that
a KP-ABE scheme with deletable attributes for monotonic access structures can be generically upgraded to
non-monotonic log-depth circuits (i.e., NC1).

Deletions in [GPSW06]. First, we look at the bilinear map based ABE construction by GPSW. They
proposed a KP-ABE scheme for monotone access structures and proved its security under the Decisional
Bilinear Diffie-Hellman (DBDH) assumption that can also be readily adapted to a scheme provably secure
under the Search Bilinear Diffie-Hellman assumption. The public parameters in the GPSW scheme contain
n group elements in the base group {Ti}i∈[n] and one group element in the target group K, where n denotes
the length of the attributes. A ciphertext encrypting a message m under an attribute x ∈ {0, 1}n is of the
following form:

ct = (m ·Ks, {T si }i∈[n]:xi=1),

where s is a random exponent. Basically the term T si encodes the i-th bit of the attribute, and during de-
cryption the algorithm pairs the ciphertext component T si with a corresponding key component (iff the policy
circuit reads the i-th input wire) and performs a polynomial interpolation in the exponent to reconstruct
the masking term Ks.

Our observation is that to delete an attribute bit, say j, one could simply drop the term T sj from ciphertext
(if it exists). Multiple attribute bits could be deleted analogously. As long as the policy circuit does not read
the deleted input wire, the correctness for deleted ciphertexts follows immediately from the correctness of
GPSW scheme itself. Similarly, to encrypt a message m under a non-binary attribute string x ∈ {0, 1,⊥}n,
we simply treat each ⊥ symbol as a 0 bit, and therefore do not encode it in the ciphertext. Clearly,
the distributions of freshly computed ciphertexts and deleted ciphertexts (encrypting the same message m
and attribute x) are identical, thus deletion indistinguishability for GPSW is merely a statistical property.
Combining this with the fact that GPSW provides selective IND-CPA security, we obtain that GPSW
augmented with the deletion procedure is KP-ABE scheme with deletable attributes. Later in Appendix C
we also describe a hardcore bit variant of the above scheme whose security relies on the Computational
Bilinear Diffie-Hellman (CBDH) assumption.

Deletions in [Boy13]. Next, we look at the LWE-based ABE construction by Boyen. Boyen’s scheme is also
for monotone access structures and its security relies on the LWE assumption. The public parameters in
Boyen’s scheme consist ` + 1 matrices of appropriate dimensions (A0, {Ai}i∈[`]) and a vector u, where `
denotes the length of the attributes. Now a ciphertext ct encrypting a message bit msg under an attribute
x ∈ {0, 1}` is of the following form ct = (c0, c1,0, c1,1, . . . , c1,`), where

c0 = s> · u + ν0 + bq
2
c ·msg,

∀i ∈ [0, `], c1,i =

{
s> ·Ai + ν1,i if i = 0 or xi = 1,

ν1,i otherwise.

and s is a random secret vector, and ν0, {ν1,i}i∈[`] are sampled i.i.d. according to the LWE noise distribution.
Here the vector c1,i encodes the i-th bit of the attribute, and during decryption the algorithm combines the
ciphertext component c1,i with a corresponding key component (iff the policy circuit reads the i-th input
wire).

For deleting attributes in Boyen’s scheme, instead of dropping the respective ciphertext component, we
replace with freshly sampled noise. Concretely, to delete an attribute bit, say j, we replace the vector
c1,j in the ciphertext with a freshly sampled noise vector ν′1,i. Multiple attribute bits could be deleted

analogously.10 And as for our augmented GPSW scheme, during encryption we treat each ⊥ symbol as a
0 bit, and the correctness and deletion indistinguishability of the resultant follows either immediately from
Boyen’s scheme or by inspection.

10We could also drop the deleted ciphertext components instead of replacing them with LWE noise, however for ensuring
consistency with Boyen’s scheme we keep it this way.

8

Recent Independent Work Recently, Katsumata, Nishimaki, Yamada, and Yamakawa (KNYY) [KNYY20]
gave an exciting construction showing how to expand the framework of [Tsa19] to encompass an inner prod-
uct encryption and Fuzzy IBE functionality within the LWE setting. An important insight was showing that
a specific cryptosystem could relax the earlier conforming property to just functional equivalence and thus
leverage a particular constrained PRF of [DKN+20] to achieve greater functionality.

In contrast, our work shows how to relax the conforming property to deletion so that it is realizable in
a broader setting that includes bilinear maps. But we show that is still sufficient to maintain the t-CNF
functionality. KNYY show that in the LWE setting one can strengthen the framework to handle a broader
class of LWE specific constrained PRFs. The works were performed independently.

Comparing techniques with [Tsa19]. We conclude by giving some further technical comparisons be-
tween our framework and the earlier work of Tsabary [Tsa19] that we build upon. Our work follows a
similar pathway which is to leverage adaptive security of constrained PRFs (with special properties) inside
a key-policy ABE scheme (with special properties) to achieve an adaptively secure ciphertext-policy ABE
scheme, but differences lie in the flavour of these special properties required from the underlying constrained
PRF and key-policy ABE systems. Tsabary started with the LWE-based ABE construction of Boneh et
al. [BGG+14], and using the homomorphic properties of the underlying ABE scheme, Tsabary developed
a framework for partial ciphertext evaluation and a circuit splitting/composition abstraction, wherein the
ABE scheme allows a user to encrypt messages under partially evaluated attributes such that they are indis-
tinguishable from partially evaluated ciphertexts encrypting same message under the original (unevaluated)
attribute. Concretely, [Tsa19] relies on the fact that for any attribute x and circuit C, one could compute
ciphertexts of the form: ct0 = Enc(pp,m, x), ct1 = Enc(pp,m,C(x)) such that given a secret key skC̃ for

some circuit C̃ s.t. C̃(x) = 1, a user can not only decrypt ciphertexts of the form ct0, but it can also decrypt

ciphertexts of the form ct1 as long as there exists another circuit C ′ with the semantics that C̃(·) = C ′(C(·))
that the decryptor knows. Here the equality between the circuit C̃ and the composition of C,C ′ mandates
the resultant ‘gate-by-gate’ circuit descriptions must be identical. With such an ABE scheme with these
special properties as the centerpiece, [Tsa19] built a constrained PRF that conforms with the necessary
circuit splitting/composition semantics. Very briefly, [Tsa19] required that the PRF evaluation circuit with
the input hardwired can be split into two sub-circuits such that one of those sub-circuits can be used during
generating the CP-ABE ciphertext. Combining all these things in an extremely careful manner gives the
desired result of an adaptively secure CP-ABE scheme for subset policies.

Our approach, on the other hand, is to skip the entire partial evaluation and circuit splitting/composition
framework, and instead go with a simpler abstraction of input deletion while also demanding (as part of our
definitional framework) an explicit descriptions for all the circuits used throughout the analysis.

2 Preliminaries

Notation. Let PPT denote probabilistic polynomial-time. We denote the set of all positive integers upto
n as [n] := {1, . . . , n}. Also, we use [0, n] to denote the set of all non-negative integers upto n, i.e. [0, n] :=
{0} ∪ [n]. Throughout this paper, unless specified, all polynomials we consider are positive polynomials.
For any finite set S, x ← S denotes a uniformly random element x from the set S. Similarly, for any
distribution D, x ← D denotes an element x drawn from distribution D. The distribution Dn is used to
represent a distribution over vectors of n components, where each component is drawn independently from
the distribution D.

For any n ∈ N, string x ∈ {0, 1,⊥}n and index set I ⊆ [n], let Restrict(x, I) denote the string x̃ ∈
{0, 1,⊥}n such that

∀i ∈ [n], x̃i =

{
xi if j /∈ I,
⊥ otherwise.

9

where xi and x̃i denote the ith elements of strings x and x̃, respectively. For any string x ∈ {0, 1,⊥}n,
let BotSet(x) denote the subset of indices in [n] such that for every i ∈ BotSet(x), xi = ⊥ and for every
i /∈ BotSet(x), xi ∈ {0, 1}. Formally, BotSet(x) := {i ∈ [n] : xi = ⊥}.

Circuit notation. Also, throughout the paper we use the circuit model of computation. Consider any circuit
C : {0, 1}n → {0, 1} that takes n-bits of input and outputs a single bit. For any circuit C, we define
Unsupported(C) ⊆ [n] to be set of indices i ∈ [n] such that the circuit C does not use on the ith input wire
(i.e., C does not read the ith input bit).11

Lastly, we use CEval to denote an “expanded” notion of circuit evaluation. The algorithm CEval takes
as input a circuit C : {0, 1}n → {0, 1}m, and a string x ∈ {0, 1,⊥}n, and it first checks that BotSet(x) ⊆
Unsupported(C). If the check fails, it outputs the all-zeros string 0m; otherwise it evaluates the circuit C on
string x, and outputs the same result as the circuit which is C(x). Note that evaluating the circuit C on
string x (that could possibly contain non-binary input bits) is well-defined in the last step, since the evaluator
CEval only runs the circuit C after its checks that BotSet(x) ⊆ Unsupported(C), and thus we know that if
the check succeeds then all the input wires/bits read by circuit C are defined and not set as ⊥. Formally,
CEval can be defined as:

CEval(C, x) =

{
C(x) if BotSet(x) ⊆ Unsupported(C),

0m otherwise.

2.1 Pseudorandom Functions

A pseudorandom function (PRF) consists a pair of algorithms Setup and Eval with the following syntax:

Setup(1λ, 1n)→ sk. The setup algorithm takes as input the security parameter λ and input length parameter
n, and outputs a secret key sk.

Eval(sk, x)→ y. The evaluation algorithm, on input the secret key sk and string x ∈ {0, 1}n, outputs a bit
string y ∈ {0, 1}m. Here m = m(λ) denotes the output length of the PRF.

Definition 2.1 (Pseudorandomness). A PRF scheme PRF = (Setup,Eval) is said to be secure if for every
stateful PPT adversary A, there exists a negligible function negl(·) such that for all λ, n ∈ N, the following
holds:

Pr

AEval(sk,·)(rb) = b :
sk← Setup(1λ, 1n), b← {0, 1}

x∗ ← AEval(sk,·)(1λ, 1n)
r0 ← {0, 1}m, r1 = Eval(sk, x∗)

 ≤ 1

2
+ negl(λ),

where A must not query the challenge input x∗ to the evaluation oracle Eval(sk, ·).

3 Key Policy Attribute-Based Encryption with Deletable Attributes

In this section, we introduce the notion of Key Policy Attribute-Based Encryption (KP-ABE) with deletable
attributes. First, we provide the syntax, and later describe our definitions for KP-ABE with deletable
attributes.

11Note that our definition of the unsupported indices for a circuit C is very restrictive. Concretely, we say that an index
i ∈ Unsupported(C) iff as per the circuit description of C the ith input wire is unused/untouched. For instance, consider two

circuits C, C̃ which takes length 2-bit strings as inputs: C(x) = (x1∨¬x1)∧x2 and C̃(x) = x2. Here Unsupported(C) = ∅ and

Unsupported(C̃) = {1}, i.e. circuits C, C̃ have different unsupported indices even though they are functionally identical. This

is because as per the circuit description of C, it does use both input wires/bits; whereas C̃ ignores the first input wire/bit.

10

Syntax. A key-policy attribute based encryption (KP-ABE) scheme with deletable attributes for a class
of circuits C = {Cn}n∈N and message space M consists of the following PPT algorithms:

Setup(1λ, 1n)→ (pp,msk). On input the security parameter λ and attribute length n, the setup algorithm
outputs a set of public parameters pp, and master secret key msk.

KeyGen(msk, f)→ skf . On input the master secret key msk and a circuit f ∈ Cn, the key generation algorithm
outputs a predicate key skf .

Enc(pp, x,m)→ ct. On input the public parameters pp, an attribute string x ∈ {0, 1,⊥}n, and a message
m ∈ M, the encryption algorithm outputs a ciphertext ct. Note that here the attribute string x is
possibly a non-binary string as it could contain ⊥ symbols.

Dec(skf , ct)→ m/fail. On input a secret key skf and a ciphertext ct, the decryption algorithm either
outputs a message m or a special string fail (to denote decryption failure).

Delete(pp, ct, I)→ ct′. On input of the public parameters pp, a ciphertext ct and a set of indices I ⊆ [n],
the deletion algorithm outputs a modified ciphertext ct′.

