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Abstract
Constant advancements in quantum computing bring
closer the reality of current public key encryption
schemes becoming computationally feasible to be
broken. Many developers working in the industry are
just finding out about this and will be rapid to look
into changing their web applications to be secure in
the quantum era. This paper documents a tried and
tested construction for a quantum-resistant,
end-to-end encryption scheme which has been
implemented in a real-life online web application. The
implementation is shown to work well without
significant impact on the performance time in
comparison to its pre-quantum counterpart.

1. Introduction
As reported by NIST in their Report on Post-Quantum
Cryptography [1] the existence of large scale quantum
computers are expected to become viable in the next 15
years or so. This means that current cryptographic
primitives such as Diffie-Hellman, elliptic curves and the
RSA cryptosystem won't be sufficient enough to provide
the security needed for privacy and confidentiality in
digital communications.

While this is a popular topic in the cryptographic
community only some developers in the industry have
heard of the concerns that quantum computers will bring
and are subsequently not prepared for making the
transition to post-quantum security. Despite the estimates
indicating still some years away, the goal is to start
preparing early to ensure a smooth change over. The
initial stage of progress has started with researchers and
cryptographers designing new quantum-resistant
algorithms to replace the current affected ones. These
algorithms have been submitted to NIST's Post-Quantum
Cryptography project [2] which has since been
short-listed [3]. Researchers are now in the process of
analysing, testing and evaluating these finalist algorithms
for future standardised use.

This paper addresses the gap between a widely
implemented security feature called end-to-end encryption
and post-quantum era security. Outlined is the standard
end-to-end encryption model and the specific application
where this has been implemented. Quantum-resistance is
covered with a brief background on quantum computation
and how it can break current public key cryptosystems.
An overview of the popular RSA public key exchange
and the underlying hard problem of integer factorisation
that is broken with Shor's algorithm in polynomial time is
shown. Then, from going over how current pre-quantum
PKE cryptography is not sufficient anymore, a promising
replacment, called lattice-based cryptography, is
introduced. Some of the hard mathematical problems in
lattices are mentioned, such as the shortest vector
problem, short integer solution problem and
learning-with-errors. Afterwards the
CRYSTALS-KYBER key exchange algorithm and its
functionality are described in detail. The construction for
a complete implementation of a post-quantum secure
transmission channel between a client and server is then
specified with codes made available for a JavaScript
frontend (client) and Go language backend (server). An
isolated time performance benchmark is also then listed in
comparison to its 'pre-quantum' counterpart.

2. End-to-End Encryption
An additional layer of security in online communications
between client and servers when related to web
applications is a feature called end-to-end encryption
(E2EE) [4]. End-to-end encryption is used by many
applications and devices to provide the user with an extra
assurance of security and data privacy on top of the
protocols offered by TLS and IPSec. Internet banking,
financial transactions, ecommerce, etc should all
implement E2EE [5], [6], [7].

The standard model of E2EE as viewed between a client
and server can be described as at least two end-devices
that communicate via a completely secure transmission
channel where all information is encrypted before it
leaves one end-point and after receiving on the other
end-point. The client and server both have the capabilities
to encrypt data for sending and decrypt data that is
received. This is useful in applications where the
transmission channel isn't secure or as an extra layer of
security on top of existing ones. It could be the case that a
layer gets compromised so it also acts as a safety net. The
two parties can confidently and securely communicate
without worrying about revealing or transmitting data to
other unauthorised or unintended parties. However, in
some web applications or in cloud computing/storage, it is
required that the information remain encrypted on the
external server or end-device to maintain full and
complete privacy of user data (no developer access). The
standard client-server model can be extended to preserve
the confidentiality of the data from when leaving the
client and continuing onto the end-point. The server won't
be able to decrypt or obtain any information about the
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plaintext data that was made by the client. In these
infrastructures the external server storing or processing
data from the user, must be kept hidden from people
managing the end-device such as developers or system
administrators.

