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Some New Constructions of Generalized Plateaued Functions†
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Abstract

Plateaued functions as an extension of bent functions play a significant role in cryptography, coding

theory, sequences and combinatorics. In 2019, Hodžić et al. [14] designed Boolean plateaued functions

in spectral domain and provided some construction methods in spectral domain. However, in their

constructions, the Walsh support of Boolean s-plateaued functions in n variables, when written as

a matrix of order 2n−s × n, contains at least n − s columns corresponding to affine functions on

Fn−s
2 . They proposed an open problem to provide constructions of Boolean s-plateaued functions in

n variables whose Walsh support, when written as a matrix, contains strictly less than n − s columns

corresponding to affine functions. In this paper, we focus on the constructions of generalized s-plateaued

functions from Vn to Zpk , where Vn is an n-dimensional vector space over Fp, p is a prime, k ≥ 1

and n + s is even when p = 2. Firstly, inspired by the work of Hodžić et al., we give a complete

characterization of generalized plateaued functions with affine Walsh support in spectral domain and

provide some construction methods of generalized plateaued functions with (non)-affine Walsh support

in spectral domain. In our constructions of generalized s-plateaued functions with non-affine Walsh

support, the Walsh support, when written as a matrix, can contain strictly less than n − s columns

corresponding to affine functions. When p = 2, k = 1, these constructions provide an answer to

the open problem in [14]. Secondly, we provide a generalized indirect sum construction method of

generalized plateaued functions, which can also be used to construct (non)-weakly regular generalized

bent functions. In particular, we show that the canonical way to construct Generalized Maiorana-

McFarland bent functions can be obtained by the generalized indirect sum construction method and we

illustrate that the generalized indirect sum construction method can be used to construct bent functions

not in the completed Generalized Maiorana-McFarland class. Furthermore, based on this construction

method, we give constructions of plateaued functions in the subclass WRP of the class of weakly regular

plateaued functions and vectorial plateaued functions.
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I. INTRODUCTION

Boolean bent functions introduced by Rothaus [35] play an important role in cryptography,

coding theory, sequences and combinatorics. In 1985, Kumar et al. [16] generalized Boolean

bent functions to bent functions over finite fields of odd characteristic. Due to the importance of

bent functions, they have been studied extensively. There is an exhaustive survey [6] and books

[3], [21] for bent functions and generalized bent functions. Recently, generalized bent functions

from Vn to Z2k have been generalized to generalized bent functions from Vn to Zpk , where p is

a prime [30]. For more characterizations and constructions of generalized bent functions from

Vn to Zpk , we refer to [11], [12], [18]–[20], [22], [30], [33], [36], [37].

In 1993, Carlet [5] introduced Boolean partially bent functions which is an extension of

Boolean bent functions. As an extension of Boolean partially bent functions, Zheng and Zhang

[38] introduced Boolean plateaued functions. Surveys on Boolean plateaued functions can be

found in [2], [3], [21]. The notion of Boolean partially bent functions and Boolean plateaued

functions have been generalized to p-ary partially bent functions and p-ary plateaued functions

for any odd prime p (see [7], [8]). Then they have been studied in [7], [8], [15], [24], [25],

[32]. In [15], Hyun et al. searched for explicit criteria for constructing p-ary plateaued func-

tions. More specifically, for p-ary s-plateaued functions, they derived an explicit form for the

Walsh transform, obtained an upper bound on the degree and provided explicit criteria for the

existence. In [24], [25], Mesnager et al. presented characterizations of p-ary plateaued functions

in terms of the second-order derivatives and the moments of Walsh transform, which allow us

a better understanding of the structure of p-ary plateaued functions. Apart from the desirable

cryptographic properties, plateaued functions play a significant role in coding theory, sequences

and combinatorics (see e.g. [1], [23], [27], [28], [31]). In [29], Mesnager et al. introduced

generalized plateaued functions, which is an extension of plateaued functions. As far as we know,

there are only a few papers on generalized plateaued functions [26], [29], [34] up to now. We

review the main contributions for generalized plateaued functions given in these papers. In [29],
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first of all, the authors gave an explicit form for the Walsh transform of generalized plateaued

functions. They then investigated the relations between generalized plateaued functions and

plateaued functions by the decomposition of generalized plateaued functions. In particular, they

used admissible plateaued functions to characterize generalized plateaued functions by means

of their components. Finally, they provided for the first time two constructions of generalized

Boolean plateaued functions. In [34], for generalized Boolean plateaued functions, the authors

provided two constructions and characterized them in terms of the second-order derivatives and

the fourth moment of Walsh transform. In [26], a special class of generalized plateaued functions

called Z2k-plateaued functions was studied in terms of so called (c, s)-plateaued functions. In

particular, the authors gave characterizations of (2t, s)-plateaued functions in terms of the second-

order derivatives and the fourth moment of Walsh transform, which generalize the results given in

[34]. And they pointed out that even though the paper [26] only stated the results for characteristic

2, similar results can be obtained for odd characteristic. For generalized p-ary plateaued functions,

the constructions in [29], [34] are for p = 2 and there are lacks of constructions for any prime

p. The main contribution of this paper (which will be introduced below) is to provide some

constructions of generalized p-ary plateaued functions for any prime p.

Recently, Hodžić et al. [14] designed Boolean plateaued functions in spectral domain. Design-

ing plateaued functions in spectral domain is based on the fact that any function and its Walsh

transform are mutually determined. In this paper, we focus on the constructions of generalized

s-plateaued functions from Vn to Zpk , where Vn is an n-dimensional vector space over Fp, p is

a prime, k ≥ 1 and n+ s is even when p = 2. Firstly, inspired by the work of Hodžić et al., we

give a complete characterization of generalized plateaued functions with affine Walsh support and

provide some construction methods of generalized plateaued functions with (non)-affine Walsh

support in spectral domain. As pointed out in [14], for the constructions in spectral domain given

in [14], the Walsh support of Boolean s-plateaued functions in n variables, when written as a

matrix, contains at least n − s columns corresponding to affine functions on Fn−s2 . And they

proposed an open problem (Open Problem 2) to provide constructions of Boolean s-plateaued

functions in n variables whose Walsh support, when written as a matrix, contains strictly less than

n− s columns corresponding to affine functions. In our constructions of generalized s-plateaued

functions with non-affine Walsh support, the Walsh support, when written as a matrix, can

contain strictly less than n− s columns corresponding to affine functions. When p = 2, k = 1,
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these constructions provide an answer to Open Problem 2 in [14]. Secondly, we provide a

generalized indirect sum construction method of generalized plateaued functions, which can

also be used to construct (non)-weakly regular generalized bent functions. In particular, we

show that the canonical way to construct Generalized Maiorana-McFarland bent functions can

be obtained by the generalized indirect sum construction method and we illustrate that the

generalized indirect sum construction method can be used to construct bent functions not in

the completed Generalized Maiorana-McFarland class. Furthermore, based on this construction

method, we give constructions of plateaued functions in the subclass WRP of the class of weakly

regular plateaued functions and vectorial plateaued functions.

