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Abstract

We study the round complexity of secure multiparty computation (MPC) in the challenging
model where full security, including guaranteed output delivery, should be achieved at the
presence of an active rushing adversary who corrupts up to half of parties. It is known that 2
rounds are insufficient in this model (Gennaro et al., Crypto 2002), and that 3 round protocols
can achieve computational security under public-key assumptions (Gordon et al., Crypto 2015;
Ananth et al., Crypto 2018; and Badrinarayanan et al., Asiacrypt 2020). However, despite much
effort, it is unknown whether public-key assumptions are inherently needed for such protocols,
and whether one can achieve similar results with security against computationally-unbounded
adversaries.

In this paper, we use Minicrypt-type assumptions to realize 3-round MPC with full and
active security. Our protocols come in two flavors: for a small (logarithmic) number of parties
n, we achieve an optimal resiliency threshold of t ≤ b(n − 1)/2c, and for a large (polynomial)
number of parties we achieve an almost-optimal resiliency threshold of t ≤ 0.5n(1 − ε) for
an arbitrarily small constant ε > 0. Both protocols can be based on sub-exponentially hard
injective one-way functions in the plain model.

If the parties have an access to a collision resistance hash function, we can derive statistical
everlasting security for every NC1 functionality, i.e., the protocol is secure against adversaries
that are computationally bounded during the execution of the protocol and become computa-
tionally unlimited after the protocol execution.

As a secondary contribution, we show that in the strong honest-majority setting (t < n/3),
every NC1 functionality can be computed in 3 rounds with everlasting security and complexity
polynomial in n based on one-way functions. Previously, such a result was only known based
on collision-resistance hash function.
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1 Introduction

Interaction is a valuable and expensive resource in cryptography and distributed computation.
Consequently, a huge amount of research has been devoted towards characterizing the amount
of interaction, typically measured via round complexity, that is needed for various distributed
tasks (e.g., Byzantine agreement [LF82, DR85, FM85], coin flipping [Cle86, MNS16], and zero-
knowledge proofs [GK96, CKPR01]) under different security models. In this paper, we focus on
the problem of general secure-multiparty-computation (MPC) in the challenging setting of full
security (including guaranteed output delivery) with maximal resiliency. That is, even an active
(aka Byzantine or malicious) adversary that controls a minority (up to half) of the parties should
not be able to violate privacy or to prevent the honest parties from receiving a valid output. In
this setting, originally presented in the classical work of Rabin and Ben-Or [RB89], we assume that
each pair of parties is connected by a secure and authenticated point-to-point channel and that all
parties have access to a common broadcast channel, which allows each party to send a message to
all parties and ensures that the received message is identical.

The round complexity of honest-majority fully-secure MPC protocols was extensively stud-
ied. The lower-bound of [GIKR02, GLS15] shows that two rounds are insufficient for this task
even when the parties are given access to a common reference string (CRS). In [AJL+12], a 5-
round protocol was constructed based on Threshold Fully-Homomorphic Encryption (TFHE) and
Non-Interactive Zero-Knowledge proofs (NIZK). An optimal round complexity of three, was later
obtained by [GLS15] in the CRS model by relying on a stronger variant of TFHE that can be based
on the learning with errors (LWE) assumption. Later in [BJMS20] the CRS was removed, and
in [ACGJ18] LWE was replaced by weaker public-key primitives like general public-key encryp-
tion (PKE) and two-round witness indistinguishable proofs (Zaps). (The latter can be based on
primitives like trapdoor permutations [DN07] and indistinguishability obfuscation [BP15], or on
intractability assumptions related to bilinear groups [GOS12] and LWE [BFJ+20, GJJM20].)

The above results may give the impression that public-key assumptions are essential for
honest-majority fully-secure MPC. However, if one puts no restriction on the round complexity,
then, as shown by Rabin and Ben-Or [RB89], one can obtain unconditional results and no assump-
tions are needed at all! Specifically, every efficiently computable function can be securely com-
puted with statistical security against computationally-unbounded adversaries.1 Constant-round
versions of this protocol are known either with an exponential dependency in the circuit-depth
(or space-complexity) of the underlying function [IK00], or with computational security under the
weakest-known cryptographic assumption: the existence of one-way functions [BMR90, DI05].
Moreover, for the special case of 3 parties (and single corruption), 3-round protocols were con-
structed by [PR18] based on injective one-way functions.

This leaves an intriguing gap between general-purpose optimal-round protocols to protocols
with larger round complexity, both in terms of the underlying assumptions and with respect to
the resulting security notion. We therefore ask:

Q1: Are public-key assumptions inherently needed for 3-round fully-secure honest-
majority MPC? Is it possible to replace these assumptions with symmetric-key assump-
tions?

1Interestingly, perfect security is impossible to achieve in this setting as it requires a strong honest-majority of
2n/3 [BGW88].
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Q2: Is it possible to obtain 3-round fully-secure honest-majority MPC with some form
of unconditional security against computationally-unbounded adversaries?

We answer these questions to the affirmative. We show that 3-round MPC with full security
at the presence of honest-majority can be realized based on Minicrypt-type assumptions without
relying on PKE, and present variants of our protocol that achieve statistical everlasting security. To
the best of our knowledge, this is the first construction of everlasting-secure protocol in this setting
regardless of the underlying assumptions. We continue with a detailed description of our results.

1.1 Our Contribution

1.1.1 Round-Optimal MPC in Minicrypt

We present the first 3-round general MPC protocol under Minicrypt assumptions. In fact, our
protocol consists of 1 offline (input-independent) round, and 2 online rounds. To obtain our main
result, we reveal a strong connection between round-optimal MPC and round-optimal protocols
for functionalities whose output depends on the input of a single party, aka single input functional-
ities (SIF). In particular, we prove the following theorem.

Theorem 1.1. Assuming the existence of non-interactive commitment scheme, there exists a compiler that
takes a protocol sif with 1 offline round and 1 online round for single input functionalities, and outputs a
protocol with 1 offline round and 2 online rounds for general MPC, with the same resiliency as sif.

In a recent result by the same authors [AKP22], a round-optimal SIF protocol was presented
based on the existence of injective one-way functions with sub-exponential hardness. The proto-
col has optimal resiliency when the number of parties n is logarithmic in the security parameter,
and almost-optimal resiliency when the number of parties is polynomial in the security parameter.
Since injective one-way function implies the existence of perfectly-binding non-interactive com-
mitment scheme [Nao91], we obtain the following theorem by plugging the protocol of [AKP22]
in Theorem 1.1.

Theorem 1.2. Assuming the existence of injective one-way functions with sub-exponential hardness, for
every ε > 0, every efficiently-computable functionality can be realized in 1 offline round and 2 online
rounds in the plain model, with full security against an active rushing adversary, under one of the following
conditions.

• (Optimal resiliency for small number of parties) The number of parties n is at most logarithmic
in the security parameter, and the adversary corrupts less than n/2 parties.

• (Almost-optimal resiliency for polynomially-many parties) The number of parties n is allowed
to be polynomial in the security parameter, and the adversary corrupts less than n · (12 − ε) parties.

As mentioned in [AKP22], we can actually push the parameter ε to be as small as ε = Ω( 1√
log κ

)

where κ is the security parameter. In addition, [AKP22] show that optimal-resiliency for polyno-
mially many parties can be obtained if one is willing to make stronger assumptions (e.g., random
oracle or correlation intractable functions), or if the adversary is non-rushing.
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1.1.2 Round-Optimal MPC with Everlasting Security in Minicrypt

The notion of statistical everlasting security [MU10] can be viewed as a hybrid version of statistical
and computational security. During the run-time, the adversary is assumed to be computationally-
bounded (e.g., cannot find collisions in the hash function) but after the protocol terminates, the
adversary hands its view to a computationally-unbounded analyst who can apply arbitrary com-
putations in order to extract information on the inputs of the honest parties.2 This feature is one
of the main advantages of information-theoretic protocols: after-the-fact secrecy holds regardless
of technological advances and regardless of the time invested by the adversary.

We show that Theorem 1.1 yields a round-optimal MPC protocol with everlasting secu-
rity when it is instantiated with statistically-hiding commitments and everlasting secure round-
optimal SIF protocol. Such a SIF protocol was also realized in [AKP22] based on collision-
resistant hash functions. Since the latter are known to imply statistically-hiding commit-
ments [DPP98, HM96], we derive the following theorem.

Theorem 1.3. Given access to a collision resistant hash function, every NC1 functionality can be realized
in 1 offline round and 2 online rounds, with full everlasting security against an active rushing adversary,
under the same conditions of Theorem 1.2.

Remark 1.4 (On the use of hash function). Similarly to the everlasting SIF protocol from [AKP22], our
protocol assumes that all parties are given an access to a collision resistance hash function h. Theoretically
speaking, such a function should be chosen from a family of functions H in order to defeat non-uniform
adversaries. One may assume that h is chosen “once and for all” by some simple set-up mechanism. In
particular, this set-up mechanism can be realized distributively by a single round of public-coin messages
by letting each party sample randomness ri that specifies a hash function hi and then taking h to be the
concatenated hash function [Her09]. This simple set-up protocol remains secure even against an active
rushing adversary that may corrupt all the participants except for a single one. Alternatively, the choice of
the hash function can be abstracted by a CRS functionality, or even, using the multi-string model of [GO14]
with a single honestly-generated string. It should be emphasized that this CRS is being used in a very weak
way: It is “non-programmable” (the simulator receives h as an input) and it can be sampled once and for
all by using the above trivial public-coin mechanism. Finally, even if one counts this extra set-up step as an
additional round, to the best of our knowledge, our protocol remains the only known solution that achieves
everlasting security, regardless of the underlying assumptions.

Remark 1.5 (On NC1 functionalities). All our everlasting-security protocols are restricted to NC1. More
generally, the computational complexity of these protocols grows exponentially with the depth or space of
the underlying function. This is expected since even for strictly-weaker notions of security (e.g., passive
statistical security against a single corrupted party), it is unknown how to construct efficient constant-
round protocols for functions beyond NC1 and log-space. (In fact, this is a well-known open problem that
goes back to [BFKR90].)

The difference between everlasting and computational security is fundamental and is analogous
to the difference between statistical commitments and computational commitments or statistical
ZK arguments vs. computational ZK arguments (see, e.g., the discussions in [BCC88, NOVY98]).
In both the former cases, we get computational security against “online cheating” and statistical
security against after-the-fact attacks.

2Technically, in the UC-framework we allow the environment to output its view and require statistical indistin-
guishability between the real and ideal experiments. For details, refer to Appendix A.1.

6



We note that all previous protocols inherently fail to achieve everlasting security. Indeed, for
technical reasons (that will be discussed later in Section 2), previous constructions emulate private
channels over a broadcast channel via the use of PKE. Furthermore, the (encrypted) information
that is delivered over this channel fully determines the inputs. Thus, an analyst that collects the
broadcast messages and later breaks the secrecy of the PKE (e.g., via brute-force) can learn all the
private inputs of the parties.

1.1.3 Round-Optimal MPC for t < n/3 with Everlasting Security from OWF

For strong honest-majority, where t < n/3, we provide a 3-round protocol for general MPC with
everlasting security in the plain model, from the minimal assumption of one-way functions. This
protocol is round-optimal by the lower bound of [GIKR02].

Theorem 1.6. Assuming the existence of one-way functions, every NC1 functionality can be realized in the
plain model by a 3-round protocol that provides everlasting security against an active rushing adversary
corrupting t < n/3 of the parties. If we are willing to compromise to computational-security, we obtain a
secure protocol for every efficiently computable functionality.

Known round-optimal protocols in this regime, all appear in [AKP20a], either achieve (1)
statistical-security but with running time exponential in n, or (2) everlasting-security from col-
lision resistant hash-functions and a CRS as a trusted setup, or (3) computational-security from
injective one-way function in the plain model. Therefore, our construction can be seen as the first
round-optimal construction that efficiently achieves some form of security against unbounded
adversaries in the plain model. Moreover, it does so only based on one-way functions. As a pri-
mary tool, we design a verifiable secret sharing (VSS) with everlasting security in 2 rounds from
OWFs. Known VSS protocols in this regime either achieve (1) statistical-security but with run-
ning time exponential in n [AKP20a] with t < n/3, (2) everlasting-security from collision resistant
hash-functions and a CRS as a trusted setup with t < n/2, or (3) computational-security from
non-interactive commitments schemes with t < n/2.

1.1.4 Summary of the Results

We summarize our results in the honest-majority regime in Table 1 and compare them to the
existing results. In Table 2 we summarize our results in the strong honest-majority regime, and
compare them to the existing results.

Previous unpublished version and a sibling paper. A previous version of this paper contained
a weak form of some of the current results together with 2-round SIF protocols based on the Fiat-
Shamir heuristic. The SIF protocols were strengthened and were fully moved to [AKP22], and
the derivation of the 3-round MPC protocols was significantly changed and modularized, leading
to the new compiler (Theorem 1.1). Theorem 1.6 is also new and did not appear in previous
versions. Overall, the current version of this writeup and [AKP22] contain a disjoint sets of results
that together fully subsume the previous versions of this paper.
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Ref. Rounds Threshold Setup Security Cryptographic
Plain / CRS it / es / cs† Assumptions

[RB89] circuit-depth t < n/2 Plain it –

[IK00]? constant > 3 t < n/2 Plain it –

[BMR90, DI05] constant > 3 t < n/2 Plain cs OWFs

[PR18] 3 n = 3, t = 1 Plain cs injective OWFs

[GLS15] 3 t < n/2 CRS cs threshold multi-key FHE

[BJMS20] 3 t < n/2 Plain cs LWE

[ACGJ18] 3 t < n/2 Plain cs PKE, Zaps

This 3 t < n(12 − ε)
§ Plain cs sub-exponential injective OWFs

This? 3 t < n(12 − ε)
§ CRS es collision resistant hash functions

† it: information-theoretic, es: everlasting security, cs: computational security.
? For NC1 circuits
§ We achieve t < n/2 when n is logarithmic in the security parameter.