In some cases the server might require to do processing
on the user's data. As of end-2020 in the specific web
application [8] that this end-to-end encryption is
implemented, the model looks like this:

Fig. 1: Application Specific Model

User data is retrieved from an API which is subsequently
processed into the format required by the application.
Immediately after, it is encrypted and stored in a database
to then be sent to a client upon request. Is it possible to
preserve data confidentiality while also achieving
server-processing functionality? Yes. [9] However this is
yet to be considered for the E2EE construction for this
application. Regardless, it is inevitable that raw data is
received by the server from the API at some initial point.
The goal then is to minimise the existence of this sort of
data while on the server. As such the design settles on
encrypting 'data-at-rest' [10].

Acknowledging a range of different applications and
their requirements, both models described earlier and the
model in Fig. 1 can be implemented with tweaks (if
needed) of the codes that are available and referenced in
this paper for the construction of an end-to-end encryption
scheme.

3. Quantum-Resistance
The security of current pre-quantum encryption
algorithms rely on the hard mathematical problems of
integer factorisation and discrete logarithms [11]. With
large enough prime numbers and over carefully chosen
number sets these problems cannot be solved within a
feasible amount of time by classical computers. This is
what currently makes public key encryption methods such
as RSA and elliptic-curves cryptographically secure.

Classical computation is based on two binary states,
being 0 and 1. Quantum computation is also based on
these two states and an additional state referred to as
superposition [12]. A state of superposition allows for the
representation of many logical states simultaneously.
Classical information units are referred to as bits, while
quantum information units are called qubits. Quantum

computing is realised with the construction of quantum
circuits which are made up of quantum gates in addition
to classical logic control. These circuits still ultimately
work with 0's and 1's but its these specialised quantum
gates which facilitate the property of superposition that
allow one to write quantum algorithms that speed up
computational problem solving. A quantum algorithm can
consider multiple logical states at once which lowers the
time complexity of the problem reaching the output
solution. This is essentially what threatens public key
encryption schemes. The hard mathematical problems
underlying them that weren't previously able to be
feasibly solved by classical computers are now
theoretically able to be solved by quantum computers in a
short amount of time.

A prominent quantum algorithm called Shor's algorithm
[13] can solve the integer factorisation problem in
polynomial time. The RSA public key cryptosystem that
is widely used for encryption and distributing symmetric
keys between two parties relies on this specific problem
for its security [14]. With a sufficiently large enough
quantum computer running Shor's algorithm, this
cryptosystem is broken. RSA typically uses 1024-4096
size keys (which is the size in bits of the modulus n), but
NIST recommends using upwards of 2048 bits [15]. RSA
is quite slow and is usually used in conjunction with a
symmetric key algorithm (like AES) to provide a secure
transmission channel between parties. In practise it is
primarily used in a hybrid mode for key distribution.

RSA works with each party generating a public and
private key pair. An entity wishing to send an encrypted
message to another entity known as the receiver must
encrypt the message with the receiver's public key. Then
after sending, only the receiver is able to decrypt the
message with their private key that only they know of. If
one can somehow calculate the private key linked to the
public key that is known to everyone, then all encrypted
messages are able to be decrypted hence breaking the
cryptosystem.
To generate an RSA public and private key pair:

Alg. 1: RSA Key Generation

1. Generate two large and distinct primes, p and q.
2. Compute n = pq.
3. Compute ϕ(n) = (p-1)(q-1).
4. Choose e such that gcd(e, ϕ(n)) = 1.
5. Compute d = e-1 mod ϕ(n).

Public key ← (e, n)
Private key ← (d, n)

The best approach to breaking RSA encryption would be
to first factor n (which is public) to find the two large
primes p and q. From there ϕ(n) can be calculated, and
then d (since e is also public). Due to this, computing the
RSA decryption exponent d from the public key (e, n) and
the problem of factoring n can be considered as
computationally equivalent [16].
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To break RSA using Shor's algorithm, we can assume
that n is the product of two prime integers. The algorithm
is as follows:

Alg. 2: Shor's Algorithm (classical section) [13][17]

1. Choose a random integer x such that 1 < x < n.
2. Compute gcd(x,n).
3. If gcd(x,n) ≠ 1, then x is a factor of n. (end)
4. If gcd(x,n) = 1, then use the quantum
period-finding subroutine to find the smallest integer
r such that xr ≡ 1 mod n.
5. If r is odd, go back to step 1.
6. If xr/2 ≡ -1 mod n, go back to step 1.
7. Otherwise gcd(xr/2+1,n) and gcd(xr/2-1,n) are factors
of n.