The rest of the paper is organized as follows. In Section II, we introduce the needed definitions

and results related to generalized plateaued functions. In Section III-A, we give a necessary

and sufficient condition of constructing generalized plateaued functions in spectral domain. In

Section III-B, we give a complete characterization of generalized plateaued functions whose

Walsh support is an affine subspace. In Section III-C, we provide some construction methods

of generalized plateaued functions with (non)-affine Walsh support. In Section IV, we give a

generalized indirect sum construction method of generalized plateaued functions and based on

this construction method, we give constructions of plateaued functions in the subclass WRP of

the class of weakly regular plateaued functions and vectorial plateaued functions. In Section V,

we make a conclusion.

II. PRELIMINARIES

For any complex number z = a+b
√
−1, let |z| =

√
a2 + b2. For any finite set S, let |S| denote

the size of S. Throughout this paper, let Zpk be the ring of integers modulo pk, ζpk = e
2π
√
−1

pk be

the complex primitive pk-th root of unity, Fnp be the vector space of the n-tuples over Fp, Fpn

be the finite field with pn elements and Vn be an n-dimensional vector space over Fp, where p

is a prime and k, n are positive integers. The classical representations of Vn are Fnp and Fpn . For

a, b ∈ Vn, let 〈a, b〉 denote a (nondegenerate) inner product in Vn. When a = (a1, . . . , an), b =

(b1, . . . , bn) ∈ Fnp , let 〈a, b〉 = a · b =
∑n

i=1 aibi. When a, b ∈ Fpn , let 〈a, b〉 = Trn1 (ab),

where Trn1 (·) is the absolute trace function. When Vn = Vn1 × · · · × Vns(n =
∑s

i=1 ni), let

〈a, b〉 =
∑s

i=1〈ai, bi〉, where a = (a1, . . . , as), b = (b1, . . . , bs) ∈ Vn. Let GL(n,Fp) denote the

group formed by all invertible matrices over Fp of size n× n.
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A function f from Vn to Zpk is called a generalized p-ary function, or simply p-ary function

when k = 1. A p-ary function L : Vn → Fp is called a linear function if L(ax + by) =

aL(x) + bL(y) for any a, b ∈ Fp and x, y ∈ Vn. All linear functions from Vn to Fp form an

n-dimensional linear space Ln and {〈αi, x〉, 1 ≤ i ≤ n} is a basis of Ln, where {αi, 1 ≤ i ≤ n}

is a basis of Vn. If p-ary function A : Vn → Fp is the sum of a linear function and a constant,

then A is called an affine function.

The Walsh transform of a generalized p-ary function f : Vn → Zpk is the function Wf from

Vn to Z[ζpk ] (Z[ζpk ] is the ring of integers in cyclotomic field Q(ζpk)):

Wf (a) =
∑
x∈Vn

ζ
f(x)

pk
ζ−〈a,x〉p , a ∈ Vn. (1)

The generalized p-ary function f can be recovered by the inverse transform

ζ
f(x)

pk
=

1

pn

∑
a∈Vn

Wf (a)ζ〈a,x〉p , x ∈ Vn. (2)

The multiset {Wf (a), a ∈ Vn} is called the Walsh spectrum of f . The set Sf = {a ∈ Vn :

Wf (a) 6= 0} is called the Walsh support of f . Functions f1, . . . , fm are called pairwise disjoint

spectra functions if Sfi ∩ Sfj = ∅ for any i 6= j.

A generalized p-ary function f : Vn → Zpk is called a generalized p-ary s-plateaued function,

or simply p-ary s-plateaued function when k = 1 if |Wf (a)| = p
n+s
2 or 0 for any a ∈ Vn. If

s = 0, the generalized p-ary 0-plateaued function f is just the generalized p-ary bent function

and Sf = Vn. When p = 2, k = 1, if f : Vn → Zpk is an s-plateaued function, then n + s is

even.

For generalized s-plateaued functions f : Vn → Zpk , there is a basic property: |Sf | = pn−s,

which is obtained by Parseval identity
∑

x∈Vn |Wf (x)|2 = p2n. In [29], Mesnager et al. have

shown that the Walsh transform of a generalized p-ary s-plateaued function f : Vn → Zpk

satisfies that for any a ∈ Sf , when p = 2 and n + s is even, Wf (a) = 2
n+s
2 ζ

f∗(a)

2k
, and when p

is an odd prime,

Wf (a) =

 ±pn+s2 ζ
f∗(a)

pk
if n+ s is even or p ≡ 1(mod 4),

±
√
−1p

n+s
2 ζ

f∗(a)

pk
if n+ s is odd and p ≡ 3(mod 4),

where f ∗ is a function from Sf to Zpk . We call f ∗ the dual function of f .
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In the sequel, if f : Vn → Zpk is a generalized s-plateaued function with dual function f ∗,

define function µf as

µf (a) = p−
n+s
2 ζ
−f∗(a)

pk
Wf (a), a ∈ Sf . (3)

If p ≡ 1(mod 4) or p ≡ 3(mod 4) and n + s is even, then µf is a function from Sf to {±1}.

If p ≡ 3(mod 4) and n + s is odd, then µf is a function from Sf to {±
√
−1}. If p = 2 and

n + s is even, then µf (x) = 1, x ∈ Sf . For a generalized bent function f : Vn → Zpk , that is,

generalized 0-plateaued function, if µf is a constant function, then f is called weakly regular,

otherwise f is called non-weakly regular. In particular, if µf (x) = 1, x ∈ Vn, f is called regular.

In [23], Mesnager et al. introduced the notion of (non)-weakly regular plateaued functions. For

an s-plateaued function f : Vn → Fp, if µf is a constant function, then f is called weakly

regular, otherwise f is called non-weakly regular. In particular, if µf (x) = 1, x ∈ Sf , f is called

regular.

If f : Vn → Zpk is a generalized n-plateaued function, then |Sf | = 1 and it is easy to obtain

f(x) = pk−1〈a, x〉+ b for some a ∈ Vn, b ∈ Zpk by the inverse transform (2). In this paper, we

study generalized s-plateaued functions f : Vn → Zpk , where 0 ≤ s < n, p is prime, k ≥ 1 and

n+ s is even when p = 2.

III. CONSTRUCTING GENERALIZED PLATEAUED FUNCTIONS IN SPECTRAL DOMAIN

In this section, we provide some construction methods of generalized s-plateaued functions

in spectral domain, where s ≥ 1.

To this end, we fix some notation unless otherwise stated. Let m be an arbitrary positive

integer. Define the notation of lexicographic order ≺: a ≺ b if
∑m

i=1 p
m−iai <

∑m
i=1 p

m−ibi,

where a = (a1, . . . , am), b = (b1, . . . , bm) ∈ Fmp . Define

vi =
m∑
j=1

vi,jαj, 0 ≤ i ≤ pm − 1, (4)

where {α1, . . . , αm} is some fixed basis of Vm over Fp and {(v0,1, . . . , v0,m), . . . , (vpm−1,1, . . . ,

vpm−1,m)} is the lexicographic order of Fmp . When Vm = Fmp , we let α1 = (1, 0, . . . , 0, 0) ∈

Fmp , . . . , αm = (0, 0, . . . , 0, 1) ∈ Fmp , that is, {v0, . . . , vpm−1} denotes the lexicographic order of

Fmp . For a p-ary function f : Vm → Fp, define its true table

Tf = (f(v0), . . . , f(vpm−1))T , (5)
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where MT denotes the transpose of matrix M . Let δ be the Kronecker delta function, that is,

δ(i, j) =

 1 if i = j,

0 if i 6= j.

