
Efficient permutation protocol for MPC in the
head?

Peeter Laud

Cybernetica AS
peeter.laud@cyber.ee

Abstract. The MPC-in-the-head construction (Ishai et al., STOC’07)
give zero-knowledge proofs from secure multiparty computation (MPC)
protocols. This paper presents an efficient MPC protocol for permuting
a vector of values, making use of the relaxed communication model that
can be handled by the MPC-in-the-head construction. Our construction
allows more efficient ZK proofs for relations expressed in the Random
Access Machine (RAM) model. As a standalone application of our con-
struction, we present batch anonymizable ring signatures.

1 Introduction

Zero-knowledge proofs (ZKP) are cryptographic protocols that allow one party
— the Prover — to convince another party — they Verifier — in the correctness
of a statement, with the Verifier learning nothing besides the fact that the state-
ment holds. The language of statements and their truth values are given in terms
of a specified relation R ⊆ {0, 1}∗ × {0, 1}∗. A statement is some x ∈ {0, 1}∗,
known both to the Prover and the Verifier. The Prover attempts to convince
the Verifier that there exists some w (or: the Prover knows some w), such that
(x,w) ∈ R.

There exist different techniques for turning the description of the relation
R into a ZKP, based on various kinds of interactive proofs, or different secure
multiparty computation techniques. This work best when R is represented as an
arithmetic circuit, or a boolean circuit. The translation is less straightforward
when R is represented as a computation in the Random Access Memory (RAM)
model. In this case, if the whole computation is not translated first into a circuit
(which has its own overheads), one will separately translate the behaviour of the
processing unit, and the behaviour of the memory. These two behaviours have
to be related to each other, and this requires showing that the load- and store-
commands read and write the same values at both sides. Showing the equality

? This research has been funded by the Defense Advanced Research Projects Agency
(DARPA) under contract HR0011-20-C-0083. The views, opinions, and/or findings
expressed are those of the author(s) and should not be interpreted as representing
the official views or policies of the Department of Defense or the U.S. Government.
This research has also been supported by European Regional Development Fund
through the Estonian Centre of Excellence in ICT Research (EXITE).

1

of loaded and stored values requires us to sort these actions by the memory
addresses; in ZKP, this amounts to a permutation, and to a sortedness check.

A universal representation for permutations works by fixing a routing net-
work [34, 4], and giving the bits that state how each switching element must
route its two incoming values. This representation is equally well usable with
any ZKP technique. If there have been n memory operations in the program,
then the size of the routing network is O(n log n). If n is close to the total num-
ber of operations needed to express the relation R, then the size of the routing
network may be the dominant component in the complexity of the ZK proofs
for R.

MPC-in-the-head [23] is a ZKP technique that internally makes use of secure
multiparty computation protocols. Compared to other techniques, it has good
running time for the Prover, a decent running time for the Verifier, but longer
proofs. Nevertheless, there are a number of ZK proof systems built upon this
technique [17, 9, 1]. The MPC-in-the-head technique is also expected to compose
well with other ZKP techniques.

In this paper, we propose a O(n)-complexity MPC-in-the-head based method
to verify the correctness of the application of a permutation to a vector of values.
Our method, which is basically a secure multiparty computation protocol for
a communication model that fits into the MPC-in-the-head technique, can be
composed with other protocols in the same communication model, hence bringing
down the complexity of ZKP protocols for relations represented in the RAM
model. We present our construction in Sec. 4, after discussing related work in
Sec. 2 and giving the preliminaries in Sec. 3.

The main application of our construction would be in a ZK proof system,
where it would support the encoding of interesting relations R. In this paper,
we demonstrate a more stand-alone application of it — batch anonymizable ring
signatures. In this setting there are a number of message digests and a num-
ber of public (verification) keys, and one party has a signature to each of the
digests with respect to one of the keys. This party wants to prove that it has
these signatures, but does not want to reveal them, nor does he want to reveal
which digest has been signed with which key. If there are m keys and ` digests,
then the existing techniques allow such proof to be created with the complexity
O(m`). We show how to bring the complexity down to O(m + `). We present
this construction in Sec. 5.

2 Related Work

Zero-knowledge proofs were first proposed in [20]. In this section, we cannot
hope to give an overview of all the advancements thereafter. Rather, we refer
to the course notes [32] discussing interactive proofs and their zero-knowledge
variants.

The MPC-in-the-head construction was proposed in [23, 24]. A number of ZK
proof systems have been built on top of this construction [17, 9, 1, 25].

2

Permutations in ZK proofs and MPC protocols have received their share
of attention, and so have the means of connecting the processing unit and the
memory unit in encoding RAM-based computations in both ZK proofs and MPC
protocols. Laur et al. [27] were among the first to propose a composable MPC
protocol for secret sharing based protocols; Laud [26] built oblivious reading
and writing operations on top of it. For garbled circuits, Zahur and Evans [35]
proposed similar constructions. For ZK proofs, Ben-Sasson et al. [2] used routing
networks to connect the processing unit and the memory unit in a RAM-based
computation. Bootle et al. [6] lifted a technique by Neff [28] for verifying that two
encrypted vectors are permutations of each other, into the encodings of relations
of ZK proofs; this technique is interactive and requires the operations in the
encoding of the relation to work over large fields. Making proofs of permutations
in private fashion has also been an important component of electronic voting
systems; an overview of such cryptographic mix-nets is given in [21].

3 Preliminaries

In this paper, [n] denotes the set {1, . . . , n}. We use bold font to denote vectors:
v = (v1, . . . , vn) is a vector of length n.

