
Succinct Publicly Verifiable Computation

Alonso González∗1 and Alexandros Zacharakis†2

1ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL), France
2Universitat Pompeu Fabra, Barcelon, Spain

alonso.gonzalez@ens-lyon.fr, alexandros.zacharakis@upf.edu

March 17, 2021

Abstract

In this work we construct for the first time a delegation scheme for arithmetic circuits with proof-size
and verification complexity comparable to those of pairing based zk-SNARKS (e.g. Gennaro et al. at
Eurocrypt 2013 or Groth at Eurocrypt 2016), but based on standard assumptions. Each proof comprises
O(1) group elements of a bilinear group and verification requires O(1) pairings plus n exponentiations,
where n is the number of inputs. Soundness can be proven under any Matrix Diffie-Hellman (MDDH)
assumption of size k ≥ 2. The size of the reference string as well as the prover’s complexity is quadratic
in the size of the circuit.

Our techniques combine the ideas for constructing delegation schemes of Paneth and Rothblum (TCC
2017), and then refined by Kalai et al. (STOC 2019), with the so called Quasi-Adaptive NIZK arguments
for linear languages (Jutla and Roy at Asiacrypt 2014 and Crypto 2015, Libert et al. Eurocrypt 2015,
Kiltz and Wee Eurocrypt 2015) and for quadratic languages (González et al. at Asiacrypt 2015 and 2019).
We obtain a delegation scheme with asymptotically shorter proofs and verification.

Our construction can be turned into a NIZK argument for NP of size n+O(1) group elements under
the same assumptions and can be used to construct zk-SNARKs from quantitatively weaker assumptions
than the state of the art. Additionally, the NIZK argument for NP yields a compact NIZK for NP with
proof size linear in the size of the witness by using the same techniques and improving on Katsumata et
al. (Crypto 2019 and Eurocrypt 2020) which has proof size linear in the size of the circuit.

∗This author was supported by the European Union PROMETHEUS project (Horizon 2020 Research and Innovation Pro-
gram, grant 780701)
†Research Supported by fellowships from “la Caixa” Foundation (ID 100010434). The fellowship codes are

LCF/BQ/DI18/11660052 and LCF/BQ/DI18/11660053. Funding is also from the European Union’s Horizon 2020 research
and innovation program under the Marie Sk lodowska-Curie grant agreement No. 713673.

1

Contents

1 Introduction 3
1.1 Our results . 3

2 Technical Overview 5
2.1 Quasi-Arguments of Knowledge of [KPY19] . 6
2.2 Structure Preserving Delegation for Bounded-Depth Circuits. 7
2.3 No-Signaling Somewhere Statistically Binding Commitments/Hashing 8

2.3.1 SSB Commitments with Oblivious Trapdoor Generation. 8
2.3.2 Constructing Oblivious SSB Commitments. 9

2.4 Quasi-Arguments of Membership in a Linear Space . 10
2.4.1 The argument. 10
2.4.2 Local and No-Signaling extraction. 11
2.4.3 Extension to Knowledge Transfer, Bilateral Spaces and Sum Arguments. 11

2.5 Quasi-Argument of Hadamard Products . 12
2.5.1 Local and No-Signaling Extraction. 12
2.5.2 Extension to Knowledge Transfer Arguments. 12

2.6 From our Quasi-Arguments to Delegation. 12
2.7 NIZK, SNARKs and Compact NIZK . 13

3 Preliminaries 13
3.1 Notation . 13
3.2 Cryptographic Assumptions . 14
3.3 Argument of Knowledge Transfer . 15

4 No-Signaling Somewhere Statistically Binding Commitments 16
4.1 Algebraic SSB Commitments. 18
4.2 Somewhere Statistically Binding Commitments with Oblivious Trapdoor Generation 19
4.3 Kronecker Product of two SSB commitments . 22

5 Quasi-Arguments with Preprocessing 25
5.1 Arguments with No-signaling extraction and Oblivious CRS Generation 26
5.2 Succinct Pairing Based Quasi-Arguments . 29

5.2.1 Quasi Arguments of Membership in Linear Spaces . 29
5.2.2 Quasi-Arguments for Hadamard Products. 34

6 Delegation for Arithmetic Circuit Evaluation 41
6.1 The Scheme . 41
6.2 Proof of Security . 43

7 Applications 45
7.1 Groth-Sahai Proofs . 45
7.2 NIZK arguments for NP. 46

A Delayed proof from Section 3.3 51

B Delayed proofs from Section 5.2.1 54
B.1 Proof of security for the bilateral knowledge transfer quasi arguement 54
B.2 Proof of security for the sum knowledge transfer quasi arguement 57

2

1 Introduction

In a delegation scheme a verifier with limited computational resources (a mobile device for example) wishes
to delegate a heavy but still polynomial computation to an untrusted prover. The prover, with more com-
putational power but still of polynomial time, computes a proof which the verifier accepts or rejects. Given
the limitations of the verifier, the proof should be as short as possible and the verification process should
consume as few computational resources as possible.

A delegation scheme can be easily constructed from a zero-knowledge Succinct Non-interactive Argument
of Knowledge (zk-SNARK) for NP. Schemes like [GGPR13, Gro16] are very appealing in practice because
a proof consists of only a constant number of group elements and verification requires the evaluation of a
constant number of pairings.1 The downside is that these zk-SNARKs are based on strong and controversial
assumptions such as the knowledge of exponent assumption or the generic group model. Such assumptions
are called non-falsifiable because there is no way of efficiently decide whether an adversary breaks the
assumption or not. Actually, since these zk-SNARKs can handle even NP computations, soundness becomes
an essentially non-falsifiable property where one needs to decide whether an adversary produces a true or
false statement without any witness but only with a very short proof. Gentry and Wichs [GW11] proved
that zk-SNARKs for NP are (in a broad sense) impossible to construct without resorting to non-falsifiable
assumptions.

Interactive schemes such as [GKR08, RRR16] offer delegation even with unconditional soundness at the
cost of many rounds of interaction between the prover and the verifier. The downside is that, in general,
interactive protocols can’t be publicly verified and they might be even deniable [DNS98]. Designated verifier
schemes such as [KRR14] suffers from the same problem. Although interactive schemes can be made non-
interactive and publicly verifiable in the random oracle model, such a strong assumption is again non-
falsifiable.

In contrast to NP computations, soundness of a delegation scheme is a falsifiable statement. Indeed,
determining whether the adversary breaks soundness becomes efficiently falsifiable since it requires to evaluate
the delegated polynomial computation on some input x and check whether it is accepting or rejecting. This
observation shows that there is no evident reason for using non-falsifiable assumptions in the construction
of delegation schemes.

In fact, there are many arguments for lower complexity classes whose security is based on falsifiable
assumptions. [KPY18] constructs a delegation scheme using (constant-size) non-falsifiable assumptions but
limited to bounded depth log-space uniform computations. González and Ràfols [GR19] constructed a del-
egation scheme for bounded depth computations based on a q-assumption over bilinear groups. Canetti et
al. [CCH+19] constructed delegation for log-space uniform NC computations based on a form of perfect cir-
cular security for fully homomorphic encryption. Very recently in [JKKZ20], the authors give a delegation for
log-space uniform circuits under the sub-exponential hardness of the LWE assumption. Kalai et al. [KPY19]
constructed a delegation scheme for any poly-time computation based on a type of q-assumption in bilinear
groups, where q = log κ and κ is the security parameter. For a computation taking T steps, the size of the
proof is polylog(T) group elements which becomes poly(κ) group elements if T ≤ 2κ. In [KPY19] the authors
introduced an interesting relaxation of arguments of knowledge which they called quasi-arguments of knowl-
edge. Then they showed that their quasi-arguments become normal arguments in the case of polynomial
time computations.

However, in spite ot the recent progress, there’s still a gap in the proof size and verification with respect
to paring based zk-SNARKs. Furthermore, we would like to use assumptions as standard as DDH or matrix
Decisional Diffie-Hellman.

1.1 Our results

In this work we construct a succinct delegation scheme with public verification. To achieve this goal we: (1)
introduce and construct efficient no-signaling somewhere statistically binding commitments; (2) construct

1Note that zero-knowledge is not necessary.

3

quasi-arguments for linear and quadratic relations with shorter proofs and verification complexity; and (3)
we use and improve the knowledge transfer arguments of [GR19].

Succinct Publicly Verifiable Delegation. We construct a delegation scheme for arithmetic circuits in
the pre-processing model. That is, there is a preprocessing stage where some common reference string (crs) is
set up and additionally, this crs might depend on the particular arithmetic circuit. Each proof comprises 10+8
group elements of an asymmetric bilinear group. Verification requires n exponentiations plus 36 evaluations
of the pairing function, where n is the size of the input. In symmetric groups, soundness can be proven
under any Matrix Diffie-Hellman (MDDH) assumption of size k ≥ 2, as for example the decisional linear
assumption (DLin). In asymmetric groups soundness can be based on the natural translation of symmetric
DLin where the challenge is encoded in both groups (the SDlin assumption of [GHR15a]). The size of the
common reference string as well as the prover’s complexity are quadratic in the size of the circuit. In Table
1 we provide a comparison with other delegation schemes.

Table 1: Comparison between different pairing based delegation schemes and our results.

Language Verification Proof size CRS size Assumption

[GGPR13][Gro16] AC ne +O(1)p O(κ) O(|C|) Non Falsifiable
[KPY19] (base case) RM ne +O(log d)p O(κ log d) O((n+ log d)κ) log κ-Assumption

[GR19] AC ne +O(d)p O(dκ) O(|C|κ) s-Assumption
This work AC ne +O(1)p O(κ) O(|C|2κ) SDLin

Verification is given in number exponentiations (e) and pairings (p). d is the circuit depth/number of steps
of a computation, n the number of inputs, s the circuit width/computation space and |C| the circuit size. AC
stands for “Arithmetic Circuit” and RM for “RAM Machine”. For [KPY19] we only consider the “base case”
and not the “bootstrapped” constructions, because bootstrapping adds a considerable overhead (although
it is only poly(κ)) and hence is of less practical interest.

No-Signaling SSB Commitments and Succinct Pairing-based Quasi-Arguments. We follow and
extend the ideas of Rothblum and Paneth [PR17] and Kalai et al. [KPY19] for constructing delegation
schemes for poly-time computations from what they called quasi-arguments of knowledge with no-signaling
extractors. We show that the somewhere statistically binding (SSB) commitments of [GHR15a, FLPS20]
are no-signaling when they also have what we call an “oblivious trapdoor generator”. We then construct
more efficient constant-sized quasi-arguments of knowledge for linear and quadratic relations. We do so by
combining SSB commitment with the quasi-adaptive non-interactive zero-knowledge arguments for linear
[JR13, LPJY13, JR14, KW15] and quadratic relations [GHR15a, DGP+19].

Delegation for Unbounded Space Computations. The quasi argument of [KPY19] works only for
bounded-space computations, or for bounded width circuits in our case.2 Kalai et al. solved this issue by
simulating high-space computations with low-space computations using hash-trees. This approach has the
inconvenient of being non structure-preserving, in the sense that it ultimately relies on expressing as a circuit
(or boolean formula) the evaluation of a hash function. We note that in practice this is very inefficient and
in fact, is the same bottleneck found in the deployment of zk-SNARKs [BCG+14].

We take a different approach and note that the so called “Arguments of Knowledge Transfer” of [GR19]
allow to achieve the same goal in a structure-preserving fashion [AFG+16]. That is, the statement being
proven is “NIZK-friendly” and a practically efficient argument for the satisfiability of the statement can be
derived without reducing a cryptographic primitive to a circuit. Specifically, in [GR19] the authors show how
to express the correct evaluation of a circuit as a set of d paring product equations in only three variables,

2Equivalently, we can think the size of the proof grows with the width of the circuit.

4

where d is the depth of the circuit (hence, independent of the width). In this work we construct a constant-
size quasi-argument of knowledge of solutions to these pairing product equations, bypassing the reduction
to a circuit of a cryptographic primitive (of the pairing function in this case). Furthermore, we extend the
work of [GR19] constructing arguments of knowledge transfer from any MDDH assumption at the cost of a
quadratic crs.

Applications. Our construction can be turned into a NIZK argument for NP of size n + O(1) group
elements under the same assumptions. In table 2 we provide a comparison of our NIZK construction and
the literature. Using standard techniques, the argument implies compact NIZK for NP with proof size linear
in the size of the witness. That is, the size of the proof is proportional to the size of the input and not
the security parameter (recall that the size of each element of a bilinear group is O(κ), where κ is the
security parameter). In comparison, the state of the art is O(|C|) for poly-sized boolean circuits and O(n)
for log-depth boolean circuits [KNYY19, KNYY20].

Table 2: Comparison between different pairing based NIZK schemes and our results.

Language Verification Proof size CRS size Assumption

[GOS06] AC O(|C|)p O(|C|κ) O(κ) SXDH
[GGPR13][Gro16] AC O(1)p O(κ) O(|C|κ) Non Falsifiable

[GR19] BC O(n+ d)p O((n+ d)κ) O(|C|κ) s-Assumption
[KNYY20] NC1 O(|C|)poly(κ) npoly(κ) poly(|C|, κ, 2d) DLin
This work BC O(n)p nO(κ) O(|C|2κ) SDLin

Verification is given in number of pairings p. d is the circuit depth, n the number of inputs, s the circuit
width and |C| the circuit size. AC stands for “Arithmetic Circuit” and BC for “Boolean Circuit”.

Our argument can be also used to construct zk-SNARKs from quantitatively weaker assumptions than
the state of the art. Indeed, the strongest assumption used in zk-SNARKs such as [GGPR13, Gro16] is a
knowledge assumption which states that an adversary computing some elements of a bilinear group, satisfying
a particular relation, must know their discrete logarithms.3 Such assumption is used to extract an assignment
to each of the circuit wires. The “size” of such assumption is proportional to the number of extracted values,
which in this case is the size of the circuit. Since our argument only requires the reduction to know the input
of the circuit, we can rely on a knowledge assumption only for extracting the input. As a consequence the
size of the assumption is drastically shortened.

2 Technical Overview

In this work we follow a commit-and-prove approach, which means that we first commit to the witness and
then show that this witness satisfies some relation. Our approach also follows the ideas of Kalai et al.[KPY19]
to derive a delegation scheme from a quasi-argument.

We use somewhere statistically binding (SSB) commitments as those used in [GHR15a, GR16, FLPS20]
and show that they have no-signaling extractors. Then we do the same for the so called quasi-adaptive NIZK
arguments for linear spaces [JR13, LPJY13, JR14, KW15] and for quadric relations [GHR15a, DGP+19].
From these primitives we can construct delegation for bounded-space computations/bounded width circuits
with proof-size independent of the depth of the computation. To get a succinct proof-size in addition to the
“depth compression” we must also perform a “width compression”. To do so we use the delegation scheme
for bounded depth computations of González and Ràfols [GR19] and get rid of the q-assumption to rely
solely on constant size assumptions. To combine both “compressions” efficiently we exploit the fact that
[GR19] is structure preserving and the verifier is a bounded width circuit.

3Actually, the adversary must know a representation of these values as a linear combination of a set of group elements that
she receives as input.

5

Bilinear Groups. In this high-level overview we will be using symmetric bilinear groups as it leads to
simpler constructions. That is (G,GT , e) of primer order p and generators P,PT = e(P,P) and e : G×G→
GT an efficiently computable non-degenerated bilinear map. For the more efficient case of asymmetric
groups, we essentially use the idea of [GHR15a] of splitting quadratic terms in two random shares encoded
in different groups.

2.1 Quasi-Arguments of Knowledge of [KPY19]

Paneth and Rothblum and then Kalai et al. used a weakened version of an argument of knowledge, which
Kalai et al. called quasi-argument, as an intermediate step for obtaining a delegation scheme. Unlike an
argument of knowledge, a quasi-argument has only local extraction, meaning that only a small part of the
witness of size at most K, the locality parameter, is extracted. This is formalized by means of an extractor
which on input a set S ⊆ [n] of size at most K, where n is the size of the witness, programs a crs so that it can
later extract positions of the witness defined by S. Central to quasi-arguments is the notion of no-signaling
local extraction which is aimed to capture a strong local soundness guarantee. Local soundness means that
the extracted local witness is consistent with the relation and doesn’t lead to a local contradiction. The
no-signaling requirement is defined for any two sets S, S′ where S′ ⊆ S and of size at most K. It states
that the result of programming extraction for S and then output only the extracted value for S′, should
be indistinguishable from the result of programming extraction for S′ and output the extracted value for
S′. Intuitively, this strengthens locality by requiring that the small parts of the local witness are extracted
independently from rest so that it doesn’t matter if extraction is done with a trapdoor for S or S′.

Delegation for P. Kalai et al. showed that quasi-arguments become arguments if the underlying language
is in P, for example the language of (x,C) s.t. C is a circuit or TM and C(x) = 1, which is exactly the
case of delegation. An outline of the construction will be useful for understanding the power of no-signaling
extraction, which is a rather technical notion.

Consider some polynomial time sequential computation which on input x outputs y, for example a
Turing Machine or an arithmetic circuit. To do so, the computation goes through a sequence of states
st0, st1, . . . , std such that st0 is consistent with the input, state std contains the output y, and there’s a
functional relation between states sti, sti+1 where sti+1 = f(sti) and f is determined by the description
of the computation. Kalai et al. constructed a quasi argument that is also an argument for the correct
computation of y. The local extractor can extract any pair of consecutive states and they showed that any
of such states must be consistent with the input, meaning that on input x an honest computation reaches
such state in the corresponding number of steps. Note that consistency can be efficiently checked as long as
the computation is polynomial time.

Consider an extractor programmed for retrieving st0, st1, i.e. locality parameter K = 2|st|, where |st| is
a bound on the size of the states. Local soundness asserts that state st0 is consistent with x. Local soundness
also implies that st1 is consistent with st0 and hence with x (note that the statement st1 = f(st0) depends
only on local variables). Now, to show that st2 is also consistent, we jump to another game where first the
extractor computes only st1, and in the next game the extractor computes st1, st2. The crucial observation
is that st1 should be still consistent with x in both games. Otherwise, we can distinguish between the
common output of extractors for st0, st1 and st1 or between st1 and st1, st2, which contradicts the no-
signaling property. Similarly, consistency of st1 and local soundness imply that st2 is also consistent, and
so on up to std.

The issue is that setting K = O(|st|) yields a proof whose size is linear in the space of the computation
and hence not succinct. To overcome this bounded-space limitation, Kalai et al. used hash-trees to construct
a proof that a RAM machine (which can emulate an unbounded-space machine) transitions between two
configurations cf, cf′. Essentially, the verifier is only given digests h, h′ of the states, which act as an
aggregated form of the state in each time step. Kalai et al.’s hash-tree construction guarantees that an
adversary can’t produce a configuration cf, digests h, h′ and valid proof such that h = Hash(cf) but h′ 6=
Hash(cf′), where cf′ = f(cf) and f is the transition function of the RAM machine.

6

Note that the verification procedure of such proof is a computation with space bounded by poly(κ).
Then, we can give a quasi-argument for the RAM delegation. That is, a quasi-argument of knowledge of
h1, h2, . . . , hd ∈ {0, 1}poly(κ) such that, if hi−1 = Hash(cfi−1) then hi = Hash(f(cfi−1)). However this comes
at the cost of reducing the verification procedure of the hash-tree to a 3CNF formula. While the size of the
final formula is still polynomial in the security parameter, in practice it has a considerable size which has
direct impact on the size of the common reference string and the prover’s computation.

2.2 Structure Preserving Delegation for Bounded-Depth Circuits.

González and Ràfols [GR19] constructed a delegation scheme with proof-size O(dκ) and verification requiring
n plus O(d) cryptographic operations. Interestingly, the verification procedure of [GR19] can be described
completely as a set of pairing product equations. As shown by Abe et al.[AFG+16], cryptographic primitives
whose correctness can be stated as equations over bilinear groups are more suited for practically efficient
arguments without resorting to generic reductions to a circuit or a 3CNF formula.

In the heart of the delegation scheme of [GR19] lie two of the so called “knowledge transfer arguments”
with the following property. For a commitment C1 and an opening x, such an argument allows to prove that
some other commitment C2 opens to f(x), for some function f , even if C2 is not extractable. The first of such
arguments is a succinct (proofs of size O(κ)) knowledge transfer argument for linear functions. Soundness is
shown under the hardness of the G>-MDDH assumption, where G is the distribution of the matrix G ∈ Zk×np

containing the discrete logarithms of C1’s commitments keys. Note that when G is uniform (e.g. Pedersen
commitments), the G>-MDDH assumption can be reduced to DDH in asymmetric groups.4 In the second
argument, the function is the hadamard product f(a, b) = a ◦ b and security is based on the hardness
of the “R-Rational Strong Diffie Hellman” assumption. In contrast to the linear argument, the quadratic
argument requires a specific distribution for the commitment key where the k > 1 rows of G are the result
of evaluating n lagrangian polynomials at k different random points. As a result, when using linear and
quadratic arguments together, the linear argument is based on the so called “q-Lagrangian assumption”.

To delegate the computation of an arithmetic circuit, the multiplication gates are partitioned in d levels.
Each level groups the gates at the same distance from the inputs, without counting linear gates. In this way,
the inputs of level i + 1 are linear combinations of outputs of the i previous levels. A prover commits to
the left, right, and output wires of each level as Li, Ri, Oi. In the first d arguments f is a linear function
and the argument handles the linear relations between the input wires (the openings of Li, Ri) of level i
and the output wires of all previous levels (the openings of O1, . . . , Oi−1). In the next d arguments f is the
hadamard product so that the opening of Oi is the the hadamard product of the openings of Li and Ri.
The fact that the verifier can check the commitment to the first level using the public input and a simple
inductive argument over the levels shows that the output must be correct.

Although we don’t explicitly construct it, underlying our quasi arguments lies a delegation scheme with
proof size linear in d which closely follows [GR19]. The main difference is that we use uniform commitment
keys that allows us to rely only on constant-size assumptions. In symmetric groups, when G is uniformly
distributed over Z2×n

p the G>-MDDH can be easily reduced to DLin. In asymmetric groups we can take
G← Z1×n

p (a pedersen commitment key) and rely on DDH. We additionally modify the hadamard argument
as follows. We first give a “kronecker argument” such that, if Li opens to ai and Ri opens to bi, then Si
opens to ai⊗bi. Then we give a linear knowledge transfer argument from Si to Oi, a commitment to ai ◦bi,
using the fact that there’s a linear relation between a⊗ b and a ◦ b.

The advantage of the kronecker argument is that, when commitments are (vectors of) bilinear group
elements, the verifier can check if Si is correct with probability 1 and without any proof. If we restrict to
“algebraic commitments”, the commitment keys are matrices defined over G and commitments Li, Ri are
group encodings of Uai and Vbi respectively. If we define the commitment key of Si to be the encoding of
U ⊗V in the base group, then e provides a trivial way of testing that Oi opens to ai ⊗ bi. It suffices to
check that e(Si,P) = e(Li, Ri), where P is a generator of G, and then Si opens to ai ⊗ bi since logSi =

4In symmetric bilinear groups the DDH assumptions is false. However, using Pedersen commitments of size 2 yields security
based on the DLin assumption.

7

(U ⊗ V)(ai ⊗ bi). The last step is to show the hardness of the (U ⊗ V)>-MDDH, which is necessary for
the soundness of the linear knowledge transfer argument from Si to Oi. We show that (U ⊗V)>-MDDH
can be reduced to the U>-MDDH and V>-MDDH assumptions (and hence to DLin when the matrices are
uniform).

2.3 No-Signaling Somewhere Statistically Binding Commitments/Hashing

Somewhere statistically binding (SSB) hashing/commitments5 were introduced by Hubacek an Wichs [HW15]
and then improved by [OPWW15], and have been used for constructing efficient NIZK proofs [GHR15a,
GR16] as well as ring signatures [BDH+19]. SSB commitments are a generalization of dual-mode commit-
ments where the commitment key can be sampled from many computationally indistinguishable distributions,
each of which is statistically binding for some part of size ` of the input. Known SSB commitments con-
structions are also extractable.6 That is, there exists an efficient procedure for retrieving the local opening
xS = (xi : i ∈ S) from any commitment to x1, . . . , xn, whenever the commitment keys are perfectly binding
in S ⊆ [n].

We note that the SSB extractor has many similarities with a no-signaling extractor. First, extractability
of the local opening is just a local soundness guarantee (with locality parameter `). Additionally, indistin-
guishability of the commitment keys is a weaker form of the no-signaling property. Indeed, a no-signaling
extractor must produce commitment keys which are indistinguishable between them. Otherwise a distin-
guisher for sets S, S′ can be used for wining in the no-signaling game even without the extracted value.

Although we don’t know if any SSB commitment is also no-signaling, we show a strong connection
between the two notions. First, we show that K extractable SSB commitments with locality ` = 1 can
be straightforwardly used to construct a no-signaling SSB commitment with locality K. However, this
construction is not as efficient as directly using an SSB commitment with locality ` = K. At least for known
SSB constructions such as [GHR15a] and [FLPS20] the size of each commitment with locality ` = K is
K + k elements of a bilinear group, where k is the size of the underlying matrix assumption. In the simple
construction the size of K commitments with locality 1 is K(k+ 1), which amounts to k(K − 1) more group
elements. Consequently, we ask whether SSB commitments with locality ` = K are also no-signaling. We
show this is the case if the SSB commitment has also an oblivious trapdoor generation procedure.

2.3.1 SSB Commitments with Oblivious Trapdoor Generation.

We strengthen the key and trapdoor generation to be oblivious, and for short we will say oblivious SSB com-
mitment. Intuitively, this notion captures that, for any subset S′ of the larger set S of binding coordinates,
the key generation algorithm can generate the commitment key for S′ and a trapdoor for S′ obliviously
of S \ S′. That is, given only a commitment key generated for S and the description of S′, which should
(computationally) hide any information about S\S′, the oblivious key generation algorithm outputs an iden-
tically distributed key together with a trapdoor for extracting xS′ . Intuitively, the key generation algorithm
is oblivious of S \ S′ (it might even be that S \ S′ = ∅) because the commitment keys are indistinguishable.

Oblivious SSB implies no-signaling SSB. It turns out that this notion also implies that the extracted
value can’t “signal” any information about S \S′. Concretely, we show that any oblivious SSB commitment
has a no-signaling extractor. Consider the extractor which on input S generates the commitment key binding
at S together with some trapdoor τ . When the extractor receives some commitment from the adversary it
uses the trapdoor to produce a local opening. Local consistency follows directly from local extractability.
For showing the extractor no-signaling, we need to show that given two sets S, S′ ⊆ [n] where S′ ⊆ S, the

5Through this paper we will refer to “commitments” while technically they are “hashes”. We do so because in the context of
NIZK proofs is traditional to commit to the witness and then prove that the committed value satisfy some relation. However,
since we are less interested in zero-knowledge, the randomness of such commitments is 0 (or fixed/inexistent) and we end up
with hashes.

6In the context of bilinear groups, we can consider f -extraction where one only extracts f applied to the witness. In
particular, it is usual to consider f the (one-way) function that maps elements in Zp to one of the base groups G1 or G2.

8

following two experiments are indistinguishable. In the first experiment the extractor is called on input S and
when the extractor outputs some xS , the experiment outputs xS′ . In the second experiment the extractor
is called on input S′ and the output of the experiment is whatever the extractor outputs. Now we construct
a sequence of intermediate experiments by doing incremental modifications to the first one until we end up
with the second.