We require such an ABE scheme to satisfy the following properties.

Correctness. Intutively, it says that the above scheme is correct if decrypting a ciphertext, which was
either directly computed using the encryption algorithm or generated by the ciphertext deletion algorithm,
outputs the correct message as long as the policy circuit accepts the attribute associated with the ciphertext.

Formally, an KP-ABE scheme with deletable attributes is said to be correct if for all λ, n ∈ N, f ∈ Cn,
m ∈M, x0 ∈ {0, 1,⊥}n and a sequence of indices sets I1, I2 · · · , Ik ⊆ [n], for any k ≥ 0, the following holds:

CEval(f, xk) = 1 =⇒ Pr

Dec(skf , ctk) = m :
(pp,msk)← Setup(1λ, 1n)

skf ← KeyGen(msk, f), ct0 ← Enc(pp, x0,m)
(∀i ∈ [k]) cti ← Delete(pp, cti−1, Ii)

 = 1,

where xk is defined by the following sequence of operations: xi ← Restrict(xi−1, Ii) for all i ∈ [k].

Security. For security, we have two requirements. First, we require the scheme to provide standard seman-
tic security as for standard ABE schemes. Here we consider both selective and adaptive IND-CPA security
definitions. Second, we introduce a notion of indistinguishability for ciphertexts with deleted attributes,
in which the adversary cannot distinguish between a ciphertext modified by the Delete algorithm and a
ciphertext directly encrypted from the same message with respect to the same attribute string after deletion.
Formally, they are defined as below.

Definition 3.1 (Adaptive IND-CPA Security). A KP-ABE scheme is adaptively secure if for every stateful
admissible PPT adversary A, there exists a negligible function negl(·) such that for all λ, n ∈ N, the following
holds

Pr

AKeyGen(msk,·)(ct) = b :
(pp,msk)← Setup(1λ, 1n)

((m0,m1), x∗ ∈ {0, 1}n)← AKeyGen(msk,·)(1λ, 1n, pp)
b← {0, 1}; ct← Enc(pp, x∗,mb)

 ≤ 1

2
+ negl(λ),

where the adversaryA is admissible as long as every secret key query f made byA to the oracle KeyGen(msk, ·)
satisfies the condition that f(x∗) = 0. Here x∗ is the challenge attribute chosen byA. Note that the adversary
must choose x∗ as a binary string, that is it must not contain any ⊥ symbols.12

12Note that since x∗ does not contain ⊥ symbols, thus f(x∗) is always well-defined and we do not need define the admissibility
constraint as CEval(f, x∗) = 0 instead.

11

Definition 3.2 (Selective IND-CPA Security). A KP-ABE scheme is said to be selectively secure if in
the above security game (see Definition 3.1), the adversary must instead declare the challenge attribute
x∗ ∈ {0, 1}n at the beginning of the game, that is even before it receives the public paramters pp from the
challenger.

Definition 3.3 (Deletion Indistinguishability). A KP-ABE scheme with deletable atrributes satisfies dele-
tion indistinguishability property if for every stateful PPT adversary A, there exists a negligible function
negl(·), such that for all λ, n ∈ N, the following holds

Pr

A(ctb) = b :

(pp,msk)← Setup(1λ, 1n), b← {0, 1}
(m,x ∈ {0, 1,⊥}n, I ⊆ [n])← A(1λ, 1n, pp,msk)

c̃t← Enc(pp, x,m), ct0 ← Delete(pp, c̃t, I)
x̃← Restrict(x, I), ct1 ← Enc(pp, x̃,m)

 ≤ 1

2
+ negl(λ).

Note that the attribute vector x chosen by the adversary A can contain ⊥ symbols.

4 Constrained PRFs: Defining Deletion Conformity

In this section, we first recall the notion of constrained PRFs (CPRFs) [BGI14, BW13, KPTZ13], and later
introduce our notion of deletion conforming CPRFs.

Syntax. A constrained PRF (CPRF) for constraint class F = {FN}N∈N consists of three PPT algorithms
(Setup,Constrain,Eval) with the following syntax:

Setup(1λ, 1N)→ msk. On input the security parameter λ and input length N , the setup algorithm outputs
a master secret key msk ∈ {0, 1}k. Let k = k(λ,N) denote the length of secret key, where k(·, ·) is an
a-priori fixed polynomial.

Constrain(msk, f)→ skf . On input a constraint function f ∈ FN and master secret key msk, the constrain
algorithm outputs a constrained key skf .

Eval(sk, x)→ y. The evaluation algorithm takes as input a (possibly constrained) secret key sk and a string
x ∈ {0, 1}N , and outputs a string y. Let m = m(λ,N) denote the length of the output string y for
some polynomial m(·, ·).13

Correctness of CPRF evaluation. A CPRF scheme is said to be correct if for all λ,N ∈ N, f ∈ FN ,
and x ∈ {0, 1}N , the following holds:

f(x) = 1 =⇒ Pr

[
Eval(msk, x) = Eval(skf , x) :

msk← Setup(1λ, 1N)
skf ← Constrain(msk, f)

]
= 1

Security. Next, we recall the notion of single-key adaptive pseudorandomness security for constrained
PRFs. Later on we also define the notion of key simulation security as defined in [Tsa19].

Definition 4.1 (Adaptive single-key constrained pseudorandomness). We say that a CPRF = (Setup,
Constrain,Eval) satisfies adaptive single-key constrained pseudorandomness security if for any stateful ad-
missible PPT adversary A there exists a negligible function negl(·), such that for all λ,N ∈ N, the following
holds:

Pr

AEval(msk,·),Constrain(msk,·)(rb) = b :
msk← Setup(1λ, 1N), b← {0, 1}

x∗ ← AEval(msk,·),Constrain(msk,·)(1λ, 1N)
r0 ← {0, 1}m, r1 = Eval(msk, x∗)

 ≤ 1

2
+ negl(λ).

13Here we consider a single PRF evaluation algorithm that could take as input a master key as well as a constrained key. Thus,
both the master and constrained keys are of same length k. Note that one could instead split it into two seperate evaluation
algorithms, however for ease of exposition we avoid it.

12

Here the adversary A is said to be admissible as long as it satisfies the following conditions — (1) it makes
at most one query to the constrain oracle Constrain(msk, ·), and its queried function f must be such that
f(x∗) = 0, (2) it must not send x∗ as one of its evaluation queries to Eval(msk, ·).

The above pseudorandomness security could be extended to collusion-resistant notions where the ad-
versary could make polynomially many constrain queries, however in this work we only require single-key
security. Next, we define key simulation security for CPRFs.

Definition 4.2 (Adaptive key simulation). We say that a CPRF = (Setup,Constrain,Eval) satisfies adaptive
key simulation security if there exists a PPT algorithm KeySim such that for any stateful admissible PPT
adversary A, there exists a negligible function negl(·), such that for all λ,N ∈ N, the following holds:

Pr

AEval(msk,·)(skb) = b :
msk← Setup(1λ, 1N), b← {0, 1}

f∗ ← AEval(msk,·)(1λ, 1N)
sk0 ← KeySim(1λ, 1N , f∗), sk1 ← Constrain(msk, f∗)

 ≤ 1

2
+ negl(λ).

Here the adversary A is said to be admissible if all its evaluation queries x ∈ {0, 1}N satisfy the condition
that f∗(x) = 0. That is, none of the queried inputs are satisfied by the constraint f∗.

Non-colliding property. A constrained PRF CPRF that satisfies key simulation security (Definition 4.2)
is said to be non-colliding if there exists a negligible function negl(·) such that for all λ,N ∈ N, every input
x ∈ {0, 1}N , constraint function f ∈ FN , the following holds:

Pr

[
Eval(msk, x) = Eval(sk′f , x) :

msk← Setup(1λ, 1N)
sk′f ← KeySim(1λ, 1N , f)

]
≤ negl(λ).

Later on in Appendix A, we show that if the CPRF satisfies (0-key) pseudorandomness security, then it
also satisfies the non-colliding property as long as the output length of the PRF is large enough. Additionally,
we also show that the adaptive single-key constrained pseudorandomness security in fact implies adaptive
key simulation security.

4.1 Deletion Conforming CPRFs

Now we define the deletion conforming property for CPRFs. Intuitively, it states that a constrained key in
such a CPRF scheme must be deterministically computable by simply deleting specific bits of the master
key (i.e., replacing some bits of the master key with a special ⊥ symbol). Formally we define it below.

Definition 4.3 (Deletion Conforming CPRF). We say that a constrained PRF scheme CPRF = (Setup,
Constrain,Eval) for a function class F = {FN}N∈N is a deletion conforming CPRF if the constrain algorithm
Constrain is deterministic, and there exists two polynomial time algorithms (CircuitGen,DeleteFunc) with the
following syntax and properties:

CircuitGen(1λ, 1N , x)→ Cx. The circuit generation algorithm is a deterministic algorithm that takes as input
the security parameter λ, length parameter N , and input string x ∈ {0, 1}N . It outputs the description
of a circuit Cx.

DeleteFunc(1λ, 1N , f)→ If . The key deletion algorithm is a deterministic algorithm that takes as input the
security parameter λ, length parameter N , and a constraint function f ∈ FN . It outputs a set of
indices If ⊆ [k], where k denotes the length of the master secret key.

We say that DCCPRF = (Setup,Constrain,Eval,CircuitGen,DeleteFunc) is a deletion conforming CPRF
if for all λ,N ∈ N, every function f ∈ FN , input x ∈ {0, 1}N , and master key msk ← Setup(1λ, 1N), the
following properties are satisfied.

1. Function deletion property: Constrain(msk, f) = Restrict(msk, If), where index set If is computed
as If = DeleteFunc(1λ, 1N , f).

13

2. Circuit evaluation property: Let Cx = CircuitGen(1λ, 1N , x). It states that Eval(msk, x) = Cx(msk)
irrespective of whether f(x) = 0/1, and Eval(skf , x) = CEval(Cx, skf) whenever f(x) = 1 where
skf = Constrain(msk, f) or skf ← KeySim(1λ, 1N , f).

Here recall that the Restrict and CEval operations are as defined in Section 2 — Restrict(s, I) denotes a string
after replacing the bits in s with indices corresponding to indices in set I with ⊥; and CEval(C, x) denotes
evaluating the circuit C on input x, but setting the circuit output to be the all zeros string 0m if the circuit
C depends on the input wires whose indices have ⊥ symbol in x.

5 Ciphertext Policy Attribute-Based Encryption

In this section, we recall the notion of Ciphertext Policy Attribute-Based Encryption (CP-ABE). First, we
provide the syntax and definitions, and later define the predicate class we study in this work.

Syntax. A ciphertext-policy attribute based encryption (CP-ABE) scheme for a class of predicates F =
{FN}N∈N and message space M consists of the following PPT algorithms:

Setup(1λ, 1N)→ (pp,msk). On input the security parameter λ and attribute length N , the setup algorithm
outputs a set of public parameters pp, and master secret key msk.

KeyGen(msk, x)→ skx. On input the master secret key msk and a key attribute x ∈ {0, 1}N , the key gener-
ation algorithm outputs a predicate key skx.

Enc(pp, f,m)→ ct. On input the public parameters pp, a predicate f ∈ FN , and a message m ∈ M, the
encryption algorithm outputs a ciphertext ct.

Dec(skx, ct)→ m/fail. On input a secret key skx and a ciphertext ct, the decryption algorithm either
outputs a message m or a special string fail (to denote decryption failure).

Correctness. A CP-ABE scheme is said to be correct if for all λ,N ∈ N, f ∈ FN , m ∈ M, x ∈ {0, 1}N ,
the following holds:

f(x) = 1 =⇒ Pr

[
Dec(skx, ct) = m :

(pp,msk)← Setup(1λ, 1N)
skx ← KeyGen(msk, x), ct← Enc(pp, x,m)

]
= 1.

Security. For security, we require the scheme to achieve adaptive security (see Definition 3.1). Note that
the admissibility condition for the adversary A in the security game is modified as follows. The adversary A
is admissible as long as every secret key query x ∈ {0, 1}N made by A to the oracle KeyGen(msk, ·) satisfies
the condition that f∗(x) = 0, where f∗ is the challenge predicate chosen by A.

6 Building Adaptively Secure CP-ABE

In this section, we build an adaptively secure CP-ABE scheme from a selectively secure KP-ABE scheme with
deletable attributes DelABE and a single-key adaptively secure deletion conforming CPRF scheme DCCPRF.

