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Abstract

We study the round complexity of secure multiparty computation (MPC) in the challenging
model where full security, including guaranteed output delivery, should be achieved at the
presence of an active rushing adversary who corrupts up to half of parties. It is known that 2
rounds are insufficient in this model (Gennaro et al., Crypto 2002), and that 3 round protocols
can achieve computational security under public-key assumptions (Gordon et al., Crypto 2015;
Ananth et al., Crypto 2018; and Badrinarayanan et al., ASIACRYPT 2020). However, despite
much effort, it is unknown whether public-key assumptions are inherently needed for such
protocols, and whether one can achieve similar results with security against computationally-
unbounded adversaries.

In this paper, we use Minicrypt-type assumptions to realize 3-round MPC with full and
active security at the presence of honest-majority. Our protocols come in two flavors: standard
computational security and online-computational security with statistical everlasting security,
i.e., the protocol is secure against adversaries that are computationally unlimited after the pro-
tocol execution. Specifically, we prove the following results:

• (Statistical everlasting security) Every NC1 functionality can be computed in 3 rounds
given a hash function that is modeled as a random oracle. The random oracle can be
replaced with a common reference string (CRS) and a family of hash functions for which
it is hard to find inputs that are correlated under some explicit sparse algebraically-simple
relationR. We can further relax the assumption on the hash function to standard collision-
resistance if the adversary is only semi-rushing, i.e., in each round at least one, a-priory
unknown, honest party speaks after the adversary.

• (Computational security) Every efficiently-computable function can be realized in 3
rounds assuming non-interactive commitments (NICOM) and R-intractable hash func-
tion. The former assumption follows from the existence of injective one-way functions,
and the latter can be completely removed if the adversary is semi-rushing.
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1 Introduction

Interaction is a valuable and expensive resource in cryptography and distributed computation.
Consequently, a huge amount of research has been devoted towards characterizing the amount
of interaction, typically measured via round complexity, that is needed for various distributed
tasks (e.g., Byzantine agreement [LF82, DR85, FM85], coin flipping [Cle86, MNS16], and zero-
knowledge proofs [GK96, CKPR01]) under different security models. In this paper, we focus on
the problem of general secure-multiparty-computation (MPC) in the challenging setting of full
security (including guaranteed output delivery) with maximal resiliency. That is, even an active
(aka Byzantine or malicious) adversary that controls a minority (up to half) of the parties should
not be able to violate privacy or to prevent the honest parties from receiving a valid output. In
this setting, originally presented in the classical work of Rabin and Ben-Or [RB89], we assume that
each pair of parties is connected by a secure and authenticated point-to-point channel and that all
parties have access to a common broadcast channel, which allows each party to send a message to
all players and ensures that the received message is identical.

The round complexity of honest-majority fully-secure MPC protocols was extensively stud-
ied. The lower-bound of [GIKR02, GLS15] shows that two rounds are insufficient for this task
even when the parties are given access to a common reference string (CRS). In [AJL+12] a 5-round
protocol was constructed based on Threshold Fully-Homomorphic Encryption (TFHE) and Non-
Interactive Zero-Knowledge proofs (NIZK). An optimal round complexity of three, was later ob-
tained by [GLS15] in the CRS model by relying on a stronger variant of TFHE that can be based
on the learning with errors (LWE) assumption. Later in [ACGJ18, BJMS20], the CRS was removed
and LWE was replaced by weaker public-key primitives like general public-key cryptosystems
and two-round witness indistinguishable proofs (ZAPs). (The latter can be based on primitives
like trapdoor permutations [DN07] and indistinguishability obfuscation [BP15], or on intractabil-
ity assumptions related to bilinear groups [GOS12] and LWE [BFJ+20, GJJM20].)

The above results may give the impression that public-key assumptions are essential for
honest-majority fully-secure MPC. However, if one puts no restriction on the round complex-
ity, then Rabin and Ben-Or [RB89] prove that no assumptions are needed at all! They show that
any efficiently computable function can be securely computed with statistical security against
computationally-unbounded adversaries.1 Constant-round versions of this protocol are known
either with an exponential dependency in the circuit-depth (or space-complexity) of the under-
lying function [IK00], or with computational security under the weakest-known cryptographic
assumption: the existence of one-way functions [BMR90, DI05]. Moreover, for the special case of
3 parties (and single corruption), 3-round protocols were constructed by [PR18] based on injective
one-way functions.

This leaves a large gap between general-purpose optimal-round protocols to protocols with
larger round complexity, both in terms of the underlying assumptions and with respect to the
resulting security notion. We therefore ask:

Q1: Are public-key assumptions inherently needed for 3-round fully-secure honest-
majority MPC? Is it possible to replace these assumptions with symmetric-key assump-
tions, possibly in an idealized form (e.g., in the random oracle model)?

1Interestingly, perfect security is impossible to achieve in this setting as it requires strong honest majority of
2n/3 [BGW88].
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Q2: Is it possible to obtain 3-round fully-secure honest-majority MPC with some form
of unconditional security against computationally-unbounded adversaries?

We answer these questions to the affirmative. We show that 3-round MPC with full security at
the presence of honest-majority can be realized based on Minicrypt-type assumptions and present
variants of our protocol that achieve statistical everlasting security. To the best of our knowledge,
this is the first time that everlasting security is achieved in this model (fully-secure honest-majority
3-round protocols) regardless of the underlying assumptions. We continue with a detailed descrip-
tion of our results.

1.1 Our Contribution

It will be instructive to start by assuming that we are given an idealized symmetric-key primitive,
namely a random-oracle.

Theorem 1.1 (Informal). Given a hash function that is “modelled as a non-programable random oracle”,
every efficiently-computable functionality can be realized in 3 rounds with full security against an active
rushing adversary that corrupts a minority of the parties. Moreover, NC1 functions can be realized with
statistical everlasting security.

Everlasting security. The notion of statistical everlasting-lasting security [MU10] can be viewed
as a hybrid version of statistical and computational security. During the run-time, the adversary is
assumed to be computationally-bounded (e.g., cannot find collisions in the hash function) but after
the protocol terminates the adversary hands its view to a computationally-unbounded analyst
who can apply arbitrary computations in order to extract information on the inputs of the honest
parties.2 This feature is one of the main advantages of information-theoretic protocols: after-the-
fact secrecy holds regardless of technological advances and regardless of the time invested by the
adversary. It is important to mention that this is achieved without exploiting the “random oracle”
property of the hash function. That is, the computationally-unbounded analyst is allowed to read
the whole truth-table of the hash function.

The limitation to NC1. All our everlasting-security protocols are restricted to NC1. More gen-
erally, the computational complexity of these protocols grows exponentially with the depth or
space of the underlying function. This is expected since even for strictly-weaker notions of se-
curity (e.g., passive statistical security against a single corrupted party), it is unknown how to
construct efficient constant-round protocols for functions beyond NC1 and log-space. (In fact, this is
a well-known open problem that goes back to [BFKR90].)

1.1.1 Relaxing the Assumptions

We can replace the random oracle assumption by several different intractability assumptions, de-
pending on the level of security that is needed.

2Technically, in the UC-framework we allow the environment to output its view and require statistical indistin-
guishability between the real and ideal experiments. For details, refer to Appendix A.1.
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Relaxing the rushing property. Recall that a rushing adversary may delay sending the messages
of the corrupted parties in any given round until the honest parties send their messages in that
round; thus, the messages of the corrupted parties in a given round may depend on the messages
of the honest parties in the same round. In contrast, a non-rushing adversary must decide on what
messages the corrupted parties should send in any given round before seeing the honest parties’
messages in that round. The rushing model may seem over-pessimistic whereas the non-rushing
setting may be viewed as being over-optimistic. We introduce an intermediate model of semi-
rushing adversary whose ith round messages may depend on the ith messages of all but one honest
party (that can be selected by the adversary adaptively during the protocol and can be updated
from round to round). This notion of semi-rushing adversary seems reasonable in many scenarios
and we view it as a conceptual contribution of this work. In this model, we prove the following
theorem which replaces the random oracle with non-interactive commitments.

Theorem 1.2 (semi-rushing adversary). Assuming statistically-hiding NICOM, every NC1 function
can be realized in 3 rounds in the CRS model with full everlasting security against a semi-rushing adversary
that corrupts a minority of the parties.

Alternatively, assuming computationally-hiding NICOM with sub-exponential privacy, every
efficiently-computable function can be realized in 3 rounds in the plain model with full security against
a semi-rushing adversary that corrupts a minority of the parties.

Furthermore, both statements hold even against a rushing adversary if the underlying function is linear.

Statistically-hiding NICOMs necessitates the use of CRS and can be constructed based on
collision-resistance hash functions (CRH) [HM96, DPP98]3, whereas computationally-hiding
NICOMs can be constructed in the plain model based on injective one-way functions [Blu81,
Yao82, GL89] or even on standard one-way functions assuming worst-case complexity-theoretic
derandomization assumptions [Nao91, BOV03]. The requirement for sub-exponential privacy
is needed for technical reasons, and for this purpose it suffices to assume that the underlying
one-way function (or injective one-way function) cannot be inverted in polynomial-time with
more than sub-exponential probability. This seems to be a relatively mild assumption. (See Re-
mark A.15.)

For the last (“Furthermore”) part of the theorem, let us mention that even for linear functions,
3-round protocols are optimal and 2 rounds are insufficient [GIKR02]. (See Remark 3.13.)

Relaxing random oracle to correlation intractable hashing. In order to cope with rushing ad-
versaries, we need to employ some simple form of correlation-intractable hash functions [CGH04].
Unlike some of the previous instantiations of these primitive that require intractability against a
large (non-explicit) family of relations, we will only consider a single concrete relation. Specifically,
we need a family H of hash functions such that given a random hash function h ∈ H it is hard to
find a vector of inputs x that satisfies some explicit sparse relation Rh that has a simple algebraic
description. This type of assumption is similar in spirit to collision-resistance and is shown to
suffice for handling fully-rushing adversaries. (See Section 3.4 and A.2.)

3Indeed, this is the only use of CRS in our protocols. Using the CRH based instantiation, one can assume that the
CRS consists of a randomly selected hash function. Furthermore, this CRS can be selected in a single round by letting
each party select its own, sufficiently shrinking, CRH and by using the trivial CRH-combiner.
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Theorem 1.3 (rushing adversary). Assuming a family of R-intractable hash functions and a statistically-
hiding NICOM, every NC1 function can be realized in 3 rounds in the CRS model with full everlasting
security against a rushing adversary that corrupts a minority of the parties.

Moreover, if the NICOM is replaced with a computationally-hiding NICOM with sub-exponential pri-
vacy and security is downgraded to computational, then the theorem holds for any efficiently-computable
function and in the plain model (without a CRS).

It seems likely that practical hash functions are R-intractable. We further mention that a ran-
dom oracle satisfy this property (see Section A.2). In fact, each of the above ingredients can be
realized based on a hash function that is modeled as a random oracle and so Theorem 1.1 follows
from Theorem 1.3.

1.2 Our Techniques

To prove our results, we present a novel 3-round protocol that can be easily adopted to the various
settings that are described in the previous section. The protocol strongly relies on several ideas that
were introduced by [AKP20b, AKP20a] (AKP) in the context of round-optimal perfect/statistical
secure MPC at the presence of strong honest majority where the adversary can corrupt up to
t < n/3 parties. The current setting of t < n/2 introduces significant new challenges for which
we develop new techniques. We begin by recalling some high-level ideas from the literature of
information-theoretic MPC and concretely from [AKP20b, AKP20a].

1.2.1 Background

Like many MPC protocols, our protocol will have the following 3-phase structure: (1) Sharing
of the inputs via verifiable secret sharing (VSS); (2) Homomorphically computing the functionality
over the shares; and (3) Opening the outputs. (This is analogous to FHE-based protocols that
follow a similar Encrypt-Compute-Decrypt structure.) In fact, instead of computing the target
functionality g, we use the completeness result of [AKP20b] (building on [ABT19]) and compute a
degree-2 functionality f .

Tentative outputs and offline rounds. Recall that we have only 3 rounds of communication
to implement these 3 phases. However, even VSS alone takes at least 2 rounds [GIKR01]. We
bypass this problem by running the phases with some overlap. Specifically, we make an exten-
sive use of (1) tentative-output protocols that prepare a tentative version of the output in an early
round and only later, at the end, approve/reject/correct the tentative output; and (2) offline-phase
protocols that begin with an offline, input-independent, round and only later receive the inputs.
Consequently, we can shave some rounds by allowing partial overlap between sub-protocols that
would have been executed sequentially otherwise. As we will later see, in our setting, this solu-
tion introduces several technicalities, e.g., when tentative outputs turn to be invalid and when the
offline information yields selective-opening attacks.4

4In fact, even the task of formally capturing these worst-case scenarios is fairly complicated and is reflected in the
lengthy and somewhat involved definitions of the functionalities that capture our sub-protocols.
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Realizing the homomorphic computation. After the sharing phase, the parties hold a dis-
tributed encoding (secret-sharing) of the inputs. Roughly speaking, the encoding is based on
bivariate polynomials and may be viewed as a matrix whose ith row is being held (“owned”) by
the ith party and the jth entry of this row is being held by the jth party who will later use it
for consistency checks. Of course, the dealer (the owner of the corresponding input) has a full
view of this matrix. The task of homomorphically applying degree-2 computation over inputs
that were distributed by different parties is gradually reduced to simpler functionalities, e.g., lin-
ear functionalities and single-input functionalities that depend on inputs that arrive from a single
party.

In [AKP20b, AKP20a] these functionalities are further reduced to guided functionalities in which
the ith party, who owns the ith row of each of the shared values, guides a homomorphic compu-
tation on her rows. Each other party j guards the computation by forcing consistency with the
jth entry. In [AKP20a], it was shown that, in the statistical setting, such protocols can be based
on a Secure Computation with a Guide (SCG) primitive that can be implemented in a single round
(plus an offline input-independent round). Roughly, this primitive involves a Sender (the guide),
a designated Receiver and a Guard, the sender wishes to compute some information on its private
input and to send it to the receiver, whereas the guard who has some partial view of the sender’s
input, wishes to make sure that the computation is consistent with its patrial view. The SCG con-
struction of [AKP20a] is based on private simultaneous message (PSMs) protocols [FKN94] and it
achieves information-theoretic security.

1.2.2 Our Setting

As already mentioned, adopting the above framework to handle up to t < n/2 corruptions is a
non-trivial task. For example, noisy polynomial interpolation does not work in this setting and so
we cannot use error-correction. Roughly speaking, in order to achieve guaranteed output delivery,
we will have to detect misbehavior of corrupt parties and, in some cases, reveal all the information
that is known to honest parties about the shares of such bad parties. This form of detection and
revealing is typically expensive in terms of interaction, and one has to carefully implement it in
a private way that does not allow for false accusations against honest parties. We continue by
highlighting some of the main technical challenges and present their solutions.

The underlying secret sharing. We will augment the aforementioned matrix secret sharing
(based on bivariate polynomials) with a public commitment to the entire matrix. This commitment
will serve as a ground-truth. Assuming that the matrix was properly distributed, any disagreement
about the value of the (i, j)th entry can be resolved by opening the corresponding commitments
(each party recieves from the dealer the openings of its entries). Fortunately, such a representation
can be distributed within 2 rounds using the VSS protocol of [BKP11]. Moreover, we note that
tentative shares can be outputted already after the first round. On the downside, the protocol pro-
vides only weak consistency guarantees and it does not ensure that the resulting sharing is fully
valid. In particular, when the dealer is corrupted, the row of a corrupted party and its correspond-
ing public commitment may be invalid (e.g., does not form a degree-t polynomial). This weakness
turns to be important and we will have to solve it.
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Guided Linear Computation and publicly-decodable SCG. We will extensively use a protocol
for Guided Linear Computation. In such a protocol the ith party, Pi, wishes to guide a linear
computations over the ith secondary shares of the inputs. Since she holds the corresponding ith
rows, this can be done in a single online round (plus an offline round) by running an SCG with
each Pj as a guard. In the protocol of [AKP20a] this process has to be repeated n times, one
time for every potential receiver. Since these copies may be inconsistent (e.g., a corrupted guide
may abort some of them), a final error correction is applied to the result. This approach cannot
be taken when t > n/3. We bypass this problem by constructing a publicly-decodable version of
SCG (without a designated receiver) under the assumption that the inputs of the sender and the
guard are publicly committed. In this setting, one may have to take into account the case where
the openings of the sender and the guard are faulty (e.g., due to a bad dealer). We show how to
handle such “partial-computation” scenarios in the special case of linear functions. Our new SCG
construction makes an additional internal usage of NICOMs. (See Sections 3.2 and 3.3.)

Triple Secret Sharing (TSS). Following Beaver [Bea91], the key ingredient for moving from lin-
ear functionalities to quadratic functionalities is the so-called Triple Secret Sharing functionality
in which a dealer deals secret-shares a random multiplication triple (a, b, c = ab). In the t < n/3
setting this is done based on the [BGW88] degree-reduction technique, that again cannot be used
here. Instead, we embed the sharing polynomials (A,B,C) inside a vector of high-degree polyno-
mials Q = (Q1, . . . , Q`) so that the multiplicative relation holds if and only if the Q polynomials
satisfy some quadratic relation. The latter property can be verified by securely evaluating the Q’s
on a randomly chosen point α that is chosen as a challenge by the verifiers. Crucially, the whole
procedure should be terminated after 2 rounds (where tentative shares should be ready after the
first round). To achieve this we employ our guided-linear protocol, and let the challenge point α
be chosen at the first round. Unfortunately, this raises a security problem: A corrupted rushing
dealer can break the soundness of the proof by choosing an invalid sharing that is tailored to pass
the test induced by α. We present two workarounds:

1. (Weakening the network model) First, we observe that the protocol works well for non-
rushing adversaries who select their messages based on messages that were sent in the pre-
vious round. In fact, by modifying the protocol so that each party sends its own challenge
αi, we can prove that soundness holds as long as the sharing is independent of at least one
challenge. We can therefore handle semi-rushing adversaries.

2. (Intractable Hash functions) Moving back to the case of a rushing adversary, we follow the
Fiat-Shamir heuristic [FS86] and generate the challenge α by applying a hash function h to
the (public part) of the sharing. Soundness holds, as long as it is hard to find a “bad sharing”
that passes the test that is induced by its hashed value. This relation R has a simple algebraic
structure, and, assuming that the NICOM is implemented based on the same hash function
(e.g., via [HM96, DPP98]) it can be written as a simple algebraic circuit. The key to the hash
function can be sampled during the protocol by the verifiers. That is, in the first round, we
let each verifier broadcast a random key zi, and continue as in the previous item with n
challenges α1, . . . , αn where αi is generated locally by applying hzi to the (public part of the)
sharing that is published by the dealer in the first round.

See Section 3.5 for full details.
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Single-input functionalities, ZK proofs, and strong sharing. Based on the above protocols, one
can realize any general single-input functionality within 2 rounds. As a special case, the result-
ing protocol yields a distributed zero-knowledge proof that is being used to achieve strongly-
consistent VSS. Conveniently, our protocol for single-input functionalities has an important fea-
ture: The messages sent at the first round reveal no private information. This allows us to abort
the protocol, if needed, without sacrificing privacy.

Quadratic functionalities. Based on protocols for guided-linear functionalities and TSS, we con-
struct a 2-round (offline/online) protocol for guided degree-2 functionalities. A naive implemen-
tation does not fully ensure a valid sharing of the linear terms, and the problem is fixed by intro-
ducing an additional new “Verify and Open” functionality (See Section 3.7). Finally, we use all
the above components to realize general degree-2 computation. The protocol is fairly complicated
since an adversarial behavior during the first two rounds can lead to various problems and sub-
protocols may end with different forms of failures (e.g., due to corrupt dealers tentative shares
may be updated retroactively, and, even worse: a corrupt dealer may start to misbehave only in
the second round after its input was already counted for computation). Accordingly, the third
round is not just an “opening phase” – instead it is being used for handling each of the potential
problems and different means are taken in an attempt to add/subtract linear or non-linear terms
from the final output. (See the discussion in Section 3.9.) Again, the analogous step in the case
of t < n/3 is significantly simpler due to the absence of tentative shares, and the error-correction
capabilities of the secret sharing.

Organization. Minimal technical background is given in Section 2 (other preliminaries appear in
Appendix A.5). We describe our protocol in Section 3 while focusing on the setting of Theorem 1.3.
(The semi-rushing version of Theorem 1.2 is derived via a simple modification.) Security proofs
are deferred to the appendices.

2 Preliminaries

Notation. We denote by κ the security parameter. For an MPC protocol, we denote the number
of parties by n, we identify the set of parties P = {P1, . . . , Pn} with {1, . . . , n}, and we denote the
set of honest parties by H ⊆ P, and the set of corrupt parties by C ⊆ P.

Let L be an integer and let F be a field. We will occasionally make use of a pair (δ,b) ∈
{0, 1}L × FL where the vector b holds “data items” (field elements) and the binary vector δ is
a “meta-data” vector that holds a list of flags that indicate which entries of b are “known” or
“certain”. We further define the following non-symmetric “disagreement” operator.

Definition 2.1. Let A = (δA,bA) ∈ {0, 1}L × FL and let B = (δB,bB) ∈ {0, 1}L × FL. We define an
operator 3 as below.

(δA,bA)3(δB,bB) := {i ∈ {1, . . . , L} : (δAi = 1 ∧ δBi = 0) ∨ (δAi = δBi = 1 ∧ bAi 6= bBi )}.

That is, the operator returns the indices that are “certain” under A but “uncertain” under B
and the elements that are certain under both A and B, but A and B disagree upon their value.
Notably, the operation is not symmetric.
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Notation 1. For a binary indicator vector δ = (δ1, . . . , δm), we freely treat δ as a subset of {1, . . . ,m},
where for i ∈ {1, . . . ,m} it holds that i ∈ δ if and only if δi = 1.

NICOM. A non-interactive commitment scheme (NICOM) consists of two PPT algorithms
(commit, open) defined as follows. Both algorithms are given a security parameter κ, and a com-
mon parameter pp, which is either a common reference string (CRS), or an empty string (when
a CRS is not needed). The commit algorithm also takes a message x and random coins r, and
outputs a commitment C and a corresponding opening information o. The open algorithm takes
a commitment and a corresponding opening information (C, o), and outputs the message x. The
algorithms should satisfy the standard properties of correctness, binding (i.e., it must be hard for
an adversary to come up with two different openings of any c) and hiding (a commitment must
not leak information about the underlying message) properties. The formal definition and its dif-
ferent instantiations are given in Appendix A.5. We denote the commitment scheme with respect
to a crs given by FCRS as (commitcrs, opencrs).

3 A Three-Round MPC with Everlasting Security from NICOM

In this section, we prove Theorem 1.3. That is, our goal is to build a 3-round that can evaluate
any n-party degree-2 functionality with everlasting security, even in the presence of t <

⌊
n−1

2

⌋
corrupt parties. As a starting point, we will make use of the following completeness theorem
proved in [AKP20b, Prop. 4.5 and Thm. 5.23] (building on [ABT19]).

Proposition 3.1 ([AKP20b]). Let F be an n-party functionality that can be computed by a Boolean circuit
of size S and depth D and let F be an arbitrary extension field of the binary field F2. Then, the task of
securely-computing F non-interactively reduces to the task of securely-computing the degree-2 n-party
functionality f over F that each of its outputs is of the form

xαxβ +
n∑
j=1

rj , (1)

where xα and xβ are the inputs of party Pα and Pβ respectively and rj is an input of party Pj for j ∈
{1, . . . , n}.

The reduction preserves active statistical-security with resiliency threshold of bn−1
2 c, and the complex-

ity of the function f and the overhead of the reduction is poly(n, S, 2D, log |F|). Furthermore, assuming
one-way functions, one can get a similar reduction that preserves computational-security with resiliency
threshold of bn−1

2 c and complexity/security-loss of poly(n, S, log |F|).

Throughout we denote the security parameter by κ, and we assume that κ = Ω(n). We fix
F to be an F2-extension field5, and we assume that |F| ≥ 2n and that κ ≤ log |F| ≤ poly(κ). By
Proposition 3.1, it suffices to focus on functionalities whose output can be written as (1).

Remark 3.2 (On statistically-hiding NICOM). In order to obtain a protocol with everlasting secu-
rity, we use statistically-hiding non-interactive commitments (see Section A.5.2). It is well known that

5In fact, all the results of this section hold over an arbitrary finite field. We focus on fields of characteristic 2 since
Proposition 3.1 is limited to such fields.
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statistically-hiding NICOM cannot be implemented in the plain model, but that it can be implemented with
a minimal setup assumption, such as a common reference string (CRS).

Since our functionalities depend on the commitment scheme, it is important that the CRS is uniformly
distributed, and not chosen by the environment. Therefore, we assume a global functionality FCRS, to
which all parties and all functionalities have access, that samples a uniformly distributed string for CRS
at the beginning of the execution, and returns the CRS upon receiving a query (for more information
about the security model, see Appendix A.1). In this way we make sure that all parties have access to
the same CRS, and that it is picked at random. We denote the commitment scheme with respect to FCRS by
(commitcrs, opencrs).

Throughout, we assume that the commitment scheme is instantiated with security parameter κ, and we
assume that the hiding property holds conditioned on any CRS. Observe that this property indeed holds for
the statistically-hiding construction presented in Section A.5.2.

Finally, we mention that all our protocols are secure even when implemented with computationally-
hiding NICOM, albeit without everlasting security, assuming sub-exponentially hardness. See Remark 3.11
and Appendix B.9.2. Since, in general, computationally-hiding commitments do not require CRS, in such
cases we simply assume that FCRS does nothing.

3.1 Verifiable Secret Sharing

We begin by defining two closely related sharing semantics. Next, we use our VSS protocol as a
means to generate such sharings of a dealer’s secret. When the dealer is honest, then the first kind,
denoted as strong double t-sharing, will be generated, whereas a corrupt dealer can only be enforced
to generate the second kind, referred as weak double t-sharing. The strong sharing essentially means
committing to F (i, j) for 0 ≤ i, j ≤ n, for some symmetric bivariate polynomial F (x, y) of degree
t in each variable. The commitments and openings are expected to be symmetric, i.e., Cij = Cji
and oij = oji. Fix some common reference string crs, and consider a pair (C,O) of commitments
C = {Cij}i,j∈{0,...,n} and openings O = {oij}i,j∈{0,...,n}. For i ∈ {0, . . . , n}, let Ci = {Cij}j∈{0,...,n}
and Oi = {oij}j∈{0,...,n}.

Definition 3.3 (validity). We say that (C,Oi) is valid (with respect to crs) if the following conditions
hold:

1. (Consistent commitments) Cjk = Cjk for all j, k ∈ {0, . . . , n}.

2. (Valid openning) For all j ∈ {0, . . . , n} the value fij := opencrs(Cij , oij) is not ⊥.

3. (Low degree) The polynomial fi(x), obtained by interpolating {fij}j∈{0,...,n}, is of degree at most t.

Definition 3.4 (Strong double t-sharing aka 〈〈·〉〉-sharing). A pair (C,O) is a strong double t-sharing
of s (with respect to crs), denoted as 〈〈s〉〉, if the following conditions hold:

1. (Validity) (C,Oi) is valid for every i ∈ {0, . . . , n}.

2. (Consistent openning) oij = oji for i, j ∈ {0, . . . , n}.

3. (s-sharing) The values {fi0 := opencrs(Ci0, oi0)}i∈{1,...,n} correspond to a degree t polynomial f(x)
such that f(i) = fi0 and f(0) = s.
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Overall, when (C,O) is a strong double t-sharing of s, it holds (by conditions 1 and 2) that each
fi(x) is of degree at most t and that fi(j) = fj(i) for all i, j ∈ {0, . . . , n}. It therefore follows (see
Fact A.3) that the values {fij}i,j∈{0,...,n} correspond to a unique symmetric bivariate polynomial
F (x, y) of degree at most t in each variable, such that F (i, j) = fij for all i, j ∈ {0, . . . , n}.

Next, the weak sharing ensures that the shares of the honest parties are consistent with some
symmetric bivariate polynomial F (x, y) of degree t in each variable. However, a share of a corrupt
Pi might not be consistent with F (x, y). The following definition is tailored to the case where the
decommitment information that “belongs” to a subset of the parties, W, have been published.
(The set W may consist both honest and corrupted parties.)

Definition 3.5 (Weak double t-sharing aka J·K-sharing). A tuple (W,C,OW,OH\W) of parties W ⊆
{1, . . . , n}, public commitments C = {Cij}i,j∈{0,...,n}, public openings OW = {oij}i∈W,j∈{0,...,n}, and
private openings OH\W = {oij}i∈H\W,j∈{0,...,n} for the set of honest parties H is a weak double t-sharing
of s (with respect to crs), denoted as JsK, if the following conditions holds:

1. (Partial validity) For every i ∈W ∪ H it holds that (C,Oi) is valid.

2. (Weakly consistent openning) opencrs(Cij , oij) = opencrs(Cji, oji)
6 for i, j ∈W ∪ H

3. (Weak s-sharing) The values {fi0 := opencrs(Ci0, oi0)}i∈W∪H correspond to a degree t polynomial
f(x) such that f(i) = fi0 and f(0) = s.

Consider a weak double t-sharing (W,C,OW,OH\W), and let fi(x) be the polynomial defined
by {fij := opencrs(Cij , oij)}, for i ∈ W ∪ H. By condition (1) it follows that fi(x) is a degree-t
polynomial, and by condition (2) it holds that fi(j) = fj(i) for all i, j ∈ W ∪ H. Therefore, (see
Fact A.3) the polynomials {fi(x)}i∈W∪H define a unique symmetric bivariate polynomial F (x, y)
of degree at most t in each variable, such that F (x, i) = fi(x) for all i ∈ W ∪ H. (Note that
|W ∪ H| ≥ t + 1 since we always have honest majority, i.e., t < n/2.) We conclude that any
tuple (W,C,OW,OH\W) that satisfies Conditions (1) and (2), is a weak double t-sharing of a value
s := F (0, 0), where F (x, y) is the corresponding sharing polynomial.

For both sharing, we refer to F (x, y) as the sharing polynomial and fi(x) = F (x, i) = F (i, y) as
the ith row polynomial.

Definition 3.6 (Rows of Sharing). Let (C,O) and (W,C,OW,OH\W) denote a 〈〈s〉〉 and respectively JsK.
We refer (Ci,Oi) as the ith row and denote by 〈〈s〉〉i and JsKi for respective sharing. We refer (C0,O0) as
the main row of the sharings and denote by 〈s〉 and [s]0 for respective sharing.

3.1.1 VSS: Functionality and Protocol

We start with the VSS functionality, Fvss (Fig. 1), which has two phases: sharing and verification.
In the sharing phase, an honest dealer will always input a strong sharing of a secret, while for a
corrupt dealer, the functionality guarantees output of a weak sharing of some secret at the end of
the verification phase (or a disqualification of D). The functionality concludes the sharing phase
after sending the shares meant for different parties. In the verification phase, we let each party
input an indicator bit. When the VSS is used as a primitive in a bigger protocol, the indicator bit
reflects whether a party has identified the dealer as corrupt outside the VSS. The indicator bit sig-
nifies that the share of the party who sets it as 1 must be publicly disclosed by the functionality. An

6Notice that, we allow oij 6= oji, and yet require opencrs(Cij , oij) = opencrs(Cji, oji) to hold.
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honest party’s indicator bit is leaked to the adversary, before it commits to the bits of the corrupt
parties. In addition, since there is no guarantee for a corrupt dealer to submit even a weak sharing
in the sharing phase, in the verification phase Fvss also reveals the shares of any honest party that
got an invalid share in the sharing phase. Finally, while we allow the adversary to disclose the
openings late during the verification phase on behalf of a corrupt dealer, the commitments remain
unchanged from the sharing phase.

The functionality Fvss receives the set of corrupt parties C, and has access to FCRS.

Sharing phase.

• Inputs: Fvss receives from D a pair (C,O) of commitments C = {Cij}i,j∈{0,...,n} and openings
O = {oij}i,j∈{0,...,n}. If D is honest then (C,O) is a strong double t-sharing of some value s.

• Outputs: For i ∈ {1, . . . , n}, Fvss returns (C, {oij}j∈{0,...,n}) to Pi.

Verification phase.

• Honest parties’ inputs: Each honest party Pi inputs a bit flagi, such that if D is honest then flagi = 0
for every honest Pi.

• Leakage: For any honest Pi, the bit flagi is leaked to the adversary.

• Adversary’s inputs: Each corrupt Pi inputs a bit flagi. If D is corrupt, then D has two additional
inputs, Ō := {ōij}i,j∈{0,...,n} and a bit flagD.

• Outputs: We split into two cases.

– Honest D. Let W be the set of all corrupt parties Pi with flagi = 1. Fvss returns(
W, {oij}i∈W,j∈{0,...,n}

)
to all parties.

– Corrupt D. Let W be the set containing all parties Pi (1) with flagi = 1, or (2) with an invalid pair
(C,Oi), where Oi := {oij}j∈{0,...,n}. Let ŌW := {ōij}i∈W,j∈{0,...,n}. If the tuple (W,C, ŌW,OH\W)

is a JsK for some s, and flagD = 0 then Fvss returns
(
W, ŌW

)
to all parties. Otherwise, Fvss returns

“D is corrupt” to all parties.

Functionality Fvss

Figure 1: Functionality Fvss

We now present a 2-round protocol to realize the functionality Fvss, borrowing the techniques
of the 2-round VSS construct of [BKP11]. Similar to the functionality, the protocol is structured
in two phases: sharing and verification. D prepares a strong double t-sharing of its secret using
a (random) sharing polynomial F (x, y), broadcasts the commitments and delivers the opening
corresponding to ith row polynomial fi(x) = F (x, i) to Pi. This concludes the sharing phase. To
ensure that a corrupt dealer either chooses to get disqualified or lends off a weak double t-sharing
at the very least, every party gets unhappy with the dealer if the public commitments and opening
for the ith row polynomial is invalid as per Definition 3.3 (or additionally if its indicator bit flagi is
1). With the goal to make the opening for the ith row polynomial public for every unhappy party
in round 2, every Pi commits to n+ 1 masks (corresponding to openings of n+ 1 points on ith row
polynomial) in round 1 and discloses the corresponding openings to the dealer alone. If D finds
inconsistency between the these commitments and openings, it publicly discloses the openings for
Pi’s row polynomial fi(x). Otherwise, it broadcasts masked openings for fi(x) blinded with the
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masks. Now when a Pi is unhappy with D it can open the masks and thereby make the opening
of the n + 1 points on fi(x) public. If the public commitments for F (x, y) and these openings
are invalid as per Definition 3.3, then D gets discarded. Otherwise, it is clear that a weak double
t-sharing is established in the end. We present the protocol vss and prove its security as stated
below in Appendix B.1.

Notation 2. We say that the dealer shares a value s via vss if (1) the dealer picks a random symmetric
bivariate polynomial F (x, y) of degree at most t in each variable, such that F (0, 0) = s, (2) samples
(Cij , oij)← commitcrs(F (i, j); rij) for every i, j ∈ {0, . . . , n} such that i ≤ j, where rij is a fresh random
string, (3) sets Cji := Cij and oji := oij for every i < j, and (4) initiates vss with C := {Cij}i,j∈{0,...,n}
and O := {oij}i,j∈{0,...,n}.

Notation 3 (Tentative Sharing aka T·W-sharing). We refer the sharing of s at the end of the sharing phase
by tentative sharing and denote it as TsW. The ith and the main row of a TsW is denoted as TsWi and bse
respectively.

Theorem 3.7. Let κ be a security parameter, n be the number of parties with t < n/2, and F be a field. Pro-
tocol vss is a UC-secure implementation of Fvss with everlasting security, against a static, active, rushing
adversary corrupting up to t parties. The complexity of the protocol is poly(n, log |F|, κ).

3.2 Secure Partial Computation with a Guard

We propose a primitive called Secure Partial Computation with a Guard (SPCG), building on the
well-known private simultaneous message (PSM) [FKN94]. Much like PSM’s set-up, SPCG has
Alice and Bob, each holding an input and trying to deliver an evaluation of a function on their
inputs in a single round to a receiver Carol who holds no input, while keeping the inputs hidden
from Carol. SPCG employs an offline phase (that is independent of the inputs) and it is tailored
to the case where some of the inputs of Alice are known to Bob. While PSM achieves a minimal
form of privacy against Carol, SPCG provides an additional correctness property when some of
the senders are malicious.

SPCG draws a similarity with a primitive having a similar name (SCG: secure computation
with a guard) introduced in [AKP20a], with the differences as follows: (a) in SPCG, a subset of
the inputs are available in committed form and the openings are available to Alice, (b) the inputs
for which Alice holds the opening exclusively contributes to the computation (this explains the
term ‘partial’ in the name of the primitive), (c) it is publicly-decodable and hence, instead of a
single party Carol, all can obtain the output from a single execution and (d) finally, as opposed
to property based definition, we bring in a functionality that captures the requirement of this
primitive and helps in composing this primitive in higher-level protocols.

3.2.1 PSM Protocols

In a PSM protocol, proposed by [FKN94], there are m honest parties, P1, . . . , Pm, each Pi holding
a secret input xi, and all having access to a common random string r. Each Pi sends a single
message to an evaluator E depending on xi and r. Based on these messages, the evaluator can
compute f(x1, . . . , xm), but nothing else. PSM is formally defined as follows:

Definition 3.8 (PSM Protocols). Let X1, . . . , Xm, Z be finite sets, and let X = X1 × . . . × Xm. An
m-party PSM protocol psm, computing a m-argument function f : X → Z consists of:
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• A message computation function psmi : Xi × R → Mi, for every party i ∈ {1, . . . ,m}, where R is
a finite set of common random inputs and Mi is a finite message domain.

• A reconstruction function rec : M1 × . . .×Mm → Z that will be computed by the evaluator E.

The protocol psm =
(
psm1, . . . , psmm, rec

)
should satisfy the following properties.

1. (Correctness) For every (x1, . . . , xm) ∈ X and r ∈ R, rec(psm1(x1, r), . . . , psmm(xm, r)) =
f(x1, . . . , xm).

2. (Security) There exists a simulator Spsm, such that for every (x1, . . . , xm) ∈ X ,
Spsm

(
f(x1, . . . , xm)

)
≡ REALpsm(x1, . . . , xm), where REALpsm(x1, . . . , xm) denotes the distribu-

tion of (psm1(x1, r), . . . , psmm(xm, r)) over the choice of r. For computational security, ≡ needs to
be ≡c, whereas for statistical security, ≡ needs to be ≡s.

Note that PSM security addresses only the case where the parties P1, . . . , Pm are honest.

Lemma 3.9 (Polynomial-time PSM Protocols [IK02]). For every m-argument functionality f that ad-
mits a Boolean NC1 circuit of size s,there exists a PSM protocol with complexity of poly(s). In particular,
if s = poly(m), then there exists a PSM protocol with complexity poly(m).

3.2.2 SPCG: Functionality and Protocol

Let A = FLA , B = FLB and C = F. Let f : A × B → C be a function of the form f(a,b) =∑LB
i=1 αi(a)bi, where a = (a1, . . . , aLA), b = (b1, . . . , bLB ) and αi : A → F. We assume that LA and

LB are (at most) polynomial in κ.
Consider the following situation with two distinguished parties, Alice and Bob. Alice holds

the input a, and the vector b is publicly committed by (C1, . . . , CLB ), such that Alice holds a
partial-opening {oi}i:δAi =1, specified by an indicator vector δA = (δA1 , . . . , δ

A
LB

) ∈ {0, 1}LB . The
goal of Alice is to let all the parties learn the output of gspcg, for a set I . Looking ahead, I indicates
the positions where Alice and Bob disagree or the positions in δA when Bob is implicated by Alice
to be corrupt.

gspcg
(
a, δA, {oi, bAi }

LB
i=1, I

)
=
(
a, δA, {i, oi, bAi }i∈I ,

∑
i:δAi =1

αi(a) · bAi
)

(2)

On the other hand, Bob claims to know some of the bi’s, which are specified by an indicator
vector δB . The goal of Bob is to “guard” the computation, by making sure that the partial-sum is
consistent with his knowledge of the bi’s, even when Alice is corrupt.

Let I1 be the set of indices i such that Alice exclusively claims to know bi i.e. I1 :=
{
i ∈

{1, . . . , LB} : δAi = 1 ∧ δBi = 0
}

. Let I2 be the set of indices i such that Alice and Bob do not agree

on the value of bi i.e. I2 :=
{
i ∈ {1, . . . , LB} : δAi = δBi = 1 ∧ bAi 6= bBi

}
. We refer I , the union of

I1, I2, as the set of “dissenting” indices, and we allow the corresponding bi’s to be leaked. Observe
that the set I is exactly the set (δA,bA)3(δB,bB), where 3 is the operator defined in Definition 2.1.
Let J be the set of indices i such that Alice and Bob agree on the value of bi (note that J may not be
equal to {1, . . . ,m} \ I). J is referred as the set of “assenting” indices, and we would like to keep
the corresponding bi’s secret. Since for every i ∈ J it holds that bAi = bBi , we define bi := bAi = bBi .
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Our goal is to let all parties learn the output of the following function (spcg denotes secure partial
computation with a gurad):

fspcg

((
a, δA, {oi, bAi }

LB
i=1

)
,
(
δB, {bBi }

LB
i=1

))
=

(
a, δA, δB, {i, oi, bAi }i∈I ,

∑
i∈J

αi(a)bi

)
. (3)

so that using the opening oAi of every “dissenting” index i, together with the sum
∑

i∈J αi(a) bi
over all “assenting” indices, an party can recover the correct partial-sum

∑
i:δAi =1 αi(a) bAi , as de-

sired for gspcg-output. Note that fspcg ignores all (oi, b
A
i ) for which δAi = 0, and all bBi for which

δBi = 0.
We have the following security requirements. When both Alice and Bob are honest, then all

parties learn only the output of fspcg (Eqn. 3) and nothing else. When at least one of Alice and Bob
is corrupt, we allow the adversary to learn the honest party’s inputs to fspcg. If exactly one of Alice
and Bob is corrupt, all honest parties should either learn the output of fspcg or who the corrupt
party is. When both Alice and Bob are corrupt the output can be chosen by the adversary. These
are formalized in a functionality Fspcg given in Fig. 2.

The functionality receives the set of corrupt parties C, and has access to FCRS.

Honest parties’ inputs:

• All honest parties input the same commitments (C1, . . . , CLB ).

• An honest Alice inputs a = (a1, . . . , aLA) ∈ FLA , bA = (bA1 , . . . , b
A
LB

) ∈ FLB , δA = (δA1 , . . . , δ
A
LB

) ∈
{0, 1}LB and openings {oi}LBi=1. It holds that opencrs(Ci, oi) = bAi for each i ∈ δA.

• An honest Bob inputs bB = (bB1 , . . . , b
B
LB

) ∈ FLB and δB = (δB1 , . . . , δ
B
LB

) ∈ {0, 1}LB .

Leakage: The adversary receives (C1, . . . , CLB ). In addition, if only Alice is corrupt, then the adversary
receives honest Bob’s input; if only Bob is corrupt, then the adversary receives an honest Alice’s input.

Adversary’s inputs: If Alice is corrupt, then it inputs (a,bA, δA, {oi}LBi=1) (the openings may not be
correct). If Bob is corrupt, then it inputs (bB , δB). In addition, the adversary inputs a bit flag, a bit reveal
and a string z.

Outputs: Fspcg computes I = (δA,bA)3(δB ,bB), and fspcg and gspcg using Eqn 3 and 2 respectively and
acts as below.

• (Honest Alice and Bob) Return gspcg-output to all honest parties, and fspcg-output to the adversary.

• (Honest Alice, Corrupt Bob) If flag = 1, then return “Bob is corrupt” to all parties. Otherwise, return
gspcg-output to all parties.

• (Corrupt Alice, Honest Bob) If reveal = 1, then reset I := δA. If flag = 1, or there exists i ∈ I such that
bAi 6= opencrs(Ci, oi), then return “Alice is corrupt” to all. Otherwise, return gspcg-output, recomputed
using changed I to all.

• (Corrupt Alice and Bob) Return z to all parties.

