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Abstract

Schnorr’s signature scheme provides an elegant method to derive signatures with
security rooted in the hardness of the discrete logarithm problem, which is a well-studied
assumption and conducive to efficient cryptography. However, unlike pairing-based
schemes which allow arbitrarily many signatures to be aggregated to a single constant
sized signature, achieving significant non-interactive compression for Schnorr signatures
and their variants has remained elusive. This work shows how to compress a set of
independent EdDSA/Schnorr signatures to roughly half their naive size. Our technique
does not employ generic succinct proofs; it is agnostic to both the hash function as well
as the specific representation of the group used to instantiate the signature scheme. We
demonstrate via an implementation that our aggregation scheme is indeed practical.
Additionally, we give strong evidence that achieving better compression would imply
proving statements specific to the hash function in Schnorr’s scheme, which would entail
significant effort for standardized schemes such as SHA2 in EdDSA. Among the others,
our solution has direct applications to compressing Ed25519-based blockchain blocks
because transactions are independent and normally users do not interact with each
other.

1 Introduction
Schnorr’s signature scheme [58] is an elegant digital signature scheme whose security is rooted
in the hardness of computing discrete logarithms in a given group. Elliptic curve groups in
particular have found favour in practical instantiations of Schnorr as they are secured by
conservative well-studied assumptions, while simultaneously allowing for fast arithmetic. One
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such instantiation is the EdDSA signature scheme [10], which is deployed widely across the
internet (in such protocols as TLS 1.3, SSH, Tor, GnuPGP, Signal and more).

However, the downside of cryptography based on older assumptions is that it lacks the
functionality of modern tools. In this work, we are concerned with the ability to aggregate sig-
natures without any prior interaction between the signers. Informally speaking, an aggregate
signature scheme allows a set of signatures to be compressed into a smaller representative unit,
which verifies only if all of the signatures used in its generation were valid. Importantly, this
aggregation operation must not require any secret key material, so that any observer of a set
of signatures may aggregate them. Quite famously, pairing-based signatures [14, 12] support
compression of an arbitrary number of signatures into a constant sized aggregate. Thus far,
it has remained unclear how to achieve any sort of non-trivial non-interactive compression
for Schnorr signatures without relying on generic tools such as SNARKs.

In order to make headway in studying how to compress Schnorr signatures, we loosely
cast this problem as an issue of information optimality. We first recap the structure of such
a signature in order to frame the problem.

Structure of Schnorr signatures. Assume that we instantiate Schnorr’s signature scheme
in a group (G,+) with generator B ∈ G of prime order q.

Algorithm 1 Schnorr signature scheme in (R, S)-format
KeyGen(): sample s $←− Zq, output sk = s and pk = s ·B.

Sign(sk,m): sample r $←− Zq, compute R = r·B and S = r+H0(R,A,m)·s, output σ = (R, S).

Verify(m, pk, σ): for σ = (R, S) and pk = A accept if S ·B = R +H0(R,A,m) · A.

In practice, the groups that are used to instantiate Schnorr signatures are elliptic curves
which are believed to be ‘optimally hard’, i.e. no attacks better than generic ones are known
for computing discrete logarithms in these curves groups. Consequently, elliptic curve based
Schnorr signatures are quite compact: at a λ-bit security level, instantiation with a 2λ-bit
curve yields signatures that comprise only 4λ bits (ignoring a few bits of security loss due to
the specific representation of the curve).

This format of Schnorr signature is employed by EdDSA [10]. The EdDSA signature is
originally defined over Curve25519 group in its twisted Edwards form. The variant known as
Ed25519 provides ∼ 128 bits of security and is the most widely deployed variant of Schnorr
today. We use this instantiation for benchmarks. The name EdDSA generally refers to
instantiation of the scheme over any compatible elliptic curve (another notable instantiation
being Ed448 [35, 40] offering ∼ 224 bits of security). A concrete instantiation of the scheme
would depend on the elliptic curve and the security level, we show a generic instantiation
of EdDSA in Algorithm 2. The main difference between Algorithm 1 and Algorithm 2 is
in derivation of the secret scalar r, in the latter r is derived deterministically, while in the
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former it is sampled randomly. The verification equation is unchanged making techniques in
this paper applicable to both algorithms.

Algorithm 2 EdDSA signature scheme
KeyGen(): sample uniformly random secret key sk $←− {0, 1}2λ, expand the secret with a hash

function that gives 4λ-bits outputs: (s, k) ← H1(sk), interpret s as a scalar compute
A = s ·B and output (sk, pk = A).

Sign(sk,m): for sk = (s, k) and pk = A derived from sk, generate a pseudorandom secret
scalar r := H2(k,m), compute a curve point: R := r · B, compute a scalar S :=
(r +H0(R,A,M) · s) and output σ = (R, S).

Verify(m, pk, σ): for σ = (R, S) and pk = A, accept if S ·B = R +H0(R,A,M) · A.

The original form of Schnorr signatures are slightly different: σ = (H(R, pk,m), S), the
verification rederives R and verifies the hash. Schnorr signatures of this format can be
shortened by a quarter via halving the output of the hash function [49, 58], but this format
does not allow for half-aggregation (nor is it implemented in widely deployed standards such
as EdDSA), thus we focus on Schnorr-type signatures in the (R, S) format. We explain most
of the popular Schnorr variants in Section 2.3 discussing compatibility with our aggregation
approach.

Schnorr signatures are not information optimal. Given a fixed public key, a fresh
Schnorr signature carries only 2λ bits of information. Indeed for a 2λ-bit curve, there are only
22λ pairs of accepting (R, S) tuples. It seems unlikely that we can achieve an information-
optimal representation for a single signature1. However we can not rule out this possibility
when transmitting a larger number of signatures. Transmitting n Schnorr signatures at a λ-bit
security level naively requires 4nλ bits, whereas they only convey 2nλ bits of information.
Therefore we ask:

How much information do we need to transmit in order to aggregate the effect of
n Schnorr signatures?

We specify that we are only interested in aggregation methods that are agnostic to the curve
and the hash function used for Schnorr - in particular aggregation must only make oracle use
of these objects. This is not merely a theoretical concern, as proving statements that depend
on the curve or code of the hash function can be quite involved in practice.

1.1 Our contributions
This work advances the study of non-interactive compression of Schnorr signatures.

1Even for shortened Schnorr signatures σ = (H(R, pk,m), S), where the output of the hash function is
halved, signatures are at least 3λ bits, i.e. 50% larger than the amount of information they carry.
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Simple half-aggregation. We give an elegant construction to aggregate n Schnorr
signatures over 2λ bit curves by transmitting only 2(n + 1)λ bits of information - i.e. only
half the size of a naive transmission. This effectively cuts down nearly all of the redundancies
in naively transmitting Schnorr signatures. Our construction relies on the Forking Lemma for
provable security and consequently suffers from a quadratic security loss similar to Schnorr
signatures themselves. Fortunately, this gap between provably secure and actually used
parameters in practice has thus far not been known to induce any attacks. We also show
how this aggregation method leads to a deterministic way of verifying a batch of Schnorr
signatures.

Almost half-aggregation with provable guarantees. In light of the lossy proof of
our half-aggregation construction, we give a different aggregation scheme that permits a tight
reduction to the unforgeability of Schnorr signatures. However this comes at higher cost,
specifically 2(n+ ε)λ bits to aggregate n signatures where ε ∈ O(λ/ log λ) is independent of
n. This construction is based on Fischlin’s transformation [28], and gives an uncompromising
answer to the security question while still retaining reasonable practical efficiency. More
concretely the compression rate of this construction passes 40% as soon as we aggregate 128
signatures, and tends towards the optimal 50% as n increases.

Implementations. We implement and comprehensively benchmark both constructions.
We demonstrate that the simple half-aggregation construction is already practical for wide
adoption, and we study the performance of our almost half-aggregation construction in order
to better understand the overhead of provable security in this setting.

A lower bound. Finally, we give strong evidence that it is not possible to achieve
non-trivial compression beyond 2nλ bits without substantially higher computation costs,
i.e. our half-aggregation construction is essentially optimal as far as generic methods go.
In particular, we show that aggregating Schnorr signatures from different users (for which
no special distribution is fixed ahead of time) at a rate non-trivially better than 50% must
necessarily be non-blackbox in the hash function used to instantiate the scheme.

In summary, we propose a lightweight half-aggregation scheme for Schnorr signatures,
a slightly worse performing scheme which settles the underlying theoretical question uncom-
promisingly, and finally strong evidence that achieving a better compression rate is likely to
be substantially more computationally expensive.