A. A Necessary and Sufficient Condition

In this subsection, inspired by [14] and based on the explicit form for the Walsh transform of

generalized plateaued functions given in [29], we provide a necessary and sufficient condition

of constructing generalized plateaued functions in spectral domain.

Suppose S ⊆ Fnp with size pm is ordered as S = {w0, w1, . . . , wpm−1}. For any a ∈ Fnp , define

ψa from Vm to Fp:

ψa(vi) = a · wi, 0 ≤ i ≤ pm − 1, (6)

where vi is defined by (4).

Under notation as above we have the following proposition:

Proposition 1. Let p be a prime. Let n, k, s(< n) be positive integers and n + s be even for

p = 2. Let S be a subset of Fnp with size pn−s and be ordered as S = {w0, w1, . . . , wpn−s−1}. Let

d be a function from Vn−s to Zpk . Let µ be a function from Vn−s to {±1} if p ≡ 1(mod 4) or

p ≡ 3(mod 4) and n+ s is even, µ be a function from Vn−s to {±
√
−1} if p ≡ 3(mod 4) and

n+s is odd and µ(x) = 1, x ∈ Vn−s if p = 2 and n+s is even. Define function W : Fnp → Z[ζpk ]

as

W (a) = p
n+s
2

pn−s−1∑
i=0

δ(a, wi)µ(vi)ζ
d(vi)

pk
. (7)

Then W : Fnp → Z[ζpk ] is the Walsh transform of a generalized s-plateaued function f : Fnp → Zpk

if and only if (p
s−n
2

∑
x∈Vn−s µ(x)ζ

d(x)+pk−1ψa(x)

pk
)p
k

= 1 for any a ∈ Fnp , where ψa is defined by

(6).

Proof: First by the well-known fact that
√
p ∈ Z[ζp] if p ≡ 1(mod 4) and

√
−1
√
p ∈ Z[ζp]

if p ≡ 3(mod 4), it is easy to see that the function W defined by (7) is a function from Fnp to

Z[ζpk ].

If W : Fnp → Z[ζpk ] is the Walsh transform of a generalized s-plateaued function f : Fnp → Zpk ,

by the inverse transform (2) we have
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ζ
f(a)

pk
=

1

pn

pn−s−1∑
i=0

p
n+s
2 µ(vi)ζ

d(vi)

pk
ζa·wip

= p
s−n
2

pn−s−1∑
i=0

µ(vi)ζ
d(vi)+p

k−1ψa(vi)

pk

= p
s−n
2

∑
x∈Vn−s

µ(x)ζ
d(x)+pk−1ψa(x)

pk
,

hence (p
s−n
2

∑
x∈Vn−s µ(x)ζ

d(x)+pk−1ψa(x)

pk
)p
k

= 1 for any a ∈ Fnp .

Conversely, suppose (p
s−n
2

∑
x∈Vn−s µ(x)ζ

d(x)+pk−1ψa(x)

pk
)p
k

= 1 for any a ∈ Fnp . Then there is

a unique generalized function f : Fnp → Zpk such that p
s−n
2

∑
x∈Vn−s µ(x)ζ

d(x)+pk−1ψa(x)

pk
= ζ

f(a)

pk
.

The function W is the Walsh transform of f . Indeed,

Wf (a) =
∑
x∈Fnp

(p
s−n
2

∑
y∈Vn−s

µ(y)ζ
d(y)+pk−1ψx(y)

pk
)ζ−a·xp

= p
s−n
2

∑
x∈Fnp

pn−s−1∑
i=0

µ(vi)ζ
d(vi)+p

k−1x·wi
pk

ζ−a·xp

= p
s−n
2

pn−s−1∑
i=0

µ(vi)ζ
d(vi)

pk

∑
x∈Fnp

ζ(wi−a)·x
p .

If a /∈ S = {w0, w1, . . . , wpn−s−1}, then Wf (a) = 0. If a = wi for some 0 ≤ i ≤ pn−s − 1, then

Wf (a) = p
n+s
2 µ(vi)ζ

d(vi)

pk
. Hence, Wf (a) = W (a) for any a ∈ Fnp and Sf = S, |Wf (a)| = p

n+s
2

for any a ∈ Sf , that is, W is the Walsh transform of f and f is a generalized s-plateaued

function.

Remark 1. Proposition 1 provides a necessary and sufficient condition of constructing general-

ized plateaued functions in spectral domain. If the condition of Proposition 1 is satisfied, then

one can obtain function f by the inverse transform (2).

Let WK denote the group of roots of unity of cyclotomic field K = Q(ζpk), then WK =

{ζ i
2k

: 0 ≤ i ≤ 2k − 1} if p = 2 and WK = {±ζ i
pk

: 0 ≤ i ≤ pk − 1} if p is an odd prime.

Let p∗ =
(
−1
p

)
p if p is an odd prime, where

(
−1
p

)
= (−1)

p−1
2 denotes the Legendre symbol

and p∗ = 2 if p = 2. By the knowledge on cyclotomic field Q(ζpk) (see Lemma 24 of [29]),
α√
p∗m
∈ WK if α ∈ Z[ζpk ] with |α| = p

m
2 , where m is a positive integer and m is even if
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p = 2. Then it is easy to verify that the necessary and sufficient condition in Proposition 1 can

be written in the following form.

Proposition 2. With the same notation as in Proposition 1.

(1) When p = 2 and n + s is even, the function W : Fnp → Z[ζpk ] defined by (7) is

the Walsh transform of a generalized s-plateaued function f : Fnp → Zpk if and only if

|
∑

x∈Vn−s ζ
d(x)+pk−1ψa(x)

pk
| = p

n−s
2 for any a ∈ Fnp .

(2) When p is an odd prime, the function W : Fnp → Z[ζpk ] defined by (7) is the Walsh transform

of a generalized s-plateaued function f : Fnp → Zpk if and only if |
∑

x∈Vn−s µ(x)ζ
d(x)+pk−1ψa(x)

pk
| =

p
n−s
2 and (p

s−n
2

∑
x∈Vn−s µ(x)ζ

d(x)+pk−1ψa(x)

pk
)p
k 6= −1 for any a ∈ Fnp .

By Proposition 1, we obtain the following corollary.

Corollary 1. With the same notation as in Proposition 1. For any a ∈ Fnp , define ga(x) =

d(x) + pk−1ψa(x), x ∈ Vn−s. If for any a ∈ Fnp , ga : Vn−s → Zpk is a generalized bent function

and there exists a constant u independent of a such that µga(x) = u, x ∈ Vn−s, where µga

is defined by (3), let µ(x) = u−1, x ∈ Vn−s. Then the function W : Fnp → Z[ζpk ] defined by

(7) is the Walsh transform of a generalized s-plateaued function f : Fnp → Zpk . Furthermore,

f(a) = g∗a(0), a ∈ Fnp , where g∗a is the dual function of ga.