Functionality Fspcg

Figure 2: Functionality Fspcg

In the following, we construct a 2-round protocol that securely implements spcg, such that
the first round is an offline (input-independent) round. At a high-level, we think of fspcg as a
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binary-function, fspcg : {0, 1}` → {0, 1}m, so that the first `A bits correspond to Alice’s inputs,
and the last `B = ` − `A bits correspond to Bob’s inputs. We use an `-party PSM protocol for the
computation of fspcg, so that Alice simulates the first `A senders in the protocol, and Bob simulates
the last `B senders (each sender holds a single input’s bit). In the offline-round, we let Bob pick
the randomness r for the psm protocol and send it to Alice. In order to make sure that both Alice
and Bob follow the psm protocol in the online round, we also let Bob commit all possible messages
psmi(x, r) for x ∈ {0, 1} and i ∈ {1, . . . , `} and send the openings to Alice. In the online-round,
if Alice or Bob send a PSM message psmi(x, r) on behalf of the i-th sender, then they also have
to provide the corresponding commitment’s opening, so that the parties can verify that a valid
message was sent. Every party then acts on the opening and PSM messages to either conclude
Alice/Bob to be corrupt or obtain either fspcg or gspcg-output.

All parties have access to FCRS.

Primitives: A PSM psm = (psm1, . . . , psm`, rec) for fspcg : {0, 1}` → {0, 1}m. A NICOM scheme
(commitcrs, opencrs).

spcg.off(R1): Bob samples a random string r for psm. For each i ∈ {1, . . . , `} and x ∈ {0, 1}, Bob computes
(C ′i,x, o

′
i,x) ← commitcrs(psmi(x, r)) and picks a random shift σi of {0, 1}. For each i ∈ {1, . . . , `}, Bob

broadcasts the shifted list of commitments {C ′i,σi(x)}x∈{0,1}. (That is, the commitment with index (i, x)

is moved to index (i, σi(x)).) Bob sends
(
r, {o′i,x}i∈{1,...,`},x∈{0,1}, σi

)
to Alice.

spcg.on(R2): All parties hold publicly known commitments C1, . . . , CLB . Alice holds input(
a, δA, {oi, bAi }

LB
i=1

)
and Bob holds

(
δB , {bBi }

LB
i=1

)
.

• Alice’s communication. For each x ∈ {0, 1} and i ∈ {1, . . . , `}, Alice verifies
that opencrs(C ′i,σi(x), o

′
i,x) = psmi(x, r). If the verification fails then Alice broadcasts

(a, δA, {i, oi, bAi }i:δAi =1). Otherwise, Alice computes the binary string xA := (a, δA, {oi, bAi }
LB
i=1) ∈

{0, 1}`A , computes si := psmi(x
A
i , r) for each i ∈ {1, . . . , `A} and broadcasts the list

{(σi(xAi ), o′
i,xAi

, si)}i∈{1,...,`A}.

• Bob’s communication. Bob computes the binary string xB := (δB , {bBi }
LB
i=1) ∈ {0, 1}`B , computes

si := psmi(x
B
i−`A , r) for each i ∈ {`A + 1, . . . , `} and broadcasts {(σi(xBi−`A), o′

i,xBi−`A
, si)}i∈{`A+1,...,`}.

• Local Computation. Each party does the following.

1. If Alice broadcasts (a, δA, {i, oi, bAi }i:δAi =1), then verify that bAi
?
= opencrs(Ci, oi) for every

i ∈ δA, and conclude Alice to be corrupt if the verification fails. Otherwise, output
(a, δA, {i, oi, bAi }i:δAi =1,

∑
i:δAi =1 αi(a) · bi).

2. Else, denote the messages received from Alice by {(ij , o′j , sj)}j∈{1,...,`A}, and the messages re-
ceived from Bob by {(ij , o′j , sj)}j∈{`A+1,...,`}. If some (ij , o

′
j , sj) with j ∈ {1, . . . , `A} is not

received, or opencrs(C ′j,ij , o
′
j) 6= sj then output “Alice is corrupt”. If some (ij , o

′
j , sj) with

j ∈ {`A + 1, . . . , `} is not received, or opencrs(C ′j,ij , o
′
j) 6= sj then output “Bob is corrupt”.

3. Else, compute w ← rec(s1, . . . , s`). Parse w to obtain (a, δA, δB , {i, oi, bAi }i∈I ,
∑
i∈J αi(a) · bi). If

there exists i ∈ I such that opencrs(Ci, oi) 6= bAi then output “Alice is corrupt”. Otherwise, for
each i ∈ I set bi := bAi and output

(
a, δA, {i, oi, bAi }i∈I ,

∑
i∈δA αi(a) · bi

)
.

Protocol spcg= (spcg.off,spcg.on)
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Figure 3: Protocol spcg= (spcg.off,spcg.on)

Lemma 3.10. Let κ be a security parameter, let n be the number of parties, let t < n/2, and let F be a
field of characteristic 2. Protocol spcg is a UC-secure implementation of Fspcg with everlasting security,
against a static, active, rushing adversary corrupting up to t parties. The complexity of the protocol is
poly(n, log |F|, κ, LA, LB), assuming each αi(·) can be represented as a Boolean function in NC1.

We prove Lemma 3.10 in Appendix B.2.

Remark 3.11 (Computationally-hiding commitments). If we are willing to relax the everlasting sta-
tistical security to computational security, one can employ computationally-hiding, perfectly-binding
commitments. However, the proof requires some level of security under selective-opening attack (loosely
speaking, when the adversary receives commitments C1, . . . , Ck and chooses to receive the openings of a
subset of those commitments, the unopened commitments should remain secure). To achieve this property,
we assume that the underlying commitments achieve sub-exponential level of hiding (see Section A.5.2 for
details). By using “complexity leveraging” arguments, we show that protocol spcg is a UC-secure imple-
mentation of Fspcg against a static, active, rushing computationally-bounded adversary corrupting up to t
parties. See Appendix B.9.2 for full details.

3.3 Guided and General Linear Function Computation

A common situation that often occurs in our later constructions is as follows. There are m secrets
s1, . . . , sm that are shared by either different parties or the same party (we always assume that m
is polynomial in κ). The goal is to reconstruct a linear combination of them secrets:

∑m
i=1 aisi for a

publicly known linear combiner. We cannot use the reconstruction of our VSS scheme7 right-away,
without leaking the individual secrets, since our commitments are non-homomorphic and do not
allow for non-interactive generation of commitments of the sum shares. The problem gets further
compounded with our need (e.g. in triple sharing) of packing the sharing and reconstruction in
2 rounds for an overall 2-round construct. This requires us to come up with a reconstruction that
can operate, not just over, final shares, but also over the tentative shares, which are available after
the first round (the sharing phase) of VSS protocols.

Here we propose guided linear function evaluation protocol, that would enable the kth
party Pk, denoted as the guide G, to reconstruct the kth linearly combined rows of the secrets
i.e.

∑m
i=1 aiTsiWk. Our protocol requires 2 rounds in total, in which the first round is input-

independent, and can be run in parallel to the tentative sharing generation (i.e. along with the
sharing phase of VSS instances sharing si’s), the rows of which acts as its input. This allows us
to pack both sharing and reconstruction in an overall 2 round protocol, as needed for our future
constructs. Operating over tentative sharing, however, brings additional complication since some
of the kth rows may not be valid i.e. the received openings may not be correct or the underlying
polynomial may not correspond to degree t (c.f. Definition 3.3). Therefore, we need to adapt our
goal to finding a partially linearly combined sum, where only ‘valid’ rows are taken into account.
This needs the guide Pk to use am-length binary vector indicating the ‘valid’/‘invalid’ rows. Since
the remaining rows will be published during the verification of the respective VSS instances, the
partial sum can be turned to the full sum outside the guided reconstruction (otherwise the guide
will be identified as corrupt). In a dual scenario, it is also possible that a valid row turns into

7While we do not recall the reconstruction phase protocol of the VSS in this paper, it is presented in [BKP11].
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an invalid one (since VSS dealer is identified as corrupt), for which we need to subtract the con-
cerned row from the sum. Later in the paper, we come up with a verify and open primitive to
enable opening such rows. Looking ahead, for the reconstruction of the linearly combination of m
secrets, we need to run n guided reconstructions, one for every Pk as guide.

With the above background, we design an ideal functionality Fglinear (Fig. 4) for the guided
reconstruction which gets the following inputs and attains the following task. All the parties input
the commitments to m tentative rows (which may be available from the m VSS sharing phases).
A guide G enters a linear combiner a, the m tentative rows which need to be linearly combined,
the openings for them and lastly an indicator vector suggesting ‘valid’ tentative rows. To ensure
that a guide remains as a guide and do not plant any polynomial to be reconstructed, every party
Pi provides the tentative shares of the concerned rows and its indicator vector suggesting which
values to be used for verification of G’s information. For both G and the individual parties, the
indicator vectors reflect the respective parties’ impression on whether a particular row/share is
valid or invalid. All the indicator positions where G and Pi conflict and G indicates a valid row,
are disclosed. This allows an honest Pi to make sure that the combined tentative row agrees with
its combined value at point i (where the combination takes into account all valid rows as per G).
Having an honest majority implies a guide cannot make any polynomial to get reconstructed.

The functionality receives the set of corrupt parties C, and has access to FCRS.

Honest parties’ inputs:

• All honest parties input the same commitments (Cij)i∈{1,...,m},j∈{0,...,n}.

• If G is honest, G inputs (1) a list of coefficients a = (a1, . . . , am) ∈ Fm, (2) a list of values bG =
(bGij)i∈{1,...,m},j∈{0,...,n} ∈ Fm(n+1), (3) a list of openings {oGij}i∈{1,...,m},j∈{0,...,n}, and (4) an indicator
vector δG ∈ {0, 1}m.
For every i ∈ δG it holds that opencrs(Cij , o

G
ij) = bGij for every j ∈ {0, . . . , n}, and the values

{bGij}j∈{0,...,n} correspond to a degree-t polynomial.

• An honest Pi inputs an indicator vector δi ∈ {0, 1}m, and values (bi1, . . . , b
i
m) ∈ Fm.

Leakage: The adversary receives (Cij)i∈{1,...,m},j∈{0,...,n} and the indicator vectors δi of all honest Pi. In
addition,

• if G is honest, the adversary receives a, {bGij , oGij}i∈{1,...,m},j∈C and δG, as well as Lj :=

{(i, j), bGij , oGij}i∈Ij for any j ∈ H, where Ij := ((bG1j , . . . , b
G
mj), δ

G)3(bj , δj), and the sum
∑
i∈δA aib

A
ij ,

for any j ∈ {1, . . . , n}.
• if G is corrupt the adversary also receives (bi1, . . . , b

i
m) for every i ∈ H.

Adversary’s inputs:

• A corrupt guide inputs a, bG, {oGij}i∈{1,...,m},j∈{0,...,n} and δG, and an additional bit flag.

Outputs: We split into cases.

• Honest guide. The functionality returns (a, δG,
∑
i:δGi =1 ai · bGi,0) to all parties.

Functionality Fglinear
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• Corrupt guide. The functionality returns “G is corrupt” if either (1) flag = 1, or (2) there exists j ∈ H
and i ∈ Ij such that opencrs(Cij , oij) 6= bGij , where Ij := ((bG1j , . . . , b

G
mj), δ

G)3(bi, δi). Otherwise, for
each j ∈ H let vj :=

∑
i∈δG ai · bGij , and let g(x) be the polynomial obtained by interpolating {vj}j∈H.

If the degree of g(x) is more than t then the functionality returns “G is corrupt”. Otherwise, the
functionality returns (a, δG, g(0)) to all parties.

Figure 4: Functionality Fglinear

We now present a 2-round protocol realizing Fglinear. The protocol simply invokes n instances
of SPCG withG as Alice and every Pi as Bob to compute the following function, with their respec-
tive inputs. Let a,b ∈ Fm, and let f : Fm × Fm → F be

f(a,b) :=

m∑
i=1

αi(a) · bi, where αi(a) = ai. (4)

If (a) G (aka Alice) gets identified as corrupt in any of the n SPCG instances or (b) it inputs dif-
ferent a, indicator vector or (c) the outputs of SPCGs corresponding to instances where Bob is not
identified as corrupt lead to a non-degree-t polynomial, thenG is identified as corrupt. Otherwise,
the SPCGs which speak out an output are used to form a degree-t polynomial, which is taken as
the output, the partially combined row taking into account all rows as per the indicator vector of
G. The protocol appears in Fig. 5, its security in Lemma 3.12 and the proof in Appendix B.3. In
order to simplify the calls to glinear in our later protocols, we use Notation 4.

All parties have access to FCRS.

Primitives: SPCG scheme spcg = (spcg.off, spcg.on).

glinear.off(R1): For every j ∈ {1, . . . , n}, the parties execute an instance of the offline phase of spcg,
denoted spcg.offj , with G as Alice, Pj as Bob, and with function f as in Equation (4).

Inputs: The inputs are exactly as specified in the description of Fglinear under Honest parties’ Input.

glinear.on(R2): For each j ∈ {1, . . . , n}, the protocol spcg.onj is executed, where

• All parties input (C1j , . . . , Cmj).

• G, as Alice, inputs the coefficient vector a, the vector of values (bG1j , . . . , b
G
mj), the indicator vector δG

and the openings {oGij}mi=1;

• Pj , as Bob, inputs the indicator vector δi and the values (bi1, . . . , b
i
m).

(Local computation) For each k ∈ {1, . . . , n} let outk be the output of spcgk. If there exists k such that outk

is “Alice is corrupt”, then output “G is corrupt”. Otherwise, let K be the set of all indices k such that
outk is not “Bob is corrupt”, and let outj = (ak, δA,k, {i, oA,ki , bA,ki }i∈Ik , vk) for each k ∈ K. If the the
list of coefficients ak or the indicator vector δA,k is not the same among all {outk}k∈K then output “G
is corrupt”. Otherwise set a := ak and δG := δA,k for some k ∈ K. Let g(x) be the polynomial obtained
by interpolating over {vk}k∈K . If g(x) is of degree more than t then output “G is corrupt”. Otherwise,
output (a, δG, g(0)).

Protocol glinear = (glinear.off, glinear.on)

Figure 5: Protocol glinear = (glinear.off, glinear.on)
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Lemma 3.12. Let κ be a security parameter, let n be the number of parties, let t < n/2, and let F be a
field of characteristic 2. Protocol glinear is a UC-secure implementation of Fglinear with everlasting security,
against a static, active, rushing adversary corrupting up to t parties. The complexity of the protocol is
poly(n, log |F|, κ,m).

Notation 4. For a set of ` tentative rows Ts1Wj , . . . ,Ts`Wj , we say that the parties participate in glinear

to partially compute
∑`

k=1 akTskWj , with party Pj as a guide G with input δG and every Pi with input
δi to mean an execution of glinear with the above involved parties and input (bit) vectors. For brevity,
we will omit the additional inputs from the parties, (a) a = (a1, . . . , a`), which can be deduced from
the sum expression, (b) the openings and opened values corresponding to all the rows (a total of `(n + 1)
openings/opened values) forG and ith opened value corresponding to all the rows (a total of ` opened values)
for every Pi, both of which can be deduced from the sum expression.

Remark 3.13 (Round-optimal general linear function computation.). We mention that we can obtain
a 3-round protocol for general linear function computation assuming only the existence of commitments,
reducing to n instances of glinear operated on final sharings (and not on tentative sharing). The protocol is
round-optimal due to the lower bound of [GIKR02]. For simplicity, we focus on the case that each Pi holds
an input si and the parties want to compute s1 + . . .+ sn. The general case follows in a similar way, using
some standard padding techniques.

The protocol is as follows. In rounds 1 and 2 each Pi shares si via an instance of vss. In round 2 the
parties also execute an instance of glinear.offi with Pi as a guide, for all i ∈ {1, . . . , n}. The indicator
vector for any party is computed as follows: the jth bit of the indicator vector δj is 1 if and only if Pj was
not disqualified in its vss instance. The input of those who are disqualified are taken as 0. In round 3, for
any i ∈ {1, . . . , n} the parties execute glinear.oni, computing Js1Ki + . . . + JsnKi with Pi as a guide, over
the final rows taken from the vss instances. For every i ∈ {1, . . . , n} we say that the output of glinear.oni

is valid if it is of the form (a, δG, σi), where a is the all-one vector and δG is as specified earlier. The parties
interpolate over all valid σi to obtain a degree-t polynomial f(x), and output f(0). We omit the proof of
security, which can be completed easily in the (Fvss,Fglinear)-hybrid model.

3.4 R-intractable Hash Functions

Following [CGH04], we present the following variant of correlation-intractable hash functions.

Definition 3.14 (R-intractable Hash Functions). Let H = {Hκ} be a collection of hash functions where
Hκ = {hz}z∈{0,1}κ is a function from some finite domain Dκ to a finite range Rκ.

Let R = {Rκ} be a (uniform) sequence of oracle-aided polynomial-size circuits (either Boolean or arith-
metic) where Rκ makes use of oracle gates that are compatible with Hκ, i.e., they map inputs in Dκ to
outputs in Rκ.

We say that H is R-intractable if the following hold:

1. (Efficient Evaluation and sampling) There exists a pair of efficient algorithms (a) an evaluation
algorithm which given z ∈ {0, 1}κ, x ∈ Dκ outputs hz(x); and (b) a key-sampling algorithm K
which given 1κ samples an index z ∈ {0, 1}κ.

2. (R-intractability) For every PPT adversary A it holds that Prz←RK(1κ)

(
A(z) = x s. t. Rhzκ (x) =

0
)
≤ negl(κ), where Rhzκ corresponds to the circuit that is obtained by instantiating the oracle gates

in Rκ by the hash function hz .
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Unlike previous formulations who consider relations over tuples of the form
(x1, . . . , xt, h(x1), . . . , h(xt)) (e.g., [LV20]), we allow the relation R to make oracle calls to
the hash function. We find this convention useful, although one can always transform the
latter case to the former, more standard, case. We remind again that we will be interested in
a single explicit and relatively-simple relation, R, that will be specified in Section 3.5 (see also
Section A.2).

3.5 Triple Secret Sharing

The goal of triple sharing is to make a dealer D generate JaK, JbK, JcK such that c = ab in 2 rounds.
The sharing are strong, when D is honest. The functionality Ftss for this task is very much similar
to Fvss, except that D now inputs three sharings instead of one and in the verification phase, in
addition to checking that D shared a weak sharing, the parties also verify that c = ab. We use
an additional indicator bit happy to indicate whether each party is happy with the shares received
from D. All honest parties are always happy with an honest D, but a corrupt D can choose which
parties will be happy, and which will be unhappy. In particular, every honest party that received
invalid shares from a corrupt D is unhappy with D.

Ftss receives the set of corrupt parties C, and has access to FCRS.

Sharing phase.

• Inputs. D inputs three pairs (Ca,Oa), (Cb,Ob) and (Cc,Oc). If D is honest, then these correspond
to 〈〈a〉〉, 〈〈b〉〉, 〈〈c〉〉 such that ab = c. In addition, a corrupt D inputs a bit happyi for each i ∈ {1, . . . , n}.

• Outputs. We split into two cases.

– Honest D. Ftss sets happyi = 1 for every i ∈ {1, . . . , n}, and returns (Ca,Oa
i ), (Cb,Ob

i ), (C
c,Oc

i )
and happyi to Pi.

– Corrupt D. For every i ∈ {1, . . . , n}, if one of the pairs (Ca,Oa
i ), (Cb,Ob

i ), (C
c,Oc

i ) is in-
valid, then Ftss sets happyi to 0 (otherwise, it does not change its value). Ftss returns
(Ca,Oa

i ), (Cb,Ob
i ), (C

c,Oc
i ) and happyi to Pi.

Verification phase.

• Honest parties’ inputs. Each honest Pi inputs a bit flagi, such that if D is honest then flagi = 0 for
every honest Pi.

• Leakage. The adversary receives flagi from the functionality, for every i ∈ {1, . . . , n}.
• Adversary’s inputs. A corrupt party Pi inputs a bit flagi. A corrupt dealer has two additional inputs,

a bit flagD, and (Ōa, Ōb, Ōc), where Ov = {ōvij}i,j∈{0,...,n} for v ∈ {a, b, c}.
• Outputs. We split into two cases.

– Honest D. Let W be the set of all corrupt parties Pi with flagi = 1. Ftss returns
(W, {oaij , obij , ocij}i∈W,j∈{0,...,n}) to all parties.

– Corrupt D. Let W be the set containing all parties Pi with either flagi = 1 or happyi = 0. The
parties output “D is corrupt” if either (1) flagD = 1, (2) the tuple (W,Cv, Ōv

W,O
v
H\W) is not a weak

double t-sharing, for some v ∈ {a, b, c}, or (3) it does not holds that F a(0, 0) · F b(0, 0) = F c(0, 0),

Functionality Ftss
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where F v(x, y) is the sharing polynomial of (W,Cv, Ōv
W,O

v
H\W), for v ∈ {a, b, c}. Otherwise, Ftss

returns (W, {ōaij , ōbij , ōcij}i∈W,j∈{0,...,n}) to all parties.

Figure 6: Functionality Ftss

The core idea for our protocol realizing the above functionality is as follows. D picks three
polynomials A(x), B(x), C(x) of degree n, n, 2n such that A(x)B(x) = C(x) and A(0) = a,B(0) =
b and C(0) = c. D generates J·K-sharing (〈〈·〉〉-sharing when D is honest) of {Ak, Bk, Ck}k∈{0,...,2n},
where Ak, Bk, Ck are the kth coefficients of the respective polynomials, using VSS instances. In
order to verify that c = ab, it is enough to verify if the polynomials indeed satisfy the product
relation or not. For this, we reconstruct A(α), B(α), C(α) for a uniform random α, chosen from
“large enough” field (say, Fp where p > 2κ, for a statistical security parameter κ) and check if

C(α) = A(α) · B(α). If the check passes then the the sharings (strong or weak) of
(
A0, B0, C0

)
is

taken as the output of the protocol.
To realize the above high-level idea, we face two challenges. First, α needs to be chosen after

1st round in order to tackle a rushing corruptD which commits its secret in the first round. Instead
of jointly generating a single α, we allow every party Pi to randomly sample a Rh-intractable hash
function hzi and then compute αi as the output of hzi on the first round public (VSS) commitments.
Then the verification turns to n checks C(αi) = A(αi) · B(αi) for all i ∈ {1, . . . , n}. The circuit Rh,
at a high level, takes all the commitments and honest party’s openings from the VSS instances
and output 0, in case of either of the two bad events: (1) α is 0; (2) C(0) 6= A(0)B(0) and (yet)
C(αi) = A(αi) ·B(αi). For full details on the R-intractable hash function, see Appendix A.2.

The second challenge lies in sharing a bunch of secrets and reconstructing a linear function of
of them, all in 2 rounds. This is where we use guided linear function evaluation glinear, whose
first round, being input-independent can be run in parallel to the sharing phase of VSS instances.
In the 2nd round, the input-dependent round of glinear is applied on the tentative rows. Therefore
for every αi (which corresponds to one linear combination), we would need to run n independent
instances (and a total of 3n instances) of glinear for computing A(αi), B(αi) and C(αi). A party
who holds an invalid row for any of sharing of secrets {Ak, Bk, Ck}k∈{0,...,2n}, becomes ‘unhappy’,
by setting happyi = 0 and sets its flag to 1 in all the VSS verification phases, so that all its row
polynomials become publicly available. This implies the following for an honest Pj : either Pj
holds valid jth rows for all the secrets and glinear, with Pj as the guide, recovers the complete
linearly combined row or Pj ensures all the jth rows are public so that the linear combination
can be found in the clear. This means

∑2n
k=0 α

k
i JA

kKj will be known to all in the end of round
2, for an honest Pj . If D is not found to be corrupt, these can be used in the end to reconstruct
A(αi), B(αi), C(αi) (again if interpolation fails then D is identified to be bad) and do the test as
mentioned earlier. The protocol is given in Fig. 7, its security statement in Theorem 3.15, and its
proof in Appendix B.4.

All parties have access to FCRS.

Primitives: Guided linear function evaluation glinear = (glinear.off, glinear.on); Rhκ-intractable hash func-

Protocol tss
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tion; VSS vss.

Sharing phase (R1):

• Inputs: D inputs three pairs (Ca,Oa), (Cb,Ob) and (Cc,Oc), that are strong t-sharing of a, b and c,
respectively, such that ab = c.

• (Sharing phase of VSS)

– D picks three random polynomials A(x), B(x), and C(x) of degree n, n and 2n, respectively, such
that A(x) · B(x) = C(x), and A(0) = a, B(0) = b and C(0) = c. Let Ak, Bk, and Ck denote the
k-th coefficient of A(x), B(x) and C(x), respectively, for k ∈ {0, . . . , 2n}, where Ak = Bk = 0 for
k > n.

– For each k ∈ {1, . . . , 2n}, D shares Ak, Bk and Ck via three vss instances, vssa,k, vssb,k and vssc,k,
respectively, and we denote the corresponding sharing polynomials by F a,k(x, y), F b,k(x, y) and
F c,k(x, y).a

– For k = 0 the values A0 = a,B0 = b and C0 = c are shared by executing vssa,0, vssb,0 and vssc,0

with inputs (Ca,Oa), (Cb,Ob) and (Cc,Oc), respectively. We denote the corresponding sharing
polynomials by F a,0(x, y), F b,0(x, y) and F c,0(x, y).

• (glinear.off calls) For every i, j ∈ {1, . . . , n} and v ∈ {a, b, c}, the parties execute glinear.offi,j,v , with
Pj as the guide.

• (Challenge randomness) Each Pi picks a random string zi ← {0, 1}κ and broadcasts zi.

• (Local computation)

– (VSS sharing phase output) For every k ∈ {0, . . . , 2n}, the parties hold the tentative shares
TAkW,TBkW and TCkW. Let C = {Cv,k}v∈{a,b,c},k∈{0,...,2n)}.

– (Happiness) If Pi received an invalid pair (Cv,k,Ov,k
i ) for some v ∈ {a, b, c} and k ∈ {0, . . . , 2n},

then Pi is “unhappy”, and sets happyi := 0. Otherwise, Pi is “happy”, and sets happyi := 1.
– (Challenge generation) For every i ∈ {1, . . . , n} the parties compute the challenge αi ← hzi(C),

where hzi is a Rhκ-intractable hash function; for R’s exact description seeb. If some αi is 0, then the
parties change its value to 1c.

– (Output) Pi outputs (Ca,0,Oa,0
i ), (Cb,0,Ob,0

i ), (Cc,0,Oc,0
i ), and happyi.

Verification phase (R2):

• (Inputs) Each Pi has an input bit flagi.

• (Verification phase of VSS) For each Pi, if flagi = 1 then Pi sets happyi to 0. Pi participates in the
verification phase of all VSS instances with happyi.

• (Challenge computation) For every i ∈ {1, . . . , n}, the parties participate in glinear.oni,j,a, glinear.oni,j,b

and glinear.oni,j,c to compute
∑2n
k=0 α

k
i TAkWj ,

∑2n
k=0 α

k
i TBkWj and

∑2n
k=0 α

k
i TCkWj , respectively,

with Pj as a guide, with input δG = (happyi, . . . , happyi) and every Pm with input δm =
(happym, . . . , happym).

• (Local computation)

– (VSS verification phase outputs) The parties compute the output of all vss executions. If the output
of some execution is “D is corrupt” then they output “D is corrupt” and terminate. Otherwise,
denote the output of vssv,k by (Wv,k, {ōv,kij }i∈Wv,k,j∈{0,...,n}). Let W :=

⋂
v∈{a,b,c},k∈{0,...,2n)}Wv,k.
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– (Challenge verification) Denote the output of glinear.oni,j,v by outi,j,v . Let V be the set of parties Pj
such that (1) j /∈ Wv,k, and for all v ∈ {a, b, c}, i ∈ {1, . . . , n} (2) outi,j,v is not “G is corrupt”, and
(3) outi,j,v contain the same a = (α0

i , α
1
i , . . . , α

2n
i ) and δG = (1, . . . , 1).

If |V∪W| < n− t, then output “D is corrupt”. Otherwise, for each i ∈ {1, . . . , n} do the following.

* For each j ∈ V and v ∈ {a, b, c}, let outi,j,v = (a, δG, tijv).

* For each j ∈ W, k ∈ {0, . . . , 2n}, and v ∈ {a, b, c}, let fv,kj0 := opencrs(Cv,kj0 , ō
v,k
j0 ), and let

tijv :=
∑2n
k=0 α

k
i f

vk
j0 .

* For each v ∈ {a, b, c}, if {tijv}j∈V∪W do not correspond to a degree-t polynomial, then output
“D is corrupt” and terminate. Otherwise, let tiv be the free coefficient of this polynomial.

* If tia · tib 6= tic then output “D is corrupt” and terminate. Otherwise, the i-th verification has
succeeded.

– (Output) If all the n the verification succeeded then output (W, {ōa,0ij , ō
b,0
ij , ō

c,0
ij }i∈W,j∈{0,...,n}).

aFor k > n we simply assume a default strong double t-sharing of Ak = Bk = 0, which is locally computed by
the parties. In particular, the parties set F a,k(x, y) and F b,k(x, y) to be the zero polynomial, and set (Cv,kij , ov,kij ) ←
commitcrs(0;~0) for every v ∈ {a, b} and i, j ∈ {0, . . . , n}, where ~0 is the all-zero string.

bLet Rhκ be the circuit that takes as an input commitments C := {Cv,k}v∈{a,b,c},k∈{0,...,2n} and openings O :=

{Ov,k
i }v∈{a,b,c},k∈{0,...,2n},i∈H. If there exists v, k it holds that such that (∅,C,∅,Ov,k

H ) is not a weak double t-sharing,
with a sharing polynomial F v,k(x, y), then R outputs 1. Otherwise, The circuit computes α := h(C), and outputs 0 if
and only if either (1) α = 0, or (2) F a,0(0, 0) ·F b,0(0, 0) 6= F c,0(0, 0) and (

∑2n
k=0 α

kF a,k(0, 0)) · (
∑2n
k=0 α

kF b,k(0, 0)) =
(
∑2n
k=0 α

kF c,k(0, 0)). See also Appendix A.2.
cIf some αi is 0 then A(0) = a,B(0) = b and C(0) = c will be revealed (and we want to keep them secret). Note

that a corrupt Pi might choose bad randomness zi that will force αi = 0, even though the hash-function should be
resistant against this event.

Figure 7: Protocol tss

Theorem 3.15. Let κ be a security parameter, let n be the number of parties, let t < n/2, and let F be
a field of characteristic 2. Protocol tss is a UC-secure implementation of Ftss with everlasting security,
against a static, active, rushing adversary corrupting up to t parties. The complexity of the protocol is
poly(n, log |F|, κ).

Notation 5. We say that D shares a random triple 〈〈a〉〉, 〈〈b〉〉, 〈〈c〉〉 via tss, if (1) D picks random symmet-
ric bivariate polynomials F a(x, y), F b(x, y) and F c(x, y), of degree at most t in each variable, such that
F a(0, 0) · F b(0, 0) = F c(0, 0), (2) samples (Cvij , o

v
ij) ← commitcrs(F v(i, j); rvij) for every v ∈ {a, b, c}

and i, j ∈ {0, . . . , n} such that i ≤ j, where rvij is a fresh random string, (3) sets Cvji := Cvij and ovji := ovij
for every i < j and v ∈ {a, b, c}, and (4) initiates tss with Ca := {Caij}i,j∈{0,...,n}, Cb := {Caij}i,j∈{0,...,n},
Cc := {Caij}i,j∈{0,...,n}, and Oa := {oaij}i,j∈{0,...,n}, Ob := {obij}i,j∈{0,...,n}, Oc := {ocij}i,j∈{0,...,n}.

3.6 General Single-input Functions

In this section, we obtain a 2-round protocol for every function whose outputs are determined
by the input of a single party. The class of single-input functions include important tasks such
as distributed ZK which we will utilize in our degree-2 computation. [GIKR02] reduces secure
computation of a single-input function (SIF) to that of degree-2 polynomials8 and subsequently
show a 2-round construct to evaluate the latter with perfect security and threshold t < n/6. In this

8We mention that this reduction works even when the functionality depends on the common reference string, since
all parties, and in particular the dealer, have access to the CRS.
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work, we complement their reduction with optimal threshold t < n/2. The functionality Fsif for
SIF evaluation has two phases. In the input phase, an honest dealer gives its inputs to Fsif , and the
adversary receives no information at all about the inputs. In the output phase, the parties receive
the outputs from Fsif . A corrupt dealer has more power, and he can send his inputs to Fsif in this
phase.

Fsif receives the set of corrupt parties C, and has access to FCRS.

Input phase. Ftss receives from an honest D inputs z = (z1, . . . , z`). There are no outputs in this phase.

Output phase. We split into two cases.

• Honest D. Fsif returns y(z) = (y1(z), . . . , ym(z)) to all parties, where yi(z1, . . . , z`) =∑
p∈{1,...,`} α

i
pzp +

∑
p,q∈{1,...,`} α

i
pqz

pzq is a degree-2 polynomial in the variables z1, . . . , z`.

• Corrupt D. Fsif receives from D inputs z = (z1, . . . , z`) and returns y(z) to all parties.

Functionality Fsif

Figure 8: Functionality Fsif

We now present a 2-round protocol sif (Fig 9), realizing Fsif . The idea of the protocol is simple:
D shares each input zi as well as the product zizj for each i, j ∈ {1, . . . , `} using VSS instances. In
order to make sure that D shared the correct product, the parties execute TSS with 〈〈zi〉〉, 〈〈zj〉〉 and
〈〈zizj〉〉 as the inputs. Now, to compute each output yi, a linear function of zi’s and zizj ’s, we will
use glinear (n instances). For security, we need to randomize each yi before reconstruction using a
sharing of 0. This can be generated by sharing 〈〈0〉〉,〈〈0〉〉 and 〈〈0〉〉 via TSS, and then opening first
two sharing to prove that the last sharing corresponds to 0. The security statement is given below
and the proof appear in Appendix B.5.

All parties have access to FCRS.

Primitives: Guided linear function evaluation glinear = (glinear.off, glinear.on); TSS tss; VSS vss.

Inputs. D has input z1, . . . , z`.

Input phase (R1). The parties do the following.

• (Input sharing) For every i ∈ {1, . . . , `},D shares zi via a VSS instance vssi. Denote the corresponding
strong degree-t sharing by (Ci,Oi), and the sharing polynomial by F i(x, y).

• (Monomials sharing) For every i, j ∈ {1, . . . , `}, D shares zij := zi · zj via a VSS instance vssij . Denote
the corresponding strong degree-t sharing by (Cij ,Oij), and the sharing polynomial by F ij(x, y).

• (tss Input Sharing) For every i, j ∈ {1, . . . , `} the parties execute an instance of tss, denoted tssij ,
where D inputs (Ci,Oi), (Cj ,Oj) and (Cij ,Oij).

• (0 sharing) For each i ∈ {1, . . . ,m}, the parties execute an instance of tss, denoted tssi, whereD inputs
three random strong sharings of zero, denoted (Cγi ,Oγi), (Cρi ,Oρ

i ) and (Cηi ,Oηi). In addition, D
broadcasts (Cγi ,Oγi) and (Cρi ,Oρi).

Protocol sif
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• (glinear.off calls) For every i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, the parties execute glinear.offi,j with Pj
as a guide.

• (Local computation) If, for some i ∈ {1, . . . ,m}, either (Cγi ,Oγi) or (Cρi ,Oρi) which were broad-
casted by D as part of the 0 sharing, are not a strong sharing of zero, then D is disqualified. Oth-
erwise, denote the output of party Pk in the execution of vssi by (Ci,Oi

k), and in the execution
of vssij by (Cij ,Oij

k ). If (1) Pk received an invalid pair in some vss or tss call, or (2) for some
i, j ∈ {1, . . . , `}, the output of party Pk in tssij is not (Ci,Oi

k), (Cj ,Oj
k), (Cij ,Oij

k ) and happyk = 1,
or (3) for some i ∈ {1, . . . ,m}, the output of party Pk in tssi is not (Cγi ,Oγi

k ), (Cρi ,Oρi
k ), (Cηi ,Oηi

k )
and happyk = 1, where (Cγi ,Oγi) and (Cρi ,Oρi) were broadcasted by D as part of the 0 sharing,
then Pk sets flagk = 1. Otherwise Pk sets flagk = 0.

Output phase (R2). The parties output y(0, . . . , 0) ifD was disqualified and do the following otherwise.

• (VSS verification phase) The parties execute the verification phase of vssi and vssij for every i, j ∈
{1, . . . , `}, where party Pk inputs flagk in all executions.

• (tss verification phase) For each i, j ∈ {1, . . . , `} the parties execute the verification phase of tssij ,
where party Pk inputs flagk in all executions.

• (glinear.on calls) For i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, in glinear.oni,j the parties partially compute∑`
p=1 α

i
pTzpWj +

∑
p,q≤` α

i
pqTzpqWj + TηiWj , with Pj as the guide with inputs δG = (flagj , . . . , flagj)

and every Pm with δm = (flagm, . . . , flagm).a

• (Local computation)

– (VSS verification phase outputs) The parties compute the output of all vss executions. If the output
of some execution is “D is corrupt” then they output y(0, . . . , 0) and terminate. Otherwise, denote
the output of vssi by (Wi, Ōi

Wi), and of vssij by (Wij , Ōij
Wij ).

– (TSS verification phase outputs) The parties compute the output of all tss executions. If the output
of some execution is “D is corrupt” then they output y(0, . . . , 0) and terminate. Otherwise, for
i, j ∈ {1, . . . , `}, denote the output of tssij by (Wij

tss, Õ
i
Wij

tss

, Õj

Wij
tss

, Õij

Wij
tss

), and for i ∈ {1, . . . ,m}

denote the output of tssi by (Wi
tss, Õ

i
Wi

tss
, Õi

Wi
tss
, Õi

Wi
tss

). Let W :=
(⋂

i,j∈{1,...,`}
(
Wi∩Wij∩Wij

tss

))
∩(⋂

i∈{1,...,m}Wi
tss

)
.

– (glinear outputs) Denote the output of glinear.oni,j by outi,j .
– (Output computation) Let V be the set of all parties Pk such that (1) k /∈ Wi, k /∈ Wij and k /∈ Wij

tss

for any i, j ∈ {1, . . . , `}, and k /∈ Wi
tss for any i ∈ {1, . . . ,m}, (2) none of {outi,k}i∈{1,...,m} is

“G is corrupt”, and (3) according to {outi,k}i∈{1,...,m} in all executions as a guide, party Pk used
(αi1, . . . , α

i
`, α

i
11, . . . , α

i
`,`, 1) and δG = (1, . . . , 1) in the execution of glineari,k.

If |V ∪W| < n − t then output y(0, . . . , 0) and terminate. Otherwise, for each i ∈ {1, . . . ,m} do
the following.

* For each k ∈ V let outi,k = (a, δG, tik).

* For each k ∈W let f jk0 := opencrs(Cjk0, ō
j
k0), f jrk0 := opencrs(Cjrk0, ō

jr
k0) for j, r ∈ {1, . . . , `}, and let

pik := opencrs(Cηik0, õ
ηi
k0). Let tik :=

∑`
p=1 α

i
pf

p
k0 +

∑
p,q≤` α

i
pqf

pq
k0 + pik.

* If {tik}k∈V∪W do not correspond to a degree-t polynomial, then output y(0, . . . , 0) and termi-
nate. Otherwise set yi to the free coefficient of the degree-t polynomial.

* Output (y1, . . . , ym).

aHere flag is 1− flag.

Figure 9: Protocol sif
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Theorem 3.16. Let κ be a security parameter, let n be the number of parties, let t < n/2, and let F be
a field of characteristic 2. Protocol sif is a UC-secure implementation of Fsif with everlasting security,
against a static, active, rushing adversary corrupting up to t parties. The complexity of the protocol is
poly(`,m, n, log |F|, κ).

3.7 Verify & Open

To achieve robust degree-2 computation in 3 rounds, we need a way to recover any kth row poly-
nomial of a VSS instance in the 3rd round irrespective of the corrupt status of D and Pk. We make
a couple of failed attempts before reaching to the final solution. First, asking Pk to disclose the
openings for its row polynomial in 3rd round (after VSS gets over) does not work, since a cor-
rupt Pk may refuse. For tackling this single-point failure, distributing trust can be a way-forward.
That is, we let every Pi open the ith share of Pk’s row polynomial. However, this too does not
work: For a VSS instance dealt by a corrupt dealer, it is possible that a corrupt Pk holds an invalid
row i.e., the public commitments for this row correspond to a polynomial of degree more than
t. This polynomial is pairwise consistent with all the honest parties’ polynomials, yet the rest of
the points are such that it’s degree goes beyond degree t. For such a scenario, a reconstruction,
no matter whether distributed or centralised (as mentioned above), will fail to reconstruct the t-
degree polynomial defined by the honest parties row polynomials. Notably, while the corrupt
status of the parties (Pk in centralized case, and D,Pk in the distributed case) can be detected in
round-3, it is too late to settle everything in the same round. Here we introduce a new primitive–
verify & open– that allows a special party D (Pk in the above discussion) to show that a set of n
commitments correspond to a polynomial of degree-t within 2 rounds and open the same if the
check verifies. As follows from the previous discussion, even an honest D’s verification may fail,
owing to the fact that the dealer of the VSS instance, the row of which is under scrutiny, is corrupt
and had dealt invalid rows to honest parties. But, looking ahead, knowing this by 2 rounds, helps
to take preemptive action in our 3-round degree-2 computation.

A two-phase primitive verify & open has a verification and an opening phase. In the former
phase, a dealer D inputs openings to commitments C1, . . . , Cn, and each Pi inputs an opening to
Ci. WhenD is honest, then the output of the verification phase is either (1) “verification succeeds”,
which happens when the openings correspond to a degree-t polynomial f(x), or (2) “verification
failed”, which happens otherwise. The output of the opening phase is f(0) in the former case
and ⊥ otherwise. When the inputs are bad (i.e., some opening of D is not valid, or the values do
not correspond to a degree-t polynomial, or some opening of Pi is not valid), then we leak all of
them to the adversary during the verification phase itself. In all cases, the adversary receives all
the openings in the opening phase. We allow an additional bit input happyD from D, which can
be used by D to indicate that it is happy to disclose the openings during the verification itself.
Looking ahead, this bit can be used by an honest D to indicate that the row that it is verifying
comes from a corrupt VSS dealer.

For a corrupt D, an output of “verification succeeds” in the verification phase ensures that
the shares of the honest parties correspond to a degree-t polynomial f(x) and later in the opening
phase, the output will be f(0). Otherwise, the output of the verification phase may be “verification
failed” or “D is corrupt”, in which case ⊥will be the output of opening phase.
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Fvao receives the set of corrupt parties C, and has access to FCRS.

Verification phase.

• Honest parties’ inputs. All honest parties input the same commitments (C1, . . . , Cn). An honest
dealer inputs openings (oD1 , . . . , o

D
n ) and a bit verifyD. Every honest Pi inputs an opening oi.

• Leakage. The adversary receives (C1, . . . , Cn) from Fvao .
If D is honest, the adversary also receives {oDi }i∈C and verifyD. In addition, if (1) verifyD = 1, or (2)
there exists an index k ∈ {1, . . . , n} such that fk := opencrs(Ck, o

D
k ) is ⊥, or (3) {fk}k∈{1,...,n} do not

correspond to a degree-t polynomial f(x), or (4) there exists k ∈ H such that opencrs(Ck, ok) 6= fk,
then the adversary also receives the openings {oDk }k∈{1,...,n} and {ok}k∈H.
If D is corrupt, the adversary also receives oi for every honest Pi.

• Adversary’s inputs. A corrupt dealer inputs (oD1 , . . . , o
D
n ) and two bits, verifyD and flagD.

• Outputs. We split into two cases.

– Honest D. If either of the conditions (1), (2) or (3) under Leakage/honest D case is true, then
return “verification failed” to all parties. Otherwise, set s = f(0), where f(x) is the degree t
polynomial over {fk}k∈{1,...,n} and return “verification succeeded” to all parties.

– Corrupt D. If flagD = 1 then output “D is corrupt” to all parties. Otherwise, if there exists i ∈ H
such that opencrs(Ci, o

D
i ) = ⊥, or verifyD = 1 then return “verification failed” to all parties. Other-

wise, for i ∈ H let fi := opencrs(Ci, o
D
i ), and let f(x) be the polynomial obtained by interpolating

{fi}i∈H. If the degree of f(x) is more than t then output “D is corrupt”. Otherwise, set s = f(0)
and return “verification succeeded” to all parties.

Opening phase.

• Leakage. The adversary receives (oD1 , . . . , o
D
n ) and (o1, . . . , on) from Fvao.

• Outputs. If the verification phase ended with “verification failed” or “D is corrupt” then return ⊥
to all parties. Otherwise, if the verification phase ended with “verification succeeded”, return s to
all.