2 Related work

2.1 Security Proofs
Schnorr signatures were proposed by Claus Schnorr [58], and in the original paper a com-
pact version was proposed, which outputted signatures of size 3λ, where λ is the provided
security level (i.e. 128). In 1996, Pointcheval and Stern [54] applied their newly introduced
Forking Lemma to provide the first formal security for a 2λ-bit ideal hash assuming the
underlying discrete logarithm is hard. In [60] the first proof of Schnorr’s ID against active
attacks is provided in the GGM (Generic Group Model), but without focus on Fiat-Shamir
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constructions.
A significant contribution from Neven et al. [49] was to apply the GGM and other results

of [7] to prove security using a λ-bit hash function. Briefly, in their proof, hash functions
are not handled as random oracles, but they should offer specific properties, such as variants
of preimage and second preimage resistance; but not collision resistance. However, as we
mention in Section 2.3, most of the real world applications do not assume honest signers,
and thus non-repudiation is an important property, which unfortunately requires a collision
resistant H0.

Finally, the works from Backendal et al. [2] clarified the relation between the UF-security
of different Schnorr variants, while in [31] a tight reduction of the UF-security of Schnorr
signatures to discrete log in the Algebraic Group Model [30] (AGM)+ROM was presented.

2.2 Multi-signatures
One of the main advantages of Schnorr signatures compared to ECDSA is its linearity which
allows to add two (or more) Schnorr signatures together and get a valid compact aggregated
output indistinguishable from a single signature. The concept of multi-signature is to allow
co-signing on the same message. Even if the messages are different, there are techniques using
indexed Merkle tree accumulators to agree on a common tree root and then everyone signs
that root. However, just adding Schnorr signatures is not secure as the requirement to protect
against rogue key and other similar attacks is essential, especially in blockchain systems.

There is indeed a number of practical proposals that require two or three rounds of
interaction until co-signers agree on a common R and public key A value [7, 57, 3, 44, 61,
11, 46, 23, 51, 42, 50]. One of the most recent is the compact two-round Musig2 [50] which
also supports pre-processing (before co-signers learn the message to be signed) of all but the
first round, effectively enabling a non-interactive signing process. Musig2 security is proven
in the AGM+ROM model and it relies on the hardness of the OMDL problem.

Another promising two-round protocol is FROST [42] which has a similar logic with
Musig2, but it utilizes verifiable random functions (VRFs) and mostly considers a threshold
signature setting.

Note that even with pre-processing, Musig2 requires an initial setup with broadcasting
and maintaining state. Compared to half-aggregation which can work with zero interaction
between signers, Musig2 and FROST have a huge potential for controlled environments (i.e.,
validator sets in blockchains), but might not be ideal in settings where the co-signers do not
know each other in advance or when public keys and group formation are rotated/updated
very often.

2.3 Schnorr signature variants
There exist multiple variants of the original Schnorr scheme and the majority of them are
incompatible between each other. Some of the most notable differences include:

• H0 is not binding to the public key and thus it’s computed as H0(R,m) instead of
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H0(R,A,m) [58, 32]. Note that these signatures are malleable as shown in the EdDSA
paper (page 7, Malleability paragraph) [10].

• change the order of inputs in H0, such as H0(m,R). Note that protocols in which m
is the first input to the hash function require collision resistant hash functions, as a
malicious message submitter (who doesn’t know R), can try to find two messages m0
and m1 where H0(m0) = H0(m1). This is the main reason for which the Pure EdDSA
RFC 8032 [40] suggests H0(R,A,m) versus any other combination.

• H0(Rx, A,m) takes as input only the x-coordinate of R, such as the EC-SDSA-opt
in [32] and BIP-Schnorr [53].

• send the scalar H0 instead of the point R. This variation (often referred to as compact)
was proposed in the original Schnorr paper [58] and avoids the minor complexity of
encoding the R point in the signature, while it allows for potentially shorter signatures
by 25%. The idea is that only half of the H0 bytes suffice to provide SUF-CMA security
at the target security level of 128 bits. While this allows 48-byte signatures, there are
two major caveats:

– according to Bellare at al.[6] (page 39), the (R, S) version (mentioned as BNN in
that paper) achieves semi-strong unforgeability, while the original 48-byte Schnorr
only normal unforgeability. In short, because finding collisions in a short hash
function is easy, a malicious signer can break message binding (non-repudiation)
by finding two messages m0 and m1 where truncated H0(R,A,m0) equals to
truncated H0(R,A,m1),

– as mentioned, collisions in 128-bit truncated H0 require a 64-bit effort. But be-
cause the SUF-CMA model assumes honest signers, in multi-sig scenarios where
potentially distrusting signers co-sign, some malicious coalition can try to obtain
a valid signature on a message that an honest co-signer did not intend to sign.

Due to the above, and because compact signatures do not seem to support non-interactive
aggregation or batch verification, it is clear that this work is compatible with most of the
(R, S) Schnorr signature variants, EdDSA being one of them. Also note that half-aggregation
achieves an asymptotic 50% size reduction and compares favorably against multiple compact
Schnorr signatures.

2.4 Non-Schnorr schemes
Some of the best applications of non-interactive signature aggregation include shortening
certificate chains and blockchain blocks. Putting Schnorr variants aside, there is a plethora of
popular signature schemes used in real world applications including ECDSA, RSA, BLS and
some newer post-quantum schemes i.e., based on hash functions or lattices. Regarding ECDSA,
although there exist interactive threshold schemes, to the best of our knowledge there is no
work around non-interactive aggregation, mainly due to the modular inversion involved [45].
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Similarly, in RSA two users cannot share the same modulus N , which makes interactivity
essential; however there exist sequential aggregate RSA signatures which however imply
interaction [13]. Along the same lines, we are not aware of efficient multi-sig constructions
for Lamport-based post-quantum schemes.

On the other hand, BLS is considered the most aggregation and blockchain friendly
signature scheme, which by design allows for deriving a single signature from multiple outputs
without any prior interaction and without proving knowledge or possession of secret keys [11].
The main practicality drawback of BLS schemes is that they are based on pairing-friendly
curves and hashing to point functions for which there are on-going standardization efforts
and limited HSM support. Also, the verification function of a rogue-key secure BLS scheme
is still more expensive than Schnorr (aggregated or not) mainly due to the slower pairing
computations.

2.5 Schnorr batching and aggregation
Similar approaches to generating linear combinations of signatures have been used for batch
verification in the past as shown in Section 5. The original idea of operating on a group of
signatures by means of a random linear combination of their members is due to Bellare et
al [4]. Other approaches consider an aggregated signature from public keys owned by the
same user, which removes the requirement for rogue key resistance. For instance, in [33] an
interactive batching technique is provided resulting to faster verification using higher degree
polynomials.

Half-aggregation has already been proposed in the past, but either in its simple form
without random linear combinations [24] (which is prone to rogue key attacks) or using non-
standard Schnorr variants that are not compatible with EdDSA. Γ-signatures [63] are the
closest prior work to our approach, also achieving half aggregation, but with a significantly
modified and slightly slower Schnorr scheme. Additionally, their security is based on the
custom non-malleable discrete logarithm (NMDL) assumption, although the authors claim
that it could easily be proven secure against the stronger explicit knowledge-of-exponent
assumption EKEA. On the other hand, we believe that our security guarantees are much
more powerful as they are actually a proof of knowledge of signatures, which means that they
can be used as a drop-in replacement in any protocol (where having the exact original signature
strings is not important), without changing any underlying assumptions; and therefore be
compliant with the standards.

3 Proof-of-knowledge for a collection of signatures
We then construct a three-move protocol for the proof of knowledge of a collection signatures,
we then discuss two ways to make it non-interactive with different security/efficiency trade-
offs.
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3.1 Three-move (Sigma) protocol
The construction takes inspiration from the batching of Sigma protocols for Schnorr’s identi-
fication scheme [33].

A Sigma protocol is a three-move protocol run by a prover P and a verifier V for some
relation R = {(x,w)}, for (x,w) ∈ R, x is called an instance and w is called a witness.
R ⊆ {0, 1}∗ × {0, 1}∗, where there exists a polynomial p such that for any (x,w) ∈ R, the
length of the witness is bounded |w| ≤ p(|x|). Often-times, x is a computational problem
and w is a solution to that problem. In the Sigma protocol the prover convinces the verifier
that it knows a witness of an instance x known to both of them. The protocol produces a
transcript of the form (a, e, z) which consists of (in the order of exchanged messages): the
commitment a sent by P , the challenge e sent by V and the response z sent by P . The
verifier accepts or rejects the transcript. A Sigma protocol for the relation R with n-special
soundness guarantees the existence of an extractor Ext which when given valid transcripts
(accepted by the verifier) with different challenges (a, e1, z1), (a, e2, z2), . . . (a, en, zn) for an
instance x, produces (with certainty) a witness w for the statement, s.t. (x,w) ∈ R. We will
not be concerned with the zero-knowledge property of the protocol for our application.

For a group G with generator B ∈ G of order q ∈ Z, define the relation RDL = {(pk, sk) ∈
(G,Zq) : pk = sk · B}. Schnorr’s identification protocol [58] is a two-special sound Sigma
protocol for the relation RDL: given two transcripts with the same commitment and different
challenges, the secret key (discrete logarithm of pk) can be extracted. It is known how to
compress n instances of Schnorr’s protocol to produce an n-special sound Sigma protocol
at essentially the same cost [33], we use similar ideas to derive a Sigma protocol for the
aggregation of Schnorr signatures, i.e. for the following relation (with hash function H0):

Raggr = {(x,w) | x = (pk1,m1, . . . , pkn,mn), w = (σ1, . . . , σn),
Verify(mi, pki, σi) = true for ∀i ∈ [n]} =

= {(x,w) | x = (A1,m1, . . . , An,mn), w = (R1, S1, . . . , Rn, Sn),
Si ·B = Ri +H0(Ri, Ai,mi) · Ai for i = 1..n}

Theorem 1. Protocol 3 is an n-special sound Sigma protocol for Raggr.