3.1 Secure multiparty computation

A secure multiparty computation (MPC) protocol allows n parties P1, . . . , Pn to
jointly evaluate a publicly-known function f : ({0, 1}m)n → {0, 1}`, where the i-
th party supplies the i-th argument of the function. All parties learn the output.
An n-party protocol Πf is passively secure against k parties, if for any i1, . . . , ik,
the view of the coalition of parties {Pi1 , . . . , Pik} can be simulated, given the
inputs xi1 , . . . , xik of these parties, as well as the output of the function.

Let A ⊆ {0, 1}∗ be a finite set. Let A⊥ = A ∪ {⊥}, where ⊥ denotes the
absence of a value. A (n, k)-secret sharing scheme for A consists of a randomized
algorithm Share : A → An and a deterministic algorithm Combine : An⊥ →
A⊥, such that the output of Share, where restricted to at most k positions, is
independent from the input, and, for all x ∈ A, for all (x1, . . . , xn) that can be
output by Share(x), and for all (x′1, . . . , x

′
n) ∈ A⊥, where x′i ∈ {xi,⊥} and the

number of non-⊥ elements x′i is at least (k+1), we have Combine(x′1, . . . , x
′
n) = x.

A (n, k)-secret sharing scheme may be a significant component of n-party
MPC protocols secure against k parties. In this case, the private values are
held by secret-sharing them among the n parties. For operations with private
values, one needs cryptographic protocols that take the shares of the inputs of
the operation as the input, and return to the parties the shares of the output [19,
16]. Typically, the function f is given by an arithmetic circuit that implements
it. The inputs and outputs of f , as well as the intermediate values computed
in the circuit are elements of A, which is required to be an algebraic structure,
typically a ring (or, more strongly, a field). The inputs of the circuit are shared
by the parties holding them. The operations in the circuit are addition and

3

multiplication in the ring A. The parties execute a protocol for each operation
in the circuit, eventually obtaining the shares of the output value, which they
all learn by running the Combine-algorithm.

Given a value v ∈ A that is held in secret-shared form as part of a MPC
protocol, we denote the sharing by JvK, and the individual share of the i-th party
by JvKi. The write-up JwK← JuK + JvK denotes the execution of the protocol for
addition by all the parties, where the inputs are the shares of u and v, and the
output shares define the value of w. Similar write-up is used for other operations
with secret-shared data.

A secret sharing scheme over a ring A is linear if the operations Share and
Combine are linear between the rings A and An [31, 12]. In this case, the protocol
for JuK + JvK is just the addition of the corresponding shares of u and v by each
party. Similarly, the protocol for c · JuK, where c ∈ A is public, requires each
party to multiply its share with c. The protocol for JuK · JvK is more complex;
its details depend on the details of the secret sharing scheme, and it requires
communication among participants.

Passive security for MPC protocol sets is defined through the simulation
paradigm [18]. The view of a party in a protocol consists of the inputs of this
party, the randomness this party generates, and the messages this party re-
ceives from other parties; these values allow one to perform all computations
of that party, in particular find the messages it sends to other parties, and the
values it outputs at the end of the protocol. The protocol Πf for n parties is
passively secure against the coalition Pi1 , . . . , Pik , if there exists an algorithm
S (the simulator), such that for any x1, . . . , xn, the joint view of Pi1 , . . . , Pik
in Πf , where the input of Pj is xj , is indistinguishable from the output of
S(xi1 , . . . , xik , f(x1, . . . , xn)).

3.2 Honest-verifier zero-knowledge proofs

Let R ⊆ {0, 1}∗ × {0, 1}∗, which we also think of as a function R : {0, 1}∗ ×
{0, 1}∗ → {0, 1}. Write LR = {x ∈ {0, 1}∗ | ∃w ∈ {0, 1}∗ : (x,w) ∈ R}. We as-
sume that R is a NP-relation, i.e. the function R is polynomial-time computable,
and there exists a polynomial p, such for all x ∈ LR, there exists w ∈ {0, 1}∗,
such that (x,w) ∈ R and |w| ≤ p(|x|).

A protocol ΠR is a Σ-protocol for a given NP-relation R, if it is a protocol
between two parties P and V with the following properties

– Structure: both P and V receive x ∈ {0, 1}∗ as input. P also receives
w ∈ {0, 1}∗ as input. P sends the first message α to V . V generates a
random β (does not depend on x or α), and sends it to P as the second
message. P sends the third message γ to V . V runs a check on x, α, β, γ and
either accepts or rejects.

– Completeness: if (x,w) ∈ R, then V definitely accepts.
– Special soundness: there exists a number s, such that if the transcripts

(x, α, βi, γi) for i ∈ [s] with mutually different βi-s are all accepted by V ,
then a w satisfying (x,w) ∈ R can be efficiently found from these transcripts.

4

– Special honest-verifier zero-knowledge: there exists a simulator that
on input x ∈ LR and a random β, outputs α, γ, such that the distribution
of (x, α, β, γ) is indistinguishable from the transcripts of the real protocol.

A Σ-protocol is an instance of honest-verifier zero-knowledge (HVZK) proofs
of knowledge (PoK). It can be turned into a non-interactive ZK PoK using the
Fiat-Shamir heuristic [15]. The same heuristic is usable if the protocol has more
rounds, as long as all challenges from the verifier are freshly generated random
numbers. In this paper, we only consider honest verifiers, as the heuristic is
already usable for them.