Functionality Fvao

Figure 10: Functionality Fvao

We now present a realization, vao (Fig. 11), that takes 2 rounds for verification phase, in which
the first round is input-independent and can be run in parallel to generating inputs to vao (via VSS
instances), and one round for open phase, totalling to 3 rounds. The input-independent round is
used by D to generate a degree-t polynomial, say h(x), commit its n points publicly and give the
ith value’s opening to Pi. The 2 rounds of verification phase is used to run a SIF instance to prove
that the underlying polynomial is of degree t. In order to check whether the polynomial, say f(x),
defined by the n commitments, C1, . . . , Cn, that are input to vao, is of degree at most t, h(x) is then
used as a mask for a public recovery of h(x) + f(x), within the verification phase. This is enabled
via n instances of spcg, with D acting as Alice and every Pi, acting as Bob. Again, we leverage the
fact that the offline of SPCG spcg.off is one round and is input (f, h here) independent. If D’s SIF
instance confirms that h(x) is of degree t and the public polynomial h(x)+f(x) is of degree t, then
f(x) (as defined by the honest parties’ values) is guaranteed to be of degree t. This concludes the
verification phase and we define below the exact single-input function that D needs to invoke.

LetF1 be the single-input functionality that takes fromD commitments (C ′1, . . . , C
′
n) and open-

ings (o′1, . . . , o
′
n), and returns to all parties the commitments (C ′1, . . . , C

′
n) and a bit out such that

out = 1 if and only if hi := opencrs(C ′i, o
′
i) is not ⊥ for every i ∈ {1, . . . , n}, and {hi}i∈{1,...,n}
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correspond to some degree-t polynomial h(x).
Moving on to the opening phase, no steps are taken when either verification fails or D is

identified as corrupt. Otherwise, the open happens via n SIF instances, each carried output by
Pi as the dealer. To conclude the opening in one round, the first round of these SIFs takes place
during the 2nd round of verification phase. The exact single-input function that we use is given
below.

Let F2 be the single-input functionality that takes from a dealer commitments (C,C ′) and
openings (o, o′), computes f = opencrs(C, o) and h = opencrs(C ′, o′), returns “fail” if either h = ⊥
or f = ⊥, and otherwise returns (C,C ′, h+ f, f) to all parties. For Pi, the commitments are Ci, C ′i
and the openings are oi, o′i.

The value (h + f) from ith SIF is patted against the sum computed by spcg.oni to prove that
Pi indeed holds openings to Ci and C ′i that sums up to what it allows its SPCG to compute as
Bob. Recall that the outputs of SPCGs are checked for degree-t property and the verification
phase’s success is conditional to this. This step is important because, a corrupt D and Pi can
choose the output of spcg.oni to be whatever they like. That is, even if Ci’s opening with Pi is
not consistent with the honest parties shares’, D and Pi could make it look as if it is consistent.
However, now in SIF, Pi will fail and we will not consider its contribution for reconstructing f(x).
So the f component of ith SIF that gives non-⊥ output and allows a successful check for (h + f)-
component as above, is taken for reconstructing f(x). Lastly, while it seems making every Pi
reveal the openings on the ith values of h(x), f(x) would allow us to recover f(x), we use this
non-trivial way of opening f(x) to make the simulation work when D is honest. In particular, our
method via SIF allows to disclose the desired output, while keeping the openings secret, which is
exactly what the simulation needs for its success. The security statement is given below and the
proof appears in Appendix B.6.

All parties have access to FCRS.

Primitives: SPCG spcg = (spcg.off, spcg.on); SIF sif.

Verification phase (R1 and R2).

• R1 (Input-independent). The parties do as follows.

– D picks a random degree-t polynomial h(x), computes (C ′i, o
′
i) ← commitcrs(h(i), ri) for every

i ∈ {1, . . . , n}, where ri is a fresh random string, broadcasts {C ′i}i∈{1,...,n} and sends o′i to Pi.

– (spcg.off call) For every i ∈ {1, . . . , n}, the parties execute spcg.offi, with D as Alice and Pi as Bob.
– (sif input phase for F1) The parties execute the input phase of sif, denoted sifD, computing the

function F1, where D acts as the dealer and participates with inputs {C ′i, o′i}i∈{1,...,n}.
• Inputs. All the parties input the same commitments (C1, . . . , Cn). D also inputs openings

(oD1 , . . . , o
D
n ) and a bit verifyD. Every Pi inputs an opening oi.

• R2. The parties do as follows.

– For every i, D computes fi := opencrs(Ci, o
D
i ). If verifyD = 1, or fi = ⊥ for some i, or the

polynomial obtained by interpolating {fi}i∈{1,...,n} is of degree more than t, then D broadcasts
“verification failed” and terminates.

Protocol vao
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– (spcg.on calls) Every Pi computes f ′i := opencrs(Ci, oi), and h′i := opencrs(C ′i, o
′
i). If f ′i = ⊥ or

h′i = ⊥ then Pi sets δi = (0, 0), and bi1 = bi2 = 0. Otherwise, Pi sets δi = (1, 1), bi1 := f ′i and
bi2 := h′i. For every i ∈ {1, . . . , n}, the parties execute the online phase of spcg.oni as follows.

* All parties input (Ci, C
′
i).

* D, as Alice, inputs a := (1, 1), δA := (1, 1), and ((oDi , fi), (o
′
i, h(i))).a

* Pi, as Bob, inputs δi and (b1, b2).
– (sif output phase for F1) The parties execute the output phase of sifD.
– (sif input phase for F2) For every i ∈ {1, . . . , n} the parties execute an instance of sif, denoted sifi,

computing the function F2 with Pi as the dealer, where Pi inputs (Ci, C
′
i) and (oi, o

′
i).

– (Local computation) If D has broadcasted “verification failed” then all parties output the same and
terminate. The parties output “D is corrupt” and terminate if one of the following is true:
1. The output of sifD is not (C ′1, . . . , C

′
n) and out = 1.

2. For spcgi denote the output by outi. Some outi is “Alice is corrupt”.
3. Let V be the set of all indices i such that outi is not “Bob is corrupt”, and for some i, the outi is

not in format (ai, δA,i, {j, oA,ij , bA,ij }j∈Ii , σi), where Ii is the set I corresponding to outi, and σi
is the partial-sum.

4. There exists i ∈ V such that (1) ai 6= (1, 1), or (2) δA,i 6= (1, 1), or (3) 1 ∈ Ii and
opencrs(C1, o

A,i
1 ) 6= bA,i1 , or (4) 2 ∈ Ii and opencrs(C2, o

A,i
2 ) 6= bA,i2 , or (5) 1, 2 ∈ Ii and

bA,i1 + bA,i2 6= σi.
5. The interpolation over {σi}i∈V results in a polynomial of degree larger than t.
Otherwise, parties output “verification succeeded”.

Opening phase (R3). If the verification phase ended with “verification succeeded”, the parties execute
the output phase of sifi for every i ∈ {1, . . . , n}. Otherwise, the parties do nothing.

• (Local Computation) If the verification phase ended with “D is corrupt” or “verification failed”, then
output ⊥. Otherwise, let V′ be the set of all Pi in V such either (1) Ii = {1, 2}, or (2) Ii = ∅, and
the output of sifi is (Ci, C

′
i, σi, fi), where σi is the output of spcg.oni. For every i ∈ V′ such that

Ii = {1, 2} set si := bA,i1 , and for every i ∈ V′ such that Ii = ∅, let si := fi. Let S(x) be the
polynomial obtained by interpolating {si}i∈V′ . Output S(0).

aWe use αi(a) = ai for i ∈ {1, 2} in the expression of function f to be computed by SPCG.

Figure 11: Protocol vao

Lemma 3.17. Let κ be a security parameter, let n be the number of parties, let t < n/2, and let F be
a field of characteristic 2. Protocol vao is a UC-secure implementation of Fvao with everlasting security,
against a static, active, rushing adversary corrupting up to t parties. The complexity of the protocol is
poly(n, log |F|, κ).

3.8 Guided Degree-2 Computation

Building on and extending the notion of guided linear function evaluation, we introduce here
guided degree-2 computation, the final stop before arriving our destination of general degree-2
computation. Jumping directly in the problem, here the guide G has m + 2 tentative rows, say
bbαe, bbβe, bb1e, . . . , bbme, each of which can be either kth row or main row of a corresponding sets
of double sharing dealt by various parties.9 The goal is to compute a0bαbβ+

∑m
i=1 aibi for a publicly

9We assume that m is (at most) polynomial in κ.
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known linear combiner a = (a0, a1, . . . , am), which includes a degree-2 term. Since we will operate
over tentative shares, G as well as every Pk provide m+ 2 length binary indicator vectors. Similar
to glinear, we are pressed with the need to complete the current task in 2 rounds and the first
round needs to be input-independent so that it can run in parallel to the generation of the tentative
sharing which act as the inputs to this task. When either of the indicators corresponding to bα, bβ
is 0, the degree-2 computation turns into a linear computation. Looking ahead, for a degree-2
computation of m + 2 secrets, we need to run n guided degree-2 computation, one for every Pk
as guide. The ideal functionality Fgdtc (Fig. 12) for this task looks similar to that of guided linear
function evaluation, and reflects the above discussion.

Fgdtc receives the set of corrupt parties C, and has access to FCRS.

Honest parties’ inputs:

• All honest parties input the same commitments (Cij)i∈{α,β,1,...,m},j∈{0,...,n}.

• If G is honest, G inputs (1) a list of coefficients a = (a0, . . . , am) ∈ Fm+1, (2) a list of values bG =
(bGij)i∈{α,β,1,...,m},j∈{0,...,n} ∈ F(m+2)(n+1), (3) a list of openings {oGij}i∈{α,β,1,...,m},j∈{0,...,n}, and (4)
an indicator vector δG ∈ {0, 1}m+2.
For every i ∈ δG it holds that opencrs(Cij , o

G
ij) = bGij for every j ∈ {0, . . . , n}, and the values

{bij}j∈{0,...,n} correspond to a degree-t polynomial. In addition, a0 6= 0.

• An honest Pi inputs a list δi ∈ {0, 1}m+2, and values (biα, b
i
β , b

i
1, . . . , b

i
m) ∈ Fm+2.

Leakage: The adversary receives (Cij)i∈{α,β,1,...,m},j∈{0,...,n} and δi of every honest Pi. In addition,

• If G is honest, the adversary receives a, {bGij , oGij}i∈{α,β,1,...,m},j∈C and δG, as well as Lj :=

{(i, j), bGij , oGij}i∈Ij , for any j ∈ H, where Ij := (bG, δG)3(bi, δi). In addition, if δGα = 0 or δGβ = 0,
then the adversary receives the sum

∑
i∈δG\{α,β} aib

G
ij , for any j ∈ {1, . . . , n}.

• If G is corrupt the adversary receives (biα, b
i
β , b

i
1, . . . , b

i
m) for every i ∈ H.

Adversary’s inputs: A corrupt guide inputs a, bG, {oGij}i∈{α,β,1,...,m},j∈{0,...,n}, δG and an input bit flag.

Outputs: We split into two cases.

• Honest guide. For each i ∈ {α, β, 1, . . . ,m} such that δGi = 1, let bGi := bGi,0, and otherwise let bGi = 0.
Fgdtc returns (a, δG, a0 · bGα bGβ +

∑
i∈δG\{α,β} ai · bGi ) to all parties.

• Corrupt guide. Let g(x) be the polynomial obtained by interpolating {
∑
i∈δG\{α,β} aib

G
ij}j∈H. The

parties output “G is corrupt” if either (1) flag = 1 or (2) a0 = 0, or (3) there exists j ∈ H and i ∈ Ij
such that opencrs(Cij , o

G
ij) 6= bGij , or (4) g(x) is of degree more than t. Otherwise, we split into cases.

– If δGα ∧ δGβ = 1, let fα(x) be the polynomial obtained by interpolating {bGα,j}j∈H, and let fβ(x) be
the polynomial obtained by interpolating {bGβ,j}j∈H. If fα(x) or fβ(x) are of degree more than t
then return “G is corrupt” to all parties. Otherwise, Fgdtc returns (a, δG, a0 · fα(0) · fβ(0) + g(0))
to all parties.

– Otherwise δGα ∧ δGβ = 0, and Fgdtc returns (a, δG, g(0)) to all parties.

Functionality Fgdtc

Figure 12: Functionality Fgdtc

We design protocol gdtc (Fig. 13) to the realize Fgdtc. We reduce the task of degree-2 computa-
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tion to three instances of glinear via Beaver’s trick that demonstrates how given sharing of a triple
γ, ρ, η = γρ and sharing of bα, bβ , the sharing of the product bαbβ can be computed using a linear
function ρu+ γv + η + uv, where u = bα − γ, v = bα − ρ are public constants. So in gdtc, G shares
a triple using an instance of tss and using this Beaver’s trick makes the rest of the computation
linear. The offline/online of glinear is run in the offline/online of gdtc. The security statement
appears below and the proof in Appendix B.7.

All parties have access to FCRS.

Primitives: Guided Linear function evaluation glinear; TSS tss.

• gdtc.off(R1)

– (Sharing Phase of tss) G shares a random triple 〈〈γ〉〉, 〈〈ρ〉〉, 〈〈η〉〉 so that η = γρ using an instance of tss
(c.f. Notation 5).

– (glinear.off calls) The parties execute glinear.offout, glinear.offu and glinear.offv , led by G .

– (Local computation) We denote the output of Pi in the sharing phase of tss by
(Cγ ,Oγ

i ), (Cρ,Oρ
i ), (C

η,Oη
i ) and happyi.

• Inputs: This is exactly same as specified under Honest Parties’ input in the description of Fgdtc.

• gdtc.on(R2) The parties do the following.

– G broadcasts a and δG.

– (Verification phase of tss) The parties execute the verification phase of tss, where Pi sets flagi := 1 if
happyi = 0 (computed during the sharing phase of tss), and otherwise flagi := 0.

– (glinearout call) For i ∈ {α, β, 1, . . . ,m}, let Ci := (Cij)j∈{0,...,n} and Oi := (oGij)j∈{0,...,n}, and think
of (Ci,Oi) as a main-row of a sharing bwie. The parties compute

∑m
i=1 aibwie + a0δ

G
α δ

G
β · ((bGβ0 −

ρ)bγe+(bGα0−γ)bρe+bηe+(bGβ0−ρ)·(bGα0−γ)〈1〉), guided byGwith input δout = (δG1 , . . . , δ
G
m, 1, 1, 1, 1)

and every Pi with input [δi1, . . . , δ
i
m, happyi, happyi, happyi, 1].a

– (glinearu and glinearv calls) The parties compute bwαe − bγe in glinearu, and bwβe − bρe in glinearv ,
guided by G, with respective inputs δu = (δGα , 1), δv = (δGβ , 1) and every Pi with respective inputs
(δiα, happyi) and (δiβ , happyi).

– (Local computation) The parties output “G is corrupt” if:

1. the output of the verification phase of the tss call is “D is corrupt”;
2. if a0 = 0;
3. the output of glinearout, glinearu or glinearv is “G is corrupt”; otherwise, denote the output by

(aout, δout, out), (au, δu, u) and (av, δv, v), respectively,
4. if one of the following holds: (1) aout 6= (a1, . . . , am, δ

G
α δ

G
β a0v, δ

G
α δ

G
β a0u, δ

G
α δ

G
β a0, δ

G
α δ

G
β a0uv), (2)

au 6= (1,−1), (3) av 6= (1,−1), (4) δout 6= (δG1 , . . . , δ
G
m, 1, 1, 1, 1), (5) δu 6= (δGα , 1), and (6) δv 6=

(δGβ , 1).

Otherwise, parties output (a, δG, out).

aHere 〈1〉 is a main row of a default sharing of 1, denoted (C′0, . . . , C
′
n) and (o′0, . . . , o

′
n), which is locally computed

by the parties by setting (C′i, o
′
i) = commitcrs(1;~0), for each i ∈ {0, . . . , n}, where ~0 is the all-zero string.

Protocol gdtc = (gdtc.off, gdtc.on)
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Figure 13: Protocol gdtc = (gdtc.off, gdtc.on)

Lemma 3.18. Let κ be a security parameter, let n be the number of parties, let t < n/2, and let F be a
field of characteristic 2. Protocol gdtc is a UC-secure implementation of Fgdtc with everlasting security,
against a static, active, rushing adversary corrupting up to t parties. The complexity of the protocol is
poly(m,n, log |F|, κ).

3.9 General Degree-2 Computation

Here we present our degree-2 computation protocol. We start with the functionality Fdtc.10

The functionality receives the set of corrupt parties C, and has access to FCRS.

Inputs. Party Pi holds a vector of `i inputs to the functionality, denoted (wLi−1+1, . . . , wLi−1+`i), where
Li−1 =

∑i−1
j=1 `j and L0 = 0.

Outputs. All parties receive y(w) = (y1(w), . . . , ym(w)), where each yk is of the form
yk(xα, xβ , x1, . . . , xn) = xαxβ + x1 + . . . + xn, where each of xα, xβ , x1, . . . , xn is either equal to some
wi, or a constant specified by the functionality. That is, there exists public mapping mapk(w) that takes
w and maps the correct w to each x term in yk expression.

Functionality Fdtc

Figure 14: Functionality Fdtc

To simplify discussion, we consider the computation for y = xαxβ+x1+. . .+xn. For simplicity,
we denote the party holding xα, xβ and xi by Pα, Pβ and Pi. The high-level idea is to (1) let each
party share all of its inputs in the first round via vss sharing phase, and (2) let the parties compute
the i-th share of xα · xβ + x1 + . . . + xn via gdtc, guided by Pi. Step (1) and input-independent
round of step (2) are executed in the first round, while step (2) is executed in the second round
over the tentative shares.

The above optimistic 2-round construction works perfectly fine for a semi-honest adversary.
A malicious adversary challenges us with issues in each of the above two steps. First, the corrupt
dealers might send corrupt shares of their inputs to Pi in the first round. Second, a corrupt guide
Pi might abort the execution of gdtc. The first issue throws many complications arising out of
operating on unsettled/tentative (non-final) shares. The second issue needs us to find a way
to recover all shares. Notice that, the shares of xα · xβ + x1 + . . . + xn correspond to a degree-
2t polynomial, and so we must recover all the shares in order to recover the correct value xα ·
xβ + x1 + . . . + xn. Therefore, we add another round which is used for correcting the shares of
xα · xβ + x1 + . . . + xn, and recovering the shares of all parties who aborted the computation.
More concretely, the protocol consists of the following three phases, where each phase requires
one round.

Sharing Phase: A sharing phase, in which the parties share their inputs using the sharing phase
of the vss protocol. Observe that, the output of this phase is only tentative shares. Along with the

10Observe that Fdtc is a fictitiously corruption aware functionality, that is, Fdtc does not depend on the set of corrupt
parties C. For more information, see Appendix A.1.

35



sharing, every dealer for each of its input sharing initiates a proof in zero-knowledge, via sif, that
it holds openings to the corresponding vss commitments defining a strong double t-sharing. By
the binding property of the commitment scheme, this means that whenever the zero-knowledge
proof succeeded, any opening of the corrupt parties will be consistent with the honest parties’
shares. The exact single-input function that we use is given below.

Let F sif
〈〈·〉〉 be the single-input functionality that takes commitments C = {Cij}i,j∈{0,...,n} and

openings O = {oij}i,j∈{0,...,n}, and returns C and a bit out to all parties, such that out = 1 if and
only if (C,O) is a strong double t-sharing.

Partial-computation phase: In this, each Pi uses all of its available shares for the partial com-
putation of TxαWiTx

βWi + Tx1Wi + . . . + TxnWi via the online round of gdtc (the offline round can
be executed in parallel to the sharing phase). In parallel, the parties also execute the verification
phase of all vss instances, where Pi raises a flag in each vss instance whose dealer was identified
by Pi as corrupt. This means, for every corrupt dealer Pj , either Pj is disqualified by the vss func-
tionality, or the shares that correspond to Pi become public. At the end of this phase, the parties
identify those who are necessarily corrupt, and compute a set V that consists of all parties except
them. In particular, a party Pi is necessarily corrupt if (1) it was disqualified by a vss or gdtc in-
stance, or (2) according to the gdtc instance in which Pi is the guide, the shares of some xj are not
known to Pi, but Pi did not raise a flag in the corresponding vss instance.

Correction phase: We set the inputs of all parties outside V to be 0, while for all parties inside V
the input values are successfully shared via vss. There are two main cases to consider.

• (Exiting through linear functions) If Pα or Pβ are outside V, then either xα = 0 or xβ = 0, so it
is enough to compute the linear function x1 + . . . + xn. Since there are n − t ≥ t + 1 honest
parties, it is enough to make sure that we recover the corresponding shares of all honest
parties, and that a recovered share of a corrupt party is either consistent with those shares,
or is ⊥. This can be done by letting each Pi guide the execution of the online round of glinear
on the i-th rows of the inputs of parties in V (the offline round can be executed in the partial
computation phase). Consequently, this glinear will be run on final shares, as opposed to
tentative shares.

• (Correcting shares) Otherwise, both Pα and Pβ are in V. In this case we need to recover the
shares of all parties. In order to recover the shares of the parties outside V, which are known
to be corrupt, we simply let the parties in V reveal all the openings that correspond to the
corrupt parties’ shares. This allows to recover these shares in the clear.

For a party Pi in V, denote by yki the sum in the output of the gdtc execution guided by Pi.
We may need to correct yki , if the following cases happen.

1. (Adding missing linear terms) For j ∈ {1, . . . , n}, consider an input xj with Pj ∈ V.
However, according to gdtc, Pi did not receive a valid row of xj in the sharing phase.
Since both Pi and Pj are in V, the i-th row is public at the end of the corresponding vss
verification. Therefore, we let all parties locally add the share to yki .

2. (Removing unnecessary shares) We deal with the dual of the above scenario. For j ∈
{1, . . . , n}, consider an input xj with Pj 6∈ V. However, according to the gdtc, the value
yki consists of a share of xj . In this case, we have to subtract this share from yki , as the
inputs of all parties outside V are set to 0. For this, we can let Pi open the i-th row of
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xj , as received in the sharing phase. However, a corrupt Pi might refuse to open this
row, so in order to make sure that the i-th row is revealed, we use the vao protocol in
the following way. We require from all parties to execute a vao instance for each valid
row they receive in the sharing phase. The offline round of the verification phase can be
executed in round 1, while the online round of the verification phase can be executed
in round 2. Now, whenever Pi is required to open the i-th row of some xj , the parties
can simply execute the opening phase of the corresponding vao instance.

3. (Adding xαxβ) If, according to gdtc, Pi did not receive the i-th row of xα or xβ , then
the corresponding share of xαxβ is computed using Beaver’s trick (see Fact A.7) in the
following way. Already in the sharing phase, we let each Pi share a random triple via
tss. Using this triple, the parties can compute the i-th share of xαxβ by computing a
linear function via glinear. Finally, the parties simply add the corresponding share to
yki .

The above protocol still suffers from several problems, stated below along with the way-outs.

• (Randomization) Given two random degree-t polynomials, f(x) and g(x), it is well known
that the polynomial f(x) · g(x) is not a random polynomial. In particular, in our case,
whenever both Pα and Pβ are in V, the shares that the parties recover do not correspond
to a random degree-2t polynomial, so it may leak information about the inputs of the
honest parties. In order to solve this, we let each party Pi share a random polynomial
F zi(x, y) in the sharing phase, which will be used for zero-sharing. At a high-level, this
means that there exist coefficients {λij}i,j∈{1,...,n} such that the degree-2t polynomial g(x),
obtained by interpolating {

∑n
j=1 λ

j
iF

zj (0, i)}i∈{1,...,n} is a random degree-2t polynomial con-
ditioned on g(0) = 0. (See Fact A.9 for a formal statement.) Therefore, instead of computing
TxαWiTx

βWi + Tx1Wi + . . .+ TxnWi in the gdtc execution guided by Pi, we let the parties com-
pute TxαWiTx

βWi+Tx1Wi+. . .+TxnWi+λ
1
i Tz1Wi+. . .+λ

n
i TznWi,where zi is the free coefficient

of F zi(x, y).

Similarly, in order to simplify the simulation, we also require from the parties to randomize
the output when exiting through linear functions. We do so by letting Pi share a random
polynomial F 0i(x, y), whose free coefficient is 0, in the sharing phase. We also require from
Pi to prove in zero-knowledge, via sif, that she holds openings to the corresponding com-
mitments, that correspond to a strong double t-sharing of 0. Finally, in the correction phase,
we let the parties compute

∑n
j=1(〈〈xj〉〉i + 〈〈0j〉〉i) in the glinear execution guided by Pi. The

exact single-input function, we refer to here, is given below.

Let F sif
〈〈0〉〉 be the single-input functionality that takes commitments C = {Cij}i,j∈{0,...,n} and

openings O = {oij}i,j∈{0,...,n}, and returns C and a bit out to all parties, such that out = 1 if
and only if (C,O) is a strong double t-sharing of 0.

• (Padding) The above protocol is not secure yet. A corrupt Pα can learn the value of xβ with
probability 1. Consider a corrupt Pα that shares the value xα = 1 honestly in the sharing
phase, but is then discovered to be outside V. In this case, in the partial-computation phase
Pα learns all the shares of 1 ·xβ +x1 + . . .+xn. However, in the correction phase, the parties
recover all the shares of the sum x1+. . .+xn. Therefore, Pα can recover both xβ+x1+. . .+xn

and x1 + . . . + xn, and by subtracting the two values Pα learns xβ . In order to solve this
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problem, each party Pi uses a random pad pi in the computation of gdtc. Therefore, the final
form of computation via gdtc is as follows:(

TxαWi · Tx
βWi + Tx1Wi + . . .+ TxnWi

)
+

(
λ1
i Tz1Wi + . . .+ λni TznWi

)
+ bpie,

When both Pα, Pβ are found to be in V, this random pad is revealed and subtracted from yki
in the correction phase.

• (Opening pads via sif evaluation) Opening the above pad sounds as simple as revealing the
openings in round 3. However, due to simulation issues, as mentioned in the discussion of
vao protocol, we would need to hide the openings and yet publish the shares of the pad. We
use sif for the below function, which exactly does this.

Let F sif
co be the single-input functionality that takes a commitment C and opening o, and

outputs (C, opencrs(C, o)).

Notation 6. For a secret s, we define Dof(s) as the identity of the party that belongs it and shares it using
a VSS instance.

For clear notation, for degree-2 term, yk (as specified in Fdtc), the element in an indicator vector δ
corresponding to an element x ∈ {xα, xβ, xi, zki , pki } will be referred as δx.

All parties have access to FCRS.

Primitives: Guided degree-2 computation gdtc = (gdtc.off, gdtc.on); Guided linear function evaluation
glinear = (glinear.off, glinear.on); Verify & Open vao, TSS tss, SIF sif, VSS vss.

Inputs. Pi holds a vector of `i inputs (wLi−1+1, . . . , wLi−1+`i), where Li−1 =
∑i−1
j=1 `j and L0 = 0. The

parties know mapk(w) for every x-term in the yk expression.

(R1) The parties do the following.

• (Input sharing) Every party Pi shares each of its inputs {wj}Lij=Li−1+1 via an instance of vss, denoted

vsswj . Denote the corresponding sharing by (Cwj ,Owj ).
In addition, for every constantw used by the function y(x) (seeFdtc) for the computation of some yk,
the parties locally compute a default 〈〈w〉〉, denoted (Cw,Ow), by setting (Cij , oij)← commitcrs(w;~0)

for all i, j ∈ {0, . . . , n}, where ~0 is the all-zero vector.

• (Pads and zero sharing) For every k ∈ {1, . . . ,m}, Pi shares (a) a random pad pki using vssp
k
i , (b) a

random value zki , which will be used for zero-sharing, using vssz
k
i and (c) 0 using vss0

k
i . Denote the

corresponding sharings by (Cpki ,Opki ) and (Czki ,Ozki ) and (C0ki ,O0ki )

• (Triple sharing) For every k ∈ {1, . . . ,m}, every Pi shares a random triple 〈〈γki 〉〉, 〈〈ρki 〉〉 and 〈〈ηki 〉〉,
such that γki · ρki = ηki , via an instance of tss, denoted tsski . Denote the corresponding sharings by
(Cγki ,Oγki ), (Cρki ,Oρki ) and (Cηki ,Oηki ).

• (sif call) For every i ∈ {1, . . . , n}, for every value s with Dof(s) = i, where s is either an input xj , or
one of the pads pki , zki , or a triple-sharing element γki , ρ

k
i or ηki , the parties execute sifs, computing

functionality F sif
〈〈·〉〉 with Pi as the dealer, with inputs (Cs,Os).

Protocol dtc

38



In addition, for i ∈ {1, . . . , n} and every k ∈ {1, . . . ,m}, the parties execute an instance of sif, denoted
sif0

k
i , computing functionality F sif

〈〈0〉〉 with Pi as the dealer, with inputs (C0ki ,O0ki ).

• (vao call) For every value s with Dof(s) ∈ {1, . . . , n}, and for every i ∈ {1, . . . , n}, the parties execute
round 1 (input-independent) of verification phase of vao, denoted vaos,i, with Pi as D.

• (gdtc.off calls) For every k ∈ {1, . . . ,m} and every i ∈ {1, . . . , n}, the parties execute gdtc.offk,i, with
Pi as G.

• (glinear.off calls) For every k ∈ {1, . . . ,m} and every i ∈ {1, . . . , n} the parties execute two instances
glinear.offk,i,u and glinear.offk,i,v .

• (Local computation) If Pi received an invalid row from a vss or a tss execution in which Pj is the dealer,
or happyi = 0 in any such execution, then Pi sets flagij = 1, and turns all openings received from Pj
to ⊥. Otherwise, Pi sets flagij = 0.

(R2) The parties do the following.

• Each party Pi broadcasts {flagij}j∈{1,...,n}.
• (VSS and TSS verification) The parties execute the verification phase of all vss and tss instances, so

that Pi has input flagij in every instance of vss and tss in which Pj is the dealer.

• (sif output phase) The parties compute the output phase of every sif instance.

• (vao call) The parties execute the online round of the verification phase of every instance of vao. In
every vaos,i where Dof(s) = j, the dealer Pi inputs (Cs

i ,O
s
i ) and flagD := flagij , and every honest Pk

inputs Cs
i and oski.

• (gdtc.on calls) For every k ∈ {1, . . . ,m}, let yk = xαxβ + x1 + . . . + xm. For every i ∈
{1, . . . , n} the parties partially compute Equation (5) with Pi as G with (2n + 3)-bit indicator
vector [flagiDof(xα), flagiDof(xβ), flagiDof(x1) . . . , flagiDof(xn), flagi1, . . . , flagin, flagi1, . . . , flagin].a Every
other party’s indicator vector is determined similarly using their flags.(

TxαWi · Tx
βWi + Tx1Wi + . . .+ TxnWi

)
+

(
λ1iTz

k
1Wi + . . .+ λni Tz

k
nWi

)
+ bpki e, (5)

• (glinear.on calls) For every k ∈ {1, . . . ,m} and i ∈ {1, . . . , n}, the parties partially compute
TxαWi−bγki e and TxβWi−bρki e, via glinear.onk,i,u and glinear.onk,i,v , guided by Pi with the respective
indicators [flagiDof(xα), 1] and [flagiDof(xβ), 1], and every party Pr with indicators [flagrDof(xα), flagri]

and [flagiDof(xβ), flagri].

• (glinear.off calls for linear exit) For every k ∈ {1, . . . ,m} and i ∈ {1, . . . , n}, the parties execute
glinear.offk,ilin , with Pi as G.

• (glinear.off calls for correcting shares) For every k ∈ {1, . . . ,m} and i, j ∈ {1, . . . , n} the parties execute
glinear.offk,i,jcorrect, with Pj as G .

• (sif for opening pads) For every k ∈ {1, . . . ,m} and i, j ∈ {1, . . . , n} the parties execute an instance of

sif, denoted sifk,j,i, computing functionality F sif
co with Pj as the dealer with inputs (C

pki
j,0, o

pki
j,0).

• (Local computation) Let V be the set of parties Pi such that

1. the output of any verification phase of vss/tss where Pi enacts D is not “D is corrupt”,
2. for every s shared by Pi, the output of sifs is Cs and out = 1, and for every k ∈ {1, . . . ,m}, the

output of sif0
k
i is C0ki and out = 1,

3. the verification phase of all vao instances in which Pi is D did not end with “D is corrupt”,
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4. for every k ∈ {1, . . . ,m}, the output of gdtcki is (a, δG, yki ), where a is consistent with Eqn. (5),
5. for every k ∈ {1, . . . ,m}, the output of glineark,i,u and of glineark,i,v is (au, δu, u) and (av, δv, v),

respectively, such that au = av = (1,−1), and
6. for all j ∈ {1, . . . , n}, flagij is consistent among all vss, tss, glinear, gdtc and vao instances.

At this stage, each party Pi turns all openings received from a party not in V to ⊥.

(R3) For every k ∈ {1, . . . ,m}, in order to compute yk the parties do as follows.

• (Exit through glinearlin) If Pα or Pβ is not in V, then for every Pi in V, the parties partially compute
〈〈x1〉〉i + . . . + 〈〈xn〉〉i + 〈〈0k1〉〉i + . . . + 〈〈0kn〉〉i via glinearilin, guided by Pi with input 2n-bit indicator
vector δ||δ′ such that δi = 1 if Dof(xj) ∈ V and δ′i = 1 if Dof(0kj ) ∈ V and 0 otherwise for every
j ∈ {1, . . . , n}. Every other party has the same indicator vector.
Let Vk be the set of all parties i ∈ V such that the output of glinearilin is (a, δG, yki ), a is the all-ones
vector, and δG = δ ‖ δ′ is of the above form (i.e., δi = 1 if Dof(xj) ∈ V and δ′i = 1 if Dof(0kj ) ∈ V and 0

otherwise for every j ∈ {1, . . . , n}). Let fk(x) be the degree-t polynomial obtained by interpolating
{yki }i∈Vk . Set yk := fk(0).

• (Output through gdtc) Otherwise both Pα and Pβ are in V. For every i ∈ {1, . . . , n}, the computation
of the i-th share of yk, denoted ȳki , is done as follows.

– (Public opening for Pi 6∈ V) If Pi 6∈ V, then for every value s such that Dof(s) ∈ V, every Pj
in V broadcasts osji if flagjr = 0 (otherwise the value osji is public). The parties set fsij :=
opencrs(Csji, o

s
ji), interpolate over all non-⊥ shares in {fsij }j∈V to obtain a degree t polynomial

fsi(x) and set si := fsi(0). Finally, the parties compute ȳki := xαi x
β
i +

∑
Dof(xj)∈V x

j
i +
∑
j∈V λ

j
iz
k
ji.

– (Correcting gdtc outputs for Pi ∈ V) If Pi ∈ V, let (a, δG, yki ) be the output of gdtcki .

* (Recovering missing linear terms) For every j ∈ {1, . . . , n}, (a) with δGxj = 0 and Dof(xj) ∈ V,
the opening ox

j

i0 is public, and the parties set xji := opencrs(Cx
j

i0 , o
xj

i0 ); (b) with δG
zkj

= 0 and

Dof(zkj ) ∈ V, the opening o
zkj
i0 is public, and the parties set zkji := opencrs(C

zkj
i0 , o

zkj
i0 ).

* (Recovering linear terms to be eliminated) For every xj with δGxj = 1 and Dof(xj) 6∈ V, the parties
execute the opening phase of vaox

j ,i that ended with “verification succeeded”, in order to
recover the value xji .

* (Recovering pad pki when δGxα = δGxβ = 1) For each party Pj in V with flagji = 0 the parties

execute the output phase of sifk,j,i, and we denote the output by (Cj , f
pki
j ). We say that the j-th

share is valid if Cj = C
pki
j0 and f

pki
j 6= ⊥. For each Pj in V with flagji = 1 the opening op

k
i
j0 is

public, so the parties set fp
k
i
j := opencrs(C

pki
j0 , o

pki
j0 ). We consider each such share as valid. The

parties interpolate over all valid shares in {fp
k
i
j0 }j∈V to obtain a degree t polynomial fp

k
i (x) and

set pki := fp
k
i (0).

* (Recovering share of xαxβ when δGxα ∧ δGxβ = 0) Denote the output of glineark,i,u by (au, δu, uki )

and the output of glineark,i,v by (av, δv, vki ). If δGxα = 0 then ox
α

i0 is public, and the parties set
u := uki + opencrs(Cx

α

i0 , o
xα

i0 ). Otherwise, if δGxα = 1, the parties set u := uki . Similarly, if δGxβ = 0

then ox
β

i0 is public, and the parties set v := vki + opencrs(Cx
β

i0 , o
xβ

i0 ). Otherwise, if δGxβ = 1, the
parties set v := vki . For every j ∈ V the parties partially compute vJγki Kj + uJρki Kj + Jηki Kj +

uv〈1〉 − Jpki Kj via glineark,i,jcorrect. Let Vki be the set of all j ∈ V for which the output is (a, δG, ckij)

where a = (v, u, 1, uv,−1) and δG = (1, 1, 1, 1, 1). Let fki (x) be the polynomial obtained by
interpolating {ckij}j∈Vki , and let cki := fki (0).
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– (Computing share of yk) The value ȳki is below when δGxα = δGxβ = 1:

ȳki := yki − pki +
∑

Dof(xj)∈V:δG
xj

=0

xji +
∑

j∈V:δG
zk
j

=0

λjiz
k
ji −

( ∑
Dof(xj)/∈V:δG

xj
=1

xji +
∑

j /∈V:δGzj=1

λjiz
k
ji

)
.

and as below, when δGxα ∧ δGxβ = 0:

ȳki := yki + cki +
∑

Dof(xj)∈V:δG
xj

=0

xji +
∑

j∈V:δG
zk
j

=0

λj0z
k
ji −

( ∑
Dof(xj)/∈V:δG

xj
=1

xji +
∑

j /∈V:δGzj=1

λjiz
k
ji

)
.

Finally, the parties interpolate over {ȳki }i∈{1,...,n} to obtain fk(x) and set yk to be fk(0).

aHere, flag is 1− flag.

Figure 15: Protocol dtc

Theorem 3.19. Let κ be a security parameter, let n be the number of parties, let t < n/2, and let F be a field
of characteristic 2. Let Ln+1 andm be the number of inputs and the number of outputs of Fdtc, respectively,
and assume that they are (at most) polynomial in κ. Protocol dtc is a UC-secure implementation ofFdtc with
everlasting security, against a static, active, rushing adversary corrupting up to t parties. The complexity
of the protocol is poly(m,Ln+1, n, log |F|, κ).
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A Appendix: Security Model, Useful Facts and Standard Primitives

A.1 The UC-Framework

In this section we give a high-level description of the UC-framework, due to [Can01]. For more
details, the reader is referred to [Can01]. We begin with a short description of the standard model,
and then explain how the UC-framework augments it. At a high level, in the standard model,
security of a protocol is argued by comparing the real-world execution to an ideal-world execu-
tion. In an ideal-world execution, the inputs of the parties are transferred to a trusted party F
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(called the ideal functionality) over a perfectly secure channel, the trusted party computes the func-
tion based on these inputs and sends to each party its respective output. Informally, a protocol π
securely implements F if for any real-world adversary A, there exists an ideal-world adversary S
(called the simulator), that controls the same parties as A, so that the global output of an execution
of π with A (consisting of the honest parties’ outputs and the output of A), is indistinguishable
from the global output of the ideal-world execution withF and S (consisting of the honest parties’
outputs and the output of S).

The UC-framework augments the standard model by adding an additional entity, called the
environment Z . In the real-world, Z arbitrarily interacts with the adversary A, and, in addition,
Z generates the inputs of the honest parties at the beginning of the execution, and receives their
outputs at the end of the execution. In the ideal world, the same environmentZ arbitrarily interacts
with the simulator S, and, in addition, Z communicates with dummy parties, that receive the
honest parties’ inputs from Z and immediately transfer them to F , and later receive the honest
parties’ outputs from F and immediately transfer them to Z . In both worlds, at the end of the
execution the environment Z outputs a single bit.

For a security parameter κ and input ζ toZ , we denote the distribution of the output bit ofZ(ζ)
in a real-world execution of π with adversary A by REALπ,Z(ζ),A(κ). We denote the distribution
of the output bit of Z(ζ) in an ideal-world execution with ideal-functionality F , simulator S by
IDEALF ,Z(ζ),S(κ). Intuitively, we say that a protocol π UC-emulates an ideal-functionality F if
for every real-world polynomial-time adversary A there exists an ideal-world polynomial-time
simulator S, so that for any environment Z and any input ζ to Z , it holds that{REALπ,Z(ζ),A(κ)}κ
is computationally indistinguishable from {IDEALF ,Z(ζ),S(κ)}κ.

The dummy-adversary. Since the above definition quantifies over all environments, we can
merge the adversary A with the environment Z . That is, it is enough to require that the simu-
lator S will be able to simulate, for any environment Z , the dummy adversary that simply delivers
messages from Z to the protocol machines. For more information, see [Can01].

The hybrid model. The UC-framework is appealing because it has strong composability prop-
erties. Consider a protocol ρ that securely implements an ideal functionality G in the F-hybrid
model (which means that the parties in ρ have access to an ideal functionality F), and let π be a
protocol that securely implements F . The composition theorem guarantees that if we replace in ρ
each call to F with an execution of π we obtain a secure protocol. This means that it is enough to
prove the security of a protocol in the hybrid model, where the analysis is much simpler.

Corruption-aware functionalities. Throughout, we assume that our functionalities are
corruption-aware, which means that they might depend on the identities of the corrupt parties
C. The notion of corruption aware functionalities was first introduced by [Can01], and the reader
is referred to [Can01] for more information (see also [AL17, Section 6.2]).

We mention that our final functionality for degree-2 computation, Fdtc, is a fictitiously corrup-
tion aware functionality, which means that Fdtc receives the set of corrupt parties C, but does not
depend on it. It is known (see, e.g., [AL17, Section 6.2]) that if a protocol securely computes a fic-
titiously corruption aware functionality, then it also securely computes it in the standard model,
where the functionality does not receive the set of corrupt parties C. Therefore, our final function-
ality Fdtc is also secure in the standard model.
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Everlasting security. We also consider a hybrid version of statistical and computational security.
Intuitively, we require that an environment which is polynomially-bounded during the execu-
tion and is allowed to be unbounded after the execution, cannot distinguish the real-world from
the ideal-world. We refer to this notion as everlasting security. Observe that this security no-
tion lies between computational-security (where we consider only environments that are always
polynomially-bounded) and statistical-security (where we also consider environments that are
unbounded during the execution of the protocol).

The idea of everlasting security was formalized in the UC-framework by [MU10]. In a nut-
shell, instead of considering environments that are unbounded after the execution, it is enough
to consider only environments that are always polynomially-bounded, but are not limited to a
single bit output. In particular, such environments can output their whole view. Using the same
notation as before, REALπ,Z(ζ),A(κ) and IDEALF ,Z(ζ),S(κ), to denote the output distribution of Z
in the real-world and in the ideal-world (where now the output may contain more than one bit),
we say that a protocol π UC-emulates an ideal functionality F with everlasting security, if for
every polynomial-time real-world adversary A there exists an ideal-world polynomial-time sim-
ulator S such that for any polynomial-time environment Z and any input ζ to Z , the random
variables {REALπ,Z(ζ),A(κ)}κ, and {IDEALF ,Z(ζ),S(κ)}κ are statistically indistinguishable. There-
fore, in general, in order to prove security it is enough to show that the view of the environment
in the real-world is statistically-close to the view of the environment in the ideal-world.

We mention that the composition theorems of UC-security hold for protocols with everlasting
security (i.e., the composition of two protocols with everlasting security results in a protocol with
everlasting security). For a formal definition and statement of the composition theorem, the reader
is referred to [MU10].

Global setup. In order to obtain protocols with everlasting security, we use non-interactive com-
mitments which are statistically-hiding. It is well known that such commitments cannot be imple-
mented in the plain model, and that some global setup is required . In our case, the global setup
is a common reference string (CRS). Throughout the paper, we assume that all functionalities and
parties have access to the same global functionality FCRS, that, upon receiving a query, returns
the common reference string. We mention that, since all our protocols are static systems, where
all identities and connectivity is fixed beforehand, the composition theorems in this model follow
immediately from the composition theorems guaranteed by UC-security, even when we consider
everlasting security (see, e.g., [BCH+20, Section 1]).

A.2 On the R-Intractable Hash Functions in Protocol tss

In this section we discuss the R-intractable hash function used in protocol tss. We begin by defin-
ing R and showing that it can be represented by a circuit with a simple structure. Then, we show
that a the hash function can be modelled as a random oracle. That is, we show that a random
oracle is R-intractable. Throughout, we assume that the commitments and the opening corre-
spond to a NICOM with security parameter κ.11 We also assume that the hash-function hz takes
commitments C := {Cv,k}v∈{a,b,c},k∈{0,...,2n} and returns a single field element α.