Proof: First it is easy to see that the function µ satisfy the condition of Proposition 1. For

any a ∈ Fnp , ∑
x∈Vn−s

µ(x)ζ
d(x)+pk−1ψa(x)

pk
= u−1Wga(0) = u−1 · up

n−s
2 ζ

g∗a(0)

pk
= p

n−s
2 ζ

g∗a(0)

pk
,

where g∗a is the dual function of ga. So (p
s−n
2

∑
x∈Vn−s µ(x)ζ

d(x)+pk−1ψa(x)

pk
)p
k

= 1. Hence by

Proposition 1 and its proof, the function W : Fnp → Z[ζpk ] defined by (7) is the Walsh transform

of a generalized s-plateaued function f : Fnp → Zpk and f(a) = g∗a(0) for any a ∈ Fnp .

B. Characterization of Generalized Plateaued Functions with Affine Walsh Support in Spectral

Domain

In this subsection, we give a complete characterization of generalized plateaued functions

whose Walsh support is an affine subspace in spectral domain, which generalizes the case of

Boolean plateaued functions [14].
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First we need a lemma, which is a generalization of the results in the proof of Lemma 3.1 of

[13].

Lemma 1. Let p be a prime. Suppose E ⊆ Fnp is an m-dimensional linear subspace over Fp
and E = {e0, e1, . . . , epm−1} is the lexicographic order of E. Then {ep0 , ep1 , . . . , epm−1} is a

basis of E and ei = viR for any 0 ≤ i ≤ pm − 1, where R is the matrix whose row vectors are

epm−1 , epm−2 , . . . , ep0 and {v0, . . . , vpm−1} is the lexicographic order of Fmp .

Proof: Let {α1, α2, . . . , αm} be a basis of E over Fp. For the matrix whose row vectors are

α1, α2, . . . , αm, by using elementary row operations, we can get the row echelon matrix

R =



0 . . . 0 1 ∗ . . . ∗ 0 ∗ . . . ∗ . . . 0 ∗ . . . ∗ 0 ∗ . . . ∗

0 . . . 0 0 0 . . . 0 1 ∗ . . . ∗ . . . 0 ∗ . . . ∗ 0 ∗ . . . ∗

. . . . . .

0 . . . 0 0 0 . . . 0 0 0 . . . 0 . . . 1 ∗ . . . ∗ 0 ∗ . . . ∗

0 . . . 0 0 0 . . . 0 0 0 . . . 0 . . . 0 0 . . . 0 1 ∗ . . . ∗


,

where ∗ denotes some elements in Fp, the first nonzero element in each row is one from left to

right and these ones belong to different columns and the other elements in the same column are

zero. Furthermore, if the first nonzero element of i-th row is in the ki-th column (0 ≤ i ≤ m−1),

then 0 ≤ k0 < · · · < km−1 ≤ n− 1.

Let e(m−1), e(m−2), . . . , e(1), e(0) denote the row vectors of R. Let (i0, . . . , im−1), (i′0, . . . , i
′
m−1)

∈ Fmp with (i0, . . . , im−1) ≺ (i′0, . . . , i
′
m−1), that is, there exists 0 ≤ j0 ≤ m− 1 such that ij = i′j

for any j < j0 and ij0 < i′j0 . Let s = (s0, . . . , sn−1) =
∑m−1

j=0 ije
(m−1−j), s′ = (s′0, . . . , s

′
n−1) =∑m−1

j=0 i′je
(m−1−j). By the properties of e(i)(0 ≤ i ≤ m − 1), one can get sj = s′j for any

j < kj0 and skj0 < s′kj0
, that is, s ≺ s′. Hence, the lexicographic order of (i0, . . . , im−1) ∈ Fmp

determines the lexicographic order of
∑m−1

j=0 ije
(m−1−j). So for i =

∑m−1
j=0 ijp

m−1−j , we have

ei =
∑m−1

j=0 ije
(m−1−j), where {e0, . . . , epm−1} is the lexicographic order of E. For any 0 ≤ j ≤

m− 1, let i = pj , then ei = e(j).

The following theorem gives a complete characterization of generalized plateaued functions

with affine Walsh support in spectral domain.

Theorem 1. With the same notation as in Proposition 1. Let ordered S = {w0, w1, . . . , wpn−s−1},

where wi = t+eiM for any 0 ≤ i ≤ pn−s−1, t ∈ Fnp , M ∈ GL(n,Fp) and {e0, e1, . . . , epn−s−1}
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is the lexicographic order of an (n−s)-dimensional linear subspace E ⊆ Fnp . Let d be a function

from Fn−sp to Zpk . Then the function W : Fnp → Z[ζpk ] defined by (7) is the Walsh transform of

a generalized s-plateaued function f : Fnp → Zpk if and only if d is the dual function of some

generalized bent function g and µ = µg, where µg is defined by (3). Furthermore, if d is the dual

function of some generalized bent function g and µ = µg, then f(x) = g(xMTRT ) + pk−1x · t,

x ∈ Fnp , where R is the matrix whose row vectors are epn−s−1 , epn−s−2 , . . . , ep0 .

Proof: Since E is a linear subspace, then by Lemma 1, for any a ∈ Fnp and 0 ≤ i ≤ pn−s−1,

we have ψa(vi) = a · wi = a · (t+ eiM) = a · t+ aMTRT · vi.

If d is the dual function of some generalized bent function g and µ = µg, then we have∑
x∈Fn−sp

µ(x)ζ
d(x)+pk−1ψa(x)

pk
=
∑

x∈Fn−sp

µ(x)ζ
d(x)

pk
ζa·t+aM

TRT ·x
p

= ζa·tp p
n−s
2 ζ

g(aMTRT )

pk
,

where the second equation is obtained by the inverse transform. So for any a ∈ Fnp , (p
s−n
2

∑
x∈Fn−sp

µ(x)ζ
d(x)+pk−1ψa(x)

pk
)p
k

= 1. By Proposition 1 and its proof, the function W : Fnp → Z[ζpk ]

defined by (7) is the Walsh transform of a generalized s-plateaued function f : Fnp → Zpk and

f(x) = g(xMTRT ) + pk−1x · t, x ∈ Fnp .

Conversely, if the function W : Fnp → Z[ζpk ] defined by (7) is the Walsh transform of a

generalized s-plateaued function f : Fnp → Zpk , by the proof of Proposition 1 we have

p
s−n
2

∑
x∈Fn−sp

µ(x)ζ
d(x)+pk−1ψa(x)

pk
= ζ

f(a)

pk
.

Then

p
s−n
2

∑
x∈Fn−sp

µ(x)ζ
d(x)

pk
ζaM

TRT ·x
p = ζ

f(a)−pk−1a·t
pk

. (8)

For any y ∈ Fn−sp , since R is row full rank and M is invertible, there exists ay ∈ Fnp such

that ayMTRT = y. When ayM
TRT = byM

TRT = y, by (8) we have f(ay) − pk−1ay · t =

f(by)− pk−1by · t. Define g : Fn−sp → Zpk as

g(y) = f(ay)− pk−1ay · t, y ∈ Fn−sp ,

where ay ∈ Fnp satisfies ayMTRT = y. Then for any b ∈ Fn−sp , by Equation (8),

Wg(b) =
∑

y∈Fn−sp

(p
s−n
2

∑
x∈Fn−sp

µ(x)ζ
d(x)

pk
ζayM

TRT ·x
p )ζ−b·yp
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= p
s−n
2

∑
x∈Fn−sp

µ(x)ζ
d(x)

pk

∑
y∈Fn−sp

ζy·(x−b)p

= p
n−s
2 µ(b)ζ

d(b)

pk
,

that is, g is a generalized bent function and d is the dual function of g and µg = µ.