The first intermediate experiment is as the first experiment but the extractor additionally calls the obliv-
ious key generation on input S′ and the original commitment key. It outputs a new identically distributed
commitment key together with a trapdoor. Now the extractor extracts directly xS′ using the obliviously
generated trapdoor, which should be the same as extracting xS and returning xS′ . Since the new commit-
ment key follows the same distribution as the original key, the output of this modified experiment should be
indistinguishable from the first experiment. Now we use the obliviousness of the key generation algorithm
and change the commitment key given to the oblivious key generation algorithm with a key generated for
the set S′. The indistinguishability of commitment keys implies that the output of the experiment is still the
same. We finally get rid of the oblivious key generation algorithm and end up with experiment two, showing
that the extractor is no-signaling.

2.3.2 Constructing Oblivious SSB Commitments.

First lets see that K SSB commitments with locality parameter 1 can be used to construct an oblivious
SSB commitment with locality K (and hence it has a no-signaling extractor). For a set S = {s1, . . . , st}
the commitment key is just K commitment keys ck1, . . . , ckK for sets {s1}, . . . , {st}, complementing with
extra {st+1}, . . . , {sK} if necessary. To commit to some x ∈ Znp one simply gives c1 = Comck1(x), . . . , cK =
ComckK (x). Extraction of each xsi is done using csi and the trapdoor τsi , independently of the others. The
oblivious extractor on input the commitment keys for some unknown S and the description of S′ ⊆ S just
re-samples the commitment keys for S′.7 Since it doesn’t matter if the trapdoors for positions i /∈ S′ are not
known, we have that this trivial extractor can obliviously generate the trapdoor {τi : i ∈ S′}.

Efficient Oblivious SSB Commitments. To construct more efficient SSB commitments with oblivious
trapdoor generation we use the implicit SSB commitments of [GHR15a] later generalized in [FLPS20]. For
x ∈ Zp, we write [x] to denote xP. For message space Znp , locality parameter K ∈ N and a subset S ⊆ [n]
of size t ≤ K, the commitment key is defined by [G] where G = (GS |GS)P and

GS ← Z(K+1)×t
p ,GS = G0Γ,G0 ← Z(K+1)×(K+1−t)

p ,Γ← Z(K+1−t)×(d−t)
p .

Matrix P ∈ {0, 1}d×d is a permutation matrix associated to S such that Pesi = ei, for i ≤ t and ei the
i-th vector of the canonical basis. A commitment to x ∈ Zdp is computed as [c] = [G]x = [GS |GS]Px =
[GS]xS + [GS]xS . Note that the columns of GS are linearly independent from the columns of GS with
overwhelming probability, since Im(GS) ⊆ Im(G0) and (GS |G0) is a basis of ZK+1

p w.o.p.
This distribution of commitment keys implies that some parts of the input in S go to the space spanned

by GS of dimension t, while the other part is mapped to the space spanned by G0 of dimension K + 1− t.
Since rank(GS) = t with overwhelming probability, all the information of xS ∈ Ztp can be retrieved from

c. Even more, there exists an efficiently computable trapdoor TS ∈ Z(K+1)×t
p such that G>STS = It×t and

G>
S

TS = 0(d−t)×t, and hence T>S [c] = [xS]. Note that this shows also that the commitment is SSB. The
indistinguishability of commitment keys can be shown with a tight reduction to the DDH assumption as in
[FLPS20].

Oblivious Trapdoor Generation. One of the main technical contributions of this work is an oblivious
trapdoor generator for this commitment scheme. The algorithm receives a set S′ of size t′ and a commitment

7Actually, the oblivious key generation needs to know which of the commitments keys ck1, . . . , ckK are perfectly binding for
s′ ∈ S′. Nevertheless, it should be still oblivious of whether the rest of commitment keys are binding or not. See i section 4.2
for more details.

9

key [G] sampled for being binding at some unknown S ⊇ S′. The procedure must compute a new commitment
key [H] distributed as [G] together with the trapdoor TS′ . Since we know that columns in S′ are uniform,

we could pick HS′ ← Z(K+1)×t′
p and solve H>S′TS′ = It′×t′ for some TS′ (note that there are many such TS′

if t′ ≤ K). However, since we don’t know the distribution of [GS
′] the only hope is to define [HS

′] = [GS
′]

and try to find some TS′ such that G>
S
′TS′ = 0(d−t′)×t′ . Unfortunately, this amounts to find an element in

the kernel of [GS
′]> which is in general a computationally hard problem [MRV16].

Instead we make the following observation. Regardless of S \ S′, the t′ lower rows of GS can be always
written as a random linear combination of the first K + 1 − t′ rows. That is GS

′ = (A
RA), where A ∈

ZK+1−t′×d−t′
p and R← Zt′×K+1−t′

p . In this case it is possible to compute TS′ =
(
−R>C

C

)
, for any C ∈ Zt′×t′p ,

which satisfies G>
S
′TS′ = 0(d−t′)×t′ . Adding the restriction H>S′TS′ = It′×t′ yields the desired trapdoor.

Lets see that the previous observation holds. Indeed, this is the case for G0 ∈ Z(K+1)×(K+1−t)
p since the

upper part G0 is a random matrix with more rows than columns and hence RG0, for R ← Zt
′×(K+1−t′)
p ,

is uniformly distributed. This is also valid for all non-binding coordinates since GS = G0Γ and then

the lower rows follow distribution RGS . The same is true for GS\S′ ∈ Z(K+1)×(t−t′)
p , that is R′GS\S′

is uniform when R′ ← Zt
′×(K+1−t′)
p . Now we show that using the same matrix R doesn’t alter the dis-

tribution and in fact RG0 is independent from RGS\S′ . Since the columns of G0 ∈ Z(K+1−t′)×(K+1−t)
p

and of GS\S′ ∈ Z(K+1−t′)×(t−t′)
p form a basis of ZK+1−t′

p , the matrix R> can be decomposed into two

independent components: a random element in Im(G
⊥
S\S′) and another in Im(G

⊥
0). This shows that

RG0 = R2(G⊥S\S′)
>G0 and RGS\S′ = R1(G⊥0)>GS\S′ are independent and then

(
GS\S′ G0Γ

RGS\S′ RG0Γ

)
is

correctly distributed.

2.4 Quasi-Arguments of Membership in a Linear Space

Quasi-Adaptive NIZK (QA-NIZK) proofs are NIZK proofs where the CRS is allowed to depend on the
specific language for which proofs have to be generated [JR13]. Such language dependent preprocessing
boosts efficiency leading to proofs of size as short as a single group element [JR14].

However, QA-NIZK arguments are in general not arguments of knowledge. Although it is possible to
show that they are arguments of knowledge in the generic/algebraic group model [CFQ19], nothing is known
under falsifiable assumptions. Actually it is quite plausible that results for the feasibility of SNARKs under
falsifiable assumption also apply to arguments of knowledge for linear spaces. Hence, we can only look for
relaxed notions of arguments of knowledge such as the quasi-arguments of Kalai et al.

A first attempt to define quasi-arguments for linear spaces is to relax the argument of knowledge: extract
only a small part of w such that [x] = [U]w. However, if U follows an arbitrary distribution, such local
witness might not even be defined. It is not hard to see that one should require some local binding property
for U which is exactly the case of SSB commitments we have just seen. Instead, we define a quasi-argument
of knowledge of some vector [x] ∈ G` belonging to the image of a matrix [U] ∈ G`×n.

We use Kiltz at Wee argument of membership in linear spaces [KW15] to construct a quasi argument for
linear relations. We show that there is a local and no-signaling extractor which given some S ⊆ [d] of size
t ≤ K extracts [xS] ∈ Im([US]), where xS ∈ Ztp is the vector whose entries are xi and US ∈ Zt×np is the
matrix whose rows are the rows of U indexed by i, where i ranges over S in some fixed order.

2.4.1 The argument.

Our construction is Kiltz and Wee linear membership argument [KW15] for the matrix [GU], where G is an
SSB commitment key with locality parameter K. For simplicity, here we consider here the argument with
proof size k + 1 of [KW15] but our construction is also sound for the more efficient instantiation of size k.

The argument is essentially a hash proof system [CS02] with public verifiability. For a secret hash key

K ← Z(K+1)×(k+1)
p the crs contains the projection [B] = [U>G>K] from which a proof that c = GUw is

10

computed as [π] = w>[B] = [c>]K. Secret verification is just [π] = [c>]K and is sound because for any
c /∈ Im(GU) the value c>K is completely random. To publicly verify proofs the crs additionally contains

a “partial commitment” to the secret key [C] = [KA] plus [A], where A ∈ Z(k+1)×k
p is sampled from some

matrix distribution Dk. The verifier checks whether e([π], [A]) = e([c>], [C]) and, while now there exist
proofs satisfying the verification equation for false statements with high probability, cheating proofs can be
used to compute elements in the kernel of A> (i.e. breaking the D>k -KerMDH assumption of [MRV16]).

2.4.2 Local and No-Signaling extraction.

Our strategy to prove local soundness is to show that, apart from extracting [xS] from [c], we are also able
to produce a verifying proof [π†] that [xS] ∈ Im(US). More concretely, on input a crs [A†], [B†], [C†], we
can construct another crs that is statistically close to the original and, more importantly, we can extract
[xS] and [π†] satisfying the corresponding verification equation.

The high-level idea for the proof of local soundness is to embed the public parameters [A†], [B†], [C†]
of the local linear space argument for US in the larger one. Although the secret hash key K† of the
local linear argument is statistically hidden, we can still pick a random hash key for all the coordinates
by picking another secret key and implicitly define the full secret key as some composition of the two keys.
Concretely, given the trapdoor TS for locally opening SSB commitments we implicitly define K = TSK†+R,
where R is the additional key, so that the proofs for c = GP

(xS
xS

)
= GSxS + GSxS are of the form

π = c>K = (GSxS + GSxS)>(TSK† + R) = x>SK† + c>R. In this way a proof for the local argument
can be retrieved as [π†] = [π] − [c>]R. This equivalent way of sampling K allows to compute the crs
of the larger linear argument using only [A†], [B†], [C†] and TS ,R. Indeed, we can define [A] = [A†],
[B] = [B†] + [U>G>]R and [C] = TS [C†] + R[A†].

We also show that the crs is indistinguishable for different sets and that there is an oblivious trapdoor
generation strategy, and hence we also have a no-signaling extraction strategy. The indistinguishability of
the crs follows directly from the indistinguishability of SSB commitment keys if additionally the matrix [U]
is witness samplable (i.e. one can sample the discrete log of U) which is usually the case. The trapdoor can
be computed from the oblivious SSB trapdoor generation.

2.4.3 Extension to Knowledge Transfer, Bilateral Spaces and Sum Arguments.

We constructed a local extractor which on input a set S ⊆ [d] extracts some local opening [xS] and a
proof [π†] that xS ∈ Im(US). While this form of local soundness is enough for constructing delegation
for bounded-width circuits, in the general case we require the following variation of local soundness. The
statement is split in two parts, [x] and [y], as well as the matrix generating the linear space is split in [U]
and [V] such that (x

y) = (U
V)w. For S1, S2 ⊂ [d], the adversary is requested to produce some w∗ such

that xS1
= US1

w∗ but yS2
6= VS2

w∗. In [GR19] it is shown that, provided the U>S1
-MDDH assumption is

hard, a QA-NIZK proof that
(xS1
yS2

)
∈ Im

(
US1

VS2

)
implies that such an adversary wins only with negligible

probability.8 Since we can also extract a proof [π†] for
(xS1
yS2

)
, we conclude that the adversary can’t cheat.

This argument was called an argument of knowledge transfer by González and Ràfols [GR19] while Kalai
et al. [KPY19] used a similar soundness property in their delegation for RAM machines. For knowledge
transfer arguments, in general, the security only holds if the matrix A has more rows than columns, and
hence proof size is at least k+ 1. If k > 1 we can also prove soundness with proof size k using an additional
decisional assumption.

Another variant given in [GHR15a], and extended to knowledge transfer arguments in [GR19], considers
the statement as well as the matrix split between the two groups. We call this argument a linear argument
for bilateral spaces. We consider a particular type of bilateral linear spaces defined in [GHR15a] and called
“sum in subspace argument”. The statement is [x]1, [y]2 and soundness means that x + y ∈ Im(M + N)
given [M]1, [N]2. We construct quasi arguments for all these variants with knowledge transfer soundness.

8See section 3.3 .

11

Luckily, the constructions as well as the security proofs are minor modifications of the original argument.
Security is based on constant-size assumptions.

2.5 Quasi-Argument of Hadamard Products

We show that the “bit-string” argument of [GHR15a] was implicitly a quasi-argument for the set of equations
bi(bi− 1) = 0, for all i ∈ [d]. It will be convenient to directly work with equations of the form xiyi = zi, that
is x ◦ y = z where ◦ denotes the hadamard product, instead of the bit-string argument equations.

The reference string in [GHR15a] contains what we interpret as two SSB commitment keys [G] ∈
G(k+1)×d, [H] ∈ G(k+1)×d with locality parameter K = 1. The crs additionally includes the product [G⊗H]

so that a quasi argument of knowledge of [x] ∈ Gd, [y] ∈ Gd, [z′] ∈ Gd2 such that z′ = x⊗y, i.e. a kronecker
product, is just [c] = [G]x, [d] = [H]y and [t] = [G⊗H]z′. A verifier should check that [c]⊗ [d] = e([t], [1]),
where ⊗ is naturally defined in terms of the pairing function. Note that this is locally extractable for a set
S = {i, j} since [xi] = Ti[c], [yj] = T′j [d] and [z′n(i−1)+j] = (Ti ⊗T′j)[t], where Ti,T

′
j are the trapdoors for

locally open the respective SSB commitment at coordinates i, j. Moreover, in section 4.3 we show that [t] is
also a no-signaling SSB commitment.

To show that some [f] = [F]z, for commitment key [F] ∈ Gk+1×d, opens to z = a ◦ b we use the fact
that there’s a linear relation between a ◦ b and a⊗ b. Hence we show that

(
t
f

)
∈ Im

(
G⊗H
F·Had

)
, where Had is

a matrix such that x ◦ y = Had(x⊗ y).

2.5.1 Local and No-Signaling Extraction.

The argument of the hadamard product is locally extractable for any set {i, j, k} and sound when i = j = k
(otherwise local soundness holds vacuously). We can extract [xi] = Ti[c], [yi] = T′i[d], [z†] = T′′i [f] as
well as [zi] = (Ti ⊗ T′i)[t] such that zi = xiyi. Assume for the sake of a contradiction that z† 6= zi.
Since gi,hi,fi are linearly independent from the other columns in G,H,F, respectively, if [c], [d], [t] satisfies
[c] ⊗ [d] = e([t], [1]), then the unique openings at coordinate i satisfy zi = xiyi. Since also gi ⊗ hi and fi
are linearly independent from the other columns in the respective commitment keys, it holds that

(
t
f

)
does

not belong to the span of the matrix
(

G⊗H
F·Had

)
. Hence, z† must be equal to xiyi or we can break soundness of

linear argument.

2.5.2 Extension to Knowledge Transfer Arguments.

We extend the quasi-argument local soundness to offer a “knowledge transfer” guarantee. That is, we can
extract [xi], [yi], [zi] and the adversary can’t also produce an opening a, b such that xi = Uia, yi = Vib but
zi 6= Wia ◦ b. Matrices [Ui], [Vi], [Wi] can be thought as commitment keys, but in general they should be
such that the U>i -MDDH and V>i -MDDH assumptions are hard.

SSB commitments [c],[d] and [f] are now computed as [c] = [GU]a, [d] = [HV]b and [f] = [FW]a◦b. To
compute proofs we add to the crs [Q] = [(G⊗H)(U⊗V)] so that [t] = [Q](a⊗b) satisfy [c]⊗ [d] = e([t], [1]).
Then we give a quasi-argument for linear knowledge transfer from t to f .

2.6 From our Quasi-Arguments to Delegation.

In section 2.2 we saw that, in the delegation scheme from [GR19], the prover gives 3d commitments
[L1], . . . , [Ld], [R1], . . . , [Rd], [O1], . . . , [Od] to, respectively, the left, right and output wires of each level of the
circuit. Then, it gives a linear and quadratic knowledge transfer arguments to “transfer” knowledge of the
opening from the input level, which is known to the verifier, to the next levels. Finally, the verifier checks
that the commitment to the output opens to y.

In section 6 we give a “compressed” version of [GR19] where the 3d commitments are shrunken into 3 no-
signaling SSB commitments, and the 2d knowledge transfer arguments are shrunken into 2 quasi arguments.
From the SSB commitments we can extract [Li], [Ri], [Oj] for j = i− 1 or j = i. Local knowledge soundness
of the quasi arguments imply that knowledge is “transferred” from [Oi−1] to [Li], [Ri] or from [Li], [Ri] to

12

[Oi]. One important technical problem with this approach is that the linear knowledge transfer argument is
between the next level and all previous levels. That is, the knowledge is transferred from commitments to
the output in all previous levels [O1], . . . , [Oi], to commitments to the left and right wires in the next level
[Li+1], [Ri+1]. This means the quasi-argument must extract O(d) values and hence is not succinct. We solve
this issue by computing Li, Ri, Oi as commitments also to the respective wires of all previous levels.

2.7 NIZK, SNARKs and Compact NIZK

We can use standard techniques to turn our delegation scheme into a NIZK argument. Essentially, the
prover needs to prove knowledge of (additional) secret input wires w and proof that C(x,w) = y for some
secret input w. Given the “structure preserving” properties of our delegation scheme, we can directly apply
the Groth Sahai proof system [GS08]9 on the set of verification equations. In general, to achieve knowledge
soundness, all we need to prove soundness is an extractable (and hiding) commitment for extracting the
witness w. Depending on the properties of the extractable commitment scheme we get different NIZK
flavors.

If the commitments to the inputs are succinct, the construction yields a SNARK for NP. Such com-
mitments are widely employed in SNARKs, but their security relies on non-standard assumptions: either
knowledge type assumptions such as q-Knowledge of Exponents assumption [GGPR13] or the generic group
model [Gro16]. If we take for example the zk-SNARK from [DFGK14], the size of q is the number of field
elements extracted from a valid proof. Indeed, the proof of soundness requires the extraction of all the circuit
wires, which are later used to break some falsifiable q-assumption. Consequently, the knowledge assumption
is of size q = O(|C|). By reducing the number of extracted values from O(|C|) to |w|, we reduce the size of
the underlying knowledge assumption to q = |w| < |C|.

If we use the “bit-string” argument of [GHR15a] to show knowledge of b ∈ {0, 1}n, we get extractable
commitments of size n + O(1) group elements based on a constant-size falsifiable assumption. Combining
this extractable commitment with our delegation scheme yields a NIZK argument for circuit satisfiability
with proof size n+O(1) groups elements, or equivalently of size O(nκ).

Finally, we can then use the techniques of Katsumata et al. [KNYY19, KNYY20] to construct a compact
NIZK. The construction of Katsumata et al. is based on a non-compact NIZK argument for NC1 plus a
symmetric key encryption scheme (K,E,D) where the size of E(K,m) is |m|+poly(κ). Instead of committing
to the input x of a circuit C, they computed K ← K(1κ) to obtain ct← E(K,x) and give a NIZK argument
of knowledge of some K ∈ {0, 1}poly(κ) such that C(D(K, ct)) = 1 . We note that we can straightforward use
this idea to construct compact NIZK for any circuit by simply plugging our NIZK argument based on the
commitments of [GHR15a]. The final proof is of size |ct| + |K|poly(κ) + |π| = n + poly(κ) and is sound for
any polynomial size circuit.

3 Preliminaries

3.1 Notation

For n ∈ N, let [n] be the set {1, . . . , n}. For vectors a = (ai)i∈[n], b = (bi)i∈[n] ∈ Znp , we denote a ◦ b =
(aibi)i∈[n] the Hadamard product of them, and for matrices A = (ai,j)i∈[n1],j∈[m1] ∈ Zn1×m1

p , B ∈ Zn2×m2
p

we denote A ⊗ B = (ai,jB)i∈[n1],j∈[m1] ∈ Zn1n2×m1m2
p their Kronecker product. We will be using the

mixed-product property of kronecker products, which says that (A⊗B)(C⊗D) = (AC)⊗ (BD) whenever
A,B,C,D have the appropriate dimensions. When n1 = n2 we denote by A|B ∈ Zn1×m1+m2

p their vertical
concatenation. For x,y ∈ Znp we write x ≤ y if and only if xi ≤ yi for all i ∈ [n]. We consider vectors of
sets S = (S1, . . . , S`), where Si ⊆ [ni] for i ∈ [`] and ni ∈ N, and extend set operations entry-wise. That is
S′ ⊆ S if and only if S′i ⊆ Si for all i ∈ [`], and |S| = (|S1|, . . . , |S`|). For n ∈ N`, [n] = ([n1], . . . , [n2]).

9This can be also achieved in a more efficient way (concretely) by directly using hiding commitments for the delegation
scheme.

13

We use implicit group notation. Let gk = (p,G1,G2,GT , e,P1,P2) ← G(1κ) be the description of an
asymmetric bilinear group of size p = O(2κ) equipped with an efficient bilinear map e : G1 × G2 → GT ,
where Pµ is a generator of Gµ, µ ∈ {1, 2}. We assume all our algorithms receive as input gk sampled from
G(1λ), although in some abstract definitions is not necessarily the description of a bilinear group. For r ∈ Zp
we denote [r]µ = rPµ for µ ∈ {1, 2, T} and PT = e(P1,P2). For a vector a ∈ Znp and matrix A ∈ Zn×mp we
denote with [a]µ, [A]µ the natural embedding of a, A in Gµ, respectively.

Sub-vectors and Sub-matrices. Let S = {s1, . . . , st} ⊆ [n] and S = {s1, . . . , sn−t} the set [n] \ S.
We use an algebraic notation for the sub-vector xS and sub-matrix GS of some x ∈ Znp and G ∈ Zm×np

respectively. Let PS ∈ {0, 1}n×n the permutation matrix defining the ordering s1, . . . , st, s1, . . . , sn−t. That
is, PSesi = ei and PSesi = ei+t, where ei is the i-th unitary vector of size n. We may simply write P when
n, S are clear from the context. We also define the matrix ΣS = (It|0t×n−t). We may omit the subscript
when the values are clear from the context.

We denote by xS ∈ Ztp,GS ∈ Zk×tp the sub-vector and sub-matrix containing the elements or columns

with indices in S ⊆ [n] of x ∈ Znp and G ∈ Zk×np , respectively.

Fact 1. For any x ∈ Znp and any S′ ⊆ S ⊆ [n] it holds that:

i. PSx =
(xS
xS

)
and GP>S = (GS |GS).

ii. xS = ΣSPSx and GS = GP>SΣ>S .

iii. Gx = GSxS + GSxS.

iv. Let xS′|S = ΣS|S′PS′|SxS, where PS′|S is some permutation matrix such that PS′|SxS =
(xS′
xS\S′

)
and

ΣS′|S = (I|S′||0|S′|×t−|S′|). xS′|S = xS′ and GS′|S = GS′ .

When x = Uw, for some matrix U ∈ Zn×mp and w ∈ m, we abuse of notation and also write US for
ΣSPSU so that xS = USw.

We extend this notation to two sets S1 ⊆ [n1], S2 ⊆ [n2] and for x ∈ Zn1n2
p define xS1,S2 ∈ Z|S1|·|S2|

p as
xS1,S2 = (x(i−1)n2+j : i ∈ S1 and j ∈ S2) in some fixed order. For matrices instead we define GS1,S2 =

(q`,(i−1)n2+j : ` ∈ [k], i ∈ S1 and j ∈ S2) ∈ Zk×|S1|·|S2|
p , where k is the number of columns of G. Similarly as

before, the following holds.

Fact 2. For any x ∈ Zn1n2
p and any S′1 ⊆ S1 ⊆ [n1], S′2 ⊆ S2 ⊆ [n2] it holds that:

i. For some permutation matrix Π ∈ Zn1n2×n1n2
p , (PS1 ⊗ PS2)x = Π

(xS1,S2
xS1,S2
xS1,S2
xS1,S2

)
and G(P>S1

⊗ P>S2
) =

(GS1,S2 |GS1,S2
|GS1,S2

|GS1,S2
)Π>.

ii. xS1,S2
= (ΣS1

⊗ΣS2
)(PS1

⊗PS2
)x and GS1,S2

= G(P>S1
⊗P>S2

)(Σ>S1
⊗Σ>S2

).

iii. Gx = GS1,S2
xS1,S2

+ GS1,S2
xS1,S2

+ GS1,S2
xS1,S2

+ GS1,S2
xS1,S2

.

iv. Let xS′1,S′2|S1,S2
= (Σ>S′1|S1

⊗Σ>S′2|S2
)(PS′1|S1

⊗PS′2|S2
)xS1,S2

and GS′1,S
′
2|S1,S2

= G(P>S′1|S1
⊗P>S′2|S2

)(Σ>S′1|S1
⊗

Σ>S′2|S2
). Then xS′1,S′2|S1,S2

= xS′1,S′2 and GS′1,S
′
2|S1,S2

= GS′1,S
′
2

3.2 Cryptographic Assumptions

Definition 1. Let k, ` ∈ N. We call D`,k (resp. Dk) a matrix distribution if it outputs in PPT time, with

overwhelming probability matrices in Z`×kp (resp. in Z(k+1)×k
p). For a matrix distribution Dk, we denote as

Dk the distribution of the first k rows of the matrices sampled according to Dk.

14

Assumption 1. Let D`,k be a matrix distribution. For all non-uniform PPT adversaries A and relative to
gk ← G(1κ), A← D`,k,w ← Zkp, [z]γ ← G`γ and the coin tosses of adversary A,

1. the Kernel Matrix Diffie-Hellman Assumption holds in Gγ [MRV16] if

Pr
[
[r]3−γ ← A(gk, [A]γ) : r>A = 0

]
= negl(κ),

2. the Split Kernel Matrix Diffie-Hellman Assumption [GHR15a] holds if

Pr
[
[r]1, [s]2 ← A(gk, [A]1, [A]2) : r 6= s ∧ r>A = s>A

]
= negl(κ).

Assumption 2. Let D`,k be a matrix distribution and gk ← G(1κ). For all non-uniform PPT adversaries
A and relative to gk ← G(1κ), A← D`,k,w ← Zkp, [z]γ ← G`γ and the coin tosses of adversary A,

1. the Matrix Decisional Diffie-Hellman Assumption in Gγ (Dk-MDDHγ) holds if

|Pr[A(gk, [A]γ , [Aw]γ) = 1]− Pr[A(gk, [A]γ , [z]γ) = 1]| ≤ negl(κ),

2. the Split Matrix Decisional Diffie-Hellman Assumption in Gγ (Dk-SMDDHγ) holds if

|Pr[A(gk, [A]1,2, [Aw]γ) = 1]− Pr[A(gk, [A]1,2, [z]γ) = 1]| ≤ negl(κ).

Assumption 3. Let (D1
`,k,D2

`,k) be (possibly correlated) matrix distributions and gk ← G(1κ). For all non-

uniform PPT adversaries A and relative to gk ← G(1κ), (A,B)← (D1
`,k,D2

`,k),w ← Zkp, [z]γ ← G`γ and the

coin tosses of adversary A, the (D1
`,k,D2

`,k)-Matrix Decisional Diffie-Hellman Assumption ((D1
`,k,D2

`,k)-MDDHγ)
holds if

|Pr[A(gk, [A]1, [B]2, [Aw]1, [Bw]2) = 1]− Pr[A(gk, [A]1, [B]2, [s]1, [t]2) = 1]| ≤ negl(κ).

We also consider stronger versions of these definitions, denoted (D`,k, h)-MDDH, (D`,k, h)-SMDDH,
(D1

`,k,D2
`,k, h)-MDDH, where the adversary is also given h(A) (h(A,B) in the latter) for some (possibly

probabilistic) function h.

3.3 Argument of Knowledge Transfer

In this section we recall arguments of knowledge transfer for membership in linear spaces as defined in [GR19]
which in turn is just an instantiation of [KW15]. We also slightly modify the construction to turn it into an
argument of knowledge transfer for the sum language, which we will use in later constructions.