Proof. Completeness is easy to verify. Extraction is always successful due to the following:
let F ∈ G[X] be the degree n − 1 polynomial where the coefficient of xi−1 is given by
Ri + H(Ri, pki,mi) · pki for each i ∈ [n]. Define f ∈ Zq[X] as the isomorphic degree n − 1
polynomial over Zq such that the coefficient of xi−1 in f is Si (the discrete logarithm of the
corresponding coefficient in F ). Observe that f(x) · B = F (x) for each x ∈ Zq. Given a
transcript (a, e, z), VΣ accepts iff z · B = F (e), which is true iff z = f(e). Therefore n valid
transcripts (a, e1, z1), . . . , (a, en, zn) define n distinct evaluations of f (which has degree n−1)
allowing for recovery of coefficients [Si]i∈[n] efficiently. This is precisely the operation carried
out by ExtΣ, expressed as a product of matrices. Note that E = [eji ]i,j∈[n] is always invertible;
each ei is known to be distinct, and so E is always a Vandermonde matrix.
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Protocol 3 Sigma protocol for a collection of signatures Raggr

For instance x = {(pki = Ai,mi)}ni=1 and witness w = {σi = (Ri, Si)}ni=1

Prover PΣ(x,w):

1. Commitment: a = [R1, . . . , Rn]

2. Challenge: e $←− Z∗q
3. Response: z = ∑

i∈[n] Si · ei−1

Verifier VΣ(x, (a, e, z)): Output 1 iff z ·B = ∑
i∈[n] e

i−1(Ri +H0(Ri, Ai,mi) · Ai)

Extractor ExtΣ((a, e1, z1), . . . , (a, en, zn)): Define the n × n matrix E = [eji ]i,j∈[n] and the
column vector Z = ([zi]i∈[n])T . Output [S1, . . . , Sn] = (E−1Z)T .

3.2 Proof-of-knowledge
A proof-of-knowledge for a relation R = {(x,w)} is a protocol that realizes the following
functionality:

FR((x,w), x) = (∅, R(x,w))
i.e. the prover and verifier have inputs (x,w) and x respectively, and receive outputs ∅ and
R(x,w) respectively. This definition is taken from Hazay and Lindell [37, 36] who show it
to be equivalent to the original definition of Bellare and Goldreich [5]. We additionally let a
corrupt verifier learn aux(w) for some auxiliary information function aux. As we do not care
about zero-knowledge at all (only compression) this can simply be the identity function, i.e.
aux(w) = w.

Proofs-of-knowledge allow for the drop-in replacement mechanism that we desire: instead
of an instruction of the form “A sends n signatures to B” in a higher level protocol, one can
simply specify that “A sends n signatures to FR, and B checks that its output from FR is 1”.

Among the several landmark transformations of a Sigma protocol into a non-interactive
proof [27, 28, 52], the most commonly used is the Fiat-Shamir transform [27]: for a rela-
tion R a valid transcript of the form (a, e, z) can be transformed into a proof by hashing
the commitment to generate the challenge non-interactively: proof = (a, e = H1(a, x), z).
Unfortunately, this transformation induces a security loss, applied directly to the n-sound
Sigma protocol for the relation Raggr from the previous section (Protocol 3), the prover will
have to be rewinded n times to extract the witness. This transformation however gives a
more efficient construction for non-interactive aggregation of signatures that we discuss in
Section 4.

To achieve tighter security reduction, we look into the literature on proof-of-knowledge
with online extractions [52]. There, extractors can output the witness immediately with-
out rewinding, in addition to the instance and the proof the extractors are given all the
hash queries the prover made. We achieve a proof-of-knowledge for the relation Raggr which

9



immediately gives an aggregate signature scheme whose security can be tightly reduced to
unforgeability of Schnorr’s signatures as we discuss in Section 4.3. We present both protocols
in this Section.

3.2.1 Fiat-Shamir transformation

Protocol 4 Non-interactive proof-of-knowledge for Raggr

Parameters: A curve group G with generator B ∈ G of order q ∈ Z. For instance x =
{(pki = Ai,mi)}ni=1 and witness w = {σi = (Si, Ri)}ni=1 we define three algorithms.
Hash function H1 modeled as a Random-Oracle.

Prover P (x,w)→ proof:

1. Compute the scalar e = H1(R1, A1,m1, . . . , Rn, An,mn)
2. Compute the scalar Saggr = ∑n

i=1 e
i−1 · Si.

3. Output the proof σaggr = [R1, . . . , Rn, Saggr].

Verifier VRO(x, proof = [R1, . . . , Rn, Saggr])← 0/1:

1. Compute the scalar e = H1(R1, A1,m1, . . . , Rn, An,mn).
2. If ∑n

i=1 e
i−1 (Ri +H0(Ri, Ai,mi) · Ai) = Saggr ·B, output true,

3. otherwise output false.

Theorem 2. For every prover P that produces an accepting proof with probability ε and
runtime T having made a list of queries Q to RO, there is an extractor Ext that outputs a valid
signature for each pki ∈ pkaggr in time nT + poly(λ), with probability at least ε− (n ·Q)2/2h+1,
where h is the bit-length of the H1’s output. It follows that the scheme (P, V,Ext) is a non-
interactive proof-of-knowledge for the relation Raggr in the random oracle model.

Proof. The extractor Ext runs the adversary n times programming the random oracle to
output fresh random values on each run, giving n proofs that can be used to obtain n
accepting transcripts (a, ei, zi) for i ∈ [n] and invokes ExtΣ once they are found. Ext runs in
time nT , and additionally poly(κ) to run ExtΣ. The extractor fails in case not all of the ei
are distinct which happens with probability at most (n · Q)2/2h+1 by the birthday bound
when we estimate the probability of at least one hash-collision between the queries of n runs
of the adversary.

Another form of the protocol with the challenges derived with independent hashes allows
for extraction of any single signature with a single rewinding. This protocol is a foundation for
the half-aggregation construction for Schnorr signatures described in Section 4.3. To construct
an extractor we use a variant of the Forking Lemma. Originally the Forking Lemma was
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introduced in the work of Pointcheval and Stern [54]. We use a generalized version described
in [7].

Protocol 5 Non-interactive proof-of-knowledge for Raggr

Parameters: A curve group G with generator B ∈ G of order q ∈ Z. For instance x =
{(pki = Ai,mi)}ni=1 and witness w = {σi = (Si, Ri)}ni=1 we define three algorithms.
Hash function H1 modeled as a Random-Oracle.

Prover P (x,w)→ proof:

1. For i ∈ [n] compute the scalars ei = H1(R1, A1,m1, . . . , Rn, An,mn, i)
2. Compute the scalar Saggr = ∑n

i=1 ei · Si.
3. Output the proof σaggr = [R1, . . . , Rn, Saggr].

Verifier VRO(x, proof = [R1, . . . , Rn, Saggr])← 0/1:

1. For i ∈ [n] compute the scalars ei = H1(R1, A1,m1, . . . , Rn, An,mn, i).
2. If ∑n

i=1 ei (Ri +H0(Ri, Ai,mi) · Ai) = Saggr ·B, output true,
3. otherwise output false.

[7] Generalized Forking Lemma. Fix an integer q ≥ 1 and a set H of size h ≥ 2. Let
A be a randomized algorithm. The algorithm A is given an input in = (pk, h1, . . . , hq) and
randomness y, it returns a pair, the first element of which is an integer I and the second
element of which is a side output proof:

(I, proof)← A(in; y).

We say that the algorithm A succeeds if I ≥ 1 and fails if I = 0. Let IG be a randomized input
generator algorithm. We define the success probability of A as:

acc = Pr[I ≥ 1; input $←− IG; (h1, . . . , hq) $←− H; (I, proof) $←− A(input, h1, . . . , hq)].

We define a randomized generalized forking algorithm FA that depends on A:

FA(input) forking algorithm:

1. Pick coins y for A at random

2. h1, . . . , hq
$←− H

3. (I, proof) := A(x, i, h1, . . . , hq; y)

4. If I = 0 then return (0,⊥,⊥)
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5. h′1, . . . , h′q
$←− H

6. (I ′, proof ′) := A(x, i, h1, . . . , hI−1, h
′
I , . . . , h

′
q; y)

7. If (I = I ′ and hI 6= h′I) then return (1, proof, proof ′)

8. Else return (0,⊥,⊥).

Let frk = Pr[b = 1; input $←− IG; (b, proof, proof ′) $←− FA(i, x)].

Then frk ≥ acc ·
(
acc
q
− 1

h

)
.