Let G be a cyclic group of size p, generated by g, and having a hard Dis-
crete Logarithm problem. Camenisch and Stadler [8] studied HVZK PoKs in the
setting of showing equalities among the elements of such groups. They have in-
troduced a language for specifying the knowledge that the Prover claims to have.
In contemporary notation, a problem description in their language has the form
PK{(x1, . . . , xk) | F}, where x1, . . . , xk are variables taking values in Zp, and F
is a monotone Boolean formula, the atoms of which are statements that either
an arithmetic expression (over Zp) involving x1, . . . , xk is zero, or a product of
elements of G with exponents being arithmetic expressions involving x1, . . . , xk,
is the unit element of the group. Beside x1, . . . , xk, the atomic statements in F
use elements of Zp and G which are known to both the Prover and the Verifier.
The problem PK{(x1, . . . , xk) | F} requests the Prover to convince the Verifier
that he knows values v1, . . . , vk ∈ Zp for x1, . . . , xk, which make F true. The
simplest example of expressing Prover’s knowledge is the statement of knowing
the discrete logarithm of an element h ∈ G; the write-up is PK{(x) | gx = h}.
Camenisch and Stadler [8], and Camenisch et al. [7] have given a general mecha-
nism for constructing HVZK PoKs for the problems stated in this language; these
protocols are actually Σ-protocols. Given a PoK problem PK{(x1, . . . , xk) | F}
and values v1, . . . , vk known by Prover which fulfill that problem statement, we
denote the execution of the Camenisch-Stadler protocol for this PoK problem
with these values by PK{(x1, . . . , xk) | F}(v1, . . . , vk).

3.3 The IKOS construction

Fix n and m, as well as a secret-sharing scheme. For the relation R, n ∈ N and
x ∈ {0, 1}∗, define the function fxR : ({0, 1}m)n → {0, 1} by fxR(w1, . . . , wn) =
R(x,Combine(w1, . . . , wn)). Let Πfx

R
be a MPC protocol for fxR, passively se-

cure against k ≥ 2 parties. The IKOS construction [23] turns the family of
protocols {Πfx

R
}x into a Σ-protocol for the relation R, also assuming the exis-

tence of commitments. In this construction, the prover first secret shares w by
(w1, . . . , wn)← Share(w). He executes the protocol Πfx

R
with inputs w1, . . . , wn

“in his head”, i.e. simulates the views of all n parties. The Prover then commits
to the views of all parties, and sends the commitments to the Verifier. The lat-
ter randomly picks a set of indices {i1, . . . , ik}. The Prover opens the views of
the i1-th, i2-th, . . . , ik-th simulated party to the Verifier, who checks that the
obtained output is 1, and the views of the simulated parties are consistent with
each other.

5

A MPC protocol consists of two kinds of steps. In the first kind, a party
performs local computations. In the second kind, two parties perform a particular
two-party computation, the sending and receiving of a message, which we could
denote as (x,⊥) 7→ (⊥, x). In the IKOS construction, the verifier checks the
correctness of both kinds of steps for all simulated parties whose views have
been opened.

The correctness checks for the second kind of steps are possible for those
pairs of simulated parties that both have their views opened to the verifier. For
verifying these steps, the actual two-party functionality being executed makes no
difference; it may be more complex than sending and receiving a message. This
was used in the ZKBoo [17] ZK proof system, where an n-party MPC-in-the-
head protocol for evaluating arithmetic circuits over a finite ring A was proposed,
with passive security against (n − 1) parties. The two-party functionality used
by their protocol is oblivious linear evaluation, where the first party (“sender”)
inputs a pair of values (x, r) ∈ A, the second party (“receiver”) inputs a value
y ∈ A, the sender learns nothing, and the receiver learns xy − r.

In the ZKBoo MPC-in-the-head protocol, private values are additively shared,
i.e. v ∈ A is represented as JvK, where JvKi are random elements of A subject
to the condition

∑n
i=1JvKi = v. For adding two private values, or multiplying

a private value with a constant, each party performs that same operation with
his shares. For multiplying private values JuK and JvK, the parties execute the
protocol in Alg. 1. We see that each pair of parties (Pi, Pj) runs an instance
of oblivious linear evaluation in order to share between themselves the product
JuKi · JvKj .

Data: private values JuK, JvK
Data: private value JwK, such that w = uv
foreach i, j ∈ [n], i 6= j do

Pi picks a random r
(i)
ij

$← A
Pi and Pj run oblivious linear evaluation, with

Pi (sender) inputs (JuKi, r(i)ij)
Pj (receiver) inputs JvKj
Output of Pj is r

(j)
ij ← JuKi · JvKj − r(i)ij

foreach i ∈ [n] do

Pi computes JwKi ← JuKi · JvKi +
∑

1≤j≤n
j 6=i

(r
(i)
ij + r

(i)
ji)

Return JwK
Algorithm 1: Multiplying two private values in ZKBoo

The protocol in Alg. 1, together with the protocols for adding private values
and multiplying them with public constants, as well as protocols for secret-
sharing an input value (the party doing the sharing generates a random element
of A as the share of each party, subject to their sum being equal to the value to
be shared), and recovering an output of the computation (all parties send their

6

shares to all other parties; each party adds up the shares), is a n-party protocol
passively secure against (n − 1) parties. Indeed, all messages a party receives,
either during the sharing an input value, or as the receiver in an oblivious linear
evaluation functionality, or during the recovery of outputs, are uniformly random
elements of A (in case of output recovery, subject to their sum being equal to
the actual output, which is given to the simulator), hence can be simulated as
such. These values remain uniformly random if we combine the views of up to
(n− 1) parties.