Steps 1-3 and 5-7 can be executed sufficiently on a
classical computer using implementations of basic
arithmetic operations, the Euclidean Algorithm and
simple if statements. In the classical section, if the
random guess of x is not a factor of n, solving the
factorisation problem can be boiled down to finding the
order of the element x which is r in xr ≡ 1 mod n (step 4),
this is the period-finding problem. To solve this problem
Shor utilised quantum phase estimations and quantum
fourier transforms [18], these however won't be explained
here.

4. Lattices
Now that its shown how current pre-quantum algorithms
won't be resistant to future quantum computing attacks,
what makes other potential future encryption algorithms
resistant and safe in the quantum era? A promising and
popular contender for post-quantum cryptographic
schemes are lattice-based cryptosystems [19]. A lattice is
a set of points in n-dimensional space with a periodic
structure [20]. It is also known as the set of all integer
linear combinations of basis vectors , in
notation as:

For a 2-dimensional lattice, only 2 basis vectors are
needed to generate the entire lattice over a finite or
infinite space.

Fig. 2a: 2D Lattice Basis

Fig. 2b: 2D Lattice from Basis

A lattice can be generated by many different possible
basis vector sets [21]. In general, a good basis is one
where the vectors are short in distance and are nearly
orthogonal (or almost perpendicular). A bad basis is
where the vectors are long, very askew and too close
together. It should be mentioned that any n number of
vectors cannot be a basis to make a specific lattice as
some points will not be generated by integer linear
combinations of those n number of vectors. Examples of a
good, bad and invalid basis in a lattice are shown below.

Fig. 3: Good, Bad and Invalid Bases

4.1 Shortest Vector Problem
Lattices have many hard mathematical problems that are
deemed to be one-way functions and could be used to
construct quantum-resistant cryptosystems. The most
well-known is the shortest vector problem (SVP) which is
hard in worst-case [22]. SVP is defined as: when given
any arbitrary lattice basis (usually bad) as input, find the
shortest non-zero vector in the lattice generated. The
length of each vector is measured by a norm which is
often the Euclidean norm:

,

where represents the vector's
coordinates or cartesian values on an n-dimensional plane.
The shortest nonzero vector, also known as the successive
minima, is denoted by . In some lattice cases there
can be more than one shortest vector, however only one
value will exist for the shortest distance. In a more general
definition, represents the value of the smallest
radius in a circular area containing k linearly independent
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vectors. A variant of the shortest vector problem SVP𝛾
uses 𝛾 as an approximation factor that can be adjusted to
make the problem easier or harder. It is defined as: when
given any arbitrary lattice basis (usually bad) as input,
find a vector in the lattice generated whose length is equal
to or less than . The larger 𝛾 is, the easier the
problem is to solve as there are more vectors existing as
valid solutions in the given circular area of a lattice.

4.2 Short Integer Solution Problem
Another known hard problem in lattices is the short
integer solution problem [23], [24]. The SIS problem is
shown to be secure in average case, which is needed in
cryptographic constructions for randomised instances.
SISn,q,m,𝛽 is defined as: given an m×n matrix A that
contains random entries from Zq, find a vector x whose
norm is bounded by 𝛽 and which results in a zero vector
when taking the matrix-vector product of A and x.

Fig. 4: Short Integer Solution Problem

Denoted as where , ,
and matrix-vector mulitplication [25] is:

Ax is essentially a system of linear equations where the
vector (x1, x2, ..., xn) are values that satisfy all the
equations in the system. This problem is able to be solved
using Gaussian elimination [26] which can find a solution
for any arbitrary vector x, but will give a relatively large
value. But for a 'short' solution for vector x, meaning the
entries are -1, 0, 1, etc, this problem is difficult. If the
parameters are large enough, then the SIS problem makes
a one-way function. It is easy to compute the result of

, but it is difficult to do the
inverse operation where given A and y, find a 'short'
vector x.