Table 1: Comparison of our work with the state-of-the-art relevant results

Ref. Rounds Threshold Setup Security Cryptographic Complexity
Plain / CRS it / es / cs† Assumptions in terms of n

[AKP20a]? 3 t < n/3 Plain it – Exponential

[AKP20a] 3 t < n/3 Plain cs injective OWFs polynomial

[AKP20a]? 3 t < n/3 CRS es collision-resistant hash-functions polynomial

This? 3 t < n/3 Plain es OWFs polynomial

This 3 t < n/3 Plain cs OWFs polynomial

† it: information-theoretic, es: everlasting security, cs: computational security.
? For NC1 circuits

Table 2: Comparison of our work with the state-of-the-art relevant results for t < n/3

2 Technical Overview

In this section, we give a detailed overview of our constructions while emphasizing the main
novelties. Section 2.1 is devoted to the proof of the main theorem (Theorem 1.1) and Section 2.2
is devoted to the strong honest-majority result (Theorem 1.6). Throughout, we assume that there
are n parties, P1, . . . , Pn, of which at most t are corrupt, where we assume two settings: t < n/2
for Section 2.1 and t < n/3 for Section 2.2. We assume that the parties communicate over secure
point-to-point channels and over a broadcast channel.

2.1 Main Theorem

Following previous works [GLS15, ACGJ18], we prove our main Theorem 1.1 by using the follow-
ing outline: (1) We start with a 2 round protocol Πsm with security against semi-malicious adversary
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that is allowed to choose its input and randomness, but other than that plays honestly; (2) We up-
grade the security of the protocol to hold against a first-round fail-stop adversary that, in addition
to choosing its input and randomness, is allowed to abort a corrupted party during the first round
of the protocol; (3) We compile the protocol to a new protocol with an extra offline round that
achieves security against a fully fail-stop adversary that is allowed to abort a corrupted party at
any round; (4) We transform the protocol for fail-stop adversaries to a protocol for malicious
adversaries. Jumping ahead, previous constructions employed Zaps/NIZK for the last step and
PKE/threshold homomorphic encryption both for steps (3) and (4). We will show how to relax
these assumptions.

The initial protocol Πsm. Our starting point is a perfectly-secure 2-round protocol Πsm for a
rushing semi-malicious adversary that corrupts a minority of the parties. Such a protocol appears
in [ABT18] and is fully described in Section 4. The first round of the protocol consists only of
private messages, and the second round consists of broadcast messages. (In fact, using standard
techniques we can transform any 2-round protocol to a protocol that satisfies this property, see
e.g., [GIKR01].) We denote the first-round private message from Pi to Pj by aij , and the second-
round broadcast of Pi by bi.

2.1.1 Coping with First-Round Aborts

Roughly speaking, when an adversary aborts, we let the other parties emulate his role for the
remaining rounds. The emulation is relatively simple when the abort happens in the first round
of Πsm since the parties have a chance to respond to the abort in the second round. Specifically,
suppose that Pi aborts in the first round. Then the other parties face 2 problems: (1) Pi did not
send her first round messages; and (2) the first-round messages that were directed to Pi were lost
and will be missing later during the reconstruction of output. The first issue is solved by letting
each party to locally generate the outgoing messages of Pi by running Pi on the all-zero input
and the all-zero random tape.3 To solve the second issue, we modify the protocol so that each
first round message from Pj to Pi is also being shared among all other parties. That is, in the
first round, every Pj shares each of its first-round outgoing messages aj1, . . . , ajn via Shamir’s
secret sharing, using degree-t polynomials. If Pi aborts during the first round then in the sec-
ond round, the parties reconstruct all the 1st round incoming messages of Pi. After the second
round, the parties have enough information to locally continue the emulation of Pi (with respect
to the all-zero inputs) and generate her second round broadcast messages. We note that in pre-
vious works (e.g., [ACGJ18]) first-round aborts are handled differently by adding an additional
“function-delayed” requirement on the initial protocol Πsm.

2.1.2 Coping with Second-Round Aborts

Second-round aborts are trickier to handle: When the honest parties send their second-round mes-
sages, they do not know which other parties are about to abort. Accordingly, one has to support
“silent emulation”, that is, any subset of n − t second-round messages should suffice for emulat-
ing all other second-round messages. The implementation of this mechanism employs heavy tools
(threshold homomorphic encryption in [GLS15] and PKE plus garbled circuits in [ACGJ18]) and

3Here, among other places, we use the fact that Πsm is secure against a semi-malicious adversary.
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requires an additional offline round. We review these ideas and present an information-theoretic
variant of them.

Ananth et al. [ACGJ18] (ACGJ) first use PKE to ensure that all the communication between the
parties will be over the broadcast channel. That is, in a preprocessing round (denoted Round 0),
every Pi generates keys (pki, ski) for PKE, and broadcasts pki. In the following rounds, the private
channel from Pj to Pi is emulated by letting Pj broadcast her message encrypted under the public
key pki of Pi. After this modification, we can write the second-round message of party Pi as a
function fi that given

(1) the encrypted messages (Aji)j∈{1,...,n} that Pi receives in Round 1,

(2) the input x(i) and randomness ri of Pi in the simulation of Πsm, and

(3) the secret key ski,

outputs the public broadcast message bi that Pi sends in the second round. (That is, fi decrypts
the messages Aji using ski in order to obtain aji, and then computes the second round broadcast
bi of Pi in Πsm based on (x(i), ri, (aji)j∈{1,...,n}).) Observe that fi depends on private inputs (items
2, 3) and on some public values (item 1) that will be broadcasted during the first round. The key
observation is that the private inputs are already known before the first round begins. This fact
will be exploited to delegate the computation of fi.

Specifically, at the beginning of the first round, we let every Pi generate a garbled circuit for
a function fi. During the first round, Pi broadcasts the garbled circuit together with the labels
of (x(i), ri) and ski. In addition, Pi secret-shares all the labels that correspond to every potential
ciphertext value (Aji)j∈[n]. The actual ciphertexts, (Aji)j∈{1,...,n}, are broadcasted concurrently
during the first round by the corresponding parties, and so, in the second round, all the non-
aborted parties publish the shares of the corresponding labels. Consequently, after this round,
everyone can recover the correct labels via secret reconstruction of the secret sharing, and hence
obtain the broadcast bi of Pi. To make the proof go through, ACGJ assume that the garbled circuit
is adaptively private [HR12] in the sense that privacy holds even if the adversary first gets to see
the garbled circuit, and only then chooses the inputs to the circuit and receive the corresponding
labels.

We note that the same approach can be applied without relying on any computational as-
sumptions. First, instead of using PKE, we let the parties exchange one-time pads during the
offline round. That is, in Round 0 we let every Pi sample random pads ηi = (ηi1, . . . , ηin) and
send the pad (“key”) ηij to Pj by using a private channel. Now a first-round message aji from Pj
to Pi can be broadcasted in an encrypted form Aji := aji + ηij . (For technical reasons that will be
explained later, we encrypt the message under the receiver’s key.) The garbled circuits can also
be instantiated with an information-theoretic garbled circuits, aka perfect randomized encodings.
(The second-message function of Πsm is “simple enough” to allow such a realization.) Further-
more, we avoid the need for adaptive garbled circuits, by sharing the garbled circuit together with
the labels of (x(i), ri) and ηi among all the other parties; these shares are later revealed during the
second round.4

4In fact, in order to handle second-round aborts together with first-round aborts, we need to slightly modify the
function fi. See Section 4 for full details.
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2.1.3 From Fail-Stop to Malicious Adversary

To obtain a protocol with security against a malicious adversary, we follow the GMW paradigm
and ask each party to prove in zero-knowledge that she followed the protocol. Ignoring for now
the exact details of the zero-knowledge proof, the basic idea is that a malicious deviation from
the protocol will be caught due to the soundness properties of the proof, and will be treated as
if the cheater aborted the computation. Crucially, here too one must assume that the underlying
protocol works over a broadcast channel. As discussed in ACGJ, if the underlying semi-malicious
protocol uses private channels, then a party may need to prove different statements to different
parties in order to establish honest behavior, which may lead to inconsistent views regarding her
“abort” status. Indeed, [GLS15, ACGJ18] make here another use of PKE in order to make sure that
the protocol’s messages are delivered over a broadcast channel. In fact, this usage of PKE dates
back to the GMW compiler [GMW87].

Generating public committing transcript. We can use the previous maneuver to shift all private
messages to Round 0 via one-time pads, however, the resulting protocol is still not ready for “zero-
knowledge compilation”. Indeed, even if we add a zero-knowledge layer, the adversary can cheat
either by “claiming that she received different messages” (i.e., changing the keys that correspond
to her incoming messages) or by “claiming that she sent different messages”. Intuitively, the
problem is that our information-theoretic solution is non-committing. We solve this problem via
the use of non-interactive commitment (NICOM). Details follow.

In the preprocessing round (Round 0), we let each party Pi broadcast a vector of commitments,
(Ci1, . . . , Cin) to all her private keys, (ηi1, . . . , ηin), for the one-time pads, and send oij , the opening
of Cij , to Pj over the private channel. In addition, we let all parties commit to their inputs and
randomness for the fail-stop protocol in Round 1 just like in the standard GMW transform. (We
emphasize that Round 0 is still input-independent.) Next, we employ some zero-knowledge prim-
itive (to be discussed below) to prove that a party Pi computes a message properly with respect
to the public commitments. Specifically, in the first round party Pi can prove that the garbled cir-
cuit for fi was generated properly with respect to his committed randomness, committed input,
and with respect to the one-time keys, η1i, . . . , ηni, that he received from all other parties in the
preprocessing round. For the last part we exploit the fact that Pi also received a witness, oji, that
connects the keys to their commitments.

This approach almost works. The only problem is that a party Pj may cheat in Round 0 by
sending to Pi a “bad” pair of key/opening (ηji, oji) that are inconsistent with the public com-
mitment Cij . Fortunately, there is a simple round-efficient solution: If the key is malformed, we
simply send the messages from Pi to Pj in the clear un-encrypted. Formally, in Round 1, Pi broad-
casts a list Li of all parties that sent invalid openings in Round 0. If Pi needs to send a private
message aij to a party Pj according to Πsm, for Pj /∈ Li, then Pi simply sends the encrypted mes-
sage aij + ηji over the broadcast channel. For a party Pj ∈ Li, we simply let Pi send the message
aij unencrypted over the broadcast channel. We also use the same mechanism for additional pri-
vate messages that the parties have to exchange, that are not necessarily a part of the protocol
Πsm (e.g., sending private shares for the garbled circuit). As before, we only use encryption in
Round 1, while Round 2 consists only of public unencrypted messages. This modification does
not violate privacy since messages from Pi to Pj will be sent unencrypted only if one of these
parties is corrupted, which means that the adversary is supposed to learn the message anyway.
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Instantiating the zero-knowledge layer. Finally, we have to instantiate the zero-knowledge
layer in a round-preserving way. Previous works either make use of NIZK at the expense of
adding a CRS [AJL+12, GLS15] or exploited the offline round to set-up some multi-party variant
of ZK [GOS12, ACGJ18]. In terms of assumptions both approaches rely on NIZK/Zaps which are
known to be equivalent assuming one-way functions [DN07]. We strongly exploit the existence
of honest majority, and observe that these primitives can be replaced by a SIF protocol. Given a
relation R, define the single input functionality that (1) takes the statement x and witness w from
the prover, and (2) if R(x,w) = 1 it returns x to all parties, and if not, it returns a failure symbol ⊥
to all parties. We can therefore realize a round-efficient variant of multi-verifier zero-knowledge
proof (MVZK) based on SIF with 1 offline round and 1 online round. We emphasize that the se-
curity of SIF protocols is formulated via an MPC-based definition by relating the protocol to an
ideal SIF functionality. This leads to security guarantees that are stronger than those achieved by
standalone versions of the MVZK primitive (e.g., the SIF protocol provides knowledge-extraction).

Summary. Overall, the SIF is being employed as follows. In Round 0, the parties execute the
offline round of the SIF protocol, exchange one-time pads and publish their commitments. In
Round 1, we let every Pi commit to its input and randomness, and let Pi prove via SIF that (1)
for every Pj /∈ Li, the public encrypted message from Pi to Pj is consistent with the committed
input and randomness of Pi, and it is encrypted with the committed random pad ηji; (2) for every
Pj ∈ Li, the public unencrypted message from Pi to Pj is consistent with the committed input
and randomness of Pi. Similarly, in Round 2 every Pi proves via SIF that its public broadcast
is consistent with (1) its committed input and randomness; (2) the unencrypted public incoming
message from Pj , for every Pj for which Pi ∈ Lj ; and (3) the decrypted incoming message from
Pj , where the decryption used the committed random pad ηij , for every Pj for which Pi /∈ Lj .

Remark 2.1 (Everlasting security). All the components, except for the NICOM and SIF, are information-
theoretic. As a result, we derive the everlasting security version of the protocol by plugging-in NICOM and
SIF with everlasting security guarantees. The protocol remains the same and the proof of security is given
in a unified way.

Remark 2.2 (Reusing the preprocessing round). Recall that the preprocessing round consists of ex-
changing committed one-time pads, and initializing the SIF protocol. If one does not care about everlasting
security, the one-time pads can be replaced with (committed) pairwise private-keys for a symmetric encryp-
tion scheme, and in this case the same keys can be used for many invocations of the protocol. Under this
modification, we can reuse the preprocessing step (Round 0) or even treat it as a private-key infrastructure
provided that the preprocessing step of the SIF is also reusable. While the construction from [AKP22] does
not satisfy this property, other SIF constructions (e.g., based on NIZK) can be used to achieve this property.
We remark that, even if one employs NIZK-based SIF, our approach is beneficial since it bypasses the need for
PKE. Indeed, the Fiat-Shamir heuristic [FS86] suggests that NIZK can be based on strong symmetric-key
assumptions like correlated robust hash functions [CGH04], and may not require PKE-based assumptions.
(See [CCH+19] for further discussion and references).