3.4 Motivation: simulating computations

Existing MPC protocols, and ZK proof protocols built on top of them, are suit-
able if the computed function f or the relation R is represented as an arithmetic
circuit. In practice, such f and R are usually represented differently. They are
usually given in a format executable by a computer, i.e. as programs in an im-
perative language, i.e. as programs for a Random Access Machine (RAM). These
programs can invoke storing and loading operations against memory, the cells of
which are addressable with the elements of A. These operations, and the memory
structure are not easily converted into an arithmetic circuit.

For verifying that R(x,w) = 1, where R is given as a RAM program, one
commonly splits the execution of R on the RAM into two parts, proves the cor-
rectness of execution separately, and then shows that the two parts are connected
in the right manner [2]. The first part of execution is the processing unit ; the
proof shows that at each execution step, the instruction was decoded correctly,
and the result of the instruction was correctly computed from its inputs. The
second part of the execution is the memory ; the proof shows that for each mem-
ory cell, the value read from it is the same that was written to it previously. The
two parts have to be connected — the sequence of load- and store-commands has
to be the same at both sides. The ZK proof must check that the same sequence
appears at both parts.

At processor side, it is natural to order the sequence of load- and store-
commands by timestamps. When verifying the correctness of the steps made
by the processor, at each execution step we need to know what value was load
from the memory, or what value was stored there (if any). At memory side, it is
natural to order this sequence first by memory address, and then by timestamps.
In this manner, it is easy to verify that for each memory cell, the value loaded
from there was the same that was either stored there, or loaded from there
the previous time the same cell was accessed. Hence we need to show that two
sequences are permutations of each other. For added flexibility, we want to have
the permutation as a separate object, because we may need to show that several
sequences are related to each other through the same permutation.

4 Our construction

We will now present our permutation protocol, which can be used to for the per-
mutation functionality in a linear secret sharing based protocol set implementing

7

the ABB for MPC-in-the-head. Let Sm denote the group of permutations of m
elements. Given a private representation of a permutation σ ∈ Sm, and a vector
of shared values JvK = (Jv1K, . . . , JvmK), where vi ∈ A, we want to have a proto-
col for obtaining Jσ(v)K = (Jvσ(1)K, . . . , Jvσ(m)K). If the protocol is executed by
n parties, then we want it to be passively secure against a coalition of (n − 1)
parties.

The permutation σ is part of the witness, hence the Prover has to secret-
share it among the n simulated parties. We let the private representation of σ to
be J[σ]K = (J[σ]K1, . . . , J[σ]Kn), where J[σ]Ki is a random permutation of m elements,
subject to the constraint σ = J[σ]Kn ◦ · · · ◦ J[σ]K1. Assuming that additive sharing
is used for the values v ∈ A, the protocol for obtaining Jσ(v)K from J[σ]K and JvK
is given in Alg. 2.

Data: private vector JvK, private permutation J[σ]K
Result: private vector JwK, where wi = vσ(i)
Jw(0)K← JvK
for i = 1 to n do

foreach j ∈ [n]\{i} do
Pi generates random r

(i)
ij ∈ Am

Parties Pi and Pj run the following two-party functionality:

Pi inputs J[σ]Ki and r
(i)
ij

Pj inputs Jw(i−1)Kj
Pi obtains nothing
Pj obtains r

(j)
ij ← J[σ]Ki(Jw(i−1)Kj)− r(i)ij

/* Elementwise subtraction of vectors */

Pj defines Jw(i)Kj ← r
(j)
ij

Pi defines Jw(i)Ki ← J[σ]Ki(Jw(i−1)Ki) +
∑

1≤j≤n
j 6=i

r
(i)
ij

Return Jw(n)K
Algorithm 2: Private permutation PrivPerm

The protocol in Alg. 2 is secure (passively, against (n − 1) parties) for
the same reason the protocol in Alg. 1 is secure — any message a party receives
through the two-party functionality are uniform random vectors over A. Indeed,
each such message is masked with freshly generated randomness. The simulator
can again just replace these messages with freshly, uniformly generated elements
of A. We note that the two-party functionality we use here is the same as the
Permute+Share functionality in [10].

We also see that the protocol works. Indeed, after the i-th iteration, the
vector w(i) is equal to J[σ]Ki(J[σ]Ki−1(· · · J[σ]K1(v) · · ·)). Its private representation
is constructed by permuting the shares of the private vector Jw(i−1)K with the
permutation J[σ]Ki. The permutation of the i-th share is held by the i-th party,
while the permutation of the j-th share (j 6= i) is shared between the i-th and
j-th parties.

8

The communication complexity of the protocol, which affects the size of the
ZK proofs, is O(n2m). Indeed, at each round (of which there are n), each party,
except for one, receives a vector of length m of elements of A. Note that for
MPC-in-the-head protocols, the round complexity is irrelevant. According to
the calculations in [17], the protocol is most efficient (considering the amount of
communication from the prover to the verifier in order to obtain a sufficiently
small soundess error) when n is minimized, i.e. n = 3.

5 Application: multiple ring signatures

For demonstrating the usefulness, consider the following application, which may
itself be part of a larger system. There are two parties, let us call them Prover
and Verifier. There are ` message digests d1, . . . , d`, known to both of them.