Relating the short integer solution problem back to
lattices, the matrix can be used to construct a
'q-ary' or modulo lattice. The modulo lattice can then
be used in a tiled or block-like manner to generate a full
unbounded lattice. Because of this, generating a random
lattice can be reduced to randomly generating a matrix

where denotes random uniform
sampling, n is the dimension of the lattice and m is the
number of equations. Using the matrix A with the SIS
problem: , results in a system of linear equation(s)
that all pass through the origin on a cartesian plane of
n-dimension. Below is a 2-dimensional example for a
matrix which is modulo 7:

Fig. 5a: Linear Equation from Matrix A

The matrix is which corresponds to the
linear equation (plotted above). Taking the
modulus q of all integer points that reside on the line and
plotting them on the plane will give you the q-ary lattice
base (not to be confused with lattice basis).

Fig. 5b: Q-ary Lattice Base

Using the q-ary lattice base as a repeating tile, the rest of
the lattice can be generated [27].

Fig. 5c: Q-ary Lattice from Base

It should be mentioned that there needs to be some
constraints on the m×n variables of matrix A for this to
work. Particularly that m < n: there should not be more

4



equations m than the dimension n. Another similar
constraint also seen is: n > m log q [28].

4.3 Learning With Errors Problem
Adding on from the short integer solution problem leads
to the learning with errors (LWE) problem [29], [30]. This
problem is used to construct a public key cryptosystem.
Let be the quotient group where mod 1 of any
real number will result with a value in the segment [0, 1).
Let be a fixed 'secret' vector and be a
public matrix that represents a system of linear equations.
Let be a probability distribution (typically a
Gaussian-like distribution) over . Some noise or error
is denoted by from . Calculate .
LWEq, χ is defined as when given access to many samples
of , find that satisfies the system
of equations. This problem is hard in average case like
with the short integer solution problem. To visualise how
the problem looks like:

Fig. 6: Learning with Errors

The dotted lines represent what a sample from
corresponds to in the system of linear

equations shown above. Using the LWE problem to
construct PKE, the public key will be (A, B) and the secret
key will be s. To encrypt:

where is a single bit and is the
ciphertext pair which encrypts the bit. To decrypt:

where , or if . This
encryption works bit-by-bit giving "1-bit security". An
adversary can't distinguish between a bit that was
encrypted in comparison with a randomly chosen one by
more than a negligible probability. By having a 1-bit
secure PKE, you can then construct an IND-CPA secure
public key encryption scheme [31]. For the
implementation of the post-quantum end-to-end
encryption scheme in this paper, the NIST PQC finalist
CRYSTALS-KYBER is used.

5. CRYSTALS-KYBER
CRYSTALS-KYBER (version 3) is an IND-CCA2
post-quantum key exchange protocol. This protocol is
used to securely establish symmetric keys between two
parties using a key-encapsulation mechanism (KEM)
[32]. It is based on the learning with errors problem in
module lattices (M-LWE). Kyber's original design comes
in 512, 768, 1024 security strengths. Kyber-768 will
distribute a 256-bit symmetric key between two parties
which is a sufficient key size to be used with symmetric
key encryption (eg. AES).

5.1 Key Encapsulation Mechanism
Starting with the high-level functionality of Kyber is the
Key Encapsulation Mechanism (KEM) which contains
three core functions:

1.
Key Generation

2.
Encrypt/Encapsulate

3.
Decrypt/Decapsulate

These represent the typical functionality of public key
encryption. A party wanting to receive an encrypted
message, will generate a public and private key pair, the
private key is kept secret. The public key is known and
used by senders to encrypt their message into a ciphertext.
The ciphertext is then sent to the receiver where only they
can decrypt it with their private key. The high-level
description of this protocol is more specific to the context
of key exchanging and is described as a KEM. The
intended symmetric key is 'encapsulated' by encrypting
with the public key. Corresponding with decrypting a
ciphertext in PKE, the key is then 'decapsulated' by
decryption with the private key.

Fig. 7: Key Encapsulation Mechanism

The exchange between the client and the server is shown
above. In web based applications or server-client type
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communication, the server typically generates the initial
public/private key pair and sends the public key pk to the
client. The client then generates a symmetric key ss (for
'shared secret') and an encrypted version of this key c (for
'cipher') with the public key from the server. The
encrypted symmetric key is sent to the server. The server
then decrypts this with the initial private key and obtains
the same symmetric key as client. It can also work
vice-versa depending on which party generates the initial
public/private key pair. After the client and server both
have the symmetric key, data can be securely sent over the
channel using the encryption standard AES-256. AES
with a key length of 256 bits is secure against future
anticipated quantum computer attacks [33]. For the rest of
this document, the Kyber-768 parameter set is analysed
and detailed.