2.2 Strong Honest-majority MPC with Everlasting Security from OWF

We continue with an overview of the 3-round MPC protocol that provides everlasting security in
the plain model for strong honest-majority, t < n/3. In [AKP20a] it is shown that such a protocol
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follows from a 2-round protocol for verifiable secret sharing (VSS) that provides everlasting security.
We design such a protocol based on digital signatures (that are equivalent to one-way functions).

The VSS functionality. We will need the following variant of VSS. The functionality receives a
symmetric bivariate polynomial F (x, y) of degree at most t in each variable from a distinguished
party D, called the dealer, and delivers to each party Pi the univariate polynomial fi(x) := F (x, i).
The use of symmetric bivariate polynomials can be seen as an extension of the standard Shamir’s
t-out-of-n secret sharing, that allow us to make a consistency-check between any pair of parties Pi
and Pj , since fi(j) = F (j, i) = F (i, j) = fj(i).

2-round VSS protocol. In the first round, we let D generate a signature-key and a verification-
key for a digital signature scheme, and broadcast the verification-key. In addition, we let D send
fi(x) to Pi, together with a signature on each point fi(1), . . . , fi(n).5 At the end of the first round,
a party is happy with D if all the signatures it received are valid, and it is unhappy with D oth-
erwise. Observe that if D is honest then all honest parties are happy. The second round of the
protocol consists of (1) consistency check for happy parties, and (2) public recovery of the shares
of unhappy parties. We continue by discussing the consistency check.

2.2.1 Consistency Check

The goal of the consistency check is to ensure that (a) there are at least t+ 1 happy honest parties,
and that (b) all of them are consistent with each other, i.e., fi(j) = fj(i) for every happy and
honest Pi and Pj . Looking forward, this will imply that the shares of the happy honest parties
fully determine a symmetric bivariate polynomial F (x, y) of degree at most t in each variable,
where for an honest D the polynomial F (x, y) is the input polynomial of D.

It is not hard to achieve (a). In Round 2, each party declares, via broadcast, whether she is
happy or not, and we discard the dealer if there are more than t unhappy parties. This guarantees
that an honest dealer will never be discarded (since all honest parties are happy) and a corrupt
dealer must gain the support of at least (n− t)− t ≥ t+ 1 happy honest parties in order to remain
undiscarded.

2-wise consistency via Reveal-if-not-equal gadget. Pair-wise consistency (item b) is being han-
dled via a special comparison gadget that takes from each pair of happy parties (Pi, Pj) the points
mA = fi(j),mB = fj(i) and their corresponding signatures sA, sB , and broadcasts an equality bit
that indicates whether mA = mB and in case of inequality releases the points and their signatures
(mA, sA,mB, sB). When Pi and Pj are honest, a disagreement accompanied with valid signatures
certifies that D is corrupted. Of course, when mA = mB , we do not want any information about
mA,mB to be revealed to the other parties. If 3 rounds are allowed then we can easily realize the
gadget by letting Pi and Pj compare their values privately on the second round (by exchanging
messages over the private channel) and then announcing the result at the next round. We avoid
this overhead by making an additional observation: When one of the parties, say Pi, is corrupt
we do not care about the privacy nor the correctness of the gadget. Privacy does not matter since

5In fact, in order to put the signatures in context, we let D sign the tuples (i, j, fi(j))j∈{1,...,n}, instead of just the field
elements fi(1), . . . , fi(n).
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the adversary already knows mB = fj(i). As for correctness, even if the “gadget misbehaves”, an
honest dealer is protected against a disqualification by the security of the signatures.

We realize the gadget with the aid of garbled circuits (or perfect randomized encodings). Let
g be a function that takes (mA,mB, sA, sB), returns 1 if mA = mB , and returns (mA,mB, sA, sB)
otherwise. In the first round, we let Alice (Pi) generate a garbled circuit G for g, and send the
randomness used to generate G to Bob (Pj). In the second round, Alice broadcasts G, together
with the labels corresponding to her inputs in G, and Bob broadcasts the labels corresponding
to his inputs in G. It is not hard to see that the properties of the protocol follow directly from
the correctness and security of the garbled circuit. Based on this gadget, after the second round
everyone learns whether Alice and Bob are in agreement, and, in case they disagree, whether the
dealer should be discarded due to a conflicting pair of valid signatures. If the dealer was not
discarded in any consistency check of a pair (Pi, Pj), we conclude that all happy honest parties are
consistent.

2.2.2 Handling Unhappy Parties

It remains to explain how to help unhappy (honest) parties to recover a share that is consistent
with all the happy honest parties. The main idea is to let every unhappy Pi ask from every other
Pj to publicly reveal all the common information, i.e., the value fj(i) and the corresponding sig-
nature. Since we have only 1 additional round, we design an additional gadget with 1 offline
round and 1 online round similarly to the reveal-if-not-equal gadget.6 In this gadget, Alice inputs
a bit flagA, while Bob inputs some secret sB . When Alice and Bob are honest, if flagA = 0 then the
listeners learn no information about sB , while if flagA = 1 they learn sB . As before, when one of
the parties is corrupt there are no security guarantees.

We use this mechanism for every pair (Pi, Pj), where Pi takes the role of Alice and Pj takes
the role of Bob. We let Pi input flagA = 1 if Pi is unhappy, and flagi = 0 otherwise; in addition,
Pj sets sB to be the share fj(i) together with the corresponding signature. Observe that if both Pi
and Pj are honest and happy, then the adversary learns no information about their common point;
however, if Pi is unhappy and Pj is happy, then all the parties learns the point fj(i) together with a
valid signature.

An honest unhappy Pi will be able to reveal all evaluations fj(i) from happy honest parties Pj ,
together with valid signatures. We let all parties interpolate over all values whose corresponding
signatures were valid, in order to obtain fi(x). Since there are at least t + 1 happy honest parties,
we are promised that fi(x) is either consistent with the polynomial F (x, y) defined by the shares
of the happy honest parties, or has degree more than t, in which case all the parties reject the
dealer. Finally, for an honest D and a corrupt unhappy Pi, the values that are revealed with valid
signatures must be consistent with F (x, y), so the interpolated polynomial will have degree at
most t, and D will not be discarded.

3 Preliminaries

We denote by κ the security parameter, by n the number of parties, and by t an upper bound
on the number of corrupt parties. We consider two main settings: the optimal resiliency setting
where n ≥ 2t + 1, and the almost optimal resiliency setting where n ≥ (2 + ε)t for an arbitrarily

6In fact, in our construction we merge the two gadgets.
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small constant ε > 0. We denote by C the set of corrupt parties, and by H = {1, . . . , n} \ C the set
of honest parties. We have |C| ≤ t. We let F be a finite field of size at least n + 1, and, with some
abuse of notation, let 1, . . . , n denote n distinct non-zero field elements. All our results are proved
in the UC-framework. For more information, see Section A.1.

Our building blocks are non-interactive commitment scheme (NICOM), secret sharing scheme,
and randomized encoding, all presented in Section 3.1. An additional ingredient of our construc-
tion is the protocol of [AKP22] for the computation of single-input functionalities, which we recall
in Section 3.1.4.

3.1 Building Blocks

3.1.1 Non-Interactive Commitment Scheme (NICOM)

Definition 3.1 (NICOM). A NICOM is a pair of probabilistic algorithms (commit, open) that take as
a common input the security parameter 1κ and a some (possibly empty) random public parameters pp ∈
{0, 1}`(κ) for some polynomial `(·) and satisfy the following requirements:

– Syntax: commit takes as an input a message x ∈ {0, 1}∗ and random tape r ∈ {0, 1}∗ and outputs a
commitment/openning pair (C, o) and the algorithm open takes as an input a commitment/opening
pair (C, o) and outputs a message x′ ∈ {0, 1}∗ ∪ {⊥}. The symbol ⊥ indicates a “failed openning”.

– Correctness: For every κ, pp, x, r, it holds that openpp(1κ, commitpp(1κ, x; r)) = x.

– Binding: For every family of polynomial-size non-uniform adversaries A = {Aκ} and every se-
curity parameter κ, with probability at most ε = negl(κ) over a uniform choice of pp, the tuple
(C, o, o′) := Aκ(pp) satisfies openpp(1κ, C, o) 6= openpp(1κ, C, o′) and openpp(1κ, C, o) 6= ⊥ and
openpp(1κ, C, o′) 6= ⊥. The scheme is statistically binding, if the above holds even for inefficient
adversaries, and perfectly binding if, in addition, ε = 0.

– Hiding: For every family of non-uniform adversaries A = {Aκ}, every polynomial p(·), every secu-
rity parameter κ, every pp, and every pair of messages x, x′ ∈ {0, 1}p(κ), the distinguishing gap∣∣Pr(C,o)←Cpp(1κ,x)[Aκ(pp, C) = 1]− Pr(C,o)←Cpp(1κ,x′)[Aκ(pp, C) = 1]

∣∣ ≤ ε(κ)

for some negligible ε(·). The scheme is statistically hiding if the above holds even for inefficient
adversaries.

For ease of reading, we typically omit the security parameter and the public parameters from the algorithms.
By default, the security parameter is set according to the global security parameter that is being used by the
system, and the public parameters are chosen once and for all before all protocols begin by a set-up phase as
explained towards the end of Section A.1.

NICOM comes in 2 main flavors: (1) with computational hiding and perfect binding, and (2)
with statistical hiding and computational binding. Type (1) commitments can be based on injective
one-way functions [Blu81, Yao82, GL89] or even on standard one-way functions and worst-case
derandomization assumptions [BOV03], and type (2) commitments can be based on collision re-
sistance hash functions [DPP98, HM96]. In the former case, no public parameters are needed and
we think of pp as an empty string. In the latter case, a description of a collision resistance hash
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function h (that is sampled from a familyH) is given to the algorithms (commit, open) as an auxil-
iary public parameter. Our protocols make use of NICOM in a modular way such that a type (1)
instantiation yields computational protocols and type (2) instantiation yields protocols with ever-
lasting security. The proofs typically treat both notions in a unified way with minor adaptations
when needed.

Some variants of the SIF protocol from [AKP22] rely on perfectly-binding NICOM whose com-
putational hiding property holds for ε ≤ 2−κ, hereafter referred to as sub-exponentially hiding
NICOM. The existence of such a (plain-model) NICOM follows from the existence of an injec-
tive OWF over m-bit inputs that cannot be inverted by a PPT adversary with probability better
than 2−m

δ
for some universal constant δ > 0. Under worst-case derandomization assumptions

[BOV03], such NICOMs can be based on general (not necessarily injective) sub-exponentially hard
OWFs. These stronger variants are widely used, and are needed only for the SIF protocol and not
for the reductions presented in this paper.

3.1.2 Secret Sharing

A central tool in our construction is Shamir’s secret sharing scheme [Sha79]. We assume that the
reader is familiar with Shamir’s secret sharing scheme, and refer the interested reader to [AL17,
Section 3]. We will use the following notation.

Notation 1. We say that a party Pi shares a value s via degree-d polynomial if Pi samples a random degree-
d polynomial p(x) with p(0) = s, and gives party Pi the value p(i). Sometimes we simply say that Pi shares
a value s, which means that Pi shares s via degree-t polynomial. Similarly, we say that a party Pi computes
the Shamir’s shares of a values s, if Pi samples a degree-t polynomial p(x) with p(0) = s, and computes the
values s1, . . . , sn, where si := p(i).

3.1.3 Randomized Encoding

The following is taken with minor changes from [App17]. Let X,Y, Z and R be finite sets.

Definition 3.2 (Perfect randomized encoding [IK00, AIK06]). Let f : X → Y be a function. We say
that a function f̂ : X×R→ Z is a perfect randomized encoding of f if there exists a pair of randomized
algorithms, decoder dec and simulator S , for which the following hold:

• (Correctness) For any input x ∈ X , Prr←R[dec(f̂(x; r)) = f(x)] = 1.

• (Privacy) For any x ∈ X and any computationally-unbounded distinguisherA, |Pr[A(S(f(x))) =
1]− Prr←R[A(f̂(x; r)) = 1]| = 0.

We refer to the second input of f̂ as its random input.

Definition 3.3 (Perfect decomposable randomized encoding). Assume that the function f is an arith-
metic function whose input x = (x1, . . . , xn) is a vector of elements of some ring X . We say that a
randomized encoding f̂ is a decomposable randomized encoding if each output of f̂ depends on at most
a single input xi. Namely, f̂ decomposes to (f̂1(x1; r), . . . , f̂n(xn; r)), where f̂i might output several ring
elements.

We will also be interested in the special case of 2-decomposable randomized encoding.
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Definition 3.4 (2-decomposable randomized encoding). Let f : X → Y be a function where
X = X1 × X2. A randomized encoding f̂ of f is 2-decomposable (also known as 2-party private
simultaneous messages) if f̂(x1, x2; r) decomposes to (f̂1(x1; r), f̂2(x2; r)).

We will always be interested in efficiently constructible randomized encoding whose corre-
sponding algorithms f̂ , dec and S are computable by polynomial-size circuits that can be con-
structed efficiently given a description of f . The following theorem, due to [IK02, CFIK03] shows
that such a construction can be obtained for the class of arithmetic circuits with logarithmic depth.

Theorem 3.5. There exists an efficiently constructible perfect decomposable randomized encoding for the
class of polynomial-size arithmetic circuits with logarithmic depth over an arbitrary ring. In particular,
there is a compiler that takes a size-S depth-D arithmetic circuit for f and in time poly(S, 2D) outputs
arithmetic circuits for f̂ , dec and S.

3.1.4 Single-Input Functionality

A single-input functionality F is a functionality that receives its input from a single party, called
the dealer. In this work we always assume that the output is public, which means that all parties
receive the same output. More formally, the functionality F , which is parametrized by a function
f : {0, 1}∗ → {0, 1}∗, receives from the dealer an input x, computes y = f(x), and returns y to
all the parties. In [AKP22] it was proved that general SIF can be realized in 1 offline round and
1 online round, with optimal resiliency when the number of parties is small (i.e., logarithmic in
the security parameter), and with almost-optimal resiliency for a large number of parties. This is
summarized in the following theorems.