Remark 2. It is known that plateaued functions with affine Walsh support correspond to partially

bent functions. A function f : Vn → Fp is called a partially bent function if for any a ∈ Vn,

f(x+a)−f(x), x ∈ Vn is either balanced or constant. When k = 1, Theorem 1 gives a complete

characterization of p-ary partially bent functions for any prime p, which generalizes the case

of Boolean partially bent functions [14]. Further, we give the explicit formula for partially bent

functions.

We give two examples of generalized plateaued functions with affine Walsh support by using

Theorem 1.

Example 1. Let p = 3, k = 1, n = 4, s = 1. Let d : F3
3 → F3 be defined as d(x1, x2, x3) = x1x3+

2x2
2+2x2

3, then d is the dual function of weakly regular bent function g(x1, x2, x3) = 2x2
1+2x1x3+

x2
2 with µg(x1, x2, x3) =

√
−1, (x1, x2, x3) ∈ F3

3. Let µ(x1, x2, x3) =
√
−1, (x1, x2, x3) ∈ F3

3.

Let S = {w0, . . . , w26}, where wi = (2, 0, 0, 0) + eiM , E = {e0, . . . , e26} =< (0, 0, 1, 1),

(0, 1, 0, 0), (1, 0, 0, 0) >, M =


0 0 1 1

0 1 0 0

0 0 0 1

1 0 0 2

. Then the constructed weakly regular 1-plateaued

function f : F4
3 → F3 with S as Walsh support by Theorem 1 is f(x1, x2, x3, x4) = g(x3 +

x4, x2, x1) + 2x1 = 2x1x3 + 2x1x4 + x2
2 + 2x2

3 + x3x4 + 2x2
4 + 2x1.

Example 2. Let p = 2, k = 3, n = 4, s = 2. Let d : F2
2 → Z8 be defined as d(x1, x2) = 4x1x2+x2,

then d is the dual function of generalized bent function g(x1, x2) = 4x1x2 + x1 with µg = 1.

Let µ(x1, x2) = 1, (x1, x2) ∈ F2
2. Let S = {w0, . . . , w3}, where wi = (0, 1, 1, 0) + ei and

E = {e0, . . . , e3} = < (0, 0, 1, 1), (1, 1, 0, 1) >. Then the constructed generalized 2-plateaued

function f : F4
2 → Z8 with S as Walsh support by Theorem 1 is f(x1, x2, x3, x4) = g(x1 + x2 +

x4, x3+x4)+4(x2+x3) = ((x1+x2+x4) mod 2)+4(x1x3+x1x4+x2x3+x2x4+x3x4+x2+x3+x4).

One can construct pairwise disjoint spectra generalized p-ary s-plateaued functions f0, f1, . . . ,
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fps−1 as follows. Let n, s(< n) be positive integers and n + s be even for p = 2. Let E and

E ′ be (n − s)-dimensional and s-dimensional linear subspaces of Fnp respectively and satisfy

E ⊕ E ′ = Fnp , where ⊕ denotes direct sum. Note that this can be easily done, for example, let

E =< α1, . . . , αn−s > and E ′ =< αn−s+1, . . . , αn >, where {α1, . . . , αn} is some basis of Fnp .

Suppose E ′ = {e′0, . . . , e′ps−1}. Let Si = e′i + E, 0 ≤ i ≤ ps − 1. Then Si ∩ Sj = ∅ if i 6= j and

one can construct generalized p-ary s-plateaued functions fi(0 ≤ i ≤ ps − 1) with Si as Walsh

support by using Theorem 1 and some known generalized bent functions as building blocks.

By using pairwise disjoint spectra generalized plateaued functions as building blocks, one can

get the following construction method of generalized bent functions which is an extension of

Theorem 2 of [8].

Proposition 3. Let p be a prime. Let n, s(≤ n), k be positive integers and n + s be even

for p = 2, k = 1. Let fy(y ∈ Fsp) : Fnp → Zpk be pairwise disjoint spectra generalized s-

plateaued functions. Let W and U be n-dimensional and s-dimensional linear subspaces of

Fn+s
p respectively and satisfy Fn+s

p = W ⊕ U . Define

F (xM + π(y)) = fy(x), x ∈ Fnp , y ∈ Fsp,

where M is a matrix whose row vectors form a basis of W and π is a bijection from Fsp to U .

Then F is a generalized bent function from Fn+s
p to Zpk .

Proof: First it is easy to see that F is a function from Fn+s
p to Zpk . For any a ∈ Fn+s

p ,

WF (a) =
∑
x∈Fnp

∑
y∈Fsp

ζ
fy(x)

pk
ζ−a·(xM+π(y))
p

=
∑
y∈Fsp

ζ−a·π(y)
p Wfy(aM

T ).

Since fy, y ∈ Fsp are pairwise disjoint spectra generalized s-plateaued functions, we have |Sfy | =

pn−s and Sfy ∩ Sfy′ = ∅ for any y 6= y′, which yields that Sfy , y ∈ Fsp is a partition of Fnp .

Hence for any a ∈ Fn+s
p , there exists a unique ya ∈ Fsp such that aMT ∈ Sfya and |WF (a)| =

|ζ−a·π(ya)
p Wfya (aMT )| = p

n+s
2 , that is, F is a generalized bent function.

When k = 1, W = Fnp × {0s}, U = {0n} × Fsp, M is the matrix whose row vectors are

(1, 0, . . . , 0, 0, . . . , 0), (0, 1, . . . , 0, 0, . . . , 0), . . . , (0, 0, . . . , 1, 0, . . . , 0) and π(y) = (0n, y), y ∈

Fsp, where 0n denotes the zero vector of Fnp , Proposition 3 reduces to Theorem 2 of [8]. We give

an example to illustrate Proposition 3.
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Example 3. Let p = 2, n = 5, s = 1, k = 3. Let f0, f1 : F5
2 → Z23 be defined as f0(x1, . . . , x5) =

4(x1x3 + x2x4) + 2x3 + x3x4, f1(x1, . . . , x5) = 4(x1x3 + x2x4 + x5) + 2x1x2 + x1. Then f0, f1

are disjoint spectra generalized 1-plateaued functions. Let W = F5
2 × {0}, U = {05} ×

F2, M is the matrix whose row vectors are (1, 0, . . . , 0, 0), . . . , (0, 0, . . . , 1, 0) and π(y) =

(0, . . . , 0, y), y ∈ F2. Then the constructed generalized bent function F : F6
2 → Z23 by Proposition

3 is F (x1, . . . , x6) = fx6(x1, . . . , x5) = 4(x1x3+x2x4+x5x6)+2((x1x2x6+x3(1+x6)) mod 2)+

((x3x4(1 + x6) + x1x6) mod 2).

C. Constructions of Generalized Plateaued Functions with (Non)-Affine Walsh Support in Spec-

tral Domain

In this subsection, we provide some construction methods of generalized plateaued functions

with (non)-affine Walsh support in spectral domain.