11If the commitment scheme depends on a CRS, we extend the definition of R-intractability in a natural way, by
considering a distribution over circuits that receive a random CRS as part of their inputs, and we assume that the CRS
is also given to the adversary.
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The circuit Rhzκ . Let Rhzκ be the circuit that takes as an input commitments C :=

{Cv,k}v∈{a,b,c},k∈{0,...,2n}, and openings OH := {Ov,k
i }v∈{a,b,c},k∈{0,...,2n},i∈H. If there exist v ∈

{a, b, c} and k ∈ {0, . . . , 2n} such that (∅,Cv,k,∅,Ov,k
H ) is not a weak double t-sharing with sharing

polynomial F v,k(x, y) then R outputs 1. Otherwise, the circuit computes α := h(C), and outputs
0 if and only if either α = 0, or

F a,0(0, 0)·F b,0(0, 0) 6= F c,0(0, 0) and
( 2n∑
k=0

αkF a,k(0, 0)

)
·
( 2n∑
k=0

αkF b,k(0, 0)

)
=

( 2n∑
k=0

αkF c,k(0, 0)

)
.

Observe that, using known reduction techniques (see, e.g., [GIKR02, Theorem 1]) Rhzκ can be
implemented by circuit with the following simple properties: (1) The first layer of the circuit con-
sists of hz gates, AND gates, OR gates, and NOT gates, (2) the second layer consists of non-equal
gates (note that each gate can be implemented as (¬x∨¬y)∧ (x∨ y)), and (3) the rest of the layers
consists of an OR-tree whose inputs are the outputs of the second layer.

Random oracle as R-intractable hash function. We continue by showing that a random or-
acle O is a R-intractable hash function. We begin by analysing the following game, played
with an adversary A. First, A broadcasts commitments C := {Cv,k}v∈{a,b,c},k∈{0,...,2n}. Then a
random field element α is sampled by a trusted party and given to A. Finally, A broadcasts
OH := {Ov,k

i }v∈{a,b,c},k∈{0,...,2n},i∈H. We say that A wins if for all v ∈ {a, b, c} and k ∈ {0, . . . , 2n}
it holds that (∅,Cv,k,∅,Ov,k

H ) is a weak double t-sharing with sharing polynomial F v,k(x, y), and
either α = 0 or

F a,0(0, 0)·F b,0(0, 0) 6= F c,0(0, 0) and
( 2n∑
k=0

αkF a,k(0, 0)

)
·
( 2n∑
k=0

αkF b,k(0, 0)

)
=

( 2n∑
k=0

αkF c,k(0, 0)

)
.

Lemma A.1. Every PPT wins the game with probability at most negl(κ), where κ is the security parameter
of the commitments.

It is not hard to see that, when the underlying commitment scheme is perfectly-biding, then the
probability of every adversary to win is at most 2n/|F| = 2−Ω(κ). We omit the proof of Lemma A.1
for the case of computationally-biding commitment scheme.

We continue by showing that if there exists a PPT adversary that violates the R-intractability
property of the random oracle, then there exists a PPT adversary that wins the above game with
non-negligible probability. This will imply that no adversary can violate the R-intractability prop-
erty of the random oracle.

Consider a PPT adversary A that violates R-intractability with probability p(κ) for some poly-
nomial p(·). We may assume without loss of generality that (1) the number of queries that A
makes to the random oracle is always the same, and we denote it by T = poly(κ), (2) we denote
the queries by Q1, . . . , QT , and always assume that the commitments C in the last broadcast of A
is in the set {Q1, . . . , QT }, and (3) all queries are distinct.

Observe that there exists an index i∗ ∈ {1, . . . , T} such that Pr[AO = (C,OH) s.t. R(C,OH) =
0 ∧ C = Qi∗ ] ≥ 1/p(κ)T . Consider an adversary B that simulates A, and at the end of the
simulation computes the output (C,OH) of A and outputs (Qi∗ ,OH) instead. Then clearly,
Pr[BO = (C,OH) s.t. R(C,OH) = 0] ≥ 1/p(κ)T . We now define an adversary B′ against our
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game. B′ simulates an execution of B by giving a random field element for each query (recall that
the queries are distinct) up to query i∗, where B′ obtains Qi∗ . At this step, B′ broadcasts Qi∗ in the
game, obtains α, and returns α to B as the answer from the oracle. B′ continues to simulate B by
giving a random field element for each query and obtains the output (C,OH) of B. B′ broadcasts
OH in the game and terminates.

It is not hard to see that B′ wins the game whenever B provides (C,OH) that violate the in-
tractability, and since B is perfectly simulated, this happens with probability at least 1/p(κ)T ≥
1/poly(κ). This concludes the proof.

A.3 Polynomials: Useful Facts

Let n > 0 be a natural number, and let t < n. In the following, unless stated otherwise, F is a field
of size greater than n.

Fact A.2. Let s ∈ F and let p(x) be a random degree-d polynomial, conditioned on p(0) = s. Let
α1, . . . , αd ∈ F be distinct nonzero field elements. Then the random variables

p(α1), . . . , p(αd)

are uniformly distributed over Fd.

Fact A.3. Let K ⊆ {1, . . . , n} be a set of size at least t + 1, and let {fk(x)}k∈K be a set of degree-t
polynomials. If for every i, j ∈ K it holds that fi(j) = fj(i) then there exists a unique symmetric bivariate
polynomials F (x, y) of degree at most t in each variable such that fk(x) = F (x, k) = F (k, x) for every
k ∈ K.

We denote by Ps,t the uniform distribution over symmetric bivariate polynomials F (x, y) of
degree at most t in each variable, conditioned on F (0, 0) = s.

Fact A.4. For any s, s′ ∈ F and C ⊆ {1, . . . , n} of size at most t, it holds that

{(i, F (x, i))}i∈C ≡ {(i, F ′(x, i))}i∈C,

where F is sampled from Ps,t and F ′ is sampled from Ps′,t.

Fact A.5. For every s, s′ ∈ F, C ⊆ {1, . . . , n} of size at most t, and two sets of degree-t polynomials
{fi(x)}i∈C and {f ′i(x)}i∈C such that fi(j) = fj(i) and f ′i(j) = f ′j(i) for all i, j ∈ C, it holds that the sup-
port size of F (x, y) is equal to the support size of F ′(x, y), where F (x, y) is sampled from Ps,t conditioned
on F (x, i) = fi(x) for every i ∈ C, and F ′(x, y) is sampled from Ps′,t conditioned on F ′(x, i) = f ′i(x) for
every i ∈ C.

Fact A.6. Let α1, . . . , αn ∈ F be distinct non-zero elements and let C ⊆ {1, . . . , n} be a set of size at
most t. Let P (x) be a degree-2n polynomial, and let F̄ 0(x, y) and F̄n+1(x, y), . . . , F̄ 2n(x, y) be symmetric
bivariate polynomials of degree at most t in each variable, such that F̄ k(0, 0) = P k, where P k is the k-
th coefficient of P (x). For k = 0 and k = n + 1, . . . , 2n, and i ∈ C let fki (x) := F̄ k(x, i) and let
{f̄ki (x)}k∈{1,...,n},i∈C be the set of degree-t polynomials, such that fki (j) = fkj (i) for all i, j ∈ C.

Let F 0(x, y), . . . , F 2n(x, y) be uniformly distributed symmetric bivariate polynomials of degree at most
t in each variable, conditioned on (1) F 0(x, y) = F̄ 0(x, y) and F k(x, y) = F̄ k(x, y) for every k ∈ {n +
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1, . . . , 2n}, (2) F k(x, i) = fki (x) for all k ∈ {1, . . . , n} and i ∈ C, and (3) F k(0, 0) = P k, where P k is the
k-th coefficient of P (x), for every k ∈ {1, . . . , n}.

Then the random variables {Gj(x, y)}j∈{1,...,n}, where

Gj(x, y) :=
2n∑
k=0

αkj · F k(x, y),

are uniformly distributed symmetric bivariate polynomials of degree at most t in each variable, conditioned
on

Gj(x, i) =
2n∑
k=0

αkj · fki (x) and Gj(0, 0) = P (αi),

for all j ∈ {1, . . . , n} and i ∈ C.

Proof. Fix any symmetric bivariate polynomials H1(x, y), . . . ,Hn(x, y). It is not hard to see that if
Hj(x, i) 6=

∑2n
k=0 α

k
j f

k
i (x) orHj(0, 0) 6= P (αj), for some j ∈ {1, . . . , n} and i ∈ C, then the probabil-

ity that (G1, . . . , Gn) is equal to (H1, . . . ,Hn) is 0. Therefore, we assume thatH1(x, y), . . . ,Hn(x, y)
are in the support, i.e., Hj(0, 0) = P (αj) and Hj(x, i) =

∑2n
k=0 α

k
j f

k
i (x) for all j ∈ {1, . . . , n} and

i ∈ C. Observe that (G1, . . . , Gn) = (H1, . . . ,Hn) if and only ifα
0
1 . . . α2n

1
...

. . .
...

α0
n . . . α2n

n


 F

0(x, y)
...

F 2n(x, y)

 =

H
1(x, y)

...
Hn(x, y)

 ,
which occurs if and only ifF

1(x, y)
...

Fn(x, y)

 = V −1

H
1(x, y)− F 0(x, y)− αn+1

1 Fn+1(x, y)− . . .− α2n
1 F 2n(x, y)

...
Hn(x, y)− F 0(x, y)− αn+1

n Fn+1(x, y)− . . .− α2n
n F

2n(x, y)

 ,
where V is the n×n invertible matrix whose i-th row is (αi, . . . , α

n
i ). Observe that when assigning

y = i ∈ C, the RHS is equal to the LHS. Indeed, the RHS is equal to

V −1

H
1(x, i)− F 0(x, i)− αn+1

1 Fn+1(x, i)− . . .− α2n
1 F 2n(x, i)

...
Hn(x, i)− F 0(x, i)− αn+1

n Fn+1(x, i)− . . .− α2n
n F

2n(x, i)

 = V −1


∑n

k=1 α
k
1f

k
i (x)

...∑n
k=1 α

k
nf

k
i (x)


=

f
1
i (x)

...
fni (x)

 .
In addition, when assigning x = y = 0, the RHS is also equal to the LHS,

V −1

H
1(0, 0)− F 0(0, 0)− αn+1

1 Fn+1(0, 0)− . . .− α2n
1 F 2n(0, 0)

...
Hn(0, 0)− F 0(0, 0)− αn+1

n Fn+1(0, 0)− . . .− α2n
n F

2n(0, 0)

 = V −1


∑n

k=1 α
k
1P

k

...∑n
k=1 α

k
nP

k


=

P
1

...
Pn

 .
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We conclude that the RHS is in the support of the random variables in the LHS. By Fact A.5 the
random variables F 1(x, y), . . . , Fn(x, y) have the same support size, which we denote by S, and
we conclude that (G1, . . . , Gn) = (H1, . . . ,Hn) with probability 1/Sn. Since this is true for every
(H1, . . . ,Hn) in the support, the claim follows.

Fact A.7 (Beaver’s Trick over Univariate Polynomials). Let C ⊆ {1, . . . , n} be a set of size at most t,
and let fα(x) and fβ(x) be any degree-t polynomials. Then the following two experiments have the same
distribution.

• Experiment 1. Sample three random degree-t polynomials fa(x), f b(x) and f c(x) conditioned on
fa(0) · f b(0) = f c(0). Set u := fα(0)− fa(0) and v := fβ(0)− f b(0). Output(

{fa(i), f b(i), f c(i)}i∈C, fα(x)− fa(x), fβ(x)− f b(x), uf b(x) + vfa(x) + f c(x) + uv

)
.

• Experiment 2. Sample uniform triples {ai, bi, ci}i∈C. Sample a degree-t polynomials fu(x) and
fv(x) conditioned on {fu(i) = fα(i) − ai}i∈C and {fv(i) = fβ(i) − bi}i∈C. Set u := fu(0)
and v := fv(0) and sample a degree-t polynomial f(x) conditioned on f(0) = fα(0) · fβ(0) and
{f(i) = ubi + vai + ci + uv}i∈C. Output(

{ai, bi, ci}i∈C, fu(x), fv(x), f(x)

)
.

Fact A.8 (Beaver’s Trick over Bivariate Polynomials). Let C ⊆ {1, . . . , n} be a set of size at most t, and
let Fα(x, y) and F β(x, y) be any symmetric bivariate polynomials of degree-t in each variable. Then the
following two experiments have the same distribution.

• Experiment 1. Sample three random symmetric bivariate polynomials F a(x, y), F b(x, y) and
F c(x, y) conditioned on F a(0, 0) · F b(0, 0) = F c(0, 0). Set u := Fα(0, 0) − F a(0, 0) and
v := F β(0, 0)− F b(0, 0). Output(
{F a(x, i), F b(x, i), F c(x, i)}i∈C, Fα(x, y)−F a(x, y), F β(x, y)−F b(x, y), uF b(x, y)+vF a(x, y)+F c(x, y)+uv

)
.

• Experiment 2. Sample uniform degree-t polynomials {fai (x), f bi (x), f ci (x)}i∈C. Sample symmetric
bivariate polynomials F u(x, y) and F v(x, y) of degree at most t in each variable, conditioned on
{F u(x, i) = Fα(x, i) − fai (x)}i∈C and {F v(x, i) = F β(x, i) − f bi (x)}i∈C. Set u := F u(0, 0)
and v := F v(0, 0) and sample a symmetric bivariate polynomial F (x, y) of degree at most t in each
variable, conditioned on F (0, 0) = Fα(0, 0) · F β(0, 0) and {F (x, i) = uf bi (x) + vfai (x) + f ci (x) +
uv}i∈C. Output (

{fai (x), f bi (x), f ci (x)}i∈C, F u(x, y), F v(x, y), F (x, y)

)
.

Fact A.9 (Zero-sharing). Let |F| ≥ 2n. There exist coefficients {λij}i,j∈{1,...,n}, where λij ∈ F, such that
for any t < n/2 the following holds.

Let C ⊆ {1, . . . , n} be a set of size at most t, let {Fi(x, y)}i∈C be fixed symmetric bivariate polynomials
of degree at most t in each variable, and define fij(x) := Fi(x, j) for all i ∈ C and j ∈ {1, . . . , n}. Let

51



{fij(x)}i∈{1,...,n}\C,j∈C be fixed degree-t polynomials, and let {Fi(x, y)}i∈{1,...,n}\C be random symmetric
bivariate polynomials of degree at most t in each variable, conditioned on Fi(x, j) = fij(x) for all i ∈
{1, . . . , n} \ C and j ∈ C.

For i ∈ {1, . . . , n}, let

gi(x) :=

n∑
j=1

λjiFj(x, i),

and let g(x) be the degree-2t polynomial obtained by interpolating {gi(0)}i∈{1,...,n}. Then

• the polynomial g(x) is uniformly distributed conditioned on g(0) = 0 and g(i) =
∑n

j=1 λ
j
ifji(0) for

all i ∈ C, and

• for every i ∈ {1, . . . , n}\C, the polynomial gi(x) is uniformly distributed conditioned on gi(0) = g(i)
and gi(j) =

∑n
k=1 λ

k
i fkj(i) for all j ∈ C.

A.4 Statistical Distance

Fact A.10. Let W be a set, and let {Xw}w∈W , {Yw}w∈W be distribution ensembles. Then, for every
distribution W overW , we have ∆((W,XW ), (W,YW )) = Ew←W [∆(Xw, Yw)].

Fact A.11. Let X = (X1, X2) and Y = (Y1, Y2) be probability distributions on a set A × B such that
∆(X,Y ) ≤ ε. Let δ =

√
2ε. Then, with probability at least 1− δ over z ← X1 it holds that

∆(X2 |X1=z, Y2 |Y1=z) ≤ δ.

Proof. Consider the random variable Z = (Z1, Z2) distributed over A × B, that is sampled in the
following way. First, Z1 is sampled, and it has the same marginal distribution as X1. Then, Z2 is
sampled according to the conditional distribution Y2 |Y1=Z1 .

Since ∆(X,Y ) ≤ ε then ∆(Z, Y ) ≤ ε. Indeed, Z1 and Y1 are ε-close in statistical distance, and
conditioned on any value Z1 = Y1 = z, the random variables Z2 |Z1=z and Y2 |Y1=z have the same
distribution. By the triangle-inequality it follows that ∆(X,Z) ≤ ∆(X,Y ) + ∆(Y,Z) ≤ 2ε.

By Fact A.11 it follows that

2ε ≥ ∆(X,Z) = Ez←X1 [∆(X2 |X1=z, Y2 |Y1=z)].

Finally, by Markov’s inequality we conclude that

Pr
z←X1

[∆(X2 |X1=z, Y2 |Y1=z) ≥ δ] ≤ 2ε/δ = δ.

This concludes the proof.

A.5 Preliminaries

A.5.1 Hashing

We recall two hash functions: universal and collision-resistant. Both of these are used for
statistically-hiding and computationally binding NICOM of [DPP98, HM96] as recalled later.
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Universal Hashing. Universal Hashing was introduced by Carter and Wegman [CW79].

Definition A.12 (Universal Hash Function). A collection of functions

U =
{
uz : {0, 1}κ → {0, 1}m(κ)

}
z∈{0,1}s(κ)

is a universal hash function if the following hold for any two different inputs s1, s2 and for any two output
elements t1, t2, we have Pruz∈U

[
uz(s1) = t1 ∧ uz(s2) = t2

]
= 1

m2 .

For input space {0, 1}κ and output space {0, 1}m with m ≤ κ, we can have U = {uA,b : A ∈
{0, 1}m×κ b ∈ {0, 1}κ}, where uA,b(x) = Ax + b (all operations take place over GF (2)). Pick-
ing a function uniformly from set U simply requires picking A, b uniformly at random from the
respective spaces.

Collision-resistant Hashing. We now define collision-resistant (CR) hash functions.

Definition A.13 (Collision-resistant Hash Function). A collection of functions

H =
{
hz : {0, 1}κ → {0, 1}m(κ)

}
z∈{0,1}s(κ)

is collision-resistant (CR) hash function if the following hold:

1. (Shrinkage) The output length is smaller than the input length i.e. m(κ) < κ for every κ.

2. (Efficient Evaluation and sampling) There exists a pair of efficient algorithms (a) an evaluation al-
gorithm which given z ∈ {0, 1}s, x ∈ {0, 1}κ outputs hz(x); and (b) a key-sampling algorithm K
which given 1κ samples an index z ∈ {0, 1}s(κ).

3. (Collision Resistance) For every PPT adversary A it holds that

Pr
z←RK(1κ)

[
A(z) = (x, x′) s.t. x′ 6= x and hz(x) = hz(x

′)
]
≤ negl(κ).

A.5.2 Non-Interactive Commitment Schemes (NICOM)

Definition A.14 (NICOM). An ε-secure NICOM (commit, open) satisfies the following.

– Correctness: For all pp, x ∈M and randomness r, if (C, o)← commit(x; r) then open(C, o) = x.

– Binding: For all PPT adversaries A, it is with probability at most ε (over a uniform choice of pp
and the random coins of A) that A(pp) outputs (C, o, o′) such that open(C, o) 6= open(C, o′) and
⊥ 6∈ {open(C, o), open(C, o′)}.

– Hiding: For all PPT adversaries A and all pp, the following difference at most ε for all x, x′ ∈M :∣∣Pr(C,o)←C(x)[A(C) = 1]− Pr(C,o)←C(x′)[A(C) = 1]
∣∣

For a security parameter κ, we say that (commit, open) is secure, if it is ε-secure for some ε(κ) negligible in
κ. We say that a NICOM is statistically binding, if that the binding property holds against and unbounded
adversary A, and we say that it is statistically hiding, if the hiding property holds against an unbounded
adversary A.
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Instantiations. Here we present three instantiations of NICOM, all based on symmetric key
primitives. Operating in the plain model, the first one provides cryptographic hiding and per-
fect binding. The remaining two work in the CRS setting. One of these offers statistical binding
and computational hiding hiding. The last one offers computational binding and statistical hiding,
the latter property is instrumental in achieving everlasting security of our protocols.

NICOM from injective OWF [Blu81, Yao82, GL89]. The first construction relies on any injective
one-way function and works in the plain model. The scheme offers computational hiding and
perfect binding. Let f : {0, 1}κ → {0, 1}κ be a one-way permutation and h : {0, 1}κ → {0, 1} a
hard-core predicate for f(·). Then the commitment scheme for a single bit x is:

- The public parameter pp is f, g. This can be selected by the committer and so this construc-
tion works in plain model.

- commit(x; r): set C = (f(r), x⊕ h(r)), where r ∈R {0, 1}κ; set o = (r, x).

- open(C, o = (r, x)): return x if C = (f(r), x⊕ h(r)); otherwise return ⊥.

For commitment of multi-bit string, the Goldreich-Goldwasser-Micali [GGM86] construction from
a one-way permutation f can be used. Recall the GGM construction: given one-way permuta-
tion f : {0, 1}κ → {0, 1}κ with hard-core predicate h : {0, 1}κ → {0, 1}, first construct a length-
doubling pseudorandom generator G : {0, 1}κ → {0, 1}2κ via: G(s) = fκ(s) h(fκ−1(s)) . . . h(s),
where fκ denotes the κth application of f . Let G0(s) denote the first κ bits of G(s), and let
G1(s) denote the last k bits of G(s). For a binary string s, the commitment C can be defined
as C = G0(. . . (G0(G0(s))) . . . ) with o = s. The commitment function can be shown to be a permu-
tation and so binding holds unconditionally. Hiding follows from the property of PRF F [KS05].

Remark A.15 (Sub-exponential hardness). Assuming injective OWF over m-bit inputs that cannot be
inverted by a PPT adversary with probability better than 2−m

δ for some positive constant δ > 0, we can
use the above construction to provide a perfectly-binding computationally-hiding NICOM with error 2−κ

where κ is the security parameter. Moreover, under worst-case derandomization assumptions [BOV03], the
above holds for general (not necessarily injective) OWFs.

NICOM from PRG [Nao91]. The second construction relies on PRG security and works in the
common random string (CRS) setup. The scheme is computationally hiding and statistically bind-
ing and operates for single bit message. Let G : {0, 1}κ → {0, 1}4κ be a PRG.

- The CRS consists of σ which is a uniformly random string chosen from {0, 1}4κ.

- commit(x; r): set C = G(r) if x = 0, else C = G(r)⊕ σ; set o = (r, x)

- open(C, o = (r, x)): return x if C = G(r)⊕x ·σ (where ‘·’ denotes multiplication by constant);
otherwise return ⊥.

NICOM from CR hash function [DPP98, HM96]. The third construction relies on CR hash
function security and works in the CRS setup. The scheme is statistically hiding and computation-
ally binding. This construction works for long (or multi-bit) messages. Let the message space be
{0, 1}m. LetH : {0, 1}4κ+2m+4 → {0, 1}κ be a collection of CR hash functions (see Definition A.13).
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- The CRS consists of z ←R K(1κ) where K is the key-sampling algorithm of CR hash func-
tions (see Definition A.13).

- commit(x; r) where r ←R {0, 1}4κ+2m+4: set C = (u, hz(r), u(r) ⊕ x), where u is a function
chosen uniformly at random from the collection of universal functions U : {0, 1}4κ+2m+4 →
{0, 1}m. Set o = r

- open(C = (C1, C2, C3), o): return x where x = C1(o)⊕ C3 if C2 = hz(o); otherwise return ⊥.

B Appendix: 3-round Computational MPC with Everlasting Security

In the following sections we prove the security of our protocols. Throughout we denote by View
the tuple consists of the randomness of the environment, the messages that the corrupt parties
sent and received, and the inputs of the honest parties (which are picked by the environment).

The hybrid-world. In the proof of security we also consider an hypothetical hybrid-world, and
we show that both the real-world and the ideal-world are close to the hybrid-world, which implies
that real-world and the ideal-world are close. In the hybrid-world, the honest parties execute the
protocol just like in the real-world, except they use perfectly-hiding commitments. Those commit-
ments are obtained from the commitment scheme of the ideal-world, possibly via an inefficient
computation.

More formally, throughout the proofs, we assume without loss of generality that A is the
dummy adversary (see Section A.1), and we consider only deterministic environmentsZ . Observe
that the pair (Z,A) fixes the set of corrupt parties C. In the hybrid-model, we add an additional
entity, denoted P ∗, which is connected only to the honest parties and the functionalities, such that
whenever the honest parties (or the ideal functionalities) want to commit to a value x, they send
x to P ∗ and then receive from P ∗ a commitment and opening (C, o) for x. Similarly, whenever the
honest parties (or the ideal functionalities) want to open a commitment C using opening o, they
send (C, o) to P ∗ and receive back the committed value x.

Regarding the real-world, we show that the distribution of commitments and openings pro-
duced by P ∗ are statistically-close to the distribution of commitments and openings produced by
the honest parties in the real-world. Then we show that in both worlds the adversary’s view can
be obtained from those commitments and openings by the same process, which implies that the
real-world and the hybrid-world are statistically-close.

Regarding the ideal-world, we use the fact that perfectly-hiding commitments break the corre-
lation between the commitment and the committed value. In particular, ifD is a distribution, x is a
sample fromD, and C is a commitment of x, then x is distributed according toD even conditioned
on C. Such a claim is not true in general if the commitment scheme is only statistically-hiding.

Definition B.1 (Hybrid-world). Let A be the dummy-adversary, let Z be a deterministic environment,
and let C be the set of corrupt parties, as defined by (Z,A). The hybrid-world with respect to (Z,A) is
executed like the real-world experiment, except for the following changes.

• The honest parties locally assign some unique serial number, id, to each commitment in the execution,
in some arbitrary way.
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• We add a special entity, denoted P ∗, which is connected only to the honest parties and to the ideal
functionalities. An honest party or ideal functionality that wants to commit to a value x sends
(commit, x, id) to P ∗, where id is the serial-number of the corresponding commitment, and receives
commitment and opening (C, o) to be used as the commitment and opening of x. An honest party or
ideal functionality that wants to open a commitment C using opening o, sends (open, C, o, id), where
id is the serial-number of C, and receives the committed value x.

• Upon receiving (commit, x, id) from an honest party or an ideal functionality, P ∗ does as follows:
(1) samples a commitment of the all-zero string, (C, o) ← commitcrs(~0; r), (2) (inefficiently) sam-
ples a random string r′ conditioned on the first entry of commitcrs(x; r′) being C, (3) computes
commitcrs(x; r′) = (C, o′). If there is no r′ such that the first entry of commitcrs(x; r′) is C, then P ∗

sets o′ = ⊥, (4) P ∗ keeps the entry (C, o′, x, id) in its memory, and (5) P ∗ returns (C, o′).

• Upon receiving (open, C, o, id) from an honest party or an ideal functionality, P ∗ does as follows. (1)
If id appears in the memory of P ∗, then let (C, o′, x, id) be the corresponding entry. If o = o′ = ⊥
then P ∗ returns x. Otherwise, P ∗ returns opencrs(C, o). (2) If id do not appear in the memory of P ∗,
then P ∗ returns opencrs(C, o).

Observe that by the hiding property of the commitment scheme, it follows that for any fixed
crs, the random variable (C, o′) is 2−κ-close in statistical distance to commitcrs(x; r′′), where r′′ is a
fresh random string.

B.1 Cryptographic VSS

B.1.1 Protocol vsh

All parties have access to FCRS.

Primitives: A NICOM scheme (commitcrs, opencrs).

Sharing Phase (R1):

• Inputs. D holds a pair (C,O), which is a strong double t-sharing.

• D broadcasts C. In addition, for every i ∈ {1, . . . , n}, D sends Oi to Pi.

• Each party Pi picks n + 1 random values (gi0, . . . , gin), computes
(
Gij , hij

)
= commitcrs(gij) for

j ∈ {0, . . . , n}, sends {(gij , hij)}j∈{0,...,n} to D, and broadcasts Gi := {Gij}j∈{0,...,n}.
• Output. Each Pi outputs C and {oij}j∈{0,...,n}.

Verification Phase (R2):

• Inputs. Each Pi holds an input-bit flagi.

• D does the following for every party Pi:

– Becomes unhappy with Pi if the check gij
?
= opencrs(Gij , hij) fails for some j ∈ {0, . . . , n}.

– Broadcasts {oij}j∈{0,...,n} when unhappy, and {αij}j∈{0,...,n} otherwise, where αij := oij + gij .

• A party Pi is unhappy with D if the pair (C,Oi) is invalid, or if flagi = 1. Pi broadcasts
{(gij , hij)}j∈{0,...,n} when unhappy and no message otherwise.

Protocol vsh
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• (Local Computation) The pair (D,Pi) is said to be in conflict if Pi broadcasts {(gij , hij)}j∈{0,...,n} such
that gij = opencrs(Gij , hij) for all j ∈ {0, . . . , n}. Let W be the set of parties conflicted with D. For
every i ∈ W and j ∈ {0, . . . , n}, if D broadcasted oij in the verification phase, set ōij := oij , and
otherwise set ōij := αij − gij . Let ŌW := {ōij}i∈W,j∈{0,...,n}.

• Output. If there exists i ∈ W such that the pair (C, Ōi) is invalid then the parties output “D is
corrupt”. Otherwise, every party outputs (W, ŌW).

Figure 16: Protocol vsh

Proof of Theorem 3.7. In this section we prove that protocol vss UC-emulates Fvss with everlasting
security. Let A be an efficient adversary against vss. We define the simulator S as follows. S uses
A in a black-box manner, and forwards all messages between Z and A. S first receives the set of
corrupt C parties from Z . We split into two cases.

B.1.2 Honest Dealer

Sharing phase. S queries crs from FCRS, and also receives (C,Oi), for every i ∈ C, from Fvss.
S sends C to A as the broadcast of D, and Oi as the private message from D to Pi, for every
i ∈ C. In addition, on behalf of every honest Pi, S sets {(Gij , hij) := commitcrs(0, rij)}j∈{0,...,n},
where rij is a fresh random string, and sends Gi := {Gij}j∈{0,...,n} to A as the broadcast of Pi.
This completes the communication from honest parties to corrupt parties in the first round. At
this stage, S receives fromA the messages that every corrupt party Pi sends, that is, the broadcast
Gi and the private messages {(gij , hij)}j∈{0,...,n} to D.

Verification phase. S receives the input bits of the honest parties, {flagi}i∈H as a leakage from
Fvss. Since D is honest, we are promised that all those bits are 0. S simulates the honest parties
(except the dealer D) by not sending any message. S simulates D in the following way.

• For every honest Pi, S broadcasts {αij}j∈{0,...,n}, where each αij is a random string.

• For every corrupt Pi, S first verifies if gij
?
= opencrs(Gij , hij) for j ∈ {0, . . . , n} and becomes

unhappy with Pi if the check fails for some j. S broadcasts {oij}j∈{0,...,n} on behalf of D when
unhappy, and otherwise broadcasts {αij}j∈{0,...,n}, such that αij := oij + gij .

At this stage, S receives from A the message that every corrupt party Pi sends. Some corrupt
parties might send no message, while others broadcast some values {(g′ij , h′ij)}j∈{0,...,n}. For every
corrupt Pi such that g′ij = opencrs(Gij , h

′
ij) for all j ∈ {0, . . . , n}, S sets flagi := 1, and for all other

corrupt parties S sets flagi := 0. Finally, S inputs {flagi}i∈C to Fvss.

Fix a polytime environment Z and input ζ to the environment, and assume without loss of
generality that Z is deterministic. Let ε be the error term of the commitment scheme. We show
that the view of Z (including the adversary’s view and the honest parties’ outputs) in the real
world is statistically close to the view of Z in the ideal world.
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Adversary’s view. The adversary’s view consists of (1) the common reference string crs, broad-
cast C and messages {Oi}i∈C from D, (2) the broadcasts {Gi}i∈H, (3) the verification phase broad-
casts ofD, (4) the verification phase broadcasts of the honest parties. We continue by showing that
both the real-world view and the ideal-world view are O(n2ε)-close to the hybrid-world view (see
Definition B.1).

Real-world vs. hybrid-world. In both worlds every honest party Pi picks random values
(gi0, . . . , gin), and we fix those values. By the hiding property of the commitment scheme, the
random variables (crs, {Gij , hij}i∈H,j∈{0,...,n}) are O(n2ε)-close in both worlds, and so we fix them,
which fixes (2). Both in the real-world and in the hybrid-world, the commitments C and openings
O are generated by Z , possibly as a (deterministic) function of crs. We conclude that (C,O) are
fixed, which fixes (1). At this stage in both worlds the honest parties receive messages from the
corrupt parties. Those messages have the same distribution in both worlds, and we fix them as
well. Since the verification phase messages of the honest parties are a deterministic function of
their sharing phase view, those messages are also fixed, and are the same in both worlds. This
fixes (3) and (4) and concludes the real-world analysis.

Ideal-world vs. hybrid-world Since C and O are picked by Z , possibly as a function of crs,
we conclude that (crs,C, {Oi}i∈H) have the same distribution in both worlds, and we fix them,
which fixes (1). In addition, in both worlds the commitments in {Gi}i∈H are commitments of the
all-zero string, and so they have the same distribution. We fix them as well, which fixes (2). At
this stage in both worlds the honest parties (or the simulated honest parties) receive messages
from the corrupt parties. Again, those messages have the same distribution in both worlds, and
we fix them as well. Observe that in the hybrid-world, even conditioned on Gi for i ∈ H, the
values gi0, . . . , gin are uniformly distributed. Since an honest dealer is never unhappy with an
honest Pi, we conclude that in the hybrid-world the dealer broadcasts {αij}i∈H,j∈{0,...,n} which are
uniformly distributed, just like in the ideal-world, and we fix those broadcasts as well. In addition,
the broadcasts of D regarding a corrupt Pi are a deterministic function of Ci,Oi, the broadcast Gi

of Pi and the private message from Pi to D, denoted as {gij , hij}j∈{0,...,n}, which are all fixed. In
both worlds, if gij = opencrs(Gij , hij) for all j ∈ {0, . . . , n} then D broadcasts {oij + gij}j∈{0,...,n},
and those values are fixed and equal in both worlds. Otherwise, if gij 6= opencrs(Gij , hij) then D
broadcasts {oij}j∈{0,...,n} which are also fixed and equal in both worlds. We conclude that (3) is
also fixed. Finally, since D is honest, we are promised that flagi = 0 for every honest Pi, and, in
addition, (C,Oi) is valid. Therefore, in the hybrid-world an honest party Pi send no messages,
just like in the ideal-world. This fixes (4) and concludes the analysis of the ideal-world view. We
conclude that the real-world view is O(n2ε)-close to the ideal-world view.

Honest parties’ outputs. We say that a view View is “good” if for any corrupt Pi

1. Pi broadcasts {(gij , hij)}j∈{0,...,n} with gij = opencrs(Gij , hij) for all j ∈ {0, . . . , n}, and

2. D is happy with Pi (and so broadcasts {αij}j∈{0,...,n}),

it holds that oij + gij = αij for all j ∈ {0, . . . , n}, where oij is the opening sent from D to Pi. By
the binding property, a view View is good with probability at least 1− ε . It is not hard to see that,
conditioned on a good view View, the output of the honest parties in the real-world is the same as
the output of the honest parties in the ideal-world. This concludes the case of an honest dealer.
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B.1.3 Corrupt Dealer

Sharing phase. S begins the simulation of the first round by taking the role of the honest parties,
computing their messages in the first round, and transferring messages from honest parties to
corrupt parties to A. Then, the dealer receives from A the messages from the corrupt parties to
the honest parties, and gives them to the simulated honest parties.

Let C be the corrupt dealer’s broadcast, and let Oi be the openings that the dealer sent to an
honest Pi. S sets Oi := (⊥, . . . ,⊥) for any i ∈ {0, . . . , n} \ H, sets O := {Oi}i∈{0,...,n}, and inputs
(C,O) to Fvss.

Verification phase. The honest parties’ inputs {flagi}i∈H are leaked to S fromFvss. S continues to
simulate the honest parties using the leaked inputs {flagi}i∈H. That is, S computes the messages
sent by the honest parties, and transfers messages from honest parties to corrupt parties to A.
Then, S receives from A the messages from the corrupt parties to the honest parties, and gives
them to the simulated honest parties. Finally, the dealer computes the output of the honest parties
in the simulation.

At the end of the simulation, if the output of the honest parties is “D is corrupt” then S inputs
flagD := 1 to the functionality (the other inputs do not matter). Otherwise S sets flagD := 0, and
computes the set W of parties conflicted with the dealer in the simulation. For every i ∈ W ∩ C
S sets flagi := 1, and for every other corrupt Pi the dealer sets flagi := 0. For every i ∈ W and
j ∈ {0, . . . , n}, S computes ōij like an honest party in the simulation, and for i ∈ {0, . . . , n} \W
and j ∈ {0, . . . , n} S sets ōij := ⊥. S sets Ō := {oij}i,j∈{0,...,n} and inputs {flagi}i∈C, flagD and Ō to
Fvss.

Fix any polytime environment Z and input ζ to the environment. Let ε be the error term of the
commitment scheme. We show that the view of Z (including the adversary’s view and the honest
parties’ outputs) in the real world is statistically close to the view of Z in the ideal world.

Adversary’s view. Since S always holds all the honest parties inputs, and perfectly emulates the
honest parties in an execution of vss, then the corrupt parties’ view has the same distribution as the
corrupt parties’ view in the real-world. This concludes the analysis of the corrupt parties’ view.

Honest parties’ outputs. For a view View we denote by C the corrupt dealer’s broadcast, by
Oi be the openings that the dealer sent to an honest Pi in the sharing phase, and define the pair
(W, ŌW) like in the protocol. Let O′ := {O′i}i∈W∪H, such that O′i := Ōi for i ∈ W, and O′i := Oi

for i ∈ H \W. We say that a view View is “good” if either (1) the output of the honest parties is “D
is corrupt”, or (2) for every i, j ∈ W ∪ H either (a) opencrs(Cij , o

′
ij) = ⊥, (b) opencrs(Cji, o

′
ji) = ⊥,

or (c) opencrs(Cij , o
′
ij) = opencrs(Cji, o

′
ji). By the binding property of the commitment scheme, and

since whenever D is not discarded then Cij = Cji for all i, j ∈ {0, . . . , n}, it follows that a view
View is good with probability at least 1− ε.

Fix any good view View. It is not hard to see that conditioned on View the honest parties’
outputs in the sharing phase are fixed and equal in both worlds. Therefore, we focus on the
verification phase. If the output of the honest parties according to View is “D is corrupt” then in
the ideal-world S sets flagD := 1, and so the output of the honest parties in the ideal-world is also
“D is corrupt”, as required. Therefore, we focus on the case where the output of the honest parties
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according to View is not “D is corrupt”. In this case the output in the real-world is (W, ŌW). We
show that this happens with probability 1 in the ideal-world as well.

Observe that the set W is the same in both worlds. Indeed, S sets flagi so that Pi will be in W
in the ideal-world if and only if Pi is in W according to View, and in both worlds an honest Pi is
in W if and only if either (C,Oi) is invalid or flagi = 1. In addition, it is not hard to see that in
both worlds the pair (ŌW,OH\W) has the same (fixed) value. Therefore, it is enough to show that
if View is good then the tuple (W,C, ŌW,OH\W) is a weak double t-sharing of some value s.

First of all, observe that for every i ∈ W the pair (C, Ōi) is valid, or otherwise the honest
parties in the real world output “D is corrupt”. In addition, for any i ∈ H \W the pair (C,Oi) is
also valid, or otherwise Pi would be unhappy with D, and so Pi will be in W. In addition, since
View is good, andD is not discarded, then opencrs(Cij , o

′
ij) = opencrs(Cji, o

′
ji) for every i, j ∈W∪H.

This completes the proof.

B.2 Secure Partial Computation with a Guard

Proof of Lemma 3.10. In this section we prove that protocol spcg UC-emulates Fspcg with everlast-
ing security. Let A be an efficient adversary against spcg. We define the simulator S as follows.
The simulator S uses A in a black-box manner, and forwards all messages between Z and A. The
simulator first receives the set of corrupt C parties from Z . We split into cases.

B.2.1 Honest Alice and Bob

Offline round. S simulates the actions of an honest Bob. That is, S queries FCRS to obtain
crs, samples a random string r for the psm protocol, commitments and openings (C ′i,x, o

′
i,x) ←

commitcrs(psmi(x, r)) for each x ∈ {0, 1} and i ∈ {1, . . . , `}, and random shifts σi for any
i ∈ {1, . . . , `}, like an honest Bob. S sends the shifted commitments {C ′i,σi(x)}i∈{1,...,`},x∈{0,1} to
the adversary, as the broadcast of Bob.

Online round. S receives(
a, δA, δB, {i, oi, bAi }i∈I , χ

)
and (C1, . . . , CLB )

from Fspcg, where χ is the partial sum
∑

i∈J αi(a)bAi . S extracts the set I from the output, and
computes the set J := δA \ I . S then finds {b′i}i∈J such that

∑
i∈J αi(a) · b′i = χ. This can be done

by finding the first i∗ ∈ J such that αi∗(a) 6= 0, and setting b′i∗ to αi∗(a)−1 · χ while the rest of the
b′i’s are set to 0 (if no such αi(a) exists then χ = 0, and then any assignment would work).

For each i ∈ J set b̄Ai := b′i and b̄Bi := b′i; for each i ∈ I set b̄Ai := bAi and b̄Bi := bAi + 1; and for
every i /∈ I ∪ J set b̄Ai := 0 and b̄Bi := 0. In addition, for i ∈ I set ōi := oi and for i /∈ I set ōi := 0.
S then computes the binary string xA := (a, δA, {ōi, b̄Ai }

LB
i=1), computes s̄i := psmi(x

A
i , r) for each

i ∈ {1, . . . , `A} and broadcasts {(σi(xAi ), o′
i,xAi

, s̄i)}i∈{1,...,`A} on behalf of Alice. S also computes the

binary string xB := (δB, {b̄Bi }
LB
i=1), computes s̄i := psmi(x

B
i−`A , r) for each i ∈ {`A + 1, . . . , `} and

broadcasts {(σi(xBi−`A), o′
i,xBi−`A

, s̄i)}i∈{`A+1,...,`} on behalf of Bob.12

12Notice that the simulation here is done by computing some pre-image that gives the desired output and using it as
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Fix any polynomial time environment Z and input ζ to the environment. Let ε be the error
term of the commitment scheme. We show that the view of Z (including the adversary’s view
and the honest parties’ outputs) in the real world is statistically close to the view of Z in the ideal
world.

Adversary’s view. In the real-world, since Alice and Bob are honest, then the verification of Alice
at the beginning of the online phase always succeeds. Therefore the adversary’s view consists of
(1) the crs and the first-round broadcast of Bob {C ′i,σi(x)}x∈{0,1} for each i ∈ {1, . . . , `}, (2) the
second-round broadcast of Alice {(σi(xAi ), o′

i,xAi
, si)}i∈{1,...,`A}, and (3) the second-round broadcast

of Bob {(σi(xBi−`A), o′
i,xBi−`A

, si)}i∈{`A+1,...,`}.

We begin by showing that (1) has same distribution in both worlds. Then, we consider the
random variables (r, {σi}i∈{1,...,`}), where where r is the PSM randomness sampled by Bob, and
{σi}i∈{1,...,`} are the random shifts sampled by Bob. We show that even conditioned on (1), i.e
(crs, {C ′i,σi(x)}i∈{1,...,`},x∈{0,1}), in both worlds the random variables (r, {σi}i∈{1,...,`}) areO((`ε)1/2)-
close to uniform, and there are overwhelmingly many such (crs, {C ′i,σi(x)}i∈{1,...,`},x∈{0,1}) for
which the above is true. This will allow us to extend the argument from O((`ε)1/2)-closeness
between distributions (r, {σi}i∈{1,...,`}) and uniform to O((`ε)1/2)-closeness between real and ideal
world distributions of (2) and (3).

Consider the random variables (crs, {C ′i,σi(x)}i∈{1,...,`},x∈{0,1}, r, {σi}i∈{1,...,`}). It is not hard to
see that, since S follows the steps of an honest Bob in the offline phase, those random variables
have the same distribution in both worlds. In the following, we denote the length of r by |r|, and
note that each σi can be represented by a single bit.