Theorem 3.6 (Optimal-resiliency SIF for a small number of parties). Let κ be a security parameter,
let n be the number of parties and t < n/2. Let F be a single input functionality with binary circuit size
s. Assuming the existence of perfectly-binding sub-exponentially hiding NICOM, there exists a protocol sif
with 1-offline round and 1-online round which is a UC-secure implementation of F , against a static, active,
rushing adversary corrupting up to t parties. The complexity of the protocol is poly(s, 2n, κ).

Alternatively, if we replace the perfectly-binding NICOM with statistically-hiding NICOM, we also
obtain everlasting security.

Theorem 3.7 (Almost-optimal resiliency SIF for a large number of parties). Let κ be a security pa-
rameter, let ε > 0 be a constant, let n be the number of parties and let t the number of corrupt parties such
that n = (2 + ε)t. Let F be a single input functionality with binary circuit size s. Assuming the exis-
tence of perfectly-binding sub-exponentially hiding NICOM, there exists a protocol sif with 1-offline round
and 1-online round which is a UC-secure implementation of F , against a static, active, rushing adversary
corrupting up to t parties. The complexity of the protocol is poly(s, n, κ).

Alternatively, if we replace the perfectly-binding NICOM with statistically-hiding NICOM, we also
obtain everlasting security.

4 MPC with (Almost) Honest-majority from Minicrypt

Our starting point is the following completeness theorem of [AKP20b].
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Proposition 4.1 ([AKP20b]). Let G be an n-party functionality that can be computed by a Boolean circuit
of size S and depth D and let F be an arbitrary extension field of the binary field F2. Then, the task
of securely-computing G non-interactively reduces to the task of securely-computing a degree-2 n-party
functionality F over F.

The reduction preserves active perfect-security (resp., statistical-security) with resiliency threshold
of bn−13 c (resp., bn−12 c) and the complexity of the function F and the overhead of the reduction is
poly(n, S, 2D, log |F|). Furthermore, assuming one-way functions, one can get a similar reduction
that preserves computational-security with resiliency threshold of bn−12 c and complexity/security-loss of
poly(n, S, log |F|).

Therefore, our goal here is to provide a 3-round protocol for degree-2 computation F over
some finite field F which, by default, is taken to be some binary extension field of size n + 1 ≤
|F| ≤ poly(n).7 We assume, without loss of generality, that F is a public-output functionality that
delivers the same output to all the parties. Formally, the functionality F takes as an input m field
elements x1, . . . , xm ∈ F and delivers to all the parties L degree-2 polynomials over (x1, . . . , xm).
For every party Pi, we denote by Ii ⊆ {1, . . . ,m} the set of all indices j such that Pi holds the input
xj , and let x(i) := (xj)j∈Ii denote the inputs of Pi. As explained in Section 2, our starting point is
a 2-round perfectly-secure protocol Πsm against rushing semi-malicious adversaries. For concrete-
ness, we take the protocol of [ABT18] as Πsm. The protocol is presented in Figure 1 for the case
where the output of F consists of a single output f(x1, . . . , xm). The extension to a multi-output
function can be obtained in a straightforward way. (More generally, semi-malicious security is
closed under parallel repetitions.)

Round 1: Each party shares each of its inputs via Shamir’s secret sharing, using degree-t polynomials.
In addition, each party shares the value 0 via Shamir’s secret sharing, using degree-2t polynomials.
Denote the shares that Pi received by x1i , . . . , x

m
i , z

1
i , . . . , z

n
i , where zji is the i-th share of the zero-sharing

of Pj .

Round 2: Every Pi computes wi := f(x1i , . . . , x
m
i ) + z1i + . . . + zni and broadcasts wi. After the second

round, the parties locally interpolate the shares w1, . . . , wn in order to obtain a degree-2t polynomial
W (x), and output W (0).

Protocol Πsm

Figure 1: Protocol Πsm

Building on the overview presented in Section 2, here we devote to the remaining finer details.
We think of every set Li as an n-bit string, whose j-th bit, denoted Li[j], is 1 if Pj ∈ Li, and is 0
otherwise. We continue by presenting the function fi that will be used to compute the Round 2
broadcast message of Pi, for every i ∈ {1, . . . , n}.

The function fi. The function fi receives the following 4 inputs:

(1) the bits L1[i], . . . , Ln[i], indicating whether Pi is in L1, . . . , Ln,
7More generally, our results apply to every finite field that supports pairwise-multiplication and n-wise addition

in NC1. This assumption holds for binary extension fields as well as for prime-order fields Fp that are defined over
a prime p of polynomially-bounded bit length [BCH86]. See also [HV06] for a discussion on the complexity of field
arithmetics.
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(2) messages Ai = (Aji)j∈{1,...,n} that Pi receives in Round 1 over broadcast channel,

(3) the input x(i) and randomness ri of Pi in the simulation of Πsm, and

(4) pads ηi = (ηi1, . . . , ηin).

For every Pj with Lj [i] = 0 the function sets aji := Aji − ηij . Otherwise, it sets aji := Aji. Then,
the function computes Round 2 broadcast bi of Pi in Πsm given (x(i), ri, (aji)j∈{1,...,n}). The output
of the function fi is bi.

The four inputs of fi will be viewed as strings of bit-lengths `1, `2, `3 and `4, respectively. (Ob-
serve that `1 = n.) We let ` := `1 + `2 + `3 + `4 denote the total bit-length of the inputs to fi.
For simplicity (and by possibly padding the inputs) we may assume that the input lengths are
uniform across all the fi’s. It can be verified that the function fi can be implemented by a Boolean
NC1 circuit8, so, by Theorem 3.5, it has an efficient perfect decomposable randomized encoding,
which we denote by f̂i := (f̂i1, . . . , f̂i`).

Randomized encoding of fi. In Round 1, we let Pi sample randomness for f̂i. The public in-
puts (1)–(2) are known to all the parties at the end of Round 1. Therefore, for every input-bit v that
corresponds to the public inputs (that is, 1 ≤ v ≤ `1 + `2), we let Pi compute the output of f̂iv both
on input 0 and input 1, and share the outputs among the parties. In this way, the parties will be
able to recover the correct output of f̂i in Round 2.

In addition, the private inputs (3)–(4) are known to Pi already at the beginning of Round 1.
Therefore, we let Pi compute the output of f̂iv for every input-bit v that corresponds to the private
inputs (that is, `1 +`2 +1 ≤ v ≤ `). Instead of broadcasting those inputs already in Round 1, we let
Pi share those outputs among the parties, and in Round 2 we let the parties recover those values.
(This step makes sure an adversary cannot make an adaptive choice for the public inputs (1)–(2)
and hence our randomized encoding scheme need not be adaptive, unlike the garbling scheme of
[ACGJ18].)

Tolerating fail-stop adversaries. Using the ideas developed so far, we present an intermediate
protocol Πfs, that can tolerate fail-stop adversaries and works as a stepping stone for our final
protocol.9 Our protocol Πfs, presented in Figure 2, when augmented with the zero-knowledge
proofs, give rise to the final protocol.

Round 0: In a preprocessing round, each Pi does the following

• Sample a random pad ρij for every j ∈ {1, . . . , n}.
• Compute the commitments and openings (Cij , oij)← commitcrs(ρij) for j ∈ {1, . . . , n}. We parse ρij

as ρij = (ρij [1], ρij [2], ρij [3]) and use each component to pad a different part of the message. We let
ηij := ρij [1] denote the pad that will be used for aij .

Protocol Πfs

8For this, we have to assume the underlying field operations are in NC1 as discussed in Footnote 7.
9The protocol slightly deviates from the fail-stop protocol described in Section 2.1, since it already uses committed

random pads. This will simplify the presentation of the final protocol.
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• Broadcast (Cij)j∈{1,...,n} and send oij to Pj as a private message

• At the end of this round, compute a list of parties Li, so that Pj is in Li if Pi received from Pj an
invalid opening for the commitment Cji. For each party Pj /∈ Li, recover the value ρji by opening
Cji. For each party Pj ∈ Li set ρji to an all-zero vector 0.

Round 1: Each Pi receives its input x(i), and does as follows.

• Broadcast the list Li.

• Sample randomness ri for Πsm and compute its first round messages in Πsm with input x(i) and
randomness ri, which we denote by ai1, . . . , ain, where aij is the private message from Pi to Pj . For
every j ∈ {1, . . . , n}, sample Shamir’s shares (aij [1], . . . , aij [n]) of aij .

• Sample a randomness rREi for the randomized encoding f̂i and:

– (For inputs (1)–(2).) Recall that inputs (1)–(2) correspond to indicators (L1[i], . . . , Ln[i]) and mes-
sages Ai = (Aji)j∈{1,...,n}. For the v-th input bit of fi for v ∈ [`1 + `2], compute f̂iv both for the
input 0 and for the input 1, using randomness rREi in both cases. Share the value f̂iv(0; rREi ) via
Shamir’s sharing to (s0iv[1], . . . , s0iv[n]) and similarly share f̂iv(1; rREi ) to (s1iv[1], . . . , s1iv[n]).

– (For inputs (3)–(4).) Recall that inputs (3)–(4) correspond to x(i), ri, and the pads ηi1, . . . , ηin.
For the v-th input bit of fi, for v ∈ [`1 + `2 + 1, `], compute the output of f̂iv for this bit using
randomness rREi , and share the result to (siv[1], . . . , siv[n]).

– Denote by ~sij the vector of all shares that are directed to Pj . That is, ~sij contains
(sbiv[j])b∈{0,1}v∈[`1+`2] and (siv[j])v∈[`1+`2+1,`].

• For every j, let mij := (aij , (aik[j])k∈{1,...,n}, ~sij) be the message directed to party Pj . Broadcast
the encrypted message Mij := mij + ρji. (Recall that ρji is taken to be zero if Pj ∈ Li.) We let
Aij := aij + ηji denote the first part of Mij .

Round 2: Let L be the set of parties that did not abort in Rounds 0 and 1. For every aborted party
Pj /∈ L, the parties set Lj to be the set that includes all the parties. The parties also set x(j) and rj
to be the all-zero string, and, based on these values, compute the outgoing messages of Pj in Πsm as
(ajk)k∈{1,...,n}. The parties also set Ajk := ajk.
In addition, for every i, j, party Pi broadcasts his shares for the party Pj as follows.

• (If Pj /∈ L). For every Pk ∈ L, if Pi /∈ Lk, then it broadcasts its first-round share akj [i]. (If Pi ∈ Lk
then akj [i] is already public.)

• (If Pj ∈ L). Broadcast the i-th share of f̂j((Lk[j])k∈[n], Aj ,x(j), rj , (ηjk)k∈[n]; r
RE
j ) by broadcasting

the i-th share of the v-th part, f̂jv, as follows.

– For v ∈ [`1], broadcast sbjv[i] where b = Lv[j].

– For v ∈ [`1 + 1, `1 + `2], broadcast sbjv[i] where b is the (`1 − v)-th bit of Aj = (Akj)k∈[n].
– For v ∈ [`1 + `2 + 1, `], broadcast the share sjv[i].

(Local computation) Every Pi recovers bj , the Round 2 broadcast of Pj for every Pj as follows:

• (If Pj /∈ L.) Recover Round 1 messages of Pj as follows:

– For every Pk 6∈ L, compute akj by setting x(k) and rk to the all-zero string
– For every Pk ∈ L, use the broadcasted shares of akj in order to recover akj

On holding all the information about the first round of Pj in Π, compute Round 2 broadcast bj .
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• (If Pj ∈ L.) For every Pj ∈ L and k ∈ {1, . . . , `}, use broadcasted shares to recover the output of f̂jk.
Decode f̂j = (f̂j1, . . . , f̂j`) to obtain the output of fj , which is set to bj .

Compute the output of Πsm, based on all broadcast values (bi)i∈{1,...,n}, and output the result.

Figure 2: Protocol Πfs

Tolerating malicious adversaries. Towards building our final construction, our first step is to
identify the next-message functions of protocol Πfs which are subsequently modeled as single
input functionalities (SIFs). When we add these SIFs on top of Πfs, it becomes maliciously-secure.

Let the next-message function of protocol Πfs, be denoted as Πfs
i,r, for a party i ∈ {1, . . . , n}

and round r ∈ {0, 1, 2, 3} (where r = 3 is the function that returns the output of Pi at the end of
the protocol). We denote the randomness that Pi used in Round 0 and Round 1 by Ri,0, and Ri,1
respectively. We continue with a formal description of the functions.

Function Πfs
i,0: It takes randomness Ri,0, and compute Round 0 of Πfs. Specifically, given Ri,0, Πfs

i,0 sam-
ples random pads ρij , and the corresponding commitments and openings (Cij , oij), for j ∈ {1, . . . , n},
and returns the commitments Ci1, . . . , Cin and the opening oi1, . . . , oin.

Function Πfs
i,1: It takes two inputs

• the private view of Pi (i.e., the randomness Ri,0 and Ri,1, the input x(i), and all openings
o1i, . . . , oni), denoted by prViewi,1, and

• the public view of Round 0 (i.e., all the commitments (Ckj)k,j∈{1,...,n}), denoted by pubViewi,1

and performs the following computation

• verifies that Ri,0 is indeed the randomness used to generate Ci1, . . . , Cin,

• returns a failure-symbol ⊥ if the verification fails, and otherwise, returns the public broadcast of Pi
in Round 1 according to Πfs, by using Ri,1 as the randomness of Pi in Round 1.