6.1 Construction

Let DelABE = (DelABE.Setup,DelABE.KeyGen,DelABE.Enc,DelABE.Dec,DelABE.Delete) be a KP-ABE scheme
with deletable attributes for predicate class C = {Cn}n∈N, and DCCPRF = (PRF.Setup,PRF.Constrain,
PRF.Eval,PRF.CircuitGen,PRF.DeleteFunc,PRF.KeySim) be a deletion conforming CPRF for constraint class
F = {FN}N∈N. We require the predicate class C to be sufficiently expressive such that it contains circuits

14

which perform comparison on top of a circuit generated by the PRF.CircuitGen algorithm. The requirement
will become evident after the construction.

Below we describe our CP-ABE scheme ABE = (Setup,KeyGen,Enc,Dec) for predicate class F = {FN}N∈N.

Setup(1λ, 1N)→ (pp,msk). The setup algorithm first runs DCCPRF setup to generate the corresponding
master secret key: prf.msk ← PRF.Setup(1λ, 1N). Let k = k(λ,N) denote the length of the master
secret key prf.msk. Next, it runs the deletable ABE setup algorithm DelABE.Setup to get deletable
ABE public parameters and master secret key as: (del.msk, del.pp)← DelABE.Setup(1λ, 1k).

It sets public parameters and master key as pp = del.pp,msk = (prf.msk, del.msk).

KeyGen(msk, x)→ sk. Let msk = (prf.msk, del.msk). The key generation algorithm first computes t =
PRF.Eval(prf.msk, x) and generates a circuit Cx : {0, 1}k → {0, 1}m as Cx = PRF.CircuitGen(x). Next,
it creates the following circuit (fx,t : {0, 1}k → {0, 1})

fx,t(z) =

{
1 if Cx(z) 6= t,

0 otherwise.
(1)

Finally, the algorithm runs the deletable ABE key generation to sample the secret key sk as sk ←
DelABE.KeyGen(del.msk, fx,t).

Enc(pp, f,m)→ ct. The encryption algorithm runs the CPRF key simulation to generate a simulated key as
sk′f ← PRF.KeySim(1λ, 1N , f). Next, it runs the deletable ABE encryption algorithm with attribute

sk′f as ct← DelABE.Enc(pp,m, sk′f), and outputs ciphertext ct.

Dec(sk, ct)→ m/fail. The decryption algorithm runs the deletable ABE decryption as z = DelABE.Dec(sk, ct),
and outputs z as decryption output.

6.2 Correctness and Efficiency

We start by proving that our construction satisfies the CP-ABE correctness condition, and also discuss the
efficiency of the resulting scheme. First, we prove correctness.

Lemma 6.1 (Correctness). If the deletable KP-ABE scheme DelABE satisfies correctness, and the deletion
conforming CPRF scheme DCCPRF satisfies non-colliding and circuit evaluation properties, then the CP-
ABE scheme ABE described above is correct.

Proof. We show that the scheme decrypts correctly with all but negligible probability. In Appendix B, we
will discuss how to boost the imperfect correctness to perfect correctness.

Fix any security parameter λ and attribute length N . For every predicate f ∈ FN , message m ∈ M,
and attribute x ∈ {0, 1}N , we have that the decryption algorithm Dec, on inputs ciphertext ct and se-
cret key sk, simply outputs z = DelABE.Dec(sk, ct). Consider (del.msk, del.pp) and prf.msk to be the
deletable KP-ABE and CPRF parameters sampled during setup. Note that the ciphertext ct is computed
as ct ← DelABE.Enc(del.pp,m, sk′f), where sk′f ← PRF.KeySim(1λ, 1N , f). Also, the secret key sk is sam-
pled as sk ← DelABE.KeyGen(del.msk, fx,t), where t = PRF.Eval(prf.msk, x) and fx,t is as defined in the
construction. First, observe that by correctness of the deletable KP-ABE scheme, if CEval(fx,t, sk

′
f) = 1,

then the decryption algorithm outputs message m correctly, i.e. z = m. Thus, to complete the completeness
argument, we just need to show that whenever f(x) = 1, then CEval(fx,t, sk

′
f) = 1 as well with all but

negligible probability (over the choice of random coins used during setup and encryption).
Recall that circuit fx,t(sk

′
f) = 1 if and only if Cx(sk′f) 6= t, where Cx = PRF.CircuitGen(x). Now if f(x) =

1, by the circuit evaluation property of deletion conforming CPRF, we get that Cx(sk′f) = PRF.Eval(sk′f , x).

Since t = PRF.Eval(prf.msk, x), thus by the non-colliding property, we know that the event Cx(sk′f) = t
happens with only negligible probability. Therefore, whenever f(x) = 1, the decryption algorithm outputs
message m with all but negligible probability. This completeness the correctness argument.

15

Next, we state the depth of the circuit fx,t for which we run the KP-ABE key generation algorithm.

Lemma 6.2 (Circuit depth). For every λ,N ∈ N, predicate f ∈ FN and attribute x ∈ {0, 1}N , we have
that depth(fx,t) = depth(Cx) +O(log λ).

Proof. This follows immediately from our construction. Note that the circuit depth of fx,t is depth of Cx
plus the depth of a circuit to check equality on two strings in {0, 1}m. Since m is a polynomial in the
security parameter λ, and equality check on two strings in {0, 1}m can be efficiently performed in depth
O(logm) = O(log λ) using XOR gates and OR gates, thus the lemma follows.

6.3 Security

Next, we prove that the CP-ABE scheme constructed above is adaptively secure. Formally, we prove the
following.

Theorem 6.3. If the deletion KP-ABE scheme DelABE satisfies selective IND-CPA security and deletion
indistinguishability (Definitions 3.2 and 3.3), and the deletion conforming CPRF scheme DCCPRF satisfies
adaptive key simulation security, and circuit evaluation and function deletion properties (Definitions 4.2
and 4.3), then the CP-ABE scheme ABE satisfies adaptive IND-CPA security as per Definition 3.1.

Proof. We prove the security via a sequence of hybrid games. We will first define the sequence of hybrid
games, and then show that they are indistinguishable for any PPT adversary.

Game 0. This corresponds to the original adaptive IND-CPA security game.

• Setup Phase. The challenger runs prf.msk← PRF.Setup(1λ, 1N) and (del.msk, del.pp)← DelABE.Setup(1λ,
1k). Next, it sets pp = del.pp and msk = (prf.msk, del.msk) and sends pp to the adversary A.

• Pre-Challenge Query Phase. The adversary A makes polynomially many key queries on attributes
it chooses. For each key query on attribute x ∈ {0, 1}N , the challenger proceeds as follows:

1. It computes t = PRF.Eval(prf.msk, x), and generates a circuit Cx : {0, 1}k → {0, 1}m as Cx =
PRF.CircuitGen(1λ, 1N , x). Next, it creates a circuit fx,t as described in Eq. (1).

2. Then it computes a secret key as sk← DelABE.KeyGen(del.msk, fx,t), and sends sk to A.

• Challenge Phase. A sends two messages (m0,m1) and a predicate function f∗ ∈ FN as its challenge
to the challenger. The challenger responds with ciphertext ct∗ to A, where ct∗ is computed as follows:

1. The challenger generates a simulated key as skf∗ ← PRF.KeySim(1λ, 1N , f∗).

2. Next, it chooses a random bit b ← {0, 1}, and computes the challenge ciphertext as ct∗ ←
DelABE.Enc(del.pp, sk′f∗ ,mb).

• Post-Challenge Query Phase. This is identical to the pre-challenge query phase.

• Guess. The adversary A finally sends the guess b′, and wins if b = b′.

Game 1. This game is identical to Game 0 except that in the Challenge Phase step 1, the challenger
encrypts the challenge ciphertext to a real constrained PRF key with respect to challenge function f∗ instead
of the simulated key.

• Challenge Phase. A sends two messages (m0,m1) and a predicate function f∗ ∈ FN as its challenge
to the challenger. The challenger responds with ciphertext ct∗ to A, where ct∗ is computed as follows:

1. The challenger generates a constrained key as skf∗ ← PRF.Constrain(prf.msk, f∗).

16

Game 2. This game is identical to Game 1 except that in the Challenge Phase step 1, the challenger
generates the real constrained PRF key skf∗ with respect to f∗ directly using the PRF.DeleteFunc and Restrict
algorithms on the PRF master secret key prf.msk.

• Challenge Phase. A sends two messages (m0,m1) and a predicate function f∗ ∈ FN as its challenge
to the challenger. The challenger responds with ciphertext ct∗ to A, where ct∗ is computed as follows:

1. The challenger first computes a set of indices If∗ := PRF.DeleteFunc(1λ, 1N , f∗), and then it
computes the constrained key as skf∗ = Restrict(prf.msk, If∗).

Game 3. This game is identical to Game 2 except that in the Challenge Phase step 2, the challenger
encrypts the message to the PRF master secret key prf.msk and then uses DelABE.Delete to modify the
ciphertext according the indices set If∗ .

• Challenge Phase. A sends two messages (m0,m1) and a predicate function f∗ ∈ FN as its challenge
to the challenger. The challenger responds with ciphertext ct∗ to A, where ct∗ is computed as follows:

1. The challenger first computes a set of indices If∗ := PRF.DeleteFunc(1λ, 1N , f∗).

2. Next, it chooses a random bit b← {0, 1}, and computes a KP-ABE ciphertext as ct′ ← DelABE.Enc(del.pp,
prf.msk,mb). Then it computes challenge ciphertext as ct∗ ← DelABE.Delete(del.pp, ct′, If∗).

Analysis. Next, we show by a sequence of lemmas that no PPT adversary can distinguish between any
two adjacent games with non-negligible advantage. In the last game, we show that the advantage of any
PPT adversary is negligible. This completes the proof of adaptive security of our CP-ABE scheme ABE.

Let A denote the PPT attacker playing the adaptive IND-CPA security game with the ABE challenger. In
the sequel, we denote the advantage of adversary A in Game i as AdviA(λ) = Pr[A wins in Game i] − 1

2 ,
where recall that A wins in Game i if it guesses the challenger’s bit b correctly.

Lemma 6.4. Assuming the key simulation security of the deletion conforming CPRF DCCPRF holds, then
for any PPT adversary A, there exists a negligible function negl1(·), such that for all λ,N ∈ N, we have that
Adv0A(λ)− Adv1A(λ) ≤ negl1(λ).

Proof. Suppose there exists an adversary A and a non-negligible function ε(·) such that Adv0A(λ)−Adv1A(λ) ≥
ε(λ), then we construct a reduction algorithm B such that B has non-negligible advantage in the key simu-
lation game of the deletion conforming CPRF. Below we describe our reduction algorithm B.

• In the setup phase, the key simulation challenger K runs PRF.Setup, and B runs DelABE.Setup to
sample a key pair as (del.pp, del.msk) ← DelABE.Setup(1λ, 1k). B then sends del.pp to A as the
public parameters.

• In the pre-challenge query phase, when A sends a key query on attribute x to B, B sends x to
the key simulation challenger K as its PRF evaluation query. K answers B with t, where t =
PRF.Eval(prf.msk, x). B uses t and x to generate circuit Cx and circuit fx,t as in Game 0; then
it computes the secret key sk← DelABE.KeyGen(del.msk, fx,t), and sends sk to A as the secret key for
attribute x.

• In the challenge phase, A sends the predicate function f∗ and messages m0,m1 to the reduction
algorithm B. B then forwards f∗ to K as its challenge constraint function. Let skf∗ denote K’s
response. B chooses as random bit b ← {0, 1}, and computes the challenge ciphertext as ct∗ ←
DelABE.Enc(del.pp, skf∗ ,mb), and sends ct∗ to A.

17

• The post-challenge phase is identical to the pre-challenge query phase. Finally, A outputs its guess b′,
and if b = b′ then B outputs 0 as its guess (to denote that skf∗ was a simulated key). Otherwise, B
outputs 1 as its guess.

First, note that A must be an admissible adversary in the CP-ABE security game, thus it must hold
that f∗(x) = 0 for all attributes x queried by A. Therefore, B is also an admissible adversary in the key
simulation game since it also satisfies condition that f∗(x) = 0 for all inputs x queried by B. Next, observe
that if the challenger K samples skf∗ as a simulated key, then B perfectly simulates Game 0 for A, otherwise
it simulates Game 1. Thus, B’s advantage in the key simulation game is at least ε(λ), which is non-negligible
and contradicts the key simulation security.