First, we observe that the random variables (crs, {C ′i,σi(x)}i∈{1,...,`},x∈{0,1}, r, {σi}i∈{1,...,`}) are `ε-
close in statistical distance to the random variables (crs, {C ′′i,σi(x)}i∈{1,...,`},x∈{0,1}, U|r|, U`), where
each commitment in {C ′′i,σi(x)}i∈{1,...,`},x∈{0,1} is a commitment of the all-zero string. Indeed,
(r, {σi}i∈{1,...,`}) have the same distribution as (U|r|, U`). Conditioned on those values, and by
the hiding property of the commitment scheme, it follows that (crs, {C ′i,σi(x)}i∈{1,...,`},x∈{0,1}) is
`ε-close in statistical distance to (crs, {C ′′i,σi(x)}i∈{1,...,`},x∈{0,1}), as required.

We say that a fixing of (crs, {C ′i,σi(x)}i∈{1,...,`},x∈{0,1}) is “good”, if conditioned on this fixing,
the random variables (r, {σi}i∈{1,...,`}) are O((`ε)1/2)-close to (U|r|, U`). By Fact A.11 it follows
that a fixing is good with probability at least 1 − O((`ε)1/2). Condition on any good fixing of
{C ′i,σi(x)}i∈{1,...,`},x∈{0,1}. At this stage the honest parties inputs are picked by Z , and so they have
the same distribution in both worlds. Fix those inputs as well.

It remains to show that

(i1, . . . , i`), (o
′
1,i1 , . . . , o

′
`,i`

), (s1, . . . , s`)

have the same distribution in both worlds, where ij , o′j,ij and sj are the indices, openings and PSM
messages broadcasted by Alice and Bob in the online round. Since in both worlds (r, {σi}i∈{1,...,`})
is O((`ε)1/2)-close to (U|r|, U`), and by the security of the PSM protocol, we conclude that in

the input of the PSM. Looking ahead, in the indistinguishability proof, we use PSM privacy that guarantees that those
messages have (almost) the same distribution as in the real-world as long as the output remains the same in both cases.
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both worlds ((s1, . . . , s`), (i1, . . . , i`)) are O((`ε)1/2)-close to (Spsm(val), U`), where Spsm is the sim-
ulator of the PSM protocol, and val :=

(
a, δA, δB, {i, oi, bAi }i∈I ,

∑
i∈J αi(a) · bi

)
is the output of

the fspcg function, which is fixed (as we’ve already fixed the honest parties inputs). Finally, fix
((s1, . . . , s`), (i1, . . . , i`)) as well, and observe that the random variables (o′1,i1 , . . . , o

′
`,i`

) have the
same distribution in both worlds. We conclude that the real-world view is O((`ε)1/2)-close to the
ideal-world view.

Honest parties’ outputs. Fix any view View of the adversary. In the ideal world, the out-
put of the honest parties is (a, δA, {i, oi, bAi }i∈I ,

∑
i:δAi =1 αi(a) · bAi ) with probability 1. In the

real world, since Bob is honest, the verification of Alice succeeds, and so both Alice and Bob
broadcast {(ij , o′j , sj)}j∈{1,...,`}. It is not hard to see that honest Alice and Bob are never dis-
carded, and the perfect correctness of the PSM protocol implies that all honest parties correctly
(a, δA, δB, {i, oi, bAi }i∈I ,

∑
i∈J αi(a) · bi), and so they output (a, δA, {i, oi, bAi }i∈I ,

∑
i:δAi =1 αi(a) · bAi )

with probability 1. This concludes the case of honest Alice and Bob.

B.2.2 Corrupt Alice, Honest Bob

Offline round. S simulates the actions of an honest Bob. That is, S queries crs from FCRS,
samples a random string r for the psm protocol, commitments and openings (C ′i,x, o

′
i,x) ←

commitcrs(psmi(x, r)) for each x ∈ {0, 1} and i ∈ {1, . . . , `}, and random shifts σi for any
i ∈ {1, . . . , `}, like an honest Bob. S sends the commitments {C ′i,σi(x)}i∈{1,...,`},x∈{0,1} to the ad-
versary on behalf of Bob.

Online round. S receives (
bB, δB

)
and (C1, . . . , CLB )

from the leakage of the ideal functionality Fspcg. S holds the input of Bob, and simulates the
messages that Bob sends, and then receives from A the massages that the corrupt Alice sends.
At the end of the simulation, S computes the honest parties output, denoted v. If v is “Alice is
corrupt”, then S inputs flag := 1 to Fspcg (the rest of the inputs do not matter). Otherwise, when v
is not “Alice is corrupt”, we split into cases.

1. If the corrupt Alice broadcasted (a, δA, {i, oi, bAi }i:δAi =1), let ōi := oi and b̄Ai := bAi for each
i ∈ δA, and note that b̄Ai = opencrs(Ci, ōi) (or otherwise the honest parties would output
“Alice is corrupt”). For each i /∈ δA, set b̄Ai := 0 and ōi := 0. S inputs (a, δA, {ōi, b̄Ai }

LB
i=1),

flag := 0 and reveal := 1 to Fspcg.

2. Otherwise, the corrupt Alice has broadcasted {(ij , o′j , sj)}j∈{1,...,`A}. For each j ∈ {1, . . . , `A},
S takes the index ij broadcasted by the corrupt Alice, and sets xj := σ−1

j (ij). S then
sets xA := (x1, . . . , x`A) ∈ {0, 1}`A , and parses xA = (a, δA, {oi, bAi }

LB
i=1). S inputs

(a, δA, {oi, bAi }
LB
i=1), flag := 0 and reveal := 0 to the ideal functionality.

Fix any polytime environment Z and input ζ to the environment. Let ε be the error term of the
commitment scheme. We show that the view of Z (including the adversary’s view and the honest
parties’ outputs) in the real world is statistically close to the view of Z in the ideal world.
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Adversary’s view. Since S receives the inputs of the honest parties, and acts like an honest Bob
in both rounds, it perfectly simulate the view ofA. It remains to show that the output of the honest
parties has the same distribution in both worlds.

Honest parties’ outputs. Fix any view View. Observe that if the honest parties output “Alice is
corrupt” according to View then they also output “Alice is corrupt” in the ideal world. Therefore
it remains to analyse the case where the output of the honest parties is not “Alice is corrupt”
according to View. As before, we split into cases.

We begin by analysing case (1), where Alice broadcasts (a, δA, {i, oi, bAi }i:δAi =1). In this

case, S inputs (a, δA, {ōi, b̄Ai }
LB
i=1), flag := 0 and reveal := 1 to Fspcg, where ōi := oi,

b̄Ai := bAi and b̄Ai = opencrs(Ci, ōi) for each i ∈ δA, and b̄Ai := 0 and ōi := 0 for each
i /∈ δA. In the real world, according to protocol spcg, the output of the honest parties is
(a, δA, {i, oi, bAi }i∈δA ,

∑
i∈δA αi(a) · bAi ). In the ideal world, according to Fspcg the output of the

honest parties is also (a, δA, {i, oi, bAi }i∈δA ,
∑

i∈δA αi(a) · bAi ), as required.
We continue with case (2), where Alice broadcasts {(ij , o′j , sj)}j∈{1,...,`A}. In this case S inputs

(a, δA, {oi, bAi }
LB
i=1), flag := 0 and reveal := 0 to Fspcg, that are obtained by setting xj := σ−1

j (ij),
computing xA := (x1, . . . , x`A) ∈ {0, 1}`A , and parsing xA = (a, δA, {oi, bAi }

LB
i=1). Since the output

of the honest parties in the real world is not “Alice is corrupt”, we conclude that opencrs(C ′j,ij , o
′
j) =

sj for any j ∈ {1, . . . , `A}. We say that a view View is “good”, if for every j ∈ {1, . . . , `A} it
holds that sj is the message that the honest Bob committed to in the offline round, i.e., sj =
commitcrs(psmj(σ

−1(ij), r)). Observe that, by the binding property of the commitments, a view
View is good with probability at least 1− ε.

Condition on any good View in which case (2) occurs, and the output of the honest parties is
not “Alice is corrupt”. In the real-world, by the correctness of the PSM protocol, the output of
the PSM is

(
a, δA, δB, {i, oi, bAi }i∈I ,

∑
i∈J αi(a) · bAi

)
, where I := (bA, δA)3(bB, δB). It holds that

opencrs(Ci, oi) = bAi for every i ∈ I , or otherwise the output of the honest parties is “Alice is
corrupt”. Therefore, the honest parties output (a, δA, {i, oi, bAi }i∈I ,

∑
i:δAi =1 αi(a) · bAi ). In the ideal

world, since we’ve seen that opencrs(Ci, oi) = bAi for every i ∈ I , the output of the honest parties is
also (a, δA, {i, oi, bAi }i∈I ,

∑
i:δAi =1 αi(a) · bAi ), as required. This concludes the case of corrupt Alice

and honest Bob.

B.2.3 Honest Alice, Corrupt Bob

Offline round. In the offline round only the corrupt Bob communicates, and so S receives the
messages that Bob sends to the honest parties from A.

Online round. The adversary receives the inputs of the honest Alice, (a, δA, {oi, bAi }
LB
i=1), and so

can simulate the online round broadcast of the honest Alice. S then receives from A the online
round broadcast of the corrupt Bob.

At the end of the simulation S computes the output of the honest parties in the simulation.
If the output is “Bob is corrupt” S inputs flag = 1 to Fspcg (the rest of the inputs do not matter).
Otherwise, the output is not “Bob is corrupt”, and S extracts the set I from the output. Let J :=
δA \ I . For every i ∈ J S sets δBi := 1 and bBi := bAi . For i /∈ J S sets and δBi := 0 and bBi := 0. S
inputs δB,bB and flag := 0 to Fspcg.
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We show that the view of Z (including the adversary’s view and the honest parties’ outputs)
in the real world is statistically close to the view of Z in the ideal world.

Adversary’s view. Since S receives the inputs of the honest parties, and acts like an honest Alice
in both rounds, it perfectly simulate the view ofA. It remains to show that the output of the honest
parties has the same distribution in both worlds.

Honest parties’ output. We say that a view View is “good” if the adversary did not violate the
binding property of the commitments {C ′i,x}i,x. More formally, a view View is good, if one of the
following happens

• Alice has broadcasted (a, δA, {i, oAi , bAi }i:δAi =1) in the online round,

• the output of the honest parties according to View is “Bob is corrupt”,

• for each j ∈ {`A + 1, . . . , `}, the adversary has broadcasted (ij , o
′′
j , sj), such that either (1)

opencrs(C ′j,ij , o
′′
j ) = ⊥, or (2) opencrs(C ′j,ij , o

′′
j ) = opencrs(C ′j,ij , o

′
j,ij

), where o′j,ij was sent by
Bob to Alice in the offline round.

Note that, by the binding property of the commitment scheme, a view View is good with proba-
bility at least 1 − ε, and that whenever a view is good, the output in the ideal-world is equal to
the output of the honest parties according to View. This concludes the case of honest Alice and
corrupt Bob.

B.2.4 Corrupt Alice and Bob

Since the only parties that hold inputs and communicate are Alice and Bob, S can trivially simulate
the view of the corrupt parties. At the end of the simulation S computes the output of the honest
parties in the simulation, denoted z. S inputs z to Fspcg (the rest of the inputs do not matter). It
is not hard to see that the above simulator perfectly simulates spcg. This completes the case of
corrupt Alice and Bob.

B.2.5 Complexity Analysis

Here we analyse the complexity of protocol spcg. In order to show that the complexity of spcg
is poly(n, log |F|, κ, LA, LB), it is enough to show that the complexity of the underlying PSM
protocol is poly(n, log |F|, κ, LA, LB). For this, according to Theorem 3.9 it is enough to show
that fspcg has a circuit with size polynomial in (n, log |F|, κ, LA, LB) and depth logarithmic in
(n, log |F|, κ, LA, LB).

First, observe that ` = poly(log |F|, LA, LB, κ). It is not hard to see that the outputs a, δA, δB can
be computed by a constant depth circuit. We represent the list {i, oAi , bAi }i∈I as a concatenation of
LB binary strings, χ1, . . . , χLB , each of length poly(κ, log |F|), such that the first bit of χLi , denoted
βi, indicates whether i ∈ I . When βi = 1 the rest of the string encodes (oAi , b

A
i ), and otherwise,

when βi = 0 it encodes the all-zero string. It is not hard to see that computing the output can
be reduced to computing the βi’s, which are computed in the following way. For each i we use a
comparator to check whether bAi = bBi and get a bit γi,1, we check whether δAi = δBi = 1 and get a
bit γi,2, we check whether δAi = 1, δBi = 0 and get a bit γi,3, and finally we set βi = (γi,1∧γi,2)∨γi,3.
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As the comparator can be computed in depth log log |F|, and γi,2, γi,3 can be computed in constant
depth, then each βi can be computed in depth log log |F|, as required.

It remains to show how to compute the sum
∑

i∈J αi(a) · bi. First, it is not hard to see that
given δA and the βi’s we can compute an indicator bit ηi to whether i ∈ J or not in constant depth.
Since computing each αi(a) is in NC1, and multiplying field elements is in NC1 (see [HV06]), we
can compute the field element ci := ηi · αi(a) · bi for each i ∈ LB with logarithmic depth. Finally,
computing the sum of all the ci’s requires depth logarithmic in LB , as required. This completes
the complexity analysis, and completes the proof.

B.3 Guided Linear Function Computation

Proof of Lemma 3.12. In this section we prove that protocol glinear UC-emulates Fglinear with ever-
lasting security. From the composition properties of UC-security, it is enough to prove security in
the Fspcg-hybrid model. Let A be an efficient adversary against glinear. We define the simulator S
as follows. The simulator S uses A in a black-box manner, and forwards all messages between Z
and A. The simulator first receives the set of corrupt C parties from Z . We split into cases.

B.3.1 Honest Guide

Offline round. In the Fspcg-hybrid model there is no communication in the offline round.

Online round. The simulator receives the following leakage from Fglinear: (1) the commitments
(Cij)i∈{1,...,m},j∈{0,...,n}, (2) the honest parties’ indicator vectors {δi}i∈H and δG, (3) parts of the
dealer’s inputs a, {bGi,j , oGi,j}i∈{1,...,m},j∈C, (4) the values and openings Lj = {(i, j), bGij , oGij}i∈Ij for
j ∈ H, and (5) vj :=

∑
i∈δG aib

A
ij for any j ∈ {1, . . . , n}. In addition, the simulator receives the

output of Fglinear, v :=
∑

i∈δG aib
A
i0.

For each j ∈ {1, . . . , n}, the simulator simulates the call to F jspcg as follows.

• If j ∈ H then the simulator gives (C1j , . . . , Cmj) to A as the leakage from F jspcg, and
(a, δG, δj , {i, oGij , bGij}i∈Ij , vj −

∑
i∈Ij aib

G
ij) as the output from F jspcg.

• If j ∈ C then the simulator gives the adversary the honest parties’ inputs (C1j , . . . , Cmj),
a, {bGij}i∈{1,...,m}, δG, and {oGij}i∈{1,...,m} as leakage from F jspcg. Later, the simulator receives
Bob’s inputs bB , δB , flag, reveal and z from A. Upon receiving Bob’s inputs, the simulator,
that holds all inputs to F jspcg, computes the output of the functionality, and returns it to A.

This completes the simulation.

Fix any polytime environment Z and input ζ to the environment. Let ε be the error term of the
commitment scheme. We show that the view of Z (including the adversary’s view and the honest
parties’ outputs) in the real world is statistically close to the view of Z in the ideal world.

Adversary’s view. Fix the crs. The honest parties’ inputs are picked by Z , and so they have the
same distribution in both worlds. Fix those inputs. The only messages that the adversary receives
are the leakage and the output from the various Fspcg calls. It is not hard to see that, since we’ve
fixed the honest parties’ inputs, those messages are fixed for any F jspcg such that j ∈ H, and are
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the same in both worlds. Similarly, for j ∈ C, the leakage is fixed, and is the same in both worlds.
After receiving all leakage from the various calls to Fspcg, and the outputs of F jspcg for j ∈ H, the
adversary picks the inputs to F jspcg for j ∈ C in the same way in both worlds, and the simulator
computes the output ofF jspcg like in the real-world, so the output ofF jspcg has the same distribution
in both worlds. We conclude that the adversary’s view has the same distribution in both worlds.

Honest parties’ output. Fix any view View of the adversary, and fix the honest parties’ inputs
conditioned on View. In the ideal world the output of the honest parties is (a, δG,

∑
i∈δG aib

G
i0)

with probability 1. We show that this is also the case in the real world. Indeed, for every j ∈ H, the
functionality F jspcg returns (a, δG, {i, oGij , bGij}i∈Ij ,

∑
i∈δG aib

G
ij) to all honest parties. In addition, for

j ∈ C, the output of F jspcg is either “Bob is corrupt” or (a, δG, {i, oGij , bGij}i∈Ij ,
∑

i∈δG aib
G
ij). Let K be

the set of all indices j such that F jspcg returns (a, δG, {i, oGij , bGij}i∈Ij ,
∑

i∈δG aib
G
ij). In particular, K

includes all n− t ≥ t+ 1 honest parties. For k ∈ K, let vk :=
∑

i∈δG aib
G
ik. As we are promised that

for every i ∈ δG the shares bGi0, . . . , b
G
in correspond to a degree t polynomial gi(x), it follows that the

shares {vk}k∈K correspond to a degree-t polynomial g(x) :=
∑

i∈δG aigi(x), whose free coefficient
is g(0) =

∑
i∈δG aigi(0) =

∑
i∈δG aib

G
i0. Therefore, all honest parties output (a, δG,

∑
i∈δG aib

G
i0) with

probability 1. This concludes the case of an honest guide.

B.3.2 Corrupt Guide

Offline round. In the Fspcg-hybrid model there is no communication in the offline round.

Online round. The simulator receives the following leakage from Fglinear: (1) the commitments
(Cij)i∈{1,...,m},j∈{0,...,n} and (2) the honest parties’ inputs {bi, δi}i∈H. The simulator, that holds the
inputs of all honest parties, takes the role of the honest parties and simulates their call to Fspcg. In
particular, for every j ∈ {1, . . . , n} the simulator sends (C1j , . . . , Cmj), as the leakage from F jspcg,
and in addition, for j ∈ H, the the simulator sends bj and δj as the additional leakage. Later, at an
order which is determined byA, it holds that (1) for every j the simulator receives Alice’s input to
F jspcg from A, denoted (aA,j ,bA,j , δA,j , {oA,ji }i∈{0,...,m}, flagA,j , revealA,j , zA,j), and (2) for j ∈ C, the
simulator receives Bob’s input to F jspcg from A, denoted bB,j , δB,j . Upon receiving both Alice and
Bob’s input to F jspcg, the simulator computes the output of F jspcg and gives it toA. After all calls to
Fspcg were concluded, the simulator continues to simulate the honest parties, and computes their
output.

If the output of the honest parties is “G is corrupt” then the simulator inputs flag = 1 to
Fglinear (the rest of the inputs don’t matter). Otherwise, the simulator sets flag := 0. Observe
that in this case, for every j ∈ H the vectors aA,j and δA,j are the same (or otherwise the
guide would be discarded), and we denote them by a and δG, respectively. The simulator sets
bGij := bA,ji and oGij := oA,ji for every i ∈ {1, . . . ,m} and j ∈ {0, . . . , n}. The simulator inputs
(a,bG, δG, {oGij}i∈{1,...,m},j∈{0,...,n}) and flag to Fglinear.

Fix any polytime environment Z and input ζ to the environment. Let ε be the error term of the
commitment scheme. We show that the view of Z (including the adversary’s view and the honest
parties’ outputs) in the real world is statistically close to the view of Z in the ideal world.
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Adversary’s view. In both worlds the honest parties’ inputs are picked by Z , so they have the
same distribution and we fix them. The only messages that the adversary receives are the leakage
and the output from the various Fspcg calls. Since the simulator holds the honest parties inputs,
and since the simulator simulates the honest parties exactly like in the real-world, those messages
have the same distribution as in the real-world. This concludes the analysis of the adversary’s
view.

Honest parties’ output. Fix any view View of the adversary. If the output of the honest parties
in the real-world according to View is “G is corrupt” then the simulator sets flag := 1, and so
the output of the honest parties in the ideal-world is “G is corrupt”. Therefore, from now on we
assume that the output of the honest parties according to View is not “G is corrupt”.

Denote by K the set of all indices k ∈ {1, . . . , n} such that the output of Fkspcg is not “Bob is
corrupt”, and observe that H ⊆ K. Since the guide is not discarded then (1) there is no F jspcg
whose output is “Alice is corrupt”, (2) the dealer sent the same a and δG to any Fkspcg for k ∈ H ,
(3) for every k ∈ H and i ∈ Ik it holds that opencrs(Cik, o

A,k
i ) = bA,ki , and (4) the shares {vk}k∈K

correspond to a degree-t polynomial, denoted g(x), where vk is the partial-sum obtained from the
output of Fkspcg. We conclude that in both worlds the output of the honest parties is (a, δG, g(0)),
as required.

B.4 Triple Secret Sharing

Proof of Theorem 3.15. In this section we prove that protocol tss UC-emulates Ftss with everlasting
security. From the composition properties of UC-security, it is enough to prove security in the
(Fvss,Fglinear)-hybrid model. Let A be an efficient adversary against tss. We define the simulator
S as follows. The simulator S uses A in a black-box manner, and forwards all messages between
Z and A. The simulator first receives the set of corrupt C parties from Z . We split into cases.

B.4.1 Honest Dealer

Sharing phase. The simulator receives (C̄a, Ōa
i ), (C̄b, Ōb

i), (C̄c, Ōc
i ), and happyi = 1, for every

i ∈ C, from Ftss. We sometimes denote the pairs by (C̄a,0, Ōa,0
i ), (C̄b,0, Ōb,0

i ), and (C̄c,0, Ōc,0
i ),

respectively.
For v ∈ {a, b} the simulator picks (1) random strong double t-sharings 〈〈0〉〉, denoted

(C̄v,k, Ōv,k), for k ∈ {1, . . . , n}, and (2) fixed sharings (C̄v,k, Ōv,k) defined by (C̄v,kij , ō
v,k
ij ) ←

commitcrs(0;~0) for every v ∈ {a, b}, i, j ∈ {0, . . . , n}, and k ∈ {n + 1, . . . , 2n}, where ~0 is the
all-zero string. In addition, for v = c, the simulator picks random strong double t-sharings 〈〈0〉〉,
denoted (C̄c,k, Ōc,k) for any k ∈ {1, . . . , 2n}. For k ∈ {0, . . . , 2n}, the simulator simulates the calls
to Fa,kvss ,Fb,kvss and Fc,kvss by giving the adversary the outputs that correspond to the corrupt parties,
i.e., {(C̄a,k, Ōa,k

i ), (C̄b,k, Ōb,k
i ), (C̄c,k, Ōc,k

i )}k∈{0,...,2n},i∈C. For v ∈ {a, b, c}, i ∈ C and k ∈ {0, . . . , 2n}
we denote by f̄v,ki (x) the degree-t polynomial that corresponds to (C̄v,k

i , Ōv,k
i ).

The simulator picks random polynomials Ā(x), B̄(x) and C̄(x) of degree n, n and 2n, respec-
tively, such that Ā(x) · B̄(x) = C̄(x). For k ∈ {0, . . . , 2n}, We denote their k-th coefficient by Āk, B̄k

and C̄k, respectively, where Āk = B̄k = 0 for k > n. For each k ∈ {0, . . . , 2n}, the simulator picks
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random symmetric bivariate polynomials F̄ a,k(x, y), F̄ b,k(x, y) and F̄ c,k(x, y) of degree at most t
in each variable, such that for k ∈ {0, . . . , n}we condition on

• F̄ v,k(x, i) = f̄v,ki (x) for every v ∈ {a, b, c} and i ∈ C, and

• F̄ a,k(0, 0) = Āk, F̄ b,k(0, 0) = B̄k, and F̄ c,k(0, 0) = C̄k,

and for k ∈ {n+ 1, . . . , 2n}we condition on

• F̄ a,k(x, y) = 0,

• F̄ b,k(x, y) = 0, and

• F̄ c,k(x, i) = f̄ c,ki (x) for every i ∈ C, and F̄ c,k(0, 0) = C̄k.

In addition, for every i ∈ H, the simulator samples a random string z̄i and gives it to A as the
broadcast of Pi. At this stage, the simulator receives from A the broadcasts z̄i of the corrupt Pi’s.
Let C̄ := {C̄v,k}v∈{a,b,c},k∈{0,...,2n}, and let ᾱi := hz̄i(C) for i ∈ {1, . . . , n}. If some ᾱi is 0 then the
simulator changes it to 1.

Verification phase. For any v ∈ {a, b, c}, k ∈ {0, . . . , 2n} and i ∈ H the simulator sets flagv,ki := 0.
The simulator sends {flagv,ki }i∈H to A, as the leakage from Fv,kvss .

For each i ∈ {1, . . . , n} and v ∈ {a, b, c} the simulator sets Ḡv,i(x, y) :=
∑2n

k=0 α
k
i · F̄ v,k(x, y).

For i ∈ {1, . . . , n}, j ∈ H and v ∈ {a, b, c}, the leakage of F i,j,vglinear is simulated in the following way.
The adversary receives (1) the j-th rows C̄v,0

j , . . . , C̄v,2n
j , (2) the indicator vectors {δ`}`∈H such

that δ` = (1, . . . , 1) for each ` ∈ H, (3) the coefficient vector a := (ᾱ0
i , . . . , ᾱ

2n
i ), (4) the openings

ōv,k`j and values opencrs(C̄v,kj` , ō
v,k
`j ) for every k ∈ {0, . . . , 2n} and ` ∈ C, (5) the indicator vector

δG := (1, . . . , 1), (6) an empty set L` = ∅ for every ` ∈ H, and (7) the values {Ḡv,i(`, j)}`∈{1,...,n} as
the partial-sums. The simulator also gives A the vector (a, δG, Ḡv,i(0, j)) as the output of F i,j,vglinear.

For i ∈ {1, . . . , n}, j ∈ C and v ∈ {a, b, c} the simulator simulates the leakage of F i,j,vglinear
by giving the adversary the corresponding inputs of the honest parties, i.e., (1) the j-th rows
C̄v,0
j , . . . , C̄v,2n

j , (2) the indicator vectors {δ`}`∈H such that δ` = (1, . . . , 1) for each ` ∈ H, and (3) the
vector (f̄v,0j (`), . . . , f̄v,2nj (`)) for every ` ∈ H. This completes the communication from the honest
parties to the corrupt parties.

Later, the simulator receives the corrupt parties’ inputs to the functionalities F i,j,vglinear for every

i ∈ {1, . . . , n}, j ∈ C, and v ∈ {a, b, c}, as well as the inputs to the verification phase of Fv,kvss .
Upon receiving the inputs of the corrupt guide to F i,j,vglinear, the simulator holds all inputs to the
functionality, and can compute the output of the functionality and give it toA. Upon receiving all
inputs to the verification phase of Fv,kvss , which are {flagv,ki }i∈C, the simulator sets Wv,k to be the set
of all corrupt Pi with flagv,ki = 1, and returns (Wv,k, {ōv,kij }i∈W,j∈{0,...,n}) to A.

At the end of the simulation, the simulator sets W =
⋂
v∈{a,b,c},k∈{0,...,2n}Wv,k. For every j ∈W

the simulator sets flagj := 1, and otherwise, flagj := 0. The simulator inputs {flagj}j∈C to Ftss.

Fix any polytime environment Z and input ζ to the environment. Let ε be the error term of the
commitment scheme. We show that the view of Z (including the adversary’s view and the honest
parties’ outputs) in the real world is statistically close to the view of Z in the ideal world.
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Adversary’s view. The adversary’s view consists of (1) the outputs
{(Cv,k,Ov,k

i )}v∈{a,b,c},k∈{0,...,2n},i∈C from the sharing phase of Fvss, (2) the randomness {zi}i∈H, (3)
the leakage and output of the verification phase of the Fvss calls, and (4) the leakage and output
of the Fglinear calls. We continue by showing that both the real-world view and the ideal-world
view are O(n3ε)-close to the hybrid-world view (see Definition B.1).

Real-world vs. hybrid-world. Fix the crs. Observe that the honest parties’ inputs are picked by
the environment Z , possibly as a function of crs, and so the inputs have the same distribution in
both worlds, and we fix them as well, which fixes {(Cv,0,Ov,0)}v∈{a,b,c}. By the hiding property
of the commitment scheme, and since (Cv,k,Ov,k) are computed in the same way in both worlds
for v ∈ {a, b} and k > n, we conclude that {(Cv,k,Ov,k)}v∈{a,b,c},k∈{1,...,2n} are O(n3ε)-close in
both worlds, and we fix them as well. This fixes (1). Observe that the random strings {zi}i∈H
are uniformly distributed in both worlds, and conditioned on them, the adversary broadcasts
{zi}i∈C, has the same distribution in both worlds and so we fix them as well. Observe that this
fixes {αi}i∈{1,...,n}, as defined in the protocol. Finally, since the second round messages of the
honest parties, including the inputs to the various functionalities, are a deterministic function of
the honest parties’ view in the first round, then they are fixed and the same in both worlds. This
concludes the analysis of the real-world view.

Ideal-world vs. hybrid-world. Fix the crs in both worlds. Observe that the honest parties’
inputs are picked by the environment Z , possibly as a function of crs, and so the inputs have the
same distribution in both worlds, and we fix them as well, which fixes {(Cv,0,Ov,0)}v∈{a,b,c}, as
well as the corresponding sharing polynomials {F v,0(x, y)}v∈{a,b,c}. In the hybrid-world, for every
v ∈ {a, b, c}, k ∈ {0, . . . , 2n}, and i ∈ C, let fv,ki (x) := F v,k(x, i). Observe that fv,0i (x) = f̄v,0i (x) for
any v ∈ {a, b, c} and i ∈ C. In addition, in the hybrid-world, define the random variables

Gv,i(x, y) :=
2n∑
k=0

αki F
v,k(x, y),

for v ∈ {a, b, c} and i ∈ {1, . . . , n}. Consider the random variables

Y1 :=
(
C̄, {Ōv,k

i }v∈{a,b,c},k∈{1,...,2n},i∈C, {z̄i}i∈{1,...,n}
)

Y2 := {Ḡv,i}v∈{a,b,c},i∈{1,...,n}
and

Z1 :=
(
C, {Ov,k

i }v∈{a,b,c},k∈{1,...,2n},i∈C, {zi}i∈{1,...,n}
)

Z2 := {Gv,i}v∈{a,b,c},i∈{1,...,n},

where Y := (Y1, Y2) correspond to ideal-world random variables, and Z := (Z1, Z2) correspond
to Hybrid-world random variables.

Lemma B.2. The random variables Y and Z are O(n3ε)-close in statistical distance.

We prove Lemma B.2 at the end of the honest dealer’s analysis. We continue by showing that
Lemma B.2 implies that the ideal-world view is close in statistical distance to the hybrid-world
view. Fix Y = Z and observe that this fixes (1) and (2). We continue with the verification phase. In
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the hybrid-world verification phase, since the dealer is honest, each honest party Pi has flagv,ki = 0
for all v ∈ {a, b, c} and k ∈ {0, . . . , 2n}, and all honest parties are happy, so the leakage to the
adversary in the Fvss calls is the same in both worlds.

We now analyse the calls to Fglinear. In the hybrid-world, a call for F i,j,vglinear for i ∈ {1, . . . , n},
j ∈ H and v ∈ {a, b, c} leaks (a) the j-th rows Cv,0

j , . . . ,Cv,2n
j , which are already fixed, (b) the

indicator vectors {δ`}`∈H such that, since the dealer is honest, δ` = (1, . . . , 1) for each ` ∈ H, (c)
the coefficient vector that an honest guide sets to a = (α0

i , . . . , α
2n
i ), (d) the openings ov,kj` and

values opencrs(Cv,kj` , o
v,k
j` ) for every k ∈ {0, . . . , 2n} and ` ∈ C, such that, since the dealer is honest

Cv,kj` = Cv,k`j and ov,kj` = ov,k`j , so those values are already fixed, (e) the indicator vector δG which
is always (1, . . . , 1) when the dealer is honest, (f) a set L`, for every ` ∈ H, which is empty since
the dealer is honest, (g) partial sums

∑2n
k=0 α

k
i · F v,k(`, j) for all ` ∈ {1, . . . , n} and (h) the output

(a, δG,
∑2n

k=0 α
k
i · F v,k(0, j)). Observe that (a)–(f) are fixed in both worlds to the same values, since

the dealer is honest and all rows shared by the dealer are valid. It remains to show that (g) and (h)
have the same distribution in both worlds. But those are exactly the values {Gv,i(x, j)}j∈{0,...,n},
that are equal to {Ḡv,i(x, j)}j∈{0,...,n}, and so the leakage and output is the same in both worlds.

Similarly, in the hybrid-world, a call for i ∈ {1, . . . , n}, F i,j,vglinear and v ∈ {a, b, c} for j ∈ C leaks
(a) the j-th rows Cv,0

j , . . . ,Cv,2n
j , (b) the indicator vectors {δ`}`∈H such that δ` = (1, . . . , 1) for each

` ∈ H, and (c) the vector (fv,0j (`), . . . , fv,2nj (`)) for every ` ∈ H. Therefore (a), (b) and (c) are fixed,
and they are the same in both worlds.

At this stage the adversary sends her inputs to the F ijkglinear functionalities, for j ∈ C, and the
Fvss calls, so those inputs have the same distribution in both worlds. Since the computation of
F i,j,vglinear by the simulator is done like in the real-world, we conclude that the output has the same

distribution as well, and so we fix it. Finally, the computation of Fv,kvss is done like in the real-
world, for all v ∈ {a, b, c} and k ∈ {0, . . . , 2n}, so it has the same distribution in both worlds.
This concludes the analysis of the adversary’s view. We conclude that the real-world view and the
ideal-world view are O(n3ε)-close in statistical distance.

Honest parties’ output. We say that a view View is “good” if the following holds. For any
i ∈ {1, . . . , n}, j ∈ C and v ∈ {a, b, c}, in the call to F i,j,vglinear, for any commitment Cv,kj` the adver-

sary inputs a corresponding opening o such that either opencrs(Cv,kj` , o) = ⊥, or opencrs(Cv,kj` , o) =

F v,k(`, j). Observe that, by the binding property of the commitment scheme, a view View is good
with probability at least 1−O(n3ε). Fix any good view View.

Both in the ideal-world and in the real-world, at the end of the sharing phase honest party Pi
outputs (Ca,Oa

i ), (Cb,Ob
i), (Cc,Oc

i ) and happy = 1, with probability 1. Therefore, it remains to
analyse the output in the verification phase.

In the real-world verification phase, it is not hard to see that an honest dealer is never disqual-
ified. In particular (1) no call to Fvss ends with “D is corrupt” (2) all honest parties are happy,
and flagi = 0 for any honest Pi, (3) all honest parties are in V, so |V ∪W| ≥ n − t, and (4) since
View is good, for each i ∈ {1, . . . , n} the i-th challenge succeeds with probability 1. Indeed, fix
i ∈ {1, . . . , n} and v ∈ {a, b, c}.

• Since the dealer is honest then clearly for j ∈W it holds that tijv = Gv,i(0, j).

• For every j ∈ H the output of F i,j,vglinear is ((α0
i , . . . , α

2n
i ), (1, . . . , 1), tijv), where tijv = Gv,i(0, j).
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• For j ∈ V \ H, the corrupt guide Pj must input δG = (1, . . . , 1) (or otherwise j /∈ V), and all
honest parties P` input δ` = (1, . . . , 1) and the values (F v,0(j, `), . . . , F v,2n(j, `)).

Consider ` ∈ H, and denote the corresponding input values of the corrupt guide by
(bG0`, . . . , b

G
(2n)`). We claim that bGk` = F v,k(j, `) for all k ∈ {0, . . . , 2n}. Indeed, if this is

not the case then I` is not empty, and let k be an element of I`. Since j ∈ V, the output of
F i,j,vglinear is not “G is corrupt”, so the corrupt guide sent to the functionality an opening o such

that opencrs(Cv,kj` , o) = bGk`. But since View is good we must have bGk,` = F v,k(`, j) = F v,k(j, `),
in contradiction. We conclude that bGk` = F v,k(j, `) for all k ∈ {0, . . . , 2n}. We conclude
that the output of F i,j,vglinear is ((α0

i , . . . , α
2n
i ), (1, . . . , 1), tijv), where tijv =

∑2n
k=0 α

k
i F

v,k(0, j) =

Gv,i(0, j).

It follows that, tia = Ga,i(0, 0) = A(αi), tib = Gb,i(0, 0) = B(αi) and tic = Gc,i(0, 0) = C(αi), and
so, since D is honest and A(x)B(x) = C(x), it follows that tia · tib = tic. We conclude that the
dealer is not disqualified

Let W be the set defined by the protocol according to View, and observe that it
contains only corrupt parties. In the real-world, the output of the honest parties is
(W, {ov,0ij }v∈{a,b,c},i∈W,j∈{0,...,n}). In the ideal-world each corrupt Pi in W sends flagi = 1,
and all other corrupt Pi’s send flagi = 0. Therefore the output in the ideal-world is also
(W, {ov,0ij }v∈{a,b,c},i∈W,j∈{0,...,n}), as required. This concludes the analysis of the honest parties’
output.

Proof of Lemma B.2 We begin by proving that Y1 and Z1 are O(n3ε)-close. First, observe that
the random variables {(Cv,0,Ov,0

i )}v∈{a,b,c},i∈C are fixed and equal in both worlds. By Fact A.4
it follows that {fv,ki }v∈{a,b,c},k∈{1,...,2n},i∈C and {f̄v,ki }v∈{a,b,c},k∈{1,...,2n},i∈C have the same distri-
bution, and we fix those values. Conditioned on those values, observe that the random vari-
ables {(C̄v,k

i , Ōv,k
i )}v∈{a,b,c},k∈{1,...,2n},i∈C are O(n3ε)-close to {(Cv,k

i ,Ov,k
i )}v∈{a,b,c},k∈{1,...,2n},i∈C.

Fix those random variables. In addition, by the hiding property of the commitment, the remaining
commitments are O(n3ε)-close in both worlds, and we fix them as well. Finally, observe that the
random variables {zi}i∈H and {z̄i}i∈H are uniformly distributed in both worlds, and conditioned
on them, the random variables {zi}i∈H and {z̄i}i∈H are picked by the adversary in the same way
in both worlds, and so they have the same distribution. Therefore Y1 and Z1 are O(n3ε)-close in
statistical distance.

Fix the random variables Y1 = Z1. It remains to show that Y2 and Z2 have the same distribu-
tion. Note that (α1, . . . , αn) = (ᾱ1, . . . , ᾱn) are fixed in both worlds. In the following we assume
without loss of generality that α1, . . . , αn are distinct (as we can always add more distinct values
and show that the claim still holds), and we remind the reader that the αi’s are non-zero.

We continue by proving that {Gv,i}v∈{a,b,c},i∈{1,...,n} has the same distribution as
{Ḡv,i}v∈{a,b,c},i∈{1,...,n}. Observe that F a,0(x, y), F b,0(x, y) and F c,0 are fixed, and we also fix any
value to the random variables F̄ a,0(x, y), F̄ b,0(x, y) and F̄ c,0(x, y) (which are not necessarily equal
to F a,0(x, y), F b,0(x, y) and F̄ b,0(x, y)). Recall that F v,0(x, i) = F̄ v,0(x, i) for all i ∈ C.

The polynomials A(x), B(x) and Ā(x), B̄(x) are uniformly distributed conditioned on
A(0) = F a,0(0, 0), B(0, 0) = F b,0(0, 0) and Ā(0) = F̄ a,0(0, 0), B̄(0, 0) = F̄ b,0(0, 0). By
Fact A.2 the random variables (A(α1), . . . A(αn), B(α1), . . . , B(αn)) have the same distribution as
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(Ā(α1), . . . Ā(αn), B̄(α1), . . . , B̄(αn)). Fix A(x), B(x) and Ā(x), B̄(x) conditioned on

(A(α1), . . . A(αn), B(α1), . . . , B(αn)) = (Ā(α1), . . . Ā(αn), B̄(α1), . . . , B̄(αn)).

Observe that this also fixes the polynomials C(x) and C̄(x), and that C(αi) = A(αi)B(αi) =
Ā(αi)B̄(αi) = C̄(αi) for all i ∈ {1, . . . , n}.

Observe that F a,k(x, y) = F b,k(x, y) = 0 and F̄ a,k(x, y) = F̄ b,k(x, y) = 0 for any k > n. In
addition, recall that F c,k(x, i) = F̄ c,k(x, i) for all i ∈ C, and we fix the polynomials F c,k(x, i) and
F̄ c,k(x, i) for all k > n.

Finally, the random variables {F a,k(x, y), F b,k(x, y), F c,k(x, y)}k∈{1,...,n} are uniformly dis-
tributed conditioned on (1) F v,k(x, i) = fv,ki (x) for v ∈ {a, b, c}, k ∈ {1, . . . , n}, and i ∈ C, and
(2) F a,k(0, 0) = Ak, F b,k(0, 0) = Bk, and F c,k(0, 0) = Ck, for every k ∈ {1, . . . , n}. Similarly,
the random variables {F̄ a,k(x, y), F̄ b,k(x, y), F̄ c,k(x, y)}k∈{1,...,n} are uniformly distributed condi-
tioned on (1) F̄ v,k(x, i) = fv,ki (x) for v ∈ {a, b, c}, k ∈ {1, . . . , n}, and i ∈ C, and (2) F̄ a,k(0, 0) = Āk,
F̄ b,k(0, 0) = B̄k, and F̄ c,k(0, 0) = C̄k, for every k ∈ {1, . . . , n}. By Fact A.6 we conclude that
{Gv,i}v∈{a,b,c},i∈{1,...,n} has the same distribution as {Ḡv,i}v∈{a,b,c},i∈{1,...,n}. This completes the
proof.

B.4.2 Corrupt Dealer

Sharing phase. The simulator takes the role of the honest parties, that have no inputs, in order
to simulate an execution of the protocol. In the sharing phase, this includes only broadcasting zi
on behalf of every honest Pi. Then, the simulator receives from A the inputs to the various Fvss

calls. Denote those inputs by {(Cv,k,Ov,k)}v∈{a,b,c},k∈{0,...,2n}. The simulator gives the simulated
honest party Pi the shares {(Cv,k,Ov,k

i )}v∈{a,b,c},k∈{0,...,2n}, and computes the output bit happyi of
the sharing phase. The simulator inputs (Ca,Oa),(Cb,Ob), (Cc,Oc) and {happyi}i∈H to Ftss.

Verification phase. The simulator receives the inputs of the honest parties {flagi}i∈H as leakage
fromFtss. The simulator now holds the honest parties inputs, and continues to simulate the honest
parties, by following the protocol in the verification phase in Fvss and in the calls to Fglinear. Ob-
serve that since the dealer holds all inputs, the dealer can compute the leakage of Fglinear as well.
At the end of the simulation the simulator computes the output of the simulated honest parties. If
the output is “D is corrupt” then the simulator inputs flagD = 1 toFtss (the rest of the inputs do not
matter). Otherwise, the simulator computes the set W and the openings {ōaij , ōbij , ōcij}i∈W,j∈{0,...,n}
according to the protocol, and sets ōvij := 0 for any v ∈ {a, b, c}, i /∈ W and j ∈ {0, . . . , n}. The
simulator sets flagi = 1 for any corrupt Pi in W, and flagi = 0 for any corrupt Pi not in W. The
simulator inputs (Ōa, Ōb, Ōc). flagD = 0, and {flagi}i∈C to Ftss.

Fix any polytime environment Z and input ζ to the environment. Let ε be the error term of the
commitment scheme. We show that the view of Z (including the adversary’s view and the honest
parties’ outputs) in the real world is statistically close to the view of Z in the ideal world.

Adversary’s view. At the sharing phase the honest parties hold no inputs, and so they can are
perfectly simulated by the simulator. Therefore the view of the adversary in the sharing phase
is the same in both worlds. Fix any such view, and note that this implies that the honest parties’
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inputs in the verification phase have the same distribution in both worlds. Fix those inputs as
well, and note that the simulator holds all the honest parties’ inputs, and so they are perfectly
simulated in the verification phase as well. We conclude that the adversary’s view has the same
distribution in both worlds.

Honest parties’ inputs. We say that a view View is “good” if either (1) the output of the
honest parties is “D is corrupt”, or (2) the output is not “D is corrupt”, and it holds that
F a,0(0, 0) · F b,0(0, 0) = F c,0(0, 0), where F v,0 is the sharing polynomial of the weak double t-
sharing produced by Fv,0vss , for v ∈ {a, b, c} (observe that whenever the output is not “D is corrupt”
then all Fvss calls define weak double t-sharing). We claim that a view View is good with probabil-
ity at least 1− ε.