Function Πfs
i,2: It takes two inputs

• the private view of Pi in Rounds 0 and 1 (i.e., the input x(i), randomness Ri,0, Ri,1 and all private
messages that Pi received in Round 0), denoted prViewi,2, and

• the public view of Pi (i.e., all broadcast messages in Rounds 0 and 1, including the broadcasts of Pi),
denoted pubViewi,2.

and performs the following computation

• verifies that the public messages of Pi are consistent with its view i.e., Ri,0 is indeed the randomness
used to generate the commitments Ci1, . . . , Cin, and that the broadcast of Pi in Round 1 is consistent
with x(i), Ri,0, Ri,1 and all messages that Pi received in Round 0.

• returns a failure-symbol ⊥ if the verification fails, and otherwise returns the public broadcast of Pi
in Round 2 according to Πfs.

Function Πfs
i,0, Πfs

i,1 and Πfs
i,2

Figure 3: Function Πfs
i,0, Πfs

i,1 and Πfs
i,2
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For a party Pi and a round r ∈ {1, 2}, we denote by Fi,r the single input functionality that
corresponds to Πfs

i,r where Pi plays the role of the dealer.

Inputs: Fi,r receives from the dealer the same inputs as Πfs
i,r (i.e., prViewi,r and pubViewi,r), as well as

commitments and openings (Cx(i), ox(i)) and (CRi
, oRi

).

Computation: Fi,r verifies that open(Cx(i), ox(i)) is equal to the input of Pi in prViewi,r, and that
open(CRi

, oRi
) is equal to the randomness (Ri,0, Ri,1) in prViewi,r. If the verification fails, or if

Πfs
i,r(prViewi,r, pubViewi,r) = ⊥ then it returns ⊥ to all parties. Otherwise, the functionality returns

(Πfs
i,r(prViewi,r, pubViewi,r), pubViewi,r, Cx(i), CRi

) (i.e., the output of Πfs
i,r on the public view and the

private view, together with the public view and the commitments) to all parties.

Functionality Fi,r

Figure 4: Functionality Fi,r

The final protocol. We present the final protocol for degree-2 computation, which is secure
against active adversaries. The protocol appears in Figure 5 and makes use of online/offline SIF
protocol. A security statement is given in Theorem 4.2, and is proved in Section B.

Round 0: The parties do as follows.

• (Randomness commitment) Each Pi samples random strings Ri,0 and Ri,1, and samples (CRi
, oRi

) ←
commitcrs((Ri,0, Ri,1)). Pi broadcasts CRi

.

• (Πfs simulation) The parties execute Round 0 of Πfs, where Pi uses randomness Ri,0.

• (sif offline round) For every i ∈ {1, . . . , n} the parties execute the offline round of a sif instance with
Pi as the dealer computing Fi,1. We denote this instance of sif by sifi,1.

Round 1: Party Pi receives input x(i). The parties do as follows.

• (Input commitment) Each Pi samples (Cx(i), ox(i))← commitcrs(x(i)), and broadcasts Cx(i).

• (Πfs simulation) Each party Pi acts as a dealer in the instance of Fi,1, and inputs prViewi,1 and
pubViewi,1.

• (sif offline round) For every i ∈ {1, . . . , n} the parties execute the offline round of a sif instance with
Pi as the dealer computing Fi,2. We denote this instance of sif by sifi,2.

• (Local computation) For every Pi for which the output of Fi,1 is ⊥, the parties set the broadcast of Pi
in the simulation of Πfs to be ⊥ (i.e., Pi aborted in Round 1 of Πfs).
Otherwise, let (bi,1, vi,1, Ci,1, C

′
i,1) be the output of Fi,1, where bi,1 is the output of Πfs

i,1, vi,1 is the
public view of Pi, and Ci,1 and C ′

i,1 are commitments. If vi,1 is inconsistent with the public view in
the simulation of Round 0, or Ci,1 6= Cx(i), or C ′

i,1 6= CRi
, then the parties set the broadcast of Pi in

the simulation of Πfs to be ⊥ (i.e., Pi aborted in Round 1 of Πfs).
Otherwise, they set the broadcast to be bi,1.

Protocol dtc
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Round 2: The parties do as follows.

• (Πfs simulation) Each party Pi acts as a dealer in the instance of Fi,2, and inputs prViewi,2 and
pubViewi,2.

• (Local computation) For every Pi for which the output of Fi,2 is ⊥, the parties set the broadcast of Pi
in the simulation of Πfs to be ⊥ (i.e., Pi aborted in Round 2 of Πfs).
Otherwise, let (bi,2, vi,2, Ci,2, C

′
i,2) be the output of Fi,2. If vi,2 is inconsistent with the public view in

the simulation of Rounds 0 and 1, or Ci,2 6= Cx(i), or C ′
i,2 6= CRi , then the parties set the broadcast

of Pi in the simulation of Πfs to be ⊥ (i.e., Pi aborted in Round 2 of Πfs). Otherwise, they set the
broadcast to be bi,2.
Finally, each party locally executes the local computation step of Πfs, in order to obtain its output in
the simulation of Πfs. This output is set to be the output of the protocol.

Figure 5: Protocol dtc

Theorem 4.2 (Security in hybrid model). Let κ be a security parameter, let n be the number of parties,
t < n/2. Let F be a field of size at least n + 1, and let F be a degree-2 n-party functionality over F with
circuit size s. Assuming the existence of perfectly-binding computationally-hiding NICOM, protocol dtc
is a UC-secure implementation of F in the (Fi,r)i∈[n],r∈[2]-hybrid model, against a static, active, rushing
adversary corrupting up to t parties. The complexity of the protocol is poly(s, log |F|, n, κ).

Alternatively, if we replace the perfectly-binding NICOM with statistically-hiding NICOM, we also
obtain everlasting security.

By instantiating the protocol with the UC-secure SIF protocols of [AKP22] (as stated in Sec-
tion 3.1.4), we immediately obtain the following corollaries.

Corollary 4.3 (Optimal-resiliency for a small number of parties). Let κ be a security parameter, let n be
the number of parties and t < n/2. Let F be a field of size at least n+1, and letF be a degree-2 functionality
over F with circuit size s. Assuming the existence of perfectly-binding sub-exponentially hiding NICOM,
protocol dtc is a UC-secure implementation of F , against a static, active, rushing adversary corrupting up
to t parties. The complexity of the protocol is poly(s, log |F|, 2n, κ).

Alternatively, if we replace the perfectly-binding NICOM with statistically-hiding NICOM, we also
obtain everlasting security.

Corollary 4.4 (Almost-optimal resiliency for a large number of parties). Let κ be a security parameter,
let ε > 0 be a constant, let n be the number of parties and let t be the number of corrupt parties such that
n = (2 + ε)t. Let F be a field of size at least n + 1, and let F be a degree-2 functionality over F with
circuit size s. Assuming the existence of perfectly-binding sub-exponentially hiding NICOM, protocol dtc
is a UC-secure implementation of F , against a static, active, rushing adversary corrupting up to t parties.
The complexity of the protocol is poly(s, log |F|, n, κ).

Alternatively, if we replace the perfectly-binding NICOM with statistically-hiding NICOM, we also
obtain everlasting security.

5 MPC with Strong Honest-Majority from OWF

We present a 3-round MPC protocol with everlasting security in the plain model, for degree-2 com-
putation with strong honest-majority t < n/3, assuming the existence of one-way function. We
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first design a 2-round verifiable secret sharing protocol (VSS), and then simply plug in our VSS in
the information-theoretic (statistical) framework of [AKP20a] to obtain degree-2 computation in 3
rounds.

5.1 Verifiable Secret Sharing

In this section our goal is to implement the following functionality.10

Inputs.

• An honest D inputs a symmetric bivariate polynomial F (x, y) of degree t in each variable.

• A corrupt D inputs a polynomial F (x, y).

Outputs.

• For an honest D, the functionality returns the univariate polynomial fi(x) := F (x, i) to every party
Pi.

• For a corrupt D, if the input F (x, y) is not a symmetric bivariate polynomial F (x, y) of degree t
in each variable, the functionality resets F (x, y) to be the zero-polynomial. The functionality Fvss

returns the univariate polynomial fi(x) := F (x, i) to every Pi.

Functionality Fvss

Figure 6: Functionality Fvss

As discussed in Section 2.2, we follow the footsteps of typical symmetric bivariate polyno-
mial based approach (see, e.g., [KKK09, AKP20b, AKP20a], see also Section C.1 for useful facts
about symmetric bivariate polynomials), and in addition we use a digital signature scheme and
randomized encoding (see Sections C.1 and 3 for formal definitions). We continue with the com-
plete description of function g that will be used as the basis for our (combined) gadget for 2-wise
consistency and share publication for unhappy parties.

The function g. The function g is defined as follows.

• Inputs. The function receives two triples (flagA, wA, σA) and (flagB, wB, σB), where
flagA, flagB ∈ {0, 1} indicate whether the parties are unhappy, wA, wB are “polynomial eval-
uation” tuples wA = (iA, jA, fA) and wB = (iB, jB, fB) for iA, jA, iB, jB ∈ {1, . . . , n} and
fA, fB ∈ F, and σA and σB are signatures.

• Outputs. If flagA = 1 or flagB = 1 then g outputs (flagA, wA, σA) and (flagB, wB, σB). Other-
wise flagA = flagB = 0. In this case, if fA = fB then g outputs “equal”. Otherwise, g outputs
“not equal” and the pairs (wA, σA) and (wB, σB).

10In the following functionality, we assume that the input of an honest D is well formed (i.e., it is a symmetric
bivariate polynomial F (x, y) of degree t in each variable). However, in the UC-security model, the inputs of the honest
parties are arbitrarily chosen. Therefore, we define that whenever the inputs of the honest parties are not well formed,
a complete break-down occurs, which means that the inputs of the honest parties are leaked to the adversary, and the
adversary can also determine the outputs of the functionality. This makes simulation trivial, so we ignore this case
from now on.
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Observe that g can be implemented by a binary NC1 circuit, and so, by Theorem 3.5 it has a 2-
decomposable randomized encoding ĝ = (ĝA, ĝB), where ĝA takes (flagA, wA, σA) and randomness
r, and ĝB takes (flagB, wB, σb) and (the same) randomness r. We sometimes refer to the first triple
as the inputs of Alice, and to the second triple as the inputs of Bob.

The protocol. The protocol is presented in Figure 7. A security statement appears in Theo-
rem 5.1, and a proof of security appears in Section C.

Primitives: A digital signature scheme (Gen,Sign,Vrfy) (see Section C.1)

Inputs: D holds a symmetric bivariate polynomial F (x, y) of degree-t in both variable.

Round 1:

• (Key setup for signature schemes). D samples a signature-key and a verification-key (sk, vk) ←
Gen(1κ). D broadcasts the verification-key vk.

• (Polynomials distribution). For every i, j ∈ {1, . . . , n}, D computes wij := (i, j, F (i, j)) and σij :=
Signsk(wij). For every i ∈ {1, . . . , n}, D sends F (x, i) to Pi, together with the signatures σi1, . . . , σin.

• (Randomness sampling for randomized encoding). For every i < j, Pi samples randomness rij for an
instance of the randomized encoding ĝ, which we denote by ĝij . Pi sends rij to Pj .

• (Setting flags). Every party Pi does as follows. Let f̄i(x) be the degree-t polynomial that Pi received
from D, let σ̄i1, . . . , σ̄in be the signatures that Pi received from D, and let w̄ij := (i, j, f̄i(j)). If there
exists j ∈ {1, . . . , n} such that Vrfyvk(w̄ij , σ̄ij) = 0 then Pi sets flagi = 1. Otherwise, Pi sets flagi = 0.

Round 2:

• (Broadcasting flags). Every Pi broadcasts its flag flagi.

• (Pairwise consistency checking via randomized encoding). For every i < j, Pi and Pj do as follows.
Pi holds (flagi, w̄ij , σ̄ij) which we think of as the inputs of Alice to g, and Pj holds (flagj , w̄ji, σ̄ji),
which we think of as the inputs of Bob to g. Pi broadcasts ĝijA (flagi, w̄ij , σ̄ij ; rij), and Pj broadcasts
ĝijB (flagj , w̄ji, σ̄ji; rij).

Local computation:

• (Decoding output) For every i < j the parties decode the output of ĝij = (ĝijA , ĝ
ij
B ) using the broadcasts

of Pi and Pj . Denote the output by Outij

• (Inconsistency check) If there exist i < j so that (1) Outij is “not equal” together with (w̄ij , σ̄ij)
and (w̄ji, σ̄ji), where w̄ij = (i, j, fij), w̄ji = (j, i, fji), and fij , fji ∈ F, (2) fij 6= fji, and (3)
Vrfyvk((i, j, fij), σ̄ij) = 1 and Vrfyvk((j, i, fji), σ̄ji) = 1, then D is discarded.a

• (Share recovery for unhappy parties) Otherwise, let L be the set of all parties Pi that broadcasted flagi =
0. If the size of L is less than n− t then D is discarded.
Otherwise, the size of L is at least n − t. For every Pi /∈ L, let Li be the set of all Pj ∈ L such that
(1) Outij is (flagi, w̄ij , σij) and (flagj , w̄ji, σ̄ji), (2) flagi = 1 and flagj = 0, (3) w̄ji = (j, i, fji) for some
fji ∈ F, and (4) Vrfyvk(w̄ji, σ̄ji) = 1.
If the set Li is of size at least n − 2t, reset the polynomial f̄i(x) to be the polynomial obtained by
interpolating (fji)Pj∈Li . If f̄i(x) has degree more than t then D is discarded.

Protocol vss
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• (Output) If D was not discarded then every Pi outputs f̄i(x).

aWhen D is discarded we simply assume that every Pi resets f̄i(x) to be the zero-polynomial, and outputs f̄i(x).

Figure 7: Protocol vss

Theorem 5.1. Let κ be a security parameter, let n be the number of parties and t < n/3. Let F be a field of
size at least n+1. Assuming the existence of one-way functions, protocol vss is a UC-secure implementation
of Fvss with everlasting security, against a static, active, rushing adversary corrupting up to t parties.
The complexity of the protocol is poly(log |F|, n, κ).