5.2 Key Generation
The first step in generating a new public and private key
pair is generating random seeds for the public matrix A,
the secret s and the noise e. This is done by reading
random byte values {0, ..., 255} into an array 32 in length.
The 32 random byte array is then hashed using SHA3-512
to produce a 64 byte output digest. This output is then
spilt into the public seed 𝜌 (bytes 0-31) and the noise seed
𝜎 (bytes 32-63).

I. SEED GENERATION

Fig. 8a: Generating Random Seeds

The public seed is now used to generate public matrix A.
For Kyber-768, A is a 3×3 matrix that contains 256 length
mod q array of coefficients, one for each entry (9 total).
To generate each entry of the matrix, the public seed is
hashed with SHAKE-128 along with its index in the
matrix (i, j) concatenated together. SHAKE-128 is an
XOF or extendable-output function [34]. An XOF works
similar to a usual hash function but allows the output to
be of a varying length. The output in this implementation
is a 504 byte array. The array from the XOF is then put
through a sampling function that accepts or rejections
values calculated based on parsing the given byte array.
The sampling function is designed to take any length
input byte array and output a polynomial mod q of length
256. This is now entry (i, j) of matrix A. The generation of
matrix A is deterministic, so when given the public seed 𝜌,
the matrix from this should always be the same upon each
generation with the same code.

II. MATRIX A GENERATION

For each :

Fig. 8b: Generating Public Matrix A Entries

Now that matrix A has entries , it is done
initialising. Secret vectors s and noise vectors e, need to
be sampled. This is first done by using a pseudo-random
function (PRF) which takes the noise seed 𝜎 and a nonce
value N, which is a integer value that is simply
incremented each time. The output is a byte array

where 𝜂 = 2, giving a
length of 128. This byte array is then input to a function
which generates a polynomial sampled from a centered
binomial distribution (CBD). First the byte array is
converted to an array of bits, which results in a 1024
length bit array. Each 4 bits in the array is then reduced to
a single value to give a 256 length
output array. This is done by computing ,
where and . Secret s
and noise e are both sampled in the same way.

III. SECRET AND NOISE SAMPLING

Fig. 8c: Generating Secret and Noise
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Now the secret s and noise e vectors go through a
number theoretic transform (NTT) [35]. NTT
significantly speeds up the multiplication of large
polynomial rings of which is needed when doing key
computations. Each entry in the matrix A and the vectors s
and e is made of a polynomial ring denoted by

[X]/(Xn + 1) where q = 3329 and n = 256. The initial
polynomial ring is able to be reduced to smaller ones.
Efficient multiplications are then possible using these
smaller degree polynomials. In Kyber, you first start with
the reduction polynomial (X256 + 1) and reduce it into two
by finding:

(X256 + 1) = (X128 + 𝛼)(X128 - 𝛼)

this results in 𝛼2 = -1, squared to get 𝛼4 = 1, which then
gives . Reducing further:α = 4 1

(X128 + 𝛼) = (X64 + 𝛽1)(X64 - 𝛽1)

results in rearranging to get andα =  − β
1
2 β

1
= − α

since 𝛼2 = -1, substitution gives . Doing the sameβ
1

= α3

for (X128 - 𝛼) will result in . A pattern emergesβ
2

= α

where for every subsequent reduction polynomial, the

values will generally be and of the𝑦
1

= 𝑥3 𝑦
2

= 𝑥
previous reduction polynomial. For a more succinct
definition, the symbol zeta is introduced to represent the
k-th primitive root of 1 denoted as: The k-thζ

𝑘
= 𝑘 1.

primitive root of unity is some number which holds:ζ
where .ζ𝑘 = 1(𝑚𝑜𝑑 𝑞) ζ𝑙 ≠ 1(𝑚𝑜𝑑 𝑞),  1 ≤ 𝑙 < 𝑘