Indeed, a view View is not good if and only if the output of the honest parties is not “D is
corrupt”, so the output of each Fvss call at the end of the verification phase is a weak double t-
sharing, and F a,0(0, 0) · F b,0(0, 0) 6= F c,0(0, 0). Let E be the event that a view is (1) not good, and
(2) for every i ∈ H either (a) hzi(C) = 0 or, (b) for αi := hzi(C),

( 2n∑
k=0

αki F
a,k(0, 0)

)
·
( 2n∑
k=0

αki F
b,k(0, 0)

)
=
( 2n∑
k=0

αki F
c,k(0, 0)

)
,

where F v,k is the sharing polynomial of the weak double t-sharing produced by Fv,kvss . By the
properties of the hash functions, E occurs with probability at most ε. Therefore, with probability
at least 1− ε either (1) View is good, or (2) the output is not “D is corrupt”, so the Fvss calls define
weak double t-sharings, and there exists i ∈ H such that αi 6= 0 and

( 2n∑
k=0

αki F
a,k(0, 0)

)
·
( 2n∑
k=0

αki F
b,k(0, 0)

)
6=
( 2n∑
k=0

αki F
c,k(0, 0)

)
.

We continue by showing that (2) cannot occur, which means that the probability that View is good
is at least 1 − ε. Indeed, assume that (2) occurs, and observe that there are n − t ≥ t + 1 honest
parties, each of them is either in V or in W, and that for any honest Pj the parties obtain the shares
{ti,j,v =

∑2n
k=0 α

k
i F

v,k(0, j)}v∈{a,b,c}, and so the shares {ti,j,a}j∈V∪W, {ti,j,b}j∈V∪W and {ti,j,c}j∈V∪W
either define polynomials of degree larger than t, in which case D is disqualified (in contradic-
tion to (2)), or they define the degree-t polynomials

∑2n
k=0 α

k
i F

a,k(x, 0),
∑2n

k=0 α
k
i F

b,k(x, 0) and∑2n
k=0 α

k
i F

c,k(x, 0), whose free-coefficients are ti,a :=
∑2n

k=0 α
k
i F

a,k(0, 0), ti,b :=
∑2n

k=0 α
k
i F

b,k(0, 0)
and ti,c :=

∑2n
k=0 α

k
i F

c,k(0, 0), and ti,a · ti,b 6= ti,c, so D is disqualified, again in contradiction to (2).
We conclude that a view is good with probability at least 1− ε.

Conditioned on a good view View it is not hard to see that the output of the honest parties
in the real world is fixed and equal to the output of the honest parties in the ideal world. This
concludes the proof.

B.5 Single-Input Functionality

Proof of Lemma 3.16. In this section we prove that protocol sif UC-emulates Fsif with everlasting
security. From the composition properties of UC-security, it is enough to prove security in the
(Fvss,Fglinear,Ftss)-hybrid model. Let A be an efficient adversary against sif. We define the sim-
ulator S as follows. The simulator S uses A in a black-box manner, and forwards all messages
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between Z and A. The simulator first receives the set of corrupt C parties from Z . We split into
cases.

B.5.1 Honest Dealer

Input phase. For every i ∈ {1, . . . , `} the simulator samples a strong double t-sharing 〈〈0〉〉, de-
noted (Ci,Oi), and simulates the sharing phase of F ivss by giving (Ci,Oi

j) to A as the output of
a corrupt Pj . We denote the corresponding sharing polynomials by F̄ i(x, y). Similarly, for each
i, j ∈ {1, . . . , `}, the simulator samples a strong double t-sharing 〈〈0〉〉, denoted (Cij ,Oij), and sim-
ulates the sharing phase of F ijvss by giving (Cij ,Oij

k ) to A as the output of a corrupt Pk. We denote
the corresponding sharing polynomials by F̄ ij(x, y).

In addition, for each i ∈ {1, . . . ,m} the simulator samples three strong double t-sharings of
zero, denoted (Cγi ,Oγi),(Cρi ,Oρi) and (Cηi ,Oηi), and we denote the corresponding sharing poly-
nomials by F̄ γi(x, y), F̄ ρi(x, y) and F̄ ηi(x, y). The simulator simulates the sharing phase of F itss by
giving (Cγi ,Oγi

k ),(Cρi ,Oρi
k ) and (Cηi ,Oηi

k ) and happyk = 1 to A as the output of a corrupt Pk. The
simulator also gives (Cγi ,Oγi), and (Cρi ,Oρi) to A as the dealer’s broadcast.

Finally, for each i, j ∈ {1, . . . , `}, the simulator simulates the sharing phase of F ijtss by giving
(Ci,Oi

k), (Cj ,Oj
k), (Cij ,Oij

k ) and happyk = 1 to A as the output of a corrupt Pk.

Output phase. The simulator receives the output (y1, . . . , ym) from Fsif . For each i ∈ {1, . . . ,m},
the simulator picks a random symmetric bivariate polynomial F̄ y

i
(x, y), of degree at most t in

each variable, conditioned on F̄ y
i
(0, 0) = yi, and

F̄ y
i
(x, j) =

∑
p∈{1,...,`}

αipF̄
p(x, j) +

∑
p,q∈{1,...,`}

αipqF̄
pq(x, j) + F̄ ηi(x, j),

for all j ∈ C.
The leakage of the verification phases of each Fvss and Ftss call is simulated by giving A the

flags of the honest parties, all of them set to be 0.
For every i ∈ {1, . . . ,m} and j ∈ H the leakage of F i,jglinear is simulated as follows. The

simulator sends A, (1) the commitments (C1
j , . . . ,C

`
j ,C

1,1
j , . . . ,C`,`

j ,C
ηi
j ), (2) the indicator vec-

tors {δi := (1, . . . , 1)}k∈H and δG := (1, . . . , 1) of the honest parties, (3) the vector of coeffi-
cients a := (αi1, . . . , α

i
`, α

i
11, . . . , α

i
``, 1), (4) the values and openings {F̄ p(k, j), opkj}p∈{1,...,`},k∈C,

{F̄ pq(k, j), opqkj}p,q∈{1,...,`},k∈C, and {F̄ ηi(k, j), oηikj}k∈C, (5) an empty set Lk = ∅ for every k ∈ H,

and (6) the values F̄ y
i
(k, j) for k ∈ {1, . . . , n}. The simulator also sends F̄ y

i
(0, j) as the output of

the functionality.
For every i ∈ {1, . . . , `} and j ∈ C the leakage of F i,jglinear is simulated as follows. The

simulator sends to A the corresponding input of the honest parties, i.e., (1) the commitments
(C1

j , . . . ,C
`
j ,C

1,1
j , . . . ,C`,`

j ,C
ηi
j ), (2) the indicator vectors {δi := (1, . . . , 1)}k∈H of the honest par-

ties, and (3) the values (F̄ 1(k, j), . . . , F̄ `(k, j), F̄ 11(k, j), . . . , F̄ ``(k, j), F̄ ηi(k, j)) for every k ∈ H.
At this stage the adversary A sends the inputs to the ideal functionalities. The simulator, that

now holds all inputs to those functionalities, computes the outputs and gives them to A. This
concludes the simulation.
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Fix any polytime environment Z and input ζ to the environment. Let ε be the error term of the
commitment scheme. We show that the view of Z (including the adversary’s view and the honest
parties’ outputs) in the real world is statistically close to the view of Z in the ideal world.

Adversary’s view. The adversary’s view consists of (1) the output of the sharing phase of Fvss

and Ftss, and the dealer’s broadcast, (2) the leakage and output of the verification phase of Fvss

and Ftss, and (3) the leakage and output of the Fglinear calls. We continue by showing that both the
real-world view and the ideal-world view are O((m+ `2)n2ε)-close to the hybrid world view (see
Definition B.1).

Real-world vs. hybrid-world. Fix the crs in both worlds. Conditioned on the crs the dealer’s
inputs are picked by the environment Z in the same way in both worlds. Conditioned on the
inputs, the pairs {(Ci,Oi), (Cij ,Oij)}i,j∈{1,...,`} and {(Cγi ,Oγi), (Cρi ,Oρi), (Cηi ,Oηi)}i∈{1,...,m} are
O((m+ `2)n2ε)-close in both worlds, and we fix them as well. Since the second-round messages of
the honest parties are a deterministic function of the first-round view of the honest parties, which
is fixed, we conclude that the second-round view of the adversary is fixed and the same in both
worlds. This concludes the analysis of the real-world view.

Ideal-world vs. hybrid-world. Fix the crs in both worlds. Conditioned on the crs the dealer’s
inputs have the same distribution in both worlds, and so we fix them as well. In the hybrid-
world, let F p(x, y) and F pq(x, y) be the sharing polynomials that the dealer picks for 〈〈zp〉〉 and
〈〈zpq〉〉, respectively, for p, q ∈ {1, . . . , `}, and let F γi(x, y), F ρi(x, y) and F ηi(x, y) be the sharing
polynomials that the dealer picks for 〈〈γi〉〉, 〈〈ρi〉〉 and 〈〈ηi〉〉, respectively, for i ∈ {1, . . . ,m}. Define
fpk (x) := F p(x, k) and fpqk (x) := F pq(x, k) for every p, q ∈ {1, . . . , `} and k ∈ C, and define fηik (x) :=
F ηi(x, k) for i ∈ {1, . . . ,m} and k ∈ C. Similarly, in the ideal-world, define f̄pk (x) := F̄ p(x, k)
and f̄pqk (x) := F̄ pq(x, k) for every p, q ∈ {1, . . . , `} and k ∈ C, and let f̄ηik (x) := F̄ ηi(x, k) for
i ∈ {1, . . . ,m} and k ∈ C.

Observe that {(Cγi ,Oγi), (Cρi ,Oρi)}i∈{1,...,m} are O(mn2ε)-close in both worlds. In addi-
tion, by Fact A.4 the polynomials {fpk (x), fpqk (x)}p,q∈{1,...,`},k∈C and {fηik (x)}i∈{1,...,m},k∈C have
the same distribution as {f̄pk (x), f̄pqk (x)}p,q∈{1,...,`},k∈C and {f̄ηik (x)}i∈{1,...,m},k∈C, and we fix them.
Conditioned on those values the random variables {(Cp

k,O
p
k), (C

pq
k ,O

pq
k )}p,q∈{1,...,`},k∈C and

{(Cηi
k ,O

ηi
k )}i∈{1,...,m},k∈C are O((m + `2)n2ε)-close in both worlds, and we fix them. By the hid-

ing property of the commitment scheme, the distribution of the rest of the commitments is
O((m+ `2)n2ε)-close in both worlds, and we fix them as well. This fixes (1).

For the output phase, observe that, since D is honest, in the hybrid-world all honest parties Pk
set flagk = 0 in any Fvss and Ftss call, so the leakage is the same in both worlds.

In the hybrid world, for every i ∈ {1, . . . ,m}, let F y
i
(x, y) :=

∑
p∈{1,...,`} α

i
pF

p(x, y) +∑
p,q∈{1,...,`} α

i
pqF

pq(x, y) + F ηi(x, y). Since F ηi(x, y) is uniformly distributed conditioned on

{fηik (x)}k∈C, and F ηi(0, 0) = 0, we conclude that F y
i

is uniformly distributed conditioned on
F y

i
(0, 0) = yi and F y

i
(x, k) =

∑
p∈{1,...,`} α

i
pf

p
k (x) +

∑
p,q∈{1,...,`} α

i
pqf

pq
k (x) + fηik (x). Since F ηi is

independent of F ηi′ for i 6= i′, we conclude that {F yi}i∈{1,...,m} and {F̄ yi}i∈{1,...,m} have the same
distribution in both worlds, and we fix them. Conditioned on those values one can verify that
the leakage and outputs of the F i,jglinear calls, for i ∈ {1, . . . ,m} and j ∈ H, are fixed, and the same
in both worlds. Similarly, the leakage of the F i,jglinear calls, for i ∈ {1, . . . ,m} and j ∈ C, are fixed,
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and the same in both worlds. This completes the communication from honest parties to corrupt
parties.

At this stage the simulator picks its inputs to the Fvss, Ftss calls, as well as for the F i,jglinear calls,
for i ∈ {1, . . . ,m} and j ∈ C, so those inputs have the same distribution in both worlds. Since the
outputs Fvss, Ftss and Fglinear in the ideal-world are computed exactly like in the hybrid-world, we
conclude that they have the same distribution in both worlds. This concludes the analysis of the
ideal-world view. We conclude that the real-world view is O((m+ `2)n2ε)-close to the ideal-world
view.

Honest parties’ outputs. We say that a view View is “good” if for any commitment C that ap-
pears in the view, and for any two openings o, and o′ that appear in the view, it holds that either
opencrs(C, o) = ⊥ or opencrs(C, o′) = ⊥ or opencrs(C, o) = opencrs(C, o). Observe that, by the
binding property of the commitment scheme, a view View is good with probability at least 1− ε.

Fix any good View, denote the inputs of the honest dealer by (z1, . . . , z`). In the ideal-world
the output of the honest parties is y(z) with probability 1. We show that this also occurs in the
real-world. Indeed, since D is honest, then non of the Fvss and Ftss calls end with “D is corrupt”,
and, in addition, all honest parties are in V, so |V| ≥ n−t and the dealer is not discarded. For every
i ∈ {1, . . . ,m} and k ∈ H∪W it holds that tik =

∑
p∈{1,...,`} α

i
pF

p(0, k) +
∑

p,q∈{1,...,`} α
i
pqF

pq(0, k) +
F ηi(0, k), where F p, F pq and F ηi are the sharing polynomials picked by the dealer in the first
round.

It remains to consider F i,kglinear, for i ∈ {1, . . . ,m} and corrupt Pk in V. Since Pk is in V, then Pk
must input δG = (1, . . . , 1) toF i,kglinear. In addition, all honest parties Pj input δj = (1, . . . , 1) and the
values (F 1(k, j), . . . , F `(k, j), F 11(k, j), . . . , F ``(k, j)). For an honest Pj , denote the corresponding
input values of the corrupt guide Pk by (bG1,j , . . . , b

G
`,j , b

G
1,1,j , . . . , b

G
`,`,j , b

G
ηi,j

), and we claim that bGp,j =

F p(k, j), bGp,q,j = F pq(k, j) and bGηi,j = F ηi(k, j), for all p, q ∈ {1, . . . , `}. Indeed, assume towards
contradiction that bGp,j 6= F p(k, j) for some p ∈ {1, . . . , `} (the other cases are similar). Then p ∈ Ij ,
and let o be the corresponding opening of the guide. Since Pk is in V then the output of F i,kglinear
is not “the guide is corrupt”, so necessarily opencrs(Cpkj , o) = bGp,k 6= F p(k, j), in contradiction
to View being good. We conclude that tik =

∑
p∈{1,...,`} α

i
pF

p(0, k) +
∑

p,q∈{1,...,`} α
i
pqF

pq(0, k) +
F pi(x, k). Therefore, the for every i ∈ {1, . . . ,m} the shares {tik}k∈V∪W correspond to the degree-t
polynomial

∑
p∈{1,...,`} α

i
pF

p(0, x) +
∑

p,q∈{1,...,`} α
i
pqF

pq(0, x) + F ηi(0, x), whose free coefficient is∑
p∈{1,...,`} α

i
pF

p(0, 0) +
∑

p,q∈{1,...,`} α
i
pqF

pq(0, 0) =
∑

p∈{1,...,`} α
i
pz
p +

∑
p,q∈{1,...,`} α

i
pqz

pq = yi(z),
as required. This concludes the case of an honest dealer.

B.5.2 Corrupt Dealer

Input phase. The simulator takes the role of the honest parties, that have no inputs, and executes
an instance of sif withA. In the input phase this only includes receiving fromA commitments and
openings for theFvss andFtss calls, as well as to the dealer’s broadcast, and giving the correspond-
ing shares to the simulated honest parties.

Output phase. The simulator continues the simulation of the honest parties. The simulator com-
putes the messages from the honest parties to the corrupt parties, as well as the leakage from the
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various functionalities, and gives them to A. Then the simulator receives the messages from the
corrupt parties to the honest parties, as well as the output of the various functionalities.

At the end of the simulation, if D was disqualified and the output was set to y(0, . . . , 0), then
the simulator inputs (0, . . . , 0) to Fsif and terminates. Otherwise, D was not disqualified in any
Fvss call, and let F i(x, y) be the sharing polynomial of the weak double t-sharing of F ivss. The
simulator sets zi := F i(0, 0) and inputs (z1, . . . , z`) to Fsif .

Fix any polytime environment Z and input ζ to the environment. Let ε be the error term of the
commitment scheme. We show that the view of Z (including the adversary’s view and the honest
parties’ outputs) in the real world is statistically close to the view of Z in the ideal world.

Adversary’s view. Since the honest parties hold no inputs, it is not hard to see that the simulator
perfectly simulates an execution of Fsif . It remains to show that the output of the honest parties
has the same distribution in both worlds.

Honest parties’ outputs. We say that a view View is “good” if for any commitment C that ap-
pears in the view, and for any two openings o, and o′ that appear in the view, it holds that either
opencrs(C, o) = ⊥ or opencrs(C, o′) = ⊥ or opencrs(C, o) = opencrs(C, o). Observe that, by the
binding property of the commitment scheme, a view View is good with probability at least 1− ε.

Fix any good view View. If D is disqualified according to View, then the output in both worlds
is y(0, . . . , 0). Therefore, we focus on the case where D is not disqualified according to View. Since
D is not disqualified in View, then each Fvss call defines a weak double t-sharing, and we denote
by F p(x, y) (resp., F pq(x, y)) the sharing polynomial of Fpvss (resp., Fpqvss). In addition, for every
p, q ∈ {1, . . . , `} the output of Fpqtss defines three weak double t-sharings, and we denote the corre-
sponding sharing polynomials by F̃ p(x, y), F̃ q(x, y), and F̃ pq(x, y). Similarly, each tssi call defines
a weak double t-sharing, and we denote by F̃ γi(x, y), F̃ ρi(x, y) and F̃ ηi(x, y) the corresponding
sharing polynomials. We also denote by F γi(x, y), F ρi(x, y) the polynomials that correspond to
the dealer’s broadcast (Cγi ,Oγi), and (Cρi ,Oρi).

Since View is good, and there are n − t ≥ t + 1 honest parties, by Fact A.3, it is not hard to
see that F p(x, y) = F̃ p(x, y) and F pq(x, y) = F̃ pq(x, y) for all p, q ∈ {1, . . . , `}. Similarly, it holds
that F γi(x, y) = F̃ γi(x, y) and F ρi(x, y) = F̃ ρi(x, y) for every i ∈ {1, . . . ,m}. Therefore, by the
Ftss functionality, we conclude that F p(0, 0) · F q(0, 0) = F pq(0, 0) for all p, q ∈ {1, . . . , `}. We also
conclude that F̃ ηi(0, 0) = F̃ γi(0, 0) · F̃ ρi(0, 0) = 0.

Observe that each honest party is either in V or in W. We conclude that for every i ∈
{1, . . . ,m} and j ∈ H it holds that tij =

∑
p∈{1,...,`} α

i
pF

p(0, j)+
∑

p,q∈{1,...,`} α
i
pqF

pq(0, j)+ F̃ ηi(0, j).
Since there are n − t ≥ t + 1 honest parties, we conclude that for every i ∈ {1, . . . ,m}
the shares {tij}j∈V∪W must be consistent with the degree-t polynomial

∑
p∈{1,...,`} α

i
pF

p(0, x) +∑
p,q∈{1,...,`} α

i
pqF

pq(0, x) + F̃ ηi(x, 0), or otherwise they are inconsistent with any degree-t polyno-
mial and D is disqualified. Therefore, the real-world honest parties output (y1, . . . , ym), where
yi =

∑
p∈{1,...,`} α

i
pF

p(0, 0) +
∑

p,q∈{1,...,`} α
i
pqF

pq(0, 0). In the ideal-world, the simulator picks
zi := F i(0, 0) for all i ∈ {1, . . . , `}, so the ideal-world honest parties output (y1, . . . , ym), where
yi =

∑
p∈{1,...,`} α

i
pF

p(0, 0) +
∑

p,q∈{1,...,`} α
i
pqF

pq(0, 0) as well. This concludes the proof of secu-
rity.
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B.6 Verify & Open

Proof of Lemma 3.17. In this section we prove that protocol vao UC-emulates Fvao with everlasting
security. From the composition properties of UC-security, it is enough to prove security in the
(Fsif ,Fspcg)-hybrid model. Let A be an efficient adversary against vao. We define the simulator S
as follows. The simulator S uses A in a black-box manner, and forwards all messages between Z
and A. The simulator first receives the set of corrupt C parties from Z . We split into cases.

B.6.1 Honest Dealer

Verification phase, offline round. The simulator takes the role of an honest dealer in the of-
fline phase. That is, the simulator picks a random degree-t polynomial h(x) and computes
(C ′i, o

′
i) ← commitcrs(h(i), ri) for every i ∈ {1, . . . , n}, where ri is a fresh random string. The

simulator broadcasts {C ′i}i∈{1,...,n} on behalf of the dealer, and sends o′i to every corrupt Pi.

Verification phase, online round. The simulator receives commitments (C1, . . . , Cn), openings
{oDi }i∈C and verifyD as a leakage from Fvao. We split into cases.

• (Case I) If, in addition, the simulator receives the openings {oDk }k∈{1,...,n} and {ok}k∈H as a
leakage fromFvao, then the simulator holds all the inputs of the honest parties. The simulator
takes the role of the honest parties, and continues the execution of vao.

• (Case II) Otherwise, the adversary does not receive any additional leakage, which in partic-
ular means that opencrs(Ci, o

D
i ) 6= ⊥ for every i ∈ {1, . . . , n}. The simulator picks a random

polynomial ḡ(x) conditioned on ḡ(i) = h(i) + fi, for all i ∈ C, where fi := opencrs(Ci, o
D
i ).

For i ∈ H the simulator simulates F ispcg in the following way. The adversary receives the
commitments (Ci, C

′
i) as leakage, and (a, δA, ḡ(i)) as an output, where a := (1, 1) and δA :=

(1, 1).

For i ∈ C the simulator simulatesF ispcg in the following way. The adversary receives (Ci, C
′
i),

and Alice’s inputs to F ispcg, i.e., a := (1, 1), the values bA := (fi, h(i)), the indicator vector
δA := (1, 1) and {oDi , o′i} as leakage from Fspcg. At this stage, for each i ∈ C the adversary
sends the corrupt Bob’s inputs to F ispcg Upon receiving Bob’s inputs to F ispcg the simulator,
that holds all the inputs, computes the output of F ispcg and gives it to A.

Opening phase. The simulator receives (oD1 , . . . , o
D
n ) and (o1, . . . , on) from the functionality. If

the verification phase ended with “verification failed” then the simulator send no messages on
behalf of the honest parties, and terminates. Otherwise, the verification phase ended with “verifi-
cation succeeded”. If Case I occurred, then the dealer holds all the inputs of the honest parties, and
simply continues the execution of vao until termination. If Case II occurred, the dealer computes
fi := opencrs(Ci, oi) and returns (Ci, C

′
i, ḡ(i), fi) as the output of sifi, for every i ∈ H. At this stage

the dealer receives the inputs of the adversary to F isif for i ∈ C, computes the outputs and returns
it to A. This completes the simulation.

Fix any polytime environment Z and input ζ to the environment. Let ε be the error term of the
commitment scheme. We show that the view of Z (including the adversary’s view and the honest
parties’ outputs) in the real world is statistically close to the view of Z in the ideal world.
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Adversary’s view. The adversary’s view consists of (1) the commitments (C ′1, . . . , C
′
n) and open-

ings {o′i}i∈C, (2) the dealers’ possible broadcast in the online round, (3) the leakage and outputs of
the Fspcg calls, and (4) the output FDsif , and (5) the output F isif for i ∈ {1, . . . , n}. We show that the
real-world view and the ideal-world view are O(nε)-close to the hybrid-world view.

Real-world vs. hybrid-world. It is not hard to see that the random variables (C ′1, . . . , C
′
n) and

(o′1, . . . , o
′
n) are O(nε)-close in both worlds. Since the rest of the view can be obtained in both

worlds by the same probabilistic process, we conclude that the real-world view is O(nε)-close to
the hybrid-world view.

Ideal-world vs. hybrid-world. It is not hard to see that the random variables (C ′1, . . . , C
′
n) and

{o′i}i∈C are O(nε)-close in both worlds. Conditioned on those values, observe that the honest
parties’ inputs are picked by the environment Z in the same way in both worlds, and we fix those
inputs as well. Observe that whenever Case I occurs, then the simulator holds all honest parties’
inputs, and perfectly simulates the rest of the execution. Therefore, from now on, we focus on
Case II.

Whenever Case II occurs, it holds that (a) verifyD = 0, (b) fi := opencrs(Ci, o
D
i ) is not ⊥, for

all i ∈ {1, . . . , n}, (c) the values {fi}i∈{1,...,n} correspond to a degree-t polynomial f(x), and (d)
opencrs(Ci, oi) = fi for all i ∈ H. Whenever this occurs the dealer does not broadcast “verification
failed” in the hybrid-world, and the simulator does not broadcast this as well. In addition, since
the dealer is honest, the FDsif call ends with (C ′1, . . . , C

′
n) and out = 1 in both worlds. This fixes (2)

and (4).
We continue by analysing the calls toFspcg. In the real-world, let g(x) := h(x)+f(x). Since h(x)

is uniformly distributed conditioned on the values {h(i)}i∈C which are known to the adversary,
we conclude that g(x) is uniformly distributed conditioned on g(i) = h(i) + f(i) for all i ∈ C.
It follows that g(x) and the ideal-world ḡ(x) have the same distribution. Conditioned on those
values, one can verify that in both worlds, for any i ∈ H, the adversary receives (Ci, C

′
i) as a

leakage from Fspcg, and the output (a, δA, g(i)), where a := (1, 1) and δA := (1, 1). Similarly, for
i ∈ C, in both worlds the adversary receives (Ci, C

′
i), and Alice’s inputs to F ispcg, i.e., a := (1, 1),

bA := (fi, h(i)), δA := (1, 1) and {oDi , o′i} as a leakage from Fspcg. At this stage the adversary sends
the corrupt Bob’s inputs to F ispcg, for i ∈ C, so they are picked by the adversary in the same way
in both worlds. In addition, the outputs of F ispcg in the ideal-world are computed by the simulator
just like in the real-world, and we conclude that the outputs of F ispcg, for i ∈ C have the same
distribution in both worlds. This fixes (3).

It remains to analyse the opening phase. In the hybrid-world opening phase the adversary
receives (Ci, C

′
i, f(i) + h(i), f(i)) as the output of F isif for every i ∈ H. Since we are in Case II it

follows that f(i) = opencrs(Ci, oi), and we have fixed the ideal-world ḡ(x) to be equal to g(x) =
h(x)+f(x), so the output of F isif in the ideal-world is (Ci, C

′
i, f(i)+h(i), f(i)) as well. At this stage

the adversary picks the inputs to the F isif calls for i ∈ C, so the inputs and outputs have the same
distribution in both worlds. This concludes the analysis of the adversary’s view.

Honest parties’ inputs. We say that a view View is “good” if for any commitment C that ap-
pears in the view, and for any two openings o, and o′ that appear in the view, it holds that either
opencrs(C, o) = ⊥ or opencrs(C, o′) = ⊥ or opencrs(C, o) = opencrs(C, o). Observe that, by the bind-
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ing property of the commitment scheme, a view View is good with probability at least 1− ε. Fix a
good view View.

Observe that whenever verifyD = 1 or there exists i ∈ {1, . . . , n} such that fi := opencrs(Ci, o
D
i )

is ⊥, or {fi}i∈{1,...,n} do not correspond to a degree-t polynomial, then in the real-world the dealer
broadcasts “verification failed”, and all parties output “verification failed”. In this case, in the
ideal-world the functionality returns “verification failed” to all parties as well. In addition, in the
opening phase, in both worlds the parties output ⊥.

Therefore, we assume that verifyD = 0 and {fi}i∈{1,...,n} are non-⊥ values that correspond
to a degree-t polynomial f(x). In this case, the output of FDsif is (C ′1, . . . , C

′
n) and out = 1.

In addition, since View is good, for each i ∈ H the output of each F ispcg according to View

is either (a, δG, f(i) + h(i)), or (a, δG, {(oDi , f(i)), (o′i, h(i))}, f(i) + h(i)), where a = (1, 1) and
δG = (1, 1). Since View is good, for i ∈ C the output of F ispcg is either “Bob is corrupt” or
(a, δG, f(i) + h(i)), or (a, δG, {(oDi , f(i)), (o′i, h(i))}, f(i) + h(i)), or (a, δG, {(oDi , f(i))}, f(i) + h(i))
or (a, δG, {(o′i, h(i))}, f(i) + h(i)), where a = (1, 1) and δG = (1, 1). Therefore, in both worlds the
verification phase ends with “verification succeeded”.

In the opening phase, it is not hard to see that all honest parties are in V′ and that si = f(i) for
every honest Pi. For a corrupt Pi in V′, if Ii = ∅ then, since View is good, si = f(i), and otherwise
Ii = {1, 2} so si = bi,A1 = f(i) as well. Since there are n − t ≥ t + 1 honest parties, we conclude
that S(x) = f(x), so all parties output f(0), as required. This concludes the analysis of an honest
dealer.

B.6.2 Corrupt Dealer

Offline round. The simulator takes the role of the honest parties. The simulator receives from
the corrupt dealer the commitments (C ′1, . . . , C

′
n) and openings {o′i}i∈H and gives them to the

simulated honest parties. The simulator also receives from the adversary the inputs (Ĉ ′1, . . . , Ĉ
′
n)

and (ô′1, . . . , ô
′
n) to Fsif .

Online round. The simulator receives from Fvao the inputs of all honest parties. The simulator
continues to simulate the honest parties, giving the adversary all messages from honest parties to
corrupt parties, including the leakage from the Fspcg functionality. The simulator also gives to all
parties the output of Fsif , to which the simulator holds all the inputs. At this stage, the simulator
receives from the adversary the inputs of the corrupt Alice to F ispcg for i ∈ {1, . . . , n}, as well as the
inputs of the corrupt Bob to F ispcg for i ∈ C. The simulator computes the output of each F ispcg and
gives it to the simulated honest parties and to the adversary. The simulator continues to simulate
the honest parties, by computing their output.

If the output is “D is corrupt”, then the simulator inputs flagD = 1 toFvao (the rest of the inputs
do not matter). Otherwise, if the output is “verification failed”, the simulator inputs verifyD = 1
and flagD = 0 (the rest of the inputs do not matter). Otherwise the honest parties output “verifi-
cation succeeded”. For i ∈ H, denote by oi (resp., o′i) the input that Pi sent to F ispcg as the opening
of Ci (resp., C ′i). Similarly, denote by denote by ōi (resp., ō′i) the input that the corrupt dealer sent
to F ispcg as the opening of Ci (resp., C ′i). If it holds that opencrs(Ci, oi) 6= ⊥, then set oDi = oi.
Otherwise, set oDi = ōi. For i ∈ C set oDi = ⊥. The simulator inputs flagD = 0, verifyD = 0 and
(oD1 , . . . , o

D
n ) to Fvao.
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Opening phase. The simulator, that holds all the honest parties inputs, simply continues the
simulation of the honest parties, computing the outputs from F isif for every i ∈ H and delivering
them to A, and then receiving from the adversary the inputs to F isif for i ∈ C, and delivering the
corresponding outputs to the adversary as well. This concludes the simulation.

Fix any polytime environment Z and input ζ to the environment. Let ε be the error term of the
commitment scheme. We show that the view of Z (including the adversary’s view and the honest
parties’ outputs) in the real world is statistically close to the view of Z in the ideal world.

Adversary’s view. Since the simulator holds all honest parties’ inputs and simulates the honest
parties like in an execution of vao, it is not hard to see that the simulator perfectly simulates an
execution of Fsif . It remains to show that the output of the honest parties has the same distribution
in both worlds.

Honest parties’ outputs. We say that a view View is “good” if for any commitment C that ap-
pears in the view, and for any two openings o, and o′ that appear in the view, it holds that either
opencrs(C, o) = ⊥ or opencrs(C, o′) = ⊥ or opencrs(C, o) = opencrs(C, o). Observe that, by the bind-
ing property of the commitment scheme, a view View is good with probability at least 1− ε. Fix a
good view View.

We denote by oi the input of an honest Pi. Observe that for each commitment Ci the adversary
produces various openings. Indeed, when i ∈ H the adversary sends an opening ōi as an input to
F ispcg. When i ∈ C the adversary sends an opening õi as an input to F isif , and an opening ōi might
appear in the output of F ispcg (if it does not appear then we set ōi := ⊥).

Similarly, for each commitment C ′i the adversary produces various openings. Indeed, when
i ∈ H the adversary sends an opening o′i to Pi in the first round, and an opening ō′i as an input to
F ispcg. When i ∈ C the adversary sends an opening õi as an input to F isif , an opening ôi as an input
to FDsif , and an additional opening ōi might appear in the output of F ispcg (if it does not appear then
we set ōi := ⊥).

Observe that whenever the output in the real-world is “D is corrupt” or “verification failed”
then this is also the output in the ideal-world, and that in both cases the output of the opening
phase both in the real-world and the ideal-world is ⊥. Therefore, we focus on the case where the
output in the real-world is “verification succeeded”.

Since the dealer is not disqualified, for every i ∈ H one of the following occurs.

• If the openings oi and o′i are valid openings to Ci and C ′i, respectively, let fi := opencrs(Ci, oi)
and hi := opencrs(C ′i, o

′
i). In this case the output of F ispcg is either (a, δA,i, fi + hi) or

(a, δA,i, {(ōi, fi), (ō′i, hi)}, fi + hi), where a = (1, 1), δA,i = (1, 1), or

• at least one of the openings oi and o′i is not a valid opening to Ci or C ′i, in which case the
output of Fspcg is (a, δA,i, {(ōi, fi), (ō′i, hi)}, fi + hi), where a = (1, 1), δA,i = (1, 1), fi :=
opencrs(Ci, ōi) and hi := opencrs(C ′i, ō

′
i).

Since D is not disqualified, the shares {fi + hi}i∈H correspond to a degree-t polynomial, and the
output of FDsif is (C ′1, . . . , C

′
n) and out = 1. Since View is good, the shares {hi}i∈H also correspond

to a degree-t polynomial h(x), so the shares {fi}i∈H correspond to a degree-t polynomial f(x). We
conclude that, in the ideal-world, opencrs(Ci, o

D
i ) = fi 6= ⊥ for all i ∈ H, so in the ideal-world the

output is “verification succeeded” and s = f(0).
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We continue with the analysis of the opening phase. In the ideal world the output is s. We
continue by showing that this is also the output in the real-world. Observe that every honest
party Pi is in V′, and it holds that si = fi.

Consider a corrupt Pi in V′ with Ii = ∅. Since D was not disqualified, it follows that the sum
in the output of F ispcg is f(i) + h(i). Since the view is good it holds that opencrs(C ′i, ô

′
i) = h(i), so

the value fi in the output of F isif must be equal to f(i), as required. Therefore si = f(i).
Finally, consider a corrupt Pi in V′ with Ii = {1, 2}. Let fi := opencrs(Ci, ōi) and hi :=

opencrs(C ′i, ō
′
i). Since D was not disqualified it follows that hi + fi is the sum in the output of

F ispcg, so hi + fi = h(i) + f(i). Since the view is good, we conclude that hi = h(i). Therefore
fi = f(i), so si = f(i), as required. Since there are n − t ≥ t + 1 honest parties, and each one of
them is in V′, we conclude that {si}i∈V′ correspond to the degree-t polynomial f(x), so the parties
output f(0) = s. This concludes the proof of security.

B.7 Guided Degree-2 Computation

Proof of Lemma 3.18. In this section we prove that protocol gdtc UC-emulatesFgdtc with everlasting
security. From the composition properties of UC-security, it is enough to prove security in the
(Fglinear,Ftss)-hybrid model. Let A be an efficient adversary against gdtc. We define the simulator
S as follows. The simulator S uses A in a black-box manner, and forwards all messages between
Z and A. The simulator first receives the set of corrupt C parties from Z . We split into cases.

B.7.1 Honest Guide

Offline round. The simulator samples three strong double t-sharings of 0, denoted (Cγ ,Oγ),
(Cρ,Oρ) and (Cη,Oη). The simulator sends (Cγ ,Oγ

i ), (Cρ,Oρ
i ), (Cη,Oη

i ) and happyi := 1 as the
output of the sharing phase of Ftss. For i ∈ C, denote by f̄γi (x), f̄ρi (x) and f̄ηi (x) the degree-t
polynomials that correspond to (Cγ

i ,O
γ
i ), (Cρ

i ,O
ρ
i ) and (Cη

i ,O
η
i ), respectively.

Online round. The simulator receives the following leakage from Fgdtc: (1) the commitments
(Cij)i∈{α,β,1,...,m},j∈{0,...,n}, (2) the honest parties’ indicator vectors {δi}i∈H and δG, (3) parts of the
dealer’s inputs a, {bGi,j , oGi,j}i∈{α,β,1,...,m},j∈C, (4) the values and openings Lj = {(i, j), bGij , oGij}i∈Ij for
j ∈ H. In addition, if δGα = 0 or δGβ = 0 then the simulator also receives (5) zj :=

∑
i∈δG\{α,β} aib

A
ij

for any j ∈ {1, . . . , n}. The simulator also receives the output of Fgdtc, denoted (a, δG, z).
First, the simulator picks two random degree-t polynomials, f̄u(x) and f̄v(x) conditioned on

f̄u(j) = δα · bGαj − f̄
γ
j (0) and f̄v(j) = δβ · bGβj − f̄

ρ
j (0)

for every j ∈ C. The simulator sets ū := f̄u(0) and v̄ := f̄v(0).
Let δ := δGα ∧ δGβ . If δ = 1, the simulator picks a random degree-t polynomial g(x) conditioned

on
g(0) = z and g(j) = a0(v̄f̄γj (0) + ūf̄ρj (0) + f̄ηj (0) + ūv̄) +

∑
i∈δG\{α,β}

aib
G
ij

for every j ∈ C. Otherwise, when δ = 0, the simulator sets g(x) to be the degree-t polynomials
obtained by interpolating g(0) = z and g(i) = zi for i ∈ {1, . . . , n}. (Observe that, since δ = 0, the
simulator holds the values {zi}i∈{1,...,n}.)
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The simulator sends a and δG toA as the broadcasts of the guide. The simulator sends {flagi :=
0}i∈H to A as the leakage of Ftss.

For the leakage of Fout
glinear the simulator sends toA, (1) the commitments (Cij)i∈{1,...,m},j∈{0,...,n}

and Cγ
0 , Cρ

0, Cη
0, as well as the commitments of the 〈1〉 sharing (C ′0, . . . , C

′
n), (2) the honest

parties’ indicator vectors {δi,out := (δi1, . . . , δ
i
m, 1, 1, 1, 1)}i∈H and δG,out := (δG1 , . . . , δ

G
m, 1, 1, 1, 1),

(3) parts of the dealer’s inputs, the vector aout := (a1, . . . , am, δa0v̄, δa0ū, δa0, δa0ūv̄), and the
values {bGi,j , oGi,j}i∈{1,...,m},j∈C and {f̄γj (0), f̄ρj (0), f̄ηj (0), oγ0,j , o

η
0,j , o

ρ
0,j}j∈C, as well as the shares and

openings from 〈1〉, where all the shares are 1, and the openings are all computed according to
commitcrs(1;~0), (4) the values and openings Lout

j = {(i, j), bGij , oGij}i∈Ij\{α,β} for j ∈ H, and (5)
{g(j)}j∈{1,...,n}. The simulator also sends (aout, δG,out, g(0)) as the output of Fout

glinear .
For the leakage of Fuglinear, the simulator sends to A, (1) the commitments {Cαj}j∈{0,...,n} and

{Cγ0j}j∈{0,...,n}, (2) the honest parties indicator vectors {δi,u := (δiα, 1)}i∈H and δG,u := (δGα , 1), (3)
the vector au := (1,−1) and the values {bGαj , oGαj}j∈C and {f̄γ(j), oγ0j}j∈C, (4) the values and open-
ings Luj = {(α, j), bGαj , oGαj} for every j ∈ H such that α ∈ Ij , and (5) the values {f̄u(j)}j∈{1,...,n}.
The simulator also sends (au, δG,u, f̄u(0)) as the output of Fuglinear.

For the leakage of Fvglinear, the simulator sends to A, (1) the commitments {Cβj}j∈{0,...,n} and
{Cρ0j}j∈{0,...,n}, (2) the honest parties indicator vectors {δi,v := (δiβ, 1)}i∈H and δG,v := (δGβ , 1),
(3) the vector av := (1,−1) and the values {bGβj , oGβj}j∈C and {f̄ρ(j), oρ0j}j∈C, (4) The values and
openings Lvj = {(β, j), bGβj , oGβj} for every j ∈ H such that β ∈ Ij , and (5) {f̄v(j)}j∈{1,...,n}. The
simulator also sends (av, δG,v, f̄v(0)) as the output of Fvglinear.

At this stage, the simulator receives the Ftss inputs flagi of the corrupt parties. The simulator
sets W to be the set of all corrupt parties Pi with flagi = 1 , and sends (W, {oγij , o

ρ
ij , o

η
ij}i∈W,j∈{0,...,n})

to A as the output of the verification phase of Ftss.

Fix any polytime environment Z and input ζ to the environment. Let ε be the error term of the
commitment scheme. We show that the view of Z (including the adversary’s view and the honest
parties’ outputs) in the real world is statistically close to the view of Z in the ideal world.

Adversary’s view. The adversary’s view includes (1) the output of the sharing phase of the Ftss

calls, {(Cγ ,Oγ
i ), (Cρ,Oρ

i ), (C
η,Oη

i ), happyi}i∈C, (2) the broadcasts of the guide, (3) the leakage and
outputs of the verification phase of the Ftss calls, and (4) the leakage and outputs of the Fglinear

calls. We show that both the real-world view and the ideal-world view are O(n2ε)-close to the
hybrid-world view (see Definition B.1).

Real-world vs. hybrid-world. Fix the crs. By the hiding property of the commitment scheme,
it follows that the random variables (Cγ ,Oγ), (Cρ,Oρ), (Cη,Oη) in both worlds are O(n2ε)-close
in statistical distance. Conditioned on those values the messages that the honest parties and the
corrupt parties receive in the offline round are fixed. Therefore, the online-round inputs of the
honest parties have the same distribution, and we fix them as well. Observe that the online-round
messages of the honest parties are a deterministic function of the offline-round view of the honest
parties. Since this view is fixed, and the same in both worlds, we conclude that the online round
messages of the honest parties are fixed, and the same in both worlds. This concludes the analysis
of the real-world.
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Ideal-world vs. hybrid-world. By the hiding property of the commitment scheme, it follows
that the random variables in (1) are O(n2ε)-close in statistical distance, and we fix those values.
In the hybrid-world, let F γ(x, y), F ρ(x, y) and F η(x, y) be the sharing polynomials picked by the
dealer, and let fγi (x) := F γ(x, i), fρi (x) := F ρ(x, i) and fηi (x) := F η(x, i) for every i ∈ C. Observe
that {fγi (x), fρi (x), fηi (x)}i∈C = {f̄γi (x), f̄ρi (x), f̄ηi (x)}i∈C are fixed. Conditioned on (1) the inputs of
the honest parties have the same distribution, and we fix them as well.

Conditioned on the honest parties’ inputs, the broadcast of the guide (2) is also fixed, and is
the same in both worlds. In addition, since the guide is honest, in the hybrid-world all honest
parties are happy in the Ftss calls, and so the leakage of each Ftss is {flagi = 0}i∈H in both worlds.

We continue by analysing the Fglinear calls. In the hybrid-world, for i ∈ δG, let f i(x) be the
degree-t polynomial that corresponds to (bGi,0, . . . , b

G
i,n). We split into cases.

• Assume that δα ∧ δβ = 1. Let fv(x) := fα(x) − F γ(x, 0), fu(x) := fβ(x) − F ρ(x, 0), and
set u := fu(0) and v := fv(0). By Fact A.7, and since a0 6= 0, the hybrid-world random
variables (fu(x), fv(x), a0(uF ρ(x, 0) + vF γ(x, 0) +F η(x, 0) +uv) +

∑
i∈δG\{α,β} aif

i(x)) have
the same distribution as ideal-world random variables (f̄u(x), f̄v(x), g(x)). Conditioned on
those values, one can verify that the leakage and output of the Fspcg calls is fixed, and has
the same value in both worlds.