Let gk be a bilinear group of order p and M,N ,P,Q be matrix distributions outputting matrices
[M]1 ∈ G`1×n1 , [N]2 ∈ G`2×n2 [P]1 ∈ G`3×n1 [Q]2 ∈ G`4×n2 respectively. In Fig. 1, we present two arguments of
knowledge transfer for (1) the linear membership language

Lyes
lin = {([c1]1, [c2]2, [d1]1, [d2]2) | ∃w s.t (c1

c2
) = (M

N)w and
(
d1

d2

)
=
(

P
Q

)
w}

Lno
lin = {([c1]1, [c2]2, [d1]1, [d2]2,w) | (c1

c2
) = (M

N)w and
(
d1

d2

)
6=
(

P
Q

)
w},

and (2) the sum knowledge transfer language

Lyes
sum = {([c1]1, [c2]2, [d1]1, [d2]2) | ∃w s.t c1 + c2 = (M + N)w and

(
d1

d2

)
=
(

P
Q

)
w}

Lno
sum = {([c1]1, [c2]2, [d1]1, [d2]2,w) | c1 + c2 = (M + N)w and

(
d1

d2

)
6=
(

P
Q

)
w}.

A knowledge transfer argument is just an argument for the promise problem defined by Lyes and Lno.
Completeness means that an honest proof is accepting for any statement in Lyes. Soundness that any proof
for a statement in Lno, which comes with an “advice” w, is accepting only with negligible probability.

15

K(gk, [M]1, [N]2, [P]1, [Q]2):

• K1 ← Z`1×kp ; K2 ← Z`2×kp ; K3 ← Z`3×kp ; K4 ← Z`4×kp .

• Sample A← Dk; Γ← Zn×kp .

• [B]1 = [M>K1 + N>K2 + Γ]1; [D]2 = [P>K3 + Q>K4 − Γ]2.

• C1 = K1A; C2 = K2A; C3 = K3A; C4 = K4A.

• Output crs = (gk, [A]1,2, [B]1, [D]2, [C1]2, [C2]1, [C3]2, [C4]1).

Prove(crs, ([c1]1, [c2]2, [d1]1, [d2]2),w):

• Sample ρ← Zkp; [π]1 := w>[B]1 + [ρ]1; [θ]2 := w>[D]2 − [ρ]2.

• Output ([π]1, [θ]2)

Verify(crs, ([c1]1, [c2]2, [d1]1, [d2]2), ([π]1, [θ]2)):

• Output 1 iff e([π]1, [A]2) + e([θ]2, [A]1) − e([c>1]1, [C1]2) − e([c>2]2, [C2]1) − e([d>1]1, [C3]2) −
e([d>2]2, [C4]1);

Figure 1: Construction Πkt-lin for Lyes
lin ,Lno

lin. For `1 = `2, construction Πkt-sum for Lyes
sum,Lno

sum is identical
with the only difference that K2 = K1.

We use this construction with (1) Q = 0 for the case of linear knowledge transfer and (2) N = 0 for the
case of sum knowledge transfer so we prove only these two cases. We stress out that the proofs are easily
extended to accommodate for the more general cases. We also strengthen the security requirements by
allowing the adversary to get some extra information about the language parameters through some (possibly
probabilistic) function h. We call this property h-strong soundness.

For the case of Πkt-lin, when setting Q = 0, the security is shown in [GR19]. The only modification is that
we allow the adversary A to get the discrete logarithms N,P and the h information of the MDDH challenge,
which does not affect the result of [GR19]. We extend the results of [GR19] to the sum argument. The
security proof is essentially identical to the one for the bilateral case of [GR19]. For completeness we give
the full proof in Appendix A.

4 No-Signaling Somewhere Statistically Binding Commitments

In this section we recall Somewhere Statistically Binding (SSB) commitments and then define two additional
notions for SSB commitments: no-signaling extraction and oblivious key generation. The former is a natural
adaptation of the definitions of no-signaling extractors from previous works [PR17, KPY19]. We show that
the latter implies the former, and we give an efficient instantiation based on any Dk-MDDH assumption.
Finally, we consider the kronecker product of two of these commitments.

We now define somewhere Statistically Binding (SSB) commitment schemes [HW15, FLPS20]. An SSB
commitment scheme, as the name suggests, is statistically binding only w.r.t. some variables which are
determined during key generation. The commitment key computationally hides any information about this
set, meaning that for all “modes” the commitment keys are computationally indistinguishable. Furthermore,
the KeyGen outputs a trapdoor which allows to extract (a function of) the values in this set.

It will be useful to consider SSB commitments where committed vectors live inMn1n2 and can be indexed
by i1 ∈ [n1], i2 ∈ [n2]. We consider also 2 locality parameters K = (K1,K2) with Ki ≤ ni, and extraction
sets are of the form S = (S1, S2) where Si ⊆ [ni] and |Si| ≤ Ki, for i ∈ {1, 2}. We put forward a stronger
variant of the index set hiding property, where the distinguisher is also given h(sk) for some function h. In
this case we will say the SSB commitment is h-strong ISH.

Definition 2. Let [·] :M→ G be a function, where M is the message space and G some set. Syntactically,

16

a Somewhere Statistically Binding Commitment Scheme CS is a tuple of algorithms CS = (KeyGen,Com,
Extract)

• (ck, sk)← KeyGen(gk ,n,K,S): KeyGen takes as input the parameters gk, n ∈ N`, locality parameters
K ∈ [n] and the sets S ⊆ [n], |S| ≤K. It outputs a commitment key ck, which may also contain some
auxiliary information aux, a secret key sk, containing a trapdoor τ and possibly the random coins used
by KeyGen.

• c ← Com(ck,x): Com takes as input the commitment key ck and a vector x ∈ Mn1·n2 and outputs a
commitment c,

• y ← Extract(τ, c): Extract takes as input the trapdoor τ and a commitment c, and outputs the value
y ∈ G allegedly equaling [xS], where x is a valid opening for c.

For all κ ∈ N,n ∈ N2,K ∈ [n],S0,S1 ⊆ [n] with |S0|, |S1| ≤K, CS must satisfy the following properties:

• h-Strong Index Set Hiding: for all PPT D

Pr
gk←G(1κ)

[
D(ck, h(sk)) = b

b← {0, 1}
(ck, sk)← KeyGen(gk ,n,K,Sb)

]
≤ 1

2
+ negl(κ).

• Somewhere Statistically Binding: for all all, even unbounded A,

Pr
gk←G(1κ)

[
Com(ck,x) = Com(ck,x′)

and xS 6= x′S

(ck, sk)← KeyGen(gk ,n,K,S);
(x,x′)← A(ck);

]
≤ negl(κ).

• G-Extractability: for all, even unbounded A

Pr
gk←G(1κ)

[
∃x s.t. c = Com(ck,x) (ck, sk)← KeyGen(gk ,n,K,S); c← A(ck);

and y 6= [xS] y ← Extract(τ, c), where sk = (τ, r);

]
≤ negl(κ)

Note that an SSB commitment is also “everywhere” computationally binding. This is the case since
a breach in binding, namely the ability to produce c that opens to both x 6= x′, implies the ability to
distinguish where the commitment is not statistically binding contradicting the index set hiding property.

We next present an extra property for an SSB commitment scheme which we call h-strong no-signaling
extraction and is a natural adaptation of the definitions in [PR17, KPY19].

Definition 3. We say the extractor of an SSB commitment scheme CS = (Setup,KeyGen,Com,Extract) is
h-strong no-signaling if for any S′ ⊆ S ⊆ [n], where |S| ≤K, and any PPT adversary D = (D1,D2),∣∣∣∣∣∣ Pr

gk←G(1κ)

 D2(ckS′ , c,y
′) = 1

(ckS′ , skS′)← KeyGen(gk ,n,K,S′)
c← D1(ck, h(skS′)); if c 6∈ C: c← ⊥
y′ ← Extract(τ, c), where sk = (τ, r).

 −
Pr

gk←G(1κ)

 D2(ckS , c,yS′) = 1
(ckS , skS)← KeyGen(gk ,n,K,S)

c← D1(ckS , h(skS)); if c 6∈ C: c← ⊥
y ← Extract(τ, c), where sk = (τ, r).

∣∣∣∣∣∣ ≤ negl(κ).

We define also oblivious trapdoor generation. This property states that there exists an oblivious key
generation algorithm, that takes a commitment key ck that allows extraction in S and a set S′ ⊆ S, and
can produce a fresh commitment key ck′ and a trapdoor to extract S′. The distribution of the new key ck′

is statistically close to that of ck and – importantly – the oblivious key generation algorithm does not get
as input the original extraction set S. In other words, given a commitment key ck that we know allows
extraction for some superset of S, we can create a new key with a trapdoor for S′ without skewing the
distribution of ck.

17

Definition 4. An SSB commitment scheme has oblivious trapdoor generation if there exists a PPT algorithm
OblKeyGen such that for all κ ∈ N,n ∈ N2,K ∈ [n], S ⊆ [n], with |S| ≤ K, and any S′ such that S′ ⊆ S,
and for all, even unbounded D = (D1,D2),∣∣∣∣∣∣ Pr
gk←G(1κ)

 D2(ck′, c,y′) = 1
(ck, sk)← KeyGen(gk ,n,K,S);

(ck′, τ ′)← OblKeyGen(gk ,n,K,S′, ck);
c← D1(ck′);y′ ← Extract(τ ′, c), where sk = (τ, r)

 −
Pr

gk←G(1κ)

[
D2(ck, c,yS′) = 1

(ck, sk)← KeyGen(gk ,n,K,S);
c← D1(ck);y ← Extract(τ, c), where sk = (τ, r)

]∣∣∣∣ ≤ negl(κ)

Next, we show that an SSB commitment scheme with oblivious trapdoor generation is also no-signaling.
We leave as an open problem to prove or disprove the opposite implication.

Theorem 1. Let CS = (Setup,KeyGen,OblKeyGen,Com,Extract) be an SSB commitment scheme with obliv-
ious trapdoor generation and h-strong ISH. Then, CS is also h-strong no-signaling.

Proof. Fix any S′ ⊆ S ⊆ [n] with |S| ≤ K, and let D = (D1,D2) be a distinguisher against no signaling
extraction for these values. We show by a sequence of games that its success probability is negligible.

GameD0 (1κ): In this game, we execute (ck, sk)← KeyGen(gk ,n,K,S). We then get c← D1(ck , hns(sk)),
change it to ⊥ if c 6∈ C, and compute y ← Extract(τ, c) for sk = (τ, r). The output is D2(ck , c,yS′).

GameD1 (1κ): In this game, we execute (ck, sk)← KeyGen(gk ,n,K,S) and (ckobl, τobl)← OblKeyGen(gk ,
n,K,S′, ck). We then compute h(skobl) corresponding to ckobl and get c← D1(ckobl, h(skobl)), change
it to ⊥ if c 6∈ C, and compute y′ ← Extract(τobl, c). The output is D2(ckobl, c,y

′).

GameD1 (1κ): In this game, we execute (ck, sk)← KeyGen(gk ,n,K,S′) and (ckobl, τobl)← OblKeyGen(gk ,
n,K,S′, ck). We then compute h(skobl) corresponding to ckobl and get c← D1(ckobl, h(skobl)), change
it to ⊥ if c 6∈ C, and compute y′ ← Extract(τobl, c). The output is D2(ckobl, c,y

′).

GameD3 (1κ): In this game, we execute (ck′, sk′)← KeyGen(gk ,n,K,S′). We then get c← D1(ck ′, hns(sk
′)),

change it to ⊥ if c 6∈ C, and compute y ← Extract(τ ′, c) for sk = (τ, r). The output is D2(ck , c,y′).

Now we show the output of games i and i+ 1 is indistinguishable for i = 0 to 2.

• Cases i = 0, i = 2. For i = 0, the two games are distributed identically to the two cases of the oblivious
trapdoor generation definition for S′ ⊆ S. Thus, the outputs of the games are statistically close. For
i = 2, the same argument holds for S = S′. Note that in both cases, the oblivious trapdoor generation
distinguisher is unbounded so it can compute skobl.

• Case i = 1. The difference in the two games is how we sample the (ck, sk) pair, either programmed to
extract S or S′. By the h-index set hiding property the outputs of the two games are computationally
indistinguishable.

Finally, noting that GameD0 , GameD3 correspond to the two cases of no signaling extraction, the result follows.

4.1 Algebraic SSB Commitments.

In this section, we define algebraic SSB commitments following the definition of algebraic commitment
schemes of [RS20] and extend them to what we call split algebraic SSB commitments.

Informally, an algebraic SSB commitment scheme is a commitment scheme where the commitment key
is a matrix [G] of group elements such that (1) committing to a vector x is done by multiplying on the left
with [G], that is [c] = [G]x and (2) the trapdoor is a matrix of field elements T and local extraction is done
by multiplying the commitment on the left with T>, that is [xS] = T>[c]. We also allow the commitment
key to output some public auxiliary information which is not used in committing nor extraction.

18

Definition 5. An SSB commitment scheme CS = (KeyGen,Com,Extract) is algebraic if, given gk ← G(1κ),

KeyGen(gk , n,K,S) outputs ck = [G] ∈ GK×n and sk = (T ∈ ZK×|S|
p ,G) where K ≥ K, Com([G],x) =

[G]x and T>G = ΣSPS.

We also define a subtype of algebraic commitments which are specific to asymmetric groups, where the
commitment key is “split” between the two groups.

Definition 6. An SSB commitment scheme CS = (KeyGen,Com,Extract) is split algebraic if KeyGen(gk , n,K,S)

outputs ck = ([G]1 ∈ GK×n
1 , [H]2 ∈ GK×n

2) and sk = (T ∈ ZK×|S|
p , (G,H)), for K ≥K, Com([G]1, [H]2,x) =

([G]1x, [H]2x) and T>G + T>H = ΣSPS.

All SSB commitment schemes in this work are algebraic or split-algebraic. Note that all (split-)SSB com-
mitments only differ on the key generation algorithm. For that reason we sometimes refer to a commitment
key distribution as the commitment scheme itself.

In the case of non-split algebraic SSB commitments, we can G-extract by computing

T>[c] = T>[Gx] = [ΣSPSx] = [xS],

while in the case of split-algebraic commitments, we can only GT extract. That is, we can compute values
[uS]1, [vS]2 such that e([uS]1, [1]2) + e([1]1, [vS]2) = [xS]T . Indeed, if [c]1 = [G]1x and [d]2 = [H]2x then
we can compute [uS]1 = T[c]1 and [vS]2 = T[d]2 and it holds that

uS + vS = T>c+ T>d = T>Gx+ T>Hx = (T>G + T>H)x = ΣSPSx = xS .

Note that by definition, if the commitment key generation does not fail, the commitments are perfectly
binding/extractable at S. This will be the case for commitment schemes with perfect completeness. We will
utilize this fact in our constructions to simplify some of the arguments.

4.2 Somewhere Statistically Binding Commitments with Oblivious Trapdoor
Generation

We present in Fig. 2 a simple construction of an SSB with Oblivious Key Generation from plain SSB
commitments with locality parameter 1. The setup algorithm instantiates K different commitment keys
and, given a set S, each of the first |S| commitment keys is extractable in a different position s ∈ S. The
last K − |S| are binding for the empty set. To commit to a value x, one gives K commitments to this value
with each of the commitment keys. To verify an opening, one verifies each individual opening and that all
the openings are the same.

Note that the ordering of the elements in S is arbitrary and, in some sense, there’s no unique key gener-
ation algorithm for a set S. Indeed, it is only necessary that the commitment key contains K commitment
keys for locality 1 such that cki1 , . . . , cki|S| are binding at s1, . . . , s|S| respectively. Note that there are

(
K
|S|
)

different choices of i1, . . . , in. For this reason, if the input of the oblivious generator is just S′, it is impos-
sible to know which commitment keys are the ones corresponding to S′. To alleviate this, the oblivious key
generator receives as advice the indices where S′ “appears” in S that is, i1, . . . , i|S′| such that si1 = s′1.

In this case we need to change a little the proof that oblivious trapdoor generation implies no-signaling.
We add a game GameD1/2(1κ), between games 0 and 1, which is identical to GameD0 (1κ) but E1 samples cki
binding at {si} if si ∈ S′ and at ∅ if not. By the index-set hiding property of ck1, . . . , ckK the output of
both games is indistinguishable. GameD1 (1κ) is as before but the oblivious key generator receives also the
advise. The rest of the proof is exactly as before

Theorem 2. Let CS be an SSB commitment with locality parameter K = 1. Then construction CS′ of Fig. 2
is an SSB commitment with Oblivious Trapdoor Generation.

Proof. First, we show that CS′ is an SSB commitment. For index-hiding we can use a standard hybrid
argument to show that the concatenation of K commitment keys are indeed indistinguishable. Somewhere

19

CS′.KeyGen(gk , n,K, S):

• For si ∈ S set (ck i, τi)← CS.KeyGen(gk , n, 1, {si}).
• For |S|+ 1 ≤ i ≤ K set (ck i, τi)← CS.KeyGen(gk , n, 1, ∅).
• Set ck = (ck1, . . . , ckK), τ = ((τ1, s1), . . . , (τ|S|, s|S|)) and output (ck , τ)

CS′.Com(ck = (ck1, . . . , ckK),x):

• For 1 ≤ i ≤ K compute ci ← CS.Com(ck i,x).

• Set c = (c1, . . . , cK) and output c.

CS′.Extract(τ = ((τ1, s1), . . . , (τ|S|, s|S|)), c = (c1, . . . , cK)):

• For all si ∈ S compute ysi ← CS.Extract(τi, ci).

• Set y = (y1, . . . , y|S|) and output y.

CS′.OblKeyGen(gk , n,K, S′, a, ck = (ck1, . . . , ckK)):

• Parse a as i1, . . . , i|S′|, the indices of the commitment keys binding at sij ∈ S′.
• For 1 ≤ j ≤ |S′| set (ck ij , τij)← CS.KeyGen(gk , n, 1,

{
s′j
}

).

• Set ck = (ck1, . . . , ckK), τ = ((τi1 , si1), . . . , (τi|S|′ , (si|S|′)) and output (ck , τ)

Figure 2: Oblivious SSB commitment scheme from K SSB commitments with locality parameter 1.

Statistical Binding and G-extractability of CS′ follow from the respective properties of CS. Indeed, for
the former, note that each individual commitment is statistically binding in one coordinate, and for a
commitment-opening to verify, all commitments are checked w.r.t. to the same opening; thus, effectively the
commitment is statistically binding in the set S. For the latter, we use the same argument and the fact that
the extractor of CS can G-extract each value independently.

For oblivious trapdoor generation, note that the crs output by OblKeyGen follow exactly the same dis-
tribution as the one output by KeyGen as well as a valid trapdoor for S′.

Next, we present a more efficient SSB commitment scheme with oblivious trapdoor generation. The
scheme is parameterized by a group Gµ, the message space is Znp and we extract [xS]µ. The construction
is essentially the one given in [FLPS20], which in turn is a generalization of the so called Multi-Pedersen
commitments from [GHR15a], with a minor change in the key generation algorithm.

20

KeyGen(gk , n,K, S):

• Let A← Dk, B← ZK+k×K−|S|
p , W← ZK−1×k+1

p and define G0 =

(
B

A
WA

)
.

• Let GS ← ZK+k×|S|
p and Γ← ZK+k−|S|×n−|S|

p .

• Let TS ∈ ZK+k×|S|
p s.t. T>SGS = I|S| and T>SG0 = 0|S|×K+k−|S|. Abort if such a matrix does

not exist.

• Let G = (GS |G0Γ) PS . Output (ck , sk) = ([G]µ, (TS ,G)).

OblKeyGen(gk , n,K, S′, ck = [G]µ): //S′ ⊆ S

• Sample G1 ← ZK+k−|S′|×|S′|
p , G2 ← Z|S

′|×|S′|
p , R← Z|S

′|×K+k−|S′|
p .

• Compute a matrix T ∈ Z|S
′|×|S′|

p such that (G>1 R> −G>2)T = I|S′|. Abort if such a matrix does
not exist.

• Denote by [GS
′]µ the matrix containing the first K + k − |S′| rows of [GS

′]µ.

• Output ckob = [G∗]µ =

(
[G1]µ [GS

′]µ
[G2]µ R[GS

′]µ

)
PS′ and τob = T∗ =

(
R>T
−T

)
Com(ck ,x): Parse ck = [G]µ and output [c]µ = [G]µx.

Extract(τ, [x̂]µ): Output [xS]µ = T>S [x̂]µ.

Figure 3: SSB commitment scheme with oblivious trapdoor generation parametrized by the matrix distri-
bution Dk.

For simplicity, we describe the oblivious key generation algorithm in terms of the permutation PS while
it is not really needed. Indeed, it only needs to randomly sample itself the columns corresponding to S′ and

sample the lower rows as a random combination of upper rows or columns in S
′
.

In [FLPS20] it is shown that the Index Set Hiding property can be reduced to DDH with a security lost
of 2 logK when G0 is uniform using the results of [Vil12]. In our case G0 it is not completely uniform as
some part depends on Dk. Although it seems still possible to use [Vil12], for simplicity we use a naive hybrid
argument at the cost of a less tight reduction. Although the security lost is 2K instead of 2 logK, in general
K is small (constant in our instantiations) and hence it doesn’t make much difference. We give a proof of
the following theorem.

Theorem 3. Construction CS of Fig. 3 is an SSB commitment scheme. It is somewhere statistically binding
and G-Extractable with probability at least 1 − K

p and Index Set Hiding with probability at least 1 − 2K ·
AdvMDDH-Dk(D), where D is a PPT adversary against the MDDH-Dk assumption.

Proof. We first show that CS.KeyGen aborts only with probability K
p . Let G⊥0 be a matrix whose columns

are a basis of the kernel of G>0 . Since G0 is uniformly distributed, by the Schwartz-Zippel lemma, G0

has rank K + k − |S| with probability at least 1 − K+k−|S|
p . Now, consider the matrix G>SG⊥0 . Again, by

the Schwartz-Zippel lemma and the fact that GS is uniformly distributed, this matrix has rank |S| with

probability at least 1 − |S|p , and thus, it is invertible. Let T be its inverse. This matrix exists except with

probability K+k−|S|+|S|
p = K+k

p . Now, set TS = G⊥0 T. We have that G>STS = G>SG⊥0 T′ = I|S| and

G>0 TS = G>0 G⊥0 T′ = 0K+k−|S|×|S|, which concludes the proof.

Index Set Hiding. Consider the following sequence of hybrid games.

• GameD0 : In this game we sample (ck, sk)← KeyGen(1λ, gk , n,K, S0) and output D(ck).

21

• GameD1 : In this game we sample (ck, sk)← KeyGen(1λ, gk , n,K, ∅) and output D(ck).

• GameD2 : In this game we sample (ck, sk)← KeyGen(1λ, gk , n,K, S1) and output D(ck).

Noting that in Game0 and in Game1 the difference in the distributions of ck is that in the former GS0
is

uniform, while in the later GS0
= G0ΓS0

, where ΓS0
∈ ZK+k−|S|×|S0|

p . Using a standard hybrid argument,
we can bound the advantage of distinguishing these games by |S0| ≤ K times the advantage of breaking
the G0-MDDH assumption. It is not hard to see that the G0-MDDH can be reduced (without security lost)
to the Dk-MDDH assumption. We conclude that the advantage of distinguishing Game0 and Game1 can be
bounded by K · AdvDk-MDDH. The same argument applies to Game1 and in Game2.

Somewhere Statistically Binding. Finally we show the somewhere statistically binding and extractabil-
ity property. Let GS ,G0,Γ, implicitly defined by (ck, sk) ← CS.KeyGen(gk , n,K, S). Conditioned on

CS.KeyGen not failing, which only happens with probability at most 1 − K
p , the matrix TS ∈ ZK+k×|S|

p

satisfies T>SG = ΣSPS .
Now let x,x′ ∈ Zn. For extractability, note that T>CS.Com([G]µ,x) = T>[G]µx = [ΣSPS]µx = [xS]µ.

Additionally, if CS.com([G]µ,x) = CS.com([G]µ,x
′) and we multiply by T> on both sides, we get that

xS = x′S

In the next Theorem we assume Dk outputs full rank matrices with overwhelming probability. Note that
this is true for most matrix distributions such as the uniform and the linear family.

Theorem 4. Construction CS of Fig. 3 satisfies Oblivious Trapdoor Generation. Furthermore, for all even
unbounded D = (D1,D2), against oblivious trapdoor generation, AdvCSOblv(D) ≤ K

p .

Proof. Let K ≤ n and S′ ⊆ S ⊆ [n]. We first show that the oblivious key follows exactly the same
distribution as the original key. Let ck := [G]µ be the output of KeyGen(gk , n,K, S) and ckob = [G∗]µ be
the output of OblKeyGen(gk , n,K, S′, [G]). We can write ck as G = ((GS′ |GS′|S)PS′|S |G0Γ)PS .

Let GS′|S ∈ ZK+k−|S′|×K−|S′|
p , GS′|S ∈ Z|S

′|×K−|S′|
p , G0 ∈ ZK+k−|S′|×k

p , G0 ∈ Z|S
′|×k

p , such that

GS′|S =

(
GS′|S
GS′|S

)
,G0 =

(
G0

G0

)
. We claim that there exists a matrix R ∈ Z|S

′|×K+k−|S′|
p , uniformly

distributed, such that
(
GS′|S |G0

)
= R

(
GS′|S |G0

)
as in the output of OblKeyGen. If this is the case, the

distributions of ck output by KeyGen and ckob output by OblKeyGen are identical, since we can write

G =

(
GS′

((
GS′|S G0

GS′|S G0

) (
I 0
0 Γ

))
PS′|S

)
PS

=

(
GS′

((
GS′|S G0

R
(
GS′|S G0

)) (
I 0
0 Γ

))
PS′|S

)
PS

=

(
GS′

GS

RGS

)
PS .

First we show that the matrix (GS′|S |G0) is full rank with overwhelming probability. Indeed, G0 =(
A

WA

)
, where A ← Dk,W ← ZK−1−|S′|×k+1

p , and it has rank k. By the fact that GS′|S is uniform, using

the Schwartz-Zippel lemma we get that (GS′|S |G0) has rank K + k − |S′| except with probability K−|S′|
p .

This means that the matrix is invertible and we can set R = (GS′|S |G0)(GS′|S |G0)−1. Furthermore, both

GS′|S and G0 = WA are uniform, the latter since W ∈ Z|S
′|×k+1

p is uniformly distributed and A is full
rank, and the former by construction.

To conclude the proof, it remains to show that the trapdoor output by OblKeyGen(gk , n,K, S′, [G]) is
correct w.r.t ckob, that is T∗>G∗ = ΣS′ . By a simple calculation,

T∗>G∗ =
(
T>R −T

)(G1 GS
′

G2 RGS′

)
=
(
T>(RG1 −G2) T>RGS

′ −T>RGS
′
)

=
(
I|S′| 0

)
= ΣS′

22

where T>(RG1 −G2) = IS′ by construction.

In the next sections we assume that KeyGen and OblKeyGen do not abort. This is w.l.o.g. since we
can always re-sample values when an abort happens. Note that in this case, the keys of both KeyGen and
OblKeyGen are “somewhere perfectly binding”.