With the same notation as in Proposition 1. If f : Fnp → Zpk is a generalized s-plateaued

function constructed in spectral domain, by the proof of Proposition 1, we have Sf = S, where

ordered S = {w0, . . . , wpn−s−1}. It is easy to see that the matrix form of Sf whose row vectors

are w0, . . . , wpn−s−1 can be written as

Sf = (Tψa1 , . . . , Tψan ), (9)

where {a1, . . . , an} is the canonical basis of Fnp , that is, a1 = (1, 0, . . . , 0, 0), . . . , an = (0, 0, . . . ,

0, 1), ψai : Vn−s → Fp is defined by (6) and Tψai defined by (5) is the true table of ψai . If ψai is

an affine function, we say that the i-th column of (ordered) Sf corresponds to an affine function.

Note that if f is constructed by Theorem 1, then every column of Sf corresponds to an affine

function by Lemma 1.

In [14], Hodžić et al. designed Boolean plateaued functions with (non)-affine Walsh support in

spectral domain. As pointed out in [14], for the constructions in spectral domain given in [14], the

Walsh support of Boolean s-plateaued functions in n variables, when written as a matrix of form

(9), contains at least n − s columns corresponding to affine functions on Fn−s2 . They proposed

an open problem (Open Problem 2) to provide constructions of Boolean s-plateaued functions

in n variables whose Walsh support, when written as a matrix of form (9), contains strictly less

than n − s columns corresponding to affine functions. In our constructions of generalized s-

plateaued functions with non-affine Walsh support, the Walsh support, when written as a matrix
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of form (9), can contain strictly less than n−s columns corresponding to affine functions. When

p = 2, k = 1, these constructions provide an answer to Open Problem 2 in [14].

In the first construction method, we utilize an important class of generalized bent functions

f : Fpn × Fpn → Zpk defined as

f(x1, x2) = pk−1Trn1 (αx1π(x2)) + g(x2), (x1, x2) ∈ Fpn × Fpn ,

where α ∈ F∗pn , π is a permutation over Fpn and g is an arbitrary function from Fpn to Zpk , which

is a generalization of the well-known Maiorana-McFarland bent functions. It is easy to obtain

its dual function f ∗(x1, x2) = −pk−1Trn1 (x2π
−1(α−1x1)) + g(π−1(α−1x1)) and µf (x1, x2) =

1, (x1, x2) ∈ Fpn × Fpn .

For the sake of simplicity, we give the functions needed in the following theorem. Let n, s(< n)

be positive integers with n−s = 2m, {α1, . . . , αm} be a basis of Fpm over Fp, π be a permutation

over Fpm and L1, . . . , Ln−s : Fpm × Fpm → Fp be linearly independent linear functions. Define

d : Fpm × Fpm → Zpk as

d(x1, x2) = pk−1Trm1 (α1x1π(x2)) + g(x2), (10)

where g is an arbitrary function from Fpm to Zpk . Define ti : Fpm × Fpm → Fp, 1 ≤ i ≤ s as

ti(x1, x2) =

Trm1 (βix1π(x2)) + gi(x2) + Ai(x1, x2) if m ≥ 2,

gi(x2) + Ai(x1, x2) if m = 1,
(11)

where βi =
∑m

j=2 ci,jαj with ci,j ∈ Fp, gi is an arbitrary function from Fpm to Fp and Ai is an

arbitrary affine function from Fpm × Fpm to Fp. Define hj : Fpm × Fpm → Fp, 1 ≤ j ≤ n− s as

hj =



s∑
i=1

dj,iti + Lj + bj if I = ∅,

∑
i/∈I

dj,iti + Fj(ti1 , . . . , ti|I|) + Lj + bj if I 6= ∅,
(12)

where I = {1 ≤ i ≤ s : ti(x1, x2) only depends on variable x2} and denote I by {i1, . . . , i|I|}

if I 6= ∅, dj,i, bj ∈ Fp and Fj is an arbitrary function from F|I|p to Fp.

Theorem 2. With the same notation as in Proposition 1. Let n − s = 2m be an even positive

integer. Let d : Fpm × Fpm → Zpk be defined by (10). Let µ(x1, x2) = 1, (x1, x2) ∈ Fpm × Fpm .
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Let the matrix form of S = {w0, . . . , wpn−s−1} ⊆ Fnp be defined by

S =


w0

. . .

wpn−s−1

 = (Tt1 , . . . , Tts , Th1 , . . . , Thn−s),

where ti(1 ≤ i ≤ s) are defined by (11) and hj(1 ≤ j ≤ n − s) are defined by (12). Then the

function W : Fnp → Z[ζpk ] defined by (7) is the Walsh transform of a generalized s-plateaued

function f : Fnp → Zpk .

Proof: First we show that the size of S is equal to pn−s, that is to prove

(t1(x), . . . , hn−s(x)) = (t1(x′), . . . , hn−s(x
′)) ⇐⇒ x = x′,

where x = (x1, x2), x′ = (x′1, x
′
2) ∈ Fpm ×Fpm . If (t1(x), . . . , hn−s(x)) = (t1(x′), . . . , hn−s(x

′)),

then by the definitions of hj(1 ≤ j ≤ n − s), Lj(x) = Lj(x
′) for any 1 ≤ j ≤ n − s. Since

L1, . . . , Ln−s are linearly independent linear functions, it is easy to see that x = x′.

For any a ∈ Fnp and 0 ≤ i ≤ pn−s − 1, ψa(vi) = a · wi = a · (t1(vi), . . . , ts(vi), h1(vi), . . . ,

hn−s(vi)). When m ≥ 2, by the constructions of ti, hj(1 ≤ i ≤ s, 1 ≤ j ≤ n − s), we have

ψa(x1, x2) = Trm1 (αax1π(x2))+ga(x2)+Aa(x1, x2), where αa ∈ Fpm is some linear combination

of α2, . . . , αm, ga is some function from Fpm to Fp and Aa : Fpm × Fpm → Fp is some affine

function. Then d(x1, x2)+pk−1ψa(x1, x2) = pk−1Trm1 ((α1+αa)x1π(x2))+(g(x2)+pk−1ga(x2))+

pk−1Aa(x1, x2). Since α1, . . . , αm are linearly independent, α1+αa 6= 0. Note that if h : Vn → Zpk

is a weakly regular generalized bent function and A : Vn → Fp is an arbitrary affine function,

then h + pk−1A is also a weakly regular generalized bent function and µh+pk−1A = µh. Hence,

d+ pk−1ψa is a weakly regular generalized bent function and µd+pk−1ψa = 1 for any a ∈ Fnp . By

Corollary 1, the function W : Fnp → Z[ζpk ] defined by (7) is the Walsh transform of a generalized

s-plateaued function f : Fnp → Zpk . When m = 1, by the similar argument, we have the same

conclusion.

Theorem 2 can be seen as an extension of Theorem 4.1 of [14] in the sense of equivalence. We

give two examples by using Theorem 2. The first example gives a generalized 3-ary plateaued

function and the second example gives a Boolean plateaued function. Both of them satisfy that

every column of the matrix form of Sf defined by (9) corresponds to a non-affine function.