Theorem 3. For every prover P that produces an accepting proof for a collection of n
signatures with probability ε and runtime T having made a list of queries Q to RO (H1), there
is an extractor Ext that given i∗ ∈ [n] outputs an i∗-th signature that is valid under pki∗ for
message mi∗ in time 2T · n, with probability at least ε · (ε/(n · Q) − 1/2h), where h is the
bit-length of the H1’s output.

Proof. The extractor will run the prover P for the same input twice to obtain two proofs
that differ on the last component:

proof = [R1, . . . , Rn, Saggr] and proof ′ = [R1, . . . , Rn, S
′
aggr]

it will then be able to extract a signature on pki∗ .
We first wrap the prover P into an algorithm A to be used in the Forking Lemma. The

algorithm A takes input in = ({(pki,mi)}ni=1, i
∗, h1, . . . , hq), for q = (Q + 1) · n, and a ran-

dom tape y, it runs the prover P and programs its H1 random oracle outputs as follows:
on the input that was already queried before, output the same value (we record all the
past H1 queries). In case the query can not be parsed as (R1, A1,m1, . . . , Rn, An,mn, j) ∈
(G×G× {0, 1}∗)n × [n] or in case the public key Ai∗ does not match the one in the input:
Ai∗ 6= pki∗ , program the oracle to the next unused value of y. Otherwise, if Ai∗ = pki∗
and the query is of the form (R1, A1,m1, . . . , Rn, An,mn, j) ∈ (G × G × {0, 1}∗)n × [n],
do the following: (1) for each i ∈ [n]\i∗ program the oracle on index i, i.e. on input
(R1, A1,m1, . . . , Rn, An,mn, i), to the next unused value of y, (2) program the oracle on
index i∗, i.e. on input (R1, A1,m1, . . . , Rn, An,mn, i

∗), to the next unused value of h: ht and
(3) record the index into the table T [R1, A1,m1, . . . , Rn, An,mn, i

∗] := t.
Note that when the oracle is queried on some (R1, A1,m1, . . . , Rn, An,mn, j), all the

related n queries are determined, those are queries of the form (R1, A1,m1, . . . , Rn, An,mn, i)
for i ∈ [n], so we program all those n queries ahead of time, when a fresh tuple (R1, A1,m1, . . . ,
Rn, An,mn) is queried to the H1 oracle (i.e. on one real query, we program n related queries).
The index t recorded in the table T is the potential forking point, so we program the queries
(R1, A1,m1, . . . , Rn, An,mn, i) for i ∈ [n]\i∗ first, to the values of y, making sure that those
values of y 2 are read before the forking point (the positions of y that are used here are

2An anonymous reviewer suggested a PRF could be used to derive the values of y from a single seed in
order to save space for an implementation of the reduction.
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therefore the same between rewindings), we finally program (R1, A1,m1, . . . , Rn, An,mn, i
∗)

to the next value of h (the potential forking point, therefore an oracle query at this value
may differ between rewindings). Note also that in the process of programming we ignore the
index j where the real query has been asked, it is only being used to give back the correct
programmed value.

When the prover outputs a proof = [R1, . . . , Rn, Saggr], the algorithm A performs addi-
tional queries H1(R1, A1,m1, . . . , Rn, An,mn, j) for all j ∈ [n], making sure those are defined,
and if the proof is valid, it outputs I = T [R1, A1,m1, . . . , Rn, An,mn, i

∗] and proof, otherwise
it outputs (0,⊥).

Next we use the forking lemma to construct an algorithm FA that produces two valid
proofs proof and proof ′ and an index I. Since the same randomness and the same oracle
values were used until index I, it must be the case that two proofs satisfy:

proof = [R1, . . . , Rn, Saggr],
n∑
i=1

ei (Ri +H0(Ri, Ai,mi) · Ai) = Saggr ·B, (1)

proof ′ = [R1, . . . , Rn, S
′
aggr],

n∑
i=1

e′i (Ri +H0(Ri, Ai,mi) · Ai) = S ′aggr ·B, (2)

where ei∗ 6= e′i∗ and for ∀i 6= i∗ei = e′i,

since the latter are programmed before the forking point I.

Subtracting the two equations (Eq. 1 and Eq. 2) we extracted a signature (S = Saggr −
S ′aggr, Ri) on message mi under the public key Ai.

The success probability of A is ε, hence the probability of successful extraction according
to the Forking Lemma is ε · (ε/(n ·Q)− 1/2h). The extractor runs the prover twice and on
each one random oracle query programs at most n− 1 additional random oracle queries.

Note that Ext extracts a single signature at a specified position. To extract all of the n
signatures, the prover needs to be rewinded n times.

Corollary 1. For every prover P that produces an accepting proof with probability ε and
runtime T having made a list of queries Q to RO, there is an extractor Ext that outputs a
full witness (i.e. all valid signatures for all pki ∈ pkaggr) in time (n+ 1)Tn, with probability
at least

(
ε · (ε/(n ·Q)− 1/2h)

)n
, where h is the bit-length of the H1’s output. It follows that

the scheme (P, V,Ext) is a non-interactive proof-of-knowledge for the relation Raggr in the
random oracle model.

3.2.2 Fischlin’s transformation

Pass [52] was the first to formalize the online extraction problem in the random oracle
model and give a generic transformation from any 2-special sound sigma protocol to a non-
interactive proof-of-knowledge with online extraction. Intuitively, Pass’s transformation is
a cut-and-choose protocol where each challenge is limited to a logarithmic number of bits.
The prover can therefore compute transcripts for all of the challenges (since there are a
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polynomial number of them), put the transcripts as leaves of the Merkle tree and compute
the Merkle root. The extractor will see all of the transcripts on the leaves since it can examine
random-oracle queries. The prover may construct an actual challenge by hashing the root
of the tree and the original commitment, map the result to one of the leaves and reveal the
Merkle path as a proof of correctness which induces a logarithmic communication overhead.
Fischlin’s transformation [28] implements essentially the same idea (albeit for a specific class
of Sigma protocols) where the transcripts for opening the cut-and-choose are selected at
constant communication overhead, however at the expense of at least twice the number of
hash queries in expectation. Roughly, the selection process works by repeatedly querying
(a, ei, zi) to RO until one that satisfies RO(a, ei, zi) = 0` is found.

A proof-of-knowledge that permits an online extractor is very easy to use in a larger
protocol; it essentially implements an oracle that outputs 1 to the verifier iff the prover
gives it a valid witness. A reduction that makes use of an adversary for a larger protocol
simply receives the witness on behalf of this oracle, while incurring only an additive loss
of security corresponding to the extraction error. This is the design principle of Universal
Composability [17] and permits modular analysis for higher level protocols, which in this case
means that invoking the aggregated proof oracle is “almost equivalent” to simply sending
the signatures in the clear.

We construct a non-interactive version of our aggregation protocol with ideas inspired
by Fischlin’s transformation, so that proofs produced by our protocol will permit online
extraction. There are various subtle differences from Fischlin’s context, such as different
soundness levels for the underlying and compiled protocols to permit compression, and the
lack of zero-knowledge, and so we specify the non-interactive protocol directly in its entirety
below, and prove it secure from scratch.

The parameters `, r are set to achieve λ bits of security, and adjusted as a tradeoff between
computation and communication cost. In particular, the scheme achieves r(`− log2(n)) = λ
bits of security, proofs are of size n curve points and r field elements, and take r · 2` hash
queries to produce (in expectation).

Theorem 4. The scheme (P, V,Ext) is a non-interactive proof-of-knowledge for the relation
Raggr in the random oracle model. Furthermore for every prover P ∗ that produces an accepting
proof with probability ε and runtime T having made a list of queries Q to RO, the extractor
Ext given Q outputs a valid signature for each pki ∈ pkaggr in time T+poly(λ), with probability
at least ε− T · 2−λ.

Proof. Completeness. It is easy to verify that when P terminates by outputting a proof,
V accepts this proof string. P terminates once it has found r independent pre-images of 0`
per RO; in expectation, this takes r · 2` queries, which is polynomial in λ as ` ∈ O(log λ) and
r ∈ O(poly(λ)). The prover therefore runs in expected polynomial time.

Proof of Knowledge. The extractor Ext works by inspecting queries to RO to find n
accepting transcripts (a, ei, zi) and invoking ExtΣ once they are found. First note that Ext
runs in at most |Q| ≤ T steps to inspect queries to RO, and additionally poly(λ) to run
ExtΣ. We now focus on bounding the extraction error. As ExtΣ works with certainty when
given (a, e1, z1), . . . , (a, en, zn), it only remains to quantify the probability with which Ext will
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Protocol 6 Non-interactive proof-of-knowledge for Raggr

Prover PRO(x,w)→ proof:

1. Initialize an array of curve points, a = [R1, . . . , Rn].
2. Initialize empty arrays of scalars: e = [⊥]r and z = [⊥]r; e, z ∈ (Zq ∪ ⊥)r.
3. Set ind = 1, e = 1.
4. While ind ≤ r, do:

(a) Compute z = ∑
i∈[n] Si · ei−1.