4.3 Kronecker Product of two SSB commitments

Let CS be an algebraic commitment scheme and let [G]1 ∈ G`1×n1
1 and [H]2 ∈ G`2×n2

2 commitment keys.
We note there’s the following key and input homomorphism

CS.Com([G]1,x)⊗ CS.Com([H]2,y) = CS.Com([G⊗H]T ,x⊗ y),

where ⊗ is the Kronecker product and is naturally defined w.r.t. the pairing function when the operands
are group elements. To get a structure preserving primitive, so that we can later efficiently show that
committed values satisfy some relation, it is better to consider all keys defined over one of the base groups
[AFG+16]. However, as noted in [GHR15a], in asymmetric groups it is not clear whether [G ⊗ H]1 (or
[G⊗H]2) defines an SSB commitment. Indeed, if we use the ISH of CS2 to prove that [G⊗H]1 is ISH, it
turns out that we only know [H]2 in group G2 and hence we can only compute G ⊗ [H]2 which is trivially
distinguishable from the original key. To overcome this problem, the authors in [GHR15a] used the split key
[Q1]1 = [G ⊗H + Z]1 ∈ G`1`2×n1n2

1 , [Q2]2 = [−Z] ∈ G`1`2×n1n2
2 , for Z ← Z`1`2×n1n2

p . In this case we can
write the homomorphism as follows

CS.Com([G]1,x)⊗ CS.Com([H]2,y) =

e(CS.Com([Q1]1,x⊗ y), [1]2) + e([1]1,CS.Com([Q2]2,x⊗ y).
(1)

If additionally CS is an instance of the scheme defined in figure 3, we prove the following theorem.

Theorem 5. For ni ∈ N,Ki ≤ ni, Si ⊆ [ni] and |Si| ≤ Ki, let CS1 and CS2 be two instances of the
SSB commitment of figure 3 such that (cki, ski) ← CSi.KGen(gki,mi,Ki, Si) outputs a key over Gi, where
i ∈ {1, 2}. Then the commitment scheme kCS, where kCS.KGen(gk, (n1, n2), (K1,K2), (S1, S2)) is defined as

kCS.KGen(gk, ck1, ck2, sk1, sk2) ://(cki, ski)← CS1.KGen(gk,mi,Ki, Si)

1. Parse sk1 as (G,TG) and sk2 as (H,TH).

2. Let Q1 = G⊗H + Z and Q2 = −Z, where Z← ZK1K2×n1n2
p .

3. Let TQ = TG ⊗TH and aux = (ck1, ck2).

4. output ck = ([Q1]1, [Q2]2, aux) and sk = (TQ,Q1,Q2,G,H).

is a split algebraic oblivious SSB commitment scheme.

Proof. Index Set Hiding. Let S1, S
′
1 ⊆ [n1], |S1|, |S′1| ≤ K1 and S2. The result follows from the indistin-

guishability of the following distributions (this is essentially part of the proof in [GHR15b, Theorem 6]). For
simplicity we write X ← CS.KGen, where X is some part of (ck, sk), meaning that after running KGen we
discard everything but X. Recall that aux = ([G]1, [H]2).

1. aux, [G⊗H + Z]1, [−Z]2, G← CS.Setup(gk, n1,K1, S1), H← CS.Setup(gk, n2,K2, S2),

2. aux, [G]1 ⊗H + [Z]1, [−Z]2, G← CS.Setup(gk, n1,K1, S1), H← CS.Setup(gk, n2,K2, S2),

3. aux, [G]1 ⊗H + [Z]1, [−Z]2, G← CS.Setup(gk, n1,K1, S
′
1), H← CS.Setup(gk, n2,K2, S2),

4. aux, [Z]1,G⊗ [H]2 − [Z]2, G← CS.Setup(gk, n1,K1, S
′
1), H← CS.Setup(gk, n2,K2, S2),

5. aux, [Z]1,G⊗ [H]2 − [Z]2, G← CS.Setup(gk, n1,K1, S
′
1), H← CS.Setup(gk, n2,K2, S

′
2),

23

6. aux, [G⊗H + Z]1, [−Z]2, G← CS.Setup(gk, n1,K1, S
′
1), H← CS.Setup(gk, n2,K2, S

′
2).

Perfect indistinguishability between distributions 1-2, 3-4 and 5-6 follows from the fact that always both
distributions are uniformly distributed conditioned on their sum being equal to G ⊗ H. On the other
hand, computational indistinguishability of distributions 2-3 and 4-5 follows from the ISH of CS1 and CS2

respectively.
Somewhere Statistically Binding and G-Extractability. Let z, z′ ∈ Zn1n2

p such that kCS.Com(ck, z) =
kCS.Com(ck, z′). Let TG and TH the trapdoors associated to [G]1 and [H]2, respectively, then

0 = (TG ⊗TH)(G⊗H + Z)(z − z′)− (TG ⊗TH)Z(z − z′)
= (TG ⊗TH)(G⊗H)(z − z′)
= (TGG)⊗ (THH)(z − z′)
= (ΣS1

PS1
)⊗ (ΣS2

PS2
)(z − z′)

= (ΣS1
⊗ΣS2

)(PS1
⊗PS2

)(z − z′)
= zS1,S2

− z′S1,S2
,

Note that this also shows that the trapdoors correctly extracts [zS1,S2]T from kCS.Com(ck, z).
Oblivious Trapdoor Generation. We first recall the following commutative property of kronecker products.

Fact 3. For every m1,m2, n1, n2 ∈ N there exists permutation matrices Π1 ∈ {0, 1}m1n1×m1n1 ,Π2 ∈
{0, 1}m2n2×m2n2 such that for any pair of matrices M ∈ Zm1×m2

p ,N ∈ Zn1×n2
p it holds that M ⊗ N =

Π1(N ⊗M)Π2. Note that Π1 and Π2 depend only on the size of M and N but not the values of their
entries.

We construct an oblivious key generation algorithm as follows.

kCS.OblKeyGen(gk, (n1, n2), (K1,K2), (S1, S2), ck) :

1. Parse ck as [Q1]1, [Q2]2 and aux = ([G]1, [H]2).

2. Run ([G∗],T1)← CS1.OblKeyGen(gk, n1,K1, S1, [G]1) and ([H∗]2,T2)← CS2.OblKeyGen(gk,m2,K2, S2, [H]2)
and use the random coins of OblKeyGen to retrieve G∗S1

,R1 and H∗S1
,R2 such that

[G∗]1 =

(
[G∗S1

]1
[GS1

]1
R1[GS1

]1

)
PS1

and H∗ =

(
[H∗S2

]2
[HS2

]2
R2[HS2

]2

)
PS2

,

as defined in Fig. 3.

3. Let [A1]1, [A2]2 be the matrices containing the first (K1 + k − |S1|)(K2 + k) rows of [(Q1)S1,S2
]1

and [(Q2)S1,S2
]2, respectively.

4. Let Π1 and Π2 the permutation matrices of Fact 3 for matrices with (K1 +k−|S|1) and (K2 +k)
rows, and n1 − |S1| and n2 − |S2| columns.

5. Define [B1]1 and [B2]2 be the matrices of the first (K1 + k − |S1|)(K2 + k − |S2|) columns of
Π>1 [A1]1Π

>
2 and Π>1 [A2]2Π

>
2 , respectively.

6. Let [A∗1]1 = Π1

(
[B1]1

(R2 ⊗ IK1+k−|S1|)[B1]1

)
Π2 and [A∗2]2 = Π1

(
[B2]2

(R2 ⊗ IK1+k−|S1|)[B2]2

)
Π2.

7. Pick Z← Z(K1+k)(K2+k)×n1n2
p and let

[Q∗1]1 =

(
[ZS1,[n2]]1

∣∣∣[G∗S1
]1 ⊗H∗S2

+ [ZS1,S2
]1

∣∣∣ ([A∗1]1
(R1 ⊗ IK2+k)[A∗1]1

)
+ [ZS1,S2

]1

)
(PS1 ⊗PS2)

[Q∗2]2 =

(
G∗S1

⊗ [H∗]2 − [ZS1,[n2]]1

∣∣∣− [ZS1,S2
]2

∣∣∣ ([A∗2]2
(R1 ⊗ IK2+k)[A∗2]2

)
− [ZS1,S2

]2

)
(PS1

⊗PS2
)

8. Let aux = ([G∗]1, [H
∗]2) and T = T1 ⊗T2.

24

9. Return (ck = ([Q∗1]1, [Q
∗
2]2, aux), τ = T).

Now we show that ck is correctly distributed. Since CS1 and CS2 are both oblivious SSB commitments,
it holds that aux = [G∗]1, [H

∗] follows the same distribution as the honest aux. It is enough to show that
Q∗ = Q∗1 + Q∗2 = G∗ ⊗H∗. This is the case since if this holds, the commitment key [Q∗1]1, [Q

∗
2]2 consists of

two uniform matrices, conditioned on their sum equaling G∗⊗H∗, and this is the distribution of the honest
key as well.

It is clear that this is the case for Q∗S1,[n2] and Q∗
S1,S2

, so we show it is also the case for Q∗
S1,S2

.

First, note that QS1,S2
= (Q1 + Q2)S1,S2

=

(
GS1

⊗HS2

GS1
⊗HS2

)
and then A = A1 + A2 = GS1

⊗HS2
. It

follows that Π>1 AΠ>2 = Π>1 Π1HS2
⊗GS1

Π2Π
>
2 =

(
HS2

⊗GS1

HS2
⊗GS1

)
and hence B = B1 + B2 = HS2

⊗GS1
.

Finally we have that

Q∗
S1,S2

=

(
A∗1 + A∗2

(R1 ⊗ IK2+k)(A∗1 + A∗2)

)

=

Π1

(
B1 + B2

(R2 ⊗ IK1+k−|S1|)(B1 + B2)

)
Π2

(R1 ⊗ IK2+k)(A∗1 + A∗2)

=

Π1

(
HS2

⊗GS1

(R2 ⊗ IK1+k−|S1|)(HS2
⊗GS1

)

)
Π2

(R1 ⊗ IK2+k)(A∗1 + A∗2)

=

Π1

(
HS2

R2HS2

)
⊗GS1

Π2

(R1 ⊗ IK2+k)(A∗1 + A∗2)

=

(
Π1H

∗
S2
⊗GS1

Π2

(R1 ⊗ IK2+k)(A∗1 + A∗2)

)
=

(
GS1

⊗H∗
S2

(R1 ⊗ IK2+k)(GS1
⊗H∗

S2
)

)
= G∗

S1
⊗H∗

S2
.

For finishing the proof it suffices to show that the rest of the input given to the distinguisher is correctly
distributed. Note that, following definition 4 and fact 2, [yS′1,S′2]T = (Extract(TS1,S2

, [c]1, [d]2))S′1,S′2 =
[zS′1,S′2|S′1,S2

]T = [zS′1,S′2]T = Extract(TS′1,S
′
2
, [c]1, [d]2).

Corollary 1. Construction from fig. 3 instantiated in G1 is ISH even when the adversary is given h(sk) =
([H]2, [G ⊗H + Z]1, [−Z]2). Similarly, it is also ISH when instantiated in G2 when the adversary is given
h(sk) = ([G]1, [G⊗H + Z]1, [−Z]2).

Proof. Follows directly from the ISH of the kronecker SSB commitment of Theorem 5. Specifically, ISH for
G1 follows from the indistinguishability of distributions 1 to 3 from Theorem 5, and ISH for G2 follows from
the indistinguishability of distributions 3 to 6.

5 Quasi-Arguments with Preprocessing

In this section we introduce an extension of Quasi Arguments as defined in [KPY19] which adds support
for language dependent crs or preprocessing such as the so called QA-NIZK arguments [JR13]. Additionally
we use different languages for completeness and local soundness, i.e. promise problems, to incorporate the
“knowledge transfer” soundness of [GR19].

25

Following [JR13], languages are parametrized by ρ ∈ Lpar and ρ sampled from some distribution Dpar. We
say tat Dpar is witness samplable if ρ can be efficiently sampled together with a witness θ for ρ ∈ Lpar. We
simply write (θ, ρ)← Dpar. Each ρ ∈ Lpar defines a language Lρ with the corresponding relations Ryes

ρ , that
is Lρ = {x | ∃w s.t. (x,w) ∈ Ryes

ρ }. After the language is fixed there is a (language dependent) prepossessing
stage where a common reference string is generated. Going a step forward, we would like our statements to
be commitments and that Ryes

ρ puts some restriction on the commitment opening. Since we will be using
SSB commitments, the language parameter must contain the SSB commitment key. Therefore, we assume
distribution Dpar receives as input d ∈ N (the size of the opening), a locality parameter K ≤ d and a set
S ⊆ [d]. It will be useful to define Lyes

ρ = Lρ and Lno
ρ the complement of Lyes

ρ , and similarly define Ryes
ρ and

Rno
ρ . Traditional arguments of knowledge require that from any accepting statement and proof pair one can

extract a witness w such that (x,w) ∈ Rno
ρ only with negligible probability.In a quasi-argument of knowledge

only a small part of the witness wS is extracted and (x,wS) ∈ Ryes
ρ,S with overwhelming probability, where

Ryes
ρ,S is a “local version” of Ryes

ρ . 10

Our final addition is support for arguments of knowledge transfer (AoKT) [GR19]. In a nutshell, an
AoKT enables to “succinctly reuse” an AoK of the opening of some commitment C for constructing another
AoK for commitment D. That is, given an opening w for C, it enables to give a succinct proof that D
opens to g(w). Importantly, AoKTs can be based on falsifiable assumptions. Following [GR19], ρ ∈ Lpar

defines languages Lyes
ρ and Lno

ρ , with Lno
ρ not necessarily the complement of Lyes

ρ (i.e. a promise problem),
with their corresponding relations Ryes

ρ and Rno
ρ . For no instances, the adversary provides a promise w∗ for

x. In [GR19] x = (C,D) and (C,D,w∗) ∈ Lno
ρ if w∗ is an opening for C but g(w∗) is not an opening for

D. In our instantiations x will be two SSB commitments to C1, . . . , Cd and D1, . . . , Dd such that Ci opens
to w and Di to gi(w). From the two SSB commitments we can extract CS and DS . Furthermore, Ci and
Di might not be extractable (actually, they will be Pedersen commitments) an hence the extractor can only
compute f(w, S) = {Com(cki, w) : i ∈ S}.

We define the yes and no languages as

Lyes
ρ = {x | ∃w s.t. (x,w) ∈ Ryes

ρ,S}, Lno
ρ = {(x,w∗) | ∃y s.t. (x, y, w∗) ∈ Rno

ρ,S},

where w∗ is the promise of the adversary and y is the local f -witness that we can extract from the adversary.
Intuitively, the two witnesses of the languages are different kind of objects. Witness y is the value we extract
from the adversary, which can’t be equal to f(w, S) for successful adversaries, but should lie the image of f
anyway. On the other hand w is a “proper” witness from which an y can be computed and hence belongs to
the preimage of f .11

5.1 Arguments with No-signaling extraction and Oblivious CRS Generation

Similarly to the way we treated commitment schemes, we don’t directly prove the existence of no-signaling
extractors but first show the existence of an Oblivious CRS Generation algorithm. We then show the
latter notion implies the former. For convenience, we start defining a quasi argument without no-signaling
extraction but only local soundness. For local soundness, we use a weaker variant of the strong Quasi-
Adaptive soundness of [JR13] where the adversary chooses (ρ, θ) ∈ Lpar. Instead, we honestly sample
parameter ρ and reveal part of the witness hls(θ) to the adversary, for some function hls. When we don’t
require computational assumptions on ρ, as in quasi arguments of membership in a linear space, hls might be
the identity function and then our definition becomes strong soundness as defined in [JR13]. In knowledge
transfer arguments, soundness holds provided the hardness of some computational assumption defined by ρ.
For this reason hls can’t be the identity and some part of θ must remain hidden.

In practice hls models correlated information leaked by another protocol, typically as a result of sharing
the commitment keys. If local knowledge soundness holds even when the adversary is given hls(θ), it means

10In the case x is a 3-CNF formula, in [KPY19] the authors define Ryes
ρ,S as the pairs (x,w) where w is a “locally satisfying

assignment”. This means that every clause C in x with all variables in S, is satisfied by w.
11The original definition from [GR19] is syntactically different as w is part of the statement in the yes language. However, as

the authors said, the verifier can’t read w as it will render the verification process not succinct. Since y becomes irrelevant, we
prefer to eliminate it from the yes language.

26

that any other protocol for which the crs can be derived from hls(θ) can be safely executed with a “correlated
crs”.

It will be useful to consider vectors of sets of size t. Namely S = (S1, . . . ,St), for some t ∈ N.

Definition 7. An hls-strong locally extractable proof system Π for the parameter language Lpar and relations
Ryes
ρ ,Rno

ρ,S is a tuple of PPT algorithms Π = (K,Prove,Verify,Extract) where

• (ρ, θ) ← Dpar(gk, d,K,S): Parameter generation Dpar takes as input a group key gk, the locality
parameter K and a set S ⊆ ([d], . . . , [d]) with |S| ≤ K; it outputs an instance witness pair (ρ, θ) of
Lpar.

• (crs, τ) ← K(ρ, θ): K takes as input an instance-witness pair (ρ, θ) of Lpar; it outputs a common
reference string crs and an extraction trapdoor τ .

• π ← Prove(crs, x, w): Prove takes as input crs and a statement-witness pair (x,w) of Lyes
ρ ; it outputs a

proof π.

• b← Verify(crs, x, π): Verify takes as input crs, a statement x and a proof π; it outputs a bit b indicating
if the proof π is a valid proof.

• y ← Extract(τ, x, π): Extract takes as input the extraction trapdoor τ , a statement x and a proof π, and
outputs a local witness y for the set S.

For all κ ∈ Nt,K ≤ (d, . . . , d) ∈ Nt,S ⊆ ([d], . . . , [d]), with |S| ≤K, Π satisfies the following properties:

• Completeness: For all (ρ, θ) ∈ Lpar and x,w ∈ {0, 1}∗

Pr
gk←G(1κ)

[
Verify(crs, x, π) = 1
∨ (x,w) 6∈ Ryes

ρ,S

(crs, τ)← K(ρ, θ);
π ← Prove(crs, x, w)

]
≥ 1− negl(κ)

• hls-Strong Local Knowledge Soundness: For all PPT A

Pr
gk←G(1κ)

 Verify(crs, x, π) = 0
∨ (x, y, w∗) /∈ Rno

ρ,S

(ρ, θ)← Dpar(gk, d,K,S);
(crs, τ)← K(ρ, θ);

(x,w∗, π)← A(ρ, hls(θ), crs);
y ← Extract(τ, x, π)

 ≥ 1− negl(κ)

Next, we define the no-signaling property of quasi-arguments. Similarly as with strong knowledge sound-
ness, we consider a stronger definition where the adversary is given some function of θ, namely hns(θ).

Definition 8. An hls-strong locally extractable proof system Π for the parameter language Lpar and relations
Ryes
ρ,S ,Rno

ρ,S is an (hls, hns)-quasi argument if it satisfies hns-strong no-signaling extraction. That is, for all

κ ∈ N,K ≤ d ∈ Nt,S′ ⊆ S ⊆ ([d], . . . , [d]) with |S| ≤K, and all PPT A and PPT D∣∣∣∣∣∣∣∣∣∣
Pr

gk←G(1κ)

D(crs, x, π, yS′) = 1

(ρ, θ)← Dpar(gk, d,K,S);
(crs, τ)← K(ρ, θ);

(x, π)← A(ρ, hns(θ), crs);
if Verify(crs, x, π) = 0: set x = ⊥;

y ← Extract(τ, x, π)

−

Pr
gk←G(1κ)

D(crs, x, π, y′) = 1

(ρ, θ)← Dpar(gk, d,K,S′);
(crs, τ)← K(ρ, θ);

(x, π)← A(ρ, hns(θ), crs);
if Verify(crs, x, π) = 0: set x = ⊥;

y′ ← Extract(τ, x, π)

∣∣∣∣∣∣∣∣∣∣
≤ negl(κ)

27

Finally, we define the notion of oblivious locally extractable proof systems. The requirements are that
(1) the crs alone does not help PPT adversaries gain information about the extraction set used to sample the
parameters ρ; (2) there exists a PPT algorithm OblSetup that on input a set S′ ⊆ S and (ρ, crs), sampled
for extraction on the superset of S, outputs new values (ρ′, crs′) that are statistically close to (ρ, crs) and
additionally, it outputs a trapdoor τ ′ for S′ that outputs indistinguishable witnesses to the ones output for
S and restricted to S′.

We consider also a “hns-strong” variant of (1). Note that (2) holds against unbounded adversaries which
can compute θ by themselves.

Definition 9. A locally extractable proof system Π for the parameter language Lpar and relations Ryes
ρ ,Rno

ρ,S

is hns-Strong Oblivious if there exist a PPT algorithm OblSetup such that, for all κ ∈ N,K ≤ (d, . . . , d) ∈
Nt,S′,S ⊆ ([d], . . . , [d]) with |S′|, |S| ≤ K,

1. hns-Strong Index Set Hiding: for all PPT D∣∣∣∣∣ Pr
gk←G(1κ)

[
D(ρ, crs, hns(θ))

(ρ, θ)← Dpar(gk, d,K,S)
(crs, τ)← K(ρ, θ)

]
−

Pr
gk←G(1κ)

[
D(ρ, crs, hns(θ))

(ρ, θ)← Dpar(gk, d,K,S′)
(crs, τ)← K(ρ, θ)

] ∣∣∣∣∣ ≤ negl(κ)

2. Oblivious trapdoor Generation: if S′ ⊆ S then for all, (even unbounded) adversaries A and distin-
guishers D∣∣∣∣∣∣∣∣∣∣

Pr
gk←G(1κ)

(ρ, θ)← Dpar(gk, d,K,S); (crs, τ)← K(ρ, θ)

(ρ′, crs′, τ ′)← OblSetup(ρ, crs,S′)
D(ρ′, crs′, y′) = 1 (x, π)← A(ρ, crs′)

if Verify(crs, x, π) = 0: set x = ⊥;
y′ ← Extract(τ ′, x, π)

 −

Pr
gk←G(1κ)

(ρ, θ)← Dpar(gk, d,K,S); (crs, τ)← K(ρ, θ)

D(ρ, crs, yS′) = 1
(x, π)← A(ρ, crs)

if Verify(crs, x, π) = 0: set x = ⊥;
y ← Extract(τ, x, π)

∣∣∣∣∣∣∣∣∣∣
≤ negl(κ)

Next, we present a proof that if a locally extractable proof system satisfies oblivious crs generation, then
it is no-signaling. The proof is similar to the proof of Thm. 1.

Theorem 6. Let Π = (K,Prove,Verify,Extract,OblSetup) be an hns-strong Locally Extractable Proof System
for the parameter language Lpar and relations Ryes

ρ ,Rno
ρ,S. Then, Π has hns-strong no signaling extraction.

Proof. Fix any S′ ⊆ S ⊆ ([d], . . . , [d]) with |S| ≤K, and let D be a PPT distinguisher against no signaling
extraction for these values, on instance-proof pairs output by a PPT A. We show by a sequence of games
that its success probability is negligible.

GameD,A0 (1κ): We execute (ρ, θ)← Dpar(gk, d,K,S); (crs, τ)← K(ρ, θ); we then get (x, π)← A(ρ, crs, hns(θ))
and change x to⊥ if Verify(crs, x, π) = 0; we compute y ← Extract(τ, x, π). The output isD(crs, x, π, yS′).

GameD,A1 (1κ): We execute (ρ, θ)← Dpar(gk, d,K,S); (crs, τ)← K(ρ, θ); we use the oblivious extractor
to get (ρ′, crs′, τ ′)← OblSetup(ρ, crs,S′); we then get (x, π)← A(ρ′, crs′, hns(θ)) and change x to ⊥ if
Verify(crs, x, π) = 0; we compute y′ ← Extract(τ ′, x, π). The output is D(crs, x, π, y′).

GameD,A2 (1κ): This is the same as GameD,A1 but in the first step we sample parameters for S′, that is
we execute (ρ, θ)← Dpar(gk, d,K,S′).

28

GameD,A3 (1κ): We execute (ρ, θ) ← Dpar(gk, d,K,S
′); (crs, τ) ← K(ρ, θ); we then get (x, π) ←

A(ρ, crs, hns(θ)) and change x to ⊥ if Verify(crs, x, π) = 0; we compute y′ ← Extract(τ, x, π). The
output is D(crs, x, π, y′).

We next show that for all 1 ≤ i ≤ 3,∣∣∣Pr
[
GameD,Ai (1κ) = 1

]
− Pr

[
GameD,Ai−1 (1κ) = 1

]∣∣∣ ≤ negl(κ). (2)

• Case i = 1, i = 3. Note that for i = 1, the difference in the two games is exactly as in the two cases of
the oblivious trapdoor generation property for S′ ⊆ S, so the outputs of games are statistically close.
For case 3, we use the same argument for S′ ⊆ S′.

• Case i = 2 The only difference in the games is how we setup the initial crs, either by sampling for S′

or for S. The output of the two games are computationally indistinguishable by the index set hiding
property, even when the adversary is given hns(θ).

By a standard argument we get that, for all PPT D,A,∣∣∣Pr
[
GameD,A0 (1κ) = 1

]
− Pr

[
GameD,A5 (1κ) = 1

]∣∣∣ ≤ negl(κ).

Finally, noting that GameD,A0 , GameD,A3 correspond to the two cases of no signaling extraction, we conclude
the proof.

5.2 Succinct Pairing Based Quasi-Arguments

In this section we present quasi arguments for various languages using SSB commitments with oblivious
trapdoor generation. We first present the simpler case, membership in linear spaces, and then we present
some extensionsof it, specifically a knowledge transfer version, and a knowledge transfer version for statements
split in the two groups. Finally,we use the latter to build a quasi argument of knowledge transfer for hadamard
products.

5.2.1 Quasi Arguments of Membership in Linear Spaces

Let U be a witness samplable distributions sampling ([U]1,U), where U ∈ Zd×np . We assume that for any

S ⊆ [d], given only [US]1 such that U = P>S

(
US

US

)
there is an efficient way of sampling [US].12 Also, let CS

be an algebraic SSB commitment key. The parameter language is

Lpar = {[U]1, [G]1 | ∃U,G s.t. ([U]1,U) ∈ Sup(U) and

([G]1,G,T) ∈ Sup(CS.KeyGen(gk , d,K, S))}

We assume that the corresponding relation is efficiently verifiable13. The parameters ρ = ([U]1, [G]1)←
(U ,CS.KeyGen(gk, d,K, S)) define the following relations:

RLyes
ρ = {([c]1,w) : c = GUw},

RLno
ρ,S = {([c]1, [y]1) : y is a valid S-opening of c and y /∈ Im(US)}

12We will instantiate the argument with U a block lower triangular matrix where each row is of the form
(U1,U2, . . . ,Ui,0, . . . ,0) where {Ui}i are independent random variables. Then is clear that from [US]1 we know [Ui]1
up to i = maxS, and the rest {Uj : j /∈ S} can be sampled independently.

13This is w.l.o.g. since one can extend the witness to include the randomness used to sample the parameters.

29

The advice is the empty string while the extractor should retrieve f(w, S) = [US]1w from any accepting
statement and proof pair. We present the construction QALin in Fig. 4. The construction is essentially the
quasi adaptive construction of membership in linear space of [KW15] for the matrix GU.

Dpar(gk, d,K, S):

• ([U]1,U)← U ; (pk, sk)← CS.KeyGen(gk , d,K, S)

• Output (ρ, θ) where ρ = (gk , pk, [U]1), θ = (sk,U)

K(ρ = (gk , [G]1, [U]1), θ = (G,T,U)):

• Sample K← ZK×kp , A← Dk, and redefine A as its first k columns.

• Compute [B]1 = [U>]1G
>K, C = KA.

• Output (crs, τ) where crs = ([A]2, [B]1, [C]2), τ = T.

Prove(crs = ([A]2, [B]1, [C]2) , [c]1,w): Output [π]1 ← w>[B]1.

Verify (crs = ([A]2, [B]1, [C]2) , [c]1, [π]1): Output 1 if e([π]1, [A]2) = e([c>]1, [C]2) and 0 otherwise.

Extract (τ = T, [c]1, [π]1): Output [y]1 ← T>[cS]1, otherwise output ⊥.

Figure 4: Construction QALin for membership in linear spaces. Note that this is just the argument of
[KW15] for matrix [GU]1.