Furthermore, the constructed Boolean plateaued function has no nonzero linear structure. For a
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Boolean function f : Vn → F2, if f(x)+f(x+a) is a constant function, then a is called a linear

structure of f .

Example 4. Let p = 3, k = 2, n = 7, s = 3. Let z be the primitive element of F32 with

z2 + 2z+ 2 = 0. Let d : F32 ×F32 → Z32 be defined by d(x1, x2) = 3Tr2
1(zx1x2) + 2(Tr2

1(x2))2.

Let µ(x1, x2) = 1, t1(x1, x2) = Tr2
1(x1x2), t2(x1, x2) = Tr2

1(x2
2), t3(x1, x2) = Tr2

1(zx2
2), h1 =

t1+Tr2
1(x1), h2 = t22+Tr2

1(zx1), h3 = t23+Tr2
1(x2), h4 = t2+t3+Tr2

1(zx2), (x1, x2) ∈ F32×F32 .

Then by the inverse Walsh transform or by computing (d+3ψa)
∗(0), we can obtain generalized 3-

plateaued function f(b1, . . . , b3, a1, . . . , a4) = 2(((b1+a1)2a2+(2(b1+a1)+1)(a1+a2))mod 3)2+

3((b1+a1)2((b2+a4)(2a2
1+2a1a2)+(b3+a4)(a2

1+a2
2)+2a2

1a2+2a1a
2
2+a1a4+a2a3+a2a4+a2)+

(b1 + a1)((b2 + a4)(2a2
1 + a1a2 + a2

2) + (b3 + a4)(2a2
1 + 2a1a2) + 2a2

1a2 + 2a1a
2
2 + 2a1a3 + 2a1a4 +

2a2a3+a2a4+a2)+2a2
1a

2
2a3+(b2+a4)(a1a2+2a2

2)+(b3+a4)(2a2
1+a1a2+a2

2)+a2
1a2+a2

1a3+a1a
2
2+

a2
2a3 +a1a3 +a1a4 +a2a3 +2a2a4 +a2) from F7

3 to Z32 . Since ti(1 ≤ i ≤ 3), hj(1 ≤ j ≤ 4) are all

non-affine functions and the matrix form of Sf defined by (9) is Sf = (Tt1 , . . . , Tt3 , Th1 , . . . , Th4),

every column of Sf corresponds to a non-affine function.

Example 5. Let p = 2, k = 1, n = 10, s = 4. Let z be the primitive element of F23 with

z3 +z+1 = 0. Let d(x1, x2) = Tr3
1(z2x1x2), µ(x1, x2) = 1, t1(x1, x2) = Tr3

1(x1x2), t2(x1, x2) =

Tr3
1(zx1x2), t3(x1, x2) = Tr3

1(x3
2), t4(x1, x2) = Tr3

1(zx3
2), h1 = t1+Tr3

1(x1), h2 = t1+Tr3
1(zx1),

h3 = t2 + Tr3
1(z2x1), h4 = t2 + Tr3

1(x2), h5 = t3t4 + Tr3
1(zx2), h6 = t3t4 + Tr3

1(z2x2),

(x1, x2) ∈ F23 × F23 . Then by the inverse Walsh transform or by computing (d + ψa)
∗(0), we

can obtain Boolean 4-plateaued function f(b1, . . . , b4, a1, . . . , a6) = (b1 +a1 +a2 + 1)(b3(a1a3 +

a2a3 + a1) + b4(a1a2 + a1a3 + a2a3 + a1 + a3) + (a1a2 + a1a3)(a5 + a6) + a1a4 + a2a6 + a3a5) +

((b1 + a1 + a2)(b2 + a3 + a4) + 1)(a1a5 + a2a5 + a3a4 + a3a5) + (b1 + b2 + a1 + a2 + a3 + a4 +

1)(b3(a1a3 + a2 + a3) + b4(a1a3 + a2a3 + a1) + a1a2(a5 + a6) + a1a5 + a2a4 + a2a5 + a3a5 +

a3a6) + b3(a1a2 + a2a3 + a1 + a2) + b4(a1a3 + a2 + a3) + (a2a3 + a1 + a2 + a3)(a5 + a6). Since

ti(1 ≤ i ≤ 4), hj(1 ≤ j ≤ 6) are all non-affine functions and the matrix form of Sf defined by

(9) is Sf = (Tt1 , . . . , Tt4 , Th1 , . . . , Th6), every column of Sf corresponds to a non-affine function.

Furthermore, one can verify that Sf contains a basis of F10
2 and (0, . . . , 0) ∈ Sf , hence by

Corollary 3.1 of [14], f has no nonzero linear structure.

In the second construction method, we take advantage of the good properties of general
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generalized bent functions given in [29]. Let t ≥ 2 be an integer. Let f(x) =
∑t−1

i=0 p
t−1−ifi(x)

with fi : Vn → Fp, 0 ≤ i ≤ t− 1 be a generalized bent function from Vn to Zpt , where p is an

odd prime or p = 2 and n is even. Let k be a positive integer. Then by Corollary 7 of [29],

for any function G : Ft−1
p → Zpk , the function pk−1f0 + G(f1, . . . , ft−1) is a generalized bent

function from Vn to Zpk with µpk−1f0+G(f1,...,ft−1) = µf .

For the sake of simplicity, we give the functions needed in the following theorem. Let n, s(< n)

be positive integers with n− s even if p = 2, L1, . . . , Ln−s : Vn−s → Fp be linearly independent

linear functions and g =
∑t−1

i=0 p
t−1−igi with gi : Vn−s → Fp, 0 ≤ i ≤ t− 1 be a weakly regular

generalized bent function from Vn−s to Zpt , where t ≥ 2. Define d : Vn−s → Zpk as

d(x) = pk−1g0(x) +G(g1(x), . . . , gt−1(x)), (13)

where G is an arbitrary function from Ft−1
p to Zpk . Define

µ(x) = µg(x)−1, x ∈ Vn−s, (14)

where µg is defined by (3). Note that µg is a constant function since g is weakly regular. Define

ti : Vn−s → Fp, 1 ≤ i ≤ s as

ti(x) = Fi(g1(x), . . . , gt−1(x)), (15)

where Fi is an arbitrary function from Ft−1
p to Fp. Define hj : Vn−s → Fp, 1 ≤ j ≤ n− s as

hj(x) = Hj(t1(x), . . . , ts(x)) + Lj(x) + bj, (16)

where Hj is an arbitrary function from Fsp to Fp and bj ∈ Fp.

Theorem 3. With the same notation as in Proposition 1. Let d : Vn−s → Zpk be defined by (13).

Let µ be defined by (14). Let the matrix form of S = {w0, . . . , wpn−s−1} ⊆ Fnp be defined by

S =


w0

. . .

wpn−s−1

 = (Tt1 , . . . , Tts , Th1 , . . . , Thn−s),

where ti(1 ≤ i ≤ s) are defined by (15) and hj(1 ≤ j ≤ n − s) are defined by (16). Then the

function W : Fnp → Z[ζpk ] defined by (7) is the Walsh transform of a generalized s-plateaued

function f : Fnp → Zpk .
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Proof: With the similar argument as in the proof of Theorem 2, we have |S| = pn−s and for

any a ∈ Fnp , ψa(x) = Ga(g1(x), . . . , gt−1(x)) +Aa(x), where Ga is some function from Ft−1
p to

Fp and Aa : Vn−s → Fp is some affine function. Then d+pk−1ψa is a weakly regular generalized

bent function and µd+pk−1ψa = µg for any a ∈ Fnp . By Corollary 1, the function W : Fnp → Z[ζpk ]

defined by (7) is the Walsh transform of a generalized s-plateaued function f : Fnp → Zpk .