(b) If RO(a, ind, e, z) ?= 0`:
• Set eind = e and zind = z

• Increment the ind counter and reset e = 1
(c) Else: increment e

5. Output the proof (a, e, z)

Verifier VRO(x, proof = (a, e, z))← 0/1:

1. Output 1 (accept) if both of the following equalities hold for every ind ∈ [r]:

RO(a, ind, eind, zind) = 0`
∧

zind ·G =
∑
i∈[n]

ei−1
ind (Ri +H(Ri, pki,mi) · pki)

2. Output 0 (reject) if even one test does not pass.

succeed in finding at least n accepting transcripts in the list of RO queries. The event that
the extractor fails is equivalent to the event that P ∗ is able to output an accepting proof
despite querying fewer than n valid transcripts (prefixed by the same a) to RO; call this event
fail. Define the event faila as the event that P ∗ is able to output an accepting proof (a, e, z)
despite querying fewer than n valid transcripts (prefixed specifically by a) to RO. Define
faila,ind as the event that P ∗ queries fewer than n valid transcripts to RO prefixed specifically
by a, ind, for each ind ∈ [r]. Let Qind,1, . . . , Qind,m index the valid transcripts queried to RO
with prefix a, ind. The event faila,ind occurs only when m < n, and so the probability that
faila,ind occurs for a given ind can therefore be computed as follows:

Pr[faila,ind] = Pr[RO(Qind,1) = 0` ∨ · · · ∨ RO(Qind,m) = 0`] ≤
∑
j∈[m]

Pr[RO(Qind,j) = 0`]

≤
∑
j∈[n]

Pr[RO(Qind,j) = 0`] =
∑
j∈[n]

1
2` = n

2` = 1
2`−log2(n)

Subsequently to bound faila itself, we make the following observations:

• For faila to occur, it must be the case that faila,ind occurs for every ind ∈ [r]. This follows
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easily, because every transcript prefixed by a, ind is of course prefixed by a.

• Each event faila,ind is independent as the sets of queries they consider are prefixed by
different ind values and so are completely disjoint.

The probability that faila occurs can hence be bounded as follows:

Pr[faila] ≤ Pr[faila,1 ∧ · · · ∧ faila,r] =
∏
i∈[r]

Pr[faila,i] ≤
∏
i∈[r]

1
2`−log(n) = 2−r(`−log(n))

The parameters r, ` are set so that r(`− log(n)) ≥ λ and so the above probability simplifies
to 2−λ. As P ∗ runs in time T , in order to derive the overall probability of the extractor’s
failure (i.e. event fail) we take a union bound over potentially T unique a values, finally giving
us Pr[fail] ≤ T · 2−λ which proves the theorem.

4 Non-interactive half-aggregation of signatures
Following the definition of Boneh et al. [12], we say that a signature scheme supports aggrega-
tion if given n signatures on n messages from n public keys (that can be different or repeating)
it is possible to compress all these signatures into a shorter signature non-interactively. Aggre-
gate signatures are related to non-interactive multisignatures [39, 47] with independent key
generations. In multisignatures, a set of signers collectively sign the same message, producing
a single signature, while here we focus on compressing the signatures on distinct messages.
Our aggregation could be used to compress certificate chains, signatures on transactions or
consensus messages of a blockchain, and everywhere where a batch of signatures needs to
be stored efficiently or transmitted over a low-bandwidth channel. The aggregation that we
present here can in practice be done by any third-party, the party does not have to be trusted,
it needs access to the messages, the public keys of the users and the signatures, but it does
not need to have access to users’ secret keys.

The aggregate signature scheme consists of five algorithms: KeyGen,Sign,Verify,AggregateSig,
AggregateVerify. The first three algorithms are the same as in the ordinary signature scheme:

KeyGen(1λ): given a security parameter output a secret-public key pair (sk, pk).

Sign(sk,m): given a secret key and a message output a signature σ.

Verify(m, pk, σ): given a message, a public key and a signature output accept or reject.

AggregateSig((m1, pk1, σ1), . . . , (mn, pkn, σn))→ σaggr: for an input set of n triplets —mes-
sage, public key, signature, output an aggregate signature σaggr.

AggregateVerify((m1, pk1), . . . , (mn, pkn), σaggr)→ {accept/reject}: for an input set of n pairs
—message, public key— and an aggregate signature, output accept or reject.
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Some schemes may allow an aggregation of the public keys as well, AggregatePK, but we
do not focus on such schemes here.

We now recall the EUF-CMA security and Strong Binding Security (SBS) of the single
signature scheme. Intuitively, EUF-CMA (existential unforgeability under chosen message
attacks) guarantees that any efficient adversary who has the public key pk of the signer and
received an arbitrary number of signatures on messages of its choice: {mi, σi}Ni=1, cannot output
a valid signature σ∗ for a new message m∗ /∈ {mi}Ni=1 (except with negligible probability).
An SBS guarantees that the signature is binding both to the message and to the public key,
e.g. no efficient adversary may produce two public keys pk, pk′, two signatures m,m′, s.t.
(pk,m) 6= (pk′,m′) and a signature σ that verifies successfully under (pk,m) and (pk′,m′).

An attacker A plays the following game:
GEUF-CMA
A () security game:

1. (pk∗, sk∗)← KeyGen()

2. (m,σ)← AOSign(sk∗,·)(pk∗)

3. accept if
mi /∈ LSign ∧ Verify(m, pk∗, σ)

OSign(sk∗,·), the signing oracle, constructs the set LSign:

1. On input m, compute σ ← Sign(sk∗,m)

2. LSign ← LSign ∪m

3. return σ

Definition 1. An attacker A, (t, ε)-breaks a EUF-CMA security of the signature scheme
if A runs in time at most t and wins the EUF-CMA game with probability ε. A signature
scheme is (t, ε)-EUF-CMA-secure if no forger (t, ε)-breaks it.

Likewise, if the scheme is (t, ε)-EUF-CMA-secure, we say that it achieves log2(t/ε)-bits
security level.

Note also that there is an additional requirement on single signature security which
becomes increasingly important especially in blockchain applications is Strong Binding [19],
it prevents a malicious signer from constructing a signature that is valid against different
public keys and/or different messages. We define the associated game:

GSBS
A () security game:

1. (pk,m, pk′,m′, σ)← A()

2. accept if (pk,m) 6= (pk′,m′) ∧ Verify(m, pk, σ) ∧ Verify(m′, pk′, σ)

Definition 2. An attacker A, (t, ε)-breaks SBS security of the signature scheme if A runs in
time at most t and wins the SBS game with probability ε. A signature scheme is (t, ε)-SBS-
secure if no forger (t, ε)-breaks it.
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4.1 Aggregate signature security
Intuitively, the aggregate signature scheme is secure if no adversary can produce new aggre-
gate signatures on a sequence of chosen keys where at least one of the keys is honest. We
follow the definition of [12], the attacker’s goal is to produce an existential forgery for an
aggregate signature given access to the signing oracle on the honest key. An attacker A plays
the following game parameterized by n, that we call chosen-key aggregate existential forgery
under chosen-message attacks (CK-AEUF-CMA).

GCK-AEUF-CMA
A (n) security game:

1. (pk∗, sk∗)← KeyGen()

2. ((m1, pk1), . . . , (mn, pkn), σaggr)← AOSign(sk∗,·)(pk∗),

3. accept if ∃i ∈ [n] s.t. pk∗ = pki , and mi /∈ LSign, and
AggregateVerify((m1, pk1), . . . , (mn, pkn), σaggr)

OSign(sk∗,m) constructs the set LSign:
σ ← Sign(sk∗,m); LSign ← LSign ∪m; return σ
In this game an attacker is given an honestly generated challenge public key pk∗, he can

choose all of the rest public keys, except the challenge public key, and may ask any number of
chosen message queries for signatures on this key, at the end the adversary should output a
sequence of n public keys (including the challenge public key), a sequence of n messages and
an aggregate signature where the message corresponding to the public key pk∗ did not appear
in the signing queries done by the adversary. The adversary wins if the forgery successfully
verifies.

Definition 3. An attacker A, (t, ε)-breaks a CK-AEUF-CMA security of aggregate signature
scheme if A runs in time at most t and wins the CK-AEUF-CMA game with probability ε.
An aggregate signature scheme is (t, ε)-CK-AEUF-CMA-secure if no forger (t, ε)-breaks it.

More broadly, we say that an aggregate signature scheme is CK-AEUF-CMA-secure if
no polynomial-time (in the security parameter) adversary may break the scheme other than
with the negligible probability. Nonetheless, to instantiate the scheme with some concrete
parameters, we will use a more rigid definition stated above. If the scheme is (t, ε)-CK-AEUF-
CMA-secure, we say that it provides log2(t/ε)-bits of security.

Note that the adversary has the ability to derive the rest of the public keys from the
honest key pk∗ in hope to cancel out the unknown components in the aggregate verification.
Our constructions naturally prevent these attacks, otherwise generic methods of proving the
knowledge of the secret keys could be used [47]. Note also that the original definition of
Boneh et al. [12] places the honest public key as the first key in the forged sequence, since
their scheme is agnostic to the ordering of the keys, our case is different and thus we give an
adversary the ability to choose the position for the honest public key in the sequence.