Theorem 7. Let U be a witness samplable distribution, Dk be a matrix distribution and CS an algebraic SSB
commitment. Then, construction QALin of Fig. 4 is a locally extractable proof system with hls-strong local
knowledge soundness where hls(θ) = θ. Furthermore, completeness holds with probability 1 and hls-strong
local knowledge soundness holds with probability at least 1− AdvΠlin

snd (B), whee B is a PPT adversary against
the strong soundness of Πlin of [KW15].

Proof. For completeness, we have that if c = GUw, then

c>C = (GUw)>C = w>U>G>C = w>U>G>KA = w>BA = πA.

Local knowledge soundness is guaranteed by the local extractability of the SSB commitment scheme and
soundness of Kiltz and Wee proof system. Note that the extractor always outputs a valid partial opening of
[c]1 given an accepting proof [π]1, by the local extractability property of the SSB commitments. We claim
that this opening must lie in Im([US]1). Assume otherwise, and let A be a PPT adversary that makes
the extraction fail. We construct a PPT adversary BS that breaks strong soundness of Kiltz and Wee for
the matrix US , conditioned on A giving a valid proof. BS works as follows: it takes input crsS containing

[US]1 ∈ G|S|×d, [A]2 ∈ Gk×k2 , [B†]1 ∈ Gd×k, [C†]2 ∈ G|S|×k2 and the discrete logarithms of matrix US and
does the following:

• It samples ([US]1,US) s.t. U = P>S (US/US).

• It samples ([G]1,G,T)← CS.KeyGen(gk , n, d,K, S) and a random matrix R← ZK+k×k
p .

• It computes [B]1 = [B†]1 + [U]>G>R, [C]2 = T[C†]2 + R[A]2.

• It sets ρ := (gk , [G]1, [U]1), θ := (G,U,T) and crs := ([A]2, [B]1, [C]2).

It then executes A(ρ, θ, crs) until it outputs [c]1, [π]1. If this is an accepting proof pair, BS sets [x†] := T[c]
and [π†] := [π]1 − [c]>1 R.

First, we claim that the values ρ, θ, crs given as input to A are identically distributed to honestly created
ones and thus do not skew the probability that A outputs a valid proof. This is immediate for ρ, θ since

30

they are sampled honestly. We show that this is true for crs as well. Let K† ∈ Z|S|×k be the implicit matrix
in crsS , that is it satisfies B† = U>SK† and C† = K†A. Consider the matrix K = TK† + R, and note that
this matrix is uniformly distributed since R is uniformly distributed. Thus K is distributed identically to an
honestly generated K′ for generating a crs. We claim that the crs crs output by BS is identically distributed
to sampling this matrix and computing the other values honestly. Indeed we have that

C = TC† + RA

= TK†A + RA

= (TK† + R)A

= KA

and B = B† + U>G>R = U>SK† + U>G>R

= U>G>TK† + U>G>R

= U>G>(TK† + R) = (GU)>K

where the second equality for B follows since by the properties of algebraic SSB commitments we have
T>G = (I|S| 0)PS which gives

U>G>T = U>P>S

(
I|S|
0

)
= US .

So, the outputted crs crs′ is indeed identically distributed with an honest one.
Finally, we show that if A outputs a valid proof [π]1, then BS outputs a valid statement-proof pair w.r.t.

to crsS . Indeed, by the local extractability property of the commitment scheme, BS always outputs some
[x†]1 consistent with [c]1, and also the proof verifies, since we have

πA = c>C = c>KA = c>(TK† + R)A = (x†)>K†A + c>RA

which gives π†A = πA − c>RA = (x†)>K†A = (x†)C†. We conclude that [π†]1 is a valid proof for
[x†]1 6∈ Im([US]1) and BS breaks soundness of Kiltz and Wee construction.

Corollary 2. Consider construction from Fig. 4 with a statement of the form
(

[x]1
[y]1

)
, matrix (U

V), locality

parameter L ≤ (d, d) ∈ N2 and extraction set S = (S1, S2) ⊆ ([d], [d]), |S| ≤ L, such that the (U>S1
, h)-MDDH

assumption is hard for some function h. Assume also K ← ZL1+L2+2k×k
p , G =

(
G1 0
0 G2

)
, where Gi ←

CS.KeyGen(gk, d, Li, Si), and A ← Zk×kp , k ≥ 2. Then construction from Fig. 4 is also a quasi argument

for the relations KLyes
ρ = RLyes

ρ and KLno
ρ = {[c]1, [d]1, [x

∗]1, [y
∗]1,w

∗ : (c
d) S-open to

(
x∗

y∗

)
and x∗ =

US1w
∗ but y∗ 6= VS2w

∗}, with hls-strong local soundness where hls(θ) = (h(U>S1
),G,U>S2

).

Proof. In [GR19] it is shown that Kiltz and Wee argument is also a knowledge transfer argument whenever
the U>-MDDH assumption (U>S1

-MDDH in this case) holds and A is not full rank. Of course, this is still true

if the stronger (U>S , h)-MDDH assumption holds. However in 4 A is full rank with overwhelming probability.
Nevertheless, if A is uniform and k ≥ 2 we can jump to a game (relying on the DDH assumption) where
A ∈ Zk×kp is not full rank. Then the reduction of Thm. 7 yields also a reduction to the knowledge transfer

of [KW15] (taking
(

T1

T2

)
as trapdoor, where Ti is the trapdoor for Gi).

The proof that QALin is oblivious essentially follows from the oblivious trapdoor generation and index set
hiding of SSB commitments. Before proving oblivious trapdoor generation we present a lemma stating that
we can also compute ρ, crs knowing only the commitment key [G]1 and U, in both simple and knowledge
transfer schemes.

Lemma 1. There exists a modified crs generation algorithm K′ that on input (ρ, θ′), where θ′ contains only
U (resp. U,V) outputs a crs such that (ρ, crs) are identically distributed to the honest algorithm.

The lemma follows directly by noting that [B]1 = [U>]1GK = U>[G]1K. (resp. [B]1 = [U> | V>]1GK =
(U> | V>)[G]1K. Given that this result holds, we slightly abuse notation and refer to K′(ρ, θ′) as K(ρ, θ′),
that is we use the same name for the honest and the simulated algorithm.

31

Theorem 8. Let U (resp. U ,V for the knowledge transfer case) be a witness samplable distribution, and CS
be an algebraic SSB commitment scheme with perfect completeness, h-strong index set hiding and oblivious
trapdoor generation. Then Construction QALin of Fig. 4 (resp. construction Π of corollary 2) is hns-strong
oblivious where hns = (h(sk),U) (resp. hns = (h(sk),U,V)). Furthermore,

1. For every PPT A against hns-strong index set hiding of Π, there exists an adversary B against h-strong
index set hiding property of CS, such that AdvΠ

ISH(A) ≤ AdvCSISH(B) where hns(θ) = (h(sk),U).

2. For every A against oblivious trapdoor generation of Π, there exists an adversary B against oblivious
trapdoor generation of CS, such that AdvΠ

oblv(A) ≤ AdvCSoblv(B).

Proof. For index set hiding, it is enough to notice that in both cases, the crs of Π can be efficiently computed
given only ck = ([G]1, h(G)). Indeed by sampling [U]1,U← U (resp. [U]1,U← U ; [V]1,V← V) all values
of crs are efficiently computable, as noted in the previous lemma. Additionally, since we assume CS is h-
strong ISH, A can be also given hns(θ) = (h(sk),U) (resp. hns(θ) = (h(sk),U,V)). Thus, a distinguishing
advantage in index set hiding of Π immediately implies equal advantage on the respective property of CS.

For oblivious trapdoor generation we first describe the OblSetup algorithm. Let S′ ⊆ S.

OblSetup(ρ = ([G]1, [U]1), crs):

• ([G′]1,T
′)← CS.OblSetup(gk , d,K, S, ck = [G]1).

• ([U]1,U)← U (resp. ([U]1,U)← U ; ([V]1,V)← U).

• (crs, τ)← Π.K(ρ, θ′ = U) (resp. (crs, τ)← Π.K(ρ, θ′ = (U,V))).

Note that the only difference in sampling with S and with S′ is how we sample the commitment key G.
The crs part crs is identically distributed to an honest one by Lemma 1. Finally, by the statistically binding
property of the commitment key the extracted witness for S and S′ are unique and thus do not help the
(unbounded) distinguisher, who can compute them on its own.

Corollary 3. When CS is the one from fig. 3, then Π from fig. 4 (resp. corollary 2) is hns-strong no-signaling
where hns(θ) = (h(sk),U) (resp. hns(θ) = (h(sk),U,V)).

Proof. Follows directly from Theorem 6 and the hns-strong ISH of QALin, which in turn follows from Theorem
8.

Extensions. We consider several extensions of QALin such as bilateral linear spaces [GHR15a], where
the statement as well as the generating matrix have components in both groups. We also consider a sum
argument [GHR15a] which is akin to a bilateral language but one shows that the sum of the discrete logs of
two vectors in G1 and G2 belong to the image of the sum of two matrices in G1,G2. Finally, we extend local
soundness to consider knowledge transfer arguments. The security of all this extensions is almost verbatim
of theorems 7 and 8.

Quasi Argument for Bilateral Linear Knowledge Transfer. Let M,N1,N2 be 3 witness samplable
distribution over matrices in Gd×n1 ,Gd×n1 and Gd×n2 , respectively, for n, d ∈ N. Let K ≤ d where K =
(K1,K2) and S ⊆ ([d], [d]) where S = S1 ∪S2 and S ≤K Let CS be an algebraic SSB commitment schemes

with commitment space GKµ , where Gµ is defined by the input gk . The parameter language is

Lpar =
{

[M]1,[N1]1, [N2]2, [G]1, [H]1, [F]2 | ∃M,N1,N2,G,H,F s.t.

([M]1,M), ([N1]1,N2), ([N2]2,N2) ∈ Sup(M,N1,N2),

([G]1,G,TG) ∈ Sup(CS.KeyGen(gk1, d,K1, S1)),

([H]1,H,TH) ∈ Sup(CS.KeyGen(gk1, d,K2, S2)),

([F]2,F,TF) ∈ Sup(CS.KeyGen(gk2, d,K2, S2))
}

32

We assume w.l.o.g. that the corresponding relation is efficiently verifiable.The parameters ρ = ([M]1, [N1]1, [N2]2,
[G]1, [H]1, [F]2), define the following relations:

Ryes
ρ =

 [c]1, [d1]1, [d2]2,w

 c
d1

d2

 =

GM
HN1

FN2

w
 ,

Rno
ρ,S =

 ([c]1, [d1]1, [d2]2),w,
([x]1, [y1]1, [y2]2)

∣∣∣∣∣∣
x,y1,y2 are valid S1, S2, S2 openings of
c, d1, d2 w.r.t. G,H,F respectively and
x1 = MS1w but y1 6= N1,S2w or y2 6= N2,S2w

 ,

that is the partial witness for S is some valid local openings [x]1, [y1]1, [y2]2 w.r.t. to G,H,F respectively that
satisfy the following: if xS2 = MS1w then it should be the case that both y1 = N1,S2w and y2 = N2,S2w
where w is the promise of the adversary. Note that if S1 is the empty set the latter relations trivially hold.
We present the protocol in Fig. 5. Security is almost verbatim to the unilateral case. For completeness we
give the full proof in Appendix B.1.

Dpar(gk , d,K,S = (S0, S1)):

• ([M]1,M)←M; ([N1]1,N1)← N1; ([N2]2,N2)← N2.

• ([G]1,G,TG)← CS.KeyGen(gk1, n, d,K0, S0);

([H]1,H,TH)← CS.KeyGen(gk1, n, d,K1, S1);

([F]2,F,TF)← CS.KeyGen(gk2, n, d,K2, S1);

• Output (ρ, θ) where
ρ = (gk , [G]1, [H]1, [F]2, [M]1, [N1]1, [N2]2),

θ = (G,H,F,TG,TH,TF,M,N1,N2).

K(ρ, θ):

• Parse ρ = (gk , [G]1, [H]1, [F]2, [M]1, [N1]1, [N2]2),

θ = (G,H,F,TG,TH,TF,M,N1,N2).

• Sample K0 ← ZK0×k
p ; K1 ← ZK1×k

p ; K2 ← ZK2×k
p ; A← Dk and redefine A as its first k columns.

• Compute [B]1 = [M>]1G
>K0 + [N>1]1H

>K1 and [D]2 = [N>2]2F
>K2.

• C1 =

(
K0

K1

)
A and C2 = K2A;

• Output (crs, τ) where crs = ([B]1, [D]2, [A]1,2, [C1]2, [C2]1) and τ = (TG,TH,TF).

Prove(crs = ([B]1, [D]2, [A]1,2, [C1]2, [C2]1), [c]1, [d1]1, [d2]2,w):

• Output ([π]1, [θ]2)← (w>[B]1,w
>[D]2).

Verify (crs, [c]1, [d1]1, [d2]2, [π]1, [θ]2):

• Output 1 iff e([π]1, [A]2) + e([θ]2, [A]1) = e([c> | d>1]1, [C1]2) + e([d>2]2, [C2]1).

Extract (τ, [c]1, [d1]1, [d2]2, [π]1, [θ]2):

• Parse τ as (TG,TH,TF) and output [x]1 = T>G[c]1, [y1]1 = T>H[d1]1, [y2]2 = T>F [d2]2.

Figure 5: Quasi argument QABlin for knowledge transfer of membership in linear space.

33

Quasi Argument for Sum Knowledge Transfer. Let (M1,M1) be some (possibly correlated) witness
samplable distributions outputting matrices in Gd×n1 × Gd×n2 and N be witness samplable distributions
outputting matrices in Gd×n1 for n, d ∈ N. Let K ≤ d where K = (K0,K1) and S ⊆ ([d], [d]) where
S = S1 ∪ S2 and S ≤ K. Let CS be an algebraic SSB commitment scheme and CS′ be a split algebraic

commitment key with commitment space GK1 , GK1 ×GK2 respectively. The parameter language is

Lpar =
{

[M1]1,[M2]2, [N]1, [Q1]1, [Q2]1, [F]2 | ∃M1,M2,N1,Q1,Q2,F s.t.

([M1]1, [M2]2,M1,M2) ∈ Sup(M1,M2), ([N]1,N) ∈ Sup(N),

([Q1]1, [Q2]2,Q1,Q2,TQ) ∈ Sup(CS′.KeyGen(gk , n,K0, S1)),

([F]1,F,TF) ∈ Sup(CS.KeyGen(gk1, n,K1, S2))
}

We assume w.l.o.g. that the corresponding relation is efficiently verifiable. The parameters ρ = ([M]1, [N1]1, [N2]2,
[Q1]1, [Q2]1, [F]2) define the following relations14

Ryes
ρ =

{
[c1]1, [c2]2, [d]2,w

(
c1 + c2

d

)
=

(
(Q1 + Q2)(M1 + M2)

FN

)
w

}
,

Rno
ρ,S =

 ([c1]1, [c2]2, [d]1),w,
([x1]1, [x2]2, [y]1)

∣∣∣∣∣∣
x1 + x2,y are valid S0, S1 openings of
c1 + c2, d2 w.r.t. Q1 + Q2,F respectively and
x1 + x2 = (M1,S0

+ M2,S0
)w but y 6= NS2

w

 ,

that is the partial witness for S is some valid local openings [x1]1, [x2]2, [y]1 w.r.t. to G,H,F respectively
that satisfy the following: if x1 + x2 = (M1,S1

+ M2,S1
)w then it should be the case that y = NS2

w where
w is the promise of the adversary. Note that if S1 is the empty set the latter relations trivially hold. We
present the protocol in Fig 6.

For completeness we give the full proof in Appendix B.2.

5.2.2 Quasi-Arguments for Hadamard Products.

The main result of [GHR15a] was implicitly a quasi-argument for the set of equations bi(bi − 1) = 0, for all
i ∈ [d]. We extend their results to equations of the form xiyi = zi, that is x ◦ y = z where ◦ denotes the
hadamard product. Let U ,V,W be witness samplable distributions over matrices in Gd×n1 ,Gd×n2 and Gd×n1 ,
respectively, for n, d ∈ N. Let K = (K,K) with K ≤ d and S = (S, S) with S ⊆ [d] and S ≤ K. Also let CS

be an algebraic SSB commitment scheme with commitment space GKµ . The parameter language is

Lpar =
{

[U]1,[V]2, [W]1, [G]1, [H]2, [F]1 | ∃U,V,W,G,H,F s.t.

([U]1,U) ∈ Sup(U), ([V]2,V) ∈ Sup(V), ([W]1,W) ∈ Sup(W),

([G]1,G,TG) ∈ Sup(CS.KeyGen(gk1, n,K, S))

([H]2,H,TH) ∈ Sup(CS.KeyGen(gk2, n,K, S))

([F]1,F,TF) ∈ Sup(CS.KeyGen(gk1, n,K, S))
}

We assume w.l.o.g. that the corresponding relation is efficiently verifiable. The parameters ρ = ([U]1, [V]2, [W]1,
[G]1, [H]2, [F]1)define the following relations:

Ryes
ρ =

{
[u]1, [v]2, [w]2,a, b

u = GUa,v = HVb
w = FW(a ◦ b)

}
,

Rno
ρ,S =

 ([v]1, [u]2, [w]1),a, b
([x1]1, [x2]2, [y]1)

∣∣∣∣∣∣
x1,x2,y are valid S openings of
c1, c2, d w.r.t. G,H,F respectively and
x1 = USa,x2 = VSb, but y 6= WS(a ◦ b)

 .

14We allow both the distributions M1,M2,N and the commitment keys to include some auxiliary information with its
associated witness which are included in ρ, θ respectively. This auxiliary information is not used in the protocol, but is public
when the protocol is used inside other protocol. We omit it here to simplify the presentation but we consider it whenever
needed.

34

Dpar(gk , d,K,S = (S0, S1)):

• ([M1]1, [M2]2,M1,M2)← (M1,M2); ([N]1,N)← N ;

• ([Q1]1, [Q2]2,Q1,Q2,TQ)← CS′.KeyGen(gk , n, d,K0, S0);

([F]1,F,TF)← CS.KeyGen(gk1, n, d,K1, S1);

• Output (ρ, θ) where
ρ = (gk , [Q1]1, [Q2]1, [F]2, [M1]1, [M2]2, [N]1),

θ = (Q1,Q2,F,TQ,TF,M1,M2,N).

K(ρ, θ):

• Parse ρ = (gk , [Q1]1, [Q2]1, [F]2, [M1]1, [M2]2, [N]1), θ = (Q1,Q2,F,TQ,TF,M1,M2,N).

• Set Q = Q1 + Q2 and sample K0 ← ZK0×k
p ; K1 ← ZK1×k

p ; Z← Zn×kp ; A← Dk and redefine A
as its first k columns.

• Compute [B]1 = [M>
1]1Q

>K0 + [N>]1F
>K1 + [Z]1 and [D]2 = [M>

2]2Q
>K0 − [Z]2.

• C1 =

(
K0

K1

)
A and C2 = K0A;

• Output (crs, τ) where crs = ([B]1, [D]2, [A]1,2, [C1]2, [C2]1) and τ = (TQ,TF).

Prove(crs = ([B]1, [D]2, [A]1,2, [C1]2, [C2]1), [c1]1, [c2]2, [d]1,w):

Sample z ← Zkp and output ([π]1, [θ]2)← (w>[B]1 − [z>]1,w
>[D]2 + [z>]2).

Verify (crs, [c1]1, [c2]2, [d]1, [π]1, [θ]2):

• Output 1 iff e([π]1, [A]2) + e([θ]2, [A]1) = e([c>1 | d>]1, [C1]2) + e([c>2]2, [C2]1).

Extract (τ, [c1]1, [c2]2, [d]1, [π]1, [θ]2):

• Parse τ as (TQ,TF) and output [x1]1 = TQ
>[c1]1, [x2]2 = TQ

>[c2]1, [y]1 = TF
>[d]1.

Figure 6: Quasi argument QASum for knowledge transfer of sum membership in linear space.

That is the partial witness for S is some valid local openings [x1]1, [x2]2, [y]1 w.r.t. to G,H,F respectively
that satisfy the following: if x1 = USa and x2 = VSb and then it should be the case that y = WSc where
c = a ◦ b. Here a, b is the promise of the adversary. We present the protocol in Fig 7. Essentially, we
first have the prover commit to the kronecker product a⊗ b using a commitment scheme defined by the ⊗
operation of CS to itself, and then show that if the split opening of this commitment is w = a⊗ b, then the
opening of d is Dw where D is the linear operation that outputs a◦b on input a⊗b. The former “promise”,
regarding the kronecker product, is verified by the pairing operation, while for the latter construction QASum
is used.

35

Dpar(gk , d,K, S):

• ([U]1,U)← U ; ([V]2,V)← V. ([W]1,W)←W;

• ([G]1,G,TG)← CS.KeyGen(gk1, n, d,K, S);

([H]2,H,TH)← CS.KeyGen(gk2, n, d,K, S);

([F]1,F,TF)← CS.KeyGen(gk1, n, d,K, S);

• Output (ρ, θ) where ρ := (gk , [G]1, [H]2, [F]1, [U]1, [V]2, [W]1), and θ :=
(G,H,F,TG,TH,TF,U,V,W).

K(ρ, θ):

• Parse ρ = (gk , [G]1, [H]2, [F]1, [U]1, [V]2, [W]1), θ = (G,H,F,TG,TH,TF,U,V,W).

• (ck, sk) ← kCS.KeyGen(gk , [G]1, [H]2,G,H) and parse ck as [Q1]1, [Q2]2, aux and sk as
Q1,Q2,TQ.

• Sample R ∈ Zd2×n2

q and set M1 = U⊗V −R and M2 = R. Set N = WD.

• Set ρsum := (gk , [Q1]1, [Q2]1, [F]2, [M1]1, [M2]2, [N]1),

θsum := (Q1,Q2,F,TQ,TF,M1,M2,N).

• Set (crssum, τsum)← QASum(ρsum, θsum).

• Sample R′ ← ZK
2×n2

p and set [E1]1 = [Q1(U⊗V)−R′)]1, [E2]2 = [Q2(U⊗V) + R′]2.

• Output crs = ([E1]1, [E2]2, crssum), τ = (TG,TH,TF).

Prove(crs, [x]1, [y]2, [w]1,a, b):

• Parse crs = ([E1]1, [E2]2, crssum).

• Set [c1]1 = [E1]1(a⊗ b), [c2]2 = [E2]2(a⊗ b), [d]1 = [w]1.

• πsum = QASum.Prove(crssum, [c1]1, [c2]1, [d]1,a⊗ b).
• Output π := ([c1]1, [c2]1, πsum).

Verify (crs, [u]1, [v]2, [w]1, π):

• Parse crs = ([E1]1, [E2]2, crssum), π := ([c1]1, [c2]1, πsum).

• Compute [u⊗ v]T using the pairing operation and output 1 iff

1. QASum.Verify (crssum, [c1]1, [c2]2, [w]1) = 1 and

2. [u⊗ v]T = e([c1]1, [1]2) + e([1]1, [c2]2)

Extract (τ, [u]1, [v]2, [w]1, π): Parse τ as (TG,TH,TF) and output [x1]1 := T>G[u]1, [x2]2 := T>H[v]1, [y]1 :=
T>F [w]1.

Figure 7: Quasi argument QAHad for knowledge transfer of hadammard product. Here D ∈ Zn×n2

q is the
matrix such that D(a⊗ b) = a ◦ b

Theorem 9. Let U ,V,W be witness samplable distributions, Dk be a matrix distribution and CS an algebraic
SSB commitment scheme with perfect completeness. Also, let A be an adversary against hls-strong local
knowledge soundness of QAHad where hls(θ) = (G,H,F,W, [U⊗V−R]1, [R]2) for a uniformly distributed
R. Then completeness holds with probability 1 and for hls-strong local soundness it holds that AdvQAHad

snd (A) ≤
AdvQASum

snd (B) where B is an adversary against hls-sum-strong local soundness of QASum for ρsum as computed
in Fig. 7 and hls-sum(θsum) outputs θsum except the matrices M1,M2.

36

Proof. For completeness, we have that

u⊗ v = GUa⊗GUb = (G⊗H)(U⊗V)(a⊗ b) =

= (G⊗H− Z + Z)(U⊗V −R + R)(a⊗ b) =

= (Q1 + Q2)(M1 + M2)(a⊗ b)

and also c1 + c2 = (E1 + E2)(a⊗ b) = (Q1 + Q2)(U⊗V)(a⊗ b) = u⊗ v, so the pairing test is successful.
Finally, noting thatw = d = FW(a◦b) = FWD(a⊗b) = FN(a⊗b), we see that the statement/witness pair
([c1]1, [c2]2, [d]1),a⊗ b is a yes instance of the sum language for parameters ρsum and the second condition
for verification follows by the completeness of the QASum.

For local knowledge soundness, it is enough to note that the Kronecker part of the knowledge transfer
holds unconditionally, that is, if for some promise a, b it holds that u = GUa and v = HVb, then by the
verification of the pairing condition, c1 + c2 = (Q1 + Q2)(M1 + M2)(a ⊗ b), so we efficiently construct a
promise for the sum language. Also, the value hls-sum(θsum) can be computed given hls(θ). Now, an accepting
proof for the hadamard language contains an accepting proof for the sum language and we use that to break
q-strong local soundness of QASum. Details follow.

LetA be an adversary against hls-strong local knowledge soundness of QAHad. We construct an adversary
B against hls-sum-strong local knowledge soundness of QASum. B takes as input (ρsum, hls-sum(θsum), crssum)
and works as follows:

• Parse

ρsum = (gk , [Q1]1, [Q2]2, [F]1, [M1]1, [M2]2, [N]1, auxCS = (G,H), auxM = ([U]1, [V]2),

θqsum = (Q1,Q2,G,H,F,N)

• Set ρ = (gk , [G]1, [H]2, [F]2, [U]1, [V]2, [N]1), hls(θ) = (G,H,F,N, [M1]1, [M2]2).

• It samples R′ ← ZKp × n2 and sets [E1]1 = (Q1 + Q2)[M1]1 + [R′]1, [E2]2 = (Q1 + Q2)[M2]2 − [R′]2.

It then executes A(ρ, hls(θ), crs = ([E1]1, [E2]2, crssum)) until it outputs a statement ([u]1, [v]2, [w]1,a, b)
together with an accepting proof ([c1]1, [c2]2, πsum). It outputs the statement/advice/proof tuple

(([c1]1, [c2]2, [w]1),a⊗ b, πsum).

The crs is identically distributed to an honestly computed one. Indeed the only thing computed differently
are the values [E1]1, [E2]2, but note that in the reduction they are distributed uniformly conditioned on
E1 + E2 = (Q1 + Q2)(M1 + M2) = (Q1 + Q2)(U⊗V), as in the honest crs generation.

Now, assuming an accepting proof, and a correct promise a, b given from A means that the promise of
B is also correct. Indeed, we have

c1 + c2 = u⊗ v = GUa⊗HVb = (G⊗H)(U⊗V)(a⊗ b) =

= (G⊗H− Z + Z)(U⊗V −R + R)(a⊗ b) =

= (Q1 + Q2)(M1 + M2)(a⊗ b).

Now let x1 = TQc1, x2 = TQc2, y = TFw be the extracted values. We have that

x1 + x2 = TQ(c1 + c2) = TQ(Q1 + Q2)(M1 + M2)(a⊗ b)
= (MS,1 + MS,2)(a⊗ b).

so indeed the promise is correct. Also assuming that the statement/advice given from A is a no-instance for
the hadamard language w.r.t. to the set S, then the statement/advice given from B is a no-instance for the
sum language w.r.t. the same set S. Indeed, we have

y 6= WS(a ◦ b) = WSD(a⊗ b) = NS(a⊗ b).