Lemma 6.5. Assuming the function deletion property of the deletion conforming CPRF DCCPRF holds,
then for any adversary A, parameters λ,N ∈ N, we have that Adv1A(λ) = Adv2A(λ).

Proof. This follows immediately from the function deletion property. Recall that function deletion property
states that for all λ,N ∈ N, every constraint function f∗ ∈ FN , and master key prf.msk← PRF.Setup(1λ, 1N),
we have that:

Pr

sk(1)f∗ = sk
(2)
f∗ :

If∗ = PRF.DeleteFunc(1λ, 1N , f∗)

sk
(1)
f∗ = PRF.Constrain(prf.msk, f∗)

sk
(2)
f∗ = Restrict(prf.msk, If∗)

 = 1.

Note that sk
(1)
f∗ and sk

(2)
f∗ exactly correspond to the CPRF keys as generated in Game 1 and Game 2,

respectively. Since they are identical, thus the adversary’s advantage is also identical in these two games.

Lemma 6.6. Assuming the deletion indistinguishability security of the deletable KP-ABE DelABE holds,
then for any PPT adversary A, there exists a negligible function negl2(·), such that for all λ,N ∈ N, we have
that Adv2A(λ)− Adv3A(λ) ≤ negl2(λ).

Proof. Suppose there exists an adversary A and a non-negligible function ε(·) such that Adv2A(λ)−Adv3A(λ) ≥
ε(λ), then we construct a reduction algorithm B such that B has non-negligible advantage in the deletion
indistinguishability game of the deletable KP-ABE. Below we describe our reduction algorithm B.

• In the setup phase, the deletion indistinguishability challenger D runs DelABE.Setup and sends the
deletable ABE parameters (del.pp, del.msk) to B. B then samples a CPRF master key as prf.msk←
PRF.Setup(1λ, 1N), and sends del.pp to A as the CP-ABE public parameters.

• In the pre-challenge query phase, A sends a key query on attribute x to B. B first evaluates the CPRF
as t = PRF.Eval(prf.msk, x), and uses t and x to generate circuits Cx and fx,t as in Game 2. It then
computes the secret key sk ← DelABE.KeyGen(del.msk, fx,t), and sends sk to A as the secret key for
attribute x.

• In the challenge phase, A sends the predicate function f∗ and messages m0,m1 to B. The reduction al-
gorithm B samples a random bit b← {0, 1}, and computes a set of indices If∗ = PRF.DeleteFunc(1λ, 1N , f∗),
and sends (mb, prf.msk, If∗) to the deletion challenger D. Let ct∗ denote the challenger’s response. B
forwards ct∗ to A as its challenge ciphertext.

• The post-challenge phase is identical to the pre-challenge query phase. Finally, A outputs its guess
b′, and if b = b′ then B outputs 0 as its guess (to denote that ct∗ was a freshly encrypted ciphertext).
Otherwise, B outputs 1 as its guess.

Note that if the challenger D computes ct∗ by first restricting the attribute to the constrained key and
then encrypting it directly using the KP-ABE encryption algorithm, then B perfectly simulates Game 2 for
A, otherwise it simulates Game 3. Thus, B’s advantage in the deletion indistinguishability game is at least
ε(λ), which is non-negligible and contradicts the deletion indistinguishability security.

18

Lemma 6.7. Assuming the selective IND-CPA security of the deletable KP-ABE DelABE holds and the
deletion conforming CPRF DCCPRF satisfies circuit evaluation property, then for any PPT adversary A,
there exists a negligible function negl3(·), such that for all λ,N ∈ N, we have that Adv3A(λ) ≤ negl3(λ).

Proof. Suppose there exists an adversary A and a non-negligible function ε(·) such that Adv3A(λ) ≥ ε(λ), then
we construct a reduction algorithm B such that B has non-negligible advantage in the selective IND-CPA
game of the deletable KP-ABE. Below we describe our reduction algorithm B.

• In the setup phase, B first samples a CPRF master key as prf.msk ← PRF.Setup(1λ, 1N), and
sends prf.msk as its challenge attribute to the selective IND-CPA challenger D. The challenger runs
DelABE.Setup and sends the deletable public parameters del.pp to B. B simply forwards del.pp to A
as the CP-ABE public parameters.

• In the pre-challenge query phase, when A sends a key query on attribute x to B, B computes tx =
PRF.Eval(prf.msk, x) and generates the circuit fx,tx using x and tx. Next, B sends secret key query on
predicate fx,tx to the challenger D. D replies B’s query with sk and B forwards sk to A as the secret
key for attribute x.

• In the challenge phase, A sends the predicate function f∗ and messages m0,m1 to B. B sends
(m0,m1) to D. Let ct′ denote the KP-ABE challenge ciphertext sent by D. B first computes
the index set If∗ = PRF.DeleteFunc(1λ, 1N , f∗), and then computes challenge ciphertext as ct∗ ←
DelABE.Delete(del.pp, ct′, If∗). B sends ct∗ to A as its challenge ciphertext.

• The post-challenge phase is identical to the pre-challenge query phase. Finally, A outputs its guess b′,
and B outputs the same bit b′ as its guess.

First, note that for each key query on attribute xmade byA, we have that Cx(prf.msk) = PRF.Eval(prf.msk, x).
This follows from the circuit evaluation property of the deletion conforming CPRF. Since tx = PRF.Eval(prf.msk, x),
thus by definition of the circuit fx,tx (see Eq. (1)), we have that fx,tx(prf.msk) = 0 for every attribute x.
Thus, the reduction algorithm B is an admissible adversary in the selective IND-CPA game. Next, observe
that B perfectly simulates Game 3 for A, therefore B’s advantage in the selective IND-CPA game is at
least ε(λ), which is non-negligible and contradicts the selective IND-CPA security of the deletable KP-ABE
system.

Combining Lemmas 6.4 to 6.7, the Theorem 6.3 follows.

7 Deletion Conforming CPRFs for Subset Constraints

In this section, we build an adaptively secure deletion conforming constrained PRF scheme for subset
constraints from a regular PRF scheme PRF. We start by describing the constraint class {FN}N∈N that
we study in this work. As stated in the introduction the construction below follows the lines of David-
son et al. [DKNY18] and [Tsa19].

Subset constraints. Here we focus on the class of subset constraints. At a high level, in this setting a
binary input string x ∈ {0, 1}N could alternatively be interpreted as a set Set(x) ⊆ [N] instead, where an
index i ∈ [N] lies in the set Set(x) iff xi = 1. Formally, we define the Set function as:

∀x ∈ {0, 1}N , Set(x) := {i ∈ [N] : xi = 1} .
Now every constraint in the class FN is associated with a length N binary string y, and the corresponding
constraint function Subsety is defined as follows:

∀x ∈ {0, 1}N , Subsety(x) = 1 ⇐⇒ Set(x) ⊆ Set(y).

Concretely, we have that FN = {Subsety}y∈{0,1}N . For ease of exposition, throughout this paper we simply

denote each constraint with only the associated string y instead of the entire function Subsety.

19

7.1 Construction

Let PRF = (PRF.Setup,PRF.Eval) be a standard PRF with key space
{
{0, 1}k(λ)

}
λ∈N and output length

m(λ), for polynomials k(·),m(·). Below we describe our constrained PRF scheme CPRF for subset constraints{
{Subsety}y∈{0,1}N

}
N∈N

.

Setup(1λ, 1N)→ msk. The CPRF setup algorithm samplesN+1 regular PRF keys as mski ← PRF.Setup(1λ, 1N)
for i ∈ [0, N]. The algorithm sets the CPRF master key msk as msk = (msk0,msk1, · · · ,mskN).

Throughout, we interpret the key msk as length (N +1) ·k bit string which is divided into N +1 blocks
of k bits each, where k = k(λ). Also, let m = m(λ)

Constrain(msk, y)→ sky. Let msk = (msk0,msk1, · · · ,mskN). The constrain algorithm sets the constrained
key sky as the master key msk with blocks of regular PRF keys omitted as per constraint y ∈ {0, 1}N .
Concretely, the algorithm outputs constrained key as sky = (sky,0, sky,1, · · · , sky,N) where

∀i ∈ [0, N], sky,i =

{
mski if i = 0 or yi = 1,

⊥k otherwise.
(2)

Eval(sk, x)→ t. The evaluation algorithm inteprets the input key sk as sk = (sk0, sk1, · · · , skN) where each
sub-key ski ∈ {0, 1,⊥}k for i ∈ [0, N]. It first checks that for every i ∈ Set(x), ski ∈ {0, 1}k (that is, ski
is a binary string). If the check fails, it outputs an all zeros string 0m. Otherwise, it computes output
string t as

t =
⊕

i∈[0,N] s.t.
i=0 ∨ xi=1

PRF.Eval(ski, x).

Below we argue that the above construction satisfies correctness as well as achieves single-key adaptive
pseudorandomness security.

Correctness of CPRF evaluation. Fix parameters λ,N ∈ N, constraint y ∈ {0, 1}N , and input x ∈
{0, 1}N . We know that whenever Subsety(x) = 1 (i.e., the constraint is satisfied), then for all i ∈ [N] we
have that (xi = 1) → (yi = 1). In words, if the input x satisfies the constraint y, then for every position i
where xi = 1, the corresponding bit position of y is also 1.

Consider any master secret key msk = (msk0,msk1, · · · ,mskN) where each mski is sampled using the PRF
setup algorithm. Let sky = (sky,0, sky,1, · · · , sky,N) = Constrain(msk, y). By construction, we have that for
all i ∈ [0, N], sky,i = mski if i = 0 or xi = 1, otherwise sky,i = ⊥k. Since the CPRF only evaluates on
sky,i where i = 0 or xi = 1, thus the CPRF output is unchanged irrespective of whether the evaluator uses
master key msk or constrained key sky, i.e. Eval(sky, x) = Eval(msk, x) for all x such that Subsety(x) = 1.
This completes the correctness argument.

Adaptive single-key pseudorandomness security. Here we prove the following.

Theorem 7.1. If the PRF scheme PRF satisfies pseudorandomness security (Definition 2.1), then the CPRF
scheme CPRF satisfies adaptive single-key constrained pseudorandomness security as per Definition 4.1.

Proof. Suppose there exists an adversary A that has non-negligible advantage in the adaptive single-key
constrained pseudorandomness game with the CPRF challenger, then we construct a reduction algorithm
B such that B has non-negligible advantage in the standard PRF security game. Below we describe our
reduction algorithm B.

• In the setup phase, B first randomly picks an index j ← [0, N], and samples N PRF keys as mski ←
PRF.Setup(1λ, 1N) for all i ∈ [0, N] \ {j}.

20

• In the pre-challenge query phase, for answering an evaluation query x sent by A, B proceeds as follows.
If xj = 1, then B forwards x to the standard PRF challenger D as its evaluation query. Let v denote
the challenger’s response. If xj = 0, then B sets v = 0. B computes the CPRF output t as follows and
sends t to the adversary A.

t = v ⊕

 ⊕
i∈[0,N]\{j}

s.t. i=0∨xi=1

PRF.Eval(mski, x)

 . (3)

For answering a constrained key query y by A, the reduction algorithm B proceeds as follows. If
j ∈ {0} ∪ Set(y), then B aborts and guesses a random bit. Otherwise, B computes the constrained key
sky = (sky,0, sky,1, · · · , sky,N) as described in Eq. (2), and sends to A. Note that if B does not abort,
then it has all the required PRF keys mski for answering the constrained key query since it will be the
case that yj = 0.

• In the challenge phase, A sends challenge input x∗ to B. If x∗j 6= 1 or j 6= 0, then B aborts and guesses
randomly. Otherwise, B sends x∗ to the PRF challenger as its challenge query, and let v∗ denote the
challenger’s response. The reduction algorithm B computes the CPRF output t∗ using v∗ and PRF
keys {mski}i6=j as in Eq. (3). It sends t∗ to A as its challenge.

• The post-challenge phase queries are answered identical to that in the pre-challenge query phase.
Finally, A outputs its guess b′, and B forwards b′ to the challenger D as its guess.