5.2 From VSS to Degree-2 Computation

Applebaum et al. [AKP20a] presented a reduction from degree-2 computation to secure imple-
mentation of the Fvss functionality. Specifically, they demonstrate a 2-round protocol where the
first round has access to an ideal VSS channel. This leads to a compiler that turns every r-round
secure realization of the functionality Fvss into an (r + 1)-round secure realization of degree-2
computation, and where the compiler preserves even statistical security. The following theorem
follows.

Theorem 5.2. Let κ be a security parameter, let n be the number of parties and t < n/3. Let F be a field of
size at least n+ 1. Assuming the existence of one-way functions, there exists a UC-secure implementation
of Fdtc with everlasting security, against a static, active, rushing adversary corrupting up to t parties.
The complexity of the protocol is poly(log |F|, n, κ).
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A Appendix: Security Model, Useful Facts and Standard Primitives

A.1 Security model

In this section we give a high-level description of the UC-framework, due to [Can01]. For more
details, the reader is referred to [Can01]. We begin with a short description of the standard model,
and then explain how the UC-framework augments it. At a high level, in the standard model,
security of a protocol is argued by comparing the real-world execution to an ideal-world execu-
tion. In an ideal-world execution, the inputs of the parties are transferred to a trusted party F
(called the ideal functionality) over a perfectly secure channel, the trusted party computes the func-
tion based on these inputs and sends to each party its respective output. Informally, a protocol π
securely implements F if for any real-world adversary A, there exists an ideal-world adversary S
(called the simulator), that controls the same parties as A, so that the global output of an execution
of π with A (consisting of the honest parties’ outputs and the output of A), is indistinguishable
from the global output of the ideal-world execution withF and S (consisting of the honest parties’
outputs and the output of S).

The UC-framework augments the standard model by adding an additional entity, called the
environment Z . In the real-world, Z arbitrarily interacts with the adversary A, and, in addition,
Z generates the inputs of the honest parties at the beginning of the execution, and receives their
outputs at the end of the execution. In the ideal world, the same environmentZ arbitrarily interacts
with the simulator S, and, in addition, Z communicates with dummy parties, that receive the
honest parties’ inputs from Z and immediately transfer them to F , and later receive the honest
parties’ outputs from F and immediately transfer them to Z . In both worlds, at the end of the
execution the environment Z outputs a single bit.

For a security parameter κ and input ζ toZ , we denote the distribution of the output bit ofZ(ζ)
in a real-world execution of π with adversary A by REALπ,Z(ζ),A(κ). We denote the distribution
of the output bit of Z(ζ) in an ideal-world execution with ideal-functionality F , simulator S by
IDEALF ,Z(ζ),S(κ). Intuitively, we say that a protocol π UC-emulates an ideal-functionality F if
for every real-world polynomial-time adversary A there exists an ideal-world polynomial-time
simulator S, so that for any environment Z and any input ζ to Z , it holds that {REALπ,Z(ζ),A(κ)}κ
is computationally indistinguishable from {IDEALF ,Z(ζ),S(κ)}κ.

The dummy-adversary. Since the above definition quantifies over all environments, we can
merge the adversary A with the environment Z . That is, it is enough to require that the simu-
lator S will be able to simulate, for any environment Z , the dummy adversary that simply delivers
messages from Z to the protocol machines. For more information, see [Can01].

The hybrid model. The UC-framework is appealing because it has strong composability prop-
erties. Consider a protocol ρ that securely implements an ideal functionality G in the F-hybrid
model (which means that the parties in ρ have access to an ideal functionality F), and let π be a
protocol that securely implements F . The composition theorem guarantees that if we replace in ρ
each call to F with an execution of π we obtain a secure protocol. This means that it is enough to
prove the security of a protocol in the hybrid model, where the analysis is much simpler.
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Everlasting security. We also consider a hybrid version of statistical and computational security.
Intuitively, everlasting security requires that an environment which is polynomially-bounded dur-
ing the execution and is allowed to be unbounded after the execution, cannot distinguish the real-
world from the ideal-world. Observe that this security notion lies between computational-security
(where we consider only environments that are always polynomially-bounded) and statistical-
security (where we also consider environments that are unbounded during the execution of the
protocol).

The notion of everlasting security was formalized in the UC-framework by [MU10]. In a nut-
shell, instead of considering environments that are unbounded after the execution, it is enough
to consider only environments that are always polynomially-bounded, but are not limited to a
single bit output. In particular, such environments can output their whole view. Using the same
notation as before, REALπ,Z(ζ),A(κ) and IDEALF ,Z(ζ),S(κ), to denote the output distribution of Z
in the real-world and in the ideal-world (where now the output may contain more than one bit),
we say that a protocol π UC-emulates an ideal functionality F with everlasting security, if for
every polynomial-time real-world adversary A there exists an ideal-world polynomial-time sim-
ulator S such that for any polynomial-time environment Z and any input ζ to Z , the random
variables {REALπ,Z(ζ),A(κ)}κ, and {IDEALF ,Z(ζ),S(κ)}κ are statistically indistinguishable. There-
fore, in general, in order to prove security it is enough to show that the view of the environment
in the real-world is statistically-close to the view of the environment in the ideal-world.

We mention that the composition theorems of UC-security hold for protocols with everlasting
security (i.e., the composition of two protocols with everlasting security results in a protocol with
everlasting security). For a formal definition and statement of the composition theorem, the reader
is referred to [MU10].

Global setup. In order to obtain protocols with everlasting security, we use non-interactive com-
mitments which are statistically-hiding and computationally binding. Such commitments cannot
be implemented in the plain model and they require an additional round of intereaction or some
global setup. (Otherwise, a non-uniform adversary can “hardwire” an ambiguous commitment
with 2 consisting openings). In our setting the setup consists the slection of a collision-resistance
hash function h from a family H. For simplicity, we capture this via the standard notion of
common reference string (CRS). (Though, weaker notions suffice as discussed in Remark 1.4.)
Throughout the paper, whenever we consider everlasting security, we assume that all function-
alities and parties have access to the same global functionality Fcrs, that, upon receiving a query,
returns the common reference string. We mention that, since all our protocols are static systems,
where all identities and connectivity is fixed beforehand, the composition theorems in this model
follow immediately from the composition theorems guaranteed by UC-security, even when we
consider everlasting security (see, e.g., [BCH+20, Section 1]).

B Proof of Theorem 4.2

In the following section we provide formal security proof for protocol dtc. The same proof that
shows that protocol dtc securely implements degree-2 computation when the underlying com-
mitment scheme is computationally-hiding, also shows that dtc securely implements degree-2
computation with everlasting security when the underlying commitment scheme is statistically-
hiding, simply by changing computational-indistinguishability to statistical-distance throughout
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the proof. Thus, we unify notation and say that random variables X and Y are ε-close, which
means that X and Y are ε-indistinguishable by polynomial-size circuits when the underlying
commitment scheme is computationally-hiding, or that X and Y are ε-close in statistical distance,
when the underlying commitment scheme is statistically-hiding.

Throughout, we denote by View the tuple consists of the randomness of the environment, the
messages that the corrupt parties sent and received, and the inputs of the honest parties (which
are picked by the environment). We denote by ε the error term of the commitment scheme, where
ε = negl(κ). We always assume that the adversary is the dummy adversary (see Section A.1).

To simplify the notation, we assume that F computes a degree-2 function with a single output

f(x1, . . . , xm) = α0 +
∑

i∈{1,...,m}

αi · xi +
∑

i,j∈{1,...,m}

αij · xi · xj ,

for some field elements (αi)i∈{0,...,m}, (αij)i,j∈{1,...,m}. A generalization to the case of multi-output
function is straightforward, but requires cumbersome notation. We follow the notation presented
in Section 4, and for every party Pi, we denote by Ii ⊆ {1, . . . ,m} the set of all indices j such that
Pi holds the input xj . We denote the inputs of Pi by x(i) := (xj)j∈Ii .

B.1 The Simulator

We continue with the proof that protocol dtc UC-emulates the degree-2 functionality F (with ev-
erlasting security when the underlying commitment scheme is statistically-hiding). By the com-
position properties of UC-security, it is enough to prove security in the Fsif-hybrid model. Let A
be the dummy adversary. We define the simulator S as follows. S uses A in a black-box manner,
and forwards all messages between Z and A. S first receives the set of corrupt parties C, and acts
as follows.

Round 0. For every honest Pi the simulator acts exactly like in the protocol. That is, the simula-
tor samples randomness (Ri,0, Ri,1) on behalf of Pi, samples (CRi , oRi) ← commitcrs((Ri,0, Ri,1)),
and broadcasts CRi on behalf of Pi. In addition, the simulator computes the commitments and
openings (Ci1, oi1), . . . , (Cin, oin) according to Πfs

i,0(Ri,0), broadcasts Ci1, . . . , Cin and sends oij to
any corrupt Pj . This concludes the communication from honest parties to corrupt parties.

At the end of the round, the simulator receives from A the messages from the corrupt par-
ties to the honest parties. That is, for every corrupt Pi the simulator receives the commitments
Ci1, . . . , Cin, as well as the private message oij to every honest Pj . We note that both the broad-
cast messages and the private messages might possibly be ⊥. This concludes the simulation of
Round 0.

Round 1. We denote by pubView1 the public view of the parties at the beginning of Round 1 (i.e.,
all broadcast message in Round 0). For every honest Pi the simulator does as follows.

• (Input commitment) The simulator samples (Cx(i), ox(i)) ← commitcrs(0) and broadcasts Cx(i)

on behalf of Pi.

• (Computation of Li) The simulator computes the set Li that contains all corrupt parties Pj that
sent invalid openings to Pi in Round 0.
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• (Simulation of Πsm) For every j ∈ Ii the simulator samples random field elements (xjk)k∈C as
the shares of the corrupt parties. In addition, the simulator samples random field elements
(zik)k∈C as the shares of the corrupt parties in the zero-sharing. The simulator sets aik :=

(zik, (x
j
k)j∈Ii) for every k ∈ C.

• (Sharing computation) For every j ∈ {1, . . . , n}, the simulator samples random elements
(aij [k])k∈C as the shares of the corrupt parties in the sharing of aij .

The simulator also samples random shares ~sij for every corrupt Pj as the shares of the ran-
domized encoding outputs.

• (Messages of Πfs) For every corrupt Pj /∈ Li, let ρji = open(Cji, oji), where Cji is the i-th
commitment that Pj broadcasted in Round 0, and oji is the opening that Pj sent to Pi in
Round 0. The simulator sets Mij := aij + ρji as the message to Pj .

For every corrupt Pj ∈ Li, the simulator sets Mij := aij as the message to Pj .

For every honest Pj , the simulator samples a random message Mij as the message to Pj .

• (sif simulation) For every honest Pi the simulator returns
((Li,Mi1, . . . ,Min), pubView1, Cx(i), CRi) as the output of Fi,1.

This concludes the communication from honest parties to corrupt parties. At the end of the
round, the simulator receives from A the inputs of every corrupt Pi to the functionality Fi,1. The
simulator computes the output of the functionality (that depends only on the inputs of Pi), and
returns it to all the corrupt parties. This concludes the simulation of Round 1.

Communication with F . Let L be the set of all parties. For every corrupt Pi the simulator does
as follows. If the output of Fi,1 is ⊥, or if the output is (bi,1, vi,1, Ci,1, C

′
i,1) where vi,1 6= pubView1,

or Ci,1 6= Cx(i) or C ′i,1 6= CRi , then the simulator (1) removes Pi from L, and (2) sets x(i) to be
the all-zero vector, and sends x(i) to F . Otherwise, the output of Fi,1 is (bi,1, pubView1, Cx(i), CRi).
In this case, consider the inputs (Cx(i), ox(i)) of Pi to Fi,1, and let x(i) := open(Cx(i), ox(i)). The
simulator inputs x(i) to F as the inputs of Pi. Finally, the simulator receives the output y of F .

Round 2. We denote by pubView2 the public view of the parties at the beginning of Round 2 (i.e.,
all broadcast message in Rounds 0 and 1). The simulator samples a random degree-2t polynomial
W (x) conditioned on W (0) = y and

W (i) = f(x1i , . . . , x
m
i ) + z1i + . . .+ zni ,

for every i ∈ C.
For every honest Pi the simulator does as follows.

• (Randomized encoding simulation) The simulator samples (Xiv)v∈{1,...,`} ← SREi (W (i)), where
SREi is the simulator of the randomized encoding f̂i, and Xiv is the simulated output of fiv.

For every input-bit `1 + `2 + 1 ≤ v ≤ `, that belongs to inputs (3)–(4) of fi, the simulator
generates the honest parties’ shares of the output of f̂iv as follows. Let (Xiv[k])k∈C be the
shares that the simulator picked in the simulation of Round 1. The simulator picks a random
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degree-t polynomial hiv(x) conditioned on hiv(0) = Xiv and hiv(k) = Xiv[k] for all k ∈ C.
The simulator sets Xiv[k] := hiv(k) as the share of an honest Pk.

For every input-bit 1 ≤ v ≤ `1+`2, that belongs to inputs (1)–(2) of fi, the simulator holds the
value of the v-th input bit, which we denote by βv, and it generates the honest parties’ shares
of the output of f̂iv as follows. Let (Xβ

iv[k])k∈C,β∈{0,1} be the shares that the simulator picked
in the simulation of Round 1, where Xβ

iv[k] is the k-th share of the output of f̂iv on input β.
The simulator picks a random degree-t polynomial hiv(x) conditioned on hiv(0) = Xiv and
hiv(k) = Xβv

iv [k] for all k ∈ C. The simulator sets Xiv[k] := hiv(k) as the share of an honest
Pk.

• (Shares of messages) For every corrupt Pj not in L, pick a random degree-t polynomial hij(x)
conditioned on hij(0) = aij and hij(k) = aij [k] for all k ∈ C. The simulator sets aij [k] :=
hij(k) for all k ∈ H.

For every honest Pi the simulator computes the output of Fi,2 as follows.