Following this, the previous values turn into

and . Reducingβ
1

= α3 = ζ
4
3 = ζ

8
3 β

2
= α = ζ

4
= ζ

8
the factors will be:

(𝑋128 + ζ
4
)(𝑋128 − ζ

4
)

↓
(𝑋64 + ζ

8
3)(𝑋64 − ζ

8
3)(𝑋64 + ζ

8
)(𝑋64 − ζ

8
)

This reduction is typically continued until small degree
polynomials are reached. When starting with a
polynomial of (X256 + 1), the last zeta value will be the
512-th primitive root of 1, denoted . In Kyber with qζ

512
= 3329, there isn't a primitive 512-th root of unity, so the
256-th one is taken, giving . This reduction canζ = 17
then be represented by:

𝑋256 + 1 =
𝑖=0

127

∏ (𝑋2 − ζ2𝑖+1)

(𝑋2 − ζ)(𝑋2 − ζ3)(𝑋2 − ζ5) .  .  .  (𝑋2 − ζ253)(𝑋2 − ζ255)

After reduction we now have a vector of polynomials that
are ready to be multiplied in a point-wise fashion using

modular reductions such as Barrett and Montgomery
reductions for efficient modular arithmetic calculations.
After multiplication is complete, an inverse NTT is
applied to bring the polynomials back to the standard
form to continue the rest of the computations.

The key defining computation of for the public𝐴𝑠 +  𝑒
key generation is done. This outputs a 1×3 vector of
n-degree polynomials mod q. This is then encoded with a
function that serializes the polynomials into byte arrays,
concatenates them and then appends the public seed 𝜌.
The result is a public key of length 384×3 + 32 = 1184
bytes. The secret s vector is then also encoded to make a
byte array of length 384×3 = 1152 bytes, which will be
the private key.

IV. KEY COMPUTATION

𝐴𝑠 +  𝑒 =  𝑝𝑘

Fig. 8d: Computing Public and Private Keys

The public and private keys are now ready for IND-CPA
encryption/decryption.

5.3 Encapsulation

Since the main functionality of Kyber is to distribute keys
securely between two parties, the encryption function is
more of an encapsulation of a shared secret (symmetric
key). For this, the public key is taken along with a 32 byte
message and random 32 byte array referred to as 'coins'
due to the 0's and 1's being an analogy for tosses of coins
being random. The output will be a ciphertext byte array
of length 1088.

The public key which is in byte array format needs to be
decoded back into polynomial form along with the public
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seed 𝜌 (kept in byte format). This is just the inverse of the
encoding function that converts polynomials to bytes
shown in IV. KEY COMPUTATION. Then, with the public
seed 𝜌 the transpose public matrix AT is reconstructed
similar to II. MATRIX A GENERATION except j and i are
switched around in order to produce the transpose of the
matrix necessary for inverse calculation. Now a 1×3
vector of polynomials r is sampled according to III.
SECRET AND NOISE SAMPLING. Another 1×3 vector of
polynomials e1 is sampled in the same way. Sampled
again is one polynomial which is then assigned to e2.
Next, the number theoretic transform is applied to
polynomial vector r to prepare it for efficient
multiplication. Now the ciphertext pair (c1, c2) are
calculated and encoded to form the final ciphertext that
becomes the encapsulated symmetric key.

V. ENCRYPTION

Fig 9: Encrypting Message

The polynomials of u and v are then compressed by
taking each coefficient individually and discarding some
of their low-order bits to make the ciphertext sizes
smaller. The result is then concatenated together after
encoding to byte array form and is sent as the ciphertext.

5.4 Decapsulation
Decapsulation of the symmetric key is then performed by
the initiating party (typically the server) by taking their
private key from their generated key pair and the received
ciphertext from the client. After decoding and
decompressing (u, v) back from the ciphertext, the
original message m, is calculated by v - sTu where m=1 if

v - sTu is closer to ⎡q/2⎦ than to 0, and m=0 if otherwise.
Rounding is denoted by⎡x⎦where x is any decimal point
number and rounding is to the closest integer with 0.5
values rounding up (ie: ⎡3.4⎦ ⇒ 3, ⎡3.5⎦ ⇒ 4, ⎡3.6⎦⇒ 4).