Note that for any admissible adversary A, there must exist an index i ∈ [0, N] such that either — (1)
x∗i = 1 and yi = 0, where x∗ is the challenge input and y is the constrained key query, or (2) A makes no
constrained key queries. In case (1), with probability at least 1

N+1 , B’s random choice of index j matches the

special index i. While, in case (2), with probability 1
N+1 B chooses j = 0. Thus, we have that with probability

at least 1
N+1 B does not abort. Next, observe that whenever B does not abort, then B perfectly simulates

the single-key CPRF security game for A. Thus, if A’s advantage is at least ε(λ), then B’s advantage is also

at least ε(λ)
N+1 . Hence, the lemma follows.

7.2 Deletion Conforming Properties

In this section, we show that the constrained PRF construction CPRF described above is a deletion conforming
CPRF scheme. First, we describe the CircuitGen and DeleteFunc algorithms. Later on, we show that these
algorithms satisfy the deletion conforming properties as discussed in Section 4.

CircuitGen(1λ, 1N , x) → Cx. Let ∆x : {0, 1}k → {0, 1}m denote the PRF evaluation circuit that takes as
input a key key ∈ {0, 1}k and evaluates the PRF on input x using key. That is, ∆x := PRF.Eval(·, x).
The circuit generation algorithm outputs a circuit Cx : {0, 1}(N+1)·k → {0, 1}m where the circuit Cx
is described as follows:

• Let sk ∈ {0, 1}(N+1)·k represent the input to circuit Cx. Parse the input sk as N + 1 blocks of
PRF keys — sk = (sk0, sk1, · · · , skN), where ski ∈ {0, 1}k for all i ∈ [0, N]. (Note that this simply
means grouping the input wires to circuits into N + 1 disjoint blocks.)

• Circuit Cx ignores the input wires corresponding to all ski where xi = 0. And, for all remaining
input wires, it applies the circuit ∆x on every size k wire block. More concretely, it computes in
parallel ti = ∆x(ski) for all i ∈ {0} ∪ Set(x).

(Note that when we say it ignores the input wires, then we mean that the circuit does not depend
on those input wires. That is, all these input wires belong to the set Unsupported(Cx).)

21

• Next, Cx XORs all the computed m-bit strings {ti} together to output an m-bit string t. Con-
cretely, Cx applies an XOR gate (in parallel) to every two neighboring ti values obtained above,
then it again applies an XOR gate to the previously computed values, and continues until it
computes t. In words, it XORs ti values in a binary tree-like manner.

DeleteFunc(1λ, 1N , y)→ Iy. The deletion function outputs the following set of indices Iy ⊆ [(N + 1) · k]:

Iy =

{
j ∈ [(N + 1) · k] : yi = 0 where i =

⌈
j

k

⌉
− 1

}
.

Next, we argue that DCCPRF = (Setup,Constrain,Eval,CircuitGen,DeleteFunc) is a deletion conforming
CPRF as per Definition 4.3. Additionally we also discuss the depth of the circuits generated by the CircuitGen
algorithm below. Fix λ,N ∈ N, a constraint y ∈ {0, 1}N , and input x ∈ {0, 1}N . Consider any master secret
key msk = (msk0, · · · ,mskN) as sampled by the setup algorithm.

Circuit depth. Suppose the circuit depth of the evaluation circuit of the standard PRF PRF.Eval is d =
d(λ,N). Then we have that the depth of circuit Cx is d + O(logN). This follows from the circuit
description Cx as described in CircuitGen. Note that Cx consists of two layers of sub-circuits, where
initially in the lower layer of Cx we simply have the PRF evaluation circuit ∆x applied on the accepting
parts of the input key sk; and in the upper layer of Cx, we apply the XOR gates pair-by-pair and level-
by-level which forms a binary tree of XOR gates. Since there are at most N + 1 strings {ti}i in the
upper layer that Cx needs to XOR together, thus it has depth O(logN). Therefore the depth of the
Cx circuit is d+O(logN).

Function deletion property. First, note that the output of the constrain algorithm on inputs msk and y
is a secret key sky = (sky,0, · · · , sky,N), where if yi = 0 then sky,i = ⊥k, otherwise sky,i = mski.

Now we know that an index j ∈ Iy iff yd j
ke−1 = 0, where Iy = DeleteFunc(1λ, 1N , y). Thus, by

definition of the Restrict operation, we get that Restrict(msk, Iy) = sky = Constrain(msk, y) since
Restrict simply replaces the master key components to the bot string ⊥k wherever yi = 0.

Circuit evaluation property. For the case of circuit evaluation w.r.t. the master key msk, it follows
directly from our construction that Eval(msk, x) = Cx(msk). This is because circuits Eval(·, x) and Cx
do the exact same computation.

For a constraint y, we know that if Subsety(x) = 1 then for every i ∈ [N] wherever xi = 1 we also have
yi = 1. Thus Cx will not touch any input wires in a constrained key sky which are set as ⊥, i.e. we
have Iy ⊆ Unsupported(Cx). Therefore, Eval(sky, x) = CEval(Cx, sky) whenever Subsety(x) = 1 as the
associated circuits perform identical computation.

8 Deletable ABE from standard assumptions

In this section we show that [GPSW06] is already a KP-ABE scheme with deletable attributes. First, we show
that the KP-ABE schemes for monotone access structures in [GPSW06] have efficient deletion algorithms such
that the resulting scheme satisfies both the semantic security as well deletion indistinguishability properties.
Later on, we briefly elaborate the well-known approach for building a KP-ABE scheme for NC1 (i.e., log-
depth circuits) from any KP-ABE scheme for monotone access structures, and describe that it preserves the
deletion property of the underlying system.

8.1 Deletable ABE from Bilinear Maps via [GPSW06]

Goyal et al. (GPSW) [GPSW06] proposed a KP-ABE scheme for monotone access structures and proved its
security under the Decisional Bilinear Diffie-Hellman (DBDH) assumption [BF01]. Here we show that the
GPSW scheme, described in [GPSW06, Section 4], is also a deletable KP-ABE scheme for the same predicate

22

class. Let GPSW = (Setup,KeyGen,Enc,Dec) represent the KP-ABE construction provided in [GPSW06,
Section 4]. Formally, they proved the following.

Theorem 8.1 ([GPSW06, Theorem 1, Paraphrased]). If the Decisional Bilinear Diffie-Hellman (DBDH)
assumption holds, then the scheme GPSW is a selective IND-CPA secure scheme as per Definition 3.2.

Now we describe a simple deletion algorithm for the GPSW scheme, and argue that the augmented
GPSW scheme satisfies all the required properties described in Section 3. We start by briefly discussing
some notational changes that we make to the GPSW syntax.

Notation. For consistency with our ABE definitions, we interpret the attribute string as a bit string
x ∈ {0, 1}n, where as is the GPSW construction [GPSW06, Section 4] the attribute was parsed as a set
of subset of the attribute universe U = {1, 2, . . . , n}. Here n denotes the length of the attributes selected
during system setup. Note that this is mostly a syntactic change, and does not affect the GPSW scheme in
any significant way.

Below we recall the Setup and Enc algorithms as provided in [GPSW06, Section 4], and also describe our
Delete algorithm.

Setup(1λ, 1n)→ (pp,msk). The setup algorithm chooses a bilinear group G1 of prime order p. Let g denote
the generator of the group G1, and e : G1 × G1 → G2 be associated the bilinear map. It chooses a
random key exponent α ∈ Zp, and also chooses a random exponent per bit position of the attribute,
that is ti ← Zp for i ∈ [n].

It outputs the public parameters and master secret key as pp = (g, e(g, g)α, {gti}i∈[n]) and msk =
(α, {ti}i∈[n]).14

Enc(pp, x,m)→ ct. The encryption algorithm parses the public parameters as pp = (g,K, {Ti}i∈[n]), and an
attribute x ∈ {0, 1}n. It chooses a random exponent s ∈ Zp, and publishes the ciphertext as

ct = (x,m ·Ks, {T si }i∈[n]:xi=1).

Encrypting to attributes with ⊥ symbols. First, note that in the GPSW encryption algorithm the
input attribute string x is a binary string, that is x ∈ {0, 1}n. However, in our deletable ABE framework, we
allow the encryptor to choose attributes with ⊥ symbols, thus the attribute string x now lies in {0, 1,⊥}n
instead of {0, 1}n. Now our augmented encryption algorithm is identical to the above encryption algorithm,
that is the ciphertext is computed as

ct = (x,m ·Ks, {T si }i∈[n]:xi=1).

Note that previously the algorithm does not compute T si for all i wherever xi = 0. Now the augmented
encryption algorithm also does not compute T si for all i wherever xi = ⊥. That is, it treats ⊥ symbols as a 0
bit during encryption. Therefore, the deletion algorithm can simply delete the T si terms from the ciphertext
wherever i ∈ I to compute a corresponding deleted ciphertext. Formally, we describe it below.

Delete(pp, ct, I)→ ct′. The algorithm parses the ciphertext as ct = (x,E′, {Ei}i∈[n]:xi=1). It sets the output
ciphertext ct′ as

ct′ = (Restrict(x, I), E′, {Ei}i∈[n]\I: xi=1).

14The parameters also contain the bilinear map parameters, but here we don’t explicitly write it for simplicity.

23

Deletion Indistinguishability. First, we show that the augmented GPSW scheme AugGPSW = (Setup,
KeyGen,Enc,Dec,Delete) satisfies the deletion indistinguishability property. Below we prove a much stronger
statement which in turn implies deletion indistinguishability. Intuitively, we argue that, for every choice of
system parameters, the distribution of a freshly encrypted ciphertext and a (corresponding) deleted ciphertext
are identical.

Lemma 8.2. For every λ, n ∈ N, parameters (pp,msk) ← Setup(1λ, 1n), attribute x ∈ {0, 1}n, message
m ∈M, and index set I ∈ [n], the following two distributions are identical:

D1 =

{
ct :

x′ = Restrict(x, I)
ct← Enc(pp, x′,m)

}
, D2 =

{
ct′ :

ct← Enc(pp, x,m)
ct′ ← Delete(pp, ct, I)

}
.

That is, D1 ≡ D2.

Proof. The proof of this lemma immediately follows by inspection of the encryption and deletion algorithms
described above. Consider any λ, n, key pair (pp,msk), attribute x, message m and index set I. First, note
that the distributions D1 and D2 can be expanded as follows:

D1 = {(x′,m ·Ks, {T si }i∈S1) : x′ = Restrict(x, I), s← Zp, S1 = {i ∈ [n] : x′i = 1}} ,
D2 = {(x′,m ·Ks, {T si }i∈S2) : x′ = Restrict(x, I), s← Zp, S2 = {i ∈ [n] \ I : xi = 1}} .

Recall by definition of Restrict, we have that x′i = 1 if and only if xi = 1 and i /∈ I. Therefore, it follows
that D1 ≡ D2.

Correctness. Note that since a deleted ciphertext is identically distributed to a freshly encrypted cipher-
text, and also GPSW is a perfectly correct ABE scheme, thus correctness of our AugGPSW scheme follows.

Selective IND-CPA Security. Note that even though in our scheme, attribute vectors could contain ⊥
symbols (i.e., lie in {0, 1,⊥}n), the IND-CPA attacker is only allowed to specify a binary string as a challenge
attribute (i.e., it must lie in {0, 1}n) in the selective security game (Definition 3.2). Therefore, the selective
IND-CPA security proof of AugGPSW follows from selective IND-CPA security proof of GPSW.

Hence, combining above facts, Lemma 8.2 and Theorem 8.1, we obtain the following:

Theorem 8.3. If the Decisional Bilinear Diffie-Hellman (DBDH) assumption holds, then the scheme AugGPSW
is a KP-ABE scheme with deletable attributes that satisfies selective IND-CPA security as well as deletion
indistinguishability (Definitions 3.2 and 3.3).

Also, later on in Appendix C we describe how to get deletable ABE from Computational Bilinear Diffie-
Hellman (CBDH) assumption. It follows from a straightforward use of hardcore predicate on top of the
GPSW scheme.