37

So, conditioned on a successful A, B outputs an instance/advice such that (1) the extractor gets values that
satisfy Rno

ρsum,S
for ρsum and (2) a proof that verifies w.r.t. the instance.

We next show that when the distributions U ,V,W guarantee that the sum knowledge transfer argument is
secure w.r.t. all possible sets S, construction QAHad has hls-strong local knowledge soundness where hls
includes G,H,F,W, [U⊗V −R]1, [R]2 for a uniform R.

Corollary 4. Let Dk be a matrix distribution for which Dk-SKerMDH and let DDH hold in G1,G2. Denote
US (resp. VS, WS) the distributions that sample matrices from U (res. V2, W), and restricts them to rows
corresponding to S. Then

1. If for all S ⊆ [d] with S ≤ K0, U>S -MDDH and V>S -MDDH hold, QAHad is an hls-strong local knowledge
sound proof system, where hls(θ) = (G,H,F,N, [U⊗V −R]1, [R]2) for a uniform R.

2. If for all S, S ⊆ [d] with S ≤ K the distributions US ,VS ,WS output matrices with the last n′ columns

being 0, and U ′>S -MDDH and V ′>S -MDDH hold, with U ′S, (resp. V ′S) being US (resp. VS) where we
delete the trailing zero columns, then QAHad is an hls-strong local knowledge sound proof system, where
hls(θ) = (G,H,F,W, [U⊗V −R]1, [R]2).

Proof. By Thm. 9 it is enough to show that QASum is secure for such distribution. This in turn hold
when the sum knowledge transfer argument is sound (Thm. 17) which is true if Dk-SKerMDH holds and
(US ,VS , h)−MDDH assumption holds (similar in the second case for the distributions we remove the zeros)
by Thm. 14. It remains to show that for these distribution the latter condition holds when we are given
the extra information h(U,V) = ([U ⊗V −R]1, [R]2) for a uniform R. We show that this is the case if,
additionally, DDH hold. That is we need to show that for all S the (US ,VS , h)-MDDH holds or equivalently
the distributions

• [U>]1, [V
>]2, [U

> ⊗V> −R]1, [R]2, [(U⊗V)>k − r]1, [r]2 : k← Z|S|
2

q ; r ← Zn2

q ; k ← Zq

• [U>]1, [V
>]2, [U

> ⊗V> −R]1, [R]2, [s]1, [t]2 : s, t← Zn2

q

where U← US ; V← VS ; R← Zn
2×|S|2
q are computationally indistuinguishable.

Let S ⊆ [d] with |S| ≤ K. We show the indistinguishability of these distributions by showing indistin-
guishability of a sequence of hybrid distributions. In what follows denote α = ([U>]1, [V

>]2, [U
> ⊗V> −

R]1, [R]2) where U← US ,V← VS ,R← Zn
2×|S|2
q .

We have

0. α, [(U⊗V)>k − r]1, [r]2 : r ← Zn2

q ,k← Zn2

q

1. α, [(U⊗V)>(k1 ⊗ k2)− r]1, [r]2 : r ← Zn2

q , k1,k2 ← Znq

2. α, [(U>k1)⊗ (V>k2)− r]1, [r]2 : r ← Zn2

q , k1,k2 ← Znq

3. α, [u⊗ (V>k2)− r]1, [r]2 : u← Znq , r ← Zn2

q , k2 ← Znq

4. α, [r]1, [u⊗ (V>k2)− r]2 : u← Znq , r ← Zn2

q , k2 ← Znq

5. α, [r]1, [u⊗ v − r]2 : u,v ← Znq , r ← Zn2

q

6. α, [s]1, [t]2 : s, t← Zn2

q

We next show that for all 1 ≤ i ≤ 5 the distributions i− 1, i are computationally indistinguishable.

38

• Case i = 1. We show that distinguishing these two distributions reduces to the rank problem in G1

introduced in [Vil12], namely, distinguishing [A]1 ∈ Gn×n1 sampled uniformly over all matrices in Gn×n1

of rank 1, from [A]1 ∈ Gn×n1 sampled uniformly over all matrices in Gn×n1 of rank n. Now, assume
there exists a distinguisher A for distributions 0 and 1. We construct a distinguisher B against the
rank problem. The distinguisher works as follows: on input [A]1, it samples U ← US ,V ← VS ,R ←
Zn

2×|S|2
q , r ← Zn2

q . It computes M = U>[A]1V and vectorizes it; denote the vectorization as [m]1. it

then executes A([U>]1, [V
>]2, [U

>⊗V>−R]1, [R]2, [m]1−[r]1, [r]2) and outputs whatever A outputs.
Now, note the vectorization [m]1 corresponds to the value [(U⊗V)m]1. If [A] is of rank 1, then we can
write A = k1k

>
2 and we have M = U>k1k

>
2 V = U>k1(V>k2)> and the vectorization corresponds to

(U>k1)⊗(V>k2), namely the case i = 0. Otherwise, [A] is of rank n, and we can write its vectorization
as k. Then, m correspond to (U> ⊗ V>)k), namely the case i = 1. As shown in [Vil12], the rank
problem reduces to DDH with a security loss of log n.

• Case i = 2. Distributions 1, 2 are perfectly indistinguishability since the only difference is that the
latter is computed as [(U>k1)⊗ (V>k2)− r]1, which equals to [(U> ⊗V>)(k1 ⊗ k2)− r]1, which is
the corresponding value of distribution 1.

• Case i = 3. This case reduces to the U>S -MDDH1 assumption. The only difference is that in the forth
distribution, we replace U>k1 with a uniform element u. It is enough to show that we can compute
the rest of the values given [U]1, [u]1 where [u] is either U>k1 or uniform. We can compute the values
as

[U>]1, [V
>]2, [U

>]1 ⊗V> − [R]1, [R]2, [u]1 ⊗ (V>k2)− [r]1, [r]2

where we sample V← VS , R← Zn
2×|S|2
q , r ← Zn2

q , k2 ← Znq .

• Case i = 4. The distributions 4 and 5 are perfectly indistinguishable. It is enough to note that in
both, the last two elements are uniformly distributed conditioned on their sum of discrete logarithms
being equal to u⊗ (V>k2).

• Case i = 5. This is the same as the case i = 3 for the value [v]2. This case reduces to the V>S -MDDH2

assumption. The only difference is that in the last distribution, we replace V>k2 with a uniform
element v. It is enough to show that we can compute the rest of the values given [V]2, [v]2 where v is
either V>k2 or uniform. We can compute the values as

[U>]1, [V
>]2, [R]1,U

> ⊗ [V>]2 − [R]2, [r]1,u⊗ [v]2 − [r]2,

where we sample U← US , R← Zn
2×|S|2
q , r ← Zn2

q , u← Znq .

• Case i = 6. This again reduces to the rank problem in G2. The only difference in the two distributions
is that in distribution 5 the sum of the last two elements, namely u⊗ v is a vectorized matrix of rank
1, namely uv>, while in distribution 6 is a uniformly distributed matrix of rank n (except w.n.p).
Given [A]2 ∈ Gn×n2 either uniform of rank 1 or uniform of rank n we can compute all the other values
efficiently as follows. Let a be the vectorization of T. We compute

[U>]1, [V
>]2, [U

> ⊗V> −R]1, [R]2, [r]1, [a]2 − [r]2,

where U ← US ,V ← VS ,R ← Zn
2×|S|2
q , r ← Zn2

q . This implies that distinguishing distributions 5, 6
reduces to the rank problem, which in turn reduces to DDH in G2.

The proof of oblivious trapdoor generation essentially follows from the oblivious trapdoor generation
and index set hiding of the SSB commitments and is similar to the corresponding proofs for the other
constructions.

First we show the corresponding lemma to Lemma 8, that is, we construct an indistinguishable crs given
only the commitment keys and the matrices U,V,W.

39

Lemma 2. There exists a modified crs generation algorithm K′ that on input (ρ, θ′), where either θ′ =
(U,V,W, [G⊗H−Z]1, [Z]2) or θ′ = (G,H,F, [U⊗V−R]1, [R]2) and outputs a crs such that (ρ, crs) are
identically distributed to the honest algorithm.

The lemma follows by inspection an by noting that with the given values we can compute the crs for the
sum as explained in Lemma 8. Again, w.l.o.g. we use the same name for the two algorithms, namely K and
differentiate them by their input.

Theorem 10. Let U ,V,W be witness samplable distributions, and CS be the algebraic commitment scheme
of Fig. 3 for which CS ⊗ CS is obliviously extractable. Then Construction QAHad of Fig. 7 is hns-strong
oblivious where hns = ([G⊗H− Z]1, [Z]2). Furthermore,

1. For every PPT A against index set hiding of QAHad, there exist an adversary B against hns-strong
index set hiding property of CS such that AdvQAHad

ISH (A) ≤ 3AdvCSISH(B).

2. For every A against oblivious crs generation of QAHad, there exist an adversary B against oblivious
crs generation of QASum such that AdvQAHad

oblv (A) ≤ AdvQASum
oblv (B).

Proof. It is enough to show that index set hiding holds and that we can sample a tuple (ρ, crs) indistinguish-
able from the one we are given, along with a valid trapdoor. This is the case because the commitment keys
are perfectly binding in S′, which means that the witnesses are unique and do not help the (unbounded)
distinguisher who can compute them on its own.

hns-Strong Index Set Hidning. Assume there exist sets S, S′ of size at most K and an adversary A which
distinguishes (ρ, crs, hns(θ)) sampled for S from (ρ, crs, hns(θ)) sampled for S′ with some probability α. We
construct adversaries B distinguishing ck sampled for S from ck sampled for S with probability β such that
α ≤ 2β.
B takes as input some ck sampled either for S or S′ which is parsed as [G]1 and honestly computes

the crs following K of Lemma 2 using the values [G ⊗H − Z]1, [Z]2 which are included in hns except that
[H]2,H,TH, [F]1,F,TF are computed as follows: it samples b← {0, 1} and if b = 0 it sets

([H]2,H,TH)← CS.KeyGen(gk2, d,K, S), ([F]1,F,TF)← CS.KeyGen(gk1, d,K, S)

otherwise it sets

([H]2,H,TH)← CS.KeyGen(gk2, d,K, S
′), ([F]1,F,TF)← CS.KeyGen(gk1, d,K, S

′)

If the guess b is correct, by witness samplability of U,V,W the distribution of ρ is not changed, and since
the crs is computed as an honest one conditioned on ρ, index set hiding follows holds with probability α

2 .

Oblivious trapdoor generation: Here, we can simply use the oblivious trapdoor generation of protocol QASum.
The conditions of corollary 7 are satisfied since we include the values [G⊗H−Z]1, [Z]2 in hns and by Thm 5
the commitment key for the sum has oblivious trapdoor generation. It is enough to show that we can compute
the crs for the QAHad given a crs for QASum. But this is easy since when given a pair (ρsum, crssum) we
execute the oblivious crs algorithm QASum.OblKeyGen(ρ, crs,S = (S, S)) as in Lemma 2.

Corollary 5. If CS is the one from fig. 3, then QAHad from fig. 7 is hns-strong no-signaling where hns =
([G⊗H− Z]1, [Z]2,U,V,W) .

Proof. The proof follows directly from Theorem 6 and the hns-strong oblivious trapdoor generation of QAHad
which is shown in Thm. 10.

40

6 Delegation for Arithmetic Circuit Evaluation

Formally, we define a delegation scheme as follows.

Definition 10. A triplet of algorithms Del = (Setup,Prove,Verify) is a delegation scheme for circuit evalu-
ation with preprocessing if for any circuit C : Zn0

p → Zndp :

Completeness: For any x,y such that y = C(x) it holds

Pr
gk←G(1κ)

[Verify(crs,x,y, π) = 1|crs← Setup(gk, C), π ← Prove(crs,x,y)] ≥ 1− negl(κ),

Soundness: For any adversary A it holds that

Pr
gk←G(1κ)

[Verify(crs,x,y, π) = 1 and y 6= C(x)|crs← Setup(gk, C), (x,y, π)← A(crs)] ≤ negl(κ),

Efficiency: The setup algorithm and the prover run in time poly(|C|, κ). The size of each proof is O(κ) and
verification time npoly(κ) + poly(κ).

6.1 The Scheme

In the delegation scheme from [GR19] the prover, gives 3d commitments [L1]1, . . . , [Ld]1, [R1]2, . . . , [Rd]2,
[O1]1, . . . , [Od]1 to, respectively, the left, right and output wires of each level of the circuit. Then, it gives a
linear and quadratic knowledge transfer arguments to “transfer” knowledge of the opening from the input
level, which is known to the verifier, to the next levels. Finally, the verifier checks that the commitment to
the output opens to y.

We give a “compressed” version of [GR19] where the 3d commitments are shrunken into 3 no-signaling
SSB commitments, and the 2d knowledge transfer arguments are shrunk into 2 quasi arguments. From the
SSB commitments we can extract [Li]1[Ri]2, [Oj]1 for j = i − 1 or j = i. Local knowledge soundness of
the quasi arguments imply that knowledge is “transferred” from [Oi−1]1 to [Li]1, [Ri]2 or from [Li]1, [Ri]2 to
[Oi]1. One important technical problem with this approach is that the linear knowledge transfer argument
is between the next level and all previous levels. That is, the knowledge is transferred from commitments to
the output in all previous levels [O1]1, . . . , [Oi]1, to commitments to the left and right wires in the next level
[Li+1]1, [Ri+1]2. This means the quasi-argument must extract O(d) values and hence is not succinct. We
solve this issue by computing Li, Ri, Oi as commitments also to the respective wires of all previous levels.
Consider an arithmetic circuit C : Zn0

p → Zndp . The circuit can be naturally sliced into d + 1 levels, where
level 0 contains the input and level i is formed by a set of ni multiplication gates, the inputs of which
depends on a linear transformation of outputs of previous levels.15 Let Ni =

∑i
j=0 and N = Nd. Denote

by ai, bi, ci ∈ ZNip the left, right and output wires of level 1, . . . , i respectively. That is ai =
(ai−1

Dici−1

)
and bi =

(
bi−1

Eici−1

)
, where Di,Ei ∈ Zni×Ni−1

p are defined by the circuit’s linear gates, a0, b0 are of size

0 and c0 = x is the input. Let D ∈ ZN−n0×N
p (resp. E) be the matrix such that the i-th row of D is

(Di|0ni×N−Ni−1). Note that matrices D,E are lower triangular. For the outputs we have ci = ai ◦ bi.
Denote a = ad, b = bd and c = cd−1. The evaluation of the circuit is correct if (a

b) = (D
E) c and

c = a ◦ b. Next, consider Pedersen commitment keys U∗i ← Z1×ni
p , V∗i ← Z1×ni

p and W∗
i ← Z1×ni

p and
define Ui = (U∗1, . . . ,U

∗
i),Vi = (V∗1, . . . ,V

∗
i), for i ∈ [d], Wi = (W∗

1, . . . ,W
∗
i), for i ∈ [d − 1]. Consider

commitments (represented in Zp) to left, right and output wires as Oi = Wici,O = Wc, Li = Uiai =
Ua, Ri = Vibi,R = Vb, where

U =

U∗1 0
...

. . .

U∗1 . . . U∗d

 , V =

V∗1 0
...

. . .

V∗1 . . . V∗d

 , W =

W∗
1 0

...
. . .

W∗
1 . . . W∗

d−1

 , (3)

15We consider w.l.o.g. only linear transformations since if we can handle affine ones by including a wire with the value 1 in
the input.

41

O = (O1, . . . , Od−1)>,L = (L1, . . . , Ld)
>,R = (R1, . . . , Rd)

>.
We additionally pick G,H,F for computing SSB commitments to vectors of size d and publish [GU]1,

[HV]2, [FW]2. The prover computes [L̂]1 = [GU]1a, [R̂]2 = [HV]2b, [Ô]1 = [FW]1c and gives a quasi-
argument of linear knowledge transfer from x, [O]1,y to [L]1, [R]2 with the following structure

x
O
y
L
R

 =

input︷︸︸︷
In0

mid-wires︷︸︸︷
0

output︷︸︸︷
0

0 W 0
0 0 Ind

UD 0
VE 0

xc
y

 . (4)

That is, we can extract [Li]1, [Ri]2, [Oi−1]1 and, if we are additionally given ci−1 such that Oi−1 = Wi−1ci−1,
then Li = UiDici, Ri = ViEici. We also use a quasi-argument of knowledge transfer of the hadamard
product from [L]1, [R]2 to [O]1. In this case we extract [Li]1, [Ri]2, [Oi]1 and, if we are additionally given
ai, bi such that Li = Uiai and Ri = Vibi, then Oi = Wi(ai ◦ bi).

We need to make one last change that will allow us to take into account the input x and the claimed
output y. Essentially, we make the first and last commitment key (trivially) perfectly binding by using as
a commitment key the identity matrix. The security properties still hold in a trivial way (the In0

-MDDH
assumption is perfectly secure). We change accordingly the SSB commitment key, that is we set F′ =(

In0 0 0

0 F 0
0 0 Ind

)
. Note that the extraction trapdoor remains the same, but the extractor can trivially extract

the values corresponding to x,y regardless of F′ distribution. In other words, our commitment key is always
perfectly binding in the first n0 and nd coordinates. We denote with W′ the modified matrix where we
change the first and last rows with (In0

| 0) and (0 | Ind) respectively. Therefore, if O = W′c, we get that
O0 = x and Od = y.

42

Setup(gk, C):

• From the linear gates of C compute matrices D,E.

• ([F]1,F,TF)← CS.KeyGen(gk , d− 1, 1, ∅),
([G]1,G,TG)← CS.KeyGen(gk , d, 1, ∅), ([H]1,H,TH)← CS.KeyGen(gk , d, 1, ∅);

• Sample U,V,W as in equation 3. Define W′ as the matrix W augmented with (In0
| 0) and

(0 | Ind) as its first and last row.

• Let ρblin = (gk, [F′]1, [G]1, [H]2, [W
′]1, [UD]1, [VE]2) and θblin = (F,G,H,TF,TG,TH,

U′,UD,VE), where F′ contains rows (In | 0 | 0), (0 | F | 0), (0 | 0 | Ind).

• Let ρhad = (gk, [G]1, [H]2, [F
′′]1, [U]1, [V]2, [U]1) and θhad = (G, H, F, TG, TH, TF, U, V, W),

where F′′ contains the rows (F | 0), (0 | Ind).

• Sample crsblin ← QABlin.K(ρblin, θblin) and crshad ← QAHad.K(ρhad, θhad)

• output crs := ([GU]1, [HV]2, [FW]1, crslin, crshad)

Prove(crs,x,y):

• Evaluate the circuit on input x to obtain values for the wires a, b, c.

• Compute [L̂]1 = [GU]1a, [R̂]2 = [HV]2b, [Ô]1 = [FW]1c.

• πblin ← QABlin.Prove(crsblin,
(x

[Ô]1
y

)
, [L̂]1, [R̂]2), (x, c,y)).

• πhad ← QAHad.Prove(crshad, [L̂]1, [R̂]2,
(

[Ô]1
y

)
,a, b).

• Return π = ([Ô]1, [L̂]1, [R̂]2, πblin, πhad).

Verify(crs, (x,y), π):

• Parse π := ([Ô]1, [L̂]1, [R̂]2, πblin, πhad).

• Output 1 if the following tests are successful and 0 otherwise:

– QABlin.Verify(crsblin,
(x

[Ô]1
y

)
, [L̂]1, [R̂]2), πblin) = 1 and

– QAHad.Verify(crshad, [L̂]1, [R̂]2,
(

[Ô]1
y

)
, πhad) = 0

Figure 8: Delegation scheme for an arithmetic circuit.

6.2 Proof of Security

Theorem 11. Let A be an adversary against Adaptive Soundness of the delegation scheme of Fig. 8, that

outputs an input/output pair x,y∗ and a valid proof π :=
(

[L̂]1, [R̂]2, [Ô]1, πhad, πblin

)
but y∗ 6= C(x). Then

there exists a distinguisher Dblin,Dhad and adversaries Bblin,Bhad against the no-signaling property of QABlin
and QAHad, respectively, and adversaries Ablin,Ahad against local knowledge soundness of QABlin and local
knowledge soundness QAHad, respectively, such that

AdvDel(A) ≤ 6d
(
AdvQAHad

NS (Dhad,Bhad) + AdvQAHad
NS (Dhad,Bhad)

)
+ d

(
AdvQAHad

snd (Ahad) + AdvQABLin
snd (Ablin)

)
.

Proof. For i ∈ [d], consider the following experiments

Game0: This is the soundness game where the adversary wins if outputs x,y∗ and a valid π but C(x) 6= y∗.

BadOi,S: As Game0 but crsblin and crshad are perfectly binding in S; if possible, [Oi]1 is extracted from the
adversary’s proof; the game returns 1 if [Oi]1 6= [W∗

i]1ci, where ci is computed from x.

43

BadLRi,S: As Game0 but crsblin and crshad are perfectly binding in S; [Li]1, [Ri]2 are extracted from the
adversary’s proof; the game returns 1 if [Li]1 6= [U∗i]1ai or [Ri]1 6= [V∗i]1bi, where ai, bi are computed
from x.

We define Od = y∗ and W∗
d = (0nd×N−nd |Ind) so that Game0 = BadOd,(∅,∅). We also define BadOi =

BadOi,(∅,∅).
We show that

Pr[BadOi = 1] ≤6i
(
AdvQAHad

NS (Dhad,Bhad) + AdvQAHad
NS (Dhad,Bhad)

)
+

i
(
AdvQAHad

snd (Ahad) + AdvQABLin
snd (Ablin)

)
.

The proof is by induction over i. In the inductive case we show that

Pr[BadOi = 1] ≈Pr[BadOi,({i},{i}) = 1] ≈ Pr[BadLRi,({i},{i}) = 1] ≈ Pr[BadLRi,({i},{i−1}) = 1] (5)

and Pr[BadLRi,({i},{i−1}) = 1] ≈ Pr[BadOi−1,({i},{i−1}) = 1] ≈ Pr[BadOi−1 = 1]

where p1 ≈ p2 is defined as |p1 − p2| ≤ negl(κ). Now we show that each ≈ is indeed negligible. Note that
ρhad can be computed from ρblin and vice-versa.

BadOi,BadOi,({i},{i}): Consider the sets S = (∅, ∅),S′ = (∅, {i}) and S′′ = ({i}, {i}). We build distinguish-
ers for no-signaling extraction and use them twice, first for distinguishing S,S′ and then S′,S′′.

We construct adversaries Dblin,Bblin against no-signaling extraction of QABlin. By Corollary 7, the no-
signaling property holds even when Bblin is given ρblin, crsblin and additionally hns(θblin) = (U,V,W, [G⊗
H+Z]1, [−Z]2). Using this additional help, Dblin computes crshad ← QAHad.K(ρhad, θ

′ = hns(θblin)) as in

Lemma 2. It then runs A(crs) until it outputs (x,y∗, [Ô]1, [L̂]1, [R̂]2, πblin, πhad), and then Bblin outputs

(
[x

Ô
y∗

]
1
, [L̂]1, [R̂]2) and πblin. Adversary Dblin outputs 1 if and only if [Oi]1 6= [W∗

i]1ci and πblin is

accepting.

Similarly, we construct adversaries Dhad,Bhad against the no-signaling property of QAHad. The adver-
sary Bhad additionally receives hns(θhad) = (U,V,W, [G⊗H+Z]1, [Z]2) (as shown in Corollary 5). Us-
ing this additional help, Bhad computes crsblin ← QABLin.K(ρblin, θ

′ = hns(θhad)) as in Lemma 7. It then

runs A(crs) until it outputs (x,y∗, [Ô]1, [L̂]1, [R̂]2, πblin, πhad), and then Bhad outputs ([L̂]1, [R̂]2,
[

Ô
y∗

]
1
)

and πhad. Adversary Dhad outputs 1 if and only if [Oi]1 6= [W∗
i]1ci and πhad is accepting.

Note that BadOi,BadOi,({i},∅) and BadOi,({i},{i}) outputs 1 if and only if Dblin and Dhad output 1
when the crs is sampled for S,S′ and S′′, respectively. Then we can bound |Pr[BadOi = 1] −
Pr[BadOi,({i},{i}) = 1]| ≤ 2

(
AdvQABlin

NS (Dblin,Bblin) + AdvQAHad
NS (Dhad,Bhad)

)
.

BadOi,({i},{i}),BadLRi,({i},{i}): Note that |Pr[BadOi,({i},{i}) = 1]−Pr[BadLRi,({i},{i}) = 1]| ≤ Pr[BadOi,({i},{i}) =
1 and BadLRi,({i},{i}) 6= 1]. The last value is the probability thatA’s proof locally opens to [Li]1, [Ri]2, [Oi]1
and [Li]1 = [U∗i]1ai, [Ri]2 = [V∗i]2bi but [Oi] 6= [W∗

i]1ci = [W∗
i]1(ai ⊗ bi). Then we can build an

adversary Ahad against the h-strong knowledge soundness of QAHad. On input crshad and hls(θhad) =
(G,H,F,W) computes crsblin ← QABlin.K(ρblin, θ

′ = hls(θhad)) as in Lemma 7. Then runs A(crs)

until it outputs x,y∗, π from which Ahad outputs ([L]1, [R]2,
[

Ô
y∗

]
1
) and πhad. We conclude that

Pr[BadOi,({i},{i}) = 1 and BadLRi,({i},{i}) 6= 1] ≤ AdvQAHad
snd (Ahad).

BadLRi,({i},{i}),BadLRi,({i},{i−1}): Similarly as the case BadOi,BadOi,({i},{i}), but we need to transition
between sets ({i}, {i})→ ({i}, ∅)→ ({i}, {i−1}). Therefore, |Pr[BadLRi = 1]−Pr[BadLRi,({i},{i−1}) =

1]| ≤ 2
(
AdvQAHad

NS (Dhad,Bhad) + AdvQABlin
NS (Dblin,Bblin)

)
.

44

BadLRi,({i},{i−1}),BadOi−1,({i},{i−1}): Note that |Pr[BadLRi,({i},{i−1}) = 1]− Pr[BadOi−1,({i},{i−1}) = 1]| ≤
Pr[BadLRi,({i},{i−1}) = 1 and BadOi−1,({i},{i−1}) 6= 1]. The last value is the probability that A’s proof
locally opens to [Oi−1]1, [Li]1, [Ri]2 and [Oi−1]1 = [W∗

i−1]ci−1 but [Li]1 6= [U∗i]1Dici−1 or [Ri]2 6=
[V∗i]Eici−1. Then we can build an adversary Alin against the h-strong knowledge soundness of QABlin.
On input crsblin and hls(θblin) = (G,H,F,U,V) computes crshad ← QAHad.K(ρhad, hls(θblin)), as in

Lemma 2. Then runs A(crs) until it outputs x,y∗, π and then Ablin outputs (
[x

Ô
y∗

]
1
, [L]1, [R]2) and

πblin. We conclude that Pr[BadLRi,({i},{i−1}) = 1 and BadOi−1,({i},{i−1}) 6= 1] ≤ AdvQABLin
snd (Ablin).

BadOi−1,({i},{i−1}),BadOi: Similarly as the case BadOi,BadOi,({i},{i}), |Pr[BadLRi = 1]−Pr[BadLRi,({i},{i−1}) =

1]| ≤ 2
(
AdvQAHad

NS (Dhad,Bhad) + AdvQABlin
NS (Dblin,Bblin)

)
.

Then, assuming the lemma holds for BadOi−1 and adding the previous advantages, we get that it also holds
for BadOi.