There are also m ≈ ` public keys Q1, . . . , Qm for verifying signatures, known
both to Prover and Verifier. Neither of them knows the corresponding signing
keys. The Prover knows signatures S1, . . . , S`, such that Si is the signature of di
by one of the keys Q1, . . . , Qm. The Prover wants to convince the verifier that
he knows these signatures, but does not want to reveal, which digest is verifiable
by which public key.

The standard tools in situations like this are group signatures [11] and ring
signatures [29]. In the latter, the signer can pick a number of public keys of other
entities, in addition to his own, such that the signature can be verified against
this set of public keys (including the public key of the signer), but does not
reveal, the owner of which public key created the signature. In an anonymizable
ring signature [22], the signing and ring creation functionalities are separated;
anyone can turn a “normal” signature into a ring signature, adding more public
keys to the set, against which the verification is done. Blazy et al. [5] showed
that anonymizable ring signatures can be built on top of Schnorr signatures [30].
Their construction is based on a ZK proof for disjunction, which is made non-
interactive using the Fiat-Shamir heuristic. If there are m public keys in the
ring, then the size of the signature is O(m). If we have ` messages, then we need
` signatures like that, hence their total size is O(m`).

Schnorr signatures in a group G of size p (where p is prime) with hard
Discrete Logratihm problem are defined as follows. Let g ∈ G be a fixed generator
of the group. A signing key is a random k ∈ Zp. The corresponding public
key is Q = gk. In the signing operation sig(k, d) for a message (digest) d, the
signer picks a random r ∈ Zp, computes e = H(gr, d), and s = r − ke. Here
H : G × {0, 1}∗ → Zp is a hash function, modeled as a random oracle. The
signature is the pair (s, e). The verification ver(d,Q, (s, e)) consists of checking
that e = H(gsQe, d).

5.1 Construction

In Alg. 4 we give a protocol for the Prover to convince the Verifier that it has
a signature for each of the digests, where each signature can be verified against

9

one of the given public keys. The protocol can be made non-interactive using
the Fiat-Shamir transform. In Alg. 4, the Prover will tell the verifier the blinded
version Zi of the public key Qτi for which he knows a signature (si, ei) that
verifies against di. The blinding is done by Zi = Qλi

τi , where λi is a random
value. As the size of G is prime, Zi is independent of Qτi from the point of
view of the Verifier. On the other hand, the Prover, knowing the relationship,
can convince the Verifier that he knows a signature (si, ei) wrt. Qτi , as well as
the conversion factor λi. During this conviction, the Prover sends the verifier
the value Xi, which is equal to gr for the random r that the signer used in the
signing operation. Hence Xi does not depend on Qτi , either, and opening it to
the Verifier does not help the latter to find out the value of τi.

Data: public m, ` ∈ N; public vector Q ∈ Gm
Data: private vector JλK, additively shared over Zp, where |λ| = `

Data: private vector Jτ K, additively shared over Zdlog(m+`)e
2 , where |τ | = `

Data: private permutation J[σ]K, which would sort (1, . . . ,m, τ1, . . . , τ`) ∈ Nm+`

Result: Vector Z of length `, where Zi = Qλi
τi

Result: Validity check of σ
JA1K← Share(Q1) /* Shared multiplicatively over G */

Jv1K← Share(1) /* Shared additively over Zdlog(m+`)e
2 */

Jt1K← Share(0) /* Shared additively over Z2 */

for i = 2 to m do
JAiK← Share(Qi ·Q−1

i−1)
JviK← Share(i)
JtiK← Share(0)

for i = m+ 1 to m+ ` do
JAiK← Share(1)
JviK← Jτi−mK
JtiK← Share(1)

JBK← PrivPerm(JAK, J[σ]K)
JwK← PrivPerm(JvK, J[σ]K)
JuK← PrivPerm(JtK, J[σ]K)
foreach i ∈ [m+ `− 1] do

JyiK← (JwiK‖JuiK)
?

≤ (Jwi+1K‖Jui+1K)
JC1K← JB1K
for i = 2 to m+ ` do

JCiK← JCi−1K · JBiK
JDK← PrivPerm−1(JCK, J[σ]K)
foreach i ∈ [`] do

JZiK← JDm+iKJλiK /* Using Alg. 1 */

Return Combine(JZK), Combine(JyK)
Algorithm 3: Internal MPC-in-the-head protocol for batch anonymizable ring
signatures

The public keys Qτ1 , . . . , Qτ` are picked out and blinded by the MPC-in-
the-head protocol in Alg. 3, and the correctness of these operations is verified

10

Data: P and V have Q1, . . . , Qm ∈ G and d1, . . . , d` ∈ {0, 1}∗
Data: P has signatures (si, ei) for i ∈ [`]
Result: V is convinced that P has a signature for each di, with respect to one

of the public keys Qj
P finds τ1, . . . , τ`, such that ver(di, Qτi , (si, ei)) holds for each i
P finds σ, which (stably) sorts (1, . . . ,m, τ1, . . . , τ`)

P generates a random vector λ ∈ Z`p
P → V : Zi ← Qλi

τi for i ∈ [`]
P and V run the IKOS protocol, executing the following multiple times:

P runs in his head the protocol in Alg. 3, with public inputs m,
`, Q, and private inputs Jτ K, J[σ]K, JλK
P commits to the views of simulated parties, V requests the open-
ing of some of them
V checks the consistency of views, and that the output is
Z1, . . . , Z` and a vector of true-s

foreach i ∈ [`] do
P → V : Xi ← gsiQeiτi
P and V run the protocol PK{(s, v) | gs · (ZH(Xi,di)

i)v = Xi}(si, 1/λi)
Algorithm 4: Verification of batch anonymizable ring signatures

through the IKOS construction. The picking out is done by the operations that
compute the vectors JAK, JBK, JCK, and JDK; the key Qτi is then given as Dm+i.
This part of Alg. 3 is the same as the performRead algorithm by Laud [26], and
we refer to this paper for detailed explanations. We use the permutation protocol
PrivPerm given in Alg. 2. We also use the protocol PrivPerm−1, which permutes
the given vector with the inverse of the given private permutation J[σ]K. It works
the same way as PrivPerm, except that it uses J[σ]K−1i as the share of the i-th
party, and the main loop in Alg. 2 considers the parties in reverse order.