VI. DECRYPTION

Fig 10: Decrypting Message

The message bit array is then encoded to a byte array by
taking 8 bits at a time and converting them to byte form
giving a 32 length byte array message.

5.5 Fujisaki-Okomoto Transform
The scheme described above is only an IND-CPA secure
construction. To make it CCA2 secure, the scheme goes
through a Fujisaki-Okamoto transform. This requires only
the addition of some hash functions, and can be proven
secure in the random oracle model [36]. How the
transform is implemented in the key exchange algorithm
is illustrated below. Taking (pk, sk) from the IND-CPA
scheme, the new public and private keys become:

Fig. 11a: CCA2 KeyGen

To then produce a random 32 byte array representing the
symmetric key and its corrreponding
encapsulation/ciphertext:

Fig. 11b: CCA2 Encryption
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To decapsulate the ciphertext and retrieve the same 32
byte symmetric key:

Fig. 11c: CCA2 Decryption

The scheme is now providing security in an IND-CCA2
model. This ends the description of the Kyber-768
post-quanum key exchange algorithm. Now, specifics of
the implementation in the application will be covered.

6. Key Storage

Upon initialisation of the system, the server generates a
public and private key pair by Kyber's KeyGen(). The
client-side then has the server's public key hardcoded on
the frontend code to save the need of the server sending it
each time. The server keeps it's private key hidden on the
server in a file. When a client tries to authenticate for the
first time, a new user is created with the platform. A
random symmetric key is generated which is then stored
in user's database entry. This symmetric key remains
persistent throughout the life of the user's account. To
send the user this key, the client requests it via the Kyber
key exchange protocol. A temporary symmetric key is
generated by the client with Encap.(pk). After sending the
encapsulated key c, to the server for decapsulation, the
server now has the same temporary symmetric key as the
client-user. This temporary key is then used to encrypt the
main symmetric key stored on the server system's
database using AES-256 as a sort of hybrid encryption
scheme for secure key distribution. This same
establishment protocol is initiated again with the main key
being sent out to the user if:

a) they lose the key on their end-device or,
b) log in from a new device or browser.

In most cases the main symmetric key stays persistent on
the end-device. The client will store the symmetric key

locally in their web browser with
window.localStorage [37]. At this point in
development, all user symmetric keys will be stored in the
backend database, this means developers and anyone with
root-access to the backend server is able to view the user's
symmetric keys and decrypt stored ciphertexts. Future
development of the application will look into solutions
that prevent access to user keys from the internal
programming team for further security.

7. Server Implementation

This implementation is for a backend written in Go
language. An implemented version of Kyber called
Kyber-K2SO by Nadim Kobeissi [38] is used as a base
code for the server implementation. The Kyber-768
security level is used. The code has since been updated to
version 3 of Kyber and is available here.

https://github.com/symbolicsoft/kyber-k2so

The API is simple to use with just needing to import the
module and using the functions as:

sk, pk, _ := kyberk2so.KemKeypair768()
c, ssA, _ := kyberk2so.KemEncrypt768(pk)
ssB, _ := kyberk2so.KemDecrypt768(c, sk)

AES-256 Go crypto library [39] is also used for the
symmetric key encryption/decryption for the server-side.
The block mode used in this AES is CBC mode and the
padding standard used is PKCS7. Exact use of the
encrypting code can be seen here as an example [40].

8. Client Implementation
All client-side websites are made being compatible with
JavaScript. Especially a lot of web apps are written in
JavaScript based frameworks such as React, Vue.js, etc
[41]. For this application, the frontend is built with React.
NPM [42] is a supported software registry containing
many code packages from developers all over the world
that contribute free, open source code to assist others with
developing their projects. This registry is utilised to bring
Kyber-768 easily into the React frontend application. The
JavaScript code has been setup into an NPM package
which is able to be imported and used for key exchanging.
Only the 768 parameter set of Kyber is available in
JavaScript at this point as it is sufficient enough to
construct a secure transmission channel with the backend
server (which is also running Kyber-768). The code can
be viewed in the first link [43], while the second link [44]
is for the NPM package version:

https://github.com/antontutoveanu/crystals-kyber-javascript

https://www.npmjs.com/package/crystals-kyber
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Using the JavaScript code via NPM in React is simple as
with the Go implementation API:

var pk_sk = K768_KeyGen();
var pk = pk_sk[0];
var sk = pk_sk[1];

var c_ss = K768_Encrypt(pk);
var c = c_ss[0];
var ss1 = c_ss[1];

var ss2 = K768_Decrypt(c,sk);