8.2 Deletable ABE: Monotonic Access Structures to NC1

Suppose we start with a KP-ABE scheme for arbitrary polynomial-sized monotone boolean formulas, then
there is a well-known folklore transformation that gives us a KP-ABE scheme for log-depth circuits (NC1)
generically from the underlying scheme. The idea can be described as follows. First, the key generation
algorithm, on input a log-depth (non-monotone) circuit C, generates a polynomial-sized (non-monotone)
boolean formula fC that evaluates the same circuit. (Note that size of the formula fC grows exponentially
with the depth of circuit C, thus the same transformation does not work for larger depth circuits.) Now
the formula fC is a possibly non-monotone boolean formula, thus it could apply negation (¬) gates on non-
atomic formulae. Next, one using De Morgan’s identities can translate the non-monotone boolean formula
fC into another formula f̃C such that in the description of formula f̃C , negation gates are only applied on
input wires. In other words, formula f̃C can alternatively be interpreted as a monotone boolean formula

24

being applied on the literals. (Recall that a literal is an atomic formula or its negation, i.e. either an input
wire or its negation). With this observation, one could use KP-ABE scheme for monotone boolean formulas
to obtain a KP-ABE scheme for NC1.

Concretely, to initialize the KP-ABE scheme for NC1 circuits with n-bit inputs, the setup algorithm
runs the setup for the underlying KP-ABE scheme (for monotone boolean formulas) with 2n-bit inputs.
Intuitively, an attribute x ∈ {0, 1}n will be encoded as string y ∈ {0, 1}2n such that y2i−1, y2i = 1, 0 if
xi = 0, otherwise y2i−1, y2i = 0, 1 (for all i ∈ [n]). During encryption to attribute x, the encryptor computes
the ciphertext with attribute string y as described above. And, the key generator first computes the reduced
boolean formula f̃C : {0, 1}n → {0, 1} for the predicate circuit C as described previously. Next, it computes
a predicate key for a monotone boolean formula gC : {0, 1}2n → {0, 1} where the formula gC is exactly the
formula fC except whenever fC uses i-th input wire directly (i.e., xi) then gC uses 2i-th input wire instead
(i.e., y2i), whereas wherever fC uses the complete of i-th input wire (i.e., ¬xi) then gC uses (2i−1)-th input
wire instead (i.e., y2i−1). Note that correctness and IND-CPA security follows directly from the respective
properties of the underlying KP-ABE system.

It turns out that the above transformation preserves the deletion properties as well. Thus, if we start with
a deletable KP-ABE scheme for monotone boolean formulas, then the above folklore transformation gives a
deletable KP-ABE scheme for NC1 circuits. This follows from the fact that now the deletion algorithm for
the NC1 KP-ABE scheme deletes two underlying attributes instead of one. Concretely, on input an index
set I ⊆ [n], the deletion algorithm simply runs the monotone boolean formula KP-ABE deletion algorithm

with index set Ĩ ⊆ [2n], where Ĩ = {2i− 1, 2i}i∈I . In words, the deletion algorithm deletes encodings of
both literals from the underlying ciphertext. Now the deletion indistinguishability of the new scheme follows
from deletion indistinguishability of the underlying KP-ABE scheme.

Thus, combining this with Theorem 8.3, we get deletable KP-ABE schemes for NC1 circuits.

9 The Tsabary Framework

Our deletion framework builds upon the work of Tsabary [Tsa19]. In examining the work of [Tsa19] we
noticed two points of ambiguity in the framework which we detail below. We believe that both points can
be resolved by applying the correct interpretation or additional detail, however, we include the observations
below for the sake of completeness. We communicated these points to the author.

Potential mismatch between conforming PRF definion and construction. While defining the
concept of a conforming PRF in [Tsa19, Definition 3.1], the author use the circuit Uf→x : {0, 1}`f → {0, 1}k
to denote the constrained PRF evaluation circuit that takes as input a constrained key skf and outputs a
k-bit PRF output value on input x (which is hardwired). Later in [Tsa19, Section 3.1], they described their
PRF construction wherein the evaluation algorithm states that — “If f(x) = 0 then abort, o.w. note that
Sx ⊆ Sf and compute rx as in Eq. (4)”.

At this point there is a mismatch between the definition and construction. The definition only allows the
circuit to output k bits for the PRF output. However, the construction needs to be able to handle both a
normal output as well as indicating an abort. There is no room to do both with just k bits of output. It is
unclear what a circuit Uf→x should actually do when the abort condition (f(x) = 0) is triggered. Here are
a few possibilities:

1. Have the circuit Uf→x output some arbitrary value whenever the abort condition is triggered. This will
actually result in an insecure system. Suppose that whenever the abort is triggered then conforming
PRF outputs a fixed value c. With high probability this will be different from the value ‘r’ from
KeyGen on [Tsa19, page 14]. Thereby allowing one to decrypt when the abort condition is triggered.

2. Add an extra wire to indicate abort. So now the circuit will output k + 1 bits; k normal output bits
and an extra one to indicate whether abort was triggered. The decryption routine should then check
both that r 6= r′ AND the abort flag was not triggered. We believe that this path should be able to
make the framework work, however, it was not actually used.

25

3. On abort, one could set the output of the PRF to something like say the all zeros string 0k. Then the
logic of Section 4 could check that r 6= r′ AND the output is not 0k. This is basically the same idea as
above, but avoids the extra bit for aborting by designating the 0k string as special in some way.

The main point is that the framework seems like it can be made to work with either the second or third
strategy above (or maybe some other tweak). However, as it is there are ambiguities on what would actually
be done and the writeup as it is does not address this.

Potential ambiguities in proving gradual evaluation. Similarly in [Tsa19, Definition 3.1], when the
authors define the gradual evaluation property, they denote circuits Uσ→x, Uσ→f , Uf→x as performing the
appropriate PRF constraining/computation, and it is crucial that the circuit obtained by composing the
second and third circuits to be identical to the first circuit. Now in [Tsa19, Section 3.1], they provide their
PRF construction and claim that the corresponding circuits satisfy this property by virtue of the fact that
the evaluation circuit can be split into two layers.

At this point, there are some missing details about what the authors define the circuits to be, and how
precisely these sub-circuits are set. In a little more detail, they state that in the circuit Uσ→x, the first layer
chooses secret keys depending upon the input x, while the second layer computes the PRF using them as
well as XORing them in the end. And they claim that the circuit Uσ→f is the first layer, whereas Uf→x is
the second layer. Now there are some subtle issues here:

1. The circuit Uσ→f which performs the constraining operation does not exactly correspond to the first
layer, but instead some portion of the first layer. Recall that in their construction, Uσ→f selects some
of the base PRF keys depending upon f . Whereas Uf→x selects the remaining of the base PRF keys
depending upon input x, followed by layer 2 computation. Thus, layer 1 is split across these two
circuits.

2. Thus, the proof of gradual evaluation needs to be more fine-grained where the authors must argue why
composition of these two circuits matches the gate-by-gate description of Uσ→x circuit. Intuitively, the
part that needs extra care is the one responsible for selecting a PRF key.

3. More broadly, the subtle issue with the above style of argument is that it is not clear what the underlying
circuits are, and what does partial evaluation of a circuit look like (or, in other words, how is partial
hardwiring in a circuit performed). For instance, If you had a circuit say (a OR b) AND (c OR d) and
you hardwire say a = 1, then is the new circuit (c OR d) or is it (1 OR b) AND (c OR d). In the
current description, the authors seem to implicitly assume a mechanism for constructing such circuits
that provide the requisite structural guarantees, but they require additional interpretation from the
reader.

Acknowledgements. We thank Benedikt Wagner for pointing out a useful subtlety in the circuit evalu-
ation property in the definition of deletion conforming CPRFs.

References

[ABN+20] Shweta Agrawal, Rajarshi Biswas, Ryo Nishimaki, Keita Xagawa, Xiang Xie, and Shota Yamada.
Attacks on boyen’s attribute-based encryption scheme in tcc 2013. Personal communication, 2020.

[Att14] Nuttapong Attrapadung. Dual system encryption via doubly selective security: Framework,
fully secure functional encryption for regular languages, and more. In Advances in Cryptology -
EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages 557–577,
2014.

26

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil Pairing. In
Proceedings of the 21st Annual International Cryptology Conference on Advances in Cryptology,
CRYPTO ’01, 2001.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod
Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arith-
metic circuit ABE and compact garbled circuits. In Advances in Cryptology - EUROCRYPT
2014 - 33rd Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages 533–556, 2014.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom func-
tions. In Hugo Krawczyk, editor, Public-Key Cryptography PKC 2014, volume 8383 of Lecture
Notes in Computer Science, pages 501–519. Springer Berlin Heidelberg, 2014.

[Boy13] Xavier Boyen. Attribute-based functional encryption on lattices. In Amit Sahai, editor, Theory
of Cryptography, pages 122–142, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[BV16] Zvika Brakerski and Vinod Vaikuntanathan. Circuit-abe from lwe: unbounded attributes and
semi-adaptive security. In Annual International Cryptology Conference, pages 363–384. Springer,
2016.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In
Kazue Sako and Palash Sarkar, editors, Advances in Cryptology - ASIACRYPT 2013, volume
8270 of Lecture Notes in Computer Science, pages 280–300. Springer Berlin Heidelberg, 2013.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography, 1976.

[DKN+20] Alex Davidson, Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa.
Adaptively secure constrained pseudorandom functions in the standard model. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual
International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21,
2020, Proceedings, Part I, volume 12170 of Lecture Notes in Computer Science, pages 559–589.
Springer, 2020.

[DKNY18] Alex Davidson, Shuichi Katsumata, Ryo Nishimaki, and Shota Yamada. Constrained prfs for bit-
fixing (and more) from owfs with adaptive security and constant collusion resistance. Cryptology
ePrint Archive, Report 2018/982, 2018.

[Gen06] Craig Gentry. Practical identity-based encryption without random oracles. In EUROCRYPT
’06, volume 4004 of LNCS, pages 445–464, 2006.

[GH09] Craig Gentry and Shai Halevi. Hierarchical identity based encryption with polynomially many
levels. In Theory of Cryptography, 6th Theory of Cryptography Conference, TCC 2009, San
Francisco, CA, USA, March 15-17, 2009. Proceedings, pages 437–456, 2009.

[GKW16] Rishab Goyal, Venkata Koppula, and Brent Waters. Semi-adaptive security and bundling func-
tionalities made generic and easy. In Theory of Cryptography - 14th International Conference,
TCC 2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part II, 2016.

[GKW18] Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant traitor tracing from
learning with errors. In STOC, 2018.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299,
1984.

27

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Proceedings of the 13th ACM conference on
Computer and communications security, CCS ’06, 2006.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for
circuits. In STOC, 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits
from lwe. In Annual Cryptology Conference, 2015.

[KNYY20] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Adaptively secure
inner product encryption from LWE. In Shiho Moriai and Huaxiong Wang, editors, Advances in
Cryptology - ASIACRYPT 2020 - 26th International Conference on the Theory and Application of
Cryptology and Information Security, Daejeon, South Korea, December 7-11, 2020, Proceedings,
Part III, volume 12493 of Lecture Notes in Computer Science, pages 375–404. Springer, 2020.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Dele-
gatable pseudorandom functions and applications. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages 669–684. ACM, 2013.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters.
Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner product
encryption. In EUROCRYPT, pages 62–91, 2010.

[LW11] Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption. In EUROCRYPT,
pages 568–588, 2011.

[LW12] Allison B. Lewko and Brent Waters. New proof methods for attribute-based encryption: Achiev-
ing full security through selective techniques. In Advances in Cryptology - CRYPTO 2012 - 32nd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, pages
180–198, 2012.

[LW14] Allison B. Lewko and Brent Waters. Why proving HIBE systems secure is difficult. In Advances
in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings,
pages 58–76, 2014.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with general
relations from the decisional linear assumption. In CRYPTO, pages 191–208, 2010.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD,
USA, May 22-24, 2005, pages 84–93, 2005.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages 457–
473, 2005.

[Tsa19] Rotem Tsabary. Fully secure attribute-based encryption for t-cnf from LWE. In Advances in
Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2019, Proceedings, Part I, pages 62–85, 2019.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple assump-
tions. In CRYPTO, pages 619–636, 2009.

28

[Wee14] Hoeteck Wee. Dual system encryption via predicate encodings. In Theory of Cryptography - 11th
Theory of Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014.
Proceedings, pages 616–637, 2014.

A Constrained Pseudorandomness to Key Simulation and More

First, we show that if the CPRF satisfies (0-key) pseudorandomness security, then it also satisfies the non-
colliding property as long as the output length of the PRF is large enough.