At the same time, the protocol in Alg. 3 verifies that σ is indeed the sorting
permutation. It constructs the vector JvK, applies σ to it, and verifies that the
resulting vector is sorted. We also need σ to perform stable sorting, or at least
ensure that two equal values, where the first one originates among the first m
elements of v, and the second one among the last ` elements, will not be swapped.
We use the vector u to record, where the element originated from, and append
the bit ui to the value wi as the least significant bit, in order to ensure that
the values from the first part of v are considered smaller. In order to compute
the results of comparison JyiK, we have to compare two private values that have
been bitwise shared. We can use any digital comparator circuit for this purpose.

At the end of Alg. 3, the keys Dm+i are blinded by raising them to the
powers λi. Due to the sharings we have chosen for the elements of G, and for the
exponents (which are elements of Zp), this operation can be performed with the
help of the multiplication protocol in Alg. 1. Indeed, the distributive laws we need
for the correctness of this protocol hold for the exponentiation ((g1g2)x = gx1g

x
2

and gx1+x2 = gx1gx2). The ability to choose the most suitable sharing scheme
for each data item, considering the operations we want to do with them, is one
of the signs of versatility of the MPC-in-the-head protocols. This is bolstered

11

by the permutation protocol (Alg. 2) being agnostic with respect to the sharing
scheme chosen for the elements of the vector it is applied onto.

The computation and communication complexity of our multiple ring signa-
ture protocol is O(m+ `), if we consider the group operations to have constant
complexity. When we are claiming linear complexity in total, we are also as-
suming log(m+ `) to be constant, and the operations with bit-strings of length
log(m + `) to take constant time. We believe this to be a fair simplification,
because this value is expected to be less than log p, which characterizes the
complexity of multiplication and exponentiation in the group G. With such sim-
plification, one instance of Alg. 3 requires O(m+ `) computation and produces
a trace of the same length; this protocol has to be executed a constant number
of times in order to reduce its soundness error to acceptable levels. The rest of
Alg. 4 has linear complexity, too.

5.2 Security

We desire our protocol to have privacy and soundness. Both properties can be
stated through standard game-based definitions between the challenger (or en-
vironment) C and the adversary A. Starting with privacy, we want to state
that an honest-but-curious verifier is not able to find out, which keys were ac-
tually used to sign the message digests. This property can be easily stated as
an indistinguishability-type game; we give it in Alg. 5. We see that here the
adversary comes up with two possible assignments of messages digests to the
key that will sign them, and has to guess which assignment was actually used.
We require that the adversary follows the protocol in Alg. 4, because we only
provide privacy against an honest verifier.

C generates a random bit b and m public-private key pairs
(Q1, q1), . . . , (Qm, qm)
C → A: Q1, . . . , Qm
A comes up with digests d1, . . . , d`, and maps π0, π1 : [`]→ [m]
C constructs signatures (si, ei)← sig(qπb(i), di)
C (as Prover) and A (as honest Verifier) run Alg. 4
A comes up with a bit b∗. A wins if b = b∗.

Algorithm 5: Security game for privacy

Theorem 1. In the privacy game in Alg. 5, the adversary’s probability of win-
ning is at most negligibly higher than 1/2.

Proof sketch. Except for the public keys Q1, . . . , Qm themselves, the rest of
the view of the Verifier is independent of them, and can be generated from just
Q1, . . . , Qm, d1, . . . , d`. Indeed, each Zi is a random element of G. The IKOS
protocol is zero-knowledge, as long as the MPC protocol in Alg. 3 provides
privacy against a sufficient number of parties (e.g. all but one of them). The

12

protocol indeed has this privacy property, because all its steps are simulatable
and the simulations can be composed; the output of the protocol is already knows
to the Verifier. The values Xi that the Verifier learns in Alg. 4 are actually the
values gri that were constructing during the signing of the digests di; these values
are random elements of G, independent of both the digest and the key. The final
proofs of knowledge are Zero-knowledge as well.

The soundness property is somewhat more complex to state. Here the adver-
sary will win if the challenger accepts the signatures, while there exists a digest
that has not been signed with one of the public keys. For setting up the public
keys and the signatures, there is the preparation phase that controls the signing
operations. In this phase, the adversary can cause a new public key to be gen-
erated. Note that the adversary does not obtain the corresponding private key,
because these were supposed to be unknown to the Prover. In the preparation
phase, the adversary can also get signatures with the generated keys. Before
calling Alg. 4, the adversary can prune down the set of keys that have been
generated. While executing Alg. 4, the adversary may deviate from the protocol.