In our constructions of aggregate Schnorr signatures we show that a valid single-signature
forgery can be extracted from any adversary on the aggregate scheme.
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The SBS definition translates to the aggregate signature defined as follows.
GCK-ASBS
A (n) security game:

1. ((m1, pk1), . . . , (mn, pkn), (m′1, pk′1), . . . , (m′n, pk′n), σaggr)← A(n),

2. accept if [(m1, pk1), . . . , (mn, pkn)] 6= [(m′1, pk′1), . . . , (m′n, pk′n)] ∧
AggregateVerify((m1, pk1), . . . , (mn, pkn), σaggr) ∧
AggregateVerify((m′1, pk′1), . . . , (m′n, pk′n), σaggr)

Definition 4. An attacker A, (t, ε)-breaks a CK-ASBS security of aggregate signature scheme
if A runs in time at most t and wins the CK-ASBS game with probability ε. An aggregate
signature scheme is (t, ε)-CK-ASBS-secure if no forger (t, ε)-breaks it.

4.2 Half-aggregation
The half-aggregation scheme for Schnorr’s/EdDSA signatures runs the proof-of-knowledge
protocol (Protocol 5 from Section 3) to obtain a proof that would serve as an aggregate
signature. We present the construction for completeness here in Algorithm 7.

Algorithm 7 Half-aggregation of EdDSA signatures

AggregateSig((m1, pk1, σ1), . . . , (mn, pkn, σn))→ σaggr:
1: Parse the signature as the group element and the scalar: σi = (Ri, Si).
2: Parse the public key as a group element: pki = Ai.
3: For i ∈ 1..n compute the scalars ei ← H1(R1, A1,m1, . . . , Rn, An,mn, i).
4: Compute an aggregate scalar Saggr = ∑n

i=1 ei · Si.
5: Output an aggregate signature σaggr = [R1, . . . , Rn, Saggr].

AggregateVerify((m1, pk1), . . . , (mn, pkn), σaggr)→ 0/1:
1: Parse the aggregate signature as σaggr = [R1, . . . , Rn, Saggr].
2: Parse each public key as a group element pki = Ai.
3: Compute ei ← H1(R1, A1,m1, . . . , Rn, An,mn, i) for i ∈ 1..n
4: If ∑n

i=1 ei (Ri +H0(Ri, Ai,mi) · Ai) = Saggr ·B, output true,
5: otherwise output false.

Note that the scheme of Algorithm 7 compresses n signatures by a factor of 2 +O(1/n):
it takes n signatures, where each of them is one group element and one scalar, it compresses
the scalars into a single scalar, therefore the resulting aggregate signature is comprised of one
scalar and n group elements, compared to n scalar and n group elements before aggregation.

Note that the set of R-s can be pre-published as part of the public key or part of previ-
ously signed messages, the aggregate signature becomes constant size, but signatures become
stateful, as it should be recorded which R-s have already been used. Reuse of R leads to a
complete leak of the secret key. Even small biasis in R weakens the security of the scheme [1].
This approach departs from the deterministic nature of deriving nonces in EdDSA, loosing
its potential security benefits, though it will go unnoticed for the verifier.
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Note also that for large messages the following optimized aggregation could be used to
speed-up the verifier: each ei could be computed as ei = H1(H0(R1, A1,m1), . . . , H0(Rn, An,mn), i),
since the verifier computes H0(Ri, Ai,mi) anyway, it can reuse those values to compute the
coefficients for the aggregation, thus making the length of the input to H1 smaller. Though
this optimization will only work for the (Ri, Si) form of Schnorr signatures where all of the
Ri, Ai,mi are inputs to H0.

Theorem 5. If there is an adversary Adv1 that can (t, ε)-break the CK-AEUF-CMA security
of the aggregate signature scheme in Algorithm 7, then this adversary can be transformed
into an adversary Adv2 that can (2tn, ε · (ε/(nt)− 1/2h))-break the EUF-CMA security of the
underlying signature scheme, where h is the bit-length of the H1’s output.

The proof of this Theorem is nearly identical to the proof of Theorem 3. The only caveat
here is that to apply the extractor from Theorem 3, it is required to know the index of pk∗
in a list of public keys, but this index can be obtained from examining the position of pk∗ in
the random oracle queries to H1.

Theorem 6. No adversary running in time tmay break the CK-ASBS security of the aggregate
signature scheme described in Algorithm 7, other than with probability at most t2/22λ+1.

Proof. By statistical argument we show that the adversary may only produce an SBS
forgery with negligible probability. For a successful forgery ((A1,m1), . . . , (An,mn), σaggr) 6=
((A′1,m′1), . . . (A′2,m′2), σaggr), all 2n underlying signatures can be extracted: σ1, . . . , σn,σ′1, . . . , σ′n.
All of those signatures have the same R components (since those are part of σaggr), but pos-
sibly different S components. When a query is made to the random oracle H1(R1, A1,m1,
. . . , Rn, An,mn, i), denote the output by hji , where j is the incrementing counter for the unique
tuples (R1, A1,m1, . . . , Rn, An,mn) queried to the random oracle. Denote by sji the discrete
log of R1 +H0(Ri, Ai,mi)Ai (here we work under the assumption that the discrete log can
always be uniquely determined). Without loss of generality we assume that the adversary
verifies the forgery, therefore for some two indices j′ and j′′ (that correspond to the SBS
forgery output by the adversary) it must hold that the linear combination of the {sj

′

i }ni=1’s
with coefficients {hj

′

i }ni=1 is equal to the linear combination of {sj
′′

i }ni=1’s with coefficients
{hj

′′

i }ni=1. Having that in the RO-model, we can assume that the values {hj
′

i }ni=1 and {hj
′′

i }ni=1
are programmed to uniformly random independent values after the s’s values are determined.
Each h randomizes the non-zero value of s to an exponent indistinguishable from random,
therefore creating a random element as a result of a linear combination. Therefore the prob-
ability of a successful forgery for the adversary must be bounded by the collision probability
Q2/(2 · |G|), where Q ≤ t is the number of H1-queries and |G| is the size of the group (for
prime order groups, or an order of a base point).

Parameter selection and benchmarks. Theorem 5 has a quadratic security loss in its
time-to-success ratio: assuming that EUF-CMA provides 128-bits of security (which is the
case for example for Ed25519 signature scheme) the theorem guarantees only 64-bits security
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for CK-AEUF-CMA with 128-bits H1-hashes; and assuming that EUF-CMA provides 224-
bits of security (which is the case for example for Ed448 signature scheme) the theorem
guarantees 112-bits security for CK-AEUF-CMA with 256-bits H1-hashes3. A similar loss in
the reduction from single Schnorr/EdDSA signature security to a discrete logarithm problem
was not deemed to require the increase in the hardness of the underlying problems (i.e.
the discrete logarithm problem). The proof that reduces security of Schnorr/EdDSA to the
discrete logarithm problem also uses the Forking Lemma, but no attacks were found to
exploit the loss suggested by such proof. Research suggests that the loss given by the Forking
Lemma is inevitable for the proof of security of Schnorr/EdDSA signatures [59, 29], whether
it is likewise inevitable for non-interactive half-aggregation of Schnorr/EdDSA signatures
remains an open question. Recent work [34] on tight state restoration soundness in the
Algebraic Group Model [30] may represent a promising direction towards proving that a tight
parameterization of our half-aggregation is safe to use.

We benchmark [18] the scheme to understand the effect of using 128-bits of H1 output
vs. 256-bits of H1 output and present the results in Table 1.4 Note that the performance loss
in aggregate signature’s verification between the two approaches is only about 15%, which
might not justify the a use of smaller hashes. We also benchmark the use of 512-bits hashes of
H1, same-size scalar are used in the EdDSA signature scheme, the advantage of this approach
is that the scalars generated this way are distributed uniformly at random (within negligible
statistical distance from uniform).

n Sequential Batch AggregateVerify AggregateSig
verification verification 128 256 512 128 256 512

16 0.8 ms 0.39 ms 0.37 ms 0.43 ms 0.44 ms 9.75 µs 10.6 µs 16.98 µs
32 1.6 ms 0.75 ms 0.68 ms 0.79 ms 0.83 ms 19.25 µs 21.5 µs 33.02 µs
64 3.2 ms 1.39 ms 1.35 ms 1.52 ms 1.58 ms 39.35 µs 41.4 µs 67.63 µs
128 6.4 ms 2.73 ms 2.61 ms 2.95 ms 3.04 ms 78.6 µs 84.9 µs 134.44 µs
256 12.8 ms 4.86 ms 4.69 ms 5.41 ms 5.54 ms 151.6 µs 165.6 µs 260.36 µs
512 25.7 ms 8.92 ms 8.00 ms 9.86 ms 9.54 ms 316.1 µs 341.7 µs 526.50 µs
1024 51.5 ms 16.15 ms 15.25 ms 17.46 ms 18.31 ms 613.5 µs 657.9 µs 1088.0 µs
131072 6.59 s 1.98 s 1.71 s 2.11 s 2.09 s 80.21 ms 84.60 ms 133.96 ms

Table 1: For n individual signatures we compare batch-verification, aggregate-verification
and aggregation with {128, 256, 512}-bits output for H1, for Ed25519 signatures. SHA-256
cropped to 128-bits used for 128-bits H1, SHA-256 used for 256-bits H1, SHA-512 used for
512-bits H1. The benchmarks are run using the ed25519-dalek library.