Lemma A.1. If CPRF = (Setup,Constrain,Eval) satisfies constrained pseudorandomness security (Defini-
tion 4.1) and m = ω(log λ), where m is the output length and λ is the security parameter, then it also
satisfies the non-colliding property.

Proof. Suppose the CPRF does not satisfy the non-colliding property, then we can construct a PPT adversary
A which has non-negligible advantage in the pseudorandomness security game. For the sake of contradiction,
consider that CPRF does not satisfy non-colliding property, and let input x∗ and function f∗ be such that

Pr

[
Eval(msk, x∗) = Eval(sk′f , x

∗) :
msk← Setup(1λ, 1N)

sk′f ← KeySim(1λ, 1N , f∗)

]
≥ ε(λ)

for some non-negligible function ε(·).
Now consider the following attacker A. A first samples a simulated key as sk∗ ← KeySim(1λ, 1N , f∗),

and computes z = Eval(sk∗, x∗). Next, it sends x∗ as its challenge input to the CPRF challenger. Let y∗

denote the challenger’s response. The attacker A’s checks if y∗ = z, and outputs 1 as its guess (to denote y∗

is honest evaluation) if the check passes. Otherwise, it outputs a random bit as its guess.
Let us next analyze A’s advantage. First, note that if the challenger samples y∗ uniformly at random,

then Pr[A outputs 1] ≤ 1
2 + 1

2m . This follows from the fact that if y∗ 6= z, then A outputs a random bit, and
the event y∗ = z occurs with probability 1

2m . Second, note that if y∗ is the PRF output, then we have that
with at least ε probability it will be the case that y∗ = z (since CPRF does not satisfy non-colliding) and
A outputs 1. And, with at most 1− ε probability, it outputs a random bit. Thus, we get that in this case,
Pr[A outputs 1] ≥ 1

2 + ε
2 . Lastly, since we have that m = ω(log λ), thus A has has non-negligible advantage

(ε/2− negl(λ)) in the pseudorandomness security game. Hence, the lemma follows.

Key simulation from constrained pseudorandomness. Here we show that the adaptive single-key
constrained pseudorandomness security in fact implies adaptive key simulation security.

Lemma A.2. If CPRF = (Setup,Constrain,Eval) satisfies adaptive single-key constrained pseudorandomness
security (Definition 4.1), then it also satisfies the adaptive key simulation security (Definition 4.2).

Proof. We first define the key simulation algorithm KeySim(1λ, 1N , f) to do the following:

— Generate a fresh master secret key msk′ as msk′ ← Setup(1λ, 1N).

— Output the simulated key as sk′f ← Constrain(msk′, f).

We define a sequence of games Game0,Game1, · · · ,Gameq where q is the total number of queries made by
the adversary A. If A can have a non-negligible advantage difference between Gamei and Gamei+1, then we
can have an adversary B which runs A and has non-negligible advantage in the single-key adaptive security
game for CPRF. We denote the advantage of adversary A in Gamei as AdviA, which is Pr[A wins Gamei]− 1

2 .

Game0 : This corresponds to the original key simulation security game, in which the adversary makes
polynomially many (pre/post-challenge) evaluation queries {xj}j such that f∗(xj) = 0 for all j, where f∗ is
the challenge constraint adaptively chosen by A.

29

Gamei : This is identical to Game0, except the challenger now answers the first i queries with uniform
random values t← {0, 1}m, and the remaining queries are answered as before.

Claim A.3. If CPRF satisfies adaptive single-key constrained pseudorandomness security, then for any
PPT adversary A there exists negligible function negl(·), such that for every λ,N ∈ N, i ∈ [q], we have
Advi−1A − AdviA ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A that can have a non-negligible advantage difference between
Gamei and Gamei+1, then we can build a reduction algorithm B which has non-negligible advantage in the
single-key adaptive security game for CPRF. (For ease of exposition, we assume throughout the proof that
all the evaluation queries made by A are distinct. Note that this can be easily handled by the reduction
algorithm by storing all the query-response pairs and responding to any new query by first checking if it was
asked previously.)

The reduction algorithm B proceeds as follows. B answers the first i − 1 evaluation queries made by
A with uniform random values. For answering the i-th query xi, B forwards it to the CPRF challenger
as its challenge input. Let y∗ be the challenger’s response. B then sends y∗ to A as the corresponding
output. Next, to answer remaining evaluation queries (i + 1 to q), B forwards A’s evaluation query as its
own evaluation query to the challenger and sends back the challenger’s response to A. For answering the
key query f∗ made by A, B first samples a random bit b ← {0, 1}. If b = 0, it forwards f∗ to the CPRF
challenger as its key query, and sends back the challenger’s response to A. Otherwise, it samples a simulated
key as skf∗ ← KeySim(1λ, 1N , f∗), and sends skf∗ to A. (Note that the key query and evaluation queries
could be arbitrarily interleaved.) Finally, A outputs its guess b′. If b = b′, then B outputs 0 as its guess (to
signify that y∗ was the PRF output). Otherwise, B outputs 1.

First, note that whenever A is an admissible adversary as per the key simulation game, then B is also
an admissible adversary as per the constrained pseudorandomness game. This follows from the fact that
f∗(xi) = 0 for all inputs xi queried by A. Next, observe that if the challenger samples y∗ as a uniform random
value, then B perfectly simulates Gamei for A, otherwise it simulates Gamei−1. Thus, if Advi−1A − AdviA is
non-negligible, then B also has non-negligible advantage. The claim follows.

Claim A.4. For any PPT adversary A, there exists a negligible function negl(·), such that for all λ,N ∈ N,
we have that AdvqA(λ) = 0.

Proof. This follows from inspection and definition of our key simulation algorithm. Note that in Gameq,
all queries are answered with uniform random values. Thus, all the query responses are independent of the
master key. Since the simulated key and constrained key are sampled identically (with different keys), thus
the corresponding distributions are identical. Hence, the adversary has no advantage in distinguishing.

From Claim A.3 and Claim A.4, the Lemma A.2 follows.

B KP-ABE and DCCPRFs to CP-ABE: Preserving Perfect Cor-
rectness

In this section, we give an alternate construction for constructing CP-ABE such that it satisfies perfect
correctness. Note that the construction described in Section 6 does not achieve perfect correctness since
with negligible probability it could happen that the simulated key used in the ciphertext evaluates to the tag
value encoded in the secret key. Below we sketch a construction that avoids this problem. Our construction
draws inspiration from the perfectly correct PLBE scheme of Goyal et al. [GKW18, Appendix B].

30

B.1 Construction

Let DelABE = (DelABE.Setup,DelABE.KeyGen,DelABE.Enc,DelABE.Dec,DelABE.Delete) be a KP-ABE scheme
with deletable attributes for predicate class C = {Cn}n∈N, and DCCPRF = (PRF.Setup,PRF.Constrain,
PRF.Eval,PRF.CircuitGen,PRF.DeleteFunc,PRF.KeySim) be a deletion conforming CPRF for constraint class
F = {FN}N∈N. We require the predicate class C to be sufficiently expressive such that it contains circuits
which perform comparison on top of a circuit generated by the PRF.CircuitGen algorithm. The requirement
will become evident after the construction.

Below we describe our CP-ABE scheme ABE = (Setup,KeyGen,Enc,Dec) for predicate class F = {FN}N∈N.

Setup(1λ, 1N)→ (pp,msk). The setup algorithm first runs DCCPRF setup to generate the corresponding
master secret key: prf.msk ← PRF.Setup(1λ, 1N). Let k = k(λ,N) denote the length of the master
secret key prf.msk. Next, it runs the deletable ABE setup algorithm twice independently to obtain
deletable ABE parameters as: (del.mskb, del.ppb)← DelABE.Setup(1λ, 1k) for b ∈ {0, 1}.
It sets public parameters and master key as pp = (del.pp0, del.pp1),msk = (prf.msk, del.msk0, del.msk1).

KeyGen(msk, x)→ sk. Let msk = (prf.msk, del.msk0, del.msk1). The key generation algorithm first com-
putes t0 = PRF.Eval(prf.msk, x), sets t1 = t0 (i.e., t1 is bit-wise complement of t0), and gener-
ates a circuit Cx as Cx = PRF.CircuitGen(x). Next, it samples two secret keys sk0, sk1 as skb ←
DelABE.KeyGen(del.mskb, fx,tb) for b ∈ {0, 1} (where fx,tb is as defined in Eq. (1)). Finally, it outputs
sk = (sk0, sk1).

Enc(pp, f,m)→ ct. Let pp = (del.pp0, del.pp1). The encryption algorithm runs the CPRF key simulation
to generate a simulated key as sk′f ← PRF.KeySim(1λ, 1N , f). Next, it runs the deletable ABE encryp-

tion algorithm with attribute sk′f as ctb ← DelABE.Enc(del.ppb,m, sk
′
f) for b ∈ {0, 1}, and outputs

ciphertext ct = (ct0, ct1).

Dec(sk, ct)→ m. Let sk = (sk0, sk1) and ct = (ct0, ct1). The decryption algorithm runs the deletable ABE
decryption as zb = DelABE.Dec(skb, ctb) for b ∈ {0, 1}. It outputs z0 as decryption output if z0 6= fail,
otherwise it outputs z1.

Correctness. We start by proving that our construction satisfies the CP-ABE correctness condition.

Lemma B.1 (Correctness). If the deletable KP-ABE scheme DelABE satisfies correctness, and the deletion
conforming CPRF scheme DCCPRF satisfies non-colliding and circuit evaluation properties, then the CP-
ABE scheme ABE described above is perfectly correct.

Proof. Fix any security parameter λ and attribute length N . For every predicate f ∈ FN , message m ∈
M, and attribute x ∈ {0, 1}N , we have that the decryption algorithm Dec, on inputs ciphertext ct =
(ct0, ct1) and secret key sk = (sk0, sk1), computes zb = DelABE.Dec(skb, ctb) for both b ∈ {0, 1}. Consider
(del.mskb, del.ppb) for b ∈ {0, 1} and prf.msk to be the deletable KP-ABE and CPRF parameters sampled
during setup. Note that the ciphertext ctb is computed as ctb ← DelABE.Enc(del.ppb,m, sk

′
f), where sk′f ←

PRF.KeySim(1λ, 1N , f). Also, the secret key skb is sampled as skb ← DelABE.KeyGen(del.msk, fx,tb), where
t0 = PRF.Eval(prf.msk, x) and t1 = t0. First, observe that by correctness of the deletable KP-ABE scheme,
if CEval(fx,tb , sk

′
f) = 1, then the decryption algorithm outputs message m correctly, i.e. zb = m. Thus, to

complete the completeness argument, we just need to show that whenever f(x) = 1, then CEval(fx,tb , sk
′
f) = 1

for either b = 0 or b = 1.
Recall that circuit fx,tb(sk′f) = 1 if and only if Cx(sk′f) 6= tb, where Cx = PRF.CircuitGen(x). Now

if f(x) = 1, by the circuit evaluation property of deletion conforming CPRF, we get that Cx(sk′f) =

PRF.Eval(sk′f , x). Since t0 = PRF.Eval(prf.msk, x) and t1 = t0, thus we have that t0 6= t1, therefore we

have that it can never happen that Cx(sk′f) = t0 as well as Cx(sk′f) = t1 simultaneously. Therefore, when-
ever f(x) = 1, the decryption algorithm always outputs message m. Hence perfect correctness follows.

31

Security proof sketch. The proof of security builds on the proof of Theorem 6.3 provided in Section 6.3.
Here we sketch the high level idea. The proof again follows via a sequence of hybrid games. The first
game corresponds to the original adaptive IND-CPA security game. As in the proof of Theorem 6.3, we first
switch the constrained key skf∗ (used in the challenge ciphertext) to be an honestly computed constrained key
instead of a simulated key. This follows from adaptive key simulation security of the CPRFs. Next, we switch
the way challenge ciphertext ct∗ = (ct∗0, ct

∗
1) is computed. We start by computing ct∗0 as an encryption of all

zeros string, instead of encrypting the challenge message honestly. However, ct∗1 still encrypts the challenge
message. Such a hybrid jump is carried in a couple of steps where we start by relying on the deletion
indistinguishability property of the deletable KP-ABE scheme to change the way ct∗0 is encrypted (i.e., we
use ciphertext deletion algorithm), and then by using selective IND-CPA security of the KP-ABE scheme,
we can switch ct∗ from encrypting the challenge message to all zeros string.