C initializes Q← NIL, q ← NIL, n← 0
while A stays in preparation phase do

switch A queries C with. . . do
case “generate key” do

n← n+ 1
C generates keypair (Qn, qn) /* Appended to Q and q */

C initializes Dn ← ∅
C → A: Qn

case “sign d with i-th key” (1 ≤ i ≤ n) do
Di ← Di ∪ {d}
C → A: (s, e)← sig(qi, d)

A comes up with i1, . . . , in ∈ [m], and with digests d1, . . . , d`
C and A redefine Q← (Qi1 , Qi2 , . . . , Qin)
A (as Prover) and C (as Verifier) run Alg. 4
A wins if C accepts and {d1, . . . , d`} 6⊆

⋃n
j=1Dij

Algorithm 6: Security game for soundness

Theorem 2. In the soundness game in Alg. 6, the adversary’s probability of
winning is negligible.

Proof sketch. The steps of Alg. 4 make sure that the Prover actually knows a
signature of each digest with respect to one of the public keys in Q. The IKOS
proof ensures that Zi are related to Qi (by permuting and blinding), and the
final PoK-s in Alg. 4 will verify that there exist signatures with respect to Zi as
the public keys. Combining these two, gives the signatures with respect to Qi-s.

It is indeed possible to construct a knowledge extractor, by rewinding the
Prover in the final PoK-s, as well as after it has committed to the views of
simulated parties. The extractability of the PoK-s allows the values of si and

13

λi to be extracted, while the rewinding in the IKOS protocol extracts σ. The
values ei are computed as ei = H(Xi, di).

6 Discussion

We have proposed a passively secure MPC-in-the-head protocol for permutation.
More efficient constructions of ZK proofs from MPC-in-the-head protocols are
known, if the underlying protocols with several parties are actively secure for
at least a constant fraction of the parties. Existing efficient linear secret shar-
ing based MPC protocols [3, 14] make use of homomorphic MACs, which are
updated by each operation in the arithmetic circuit encoding the computation.
It is unclear, what would be a suitable MAC for permutation, as it would have
to have suitable homomorphic properties with respect to the application of that
permutation to a vector of values.

There exist methods to turn passively secure protocols into actively secure
protocols with the help of replication [13]. Most probably, these methods will not
help in increasing the efficiency of the resulting ZK proof, compared to the use
of the underlying passively secure protocol, because the IKOS technique would
dismantle the passive-to-active construction.

Still, our construction will be useful in encoding the relations represented in
the RAM model as ZK proofs built using the IKOS technique.

References

1. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubra-
maniam. Ligero: Lightweight sublinear arguments without a trusted setup. In
Thuraisingham et al. [33], pages 2087–2104.

2. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reduc-
tions from rams to delegatable succinct constraint satisfaction problems: extended
abstract. In Robert D. Kleinberg, editor, Innovations in Theoretical Computer Sci-
ence, ITCS ’13, Berkeley, CA, USA, January 9-12, 2013, pages 401–414. ACM,
2013.

3. Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Kenneth G. Paterson,
editor, Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tallinn,
Estonia, May 15-19, 2011. Proceedings, volume 6632 of Lecture Notes in Computer
Science, pages 169–188. Springer, 2011.

4. Václav E Beneš. Mathematical theory of connecting networks and telephone traffic.
Academic press, 1965.

5. Olivier Blazy, Xavier Bultel, and Pascal Lafourcade. Anonymizable ring signature
without pairing. In Frédéric Cuppens, Lingyu Wang, Nora Cuppens-Boulahia,
Nadia Tawbi, and Joaqúın Garćıa-Alfaro, editors, Foundations and Practice of
Security - 9th International Symposium, FPS 2016, Québec City, QC, Canada,
October 24-25, 2016, Revised Selected Papers, volume 10128 of Lecture Notes in
Computer Science, pages 214–222. Springer, 2016.

14

6. Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K. Jakobsen, and Mary Maller.
Arya: Nearly linear-time zero-knowledge proofs for correct program execution. In
Thomas Peyrin and Steven D. Galbraith, editors, Advances in Cryptology - ASI-
ACRYPT 2018 - 24th International Conference on the Theory and Application
of Cryptology and Information Security, Brisbane, QLD, Australia, December 2-6,
2018, Proceedings, Part I, volume 11272 of Lecture Notes in Computer Science,
pages 595–626. Springer, 2018.

7. Jan Camenisch, Aggelos Kiayias, and Moti Yung. On the portability of generalized
schnorr proofs. In Antoine Joux, editor, Advances in Cryptology - EUROCRYPT
2009, 28th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings, vol-
ume 5479 of Lecture Notes in Computer Science, pages 425–442. Springer, 2009.

8. Jan Camenisch and Markus Stadler. Efficient group signature schemes for large
groups (extended abstract). In Burton S. Kaliski Jr., editor, Advances in Cryptology
- CRYPTO ’97, 17th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 1997, Proceedings, volume 1294 of Lecture Notes
in Computer Science, pages 410–424. Springer, 1997.

9. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ra-
macher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-
quantum zero-knowledge and signatures from symmetric-key primitives. In Thu-
raisingham et al. [33], pages 1825–1842.

10. Melissa Chase, Esha Ghosh, and Oxana Poburinnaya. Secret-shared shuffle. In
Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology - ASIACRYPT
2020 - 26th International Conference on the Theory and Application of Cryptology
and Information Security, Daejeon, South Korea, December 7-11, 2020, Proceed-
ings, Part III, volume 12493 of Lecture Notes in Computer Science, pages 342–372.
Springer, 2020.

11. David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies, edi-
tor, Advances in Cryptology - EUROCRYPT ’91, Workshop on the Theory and Ap-
plication of of Cryptographic Techniques, Brighton, UK, April 8-11, 1991, Proceed-
ings, volume 547 of Lecture Notes in Computer Science, pages 257–265. Springer,
1991.