After the symmetric key is established, the aes-js npm
package library [45] is used with CBC block mode and
the PKCS7 padding scheme [46] to encrypt/decrypt data
to and from the server. By having key exchange and
encryption/decryption possible on both the client-side
(frontend) and the server-side (backend), this leads to an
end-to-end encryption implementation for online and
web-based application platforms.

9. Verification of Code
Since these are all new implementations based off the
original submitted C code to NIST PQC standardisation.
To check these against each other to show they produce
the same results is important. The original Kyber code
(written in C) comes with test run case files with
determinstically generated executions of itself. These can
then be used to ensure compatibility across other
implementations. Testing the Go implementation is
already confirmed using go test -v. This was done by
taking the ss, sk, c values of each test run from the
original code and then passing it to the Go code to
perform:

ssB, _ := kyberk2so.KemDecrypt768(c, sk)

Then, a simple check whether the produced ssB is the
same as the ss value from the original implementation is
enough to confirm a successful test case run. This is run
100 times to test all cases in the provided
PQCkemKAT_2400.rsp file. The JavaScript test function
is written in a similar way testing the Kyber-768 outputs.
The test is run for all 100 runs same as in
PQCkemKAT_2400.rsp for the Go code. All tests are
successful and are available in the GitHub repositories to
replicate the same results. Additionally, in the application,
the decryption seems to work consistently on the
client-side showing that the whole key exchange and
encryption process is working as should.

10. Performance
The application currently only needs to encrypt relatively
low amounts of data. A typical user account will have
150,000 bytes (0.15mb) of data that needs to be
decrypted. Since the server's public key is already

hardcoded on the frontend, there is no need to send it out
which reduces some performance time. The performance
test carried out will include the client requesting the main
symmetric key (the key re-establishment protocol) and the
time taken to decrypt all data being sent from the server
onto the frontend. The data recorded is the isolated
running time for the specific key exchange and decryption
code executed on a local device. This factors out the
varying internet speeds and connection lag from a
live-online performance for more consistent and accurate
run-time results. Simple benchmarks were taken with
performance.now()for JavaScript and time.Now()
for Go.

Fig. 12: Benchmarks

The results obtained show that there is no significant
increase in run-time of the cryptographic processes of the
end-to-end encryption. The post-quantum setup will only
add an extra 23% of the time the pre-quantum counterpart
will take. This is quite quick in the context of web
applications and can be considered negligible. Key
establishment is performed with RSA-2048 [47][48]
(resp. KYBER-768) for pre-quantum (resp.
post-quantum) setup. Pre-quantum symmetric
encryption/decryption is performed with AES-128 while
AES-256 is used for post-quantum setup. This is just one
comparison between implemented codes of a pre-quantum
and post-quantum scheme. Specifics of host device,
hardware and variations in code can alter run-time on
different platforms. The device used is an iMac (27-inch,
Mid 2011) model with 2.7 GHz Intel Core i5 processor
and AMD Radeon HD 6770M 512 MB graphics. The
codes used are the ones mentioned in this paper.

11. Conclusion/Future Work
Based of the work done in this paper, the shift to a
quantum-resistant cryptographic era is looking promising.
There's definitely room for continuation: a more in depth
understanding of the mysterious inner workings of
CRYSTALS-KYBER, further analysis for implementation
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vulnerabilities (one has already been found in the Go
implementation [49] and has since been patched),
enhancing security of key storage, testing for larger data
sizes, code optimisations to name a few. Another
important future extension to the transmission channel is
the addition of a HMAC for message authentication as
used in WhatsApp's E2EE construction [50]. This
construction however is not post-quantum secure, but
some of its ideas are suitable to be borrowed for other
E2EE aspects in the aforementioned application.

The main purpose of this paper is to document a current
implementation to assist in providing future developers
with a starting point for making the transition to
post-quantum security for their web applications.
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