Next, we switch the constrained key skf∗ back to being a simulated key. Then we switch the way tags t0
and t1 are computed while answering any secret key query. Now we compute t1 as t1 = PRF.Eval(prf.msk, x)
while setting t0 = t1. By relying on pseudorandomness security of the CPRF scheme, we can argue that
this is indistinguishable. Next, we use identical strategy (as used for ct∗0) to turn ct∗1 into an encryption of
an all zeros string. As before, this is performed by identical hybrid jumps where we first switch skf∗ to be a
honestly constrained PRF key, and then by relying on deletion indistinguishability and selective IND-CPA
of KP-ABE, we can make ct∗1 to encrypt the all zeros string as well. Thus, in the final hybrid game, the
challenge ciphertext ct∗ = (ct∗0, ct

∗
1) is independent of the challenge messages. Therefore, adaptive IND-CPA

security follows.

C Deletable ABE from CBDH

In this section, we describe a natural variant of the GPSW KP-ABE system [GPSW06] that has deletable
attributes while also provably secure under the Computational Bilinear Diffie-Hellman (CBDH) assump-
tion [BF01]. The idea is to simply use hardcore predicates on top of the GPSW scheme. Below we sketch
the GPSW-based Key Encapsulation Mechanism whose security is based on the CBDH assumption.
The GPSW Setup and KeyGen algorithms are unchanged. Below we describe the key encapsulation algorithm.

Enc(pp, x)→ (ct, key). The algorithm parses the public parameters as pp = (g,K, {Ti}i∈[n]), and an attribute
x ∈ {0, 1,⊥}n. It chooses a random exponent s ∈ Zp, randomness r for the hardcore predicate, and
publishes the ciphertext and KEM key as

ct = (r, x, {T si }i∈[n]:xi=1), key = HardCore(r,Ks),

where HardCore computes the hardcore bit.

Next, the deletion algorithm is defined analogous to as in Section 8.1.

Delete(pp, ct, I)→ ct′. The algorithm parses the ciphertext as ct = (r, x, {Ei}i∈[n]:xi=1). It sets the output
ciphertext ct′ as ct′ = (r,Restrict(x, I), {Ei}i∈[n]\I: xi=1).

Finally, the decryption is almost identical to GPSW decryption algorithm [GPSW06, Section 4.2], except
the algorithm now outputs the extracted KEM key instead of a message.

Dec(skf , ct)→ key/fail. The algorithm parses a secret key as skf = {Di}i and a ciphertext ct = (r, x, {Ei}i∈[n]:xi=1).
Here the secret key skf contains a group element per each leaf node as per the description of its asso-
ciated boolean formula f .

It runs the recursive DecryptNode procedure as described in the original GPSW construction using the
ciphertext and secret key components {Ei}i, {Di}i. Let F denote the final output of the DecryptNode
procedure. The algorithm outputs fail if the DecryptNode procedure fails, otherwise it outputs the
KEM key as key = HardCore(F).

32

Correctness. The proof of correctness immediately follows from the correctness proof provided in [GPSW06,
Section 4]. Note that the GPSW decryption algorithm first runs the decryption algorithm exactly as de-
scribed above, and follows that by a single group operation in the target group. For our correctness proof,
we can simply ignore the last group operation performed in GPSW decryption as the remaining is identical.

Security proof sketch. The proof of deletion indistinguishability is identical to that provided for Lemma 8.2.
Now for proving selective IND-CPA security under CBDH assumption, we first show that any successful IND-
CPA attacker on the above scheme can be reduced to obtain a successful attacker that can distinguish the
hardcore bit of a BDH challenge from a random bit. Then such a distinguisher can be used to guess the
BDH challenge with non-negligible probability by the standard hardcore bit extraction techniques.

D Deletable ABE from [Boy13]

In this section we show that [Boy13] is also a KP-ABE schemes with deletable attributes. As mentioned in
the introduction, we want to remind the reader the existence of an attack [ABN+20] on Boyen’s ABE scheme.
Deletions in Boyen’s scheme are provided for illustrative purposes, and to demonstrate wider applicability
of our framework. To instantiate our framework under LWE, we believe that one could show the [BGG+14]
scheme to be deletable.

D.1 Deletable ABE from LWE via [Boy13]

Boyen [Boy13] proposed a KP-ABE scheme for monotone access structures and proved its security under the
Learning with Errors (LWE) assumption [Reg05]. Here we show that Boyen’s scheme, described in [Boy13,
Section 4], is also a deletable KP-ABE scheme. Let Boyen = (Setup,KeyGen,Enc,Dec) represent the KP-ABE
construction provided in [Boy13, Section 4].

Now we describe our deletion algorithm for Boyen’s scheme. As in Section 8.1, we switch the set notation
for attributes to bit strings in the Boyen’s original scheme. Also, throughout this section, we use ` to denote
the length of attributes, and n instead denotes the dimension of the underlying lattice. Below we recall the
Setup and Enc algorithms as provided in [Boy13, Section 4], and then describe our Delete algorithm.

Setup(1λ, 1`)→ (pp,msk). The setup algorithm first chooses LWE parameters (q, n,m, χ) such that they
satisfy the required constraints.15 It then proceeds as follows:

1. Run algorithm TrapGen to sample ` matrices Ai ∈ Zn×mq for i ∈ [`] with trapdoor information as
(A, Ti)← TrapGen(1n, 1m, q) for i ∈ [`].

2. Select a uniformly random matrix as A0 ← Zn×mq .

3. Select a uniformly random vector as u← Znq .

4. Output the parameters as pp = ({Ai}i∈[`],A0,u), and msk = ({Ti}i∈[`]).16

Enc(pp, x,msg)→ ct. The encryption algorithm parses the public parameters as pp = ({Ai}i∈[`],A0,u), and

an attribute x ∈ {0, 1}`. It proceeds as follows:

1. Assemble an “encryption matrix” F ∈ Zn×(`+1)m
q , obtained as the concatenation of, for each

i ∈ [`], either Ai if xi = 1, or 0 if xi = 0, and matrix A0, as follows,

F = [F1 | · · · | F` | F0] , where ∀i ∈ [`], Fi =

{
Ai if xi = 1,

0 if xi = 0.
(4)

2. Select a uniformly random vector s← Znq .

15We suggest the reader to look at [Boy13] for discussion on how to sample the LWE parameters.
16The parameters also contain the LWE parameters, but here we don’t explicitly write it for simplicity.

33

3. Select a low-norm Gaussian noise scalar ν0 ← χ, and then compute:

c0 = (s> · u + ν0 + bq
2
c ·msg) mod q.

4. Select a low-norm Gaussian noise vector ν1 ← χ(`+1)m, where each component is sampled i.i.d.
according to the noise distribution χ, and computes:

c1 = (s> · F + ν1) mod q.

5. Output the ciphertext ct = (c0, c1).

Encrypting to attributes with ⊥ symbols. As in the case of our AugGPSW scheme, our augmented
encryption algorithm for Boyen’s scheme treats ⊥ symbols as a 0 bit during encryption. Concretely, it
assembles matrix F as described in Eq. (4), except it sets the sub-matrices Fi as:

∀i ∈ [`], Fi =

{
Ai if xi = 1,

0 if xi ∈ {0,⊥}.

The remaining encryption procedure proceeds identically. However, here the deletion algorithm does not
simply delete the ciphertext components in vector c1 wherever i ∈ I, but instead replaces the corresponding
vector components with freshly sampled noise terms. Formally, we describe it below.

Delete(pp, ct, I)→ ct′. The algorithm parses the ciphertext as ct = (c0, c1), where c1 ∈ Z(`+1)m
q . It proceeds

as follows:

1. Parse the vector c1 as [c1,1 | · · · | c1,` | c1,0] where each sub-vector c1,i ∈ Zmq . (That is, view c1
as a concatenation of (`+ 1) blocks of length m vectors.)

2. Compute a vector c′1 ∈ Z(`+1)m
q as follows:

c′1 =
[
c′1,1 | · · · | c′1,` | c1,0

]
, where

∀i ∈ I, c′1,i ← χm,
∀i ∈ [`] \ I, c′1,i = c1,i.

3. Output the deleted ciphertext as ct′ = (c0, c
′
1).

Deletion Indistinguishability. First, we show that the augmented GPSW scheme AugBoyen = (Setup,
KeyGen,Enc,Dec,Delete) satisfies the deletion indistinguishability property. As before, we prove a much
stronger statement which in turn implies deletion indistinguishability. Intuitively, we argue that, for every
choice of system parameters, the distribution of a freshly encrypted ciphertext and a (corresponding) deleted
ciphertext are identical.

Lemma D.1. For every λ, ` ∈ N, parameters (pp,msk) ← Setup(1λ, 1`), attribute x ∈ {0, 1}`, message
msg ∈ {0, 1}, and index set I ∈ [`], the following two distributions are identical:

D1 =

{
ct :

x′ = Restrict(x, I)
ct← Enc(pp, x′,m)

}
, D2 =

{
ct′ :

ct← Enc(pp, x,m)
ct′ ← Delete(pp, ct, I)

}
.

That is, D1 ≡ D2.

Proof. The proof of this lemma immediately follows by inspection of the encryption and deletion algorithms
described above. Consider any λ, `, key pair (pp,msk), attribute x, message msg and index set I. First, we

34

expand out the distributions D1 and D2 as follows:

D1 =

(c0, [c1,1 | · · · | c1,` | c1,0]) :

s← Znq , ν0 ← χ, ν1,i ← χm(∀i ∈ [0, `]),
x′ = Restrict(x, I), S1 = {i ∈ [`] : x′i = 1} ,
c0 = s> · u + ν0 + b q2c ·msg,
∀i ∈ {0} ∪ S1, c1,i = s> ·Ai + ν1,i,
∀i ∈ [`] \ S1, c1,i = ν1,i

 ,

D2 =

(
c0,
[
c′1,1 | · · · | c′1,` | c1,0

])
:

s← Znq , ν0 ← χ, ν1,i ← χm(∀i ∈ [0, `]),
S2 = {i ∈ [`] : xi = 1} ,
c0 = s> · u + ν0 + b q2c ·msg,
∀i ∈ {0} ∪ S2, c1,i = s> ·Ai + ν1,i,
∀i ∈ [`] \ S2, c1,i = ν1,i,
∀i ∈ I, c′1,i ← χm,
∀i ∈ [`] \ I, c′1,i = c1,i.

Recall by definition of Restrict, we have that x′i = 1 if and only if xi = 1 and i /∈ I. Therefore, it follows that
D1 ≡ D2 since the vectors c1,i for i ∈ {0} ∪ S1 are identically computed as s> ·Ai + ν1,i, and the vectors
c1,i for i ∈ [`] \ S1 are sampled i.i.d. according to the noise distribution χ in both D1 and D2. Here the
last statement follows from the fact that since each original noise value is sampled i.i.d, thus they can be
replaced with newly sampled noise values. This completes the proof.

Correctness. Note that since a deleted ciphertext is identically distributed to a freshly encrypted ci-
phertext, and also Boyen is a statistically correct ABE scheme, thus correctness of our AugBoyen scheme
follows.

Selective IND-CPA Security. As in the case of AugGPSW, selective IND-CPA security of our AugBoyen
scheme follows from selective IND-CPA security proof of Boyen. Thus, if [Boy13] is secure, then so is the
above ABE scheme with deletable attributes.

35

	Introduction
	Technical Overview

	Preliminaries
	Pseudorandom Functions

	Key Policy Attribute-Based Encryption with Deletable Attributes
	Constrained PRFs: Defining Deletion Conformity
	Deletion Conforming CPRFs

	Ciphertext Policy Attribute-Based Encryption
	Building Adaptively Secure CP-ABE
	Construction
	Correctness and Efficiency
	Security

	Deletion Conforming CPRFs for Subset Constraints
	Construction
	Deletion Conforming Properties

	Deletable ABE from standard assumptions
	Deletable ABE from Bilinear Maps via GPSW06
	Deletable ABE: Monotonic Access Structures to NC1

	The Tsabary Framework
	Constrained Pseudorandomness to Key Simulation and More
	KP-ABE and DCCPRFs to CP-ABE: Preserving Perfect Correctness
	Construction

	Deletable ABE from CBDH
	Deletable ABE from Boyen13
	Deletable ABE from LWE via Boyen13