In the base case i = 1, we show that

Pr[BadO1 = 1] ≈ Pr[BadOi,({1},{1}) = 1] ≈ Pr[BadLR1,{1},{1} = 1] ≈ 0

We can reuse equation 5 to get that Pr[BadO1 = 1] ≤ negl(κ)+Pr[BadLR1,{1},{1} = 1]. Now we show that
Pr[BadLR1,{1},{1} = 1] is negligible. Note that BadLR1,{1},{1} = 1 implies that [L1]1 6= [U∗1]a1 = [U∗1]D1c0

or [R1]2 6= [V∗1]2b1 = [V∗1]2E1c0, but also x = In0c0. Hence we can build an adversary Ablin against
the h-strong knowledge soundness of QABLin. On input crsbin and hls(θblin) = (G,H,F,U,V) computes
crshad ← QAHad.K(ρhad, θ

′ = hls(θblin)) as in Lemma 2. Then runs A(crs) until it outputs x,y∗, π from which

Ablin outputs (
[x

Ô
y∗

]
1
, [L]1, [R]2) and πblin. It holds that Pr[BadLR1,({1},{1}) = 1] ≤ AdvQABLin

snd (Ablin).

Efficiency. The size of the crs is (6N2 + 6N + 24)G1 elements and (6N2 + 4N + 36)G2 elements and
computing it is dominated by the same number of group exponentiations in G1,G2 respectively; the prover
is dominated by 6N2 + 6N exponentiations in G1 and 6N2 + 2N exponentiations in G2 and produces a
proof of size 12G1+10G2 group elements; verifying a proof requires 36 pairing operations. The size of the
proof can be reduced to 10G1+8G2 combining the linear argument with the one used by the hadamard quasi
argument.

7 Applications

In this section we show how to use our delegation scheme to (1) get a NIZK argument for NP in the
preprocessing model where the size of the proof is linear in the size of the NP witness and independent of
the computation size, in spite of most NIZK constructions under standard assumptions; (2) a zk-SNARK
with quantitatively weaker assumptions and (3) compact NIZK for NP with proof size proportional to the
witness.

We will use Groth-Sahai proofs [GS08] and, for completeness, we give a high level overview.

7.1 Groth-Sahai Proofs

The Groth Sahai (GS) proof system is a non-interactive witness indistinguishable proof system (and in some
cases also zero-knowledge) for the language of quadratic equations over a bilinear group. The admissible
equation types must be in the following form:

my∑
j=1

f(αj , yj) +

mx∑
i=1

f(xi, βi) +

mx∑
i=1

my∑
j=1

f(xi, γi,jyj) = t, (6)

45

where α ∈Mmy
1 , β ∈Mmx

2 , Γ = (γi,j) ∈ Zmx×myq , t ∈MT , and M1,M2,MT ∈ {Zq,G1,G2,GT } are equipped
with some bilinear map f : M1×M2 →MT . The proof system is also zero-knowledge whenever M1 6= G1 or
M2 6= G2 or t = 0 [EG14]. We will use only equations for which t = 0.

The GS proof system is a commit-and-prove proof system. That is, the prover first commits to solutions of
equation 6 using Groth-Sahai commitments16, and then computes a proof that the committed values satisfies
equation 6. We denote an instance of the Groth-Sahai proof system by GS = (Setuppb,Setupph,P,V).

GS proofs are perfectly sound when the CRS is sampled from the perfectly binding distribution, i.e crsGS ←
GS.Setuppb(gk). This means that any π such that GS.V(crsGS, equation 6, π) = 1 contains commitments
from which one can extract solutions to equation 6 with probability 1. Proofs are perfectly witness-
indistinguishable when sampled from the perfectly hiding distribution, i.e. crsGS ← GS.Setupph(gk). That
is, for any two solution to equation 6 the proofs follow exactly the same distribution, Computational in-
distinguishability of GS.Setuppb and GS.Setupph implies that either the proof system is perfectly sound and
computationally witness indistinguishable or computationally sound and perfect witness-indistinguishable.

7.2 NIZK arguments for NP.

Let CSE an be algebraic commitment scheme –namely compatible with the Groth-Sahai proof system [GS08]–
which is hiding and extractable. Also note that we can express the verification algorithm Del.Verify as a set
of pairing product equation. The idea to construct a NIZK is the following: let C be an arithmetic circuit
that takes public input x and secret input w the secret input, and let crsDel be a crs for the delegation of
computation of C. The prover commits to w and the group elements defining the proof of the delegation
using the extractable commitment and gives a Groth-Sahai proof that the set of verification equations are
satisfied w.r.t. the opening of the commitment. Now, if CSE is extractable, we can extract the witness w,
and if the circuit is not satisfied w.r.t. x,w we can break adaptive soundness of delegation scheme Del. We
present the scheme.

16For elements of Zp, a Groth-Sahai commitment is just an SSB commitment wiht locality parameter 1.

46

Setup(gk, C): Let C an arithmetic circuit which on public input x size nx and secret input w size nw outputs
y of size nd.

• ckw ← CSE(gk , nw); crsDel ← Del.Setup(gk, C).

• crsGS ← GS.Setuppb(gk).

• Output crs = (ckw, crsDel, crsGS).

Prove(crs,w,x,y):

• Parse crs = (ckw, crsDel, crsGS).

• Compute π ← Del(crsDel, (x,w),y) and cw = CSE .Com(w; r).

• Denote φGS the system of pairing product equations that contain

1. The equations defined by Del.V(crs, (x,w),y, π) = 1, where the unknowns are w and π.

2. The equations defined by cw = CSE .Com(ckw,w; r), where the unknowns are w and r.

• πGS ← GS.P(crsGS, φGS , (w, r))

• Output π ← (cw, πGS).

Verify(crs, (x,y), π):

• Parse crs = (ckw, crsDel, crsGS). and π = (cw, πGS).

• Output 1 iff GS.V(crsGS, φGS, πGS) = 1

Figure 9: NIZK argument of NP. CSE is an algebraic commitment, GS is the Groth-Sahai proof system of
[GS08] and Del the delegation scheme of Fig. 8.

Theorem 12. Let CSE be an algebraic commitment scheme that is hiding and extractable, GS the Groth-
Sahai proof system of [GS08] and Del the delegation scheme of Fig. 8. Then, construction of Fig. 9 is
a NIZK argument of knowledge. Furthermore, for every adversary A against knowledge soundness there
exist adversaries B1,B2 against extractability of CSE and against soundness of Del respectively such that
Adv(A) ≤ AdvCSEext (B1) + AdvDel

snd(B2).

Proof. Completeness follows by the correctness of CSE , and completeness of GS, Del. Computational zero
knowledge follows from the computational zero-knowledge of GS and the hiding property of CSE . For
knowledge soundness, we show how we can extract a valid witness given an accepting proof. In what
follows, let ECS be the extractors for CSE . The NIZK extractor EA(crs,x,y, π = (cw, πGS)) simply outputs
(w, π) ← ECS(ckw, cw). Now, we claim that this a valid witness except with negligible probability. It is
enough to note that if it is not, there are three possible cases:

1. The extractor ECS failed which contradicts extractability of CSE .

2. The extracted solutions w, π, r are not solutions to φGS, contradicting perfect soundness of GS since
the proof verifies.

3. y 6= C(x||w). We can extract the solution w, π, r and it must hold that Del.Verify(crs, (x,w),y, π) = 1
contradicting adaptive soundness of Del.

As for efficiency, and specifically proof size, noting that the Groth-Sahai proof gives only a constant,
multiplicative overhead to the proof –which is constant –, its size is dominated by the size of CSE . Depending
on the choice of CSE we can get qualitatively different constructions. We discuss the following cases:

47

(i) For a NIZK argument of knowledge under falsifiable assumptions, we can extend our result to apply
to boolean circuits instead of arithmetic ones by arithmetizing the different types of gates e.g. as
in[DFGK14]. We can then use commitments for boolean vectors that are extractable in the field under
falsifiable assumptions such as Groth-Sahai commitments or using methods of [GHR15a]. The proof
size in this case is O(λ|w|) where w is the secret input. Since fully succinct algebraic extractable
commitments that allow extraction in the field are unknown to exist under falsifiable assumptions, we
cannot achieve a (concretely more efficient) NIZK AoK for arithmetic circuits.

(ii) We use succinct extractable commitments based on knowledge assumptions, yielding a SNARK of
constant proof size. Additionally, since the committed value is the secret input and not the full wire
assignment we get a quantitatively smaller assumption size. For example, in case of q-power knowledge
of exponent assumption (q-KEA) used in [DFGK14], we use only the nw-KEA while [DFGK14] requires
the larger (and hence stronger) |C|-KEA.

(iii) To construct a compact NIZK where the proof size is O(|w|) + poly(κ) we follow essentially the ideas
of [KNYY19, KNYY20]. We use a secret key symmetric encryption scheme SE = (KGen,Enc,Dec)
with additive overhead in the cyphertexts. That is, |SE.Enc(sk,w)| = O(|w|) + poly(κ). We use the
NIZK from figure 9, instantiated with the commitment scheme from (i), for showing knowledge of
some K ∈ Im(SE.KGen) such that C ′(K,D) = 1, where K is the secret input, D the public input,
and C ′(K,D) = C(SE.Dec(K,D)). To prove that C(w) = 1 the prover picks K ← SE.KGen(1κ) and
computes D ← SE.Enc(K,w) together with a proof π that C ′(K,D) = 1. The verifier on input crs, D
and π ouputs 1 if π is a valid proof for D. In spite of [KNYY19, KNYY20] and by the nature of the
underlying non-compact NIZK scheme we use, we don’t require SE.Dec to be in NC1.

References

[AFG+16] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo.
Structure-preserving signatures and commitments to group elements. Journal of Cryptology,
29(2):363–421, April 2016. 4, 7, 22

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE
Symposium on Security and Privacy, pages 459–474. IEEE Computer Society Press, May 2014.
4

[BDH+19] Michael Backes, Nico Döttling, Lucjan Hanzlik, Kamil Kluczniak, and Jonas Schneider. Ring
signatures: Logarithmic-size, no setup - from standard assumptions. In Yuval Ishai and Vincent
Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 281–311. Springer,
Heidelberg, May 2019. 8

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Roth-
blum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar and Edith
Cohen, editors, 51st ACM STOC, pages 1082–1090. ACM Press, June 2019. 3

[CFQ19] Matteo Campanelli, Dario Fiore, and Anäıs Querol. LegoSNARK: Modular design and com-
position of succinct zero-knowledge proofs. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2075–2092. ACM Press, November
2019. 10

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In Lars R. Knudsen, editor, EUROCRYPT 2002,
volume 2332 of LNCS, pages 45–64. Springer, Heidelberg, April / May 2002. 10

48

[DFGK14] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span programs
with applications to succinct NIZK arguments. In Palash Sarkar and Tetsu Iwata, editors, ASI-
ACRYPT 2014, Part I, volume 8873 of LNCS, pages 532–550. Springer, Heidelberg, December
2014. 13, 48

[DGP+19] Vanesa Daza, Alonso González, Zaira Pindado, Carla Ràfols, and Javier Silva. Shorter quadratic
QA-NIZK proofs. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part I, volume 11442
of LNCS, pages 314–343. Springer, Heidelberg, April 2019. 4, 5

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In 30th ACM STOC,
pages 409–418. ACM Press, May 1998. 3

[EG14] Alex Escala and Jens Groth. Fine-tuning Groth-Sahai proofs. In Hugo Krawczyk, editor,
PKC 2014, volume 8383 of LNCS, pages 630–649. Springer, Heidelberg, March 2014. 46

[FLPS20] Prastudy Fauzi, Helger Lipmaa, Zaira Pindado, and Janno Siim. Somewhere statistically binding
commitment schemes with applications. Cryptology ePrint Archive, Report 2020/652, 2020.
https://eprint.iacr.org/2020/652. 4, 5, 8, 9, 16, 20, 21

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013. 3,
4, 5, 13

[GHR15a] Alonso González, Alejandro Hevia, and Carla Ràfols. QA-NIZK arguments in asymmetric
groups: New tools and new constructions. In Tetsu Iwata and Jung Hee Cheon, editors, ASI-
ACRYPT 2015, Part I, volume 9452 of LNCS, pages 605–629. Springer, Heidelberg, Novem-
ber / December 2015. 4, 5, 6, 8, 9, 11, 12, 13, 15, 20, 22, 32, 34, 48

[GHR15b] Alonso González, Alejandro Hevia, and Carla Ràfols. QA-NIZK arguments in asymmetric
groups: New tools and new constructions. Cryptology ePrint Archive, Report 2015/910, 2015.
http://eprint.iacr.org/2015/910. 23

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: inter-
active proofs for muggles. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC,
pages 113–122. ACM Press, May 2008. 3

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP.
In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 339–358. Springer,
Heidelberg, May / June 2006. 5

[GR16] Alonso González and Carla Ràfols. New techniques for non-interactive shuffle and range argu-
ments. In Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider, editors, ACNS 16, volume
9696 of LNCS, pages 427–444. Springer, Heidelberg, June 2016. 5, 8

[GR19] Alonso González and Carla Ràfols. Shorter pairing-based arguments under standard assump-
tions. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part III, volume
11923 of LNCS, pages 728–757. Springer, Heidelberg, December 2019. 3, 4, 5, 7, 11, 12, 15, 25,
26, 31, 41, 53, 54

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326.
Springer, Heidelberg, May 2016. 3, 4, 5, 13

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In
Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer,
Heidelberg, April 2008. 13, 45, 46, 47

49

https://eprint.iacr.org/2020/652
http://eprint.iacr.org/2015/910

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsi-
fiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages
99–108. ACM Press, June 2011. 3

[HW15] Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function evalua-
tion with long output. In Tim Roughgarden, editor, ITCS 2015, pages 163–172. ACM, January
2015. 8, 16

[JKKZ20] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Zhang. Snargs for bounded
depth computations and ppad hardness from sub-exponential lwe. Cryptology ePrint Archive,
Report 2020/980, 2020. https://eprint.iacr.org/2020/980. 3

[JR13] Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs for linear subspaces.
In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS,
pages 1–20. Springer, Heidelberg, December 2013. 4, 5, 10, 25, 26

[JR14] Charanjit S. Jutla and Arnab Roy. Switching lemma for bilinear tests and constant-size NIZK
proofs for linear subspaces. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part II, volume 8617 of LNCS, pages 295–312. Springer, Heidelberg, August 2014. 4, 5, 10

[KNYY19] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Exploring con-
structions of compact NIZKs from various assumptions. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 639–669. Springer,
Heidelberg, August 2019. 5, 13, 48

[KNYY20] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Compact NIZKs
from standard assumptions on bilinear maps. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 379–409. Springer, Heidelberg,
May 2020. 5, 13, 48

[KPY18] Yael Kalai, Omer Paneth, and Lisa Yang. On publicly verifiable delegation from standard
assumptions. Cryptology ePrint Archive, Report 2018/776, 2018. https://eprint.iacr.org/
2018/776. 3

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations publicly.
In Moses Charikar and Edith Cohen, editors, 51st ACM STOC, pages 1115–1124. ACM Press,
June 2019. 2, 3, 4, 5, 6, 11, 16, 17, 25, 26

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations: the power
of no-signaling proofs. In David B. Shmoys, editor, 46th ACM STOC, pages 485–494. ACM
Press, May / June 2014. 3

[KW15] Eike Kiltz and Hoeteck Wee. Quasi-adaptive NIZK for linear subspaces revisited. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
101–128. Springer, Heidelberg, April 2015. 4, 5, 10, 15, 29, 30, 31, 53

[LPJY13] Benôıt Libert, Thomas Peters, Marc Joye, and Moti Yung. Linearly homomorphic structure-
preserving signatures and their applications. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 289–307. Springer, Heidelberg, August
2013. 4, 5

[LPJY14] Benôıt Libert, Thomas Peters, Marc Joye, and Moti Yung. Non-malleability from malleability:
Simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from homomorphic
signatures. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume
8441 of LNCS, pages 514–532. Springer, Heidelberg, May 2014. 53

50

https://eprint.iacr.org/2020/980
https://eprint.iacr.org/2018/776
https://eprint.iacr.org/2018/776

[MRV16] Paz Morillo, Carla Ràfols, and Jorge Luis Villar. The kernel matrix Diffie-Hellman assumption.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of
LNCS, pages 729–758. Springer, Heidelberg, December 2016. 10, 11, 14

[OPWW15] Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New realizations
of somewhere statistically binding hashing and positional accumulators. In Tetsu Iwata and
Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 121–145.
Springer, Heidelberg, November / December 2015. 8

[PR17] Omer Paneth and Guy N. Rothblum. On zero-testable homomorphic encryption and publicly
verifiable non-interactive arguments. In Yael Kalai and Leonid Reyzin, editors, TCC 2017,
Part II, volume 10678 of LNCS, pages 283–315. Springer, Heidelberg, November 2017. 4, 16, 17

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive proofs
for delegating computation. In Daniel Wichs and Yishay Mansour, editors, 48th ACM STOC,
pages 49–62. ACM Press, June 2016. 3

[RS20] Carla Ràfols and Javier Silva. Qa-nizk arguments of same opening for bilateral commitments.
Cryptology ePrint Archive, Report 2020/569, 2020. https://eprint.iacr.org/2020/569. 18

[Vil12] Jorge Luis Villar. Optimal reductions of some decisional problems to the rank problem. In
Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages
80–97. Springer, Heidelberg, December 2012. 21, 39

A Delayed proof from Section 3.3

We use the following lemmas.

Lemma 3. For any adversary A and for any P ∈ Z`3×np , let

εA = Pr

[
d 6= 0

π + θ = d>K3

∣∣∣∣ (M,N)← (M,N); crs← K(gk, [M]1, [N]2, [P]1);
([d]1, [π]1, [θ]2)← A(crs, [M]1, [N]2, h(M,N),P)

]
.

Then, there exists a PPT adversary B such that εA ≤ Adv(M>,h)-MDDH(B)+1/p, whereM> is the distribution
which results from sampling matrices from M and transposing them.

Proof. (Lemma 3)
We show this by a sequence of games.

Game0: This game runs the adversary as in Lemma 3.

Game1: This game is exactly as Game0 but the crs is computed using algorithm K∗, as defined in Fig. 10,

and the winning condition is d 6= 0 and π = (d>(C3 −K3,2A)A
−1
,d>K3,2),

Game2: This game is exactly as Game1 but s, t← Znp .

We now prove some Lemmas which show that the games are indistinguishable. Lemmas 4 and 5 show that
the adversary has essentially the same advantage of winning in any game. Lemma 6 says that the adversary
has negligible probability of winning in Game2. Lemma 3 follows from the composition of lemmas 4, 5 and
6.

Lemma 4. For any (unbounded) algorithm A we have Pr[Game1(A) = 1] = Pr[Game0(A) = 1].

51

https://eprint.iacr.org/2020/569

K∗(gk, [M]1, [N]2, [P]1):

• C1 ← Z`1×kp ; C3 ← Z`3×kp ;γ ← Znp .

• K1,2 ← Z`1×1
p ; K3,2 ← Z`3×1

p .

• Sample A =
(

A
A

)
← Dk; Γ← Zn×kp . Here A denotes the first k rows for A and A the last row.

• K1,1 = (C1 −K1,2A)A
−1

; K3,1 = (C3 −K3,2A)A
−1

;

• [s]1 ← [M>]1K1,2 − [γ]1;

[t]2 ← [N>]1K1,2 + [γ]1.

• [B]1 =
[(

M>K1,1 + P>K3,1, s+ P>K3,2

)
+ Γ

]
1
;

[D]2 =
[(

N>K1,1, t
)
− Γ

]
2
;

• Output crs = (gk, [A]1,2, [B]1, [D]2, [C1]2, [C3]2).

Figure 10: Modified crs generation algorithm used in Lemma 3.

Proof. If we define K1,1 = (C1−K1,2A)A
−1

and K =

(
K1

K3

)
=

(
K1,1 K1,2

K3,1 K3,2

)
, we observe that the output

of K∗ is well formed and the winning condition is the same as in the previous game, since B,D are uniform
conditioned on their sum being equal to

B + D =
(
(M> + N>)K1,1 + P>K3,1, s+ P>K3,2

)
+
(
R>K1,1, t

)
+ Γ− Γ

=
(
(M> + N>)K1,1 + P>K3,1, (M

> + N>)K1,2 + P>K3,2

)
= (M> + N>)

(
K1,1

K1,2

)
+ P>

(
K3,1

K3,2

)
= (M> + N> | P>)K,

KA =

(
(C1 −K1,2A)A

−1
K1,2

(C3 −K3,2A)A
−1

K3,2

)(
A
A

)
=

(
C1 −K1,2A + K1,2A
C3 −K3,1A + K3,2A

)
= C,

and by definition π + θ = (d>(C3 −K3,2A)A
−1
,d>K3,2) = (d>K3,1,d

>K3,2) = d>K3.
Therefore we just need to argue that the distribution of K is the same in both games. But this is an

immediate consequence of the fact that for every value of (C,K1,1,K3,1) there exists a unique value of
(K1,2,K3,2) which is compatible with C = KA. Indeed, C = KA ⇐⇒ Ci = Ki,1A + Ki,2A, i = 1, 3 ⇐⇒
(Ci −Ki,2A)A

−1
= Ki,1, i = 1, 3.

Lemma 5. For any PPT algorithm A there exists a PPT algorithm B such that

AdvΠkt-sum,h′ (A) ≤ Adv(M>,N>,h)-MDDH(B).

Proof. We construct an adversary B that receives the challenge ([M>]1, [N
>]2, [s

∗]1, [t
∗]2, h([M>,N>]),

where s∗+t∗ = (M>+N>)w, w ← Z`1p , or s∗, t∗ ← Znp . B computes the crs running K∗(gk, [M]1, [N]2, [P]1)
but replaces [s]1, [t]2 with [s∗]1, [t

∗]2 respectively, and then runs A as in game Game1. Since Game1 corre-
sponds to the first case and Game2 to the second, the lemma follows.

Lemma 6. For any (unbounded) algorithm A, Pr[Game2(A) = 1] ≤ 1/p.

Proof. We will show that, conditioned on A,C,B + D,M + N,P, the matrix K3,2 is uniformly distributed.
Since it holds that (B + D)A = (M> + N> | P>)C, we get that the first k columns of B + D, namely
B1 + D1, are completely determined by the last columns B2 + D2. Indeed

(B1 + D1,B2 + D2)A = (M> + N> | P>)C ⇐⇒ B1 + D1 = ((M> + N> | P>)C− (B2 + D2)A)A
−1
.

52

Hence, conditioning in A,C,B1 + D1,M + N,P doesn’t alter the probability. We have that B2 + D2 =
(s+ t)+P>K3,2, which consists of n equations on n+ `2 variables. It follows that there are `2 free variables.
Then K3,2 is uniformly distributed and hence completely hidden to the adversary.

Note that
π + θ = d>K3 =⇒ π2 + θ2 = d>K3,2,

where π2,θ2 are the last element of π, θ respectively. Given that d 6= 0, the last equation only holds with
probability 1/p and so A’s probability of winning.

The knowledge transfer property is a direct consequence of Lemma 3. We present the proof next.

Theorem 13. For any adversary A against the soundness of Πkt−sum with respect to Lno
sum, there exist

adversaries B1 and B2 such that

Advkt-sum(A) ≤ AdvDk-SKerMDH(B1) + Adv(M>,N>,h)-MDDH + 1/p.

Proof. Given an adversary that produces a valid proof for a statement in Lno
sum, successful attacks can be

divided in two categories.

Type I: In this attack π + θ 6= (c>1 + c>2)K1 + d>K3.

Type II: In this type of attack π + θ = (c>1 + c>2)K1 + d>K3.

Type I attacks are computationally infeasible when k = k+1, as they can be used to construct an adversary B1

against theDk-SKerMDH assumption.17 Adversary B1 receives a challenge [A]1,2 and then runs the soundness
experiment for A. When A outputs ([c1]1, [c2]2, [d]1, [π]1, [θ]2), B1 outputs [π†]1 = [π]1−[c>1]1K1−[d>]1K3,
[θ†]2 = [θ]1− [c>2]1K1 where it holds that π+ θ 6= (c>1 + c>2)K1 +d>K3. Since [π]1, [θ]2 is accepted by the
verifier we get that e([π]1, [A]2) + e([θ]2, [A]1) = e([c>1]1, [C1]2) + e([c>2]2, [C1]1) + e([d>]1, [C3]2) and then
(π† + θ†)A = (π+ θ)A− (c>1 + c>2)K1A− d>K3A = (π+ θ)A− (c1 + c2)>C1 − d>C3 = 0. We conclude
that the success probability of a type I attack is bounded by AdvDk-SKerMDH(B1).

For type II attacks, since [π]1 = [c>1]1K1 + [d>]1K3, [θ]2 = [c>2]2K1 is a valid proof for

(
[c1]1
[c2]2
[d]1

)
, then,

by linearity of the verification equations π† = π −w>B and θ† = θ −w>B is a valid proof for

(
0
0

[d†]1

)
=(

[c1]1−[M]1w
[c2]2−[N]2w
[d]1−[P]1w

)
. Since d 6= Nw, we conclude that an attacker of type II can be turned into an attacker B2

for Lemma 3.

We next note that the argument of knowledge transfer remains secure even for matrix distribution that
also include some zero columns.

Theorem 14. Let M′,N ′,P ′,Q′ be matrix distributions that sample (M | 0`1×n′), (N | 0`2×n′), (P |
0`3×n′), (Q | 0`4×n′) where M←M, N← N , P← P, Q← Q.

1. For any adversary A against the h-strong soundness of Πkt-lin there exist adversaries B1 and B2 such that
AdvΠkt-lin,h′ (A) ≤ AdvDk-SKerMDH(B1) + Adv(M>,h)-MDDH(B2) + 1/p, where h′([M]1, [N]2, [P]1, [Q]2) =
(h(M),N,P,Q).

2. When `1 = `2, for any adversary A against the h-strong soundness of Πkt-sum there exist adversaries
B1 and B2 such that AdvΠkt-sum,h′ (A) ≤ AdvDk-SKerMDH(B1) + Adv(M>,N>,h)-MDDH(B2) + 1/p, where
h′([M]1, [N]2, [P]1, [Q]2) = (h(M,N),P,Q).

The proof is implicitly shown in [GR19, Lemma 15]. Essentially one can reduce to the knowledge transfer
argument where we delete the zero columns of the matrix and rely on the linearity properties of the proofs
of construction of Fig. 1.

17This part of the proof follows essentially the same lines of the first constant-size QA-NIZK arguments for linear spaces of
Libert et al.[LPJY14] which were later simplified and generalized by Kiltz and Wee [KW15].

53

B Delayed proofs from Section 5.2.1

B.1 Proof of security for the bilateral knowledge transfer quasi arguement

Theorem 15. Let M,N1,N2 be witness samplable distributions, Dk be a matrix distribution and CS an
algebraic SSB commitment with perfect completeness. Also, let A be an adversary against hls-strong local
knowledge soundness of construction QABlin of Fig. 5, where the index hls(θ) = (G,H,F, h(M,N1,N2)).
Then, completeness holds with probability 1 and hls-strong local knowledge soundness holds with probability
at least 1−AdvΠkt-lin

snd (BS), where BS is any PPT adversary against h-strong soundness of Πkt-lin and h giving
the discrete logarithms of the last two matrices.

Proof. For completeness, we have that

(c> | d>1)C1 + d>2 C2 = (c> | d>1)

(
K1

K2

)
A + d>2 K2A

= (c>K1 + d>1 K2 + d>2 K2)A

=
(
w>M>G>K1 +w>N>1 H>K2 +w>N>2 F>K2

)
A

=
(
w>(M>G>K1 + N>1 H>K2) +w>N>2 F>K2

)
A

= w>BA +w>DA

= πA + θA

Local Extractability follows using almost an identical argument to Thm. 7 and reducing to knowledge
transfer of linear KTA Argument of [GR19] presented in Fig. 1. Given an adversary A breaking hls-Strong
local knowledge soundness of QABlin we construct another adversary BS that breaks h-strong soundness
of the argument Πkt-lin for matrices [MS1]1, [N1,S2]1 and [N2,S2]2. BS works as follows: it takes input
(ρ†, h(θ†), crs†) where

ρ† := (gk , [MS1
]1, [N1,S2

]1, [N2,S2
]2), h(θ†) := (N1,S2

,N2,S2
), crs† := ([B†]1, [D

†]2, [A]1,2, [C
†
1]2, [C

†
2]1)

and does the following:

• ([G]1,G,TG)← CS.KGen(gk1, d,K1, S1).