• Assume that δα ∧ δβ = 0. Observe that in this case g(x) =
∑

i∈δG\{α,β} aif
i(x). Now, one can

verify that the leakage and output of the Fspcg calls is fixed, and has the same value in both
worlds.

We conclude that the ideal-world view is O(n2ε)-close in statistical distance to the hybrid-world
view. Therefore, the ideal-world view is O(n2ε)-close in statistical distance to the real-world view.

Honest parties’ output. Fix any view of the adversary. Observe that, since the guide is honest,
the guide is never discarded. Indeed, the verification phase of Ftss does not result in “D is cor-
rupt”, and none of the honest parties are in W. In addition, non of the calls to Fglinear result in “G is
corrupt”, and it always holds that (1) aout = (a1, . . . , am, a0δ

G
α δ

G
β v, a0δ

G
α δ

G
β u, a0δ

G
α δ

G
β , a0δ

G
α δ

G
β uv), (2)

au = (1,−1), (3) av = (1,−1), (4) δout = (δG1 , . . . , δ
G
n , 1, 1, 1, 1), (5) δu = (δGα , 1), and (6) δv = (δGβ , 1).

When δGα ∧ δGβ = 1 then the output in the ideal-world is (a, δG, a0 · bGα0b
G
β0 +

∑
i∈δG\{α,β} ai · bGi0).

By Fact A.7 the sum in the output of Fout
glinear is a0 · bGα,0 · bGβ,0 +

∑
i∈δG\{α,β} aib

G
i,0, so this is also the

output in the real-world, as required.
When δGα ∧ δGβ = 0 then the output in the ideal-world is (a, δG,

∑
i∈δG\{α,β} ai · bGi0). Since the

sum in the output of Fout
glinear is also

∑
i∈δG\{α,β} ai · bGi0 we conclude that this is also the output in

the real-world, as required. This completes the analysis of an honest guide.

B.7.2 Corrupt Guide

The simulator, that holds all the inputs of the honest parties, takes the role of the honest parties
and simulates an execution of gdtc in the following way.

Offline round. The guide receives from A three pairs (Cγ ,Oγ), (Cρ,Oρ), (Cη,Oη) and
{happyi}i∈{1,...,n}, as an input to Ftss. The guide sends (Cγ ,Oγ

i ), (Cρ,Oρ
i ), (Cη,Oη

i ) and happyi
to Pi as the output of the sharing phase of Ftss.
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Online round. The simulator receives the following leakage from Fgdtc: (1) the commitments
(Cij)i∈{α,β,1,...,m},j∈{0,...,n}, (2) the honest parties’ indicator vectors {δi}i∈H, and (3) the honest par-
ties’ values {bi}i∈∈H. The simulator, that holds all honest parties’ inputs, continues the execution
of gdtc by taking the role of the honest parties, for which the simulator holds all the inputs. At the
end of the execution the simulator computes the outputs of the honest parties.

If the honest parties output “G is corrupt” then the simulator sends flag := 1 to Fgdtc

(the rest of the inputs do not matter). Otherwise, let the broadcast of the corrupt guide
be (a, δG). Denote the adversary’s input to Fuglinear by (aG,u,bG,u, {oG,uαj , o

γ
0j}j∈{0,...,n}, δG,u),

and the output by (aG,u, δG,u, u). Similarly, denote the adversary’s input to Fvglinear by
(aG,v,bG,v, {oG,vαj , o

γ
0j}j∈{0,...,n}, δG,v), and the output by (aG,v, δG,v, v). Denote the adversary’s

input to Fout
glinear by (aG,out,bG,out, {oG,outij }i∈{1,...,m},j∈{0,...,n},O

γ
0 ,O

ρ
0,O

η
0, δ

G,u), and the output by
(aG,out, δG,out, out). The simulator inputs (1) the list of coefficients a, (2) the list of value
bG := (bG,uα , bG,vβ , bG,out1 , . . . ,bG,outm ), (3) the lists of openings {oG,uα,j }j∈{0,...,n}, {o

G,v
β,j }j∈{0,...,n}, and

{oG,outij }i∈{1,...,m},j∈{0,...,n}, (4) the indicator vector δG, (5) the bit flag = 0.

Fix any polytime environment Z and input ζ to the environment. Let ε be the error term of the
commitment scheme. We show that the view of Z (including the adversary’s view and the honest
parties’ outputs) in the real world is statistically close to the view of Z in the ideal world.

Adversary’s view. Since the simulator, that takes the role of the honest parties, holds all the
honest parties’ inputs, the adversary’s view has the same distribution in both worlds.

Honest parties’ outputs. We say that a view View is “good” if for any commitment C that ap-
pears in the view, and for any two openings o, and o′ that appear in the view, it holds that either
opencrs(C, o) = ⊥ or opencrs(C, o′) = ⊥ or opencrs(C, o) = opencrs(C, o). Observe that a view is
good with probability at least 1− ε, and fix any good view.

If the output of the honest parties according to View is “G is corrupt” then the simulator sets
flagi = 1 and so the output of the honest parties in the ideal-world is also “G is corrupt”. Hence, we
focus on the case where the output of the honest parties according to View is not “G is corrupt”. In
this case, in the real-world the output of the honest parties is (a, δG, out). We show that this holds
with probability 1 in the ideal world as well.

Let F γ(x, y), F ρ(x, y) and F η(x, y) be the sharing polynomials of the weak double t-sharing
defined by the Ftss calls, and let fγ(x) := F γ(x, 0), fρ(x) := F ρ(x, 0) and fη(x) := F η(x, 0), and
note that, by the correctness of the Ftss functionality, fγ(0) · fρ(0) = fη(0). First, observe that in
the real-world the adversary inputs fγ(j) (resp., fρ(j)) to Fuglinear (resp., Fvglinear) as the committed
value of Cγ0j (resp., Cρ0j), for all j ∈ H. Indeed, if this is not the case then, since View is good, it
is not hard to see that the guide is disqualified. Similarly, the adversary inputs fγ(j), fρ(j) and
fη(j) to Fout

glinear as the committed value of Cγ0j , C
ρ
0j , and Cη0j , respectively, for every j ∈ H.

In addition, in the ideal-world, for any j ∈ H and i ∈ Ij it holds that opencrs(Cij , o
G
ij) = bGij .

Indeed, if this equation does not hold, then, in the real-world, for i = α the guide will be disqual-
ified in Fuglinear, for i = β the guide will be disqualified in Fvglinear, and for i ∈ {1, . . . ,m} the guide
will be disqualified in Fout

glinear, in contradiction. Also, observe that a0 6= 0, or otherwise, the guide
will be disqualified.

We continue by splitting into two cases.
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• Assume that δGα ∧δGβ = 1. Let fα(x) be the polynomial obtained by interpolating {bGα,j}j∈H, let
fβ(x) be the polynomial obtained by interpolating {bGβ,j}j∈H, and let g(x) be the polynomial
obtained by interpolating {

∑
i∈δG\{α,β} aib

G
i,j}j∈H. We continue by showing that all of them

are of degree-t.

Consider the polynomial fu(x) obtained by interpolating {bGα,j−fγ(j)}j∈H. Since the output
of Fuglinear is not “G is corrupt”, the degree of fu(x) is at most t. We conclude that the degree
of fα(x) is at most t. Similarly, let fv(x) be the degree-t polynomial obtained by interpolating
{bGβ,j − fρ(j)}j∈H, and observe that, by a similar analysis, the degree of fβ(x) is at most t.
Let h(x) be the polynomial obtained by interpolating {a0(ufρ(j) + vfγ(j) + fη(j) + uv) +∑

i∈δG\{α,β} aib
G
i,j}j∈H. Since the output of Fout

glinear is not “G is corrupt”, the degree of h(x) is
at most t. Since fρ(x), fγ(x) and fη(x) are of degree at most t, we conclude that g(x) is of
degree at most t.

Finally, observe that according to View, u = fu(0), v = fv(0) and out = h(0). By the above
analysis, and by Fact A.7, it is not hard to see that out = a0f

α(0)fβ(0) + g(0), and that the
output in the ideal-world is also (a, δG, out).

• Assume that δGα ∧ δGβ = 0. Let g(x) be the polynomial obtained by interpolating
{
∑

i∈δG\{α,β} aib
G
i,j}j∈H. Since the output of Fout

glinear is not “G is corrupt”, the degree of g(x) is
at most t, and out = g(0). By the above analysis, it is not hard to see that the output in the
ideal-world is also (a, δG, g(0)). This concludes the proof of security.

B.8 Degree-2 Computation

Proof of Lemma 3.19. In this section we prove that protocol dtc UC-emulates Fdtc with everlasting
security. From the composition properties of UC-security, it is enough to prove security in the
(Fvss,Ftss,Fsif ,Fvao,Fdtc,Fglinear, )-hybrid model. Let A be an efficient adversary against gdtc. We
define the simulator S as follows. The simulator S usesA in a black-box manner, and forwards all
messages between Z and A. The simulator first receives the set of corrupt C parties from Z .

B.8.1 Round 1

Fvss simulation. For every honest Pi, the simulator simulates the calls of Pi to Fvss in the follow-
ing way.

• For every j ∈ {Li−1 +1, . . . , Li−1 +`i}, the simulator picks a random strong double t-sharing
〈〈0〉〉 denoted (Cwj ,Owj ), and uses it as the input to Fwjvss . That is, the simulator gives to the
adversary (Cwj ,O

wj
r ) for every r ∈ C as the output of the sharing phase of Fwjvss . For each

r ∈ C, denote by f̄wjr (x) the degree-t polynomial defined by (C
wj
r ,O

wj
r ).

• For every k ∈ {1, . . . ,m} the simulator picks a random value pki (resp., zki ), picks a random
strong double t-sharing 〈〈pki 〉〉 (resp., 〈〈zki 〉〉), denoted (Cpki ,Opki ) (resp.,(Czki ,Ozki )) , and uses

it as the input to Fp
k
i

vss (resp., Fz
k
i

vss). That is, the simulator gives to the adversary (Cpki ,O
pki
j )
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(resp., (Czki ,O
zki
j )) for every j ∈ C as the output of Fp

k
i

vss (resp., Fz
k
i

vss). For each r ∈ C, de-

note by f̄
pki
r (x) and f̄

zki
r (x) the degree-t polynomial defined by (C

pki
r ,O

pki
r ) and (C

zki
r ,O

zki
r ),

respectively.

• For every k ∈ {1, . . . ,m} the simulator picks a random strong double t-sharing of 0, denoted

(C0ki ,O0ki ) and uses it as the input to F0ki
vss. That is, the simulator gives to the adversary

(C0ki ,O
0ki
k ) for every k ∈ C as the output of the sharing phase of F0ki

vss. For each r ∈ C, denote

by f̄0ki
r (x) the degree-t polynomial defined by (C

0ki
r ,O

0ki
r ).

Ftss simulation. The simulator simulates the calls of Pi toFtss in the following way. For every k ∈
{1, . . . ,m}, the simulator picks three random strong double t-sharings 〈〈0〉〉 denoted (Cγki ,Oγki ),
(Cρki ,Oρki ) and (Cηki ,Oηki ), and uses it as the input to Fk,itss . That is, the simulator gives to the

adversary (Cγki ,O
γki
j ), (Cρki ,O

ρki
j ) and (Cηki ,O

ηki
j ) and happyj = 1 for every j ∈ C as the output

of Fk,itss . For each r ∈ C, denote by f̄γ
k
i
r (x), f̄ρ

k
i
r (x) and f̄

ηki
r (x) the degree-t polynomial defined by

(C
γki
r ,O

γki
r ), (C

ρki
r ,O

ρki
r ) and (C

ηki
r ,O

ηki
r ), respectively.

This completes the communication from honest parties to corrupt parties in the first round.

Adversary’s communication. At this stage the simulator receives the inputs of the corrupt par-
ties to the Fvss and Ftss calls. For each i ∈ C and j ∈ {Li−1 +1, . . . , Li−1 +`i} the simulator receives
(Cwj ,Owj ) as the input to Fwjvss , and gives the adversary (Cwj ,O

wj
r ) for each r ∈ C as the output.

Similarly, for each i ∈ C and k ∈ {1, . . . ,m} the simulator receives (Cpki ,Opki ) (resp.,(Czki ,Ozki )),

as the input to Fp
k
i

vss (resp., Fz
k
i

vss) and gives the adversary (Cpki ,O
pki
j ) (resp., (Czki ,O

zki
j )) for every

j ∈ C as the output. In addition, the simulator receives (C0ki ,O0ki ), as the input to F0ki
vss and gives

the adversary (C0ki ,O
0ki
j ) for every j ∈ C as the output. Finally, for every i ∈ C and k ∈ {1, . . . ,m}

the simulator receives (Cγki ,Oγki ), (Cρki ,Oρki ), (Cηki ,Oηki ), and {happykij}j∈{1,...,n} as the input to

Fk,itss , and gives the adversary (Cγki ,O
γki
j ), (Cρki ,O

ρki
j ) (Cηki ,O

ηki
j ), and happykij for each j ∈ C as the

output. This completes the simulation of the first round.

B.8.2 Round 2

Broadcast simulation. For every i, j ∈ H the simulator sets flagij = 0, and for every i ∈ H
and j ∈ C the simulator computes flagij like in the protocol, using the values received from the
adversary as inputs to Fvss and Ftss. In addition, on behalf of each honest Pi, if a corrupt Pj sent
an invalid pair to Pi in some Fvss or Ftss call, then we turn all openings sent from Pj to Pi, in all
Fvss and Ftss calls, to ⊥.

For each i ∈ H, the simulator gives {flagij}j∈{1,...,n} as the broadcasts of the honest parties.

Fvss and Ftss leakage. For every Fvss and Ftss call with Pj as the dealer, the simulator gives the
adversary {flagij}i∈H as the leakage.
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Fsif simulation. For any honest Pi and any value s that belongs to Pi, the output phase of Fssif is
simulated by giving the adversary the output Cs, and out = 1. Similarly, for any honest Pi and

every k ∈ {1, . . . ,m}, the output phase of F0ki
sif is simulated by giving the adversary the output

C0ki , and out = 1.

Fvao simulation. For any honest Pi, any value s that belongs to Pi, and any honest Pj the simula-
tor gives the adversary “verification succeeded” as the output of the verification phase ofFs,jvao. For
any corrupt Pi, any value s shared by Pi, and any honest Pj , the simulator computes the leakage
and output of Fs,jvao using (1) Cs

j as the input of the honest parties, (2) Os
j and flagD = flagji as the

input of the dealer Pj , and (3) oskj as the input of each honest Pk. Similarly, for every value s and
any corrupt Pj , the simulator computes the leakage of Fs,jvao using (1) Cs

j as the input of the honest
parties, and (2) oskj as the input of each honest Pk.

Fk,igdtc simulation for i ∈ H. For every k ∈ {1, . . . ,m} and i ∈ H, the simulator simulates the

leakage and output of Fk,igdtc in the following way. Let yk = xαxβ + x1 + . . . + xn. The sim-

ulator sends to A the leakage (1) the commitments Cxα
i ,Cxβ

i ,C
x1
i , . . . ,C

xn
i , C

zk1
i , . . . ,C

zkn
i and

C
pki
0 , (2) the indicator vectors {δj}j∈H, where for every j ∈ H, (a) δj

pki
= 1, (b) for every

q ∈ {α, β, 1, . . . , n}, δjxq = flagjDof(xq),13, and (c) for every r ∈ {1, . . . , n}, δj
zkr

= flagjr, (3) the vec-

tor a = (1, . . . , 1, λ1
i , . . . , λ

n
i , 1), (4) the openings and values {opencrs(Cx

r

ij , o
xr
ij ), ox

r

ij }j∈C,r∈{α,β,1,...,n},

{opencrs(C
zkr
ij , o

zkr
ij ), o

zkr
ij }j∈C,r∈{1,...,n}, and {opencrs(C

pki
0j , o

pki
0j ), o

pki
0j }j∈C, (5) the indicator vector δG :=

δi, and (6) the sets Lj for every j ∈ H, where Lj contains the following elements: (a)
(opencrs(Cx

q

ij , o
xq
ij ), ox

q

ij ) for every q ∈ {α, β, 1, . . . , n}, such that Dof(xq) ∈ C, δjxq = 0 and δGxq = 1,

(b) (opencrs(C
zkr
ij , o

zkr
ij ), o

zkr
ij ) for every r ∈ C, such that δj

zkr
= 0 and δG

zkr
= 1.

In addition, the simulator picks a degree-t polynomial f̄k,igdtc(x) in the following way. If δGα ∧
δGβ = 1 then f̄k,igdtc(x) is a random degree-t polynomial, and if δGα ∧ δGβ = 0 then f̄k,igdtc(x) is a random
degree-t polynomial conditioned on

f̄k,igdtc(j) =
∑

r∈{1,...,n}:δGxr=1

opencrs(Cx
r

ij , o
xr

ij ) +
∑

r∈{1,...,n}:δG
zkr

=1

λri · opencrs(C
zkr
ij , o

zkr
ij ) + opencrs(C

pki
0j , o

pki
0j ),

for every j ∈ C. If δGα ∧ δGβ = 0 then the simulator gives {f̄k,igdtc(j)}j∈{1,...,n} to the adversary as

additional leakage. Finally, the simulator gives the adversary (a, δG, f̄k,igdtc(0)) as the output of

Fk,igdtc.

Fk,igdtc leakage for i ∈ C. For every k ∈ {1, . . . ,m} and i ∈ C the simulator simulates the leakage

of Fk,igdtc in the following way. The simulator sends to A the leakage (1) Cxα
i ,Cxβ

i ,C
x1
i , . . . ,C

xn
i ,

C
zk1
i , . . . ,C

zkn
i and C

pki
0 , (2) the indicator vectors {δj}j∈H where for every j ∈ H: (a) δj

pki
= flagji,

13Here, flag is 1− flag.
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(b) for every q ∈ {α, β, 1, . . . , n} δjxq = flagjDof(xq), and (c) for every r ∈ {1, . . . , n}, δj
zkr

= flagjr,

(3) for every j ∈ H, the values {opencrs(Cx
r

ji , o
xr
ji )}r∈{α,β,1,...,n}, {opencrs(C

zkr
ji , o

zkr
ji )}r∈{1,...,n} and,

opencrs(C
pki
j0 , o

pki
j0).

Fk,i,uglinear and Fk,i,vglinear simulation for i ∈ H. For every k ∈ {1, . . . ,m} and i ∈ H the simulator

simulates the leakage ofFk,i,uglinear by sendingA the leakage (1) Cxα
i and C

γki
0 , (2) the indicator vectors

{δj}j∈H where for every j ∈ H, δj1 = flagjDof(xα), and δj2 = 1, (3) the vector a = (1,−1), the

openings and values (opencrs(Cx
α

ij , o
xα
ij ), ox

α

ij ) and (opencrs(C
γki
0j , o

γki
0j ), o

γki
0j ) for every j ∈ C, and the

vector δG := δi, (4) the sets Lj for every j ∈ H, that contain (opencrs(Cx
α

ij , o
xα
ij ), ox

α

ij ) if δG1 = 1 and
δj1 = 0.

In addition, if δG1 = 0 the simulator sets f̄k,i,uglinear(x) to be a random degree-t polynomial condi-

tioned on f̄k,i,uglinear(j) = 0 − opencrs(C
γki
j0 , o

γki
j0 ) for all j ∈ C. Otherwise, if δG1 = 1, simulator picks a

random degree-t polynomial f̄k,i,uglinear(x) conditioned on

f̄k,i,uglinear(j) = opencrs(Cx
α

ij , o
xα

ij )− opencrs(C
γki
j0 , o

γki
j0 ),

for all j ∈ C. The simulator returns {f̄k,i,uglinear(j)}j∈{1,...,n} to the adversary as additional leakage.

Finally, the simulator gives the adversary (a, δG, f̄k,i,uglinear(0)) as the output of Fk,i,uglinear.

The simulation of Fk,i,vglinear follows the same line - simply replace α with β, γ with ρ, and u with
v.

Fk,i,uglinear and Fk,i,vglinear leakage for i ∈ C. For every k ∈ {1, . . . ,m} and i ∈ C, the simulator simulates

the leakage of Fk,i,uglinear in the following way. The simulator sends toA the leakage (1) Cxα
i and C

γki
0 ,

(2) the indicator vectors {δj}j∈H where for every j ∈ H, δj1 = flagjDof(xα), and δj2 = flagji, and (3)

for every j ∈ H the values opencrs(Cx
α

ji , o
xα
ji ) and opencrs(C

γki
j0 , o

γki
j0 ).

The simulation of Fk,i,vglinear follows the same line - simply replace α with β, γ with ρ, and u with
v.

Adversary’s communication. At this stage the simulator receives from A the messages from
the corrupt parties to the honest parties, which include the broadcasts {flagij}j∈{1,...,n} for every
corrupt Pi, and also the inputs of the corrupt parties to the functionalities. Upon receiving such
inputs for Fk,igdtc or Fk,i,uglinear or Fk,i,vglinear, for i ∈ C, the simulator holds all inputs to the functionality,
and so can compute the output of the functionality and give it toA. Similarly, upon receiving such
inputs for Fvss calls or Ftss calls in which the dealer is corrupt, the simulator holds all inputs to
the functionality, and so can compute the output of the functionality and give it to A. Finally, for
Fvss calls or Ftss calls in which the dealer is honest, only the corrupt parties may raise a flag, and
since the dealer holds the rows that correspond to corrupt parties, the simulator can compute the
output of the functionality. This completes the simulation .
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B.8.3 Communication with Fdtc

The simulator computes the set V by following the protocol and using the view of the corrupt par-
ties. For any corrupt Pi which is not in V, the simulator sets all of the inputs wLi−1+1, . . . wLi−1+`i

to be 0, and sends them to Fdtc. For every corrupt Pi which is in V, and every value s that belongs
to Pi, the corresponding Fvss or Ftss call did not end with “D is corrupt”, and the simulator com-
putes the sharing polynomial of JsK, denoted F s(x, y). For any j ∈ {Li−1 + 1, . . . , Li−1 + `i}, the
simulator sets wj := Fw

j
(0, 0), and sends wj to Fdtc. Finally, the simulator receives the output of

Fdtc, denoted (y1, . . . , ym).

B.8.4 Round 3

For every value s and any i ∈ {1, . . . , n}, we define Ōs
i in the following way: (1) if s belongs to an

honest party, and i ∈ C, let Ōs
i := Os

i , (2) if s belongs to a corrupt party in V, and i ∈ H, let Ōs
i be

the openings of honest party Pi according to JsK (Observe that Ōs
i was sent by the corrupt party to

the correspondingFvss orFtss functionality, either in the sharing phase or in the verification phase,
and so it is known to the simulator), (3) if s belongs to a corrupt party outside V, let ōsij = ⊥ for all
i, j ∈ {0, . . . , n}, and (4) if s belongs to an honest party, i ∈ H and j ∈ C, then set ōsij := ōsji. (We
don’t care about the other cases.) In addition, for every value s that belongs to a corrupt party in
V, let f̄si (x) := F s(x, i), for i ∈ {1, . . . , n}.

For each k ∈ {1, . . . ,m} the simulator simulates the computation of yk = xαxβ + x1 + . . .+ xn

in the following way. We split into cases.

Exiting through linear functions. If Pα or Pβ (or both) are not in V, then the simulator picks
a symmetric bivariate polynomial F̄ k(x, y) of degree at most t in each variable, conditioned on
F k(0, 0) = yk and

F̄ k(x, i) =
∑

j:Dof(xj)∈V

f̄x
j

i (x) +
∑
j∈V

f̄
0kj
i (x),

for every i ∈ C.
For every i ∈ V ∩ H the simulator simulates the call to (Fglinear)

i
lin in the following way.

The simulator sends to A (1) the commitments {Cxj}j∈{1,...,n} and {C0kj }j∈{1,...,n}, (2) the vec-
tors {δj}j∈H where for every j ∈ H and r ∈ {1, . . . , n}, δjxr = 1 if Dof(xr) ∈ V, (resp., δj

0kr
= 1 if

r ∈ V) and δjxr = 0 (resp., δj
0kr

= 0) otherwise, (3) the vector a = (1, . . . , 1), (4) the openings and

values {ōxjir , opencrs(Cx
j

ir , ō
xj
ir ))}j∈{1,...,n},r∈C, and {ō

0kj
ir , opencrs(C

0kj
ir , ō

0kj
ir ))}j∈{1,...,n},r∈C (5) the vector

δG := δi (6) empty sets Lj = ∅ for every j ∈ H, and (7) the values F̄ k(j, i) for all j ∈ {1, . . . , n}.
The simulator also sends to A the values (a, δG, F̄ k(0, i)) as the output of (Fglinear)

i
lin.

For every i ∈ V \ H the simulator simulates the leakage of (Fglinear)
i
lin in the following way.

The simulator sends to A (1) the commitments {Cxj}j∈{1,...,n} and {C0kj }j∈{1,...,n}, (2) the vectors
{δj}j∈H where for every j ∈ H and r ∈ {1, . . . , n}, δjxr = 1 if Dof(xr) ∈ V, (resp., δj

0kr
= 1 if r ∈ V)

and δjxr = 0 (resp., δj
0kr

= 0) otherwise, (3) for each j ∈ H, the values {opencrs(Cx
r

ji , ō
xr
ji )}r∈{1,...,n}

and {opencrs(C
0kr
ji , ō

0kr
ji )}r∈{1,...,n}.
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Later, the simulator receives from A the inputs of the corrupt parties to the functionalities
(Fglinear)

i
lin for i ∈ V \ H. Upon receiving such inputs, the simulator holds all inputs to the func-

tionality, and so can compute the output of the functionality and give it to A.

Correcting shares. If Pα and Pβ are in V then the simulator picks a random degree-2t polynomial
f̄k(x) conditioned on f̄k(0) = yk, and

f̄k(i) = f̄x
α

i (0)f̄x
β

i (0) +
∑

j:Dof(xj)∈V

f̄x
j

i (0) +
∑
j∈V

λji f̄
zkj
i (0),

for every i ∈ C. For every Pi the parties do as follows.

• If Pi is not in V, the simulator sends toA the following broadcast on behalf of any honest Pj .
For every Pr in V, such that flagjr = 0, and every value s that belongs to Pr, Pj broadcasts
ōsjr.

• If Pi is in V, denote the (simulated) output of Fk,igdtc by (a, δG, yki ). For every corrupt Pj not
in V, and any value s that belongs to Pj such that the verification phase of Fs,ivao ended with
“verification succeeded”, the simulator simulates the leakage and output of the opening
phase of Fs,ivao in the following way. If Pi is honest then the simulator uses (1) Cs

i as the input
of the honest parties, (2) Os

i and flagD = flagij as the input of the dealer Pi, and (3) oski as the
input of each honest Pk to simulate the leakage and output. Otherwise, if Pi is corrupt, then
the simulator holds the inputs of all parties to the verification phase of the functionality, and
can compute the output of the opening phase as well.

The next step of the simulation depends on whether Pi is honest or corrupt.

Honest Pi and δGα ∧δGβ = 1. The simulator samples a degree-t polynomial gki (x) conditioned

on gki (j) = f
pki
j (0) for all j ∈ C, and

gki (0) = yki − fk(i) +
∑

j:Dof(xj)∈V∧δG
xj

=0

f̄x
j

i (0) +
∑

j∈V:δG
zk
j

=0

f̄
zkj
i (0)

−
∑

j:Dof(xj)/∈V∧δG
xj

=1

opencrs(Cx
j

i0 , o
xj

i0 )−
∑

j∈V:δG
zk
j

=1

opencrs(C
zkj
i0 , o

zkj
i0 ),

where for each j such that Dof(x) /∈ V (resp., j /∈ V) the value xj (resp., zkj ) belongs to

a corrupt party, so Cx
j

i0 and ox
j

i0 (resp., C
zkj
i0 and o

zkj
i0 ) are fixed, and for every j such that

Dof(xj) ∈ V and δG
xj

= 0 (resp., j ∈ V and δG
zkj

= 0) the value xj (resp., zkj ) belongs to a

corrupt party, so f̄x
j

i (x) (resp., f̄
zkj
i (x)) is fixed. For each honest Pj , it holds that flagji = 0,

and the simulator sends (C
pki
j0 , g

k
i (j)) as the output of Fkjisif .

Later, the simulator receives fromA the inputs forFkjisif for corrupt Pj ’s, computes the output
of the functionality and gives it back to A.
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Honest Pi and δGα ∧ δGβ = 0. The simulator computes u and v like in the protocol using
the corrupt parties view. The simulator picks a random symmetric bivariate polynomial

Ḡki (x, y) of degree at most t in each variable, conditioned on Ḡki (x, j) = vf̄
γki
j (x) + uf̄

ρki
j (x) +

f̄
ηki
j (x) + uv − f̄p

k
i
j (x), for all j ∈ C, and

Ḡki (0, 0) = f̄k(i)− yki −
∑

j:Dof(xj)∈V∧δG
xj

=0

f̄x
j

i (0)−
∑

j∈V:δG
zk
j

=0

f̄
zkj
i (0)

+
∑

j:Dof(xj)/∈V∧δG
xj

=1

opencrs(Cx
j

i0 , o
xj

i0 ) +
∑

j /∈V:δG
zk
j

=1

opencrs(C
zkj
i0 , o

zkj
i0 ),

where for each j such that Dof(x) /∈ V (resp., j /∈ V) the value xj (resp., zkj ) belongs to

a corrupt party, so Cx
j

i0 and ox
j

i0 (resp., C
zkj
i0 and o

zkj
i0 ) are fixed, and for every j such that

Dof(xj) ∈ V and δG
xj

= 0 (resp., j ∈ V and δG
zkj

= 0) the value xj (resp., zkj ) belongs to a

corrupt party, so f̄x
j

i (x) (resp., f̄
zkj
i (x)) is fixed.

For every Pj in V, the simulator do as follows.

– For every honest Pj in V, the simulator simulates the leakage and output of
(Fglinear)

k,i,j
correct in the following way. The simulator simulates the leakage by send-

ing to A (1) the j-th rows C
γki
j , C

ρki
j , C

ηki
j , C1, and C

pki
j , where C1 are the com-

mitments that correspond to default sharing 〈1〉, (2) the indicator vectors {δr}r∈H
such that δr = (1, 1, 1, 1, 1) for all r ∈ H, (3) the vector a = (1, 1, 1, 1,−1), values

and openings {f̄γ
k
i

r (j), ō
γki
jr }r∈C, {f̄ρ

k
i
r (j), ō

ρki
jr }r∈C, {f̄η

k
i
r (j), ō

ηki
jr }r∈C, {f̄p

k
i
r (j), ō

pki
jr}r∈C and

{(1, o1)}r∈C where o1 is the opening in the default sharing of 〈1〉, (4) δG = (1, 1, 1, 1, 1),
(5) empty sets Lr for every r ∈ H, and (6) the values Ḡki (r, j) for every r ∈ {1, . . . , n}.
Finally, the simulator gives (a, δG, Ḡki (0, j)) to A as the output of the functionality.

– For every corrupt Pj in V, the simulator simulates the leakage of (Fglinear)
k,i,j
correct in the

following way. The adversary receives (1) the j-th rows C
γki
j , Cρki

j , Cηki
j , C1, and C

pki
j ,

where C1 are the commitments that correspond to default sharing 〈1〉, (2) the indi-
cator vectors {δr}r∈H such that δr = (1, 1, 1, 1, 1) for all r ∈ H, and (3) the values

(f̄
γki
j (r), f̄

ρki
j (r), f̄

ηki
j (r), 1, f̄

pki
j (r)) for every r ∈ H.

Later, the simulator receives fromA the inputs of the corrupt parties to the functionality.
Upon receiving such inputs, the simulator holds all inputs to the functionality, and so
can compute the output of the functionality and give it to A.

Corrupt Pi and δGα ∧ δGβ = 1. For each honest Pj in V with flagji = 0, the simulator sends

(C
pki
j0 , opencrs(C

pki
j0 , o

pki
j0)) as the output of Fkjisif . Later, the simulator receives fromA the inputs

for Fkjisif for corrupt Pj ’s, computes the output of the functionality and gives it back to A.
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Corrupt Pi and δGα ∧ δGβ = 0. The simulator computes u and v like in the protocol using the
corrupt parties view. The simulator sets

Ḡki (x, y) := vF γ
k
i (x, y) + uF ρ

k
i (x, y) + F η

k
i (x, y) + uv − F pki (x, y).

For every Pj in V, the simulator do as follows.

– For every honest Pj in V, the simulator simulates the leakage and output of
(Fglinear)

k,i,j
correct in the following way. The simulator simulates the leakage by send-

ing to A (1) the j-th rows C
γki
j , C

ρki
j , C

ηki
j , C1, and C

pki
j , where C1 are the commit-

ments that correspond to default sharing 〈1〉, (2) the indicator vectors {δr}r∈H such
that δr = (1, 1, 1, 1, 1) for all r ∈ H, (3) the vector a = (1, 1, 1, 1,−1), values and open-

ings {F γki (r, j), ō
γki
jr }r∈C, {F ρki (r, j), ō

ρki
jr }r∈C, {F ηki (r, j), ō

ηki
jr }r∈C, {F pki (r, j), ō

pki
jr}r∈C and

{(1, o1)}r∈C where o1 is the opening in the default sharing of 〈1〉, (4) δG = (1, 1, 1, 1, 1),
(5) empty sets Lr for every r ∈ H, and (6) the values Ḡki (r, j) for every r ∈ {1, . . . , n}.
Finally, the simulator gives (a, δG, Ḡki (0, j)) to A as the output of the functionality.

– For every j ∈ C the simulator simulates the leakage of (Fglinear)
k,i,j
correct in the follow-

ing way. The adversary receives (1) the j-th rows C
γki
j , C

ρki
j , C

ηki
j , C1, and C

pki
j ,

where C1 are the commitments that correspond to default sharing 〈1〉, (2) the indi-
cator vectors {δr}r∈H such that δr = (1, 1, 1, 1, 1) for all r ∈ H, and (3) the values
(F γ

k
i (r, j), F ρ

k
i (r, j), F η

k
i (r, j), 1, F p

k
i (r, j)) for every r ∈ H.

Later, the simulator receives fromA the inputs of the corrupt parties to the functionality.
Upon receiving such inputs, the simulator holds all inputs to the functionality, and so
can compute the output of the functionality and give it to A.

This concludes the simulation.

Fix a polytime environment Z and input ζ to the environment, and assume without loss of
generality that Z is deterministic. Let ε be the error term of the commitment scheme. We show
that the view of Z (including the adversary’s view and the honest parties’ outputs) in the real
world is statistically close to the view of Z in the ideal world. For this, we show that both the
real-world view and the ideal-world view are O(m · Ln+1 · n2ε)-close to the hybrid-world view.

B.8.5 Real-World vs. Hybrid-World

Fix the crs. Observe that the honest parties’ inputs are picked by Z in the same way in both
worlds, and so they have the same distribution. Conditioned on those inputs, for every value s
that belongs to an honest party, the distribution of (Cs,Os) is O(n2ε)-close in both worlds. We
conclude that the first-round view is O(m · Ln+1 · n2ε)-close in both worlds. Finally, conditioned
on the first-round view, the rest of the view can be sampled in both worlds using the same proba-
bilistic process. We conclude that the real-world view isO(m ·Ln+1 ·n2ε)-close to the hybrid-world
view.
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B.8.6 Ideal-World vs. Hybrid-World

Round 1. Fix the crs in both worlds. Observe that the honest parties’ inputs are picked by the
environment in the same way in both worlds, and so it has the same distribution, and we fix it. Let
S be the set of all values shared by the honest parties in the first round. In the hybrid-world, for
every value s ∈ S, denote by F s(x, y) the sharing polynomial corresponding to s, which is picked
by the honest party for which s belongs to. For each s and i ∈ C, let f si (x) := F s(x, i), and note
that, by Fact A.4, the random variables

{fsi (x)}s∈S,i∈C and {f̄si (x)}s∈S,i∈C

have the same distribution. Conditioned on those values, it is not hard to see that the random
variables

{Cs, {Os
i}i∈C}s∈S ,

are O(m ·Ln+1 ·n2ε)-close in both worlds, and we fix them. This concludes the analysis of the first
round.

Conditioned on those values, the adversary’s inputs to the Fvss and Ftss functionalities are
picked in the same way, and so the have the same distribution in both worlds. Fix them as well.

Round 2. We say that the first-round view is “good” if for any commitmentC that appears in the
view, and for any two openings o, and o′ that appear in the view, it holds that either opencrs(C, o) =
⊥ or opencrs(C, o′) = ⊥ or opencrs(C, o) = opencrs(C, o). Observe that a first-round view is good
with probability at least 1− ε, and fix any such view.

In the hybrid-world, since an honest party Pi always receives a valid sharing from any other
honest Pj , we conclude that flagij = 0 for all i, j ∈ H, just like in the ideal-world. In addition,
for i ∈ H and j ∈ C, the value flagij is computed in the same way in both worlds. We conclude
that the broadcasts {flagij}j∈{1,...,n} of the honest parties, as well as the leakage of the Fvss and Ftss

functionalities, are the same in both worlds.
One can verify that (1) the leakage and outputs of the Fsif and Fvao calls in which the dealer is

honest are the same in both worlds, (2) the leakage of an Fvao call in which the dealer is corrupt is
the same in both worlds, and (3) the leakage of Fk,igdtc, F

k,i,u
glinear and Fk,i,vglinear, for i ∈ C, is the same in

both worlds. We continue with the analysis of Fk,igdtc, F
k,i,u
glinear and Fk,i,vglinear for i ∈ H.

Fk,igdtc for i ∈ H. We continue with the analysis of an Fk,igdtc call, for k ∈ {1, . . . ,m} and i ∈ H.
Observe that in the ideal-world, parts (1)–(5) of the leakage sent by the simulator to the adversary,
is fixed and and equal to the leakage in the hybrid-world. Regarding part (6) of the leakage,
the sets Lj for j ∈ H, observe that since the view is good then Lj contains only elements that
correspond to xq (resp., zkr ) such that δjxq = 0 and δGxq = 1, (resp., δj

zkr
= 0 and δG

zkr
= 1). Since this

may occur only when xq and zkr belong to a corrupt party, we conclude that those sets are fixed
and equal in both worlds.

In the hybrid-world, observe that whenever δGα ∧ δGβ = 1 then, even conditioned on the adver-

sary’s view, the value F p
k
i (0, 0) is uniformly distributed (by Fact A.4), and so the output of Fk,igdtc

has the same distribution in both worlds.
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Otherwise, δGα ∧δGβ = 0, and in the hybrid-world, for each xr (resp., zkr ) such that δGxr = 1 (resp.,

δG
zkr

= 1), we let fx
r

i (x) (resp., fz
k
r
i (x)) be the corresponding degree-t polynomial. Let fp

k
i (x) :=

F p
k
i (x, 0), and set

fk,igdtc(x) :=
∑

r∈{1,...,n}:δGxr=1

fx
r

i (x) +
∑

r∈{1,...,n}:δG
zkr

=1

λri f
zkr
i (x) + fp

k
i (x).

Observe that, in the hybrid-world, the functionality additionally leaks {fk,igdtc(j)}j∈{1,...,n} and

the output is (a, δG, fk,igdtc(0)). Since fp
k
i (x) is uniformly distributed conditioned on the values

{fpki (j)}j∈C which are fixed by the view, we conclude that fk,igdtc(x) and f̄k,igdtc(x) have the same

distribution in both worlds. This concludes the analysis of Fk,igdtc for i ∈ H.

Fk,i,uglinear and Fk,i,vglinear for i ∈ H. We continue with the analysis of an Fk,i,uglinear call, for k ∈ {1, . . . ,m}
and i ∈ H. The analysis ofFk,i,vglinear is similar, and so it is omitted. Similarly to theFgdtc functionality,
it is not hard to see that parts (1)–(4) of the leakage are fixed, and the same in both worlds.

In the hybrid-world, if δG1 = 0, then the values {F γki (0, j)}j∈{1,...,n} are also leaked to the ad-
versary, and the output is (a, δG, F γ

k
i (0, j)). Since F γ

k
i (0, x) is uniformly distributed conditioned

on the values {F γki (0, j)}j∈C that are known to the adversary, it is not hard to see that those values
have the same distribution in both worlds, as required.

Otherwise, if δG = 1, in the hybrid-world let fx
α

i (x) be the degree-t polynomial corresponding
to (Cxα

i ,Oxα
i ), and let fγ

k
i (x) := F γ

k
i (x, 0). Let

fk,i,uglinear(x) = fx
α

i (x)− fγki (x),

and observe that the leakage of the functionality is {fk,i,uglinear(j)}j∈{1,...,n} and that the output is

(a, δG, fk,i,uglinear(0)). Since fγ
k
i (x) is uniformly distributed conditioned on the values {fγki (j)}j∈C

which are fixed by the view, we conclude that fk,i,uglinear(x) and f̄k,i,uglinear(x) have the same distribution.

This concludes the analysis of Fk,i,uglinear for i ∈ H.

Adversary’s communication. Conditioned on the above values, the adversary’s inputs to the
functionalities are picked in the same way, and the outputs are computed exactly like in the
hybrid-world. We conclude that conditioned on any good first-round view, the second-round
view has the same distribution in both worlds.

Round 3. We say that the second-round view is “good” if for any commitment C that appears
in the view, and for any two openings o, and o′ that appear in the view, it holds that either
opencrs(C, o) = ⊥ or opencrs(C, o′) = ⊥ or opencrs(C, o) = opencrs(C, o). Observe that a second-
round view is good with probability at least 1− ε, and fix any such view.

In the hybrid-world, conditioned on a good view by the correctness of the Fsif functional-
ity, each value s that belongs to a corrupt party in V is strongly shared, and denote the sharing
polynomial by F s(x, y). We also denote by ōsi0, . . . , ō

s
in the openings that an Pi holds at this stage

according to the protocol.
We continue with the analysis of yk = xαxβ + x1 + . . .+ xn, for k ∈ {1, . . . ,m}.
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Exiting through linear functions. Assume that Pα or Pβ (or both) are not in V. In the hybrid-
world, let

F k(x, y) =
∑

j:Dof(xj)∈V

F x
j
(x, y) +

∑
j∈V

F 0kj (x, y).

By the correctness of Fsif , and since View is good, it follows that F 0kj (0, 0) = 0 for every j ∈ V.
Since V contains an honest party, there exists j ∈ V such that F 0kj (x, y) is uniformly distributed

conditioned on {f
0kj
i (x)}i∈C and F 0kj (0, 0) = 0. Therefore, the distribution of F k(x, y) is the same

as the distribution of the ideal-world random variable F̄ k(x, y), and it is independent of the recon-
struction of yk

′
for k′ 6= k.

Conditioned on those values, it is not hard to see that the leakage and output of (Fglinear)
i
lin for

i ∈ H is fixed, and has the same distribution in both worlds. Similarly, the leakage of (Fglinear)
i
lin

for i ∈ C is fixed, and has the same distribution in both worlds. This concludes the case of exiting
through linear functions.

Correcting shares. Assume that Pα and Pβ are in V. In the hybrid-world, let fk(x) be the degree-
2t polynomial, obtained by interpolating

{F xα(0, i)F x
β
(0, i) +

∑
j:Dof(xj)∈V

F x
j
(0, i) +

∑
j∈V

λjiF
zkj (0, i)}i∈{1,...,n}.

Since for every xj that belongs to an honest party the value F x
j
(0, 0) is equal to xj , and by

definition of the simulator for every xj that belongs to a corrupt party in V the value xj is equal
to F x

j
(0, 0), we conclude that the value F x

α
(0, 0)F x

β
(0, 0) +

∑
j:∈Dof(xj)V F

xj (0, 0) is equal to yk.
By Fact A.9 we conclude that the polynomial fk(x) has the same distribution as f̄k(x). Fix those
polynomials.

We continue by analysing the reconstruction of the i-th share of yk. We split into cases.

• Assume that Pi is not in V, so Pi is corrupt. In both worlds, every honest party Pj in V
broadcasts ōsji for every value s that belongs to a party Pr in V such that flagjr = 0.