• For every honest Pk the simulator sets Bik := (Xkv[i])v∈{1,...,`}.

• For every corrupt Pk in L, the simulator holds all the messages that Pk sent to Pi in the
simulation of Πfs. Given those messages, the simulator sets Bik to be the shares that Pi
would broadcast in Πfs in order to recover the output of f̂k.

• For every corrupt Pk not in L, the simulator sets Bik := (ājk[i])Pj∈L, where (1) ājk[i] := ajk[i]
when Pj is honest, (2) ājk[i] is the share of ajk that Pj sent to Pi in Round 1 for corrupt Pj
with Pi /∈ Lj , and (3) ājk[i] := ⊥when Pj is corrupt and Pi ∈ Lj .

Finally, the simulator sets Bi := (Bi1, . . . , Bin), and sets the output of Fi,2 to be
(Bi, pubView2, Cx(i), CRi). This concludes the communication from honest parties to corrupt par-
ties. At the end of the round, the simulator receives from A the inputs of every corrupt Pi to the
functionality Fi,2, computes the output, and returns it to all corrupt parties. This concludes the
simulation.

B.2 Analysis

Fix a polynomial-time environment Z with input ζ, and assume without loss of generality that Z
is deterministic. We begin by showing that the view of Z in the real-world is close to the view of
Z in the ideal world.

B.2.1 Hybrids

First define some hybrid experiments in which the honest parties know the identity of each other.

Hybrid 1. In Round 0 the parties play according to protocol dtc. In Round 1, for every i ∈
H we change the ideal functionality Fi,1 as follows. The functionality receives from Pi (1) the
public view in Round 0 and the commitments Cx(i), CRi , (2) the pads ρi1, . . . , ρin, (3) the set Li,
as well as the pads ρji for every Pj /∈ Li, and (4) the input x(i) and randomness Ri,1 of Pi. The
functionality computes the broadcast of Pi in Round 1 of Πfs according to inputs (2)–(4), and
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returns the broadcast, the public view that Pi provided, and the commitments Cx(i), CRi that Pi
provided. Note that the functionality does not verify the consistency of the private view with
the public view. We instruct Pi to provide Fi,1 with the correct inputs, and other than that act
according to dtc.

In Round 2, for every i ∈ H we change the ideal functionality Fi,2 as follows. The functionality
receives from Pi (1) the public view in Round 0 (2) the public view in Round 1, (3) the pads
ρi1, . . . , ρin, and (4) the set Li, as well as the pads ρji for every Pj /∈ Li. The functionality computes
the broadcast of Pi in Round 2 of Πfs according to inputs (2)–(4), and returns the broadcast and the
public view that Pi provided. We instruct an honest Pi to provide Fi,2 with the correct inputs and
other than that act according to dtc.

Hybrid 2. For every i ∈ H, we modify the ideal functionalities Fi,1 and Fi,2 like in Hybrid 1.
In addition, we make the following changes in the protocol. In Round 0, the honest parties play
exactly like in Round 0 of Hybrid 1. In addition, for every ordered pair of honest parties (Pi, Pj),
Pi picks an additional random pad ρ′ij , and sends it to Pj . For every honest Pi, We set ρ̄ij := ρij if
j ∈ C, and ρ̄ij := ρ′ij if j ∈ H. For a corrupt Pi we let ρ̄ij := ρij for all j ∈ {1, . . . , n}.

In Round 1, every honest Pi samples fresh randomness R̄i,1 and inputs to the modified ideal
functionality Fi,1 the following inputs: (1) the public view in Round 0 and the commitments
Cx(i), CRi , (2) the pads ρ̄i1, . . . , ρ̄in, (3) the set Li, as well as the pads ρ̄ji for every Pj /∈ Li, and
(4) the input x(i) and randomness R̄i,1. Other than that Pi acts exactly like in Hybrid 1.

In Round 2, every honest Pi inputs to the modified ideal functionalityFi,1 the following inputs:
(1) the public view in Round 0, (2) the public view in Round 1, (3) the pads ρ̄i1, . . . , ρ̄in, (4) the set
Li, as well as the pads ρ̄ji for every Pj /∈ Li. Other than that Pi acts exactly like in Hybrid 1.

Hybrid 3. The honest parties act like in Hybrid 2, except that in the input-commitment in
Round 1, each honest Pi commits to the all zero string instead of its input. We denote the commit-
ment by C̄x(i).

We continue by proving that the real-world is O(n2ε)-close to the ideal-world.

B.2.2 Real-world vs. Hybrid 1

It is not hard to see that the real-world view has the same distribution as the view in Hybrid 1. This
follows because, given the correct pads ρi1, . . . , ρin, set Li and pads ρji for Pj in Li, the modified
functionalities have the same output as the original functionalities.

B.2.3 Hybrid 1 vs. Hybrid 2

We show that Hybrid 1 is O(n2ε)-close to Hybrid 2. Consider the Hybrid 1 random variables

((Cij)i∈H,j∈{1,...,n}, (ρij)i∈H,j∈H, (oij)i∈H,j∈C, (CRi , Ri,1)i∈H), (1)

and the Hybrid 2 random variables

((Cij)i∈H,j∈{1,...,n}, (ρ̄ij)i∈H,j∈H, (oij)i∈H,j∈C, (CRi , R̄i,1)i∈H), (2)
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as well as the following hybrids,

((Cij)i∈H,j∈{1,...,n}, (ρij)i∈H,j∈H, (oij)i∈H,j∈C, (C̄Ri , Ri,1)i∈H), (3)

and
((Cij)i∈H,j∈{1,...,n}, (ρ̄ij)i∈H,j∈H, (oij)i∈H,j∈C, (C̄Ri , R̄i,1)i∈H), (4)

where C̄Ri is a commitment of the all-zero string (that is, it is independent of Ri,0, Ri,1).
First, observe that the random variables in Equation 1 are O(nε)-close to the random variables

in Equation 3. Indeed, by the hiding property of the commitment scheme the random variables
(Ri,0, Ri,1, CRi)i∈H are O(nε)-close to the random variables (Ri,0, Ri,1, C̄Ri)i∈H, and there exists an
efficient process that given a sample from (Ri,0, Ri,1, CRi)i∈H outputs a sample from Equation 1,
and given a sample from (Ri,0, Ri,1, C̄Ri)i∈H outputs a sample from Equation 3. A similar argu-
ment shows that the random variables in Equation 2 are O(nε)-close to those in Equation 4.

In addition, the random variables in Equation 3 areO(n2ε)-close to those in Equation 4. Indeed,
the random variables (C̄Ri , Ri,1)i∈H have the same distribution as (C̄Ri , R̄i,1)i∈H. Conditioned on
those values, the random variables (ρij)i∈H,j∈H and (ρ̄ij)i∈H,j∈H have the same distribution. Con-
ditioned on those values, the random variables (Cij , oij)i∈H,j∈C have the same distribution. Con-
ditioned on those values, the commitments (Cij)i∈H,j∈H are O(n2ε)-close.

We conclude that the Hybrid 1 random variables in Equation 1 areO(n2ε)-close to the Hybrid 2
random variables in Equation 2. Finally, one can verify that in both hybrids the rest of the view
can be obtained from those random variables by the same efficient process. We conclude that he
view in Hybrid 1 is O(n2ε)-close to the view in Hybrid 2.

B.2.4 Hybrid 2 vs. Hybrid 3

We show that Hybrid 2 is O(nε)-close to Hybrid 3. It is not hard to see that the Hybrid 2 random
variables

((Cij)i∈H,j∈{1,...,n}, (ρ̄ij)i∈H,j∈H, (oij)i∈H,j∈C, (CRi)i∈H),

have the same distribution as the corresponding random variables in Hybrid 3. Conditioned on
those value, the Round 0 messages of the corrupt parties have the same distribution. Fix those
as well. Then the inputs of the honest parties are picked by Z in the same way in both hybrids,
so they have the same distribution. Conditioned on the inputs, the Hybrid 2 random variables
(Cx(i))i∈H are O(nε)-close to the Hybrid 3 random variables (C̄x(i))i∈H. Finally, one can verify that
in both hybrids the rest of the view can be obtained from those random variables by the same
efficient process. We conclude that the view in Hybrid 2 is O(nε)-close to the view in Hybrid 3.

B.2.5 Hybrid 3 vs. Ideal-world.

We show that view in Hybrid 3 is ε-close in statistical distance to the view in the ideal-world.

Round 0. It is not hard to see that the view in Round 0 is the same in both worlds. Conditioned
on those values, the inputs of the honest parties are picked in the same way in both worlds, and
we fix those inputs as well.
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Round 1. In Round 1, the commitment C̄x(i) has the same distribution in both worlds. In ad-
dition, in both worlds, for every honest Pi the Round 1 broadcasts Mij for an honest Pj are uni-
formly distributed. It remains to analyse the broadcasts Mij from an honest Pi to a corrupt Pj .
Since in both worlds Pi uses the pads in the same way, it is enough to consider the distribution
of the messages in Πfs, that is, the messages (mij)j∈C. Those messages consist of (1) the messages
(aij)j∈C, that consist of the the corrupt parties’ shares in the input-sharing and zero-sharing of Pi
in Πsm, (2) the corrupt parties shares’ of the messages (aij)j∈{1,...,n}, and (3) corrupt parties shares’
of the randomized encoding outputs. By the perfect privacy of Shamir’s secret sharing, and the
fact that in Hybrid 3 the honest parties use fresh randomness R̄i,1 in Round 1, we conclude that
in both worlds those messages have the same distribution (that is, all the shares are uniformly
distributed). We conclude that the view in Round 1 has the same distribution in both worlds.

Process. Consider the efficient process, that receives the (partial) view of Z in Rounds 0 and 1
and does as follows. First, it sets L to be the set of all parties. For every corrupt Pi, if the output
of Fi,1 is ⊥, or if the output is (bi,1, vi,1) where vi,1 is not equal to the public view, then the process
(1) removes Pi from L, and (2) sets x(i) to be the all-zero vector. Otherwise, the process takes
the inputs (Cx(i), ox(i)) of Pi to Fi,1, and sets x(i) := open(Cx(i), ox(i)). In addition, for every
honest Pi, the process holds the inputs x(i) that Z gave to Pi. The process computes the value
ȳ := f(x1, . . . , xm). Given L and ȳ the process generates the Round 2 messages from honest
parties to corrupt parties exactly like the simulator, and outputs the view of Z in Rounds 0, 1
and 2.

Round 2. The output of the process when receiving a partial view from the ideal-world has the
same as the view of Z in the ideal-world, so we continue with the analysis of Hybrid 3. Consider
all commitments and openings that are generated by the honest parties in Rounds 0 and 1, as well
as the commitments broadcasted by the corrupt parties, the openings that are sent from corrupt
parties to honest parties, and the commitments and openings defined by the randomness (Ri,0)i∈C
that the corrupt parties send to Fi,1 in Round 1 (i.e., the commitments and openings generated
by Πfs

i,0(Ri,0)). We say that the view of the environment in Rounds 0 and 1 is good if for every
pair of commitments C and C ′ and any opening o the following holds: either open(C, o) = ⊥ or
open(C ′, o) = ⊥ or open(C, o) = open(C ′, o). By the binding property of the commitment scheme
it follows that the view is good with probability at least 1− ε.

Fix any good view of Rounds 0 and 1. For every Pi in L, and every j ∈ Ii, denote by fx
j
(x) the

degree-t polynomial that Pi used for the sharing of xj . Similarly, denote by fz
i
(x) the degree-2t

polynomial that Pi used for the zero-sharing. Note that those polynomials are computed by Fi,1
given x(i) and Ri,1. For every Pi not in L, the inputs x(i) and randomness ri are set to the all-zero
string, and we let fx

j
(x) and fz

i
(x) be the sharing polynomials defined by x(i) and ri. Consider

the degree-2t polynomial

fout(x) = α0 +
∑

i∈{1,...,m}

αi · fx
i
(x) +

∑
i,j∈{1,...,m}

αij · fx
i
(x) · fxj (x) + fz

1
(x) + . . .+ fz

n
(x),

and observe that fout(x) is a random degree-2t polynomial conditioned on fout(0) = ȳ and
fout(i) = f(x1i , . . . , x

m
i ) + z1i + . . . + zni , for every i ∈ C. We conclude that fout(x) has the same

distribution as the polynomial W (x) defined by the process. Fix those polynomials. We continue
by analysing the recovery of the parties broadcast in Round 2. We split into cases.
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• Let Pi be a corrupt party in L. Since the process computes the broadcast of every honest Pk
according to the protocol, we conclude that the broadcasts of the honest parties that corre-
spond to the reconstruction of Pi’s broadcast in the second round of Πsm are fixed and have
the same distribution in both worlds.

• Let Pi be a corrupt party outside L. For every corrupt Pj , and every message aji, the shares
of the honest parties that are generated by the process are the same as the shares in Hybrid 3.
For every honest Pj , by the perfect privacy of the secret sharing scheme, the shares of the
honest parties that are generated by the process are the same as the shares in Hybrid 3.

• Fix an honest Pi, and observe that Pi is in L. In Hybrid 3, let β1, . . . , β`1+`2 be the binary
representation of the public inputs (1)–(2) of fi (which are known to all the parties), and let
β`1+`2+1, . . . , β` be the binary representation of the private inputs (3)–(4) of fi, that is, of x(i),
r̄i and η̄i1, . . . , η̄in, where r̄i is the randomness defined by R̄i,1, and η̄ij is the first entry of ρ̄ij .
Observe that since the view is good, then fi(βi,1, . . . , βi,`) = fout(i).

Let r̄REi be the randomness of the randomized encoding defined by R̄i,1, and observe that it
is uniformly distributed. By the perfect privacy of the randomized encoding, the distribu-
tion of f̂i(βi,1, . . . , βi,`; r̄REi ) is the same as the distribution of SREi (fout(i)). Therefore, by the
perfect privacy of the secret sharing scheme, the shares of the honest parties corresponding
to the reconstruction of the output of f̂i in Hybrid 3, have the same distribution as the shares
generated by the process.