• ([H]1,H,TH)← CS.KGen(gk1, d,K2, S2).

• ([F]2,F,TF)← CS.KGen(gk2, d,K2, S2).

• It samples MS1
,N1,S2

,N2,S2
, such that M = PS1

(
MS1

MS1

)
, N1 = PS2

(
N1,S2

N1,S2

)
, N2 = PS2

(
N2,S2

N2,S2

)
.

• R0 ← ZK0×k
p ; R1 ← ZK1×k

p ; R2 ← ZK2×k
p .

• It computes [B]1 := [B†]1 + [M]>1 G>R0 + [N1]>1 H>R1 and [D]2 := [D†]2 + [N2]>2 F>R2

• It computes [C1]2 :=

(
TG 0
0 TH

)
[C†1]2 +

(
R0

R1

)
[A]2 and [C2]1 := TF[C†2]1 + R2[A]1.

• It sets
ρ := ([G]1, [H]1, [F]2, [M]1, [N1]1, [N2]2), hls(θ) := (G,H,F,N1,N2)

crs := ([B]1, [D]2, [A]1,2, [C1]2, [C2]1)

54

It then executes A(ρ, hls(θ), crs) until it outputs a statement ([c]1, [d1]1, [d2]2,w) together with an accepting

proof [π]1, [θ]2. Given an accepting proof BS sets [x†]1 = TG[c]1, [y
†
1]1 = TH[d1]1, [y

†
2]2 = TF[d2]2, [π†]1 =

[π]1 − [c]>1 R0 − [d1]>1 R1 and [θ†]2 = [θ]1 − [d2]>2 R2. It outputs
(

([x†]1, [y
†
1]1, [y

†
2]2),w, ([π†]1, [θ

†]2)
)

.

Note that the commitment keys are perfectly binding at S. First, we claim that in this case the values
ρ, hls(θ), crs output by BS are identically distributed to honestly computed ones and thus do not skew the
probability that A outputs a valid proof. For ρ, hls(θ), this is immediate by the witness samplability of the
distributions M, N1, N2. We show that this holds for crs as well.

Let K†0 ∈ Z|S1|×k
p ,K†1 ∈ Z|S2|×k

p ,K†2 ∈ Z|S2|×k
p be the implicit values used to compute crs†, that is, they

satisfy

B† = M>
SK†0 + N>1,SK†1, D† = N>2,SK†2, C†1 =

(
K†0
K†1

)
A and C†2 = K†2A.

Now BS implicitly defines K2 = TGK†0 + R0, K2 = THK†1 + R1, K2 = TFK†2 + R2. First, note that
these matrices are uniformly distributed since R0,R1,R2 are uniformly distributed. Thus K1,K2,K2 are
distributed identically to honestly generated values for generating a crs. We claim that the crs output by A
is identically distributed to sampling this matrix and computing the other values honestly. Indeed we have
that

B = B† + M>G>R0 + N>1 H>R1

= M>
S1

K†1 + N>1,S2
K†2 + M>G>R0 + N>1 H>R1

= M>G>TGK†1 + N>1 H>T>HK†2 + M>G>R0 + N>1 H>R1

= M>G>(TGK†1 + R0) + N>1 H>(T>HK†2 + R1)

= M>G>K1 + N>1 H>K2

where the third equality follows since by the local extractability of the SSBs we have that T>GGM = MS1 ,
T>HHN1 = N1,S2

. Similarly, we have

D = D† + N>2 F>R2

= N>2,S2
K†3 + N>2 F>R2

= N>2 F>TFK†2 + N>2 F>R2

= N>2 F>(TFK†2 + R2)

= N>2 F>K2

Also, we have that

C1 =

(
TG 0
0 TH

)
C†1 +

(
R0

R1

)
A =

(
TG 0
0 TH

)(
K†1
K†2

)
A +

(
R0

R1

)
A =

(
TGK†1 + R0

THK†2 + R1

)
A =

(
K1

K2

)
A

C2 = TFC†2 + R2A = TFK†2A + R2A = (TFK†2 + R2)A = K2A

so the outputted crs is indeed identically distributed to an honest one.
Then, we show that B outputs a valid statement-proof pair w.r.t. to crs†. Since the commitment keys are

extractable and perfectly binding at S, we have that x†, y†1 and y†2 are valid openings for the commitments
given. Assuming A produces a valid statement for Rno

ρ,S , for the extracted values it holds that x† = MS1
w

and either y†1 6= N1,S2
w or y†2 6= N2,S2

w. Thus, BS outputs a valid statement and it suffices to show that

55

[π†]1, [θ
†]2 is a valid proof. Indeed, we have that

0 = πA + θA− (c> | d>1)C1 − d>2 C2

= (π† + c>R0 + d>1 R1)A + (θ† + d>2 R2)A− (c> | d>1)

((
TG 0
0 TH

)
C†1 +

(
R0

R1

)
A

)
− d>2

(
TFC†2 + R2A

)
= (π† + c>R0 + d>1 R2)A + (θ† + d>2 R2)A− (c>TG | d>1 TH)C†1 − (c>R0 − d>1 R1)A− d>2 TFC†2 − d>2 R2A

= π†A + θ†A− (c>TG | d>1 TH)C†1 − d>2 TFC†2

= π†A + θ†A− (x†
> | y†1

>
)C†1 − y

†
2

>
C†2

and the last equation is the verification equation for the knowledge transfer argument for crs†.

We next show that when the distributionM,N1,N2 guarantee that the linear knowledge transfer argument
is secure w.r.t. all possible sets S, construction QABlin has hls-strong local knowledge soundness where hls
includes G,H,F,N1,N2, and some extra information about the matrix M.

Corollary 6. Let Dk be a matrix distribution for which Dk-SKerMDH. Denote MS (resp. N1,S, N2,S) the
distributions that sample matrices from M (res. N1, N1), and restricts them to rows corresponding to S.
Then

1. If for all S1 ⊆ [d] with S1 ≤ K1, (M>S1
, h)-MDDH holds, QABlin is an hls-strong local knowledge sound

proof system, where hls(θ) = (h(MS),G,H,F,N1,N2).

2. If for all S1, S2 ⊆ [d] with S1 ≤ K1, S2 ≤ K2 the distributions MS1 ,NS2 ,NS2 output matrices

with the last n′ columns being 0, and (M′>S1
, h)-MDDH holds, with M′S1

being MS1
where we delete

the trailing zero columns, then QABlin is an hls-strong local knowledge sound proof system, where
hls(θ) = (h(MS),G,H,F,N1,N2).

Proof. The proof is an immediate consequence of Thm. 15 and Thm. 14.1 for case 1 and Thm. 14.2 for case
2.

The proof of oblivious trapdoor generation follows from the oblivious trapdoor generation and index set
hiding of SSB commitments. We follow essentially the same proof as in the unilateral case.

First we show that we construct an indistinguishable crs given only the commitment keys and the matrices
M,N1,N2.

Lemma 7. There exists a modified crs generation algorithm K′ that on input (ρ, θ′), where θ′ contains only
either M,N1,N2 or G,H,F outputs a crs such that (ρ, crs) are identically distributed to the honest algorithm.

The lemma follows directly by noting that [B]1, [D]2 are efficiently computable given the commitment keys
and the discrete logarithms of matrices M,N1,N2 (equivalently G,H,F). As in the unilateral case, we
abuse notation and refer to K′(ρ, θ′) as K(ρ, θ′).

In the next theorem we consider the three keys issued as a single key. It is easy to verify that the
properties of the commitment keys still hold. Essentially, we want to capture the condition that the keys
preserve oblivious key generation even if we consider a function h that outputs information that depends on all
commitment keys. In our delegation construction this will correspond to h(G,H,F) = ([G]1, [H]2, [F]2, [H⊗
F− Z]1, [Z]2), for a uniform Z, namely the information needed to obliviously create a crs for the kronecker
composition of the last two keys.

Theorem 16. Let M, N1, N2 be witness samplable distributions, and CS be an algebraic SSB commitment

scheme and let CS′ be the concatenation of three instances of CS, that is it outputs G′ =

(
[G0]1 0 0

0 [G1]1 0
0 0 [G2]2

)
with Gi ← CS.KeyGen(gk , n, d,Ki, Si). If CS′ has h-strong oblivious trapdoor generation, then construction
QABlin of Fig. 5 is hns-strong oblivious where hns = (h(sk),M1,N1,N2). Furthermore,

56

1. For every PPT A against hns-strong index set hiding of QABlin, there exists an adversary B against
h-index set hiding property of CS, such that AdvQABlin

ISH (A) ≤ 3AdvCSISH(B).

2. For every A against oblivious trapdoor generation of QABlin, there exists an adversary B against
oblivious trapdoor of CS, such that AdvQABlin

oblv (A) ≤ 3AdvCSoblv(B).

Proof. Since the commitment key is perfectly binding at the extraction set, it is enough to show that hns-
strong index set hiding holds and that we can sample a tuple (ρ, crs) indistinguishable from the one we are
given, along with a valid trapdoor.

For index set hiding, it is enough to notice that the crs of QABlin can be efficiently computed given only
[G]1, [H]1, [F]2. Indeed by sampling [M]1,M ← M, [N1]1,N1 ← N1, [N2]2,N2 ← N2 all values of crs are
efficiently computable as noted in Lemma 7. Thus, a distinguishing advantage in index set hiding of QABlin
immediately implies equal advantage on the respective property of CS.

For oblivious crs generation we first describe the OblSetup algorithm. Let S′ ⊆ S.

OblSetup(ρ := ([G]1, [H]1, [F]2, [M]1, [N1]1, [N2]2), crs):

• ([G′]1,T
′
G)← CS.OblSetup(gk , d,K0, S0, [G]1).

• ([H′]1,T
′
H)← CS.OblSetup(gk , d,K1, S1, [H]1).

• ([F′]2,T
′
F)← CS.OblSetup(gk , d,K2, S2, [F]2).

• Sample ([M′]1,M
′)←M; ([N′1]1,N

′
1)← N2; ([N′2]2,N

′
2)← N2;

• Set τ ′ = (T′G,T
′
H,T

′
F) and compute crs← QABlin.K(ρ, θ′ = (M,N1,N2)).

Note that the only difference in sampling with S and with S′ is how we sample the commitment keys
G,H,F; crs is identically distributed to an honest one since we sample M,N1,N2 in the same way that Dpar

does. Also, by oblivious key generation of CS, the trapdoor τ ′ is a valid one w.r.t. G′,H′,F′ and set S′,
so it extracts valid witnesses which, by perfect binding in S′ are unique and do not assist the distinguisher
which can compute them itself.

Finally, we get the following corollary.

Corollary 7. When CS is the one from fig. 3 and CS′ is the concatenation of the three keys as described
in Thm. 16 for and h(G,H,F) = ([H⊗F−Z]1, [Z]2) for uniform Z, then QASum from fig. 6 is hns-strong
no-signaling where hns(θ) = (h(G,H,F),M,N1,N2).

Proof. Follows directly from Thm. 6, the hns-strong ISH of the QALin which we show on Thm. 16 and the
properties of the kronecker key operator (Thm. 5).

B.2 Proof of security for the sum knowledge transfer quasi arguement

Theorem 17. Let M1,M2 be (possibly correlated) witness samplable distribution, N be a witness sam-
plable distribution, Dk a matrix distribution and CS,CS′ an algebraic and split algebraic SSB commitment
respectively with perfect completeness. Also, let A be an adversary against hls-strong local soundness of
construction QASum where hls = (Q1,Q2,F,N). Then, QAsum has perfect completeness and hls-strong
local knowledge soundness holds with probability at least 1− AdvΠkt-sum

snd (BS), where BS is any PPT adversary
against soundness of Πkt-sum.

57

Proof. For completeness, we have that

(c>1 | d>)C1 + c>2 C2 = (c>1 | d>)

(
K0

K1

)
A + c>2 K0A

= (c>1 K0 + d>K1 + c>2 K0)A

=
(
(c>1 + c>2)K0 + d>K1

)
A

=
(
w>(M>

1 + M>
2)(Q>1 + Q>2)K0 +w>N>F>K1

)
A

= w>
(
(M>

1 + M>
2)Q>K0 + N>F>K1

)
A

= w>
(
(M>

1 Q>K0 + N>F>K1 + Z) + (M>
2 Q>K0 − Z)

)
A

= w> (B + D) A

= w>BA +w>DA

= πA + θA

Local knowledge soundness follows using almost an identical argument to Thm. 15 and reducing to
knowledge transfer of KTA Sum Argument Πkt-sum of Fig. 1. Given an adversary A breaking Knowledge
Transfer of the quasi-argument of Fig. 6, we construct another adversary BS that breaks Knowledge Transfer
of the argument Πkt-sum for matrices [M1,S0]1, [M2,S0]2 and [NS1]1. BS works as follows: it takes input
(ρ†, hkt(θ

†), crs†) where

ρ† := (gk , [M1,S0
]1, [M2,S0

]2, [NS1
]1), hkt(θ

†) := NS1
, crs† := ([B†]1, [D

†]2, [A]1,2, [C
†
1]2, [C

†
2]1)

and does the following:

• It samples ([Q1]1, [Q2]2,Q1,Q2,TQ)← CS′.KGen(gk, d,K, S1) and sets Q := Q1 + Q2.

• It samples ([F]1,F,TF)← CS.KGen(gk, d,K, S2).

• It samples M1,S1
,M2,S1

,NS2
, such that M1 = PS1

(
M1,S1

M1,S1

)
, M2 = PS1

(
M2,S1

M2,S1

)
, N = PS2

(
NS2

NS2

)
.

• It samples R0 ← ZK0×k
p ; R1 ← ZK1×k

p

• It computes [B]1 := [B†]1 + [M1]>1 Q>R0 + [N]>1 F>R1 and [D]2 := [D†]2 + [M2]>2 Q>R0

• It computes [C1]2 :=

(
TQ 0
0 TF

)
[C†1]2 +

(
R0

R1

)
[A]2 and [C2]1 := TQ[C†2]1 + R0[A]1.

• It sets
ρ := ([Q1]1, [Q2]1, [F]2, [M1]1, [M2]2, [N]1), hls(θ) := (Q1,Q2,F,N)

crs := ([B]1, [D]2, [A]1,2, [C1]2, [C2]1)

It then executes A(ρ, hls(θ), crs) until it outputs a statement ([c1]1, [c2]2, [d]1,w) together with an accepting

proof [π]1, [θ]2. Given an accepting proof B sets [x†1]1 = TQ[c1]1, [x
†
2]2 = TQ[c2]2, [y

†]1 = TF[d]1, [π†]1 =

[π]1 − [c1]>1 R1 − [d]>1 R2 and [θ†]2 = [θ]1 − [c2]>2 R1. It outputs
(

([x†1]1, [x
†
2]2, [y

†]1),w, ([π†]1, [θ
†]2)
)

.

Note that by perfect completeness of the commitment scheme, the commitment keys are extractable and
perfectly binding at S.

First, we claim that in this case the values ρ, hls(θ), crs output by BS are identically distributed to
honestly computed ones and thus do not skew the probability that A outputs a valid proof. For ρ, hls(θ),

58

this is immediate by the witness samplability of the distributions M1, M2, N . We show that this holds for

crs as well. Let K†0 ∈ Z|S1|×k
p ,K†1 ∈ Z|S2|×k

p , Z† ∈ Zn×kp matrices satisfying:

B† = M>
1,S1

K†0 + N>SK†1 + Z†, D† = M>
2,S1

K†0 − Z†, C†1 =

(
K†0
K†1

)
A and C†2 = K†0A.

Now BS implicitly defines K0 = TQK†0 +R0, K1 = TFK†1 +R1, and note that these matrices are uniformly
distributed since R0,R1 are uniformly distributed. Thus K0,K1 are distributed identically to honestly
generated values for generating a crs. We claim that the crs output by A is identically distributed to
sampling this matrix and computing the other values honestly. Indeed we have that

B = B† + M>
1 Q>R1 + N>1 H>R1

= M>
1,S1

K†0 + N>S2
K1 + Z† + M>

1 Q>R0 + N>1 H>R1

= M>
1 Q>TQK†0 + N>F>T>FK1 + Z† + M>

1 Q>R0 + N>1 H>R1

= M>
1 Q>(TQK†0 + R0) + N>F>(T>FK1 + R1) + Z†

= M>
1 Q>K0 + N>F>K1 + Z†

where the third equality follows since by the local extractability of the SSBs (1) T>QQM1 = M1,S and (2)

T>FFN = NS . Similarly, we have

D = D† + M>
2 Q>R0

= M>
2,S1

K†0 − Z† + M>
2 Q>R0

= M>
2 Q>TQK†0 − Z† + M>

2 Q>R0

= M>
2 Q>(TQK†0 + R0)− Z†

= M>
2 Q>K0 − Z†

Also, we have that

C1 =

(
TQ 0
0 TF

)
C†1 +

(
R0

R1

)
A =

(
TQ 0
0 TF

)(
K†0
K†1

)
A +

(
R0

R1

)
A = i

(
TQK†0 + R0

TFK†1 + R1

)
A =

(
K0

K1

)
A

C2 = TQC†2 + R0A = TQK†0A + R0A = (TQK†0 + R0)A = K0A

so the outputted crs is indeed identically distributed to an honest one.
Then, we show that B outputs a valid statement-proof pair w.r.t. to crs†. Since the commitment keys

are extractable and perfectly binding, we have that (x†1,x
†
2) and y† are valid openings for the commitments

(c1, c2) and d respectively. Assuming A produces a valid statement for Rno
ρ,S , for the extracted values it

holds that x†1 +x†2 = (M1,S1 + M2,S1)w and y† 6= NS2w. Thus BS outputs a valid statement and it suffices
to show that (π†,θ†) is a valid proof. Indeed, we have

0 = πA + θA− (c>1 | d>)C1 − c>2 C2

= (π† + c>1 R0 + d>R1)A + (θ† + c>2 R0)A− (c>1 | d>)

((
TQ 0
0 TF

)
C†1 +

(
R0

R1

)
A

)
− c>2

(
TQC†2 + R0A

)
= (π† + c>1 R0 + d>R1)A + (θ† + c>2 R0)A− (c>1 TQ | d>TF)C†1 − (c>1 R0 − d>R1)A− c>2 TQC†2 − c>2 R0A

= π†A + θ†A− (c>1 TQ | d>TF)C†1 − c>2 TQC†2

= π†A + θ†A− (x†1
>
| y†>)C†1 − x

†
2

>
C†2

59

and the last equation is the verifying equation for the knowledge transfer argument for crs†.

We next show that when the distributions (M1M2),N guarantee that the sum knowledge transfer argument
is secure w.r.t. all possible sets S, construction QASum has hls-strong local knowledge soundness where hls
includes G,H,F, [M]2, [N1 ⊗ N2 − R]1, [−R]2), for a uniform R and some extra information about the
matrix M.

Corollary 8. Let Dk be a matrix distribution for which Dk-SKerMDH. Denote M1,S (resp. M2,S, NS) the
distributions that sample matrices from M1 (res. M2, N), and restricts them to rows corresponding to S.
Then

1. If for all S0 ⊆ [d] with S0 ≤ K0, (M>1,S0
,M>2,S0

, h)-MDDH holds, QASum is an hls-strong local
knowledge sound proof system, where hls(θ) = (h(M1,S ,M2,S),G,H,F,N).

2. If for all S0, S1 ⊆ [d] with S0 ≤ K0, S1 ≤ K1 the distributions M1,S0
,M2,S0

,NS1
output matrices

with the last n′ columns being 0, and (M′>1,S0
,M′>2,S0

, h)-MDDH holds, withM′b,S0
beingMb,S0

where
we delete the trailing zero columns, then QASum is an hls-strong local knowledge sound proof system,
where hls(θ) = (h(M1,S0 ,M2,S0),G,H,F,N).

Proof. The proof is an immediate consequence of Thm. 17 and Thm. 14.1 for case 1 and Thm. 14.2 for case
2.

The proof that QASum is oblivious follows from the oblivious trapdoor generation and index set hiding
of SSB commitments. We follow essentially the same proof as in the QABlin case.

First we show the corresponding lemma to Lemma 7, that is, we construct an indistinguishable crs given
only the commitment keys and the matrices M1,M2,N.

Lemma 8. There exists a modified crs generation algorithm K′ that on input (ρ, θ′), where θ′ contains only
either M1,M2,N or Q1,Q2,F and outputs a crs such that (ρ, crs) are identically distributed to the honest
algorithm.

Proof. Given these values we can compute the crs using a simple trick. Instead of computing

[B]1 = [M>
1]1Q

>K0 + [N>]1F
>K1 + [Z]1

[D]2 = [M>
2]2Q

>K0 − [Z]2,

we compute
[B]1 = (M>

1 + M>
2)[Q>1]1K0 + [N>]1F

>K1 + [Z]1

[D]2 = (M>
2 + M>

2)[Q>2]2K0 − [Z]2,

Noting that in both cases the elements computed are uniformly distributed conditioned on B + D = (M>
1 +

M>
2)(Q>1 + Q>2)K0 + N>F>K1 we see that these values are computed as in the honest setup.
In the case where θ = (Q1,Q2,F) we can directly compute the crs by noting that Q = Q1 + Q2 and the

group elements in ρ are enough to compute all values of crs.

As in the previous cases, we abuse notation and refer to K′(ρ, θ′) as K(ρ, θ′).
The proof of oblivious extraction essentially follows from the oblivious key generation and index set hiding

of the SSB commitments and is similar to the proof of Thm. 16.

Theorem 18. LetM1,M2 be (possibly correlated) witness samplable distribution, N be a witness samplable
distribution, and CS,CS′ be an algebraic and a split algebraic SSB commitment scheme respectively with
perfect completeness, oblivious trapdoor generation and h, h′-index set hiding respectively. Then Construction
QASum of Fig. 6 is hns-strong oblivious, where hns(θ) = (h(sk), h′(sk′),M1,M2,N). Furthermore,

60

1. For every PPT A against index set hiding of QASum, there exist adversaries B0,B1 against index set

hiding property of CS′, CS respectively, such that AdvQASum
ISH (A) ≤ AdvCS

′

ISH(B0) + AdvCSISH(B1).

2. For every A against oblivious crs generation of QASum, there exist an adversaries B0,B1 against

oblivious key generation of CS′,CS respectively, such that AdvQASum
oblv (A) ≤ AdvCS

′

oblv(B0) + AdvCSoblv(B1).

Proof. It is enough to show that hns-strong index set hiding holds and that we can sample a tuple (ρ, crs)
indistinguishable from the one we are given, along with a valid trapdoor. This is the case because the
commitment keys are perfectly binding in S′, which means that the witnesses are unique and do not help
the (unbounded) distinguisher who can compute them on its own.

Index Set Hidning. Assume there exist sets S,S′ of size at most K and an adversary A which distinguishes
(ρ, crs) sampled for S from (ρ, crs) sampled for S′ with some probability α. We construct adversaries
B0 distinguishing ck0 sampled for S1 from ck0 sampled for S′1 with probability α0 and an adversary B1

distinguishing ck1 sampled for S2 from ck1 sampled for S′2 with probability α1 such that α ≤ α0+α1

2 .
B0 takes as input some ck0 and h′(sk0) sampled either for S0 or S′0 and parses ck0 as [Q]1, [Q]2, aux. It

then honestly computes the crs by sampling M1,M2,N and following the K described in Lemma 8 except that
ck1 is computed as follows: it samples b ← {0, 1} and if b = 0 it sets (ck1, sk1) ← CS.KeyGen(gk1, d,K, S1)
otherwise it sets (ck1, sk1) ← CS.KeyGen(gk1, d,K, S

′
1).Note that, with probability 1/2, the crs computed

by B follows exactly the original distribution. This is the case since B,D are uniform matrices conditioned
on their sum being equal to (M>

1 + M>
2)(Q>1 + Q>2)K1 + N>F>K2 for uniform K1,K2, exactly as in the

honest crs generation. Finally B0 runs A(ρ, crs, hns(θ) = (h′(sk0), h′(sk1),M1,M2,N)) and output whatever
it outputs.

Similarly, on input ck1, h(sk1) sampled either for S1 or S′1, B1 samples b ← {0, 1} and if b = 0 it sets
(ck0, sk0) ← CS.KeyGen(gk, d,K, S0) otherwise it sets (ck0, sk0) ← CS.KeyGen(gk, d,K, S′0) and honestly
computes the crs as in the previous case. A simple case analysis shows that ρ ≤ ρ1+ρ2

2 .

Oblivious trapdoor generation: We show how to obliviously sample a trapdoor given black box access to
CS.OblKeyGen and CS′.OblKeyGen. For oblivious trapdoor generation, given a pair ρ, crs for the quasi
argument and set S′ the oblivious setup QASum.OblKeyGen does the following:

• (ck ′0, τ
′
0)← CS.OblKeyGen(ck0, S

′
0) and (ck ′1, τ

′
1)← CS.OblKeyGen(ck1, S

′
1).

• Sample ([M1]1, [M2]2,M1,M2)←M, ([N]1,N)← N .

• Compute the rest of the crs by K(ck ′0, ck ′1,M1,M2,N).

Arguing as in the index set hiding proof, the only difference in the oblivious and an honest crs is how the
commitment keys are sampled. We can thus use a standard hybrid argument to reduce the property to the
oblivious trapdoor generation of the commitment schemes CS,CS′.

Corollary 9. If CS is the one from fig. 3, and CS is the construction of kCS of Thm. 5, then QASum from
fig. 6 is hns-strong no-signaling where hns(θ) = (M,N1,N2).

Proof. The proof follows directly from Theorem 6 and the hns-strong oblivious property of QASum, which
in turn follows from applying Theorems 1, 5 to Theorem 18.

61

	Introduction
	Our results

	Technical Overview
	Quasi-Arguments of Knowledge of STOC:KalPanYan19
	Structure Preserving Delegation for Bounded-Depth Circuits.
	No-Signaling Somewhere Statistically Binding Commitments/Hashing
	SSB Commitments with Oblivious Trapdoor Generation.
	Constructing Oblivious SSB Commitments.

	Quasi-Arguments of Membership in a Linear Space
	The argument.
	Local and No-Signaling extraction.
	Extension to Knowledge Transfer, Bilateral Spaces and Sum Arguments.

	Quasi-Argument of Hadamard Products
	Local and No-Signaling Extraction.
	Extension to Knowledge Transfer Arguments.

	From our Quasi-Arguments to Delegation.
	NIZK, SNARKs and Compact NIZK

	Preliminaries
	Notation
	Cryptographic Assumptions
	Argument of Knowledge Transfer

	No-Signaling Somewhere Statistically Binding Commitments
	Algebraic SSB Commitments.
	Somewhere Statistically Binding Commitments with Oblivious Trapdoor Generation
	Kronecker Product of two SSB commitments

	Quasi-Arguments with Preprocessing
	Arguments with No-signaling extraction and Oblivious CRS Generation
	Succinct Pairing Based Quasi-Arguments
	Quasi Arguments of Membership in Linear Spaces
	Quasi-Arguments for Hadamard Products.

	Delegation for Arithmetic Circuit Evaluation
	The Scheme
	Proof of Security

	Applications
	Groth-Sahai Proofs
	NIZK arguments for NP.

	Delayed proof from Section 3.3
	Delayed proofs from Section 5.2.1
	Proof of security for the bilateral knowledge transfer quasi arguement
	Proof of security for the sum knowledge transfer quasi arguement