• Assume that Pi is in V, and denote the output of Fk,igdtc by (a, δG, yki ). Observe that the open-
ing phase of Fs,ivao has the same distribution in both worlds, for any s that belongs to a party
not in V (recall that every party not in V is corrupt). We continue by splitting into cases.
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Honest Pi and δGα ∧ δGβ = 1. In this case, in the hybrid-world, observe that F p
k
i (x, y) is

uniformly distributed, conditioned on F p
k
i (x, j) = f

pki
j (x) for all j ∈ C, and

F p
k
i (0, 0) = opencrs(C

pki
00 , o

pki
00)

= yki − opencrs(Cx
α

i0 , o
xα

i0 )opencrs(Cx
β

i0 , o
xβ

i0 )

−
∑

j∈{1,...,n}:δG
xj

=1

opencrs(Cx
j

i0 , o
xj

i0 )−
∑

j∈{1,...,n}:δG
zk
j

=1

λjiopencrs(C
zkj
i0 , o

zkj
i0 )

= yki − F x
α
(0, i)F x

β
(0, i)−

∑
j:δG

wj
=1∧Dof(xj)∈V

F x
j
(0, i)−

∑
j:δG

zk
j

=1∧j∈V

F z
k
j (0, i)

−
∑

j:δG
xj

=1∧Dof(j)/∈V

opencrs(Cx
j

i0 , o
xj

i0 )−
∑

j:δG
zk
j

=1∧j /∈V

opencrs(C
zkj
i0 , o

zkj
i0 )

= yki − fk(i) +
∑

j:Dof(xj)∈V∧δG
xj

=0

F x
j
(0, i) +

∑
j:Dof(zkj )∈V∧δG

zk
j

=0

F z
k
j (0, i)

−
∑

j:δG
wj

=1∧Dof(xj)/∈V

opencrs(Cx
j

i0 , o
xj

i0 )−
∑

j:δG
zk
j

=1∧j /∈V

opencrs(C
zkj
i0 , o

zkj
i0 ),

where we used the fact that View is good, so (1) F p
k
i (0, 0) = opencrs(C

pki
00 , o

pki
00), (2) for every j ∈

{α, β, 1, . . . , n} such that Dof(xj) ∈ V and δG
xj

= 1, it holds that opencrs(Cx
j

i0 , o
xj
i0 ) = F x

j
(0, i),

and (3) for every j ∈ V such that δG
zkj

= 1, it holds that opencrs(C
zkj
i0 , o

zkj
i0 ) = F z

k
j (0, i).

Observe that for each j such that Dof(xj) /∈ V (resp., j /∈ V) the value xj (resp., zkj ) belongs

to a corrupt party, so Cx
j

i0 and ox
j

i0 (resp., C
zkj
i0 and o

zkj
i0 ) are fixed, and for every j such that

Dofxj ∈ V and δG
xj

= 0 (resp., j ∈ V and δG
zkj

= 0) the value xj (resp., zkj ) belongs to a corrupt

party, so F x
j
(x, y) (resp., F z

k
j (x, y)) is fixed.

Observe that the polynomial fp
k
i (x) := F p

k
i (x, 0) has the same distribution as the ideal-

world polynomial gki (x). Fix those polynomials, and note that for each honest Pj it holds

that flagji = 0, and the output of F jisif in the hybrid-world is (C
pki
j0 , f

pki (j)), just like in the
ideal-world.
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Honest Pi and δGα ∧ δGβ = 0. In the hybrid-world, a similar analysis to the one above shows
that

F p
k
i (0, 0) = opencrs(C

pki
00 , o

pki
00)

= yki −
∑

j∈{1,...,n}:δG
xj

=1

opencrs(Cx
j

i0 , o
xj

i0 )−
∑

j∈{1,...,n}:δG
zk
j

=1

λjiopencrs(C
zkj
i0 , o

zkj
i0 )

= yki −
∑

j:δG
xj

=1∧Dof(xj)∈V

F x
j
(0, i)−

∑
j:δG

zk
j

=1∧j∈V

F z
k
j (0, i)

−
∑

j:δG
xj

=1∧Dof(xj)/∈Vk
opencrs(Cx

j

i0 , o
xj

i0 )−
∑

j:δG
zk
j

=1∧j /∈V

opencrs(C
zkj
i0 , o

zkj
i0 )

= yki − fk(i) + F x
α
(0, i)F x

β
(0, i) +

∑
j:Dof(xj)∈V∧δG

xj
=0

F x
j
(0, i) +

∑
j:j∈V∧δG

zk
j

=0

F z
k
j (0, i)

−
∑

j:δG
xj

=1∧Dof(xj)/∈V

opencrs(Cx
j

i0 , o
xj

i0 )−
∑

j∈{1,...,n}:δG
zk
j

=1∧j /∈V

opencrs(C
zkj
i0 , o

zkj
i0 ),

where, again, we used the fact that View is good. Let u and v be defined as in the protocol,
and consider the polynomialGki (x, y) := vF γ

k
i (x, y)+uF ρ

k
i (x, y)+F η

k
i (x, y)+uv−F pki (x, y).

By Fact A.8 we conclude that Gki (x, y) is uniformly distributed, conditioned on Gki (x, j) =

vf
γki
j (x) + uf

ρki
j (x) + f

ηki
j (x) + uv − fp

k
i
j (x) and

Gki (0, 0) = fk(i)− yki −
∑

j:Dof(xj)∈V∧δG
xj

=0

F x
j
(0, i)−

∑
j∈V:δG

zk
j

=0

F z
k
j (0, i)

+
∑

j:δG
wj

=1∧Dof(xj)/∈V

opencrs(Cx
j

i0 , o
xj

i0 ) +
∑

j:δG
zk
j

=1∧j /∈V

opencrs(C
zkj
i0 , o

zkj
i0 ),

where for each j such that Dof(xj) /∈ V (resp., j /∈ V) the value xj (resp., zkj ) belongs to

a corrupt party, so Cx
j

i0 and ox
j

i0 (resp., C
zkj
i0 and o

zkj
i0 ) are fixed, and for every j such that

Dof(xj) ∈ V and δG
xj

= 0 (resp., j ∈ V such that δG
zkj

= 0) the value xj (resp., zkj ) belongs to a

corrupt party, so F x
j
(x, y) (resp., F z

k
j (x, y)) is fixed.

Observe that the polynomial Gki (x, y) and the ideal-world polynomial Ḡki (x, y) have the
same distribution, and that conditioned on those values, for any j ∈ H the leakage and
output of the (Fglinear)

k,i,j
correct call have the same distribution in both worlds, and that for any

j ∈ C, the leakage of the (Fglinear)
k,i,j
correct call has the same distribution in both worlds.

Corrupt Pi and δGα ∧ δGβ = 1. In this case, it is not hard to see that for each honest Pj in V

with flagji = 0, the output of F jisif has the same distribution in both worlds.
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Corrupt Pi and δGα ∧ δGβ = 0. In this case, in the hybrid-world let u and v be defined as in

the protocol, and consider the polynomial Gki (x, y) := vF γ
k
i (x, y) + uF ρ

k
i (x, y) + F η

k
i (x, y) +

uv−F pki (x, y), and observe that it is fixed, and equal to the ideal-world polynomial Ḡki (x, y).
It is not hard to see that for any j ∈ H the leakage and output of the (Fglinear)

k,i,j
correct calls have

the same distribution in both worlds, and that for any j ∈ C, the leakage of the (Fglinear)
k,i,j
correct

calls have the same distribution in both worlds.

Adversary’s communication. Conditioned on the above values, the adversary’s inputs to the
functionalities are picked in the same way, and the outputs are computed exactly like in the
hybrid-world. This concludes the analysis of the adversary’s view.

B.8.7 Honest Parties’ Output

We say that a view is “good” if for any commitment C that appears in the view, and for any two
openings o, and o′ that appear in the view, it holds that either opencrs(C, o) = ⊥ or opencrs(C, o′) =
⊥ or opencrs(C, o) = opencrs(C, o). Observe that a view is good with probability at least 1− ε, and
fix any such view.

For every good view View, it holds that (1) for every value s that belongs to an honest party,
and for every i ∈ C and j ∈ {0, . . . , n}, the adversary did not provide any opening o such that
opencrs(Csij , o) is not ⊥ and not equal to F s(j, i), where F s(x, y) is the sharing polynomial picked
by the honest party, and (2) for every value s that belongs to a corrupt party in V, and for every
i, j ∈ {0, . . . , n}, the adversary did not provide any opening o such that opencrs(Csij , o) is not
⊥ and not equal to F s(j, i), where F s(x, y) is the sharing polynomial defined at the end of the
corresponding Fvss or Ftss call.

In the ideal-world, for every wj that belongs to a party outside V the adversary sets wj := 0,
and for every wj that belongs to a party in V the adversary sets wj := Fwj (0, 0), where Fwj (x, y)
is the sharing polynomial of the strong double t-sharing defined at the end of the second round.
In addition, for wj that belongs to an honest party, the value of wj is fixed.

Fix some k ∈ {1, . . . ,m}, and we show that yk = xαxβ + x1 + . . . + xm has the same value in
both worlds. We split into cases.

• Assume that Pα or Pβ (or both) are not in V. This means that Pα or Pβ are corrupt, so in the
ideal-world yk = x1 + . . .+ xm.

In the real-world, define a and δG such a is the all-one vector, and for every j ∈
{1, . . . , n} it holds that δGj = 1 if Dof(xj) ∈ V (resp., δG

0kj
= 1 if j ∈ V), and

δGj = 0 (resp., δG
0kj

= 0) otherwise. For each i ∈ V ∩ H the output of (Fglinear)
k,i
lin is

(a, δG,
∑

j:Dof(xj)∈V F
wj (0, i) +

∑
j∈V F

0kj (0, i)). In addition, since the view is good, for ev-

ery corrupt Pi in V such that the output of (Fglinear)
k,i
lin is of the form (a, δG, si), it holds

that si =
∑

j:Dof(xj)∈V F
xj (0, i) +

∑
j∈V F

0kj (0, i). We conclude that the parties recover

the polynomial fk(x) =
∑

j:Dof(xj)∈V F
xj (0, x) +

∑
j∈V F

0kj (0, x), whose free-coefficient is∑
j:Dof(xj)∈V F

xj (0, 0) +
∑

j∈V F
0kj (0, 0). Finally, since View is good and for each j ∈ V the

output of F
0kj
sif is C0kj , and out = 1, it holds that F 0kj (0, 0) = 0 for every j ∈ V. We conclude
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that in the real-world yk =
∑

j:Dof(xj)∈V F
xj (0, 0). It is not hard to see that this is equal to the

ideal-world value.

• Otherwise, both Pα and Pβ are in V. In the real-world, for every i ∈ {1, . . . , n} define
fki (x) := Fα(x, i)F β(x, i)+

∑
j:Dof(xj)∈V F

xj (x, i)+
∑

j∈V λ
j
iF

zkj (x, i). Let fk(x) be the degree-
2t polynomial obtained by interpolating {fki (0)}i∈{1,...,n}, and observe that, by Fact A.9, it
holds that fk(0) = Fα(0, 0)F β(0, 0) +

∑
j:Dof(xj)∈V F

xj (0, 0). We continue by showing that
for every i ∈ {1, . . . , n} the value ȳki recovered by the corrupt parties is equal to fk(i).

– If Pi is not in V, then, since View is good, it holds that the parties recover the value
ȳki = Fα(0, i)F β(0, i) +

∑
j:Dof(xj)∈V F

xj (0, i) +
∑

j∈V λ
j
iF

zkj (0, i) = fk(i), as required.

– If Pi is in V, let (a, δG, yki ) be the output of Fk,igdtc. We split into cases.

Honest Pi. In this case it is not hard to see that ȳki = Fα(0, i)F β(0, i) +∑
j:Dof(xj)∈V F

xj (0, i) +
∑

j∈V λ
j
iF

zkj (0, i) = fk(i).

Corrupt Pi. Since Pi is in V then, for every s such that δGs = 1 it holds that the
verification phase of Fs,ivao ended with “verification succeeded”, and so the corrupt Pi
holds openings to Cs

i such that the shares of the honest parties correspond to a degree-
t polynomial hs(x). Since View is good, if δGα ∧ δGβ = 1 then yki = hx

α
(0)hx

β
(0) +∑

j∈{1,...,n}:δG
wj

=1 h
xj (0) +

∑
j∈{1,...,n}:δG

zk
j

=1 λ
j
ih
zkj (0) + hp

k
i (0). On the other hand, if

δGα ∧ δGβ = 0, then yki =
∑

j∈{1,...,n}:δG
xj

=1 h
xj (0) +

∑
j∈{1,...,n}:δG

zk
j

=1 λ
j
ih
zkj (0) + hp

k
i (0).

In addition, for every Fs,ivao, for which the parties execute the opening phase it holds
that the output is hs(0). We conclude that the parties recover ȳki = Fα(0, i)F β(0, i) +∑

j:Dof(xj)∈V F
xj (0, i) +

∑
j∈V λ

j
iF

zkj (0, i) = fk(i).

We conclude that in the real-world it holds that yk = fk(0) = Fα(0, 0)F β(0, 0) +∑
j:Dof(xj)∈V F

xj (0, 0). It is not hard to see that this is also the output in the ideal-world,
as required.

This concludes the analysis of the honest parties’ outputs, and the proof of security of Fdtc.

B.9 Computationally-Hiding commitments

In this section we provide proofs of security to our protocols, when the underlying commitment
scheme is computationally-hiding and perfectly-binding. Since most proofs are similar to the
proofs in the case of statistically-hiding commitments, we usually only provide a proof sketch.
An exception is the proof of protocol spcg, where we provide a full-proof, explaining how to
obtain selective-opening properties using complexity leveraging (see Section B.9.2). In the case
of statistically-hiding commitments, those properties are obtained in a different way, using the
strong guarantees on the hiding property of the commitments. Throughout, we denote by ε the
error term of the commitment scheme.
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B.9.1 Verifiable Secret Sharing

In this section we prove that protocol vss UC-emulates Fvss. Assume without loss of generality
that A is the dummy adversary, that simply delivers messages from Z to the protocol machines.
Let S be the corresponding simulator, described in Section B.1. Let Z be an environment and let ζ
be an input to Z . We assume without loss of generality that Z is deterministic.

In the case that Z(ζ) corrupts the dealer, essentially the same analysis as in Section B.1 shows
that Z cannot distinguish the real-world from the ideal-world. Hence we focus on the case where
Z does not corrupt the dealer.

In this case we consider the following two hybrid worlds, where we assume that the honest
parties know the set H.

• In Hybrid 1, the honest parties act like in the real-world, except that, in round 2, (1) an
honest party Pi never sends a broadcast message, (2) for every i ∈ H, D does not verify that

opencrs(Gij , hij)
?
= gij for j ∈ {0, . . . , n}, but D is always happy with Pi, and (3) for every

i ∈ H, D uses the values gi0, . . . , gin which Pi sent for the computation of αi0, . . . , αin.

• In Hybrid 2, the honest parties act like in Hybrid 1, except that in the first round, an honest
Pi samples (gi0, . . . , gin), samples (Gij , hij) ← commitcrs(0; rij), where rij is a fresh random
string, broadcasts Gi0, . . . , Gin, and sends {(gij , hij)}j∈{0,...,n} to D.

It is not hard to see that the real-world view has the same distribution as in Hy-
brid 1. In addition, Hybrid 1 is O(n2ε)-close to Hybrid 2, since the random variables
((C,O), {Gi}i∈H, {(gi0, . . . , gin)}i∈H) are indistinguishable in both worlds, and the second-round
view can be obtained from them by the same efficient process. Finally, one can verify that Hybrid 2
has the same distribution as the ideal-world, which concludes the proof.

B.9.2 Secure Partial Computation with a Guard

In this section, we prove that protocol spcg UC-emulates Fspcg. In the following, we assume with-
out loss of generality thatA is the dummy adversary, that simply delivers messages from Z to the
protocol machines. We show that for the simulator described in Section B.2, no environment can
distinguish the real-world from the ideal-world.

Under sub-exponential hardness assumption (see Section A.5.2), we may assume that for ev-
ery security parameter µ, there exists an efficient commitment scheme (commitcrs, opencrs) which
is perfectly-binding and computationally-hiding, and has error 2−µ. We assume that the com-
mitments used for the inputs of Alice and Bob have security parameter κ, which is the security
parameter of the protocol. Observe that there exists a constant c such that the total bit-length of the
honest inputs, which we’ve denoted by `, is at most c(LA + LB)(κ log |F|)c. In the protocol itself,
we let Bob use a commitment scheme with security parameter κ′, and require that κ′ = `+log `+κ.
Let ε := 2−κ and ε′ := 2−κ

′
.

Fix any environment Z and an advice string z, and assume without loss of generality that Z is
deterministic. A similar analysis to the case of statistically-hiding commitments shows that when-
ever Alice or Bob are corrupt the view of the adversary in the ideal-world is ε-indistinguishable
from the view of the adversary in the real-world. Therefore, we may assume that Z does not
corrupt Alice and Bob.
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In the real-world, since Alice and Bob are honest, then the verification of Alice at the
beginning of the online phase always succeeds. Therefore the adversary’s view consists of
(1) the first-round broadcast of Bob {C ′i,σi(x)}x∈{0,1} for each i ∈ {1, . . . , `}, (2) the second-
round broadcast of Alice {(σi(xAi ), o′

i,xAi
, si)}i∈{1,...,`A}, and (3) the second-round broadcast of Bob

{(σi(xBi−`A), o′
i,xBi−`A

, si)}i∈{`A+1,...,`}.

We start by proving that any degenerate environment Z ′, that always gives the same inputs to
Alice and Bob, cannot distinguish real-world from ideal-world with advantage more than `ε′. We
then show that if a (general) environment Z distinguishes real-world from ideal-world with ad-
vantage δ, then there exists a degenerate environment that distinguishes with advantage δ/2`. We
conclude that a general environment distinguishes real-world from ideal-world with advantage
at most 2` · `ε′ = 2−κ.

We begin with the following claim.

Claim B.3. LetZ ′ be a deterministic environment, and let z′ be an advice string. Assume thatZ ′(z′) never
corrupts Alice and Bob, and always gives the honest parties the same inputs at the beginning of the online
phase. Then,

REALspcg,Z′(z′),A ≈`ε′ IDEALFspcg,Z′(z′),S .

Proof. Let xA and xB be the binary strings that Alice and Bob compute as the psm input, and note
that those strings are fixed. Let X := xA ◦ xB . Similarly, let x̄A and x̄B be the binary strings
that the simulator computes as the psm input, and note that those strings are fixed as well. Let
X̄ := x̄A ◦ x̄B .

Consider the real-world random variables(
{C ′i,σi(x)}i∈{1,...,`},x∈{0,1}, {o

′
i,Xi}i∈{1,...,`}, {σi(Xi)}i∈{1,...,`}

)
,

and the ideal-world random variables(
{C̄ ′i,σi(x)}i∈{1,...,`},x∈{0,1}, {ō

′
i,X̄i}i∈{1,...,`}, {σ̄i(X̄i)}i∈{1,...,`}

)
,

and observe that they are `ε′-indistinguishable. Indeed, by the perfect-security of the psm scheme,
and since fspcg(X ) = fspcg(X̄ ), it follows that s1, . . . , s` have the same distribution in both worlds.
In addition, it is not hard to see that {σi(Xi)}i∈{1,...,`} and {σ̄i(X̄i)}i∈{1,...,`} have the same distri-
bution. Conditioned on those values, fix any r in the real-world and r̄ in the ideal-world. The
random variables {C ′i,σi(Xi), o

′
i,Xi}i∈{1,...,`} and {C ′

i,σ̄i(X̄i)
, o′
i,X̄i
}i∈{1,...,`} have the same distribution,

and the random variables {C ′i,σi(1−Xi)}i∈{1,...,`} and {C ′
i,σ̄i(1−X̄i)

}i∈{1,...,`} are `ε′-indistinguishable.
Finally, since both Alice and Bob are honest and by the perfect correctness of the psm scheme,

it follows that, in both worlds, the output of the honest parties is always gspcg(a,bA, δA, {oi}LBi=1, I),
for I = (bA, δA)3(bB, δB).

Denote by X1, . . . ,X2` all the length-` binary strings. Observe that each input (XA,XB) to Alice
and Bob corresponds to a unique binary string Xi = XA ◦ XB .

For i ∈ {1, . . . , 2`}, we define environment Zi with advice string zi := (z,Xi) in the following
way. The environment acts in the offline phase exactly like Z(z). At the beginning of the online-
phase the environment computes the inputs (XA,XB) to Alice and Bob that Z(z) would produce.
If (XA,XB) correspond to Xi then Zi continues the execution by acting like Z , and outputs the
same output as Z . Otherwise, the environment outputs a random bit.
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Claim B.4. Assume that |Pr[REALspcg,Z(z),A = 1] − Pr[IDEALFspcg,Z(z),S = 1]| = δ. Then there exists
i ∈ {1, . . . , 2`} such that |Pr[REALspcg,Zi(zi),A = 1]− Pr[IDEALFspcg,Zi(zi),S = 1]| ≥ δ/2`.

Proof. Assume without loss of generality that

Pr[REALspcg,Z(z),A = 1]− Pr[IDEALFspcg,Z(z),S ] = δ.

For i ∈ {1, . . . , 2`}, let EREAL
i be the event that, in a real-world execution of the protocol with Z(z)

and A, Z picked inputs that correspond to Xi. Similarly, let E IDEAL
i be the event that, in an ideal-

world execution with Z(z) and S, Z picked inputs that correspond to Xi. Since the simulator
acts like an honest Bob in the offline-round, it follows that Pr[EREAL

i ] = Pr[E IDEAL
i ] for every i ∈

{1, . . . , 2`}, and so we omit the superscript.
For i ∈ {1, . . . , 2`}, let ĒREAL

i be the event that, in a real-world execution of the protocol with
Zi(zi) and A, Zi picked inputs that correspond to Xi. Similarly, let Ē IDEAL

i be the event that, in
an ideal-world execution with Zi(zi) and S , Zi picked inputs that correspond to Xi. As before, it
holds that Pr[ĒREAL

i ] = Pr[Ē IDEAL
i ] for every i ∈ {1, . . . , 2`}, so we omit the superscript.

It follows that

δ = Pr[REALspcg,Z(z),A = 1]− Pr[IDEALFspcg,Z(z),S = 1]

=

2`∑
i=1

Pr[Ei]
(

Pr[REALspcg,Z(z),A = 1 | Ei]− Pr[IDEALFspcg,Z(z),S = 1 | Ei]
)

=
2`∑
i=1

Pr[Ēi]
(

Pr[REALspcg,Zi(zi),A = 1 | Ēi]− Pr[IDEALFspcg,Zi(zi),S = 1 | Ēi]
)

=
2`∑
i=1

(
Pr[REALspcg,Zi(zi),A = 1]− Pr[IDEALFspcg,Zi(zi),S = 1]

)
where (1) in the third equality we used the fact that Pr[Ei] = Pr[Ēi] for all i ∈ {1, . . . , 2`}, and that
Pr[REALspcg,Z(z),A = 1 | Ei] = Pr[REALspcg,Zi(zi),A = 1 | Ēi], and Pr[IDEALFspcg,Z(z),S = 1 | Ei] =
Pr[IDEALFspcg,Zi(zi),S = 1 | Ēi], which follow since Zi acts exactly like Z in the offline round and
the generation of the honest parties inputs, and conditioned on Ei and Ēi, Zi continues to act like
Z in the online-round, and (2) the fourth equality follows since for every i ∈ {1, . . . , 2`},

Pr[REALspcg,Zi(zi),A = 1]− Pr[IDEALFspcg,Zi(zi),S = 1]

= Pr[Ēi]
(

Pr[REALspcg,Zi(zi),A = 1 | Ēi]− Pr[IDEALFspcg,Zi(zi),S = 1 | Ēi]
)

+ Pr[¬Ēi]
(

Pr[REALspcg,Zi(zi),A = 1 | ¬Ēi]− Pr[IDEALFspcg,Zi(zi),S = 1 | ¬Ēi]
)
,

and the second term is equal to zero, since whenever Ēi does not occur, Zi outputs a random bit.
Finally, if for every i ∈ {1, . . . , 2`} it holds that Pr[REALspcg,Zi(zi),A = 1]−Pr[IDEALFspcg,Zi(zi),S =

1] < δ/2` then we obtain

δ =

2`∑
i=1

(
Pr[REALspcg,Zi(zi),A = 1]− Pr[IDEALFspcg,Zi(zi),S = 1]

)
< 2` · δ/2` = δ,

in contradiction.
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Finally, assume that |Pr[REALspcg,Z(z),A = 1]−Pr[IDEALFspcg,Z(z),S = 1]| = δ. By Claim B.4 there
exists i ∈ {1, . . . , 2`} such that |Pr[REALspcg,Zi(zi),A = 1] − Pr[IDEALFspcg,Zi(zi),S = 1]| ≥ δ/2`. By
Claim B.3 it follows that |Pr[REALspcg,Zi(zi),A = 1]− Pr[IDEALFspcg,Zi(zi),S = 1]| < `ε′. We conclude
that |Pr[REALspcg,Z(z),A = 1]− Pr[IDEALFspcg,Z(z),S = 1]| < 2` · `ε′.

B.9.3 Guided Linear Function Computation

The reader can verify that the proof in Section B.3 applies to the case of computationally-hiding
commitments as well.

B.9.4 Triple Secret Sharing

In this section we prove that protocol tss UC-emulatesFtss. Assume without loss of generality that
A is the dummy adversary, that simply delivers messages from Z to the protocol machines. Let S
be the corresponding simulator, described in Section B.4. Let Z be an environment and let ζ be an
input to Z . We assume without loss of generality that Z is deterministic.

In the case that Z(ζ) corrupts the dealer, essentially the same analysis as in Section B.4 shows
that Z cannot distinguish the real-world from the ideal-world. Hence we focus on the case where
Z does not corrupt the dealer.

In this case, we consider the following two hybrid worlds, where we assume that the honest
parties know the set H.

• In Hybrid 1, the honest parties act like in the real-world, except that (1) at the end of
the first round, every honest Pi does not check the validity of the rows received from
D, but Pi is always happy with D, (2) in the first round, the dealer also sends F v,k(x, i)
to an honest Pi, for every v ∈ {a, b, c} and k ∈ {0, . . . , 2n}, and (3) for i ∈ {1, . . . , n},
j ∈ H and v ∈ {a, b, c}, an honest Pj inputs to glineari,j,v the inputs a = (α0

i , . . . , α
2n
i ),

the values {F v,k(r, j)}k∈{0,...,2n},r∈{0,...,n} where each F v,k(x, j) was received from D, the
openings {ov,kr,j }k∈{0,...,2n},r∈{0,...,n} and the indicator vector δG = (1, . . . , 1); In addition, for
i ∈ {1, . . . , n}, j ∈ {1, . . . , n} and v ∈ {a, b, c}, an honest Pr inputs (F v,0(r, j), . . . , F v,2n(r, j))
and δr = (1, . . . , 1).

• In Hybrid 2 the honest parties act like in the Hybrid 1, except for the following changes.

– For every k ∈ {1, . . . , n} (resp., k ∈ {1, . . . , 2n}) the dealer setsAk = Bk = 0 (resp.,Ck =
0). The dealer sharesAk andBk (resp., Ck) via Fvss. For v ∈ {a, b, c} and k ∈ {1, . . . , 2n}
denote the corresponding sharing polynomial by F v,k(x, y). The dealer then samples
three random polynomials Ā(x), B̄(x) and C̄(x) such that Ā(x) · B̄(x) = C̄(x), and
Ā(0) = a, B̄(0) = b and C̄(0) = c.
For each k ∈ {0, . . . , 2n}, the simulator picks random symmetric bivariate polynomials
F̄ a,k(x, y), F̄ b,k(x, y) and F̄ c,k(x, y) of degree at most t in each variable, such that (a) for
k = 0 we set F̄ v,k(x, y) = F v,k(x, y) for v ∈ {a, b, c}, (b) for k ∈ {1, . . . , n} we condition
on (i) F̄ v,k(x, i) = F v,k(x, i) for every v ∈ {a, b, c} and i ∈ C, and (ii) F̄ a,k(0, 0) = Āk,
F̄ b,k(0, 0) = B̄k, and F̄ c,k(0, 0) = C̄k, and (c) for k ∈ {n + 1, . . . , 2n} we condition on
(i) F̄ a,k(x, y) = 0, (ii) F̄ b,k(x, y) = 0, and (iii) F̄ c,k(x, i) = F c,k(x, i) for every i ∈ C, and
F̄ c,k(0, 0) = C̄k.
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For every v ∈ {a, b, c} and k ∈ {0, . . . , 2n} the dealer sends F̄ v,k(x, i) to Pi (instead of
F v,k(x, i) like in Hybrid 1).

– We change Fglinear with an honest guide, so that it would have the exact same leakage
and output as the original functionality, even if some of the guide’s values (bGi,0, . . . , b

G
i,n)

are not consistent with the guide’s openings (oGi,0, . . . , o
G
i,n) (but they are consistent with

some degree-t polynomial).

It is not hard to see that the distribution of the real-world view is the same as the distribution
of Hybrid 1. To see that Hybrid 1 is O(n3ε)-close to Hybrid 2, note that the Hybrid 1 random
variables

({Cv,0,Ov,0}v∈{a,b,c}, {Cv,k,Ov,k
i }v∈{a,b,c},k∈{1,...,2n},i∈C, {F

v,k(x, y)}v∈{a,b,c},k∈{1,...,2n})

are O(n3ε)-indistinguishable from the Hybrid 2 random variables

({Cv,0,Ov,0}v∈{a,b,c}, {Cv,k,Ov,k
i }v∈{a,b,c},k∈{1,...,2n},i∈C, {F̄

v,k(x, y)}v∈{a,b,c},k∈{1,...,2n})

and that in both worlds the view can be obtained from those random variables by the same effi-
cient process. Finally, in order to see that Hybrid 2 has the same distribution as the ideal-world,
consider the random variables

({Cv,0,Ov,0}v∈{a,b,c}, {Cv,k,Ov,k
i }v∈{a,b,c},k∈{1,...,2n},i∈C, {F̄

v,k(x, i)}v∈{a,b,c},k∈{1,...,2n},i∈C),

note that they have the same distribution in both worlds, and that the view can be obtained from
them by the same random process. This concludes the proof.

B.9.5 Single Input Functionality

In this section we prove that protocol sif UC-emulates Fsif . Assume without loss of generality that
A is the dummy adversary, that simply delivers messages from Z to the protocol machines. Let S
be the corresponding simulator, described in Section B.5. Let Z be an environment and let ζ be an
input to Z . We assume without loss of generality that Z is deterministic.

In the case that Z(ζ) corrupts the dealer, essentially the same analysis as in Section B.5 shows
that Z cannot distinguish the real-world from the ideal-world. Hence we focus on the case where
Z does not corrupt the dealer.

In this case, the inputs z1, . . . , z` are fixed, and we consider the following two hybrid worlds,
where we assume that the honest parties know the set H.

• In Hybrid 1, the honest parties act like in the real-world, except that (1) at the end of the
first round, an honest Pi does not check the validity of the rows received from D, but
is always happy with D, (2) in the first round, for every i, j ∈ {1, . . . , `} and k ∈ H,
the dealer also sends F i(x, k) and F ij(x, k) to Pk, where F i(x, y) and F ij(x, y) are the
sharing polynomials of zi and zij , (3) in the first round, for every i ∈ {1, . . . ,m} and
k ∈ H, the dealer also sends F ηi(x, k) to Pk, where F ηi(x, y) is the sharing polynomial
of ηi, and (4) for every i ∈ {1, . . . ,m} and j ∈ H, the honest guide inputs to glinearij

the vector a = (αi1, . . . , α
i
`, α

i
11, . . . , α

i
`,`, 1), the values {F p(k, j), F pq(k, j)}p,q∈{1,...,`},k∈{0,...,n}

and {F ηi(k, j)}k∈{0,...,n} using the polynomials received from the dealer, the openings
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{opk,j , o
pq
k,j}p,q∈{1,...,`},k∈{0,...,n} and {oηik,j}k∈{0,...,n} received from the Fvss and Ftss functional-

ities, and the indicator vector δG = (1, . . . , 1); in addition, for every i ∈ {1, . . . ,m} and
j ∈ {1, . . . , n}, an honest Pk inputs the values {F p(k, j), F pq(k, j)}p,q∈{1,...,`} and F ηi(k, j),
and the indicator vector δk = (1, . . . , 1).

• In Hybrid 2, honest parties act like in Hybrid 1, except that (1) in the first round, for every
p, q ∈ {1, . . . , `} the dealer shares 0 instead of zp and zpq in all Fvss and Ftss calls, and we
denote the sharing polynomials by F p(x, y) and F pq(x, y), (2) in the first round, for each
p, q ∈ {1, . . . , `} the dealer picks random polynomials F̄ p(x, y) and F̄ pq(x, y) conditioned on
(a) F̄ p(x, i) = F p(x, i) for i ∈ C and F p(0, 0) = zp, and (b) F̄ pq(x, i) = F pq(x, i) for i ∈ C
and F̄ pq(0, 0) = zpq. (3) in the first round, for each i ∈ {1, . . . ,m} the dealer picks a random
polynomial F̄ ηi(x, y) conditioned on F̄ ηi(x, k) = F ηi(x, k) for every k ∈ C, and F ηi(0, 0) = 0,
(4) in the first round, for every honest Pk, the dealer sends F̄ i(x, k), F̄ ij(x, k) (instead of
F i(x, k) and F ij(x, k)), and F̄ ηi(x, k) (instead of F ηi(x, k)) to Pk, and (5) we change Fglinear

for an honest guide, so that it would have the exact same leakage and output, even if some of
the guide’s values (bGi,0, . . . , b

G
i,n) are not consistent with the guide’s openings (oGi,0, . . . , o

G
i,n)

(but they are consistent with some degree-t polynomial).

It is not hard to see that the distribution of the real-world view is the same as the distribution
of Hybrid 1. To see that Hybrid 1 is O((m+ `2)n2ε)-indistinguishable from Hybrid 2, note that the
random variables {(Cγi ,Oγi), (Cρi ,Oρi)}i∈{1,...,m} have the same distribution in both worlds, and
we fix them. Consider the Hybrid 1 random variables

({(Cp,Op
i ), (C

pq,Opq
i ), F p(x, y), F pq(x, y)}p,q∈{1,...,`},i∈C, {(Cηi ,Oηi

k ), F ηi(x, y)}i∈{1,...,m},k∈C)

and the Hybrid 2 random variables

({(Cp,Op
i ), (C

pq,Opq
i ), F̄ p(x, y), F̄ pq(x, y)}p,q∈{1,...,`},i∈C, {(Cηi ,Oηi

k ), F̄ ηi(x, y)}i∈{1,...,m},k∈C)

and note that they are O((m + `2)n2ε)-indistinguishable, and that in both worlds the view can
be obtained by the same efficient process. Finally, in order to see that Hybrid 2 has the same
distribution as the ideal-world, note that the random variables {(Cγi ,Oγi), (Cρi ,Oρi)}i∈{1,...,m}
have the same distribution in both worlds, and we fix them. Consider the random variables

({(Cp,Op
i ), (C

pq,Opq
i ), F̄ p(x, i), F̄ pq(x, i)}p,q∈{1,...,`},i∈C, {(Cηi ,Oηi

k ), F̄ ηi(x, k)}i∈{1,...,m},k∈C)

have the same distribution, and that they have the same distribution, and that the rest of the view
can be obtained from them by the same efficient process. This concludes the proof.

B.9.6 Verify & Open

In this section, we prove that protocol vao UC-emulates Fvao, even when the commitments are
only computationally hiding. In the following, we assume without loss of generality that A is the
dummy adversary, that simply delivers messages from Z to the protocol machines. We show that
for the simulator described in Section B.6, no environment can distinguish the real-world from the
ideal-world.

Fix any environment Z and an advice string z, and assume without loss of generality that
Z is deterministic. A similar analysis to the case of statistically-hiding commitments shows that
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whenever the dealer is corrupt, the view of the adversary in the ideal-world is ε-indistinguishable
from the view of the adversary in the real-world. Therefore, we may assume that Z does not
corrupt the dealer.

We say that the honest parties’ inputs are “good”, if it holds that (1) verifyD = 0, (2) for every
k ∈ {1, . . . , n}, hk := opencrs(Ck, o

D
k ) is not ⊥, (3) {hk}k∈{1,...,n} correspond to a degree t polyno-

mial, and (4) for every k ∈ H it holds that opencrs(Ck, ok) = hk. Otherwise, we say that the honest
parties’ inputs are “bad”.

We say that an environment Z ′ and an advice string z′ are degenerate, if Z ′(z′) do not corrupt
the dealer, and either the inputs to the honest parties are good with probability 1, or the inputs to
the honest parties are bad with probability 1.

Claim B.5. For any degenerate Z ′ and z′ it holds that REALvao,Z′(z′),A ≈O(nε) IDEALFvao,Z′(z′),S .

Proof. The case where Z ′(z′) always provides bad inputs to the honest parties follows by a similar
analysis to the case of statistically-hiding commitments. Hence, we focus on the case that Z ′(z′)
always provides good inputs to the honest parties. In this case it is not hard to see that the real-
world distribution

((C ′1, . . . , C
′
n), {o′i}i∈C, h(x)),

is O(nε)-close to the ideal-world distribution

((C ′1, . . . , C
′
n), {o′i}i∈C, h̄(x)),

where h̄(x) is a random degree-t polynomial, sampled conditioned on h(i) = opencrs(C ′i, o
′
i) for

all i ∈ C. Since in both worlds the rest of the adversary’s view can be obtained by the same
efficient process, we conclude that it is nε-indistinguishable. Finally, the same analysis as in the
statistically-hiding commitments case shows that with probability 1 in both worlds, the output of
the verification phase is “verification succeeds” and the output of the opening phase is f(0) where
f(x) is the polynomial defined by the good inputs of Z ′(z′).

Finally, the reader can verify that if Z distinguishes the real-world from the ideal-world with
advantage δ, then there exists a degenerate environment Z ′ that distinguishes the real-world from
the ideal-world with advantage δ/2. We conclude that Z distinguishes the real-world from the
ideal-world with advantage at most O(nε).

B.9.7 Guided Degree-2 Computation

In this section, we prove that protocol gdtc UC-emulates Fgdtc, even when the commitments are
only computationally hiding. In the following, we assume without loss of generality that A is the
dummy adversary, that simply delivers messages from Z to the protocol machines. We show that
for the simulator described in Section B.7, no environment can distinguish the real-world from the
ideal-world.

Fix any environment Z and an advice string z, and assume without loss of generality that
Z is deterministic. A similar analysis to the case of statistically-hiding commitments shows that
whenever the guide is corrupt, the view of the adversary in the ideal-world is ε-indistinguishable
from the view of the adversary in the real-world. Therefore, we may assume that Z does not
corrupt the guide.
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Consider the real-world random variables(
{Cv,Ov

i }v∈{γ,ρ,η},i∈C, fγ(x), fρ(x), fη(x)

)
,

where fv(x) := F v(x, 0), for v ∈ {γ, ρ, η}. We also consider the ideal-world random variables(
{Cv,Ov

i }v∈{γ,ρ,η},i∈C, f̄γ(x), f̄ρ(x), f̄η(x)

)
,

where {Cv,Ov
i }v∈{γ,ρ,η},i∈C are generated by the simulator, and f̄γ(x), f̄ρ(x) and f̄η(x) are random

degree-t polynomials conditioned on f̄γ(0)· f̄ρ(0) = f̄η(0) and f̄v(i) = opencrs(Cvi0, o
v
i0) for all i ∈ C

and v ∈ {γ, ρ, η}. Observe that those random variables are O(n2ε)-indistinguishable and that in
both worlds the view can be obtained by the same efficient process. Therefore, the view is O(n2ε)-
indistinguishable.

B.9.8 General Degree-2 Computation

In this section, we prove that protocol dtc UC-emulates Fdtc, even when the commitments are
only computationally hiding. In the following, we assume without loss of generality that A is the
dummy adversary, that simply delivers messages from Z to the protocol machines. We show that
for the simulator described in Section B.8, no environment can distinguish the real-world from the
ideal-world.

Fix any environment Z and an advice string z, and assume without loss of generality that Z is
deterministic.

In the real-world, denote by (CH, {OH
i }i∈C) the set of all commitments generated by the honest

parties, together with all the openings that the corrupt parties receive from the honest parties.
Similarly, in the ideal-world denote by (CH, {OH

i }i∈C) the set of all commitments generated by the
simulator on behalf of the honest parties, together with all openings that the simulator sends to
the corrupt parties on behalf of the honest parties.

Consider the following hybrid worlds, where we assume that the honest parties know the set
H.

• In Hybrid 1, the honest parties act like in the real-world, except that (1) in the first round,
every honest Pi sends F s(x, j) to any honest Pj , for any value s that belongs to Pi, where
F s(x, y) is the sharing polynomial of s, (2) at the end of the first round an honest Pi does
not verify the validity of rows received from an honest Pj , but is always happy with Pj and
sets flagij = 0, (3) for every honest Pi and every s that belongs to Pi, in any call to Fglinear

or Fgdtc that involves s an honest Pj uses the values F s(x, j) received from Pi, instead of
computing {opencrs(Cskj , o

s
kj)}k∈{0,...,n}, (4) for any value s that belongs to an honest party,

and any i ∈ H, We change Fs,ivao so that (a) it only leaks (Csi1, . . . , C
s
in), the openings {osij}j∈C,

and verifyD, and (b) the verification phase always ends with “verification succeeded”, (the
opening phase is never executed) (5) for any value s that belongs to an honest party, the
functionality Fssif always returns Cs and out = 1. In addition, for an honest Pi and k ∈
{1, . . . ,m}, the functionality F0ki

sif that computes F3 returns C0ki and out = 1, (6) for each

k ∈ {1, . . . ,m} and i, j ∈ H, the output phase of Fkjisif always returns (C
pki
j0 , F

pki (0, j)), were

F p
k
i (x, j) is the polynomial that Pj received from Pi in the first round.
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• In Hybrid 2, the honest parties act like in Hybrid 1, with the following changes,

– For every honest Pi and every input wj that belongs to Pi, Pi sets (Cwj ,Owj ) to be a
random strong double t-sharing of 0 (instead of wj), and we denote by Fwj (x, y) the
corresponding sharing polynomial. Then, Pi samples a random polynomial F̄wj (x, y)
conditioned on F̄wj (x, k) = Fwj (x, k) and F̄wj (0, 0) = wj .

– For every honest Pi and any k ∈ {1, . . . ,m}, Pi sets (Cγki ,Oγki ), (Cρki ,Oρki ) and
(Cηki ,Oηki ) to be a random strong double t-sharings of 0, and we denote by F γ

k
i (x, y),

F ρ
k
i (x, y) and F η

k
i (x, y) the corresponding sharing polynomials. Then, Pi samples

random polynomials F̄ γ
k
i (x, y), F̄ ρ

k
i (x, y) and F̄ η

k
i (x, y) conditioned on F̄ γ

k
i (x, j) =

F γ
k
i (x, j), F̄ ρ

k
i (x, j) = F ρ

k
i (x, j) and F̄ η

k
i (x, j) = F η

k
i (x, j) for all j ∈ C, and F̄ γ

k
i (0, 0) ·

F̄ ρ
k
i (0, 0) = F̄ η

k
i (0, 0).

– For every non-input and non-triple value s that belongs to an honest Pi, Pi samples
(Cs,Os) like in the Hybrid 1, and we denote the sharing polynomial by F s(x, y). If
s is pki or zki then Pi samples F̄ s(x, y) conditioned on F̄ s(x, k) = F s(x, k). Otherwise,
if s is 0ki , then Pi samples samples F̄ s(x, y) conditioned on F̄ s(x, k) = F s(x, k) and
F̄ s(0, 0) = 0.

– For every i ∈ H, every value s that belongs to Pi, and every j ∈ H, Pi sends F̄ s(x, j) to
Pj (instead of F s(x, j) as in Hybrid 1).

– We change Fglinear and Fgdtc for an honest guide, so that it would have the exact same
leakage and output, even if some of the guide’s values (bGi,0, . . . , b

G
i,n) are not consistent

with the guide’s openings (oGi,0, . . . , o
G
i,n) (but they are consistent with some degree-t

polynomial).

It is not hard to see that the distribution of the real-world view is the same as the distribution of
Hybrid 1. To see that Hybrid 1 is O(m · Ln+1 · n2ε)-indistinguishable from Hybrid 2, consider the
Hybrid 1 random variables

((CH, {OH
i }i∈C), {F s(x, y)}s)

where s ranges over all values that belong to honest parties, and the Hybrid 2 random variables

((CH, {OH
i }i∈C), {F̄ s(x, y)}s),

observe that they areO(k ·Ln+1 ·n2ε)-close, and that in both worlds the view can be obtained from
them by the same random process. Finally, in order to see that Hybrid 2 has the same distribution
as the ideal-world, consider the random variables

((CH, {OH
i }i∈C), {F̄ s(x, i)}i∈C,s)

where s ranges over all values that belong to honest parties, and observe that they have the same
distribution in both worlds, and that in both worlds the view can be obtained from them by the
same efficient process. This concludes the proof.
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