12. Ronald Cramer, Ivan Damg̊ard, and Ueli M. Maurer. General secure multi-party
computation from any linear secret-sharing scheme. In Bart Preneel, editor, Ad-
vances in Cryptology - EUROCRYPT 2000, International Conference on the The-
ory and Application of Cryptographic Techniques, Bruges, Belgium, May 14-18,
2000, Proceeding, volume 1807 of Lecture Notes in Computer Science, pages 316–
334. Springer, 2000.

13. Ivan Damg̊ard, Claudio Orlandi, and Mark Simkin. Yet another compiler for active
security or: Efficient MPC over arbitrary rings. In Hovav Shacham and Alexandra
Boldyreva, editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018,
Proceedings, Part II, volume 10992 of Lecture Notes in Computer Science, pages
799–829. Springer, 2018.

14. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini
and Ran Canetti, editors, Advances in Cryptology - CRYPTO 2012 - 32nd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings,
volume 7417 of Lecture Notes in Computer Science, pages 643–662. Springer, 2012.

15

15. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, Advances in
Cryptology - CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings,
volume 263 of Lecture Notes in Computer Science, pages 186–194. Springer, 1986.

16. Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-
track multiparty computations with applications to threshold cryptography. In
Brian A. Coan and Yehuda Afek, editors, Proceedings of the Seventeenth Annual
ACM Symposium on Principles of Distributed Computing, PODC ’98, Puerto Val-
larta, Mexico, June 28 - July 2, 1998, pages 101–111. ACM, 1998.

17. Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster zero-
knowledge for boolean circuits. In Thorsten Holz and Stefan Savage, editors, 25th
USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August
10-12, 2016, pages 1069–1083. USENIX Association, 2016.

18. Oded Goldreich. The Foundations of Cryptography - Volume 2: Basic Applications.
Cambridge University Press, 2004.

19. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Alfred V. Aho,
editor, Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
1987, New York, New York, USA, pages 218–229. ACM, 1987.

20. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof-systems (extended abstract). In Robert Sedgewick, editor,
Proceedings of the 17th Annual ACM Symposium on Theory of Computing, May
6-8, 1985, Providence, Rhode Island, USA, pages 291–304. ACM, 1985.

21. Thomas Haines and Johannes Müller. Sok: Techniques for verifiable mix nets. In
33rd IEEE Computer Security Foundations Symposium, CSF 2020, Boston, MA,
USA, June 22-26, 2020, pages 49–64. IEEE, 2020.

22. Fumitaka Hoshino, Tetsutaro Kobayashi, and Koutarou Suzuki. Anonymizable sig-
nature and its construction from pairings. In Marc Joye, Atsuko Miyaji, and Akira
Otsuka, editors, Pairing-Based Cryptography - Pairing 2010 - 4th International
Conference, Yamanaka Hot Spring, Japan, December 2010. Proceedings, volume
6487 of Lecture Notes in Computer Science, pages 62–77. Springer, 2010.

23. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
from secure multiparty computation. In David S. Johnson and Uriel Feige, editors,
Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San
Diego, California, USA, June 11-13, 2007, pages 21–30. ACM, 2007.

24. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
proofs from secure multiparty computation. SIAM J. Comput., 39(3):1121–1152,
2009.

25. Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive
zero knowledge with applications to post-quantum signatures. In David Lie, Mo-
hammad Mannan, Michael Backes, and XiaoFeng Wang, editors, Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, CCS
2018, Toronto, ON, Canada, October 15-19, 2018, pages 525–537. ACM, 2018.

26. Peeter Laud. Parallel oblivious array access for secure multiparty computation
and privacy-preserving minimum spanning trees. Proc. Priv. Enhancing Technol.,
2015(2):188–205, 2015.

27. Sven Laur, Jan Willemson, and Bingsheng Zhang. Round-efficient oblivious
database manipulation. In Xuejia Lai, Jianying Zhou, and Hui Li, editors, In-
formation Security, 14th International Conference, ISC 2011, Xi’an, China, Octo-
ber 26-29, 2011. Proceedings, volume 7001 of Lecture Notes in Computer Science,
pages 262–277. Springer, 2011.

16

28. C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. In
Michael K. Reiter and Pierangela Samarati, editors, CCS 2001, Proceedings of the
8th ACM Conference on Computer and Communications Security, Philadelphia,
Pennsylvania, USA, November 6-8, 2001, pages 116–125. ACM, 2001.

29. Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin
Boyd, editor, Advances in Cryptology - ASIACRYPT 2001, 7th International Con-
ference on the Theory and Application of Cryptology and Information Security,
Gold Coast, Australia, December 9-13, 2001, Proceedings, volume 2248 of Lecture
Notes in Computer Science, pages 552–565. Springer, 2001.

30. Claus-Peter Schnorr. Efficient signature generation by smart cards. J. Cryptol.,
4(3):161–174, 1991.

31. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
32. Justin Thaler. Proofs, Arguments, and Zero-Knowledge, 2021. Course notes,

http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html.
33. Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors.

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017.
ACM, 2017.

34. Abraham Waksman. A permutation network. J. ACM, 15(1):159–163, 1968.
35. Samee Zahur and David Evans. Circuit structures for improving efficiency of se-

curity and privacy tools. In 2013 IEEE Symposium on Security and Privacy, SP
2013, Berkeley, CA, USA, May 19-22, 2013, pages 493–507. IEEE Computer So-
ciety, 2013.

17