3Note that additionally 2 log2(n) + 1 bits of security will be lost due to n.
4The ‘curve25519-dalek‘ and ‘ed25519-dalek‘ libraries were used for the benchmark of this entire section,

which ran on a AMD Ryzen 9 3950X 16-Core CPU. We used the scalar u64 backend of the dalek suite of
libraries, to offer comparable results across a wide range of architectures, and the implementation does make
use of Pippenger’s bucketization algorithm for multi-exponentiation.
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4.3 Half+ε-aggregation
The half+ε-aggregation scheme for EdDSA/Schnorr’s signatures runs the proof-of-knowledge
protocol (Protocol 6 from Section 3) to obtain a proof that would serve as an aggregate
signature. For completeness we present the constructions in Algorithm 8.

Algorithm 8 Almost-half-aggregation of EdDSA signatures

AggregateSig((m1, pk1, σ1), . . . , (mn, pkn, σn))→ σaggr:
1: Let σi = (Ri, Si).
2: Compute the hash ha = H2(R1, · · · , Rn).
3: Set the empty arrays of scalars e := [⊥]r and z := [⊥]r; e, z ∈ (Zq ∪ ⊥)r.
4: Set the counter j := 1.
5: Set the scalar e := 1.
6: while j ≤ r do
7: Compute z := ∑n

i=1 Si · ei−1.
8: if H1(ha, j, e, z) = 0` then
9: Set ej := e; set zj := z; increment the counter j; reset the scalar e = 1.
10: else
11: Increment the scalar e.
12: Output the aggregate signature σaggr = ([R1, · · · , Rn], e, z).

AggregateVerify((m1, pk1), . . . , (mn, pkn), σaggr)→ 0/1:
1: Let σaggr = ([R1, · · · , Rn], e, z).
2: Compute ha = H2(R1, · · · , Rn).
3: Output 1 (accept) if both of the following equalities hold for every j ∈ 1..r:

H1(ha, j, ej, zj) = 0` and zj ·G =
n∑
i=1

ei−1
j (Ri +H0(Ri, pki,mi) · pki)

4: Output 0 (reject) if the test does not pass for some j.

Theorem 7. If there is an adversary Adv1 that can (t, ε)-break the CK-AEUF-CMA security
of the aggregate signature scheme defined in Algorithm 8 making Q oracle queries to H1, then
this adversary can be transformed into an adversary Adv2 that can (t+poly(λ), ε−t·2−λ)-break
the EUF-CMA security of the underlying signature scheme.

The theorem is a simple corollary of Theorem 4.

Theorem 8. If there is an adversary Adv1 that can (t, ε)-break the CK-ASBS-CMA security
of the aggregate signature scheme defined in Algorithm 8 making Q oracle queries to H1, then
this adversary can be transformed into an adversary Adv2 that can (t+ poly(λ), (ε− t · 2−λ)2)-
break the EUF-CMA security of the underlying signature scheme.
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Proof. From the forgery produced by the adversary Adv1:
((m1, pk1), . . . , (mn, pkn), (m′1, pk′1), . . . , (m′gn, pk′n), σaggr),

we extract two sets of signatures by running the extractor of Theorem 4: (σ1, . . . , σn) and
(σ′1, . . . , σ′n). Those signatures have the same R-components (R1, . . . , Rn), but possibly differ-
ent S-components (S1, S

′
1, . . . , Sn, S

′
n) when aggregated those components produce the same

signature σ, therefore for some random e 6= e′, it holds that∑n
i=1 Si ·ei−1 = ∑n

i=1 S
′
i ·e′i−1 which

may happen with probability at most 2λ when (S1, . . . , Sn) 6= (S ′1, . . . , S ′n). Assuming that
(S1, . . . , Sn) = (S ′1, . . . , S ′n), but [(m1, pk1), . . . , (mn, pkn)] 6= [(m′1, pk′1), . . . , (m′n, pk′n)], as re-
quired for the forgery of Adv1 to be successful, it follows that at some position i ∈ [n] where
the equality breaks, a successful single SBS-forgery can be constructed: (mi, pki,m′i, pk′i, σ =
(Ri, Si)).

The security loss in this construction is much smaller, for example, the security remains
at 128-bits for 128-bits output H1-hash for Ed25519 signature scheme, and at 224-bits for
256-bits output H1 for Ed448 signature scheme. But the compression rate for this aggregate
signature scheme here is worse than for the previous scheme: the aggregated signature has n
group elements, r full scalars and r small scalars of length ` in expectation, therefore the size
of the signature is n group elements plus r · λ+ r · ` bits. If we set λ and r to be constants
and increase n, set ` = log2(n) + λ/r, the size of the aggregate signature will be n group
elements plus O(log(n)) bits, therefore the compression of the aggregation approaches 50%
as n grows.

Table 2 shows a selection of values across different trade-offs. Note that despite the
aggregation time being rather slow, as the aggregator has to do many oracle-queries, it is
highly parallelizable which is not reflected in our benchmarks: given M ≤ r2` processors it
is straightforward to parallelize aggregation into M threads.

It is most suitable to do aggregation in batches, i.e. aggregate some fixed constant number
of signatures, n, choosing the number to achieve a desired trade-off between compression
rate, aggregation time and verification time. The computational complexity of the aggregator
is O(r · n · 2`) and of the verifier is O(n · r). In fact, in this scheme the verifier is about
r/2 > 1 times less efficient than verifying signatures iteratively one-by-one, therefore this
compression scheme will always sacrifice verifier’s computational efficiency for compressed
storage or network bandwidth for transmission of signatures. To approximate the aggregator’s
complexity, we first approximate the compression rate:

c = (256 · n+ r · 256 + r · `)/(512 · n) ≈ (n+ r)/(2n).
We can now estimate the aggregator’s time through r = n(2c−1) as O(n3 ·(2c−1)·2λ/n/(2c−1)).
For a fixed compression rate c it achieves minimum at a batch-size n shown on Figure 1 for
λ = 128. The verifier’s time can be estimated through compression rate as O(n2(2c− 1)), it
is therefore most convenient to select an upper bound on the batch size according to Figure 1
and lower the batch-size to trade-off between aggregator’s and verifier’s runtime. We report
optimal aggregation times for the given compression rate in Figure 2 for Ed25519 signature
scheme. Amortized verification per signature is constant for constant r, amortized optimal
aggregation per signature is linear in the batch size n.
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Compression n r AggregateVerify AggregateSig

0.52 512 16 134.11 ms 197.89 s
1024 32 516.55 ms 76.857 s

0.53 256 16 74.449 ms 62.649 s
512 32 291.04 ms 25.272 s

0.57 128 16 41.565 ms 12.007 s
256 32 147.48 ms 6.1843 s

0.63
32 8 5.7735 ms 46.330 s
64 16 23.007 ms 4.2622 s
128 32 82.235 ms 1.3073 s

0.77
16 8 2.9823 ms 12.455 s
32 16 10.377 ms 1.2994 s
64 32 42.807 ms 403.55 ms

Table 2: The compression rate, the computation cost (for aggregation and aggregate-
verification) for aggregating n Ed25519 signatures with SHA-256 hash function used for
H1. The ` is set to be ` = log2(n) + 128/r. The benchmarks are run using the ed25519-dalek
library.

5 Deterministic batch verification of Schnorr signatures
As another application of the proof-of-knowledge techniques we present deterministic batch
verification. Batch verification is a technique that allows to verify a batch of signatures faster
than verifying signatures one-by-one. Not all of the Schnorr’s signatures’ variants support
batch verification, only those that transmit R instead of the hash H(..) do.

Bernstein et al. [10] built and benchmarked an optimized variant for batch verification for
EdDSA signatures utilizing the state-of-the-art methods for scalar-multiplication methods.
To batch-verify a set of signatures (Ri, Si) for i = 1..n corresponding to the set of messages
{mi}i=1..n and the set of public keys Ai, they propose to choose “independent uniform random
128-bit integers zi” and verify the equation

(−
∑
i

ziSi mod `)B +
∑
i

ziRi +
∑
i

(ziH0(Ri, Ai,mi) mod `)Ai = 0. (3)

As we explain in the next paragraph with many real-world examples, it is often dangerous
to rely on randomness in cryptographic implementations, particularly so for deployments on
a cloud. It would thus be desirable to make protocols not utilize randomness in secure-critical
components, such as signature-verifications. We note that batch verification (Eq. 3) is a prob-
abilistic version of the Algorithm 7 for verification of half-aggregation of EdDSA signatures.
From the security proof of half-aggregation it therefore follows that batch verification can be
made deterministic by deriving scalars with hashes as zi = H1(R1, A1,m1, . . . , Rn, An,mn, i).
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Figure 1: Optimal batch size to achieve
the optimal aggregation time.

c n AggregateVerify AggregateSig
amortized amortized

0.55 296 500 µs 39.7 ms
0.6 148 562 µs 16.9 ms
0.65 98 609 µs 9.4 ms
0.7 74 582 µs 12.7 ms
0.75 59 562 µs 4.2 ms

Figure 2: Aggregation and verification
time amortized per signature. Parameters
n, r are set to achieve the smallest aggre-
gation time: n is chosen from Figure 1,
r = 30.