We conclude that the view in Hybrid 3 is (1− ε)-statistically-close to the view in the ideal-world.

B.2.6 Honest parties’ outputs

We say that the view of the environment is good if for every pair of commitments C and C ′ and
any opening o the following holds: either open(C, o) = ⊥ or open(C ′, o) = ⊥ or open(C, o) =
open(C ′, o). By the binding property of the commitment scheme it follows that the view is good
with probability at least 1− ε.

When the view is good then in both worlds the output can be extracted from the view by the
following efficient process. The process extract the values x1, . . . , xm as follows: (1) for an honest
Pi let x(i) the inputs of Pi according to the view, (2) for a corrupt Pi in L let (Cx(i), ox(i)) be the
inputs of Pi to Fi,1, and let x(i) := open(Cx(i), ox(i)), and (3) for a corrupt Pi not in L, let x(i) be the
all-zero string. The process outputs f(x1, . . . , xm). It is not hard to see that when the view is taken
from the ideal-world, the process outputs the output of the honest parties in the ideal-world.

We continue with the analysis of the real-world. In Round 1, every honest party follows the
protocol. For every corrupt party Pi that abort, the parties set x(i) and ri to be the all-zero string,
and so they hold all of its outgoing messages in Πsm. Consider a corrupt party Pi that did not abort
in the simulation of Πfs in Round 1, let x(i) := open(Cx(i), ox(i)), and (Ri,0, Ri,1) := open(CRi , oRi),
where (Cx(i), ox(i)) and (CRi , oRi) are provided to Fi,1 by Pi. Let (aij)j∈{1,...,n} be the messages
of Pi in Πsm with input x(i) and randomness ri, let aij [k] be the k-th share of aij , when sampled
using Ri,1, and let ~sij be the vector of j-th shares of the randomized encoding, which is sampled
according to Πfs using Ri,1. Then, for every Pj the following holds.

• If Pj /∈ Li, the message that correspond to Pj is (aij , (aik[j])k∈{1,...,n}, ~sij) + ρji, where ρij :=
open(Cji, oji), where oji is provided to Fi,1 as the Round 0 message from Pj . Since the view
is good, for every honest Pj , the pad ρji is the same pad that Pj sampled in Round 0.
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• In addition, for every Pj ∈ Li, the message that correspond to Pj is (aij , (aik[j])k∈{1,...,n}, ~sij).

In Round 2, observe that all honest Pi’s are in L. In addition, for every Pi in L the following
holds: (1) Every honest Pj provides the correct shares of the output of the randomized encoding,
and (2) since the view is good, every corrupt Pj either provides the correct shares of the random-
ized encoding, or is considered as an aborting party. Since there are at least t + 1 honest parties,
there are at least t + 1 shares, and the honest parties can recover the output of the randomized
encoding. By the perfect correctness of the randomized encoding, we conclude that the output is
the output of fi on inputs (1) the bits L1[i], . . . , Ln[i], so that Lj [i] = 1 if Pj aborted in Round 1
(in which case the parties set Lj to be the set of all parties) or if Pj did not abort and Pi is in Lj ,
(2) the messages (Aji)j∈{1,...,n}, so that Aji = aji if Pj aborted in Round 1 or if Pj did not abort and
Pi ∈ Lj , and Aji = aji+ρij if Pj did not abort and Pi /∈ Lj , (3) the input x(i) and randomness ri of
Pi in the simulation of Πsm, and (4) pads ηi1, . . . , ηin. Therefore, the output is exactly the broadcast
message bi of Pi in Round 2 of Πsm, when holding (x(i), ri, (aji)j∈{1,...,n}).

In addition, since the view is good, for every corrupt Pi which is not in L, the messages
(aji)j∈{1,...,n} are being recovered in Round 2, so the parties recover the broadcast message bi of Pi
in Round 2 of Πsm, when holding (x(i), ri, (aji)j∈{1,...,n}). We conclude that the output in protocol
dtc is the same output as in an execution of Πsm where Pi holds input x(i) and randomness ri.
By the perfect correctness of Πsm against a semi-malicious adversary, it follows that the output is
f(x1, . . . , xm), which is exactly the output of the process. This concludes the proof of security.

C Proof of Theorem 5.1

In the following section we provide formal security proof for protocol vss. Throughout, we denote
by View the tuple consists of the randomness of the environment, the messages that the corrupt
parties sent and received, and the inputs of the honest parties (which are picked by the environ-
ment). We always assume that the adversary is the dummy adversary (see Section A.1).

C.1 Additional Preliminaries

C.1.1 Digital Signature Scheme

We begin with the definition of a digital signature scheme. The following definition is adopted
from [Gol04].

Definition C.1 (Digital signature scheme.). A digital signature scheme is a triple (Gen, Sign,Vrfy) of
probabilistic polynomial-time algorithms satisfying the following properties.

• On input 1κ, algorithm Gen (called the key generator outputs a secret signature key sk and a public
verification key vk.

• (Correctness) For every pair (sk, vk) in the image of Gen(1κ), and every w ∈ {0, 1}∗, algorithm
Sign and Vrfy satisfy

Pr[Vrfyvk(w,Signsk(m)) = 1] = 1,

where the probability is taken over the internal coin tosses of algorithms Sign and Vrfy.
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• (Unforgeability) For every non-uniform probabilistic polynomial time oracle machine M , there ex-
ists a negligible function µ(·), such that for all sufficiently large n it holds that

Pr

[
Vrfyvk(m,σ) = 1 & m /∈ QSignsk(·)

M

where (sk, vk)← Gen(1κ) and (m,σ)←MSignsk(·)(vk)

]
< µ(κ),

where the probability is taken over the randomness of Gen, V rfy and Sign, as well as the random
coins of M , and QSignsk(·)

M is the set of queries that M makes to Signsk(·).

C.1.2 Bivariate Polynomials

We continue with a useful fact regarding bivariate polynomials (see., e.g., [AL17]).

Fact C.2. Let K ⊆ {1, . . . , n} be a set of size at least t + 1, and let {fk(x)}k∈K be a set of degree-t
polynomials. If for every i, j ∈ K it holds that fi(j) = fj(i) then there exists a unique symmetric bivariate
polynomials F (x, y) of degree at most t in each variable such that fk(x) = F (x, k) = F (k, x) for every
k ∈ K.

C.2 The Simulator

We continue with the proof that protocol vss UC-emulates Fvss. Let A be the dummy adversary.
We define the simulator S as follows. S uses A in a black-box manner, and forwards all messages
between Z and A. S first receives the set of corrupt parties C, and acts as follows. We split into
cases.

C.2.1 Honest D

Round 1. The simulator receives the polynomials fi(x) := F (x, i), for every i ∈ C, from Fvss. The
simulator samples (sk, vk)← Gen(1κ), and broadcasts vk on behalf of D. For every corrupt Pi, the
simulator does as follows.

• For every j ∈ {1, . . . , n}, the simulator computes wij := (i, j, fi(j)) and σij ← Signsk(wij),
and sends (fi(x), σi1, . . . , σin) to Pi on behalf of D.

• For every j < i such that Pj is honest, the simulator samples randomness rji for the ran-
domized encoding ĝji and sends rji to Pi on behalf of Pj .

This concludes the communication from honest parties to corrupt parties. At this stage the simu-
lator receives from A the messages from the corrupt parties to the honest parties. For a corrupt Pi
and an honest Pj with i < j, we denote by rij the randomness that Pi sends to Pj .

Round 2. For every honest Pi the simulator does as follows.

• The simulator sets flagi = 0 and broadcasts flagi on behalf of Pi.

• For every honest Pj with i < j, the simulator samples (zijA , z
ij
B ) ← SRE(“equal”), where SRE

is the simulator of the randomized encoding ĝ. The simulator broadcasts zijA on behalf of Pi,
and , zijB on behalf of Pj .
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• For every corrupt Pj with i < j, the simulator sets wij := (i, j, fj(i)) and σij ← Signsk(wij).
The simulator computes zijA := ĝA(flagi, wij , σij ; rij) and broadcasts zijA on behalf of Pi.

• For every corrupt Pj with j < i, the simulator sets wij := (i, j, fj(i)) and σij ← Signsk(wij).
The simulator computes zjiB := ĝ(flagi, wij , σij ; rij) and broadcasts zjiB on behalf of Pi.

This concludes the communication from honest parties to corrupt parties. Finally, the simulator
receives from A the messages from the corrupt parties to the honest parties. This concludes the
simulation.

Fix a polynomial-time environment Z with input ζ, and assume without loss of generality
that Z is deterministic. We begin by showing that the view of Z in the real-world has the same
distribution as the view of Z in the ideal world.

Z’s view. is not hard to see that the view of Z in the first round is identical in both worlds. Fix
this view. In Round 2, every honest Pi broadcasts flagi = 0 in both worlds. In addition, in the
real-world for every pair of honest parties Pi and Pj the value Outij is “equal”. Hence, the perfect
privacy of the randomized encoding implies that the output of ĝij which is broadcasted by Pi and
Pj is has the same distribution in both worlds. Finally, for every honest Pi and corrupt Pj , the
broadcast of Pi corresponding to the inconsistency check of Pi and Pj is fixed, and equal in both
worlds. This concludes the analysis of Z’s view.

Honest parties’ outputs. It remains to analyse the outputs of the honest parties. In the ideal-
world every honest party Pi output F (x, i).

We continue with the analysis of the real-world. We say that the view of Z is good if one of the
following holds for every pair of parties Pi and Pj :

• Outij = “equal”.

• Outij = (“not equal”, (w′ij , σ
′
ij), (w

′
ji, σ

′
ji)) so that the following two conditions hold.

– Either (1) the first entry of w′ij is not i, or (2) the second entry of w′ij is not j, or (3)
Vrfyvk(w

′
ij , σ

′
ij) = 0, or (4) w′ij = (i, j, F (i, j)).

– Either (1) the first entry of w′ji is not j, or (2) the second entry of w′ji is not i, or (3)
Vrfyvk(w

′
ji, σ

′
ji) = 0, or (4) w′ji = (j, i, F (j, i)).

• Outij = ((flagi, w
′
ij , σ

′
ij), (flagj , w

′
ji, σ

′
ji)), so that the following two conditions hold.

– Either (1) the first entry of w′ij is not i, or (2) the second entry of w′ij is not j, or (3)
Vrfyvk(w

′
ij , σ

′
ij) = 0, or (4) w′ij = (i, j, F (i, j)).

– Either (1) the first entry of w′ji is not j, or (2) the second entry of w′ji is not i, or (3)
Vrfyvk(w

′
ji, σ

′
ji) = 0, or (4) w′ji = (j, i, F (j, i)).

Observe that, by the unforgeability property of the signature scheme, the probability that the
view is good is at least 1 − negl(κ). Fix any good view, and observe that (1) D is not discarded
in the inconsistency check, (2) all honest parties are happy, so |L| ≥ n − t, and (3) for every
corrupt unhappy Pi, and every Pj ∈ Li it holds that Outij is (flagi, w̄ij , σ̄ij) and (flagj , w̄ji, σ̄ji), with
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wji = (j, i, F (i, j)), so the values {fji}Pj∈Li are consistent with the degree-t polynomial F (x, i). We
conclude that D is not discarded, and that every honest Pi outputs F (x, i), just like in the ideal-
world. This concludes the analysis of an honest dealer.

C.2.2 Corrupt D

Since the honest parties hold no inputs, the simulator can take their role in the execution of the
protocol, and perfectly simulate their behaviour. This is done as follows.

Round 1. The simulator takes the role of every honest Pi, and sends its messages to the corrupt
parties and the other simulated honest parties. At the end of the first round, the simulator receives
from A the messages from corrupt parties to honest parties, and transfers them to the simulated
honest parties.

Round 2. The simulator continues the simulation of the honest parties, and computes the mes-
sages that every Pi sends. At the end of the first round, the simulator receives fromA the messages
from corrupt parties to honest parties, and transfers them to the simulated honest parties.

Communication with Fvss. The simulator computes the output of the honest parties in the exe-
cution. Let fi(x) be the output of an honest Pi. It will follow from the analysis that the polynomials
{fi(x)}i∈H define a symmetric bivariate polynomial F (x, y) of degree at most t in each variable.
The simulator sends F (x, y) to Fvss. This concludes the simulation.

Fix a polynomial-time environment Z with input ζ. It is not hard to see that the view of Z is
perfectly simulated. Therefore, it is enough to show that in every execution of the protocol, the
outputs of the honest parties are consistent with some symmetric bivariate polynomial F (x, y) of
degree at most t in each variable.

Observe that the honest parties always agree on whether D was discarded, and that whenever
D is discarded the outputs of the honest parties are consistent with the zero-polynomial F (x, y) =
0. Therefore, we consider an execution where D was not discarded. Since D is not discarded, then
|L| ≥ n− t, which means that L contains at least (n− t)− t ≥ t+ 1 honest parties, whose output
polynomials are consistent with each other, i.e., fi(j) = fj(i) for every honest Pi, Pj ∈ L. (Indeed,
if there exist a pair of honest parties Pi and Pj that are happy, and whose polynomials are not
consistent, then D would be discarded in the inconsistency check of Pi and Pj .) Since L contains
at least t+ 1 honest parties that are consistent with each other, then, by Fact C.2, their polynomials
define a symmetric bivariate polynomial F (x, y) of degree at most t in each variable, such that
F (x, i) = fi(x) for every honest Pi in L.

It remains to show that for every honest Pi outside L (i.e., Pi is unhappy), it holds that the
output polynomial of Pi is F (x, i). Observe that Pi recovers the polynomial fi(x) from the values
{fji}Pj∈Li , and that all happy honest parties are in Li. Therefore, Li contains at least t + 1 hon-
est parties Pj for which fji = F (i, j). Therefore, it must hold that fi(x) = F (i, x) = F (x, i) or
otherwise fi(x) has degree more then t, which means that D is discarded, in contradiction. This
completes the proof.
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