Note that particularly for Ed25519 signature scheme it is advised [19] to multiply by a
cofactor 8 in single- and batch- verification equations (when batch verification is intended to
be used).

Determinism’s value in blockchains The history of the flaws of widely-deployed, modern
pseudo-random number generator (PRNG) has shown enough variety in root causes to warrant
caution, exhibiting bugs [62, 48], probable tampering [20], and poor boot seeding [38]. Yet
more recent work has observed correlated low entropy events in public block chains [21, 15],
and attributed classes of these events to PRNG seeding.

When juxtaposed with the convenience of deployment afforded by public clouds, often
used in the deployment of blockchains, this presents a new challenge. Indeed, deploying
a cryptographic algorithm on cloud infrastructure often entails that its components will
run as guest processes in a virtualized environment of some sort. Existing literature shows
that such guests have a lower rate of acquiring entropy [43, 26], that their PRNG behaves
deterministically on boot and reset [25, 56], and that they show coupled entropy in multi-
tenancy situations [41].

We suspect the cloud’s virtualized deployment context worsen the biases observed in
PRNG, and hence recommend the consideration of deterministic variants of both batch
verification and aggregation.

The kind of aggregated signature verification in this paper may also be available to deter-
ministic runtimes, which by design disable access to random generator apis. One such example
is DJVM [22], where a special Java ClassLoader ensures that loaded classes cannot be influ-
enced by factors such as hardware random number generators, system clocks, network packets
or the contents of the local filesystem. Those runtimes are relevant for blockchains, which
despise non-determinism including RNG invocations to avoid accidental or malicious misuse
in smart contracts that would break consensus. Nonetheless, all blockchains support signa-
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ture verification. A deterministic batch verifier would hence be very useful in these settings,
especially as it applies to batching signatures on different messages too (i.e., independent
blockchain transactions).

6 Impossibility of non-interactive compression by more
than a half

Given that we have shown that it is possible to compress Schnorr signatures by a constant
factor, it is natural to ask if we can do better. Indeed, the existence of succinct proof systems
where the proofs are smaller than the witnesses themselves indicates that this is possible,
even without extra assumptions or trusted setup if one were to use Bulletproofs [16] or IOP
based proofs [8, 9] for instance. This rules out proving any non-trivial lower bound on the
communication complexity of aggregating Schnorr’s signatures. However, one may wonder
what overhead is incurred in using such generic SNARKs, given their excellent compression.
Here we make progress towards answering this question, in particular we show that non-
trivially improving on our aggregation scheme must rely on the hash function used in the
instantiation of Schnorr’s signature scheme.

We show in Theorem 9 that if the hash function used by Schnorr’s signature scheme is
modeled as a random oracle, then the verifier must query the nonces associated with each
of the signatures to the random oracle. Given that each nonce has 2λ bits of entropy, it is
unlikely that an aggregate signature non-trivially smaller than 2nλ can reliably induce the
verifier to query all n nonces.

The implication is that an aggregation scheme that transmits fewer than 2nλ bits must
not be making oracle use of the hash function; in particular it depends on the code of
the hash function used to instantiate Schnorr’s scheme. To our knowledge, there are no
hash functions that are believed to securely instantiate Schnorr’s signature scheme while
simultaneously allowing for succinct proofs better than applying generic SNARKs to their
circuit representations. Note that the hash function must have powerful properties in order for
Schnorr’s scheme to be proven secure, either believed to be instantiating a random oracle [55]
or having strong concrete hardness [49]. Given that the only known techniques for making
use of the code of the hash function in this context is by using SNARKs generically, we take
this to be an indication that compressing Schnorr signatures with a rate better than 50%
will incur the overhead of proving statements about complex hash functions. For instance
compressing n Ed25519 signatures at a rate better than 50% may require proving n instances
of SHA-512 via SNARKs.

For “self-verifying” objects such as signatures (aggregate or otherwise) one can generi-
cally achieve some notion of compression by simply omitting O(log λ) bits of the signature
string, and have the verifier try all possible assignments of these omitted bits along with
the transmitted string, and accept if any of them verify. Conversely, one may instruct the
signer to generate a signature such that the trailing O(log λ) bits are always zero (similarly
to blockchain mining) and need not be transmitted (this is achieved by repeatedly signing
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with different random tapes). There are two avenues to apply these optimizations:

1. Aggregating optimized Schnorr signatures. One could apply these optimizations
to the underlying Schnorr signature itself, so that aggregating them even with our
scheme produces an aggregate signature of size 2n(λ− O(log λ)) which in practice is
considerably better than 2nλ as n scales. In the rest of this section we only consider
the aggregation of Schnorr signatures that are produced by the regular unoptimized
signing algorithm, i.e. where nonces have the full 2nλ bits of entropy. This quantifies the
baseline for the most common use case, and has the benefit of a simpler proof. However,
it is simple to adapt our proof technique to show that aggregation with compression
rate non-trivially greater than 50% is infeasible with this optimized Schnorr as the
baseline as well.

2. Aggregating unoptimized Schnorr signatures. One could apply this optimization
to save O(log λ) bits overall in the aggregated signature. In this case, O(log λ) is an
additive term in the aggregated signature size and its effect disappears as n increases,
and so we categorize this a trivial improvement.

Proof Intuition. Our argument hinges on the fact that the verifier of a Fiat-Shamir
transformed proof must query the random oracle on the ‘first message’ of the underlying
sigma protocol. In Schnorr’s signature scheme, this represents that the nonce R must be
queried by the verifier to the random oracle. It then follows that omitting this R value for a
single signature in the aggregate signature with noticeable probability will directly result in
an attack on unforgeability of the aggregate signature.

We first fix the exact distribution of signatures that must be aggregated, and then reason
about the output of any given aggregation scheme on this input.
GenSigs(n, 1λ):

1. For each i ∈ [n], sample (pki, ski)← KeyGen(1λ) and ri ← Fs, and compute Ri = ri ·B
and σi = ski · RO(pki, Ri, 0) + ri

2. Output (pki, Ri, σi)i∈[n]

The GenSigs algorithm simply creates n uniformly sampled signatures on the message ‘0’.

Theorem 9. Let (AggregateSig,AggregateVerify) characterize an aggregate signature scheme
for KeyGen, Sign, Verify as per Schnorr with group (G, B, q) such that |q| = 2λ. Let QV be
the list of queries made to RO by

AggregateVerifyRO(AggregateSigRO({pki, Ri, σi}i∈[n]))

where (pki, Ri, σi)i∈[n] ← GenSigs(n, 1λ). Then for any n, max((Pr[(pki, Ri, 0) 6∈ QV ])i∈[n]) is
negligible in λ.

Proof. Let ε = max((Pr[(pki, Ri, 0) 6∈ QV ])i∈[n]), and let j ∈ [n] be the corresponding index.
We now define an alternative signature generation algorithm as follows,
GenSigs∗(n, j, pkj, 1λ):
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1. For each i ∈ [n]\j, sample (pki, ski)← KeyGen(1λ) and ri ← Fs, and compute Ri = ri ·B
and σi = ski · RO(pki, Ri, 0) + ri

2. Sample σj ← Fs and ej ← Fs

3. Set Rj = σi ·B − ej · pkj

4. Output (pki, Ri, σi)i∈[n]

Observe the following two facts about GenSigs∗: (1) it does not use skj, and (2) the
distributions of GenSigs and GenSigs∗ appear identical to any algorithm that does not query
(pki, Ri, 0) to RO. The first fact directly makes GenSigs∗ conducive to an adversary in the
aggregated signature game: given challenge public key pk, simply invoke GenSigs∗ with pkj =
pk to produce (pki, Ri, σi)i∈[n] and then feed these to AggregateSig5. The advantage this simple
adversary is given by the probability that the verifier does not notice that that GenSigs∗ did
not supply a valid signature under pk∗ to AggregateSig, and we can quantify this using the
second fact as follows:

Pr[AggregateVerifyRO(AggregateSigRO(GenSigs∗(n, j, pkj, 1λ))) = 1]
= Pr[AggregateVerifyRO(AggregateSigRO(GenSigs(n, 1λ))) = 1]− Pr[(pki, Ri, 0) ∈ QV ]
= 1− Pr[(pki, Ri, 0) ∈ QV ]
= 1− (1− ε) = ε

Assuming unforgeability of the aggregated signature scheme, ε must be negligible.
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