We give two examples by using Theorem 3. The first example gives a generalized 5-ary

plateaued function and the second example gives a Boolean plateaued function. Both of them

satisfy that every column of the matrix form of Sf defined by (9) corresponds to a non-

affine function. Furthermore, the constructed Boolean plateaued function has no nonzero linear

structure.

Example 6. Let p = 5, k = 3, n = 4, s = 1, t = 2. Let z be the primitive element of F53

with z3 + 3z + 3 = 0. Let g : F53 → Z52 be defined by g = 5g0 + g1, g0, g1 : F53 → F5,

where g0(x) = Tr3
1(2x2), g1(x) = Tr3

1(z16x). Then by Theorem 16 of [30] and Corollary 3

of [33], g is a weakly regular generalized bent function with µg = −1. Let d : F53 → Z53 be

defined by d(x) = 25g0(x) + g4
1(x). Let µ(x) = −1, t1(x) = g3

1(x), h1(x) = t21(x) + Tr3
1(x),

h2(x) = t41(x) + Tr3
1(zx), h3(x) = t1(x) + Tr3

1(z2x), x ∈ F53 . Then by the inverse Walsh

transform or by computing (d + 25ψa)
∗(0), we can obtain generalized 1-plateaued function

f(b1, a1, a2, a3) = ((a1 − a3) mod 5)4 + 25(a2(a1 − a3)4 + (b1 + a3)(a1 − a3)3 + a1(a1 − a3)2 −

a2
1−a1a3+2a2

2+a2a3−a2
3) from F4

5 to Z53 . Since t1, hj(1 ≤ j ≤ 3) are all non-affine functions and

the matrix form of Sf defined by (9) is Sf = (Tt1 , Th1 , . . . , Th3), every column of Sf corresponds

to a non-affine function.

Example 7. Let p = 2, k = 1, n = 8, s = 2, t = 3. Let g : F6
2 → Z23 be defined by g =∑2

i=0 22−igi, gi : F6
2 → F2, where g0(x1, . . . , x6) = x1x3 + x2x4 + x5x6, g1(x1, . . . , x6) =

x1x2x6 + x3(x6 + 1), g2(x1, . . . , x6) = x3x4(x6 + 1) + x1x6. Then g is the generalized Boolean

bent function with µg = 1 constructed in Example 3. Let d = g0, µ = 1, t1 = g1, t2 = g2,

h1 = t1t2 +x1, h2 = t1 +x2, h3 = t1 +x3, h4 = t2 +x4, h5 = t2 +x5, h6 = t1 + t2 +x6. Then by

the inverse Walsh transform or by computing (d+ ψa)
∗(0), we can obtain Boolean 2-plateaued

function f(b1, b2, a1, . . . , a6) = a1a3 + a2a4 + a5a6 + a1(a5 + 1)(b2a2 + a2a4 + a2a6 + b1 + a3 +

a6) + a3a5(b1a4 + a1a4 + a2a4 + a4a6 + b2 + a6 + 1). Since ti(1 ≤ i ≤ 2), hj(1 ≤ j ≤ 6) are all

non-affine functions and the matrix form of Sf defined by (9) is Sf = (Tt1 , Tt2 , Th1 , . . . , Th6),
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every column of Sf corresponds to a non-affine function. Furthermore, one can verify that Sf

contains a basis of F8
2 and (0, . . . , 0) ∈ Sf , hence by Corollary 3.1 of [14], f has no nonzero

linear structure.

The third construction method is used to construct plateaued functions, that is, k = 1. In the

following theorem, we utilize vectorial bent functions. A function f = (f1, . . . , fm) : Vn → Fmp
is called a vectorial bent function if for any nonzero vector (a1, . . . , am) ∈ Fmp ,

∑m
i=1 aifi(x), x ∈

Vn is a bent function. It is known that if f = (f1, . . . , fm) : Vn → Fmp is vectorial bent, then

m ≤ n if p is an odd prime, and n is even and m ≤ n
2

if p = 2. The following theorem can

be seen as a generalization of Theorem 4.3 of [14] in the sense of equivalence. It can also be

applied to construct s-plateaued functions in n variables whose Walsh support, when written as

a matrix of form (9), contains strictly less than n− s columns corresponding to affine functions.

For the sake of simplicity, we give the functions needed in the following theorem. Let n, s(<

n),m be positive integers with 2 ≤ m ≤ n − s if p is an odd prime, and n − s even and

2 ≤ m ≤ n−s
2

if p = 2. Let g = (g1, . . . , gm) be a vectorial bent function from Vn−s to Fmp which

satisfies that for any (c2, . . . , cm) ∈ Fm−1
p , µg1+

∑m
i=2 cigi

(x) = u, x ∈ Vn−s, where µg1+
∑m
i=2 cigi

is

defined by (3) and u is a constant independent of (c2, . . . , cm). Let L1, . . . , Ln−s : Vn−s → Fp
be linearly independent linear functions. Define d : Vn−s → Fp as

d(x) = g1(x). (17)

Define µ as

µ(x) = u−1, x ∈ Vn−s. (18)

Define ti : Vn−s → Fp, 1 ≤ i ≤ s as

ti(x) =
m∑
j=2

ci,jgj(x) + Ai(x), (19)

where ci,j ∈ Fp, Ai is an arbitrary affine function from Vn−s to Fp. Define hj : Vn−s → Fp, 1 ≤

j ≤ n− s as

hj(x) =
s∑
i=1

dj,iti(x) + Lj(x) + bj, (20)

where dj,i, bj ∈ Fp.
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Theorem 4. With the same notation as in Proposition 1. Let d : Vn−s → Fp be defined by (17).

Let µ be defined by (18). Let the matrix form of S = {w0, . . . , wpn−s−1} ⊆ Fnp be defined by

S =


w0

. . .

wpn−s−1

 = (Tt1 , . . . , Tts , Th1 , . . . , Thn−s),

where ti(1 ≤ i ≤ s) are defined by (19) and hj(1 ≤ j ≤ n − s) are defined by (20). Then

the function W : Fnp → Z[ζp] defined by (7) is the Walsh transform of an s-plateaued function

f : Fnp → Fp.

Proof: With the similar argument as in Theorem 2, we have |S| = pn−s and for any a ∈ Fnp ,

ψa(x) = La(g2(x), . . . , gm(x)) +Aa(x), where La is some linear function from Fm−1
p to Fp and

Aa : Vn−s → Fp is some affine function. Then d + ψa is a weakly regular bent function and

µd+ψa = u for any a ∈ Fnp . By Corollary 1, the function W : Fnp → Z[ζp] defined by (7) is the

Walsh transform of an s-plateaued function f : Fnp → Fp.

IV. GENERALIZED INDIRECT SUM CONSTRUCTION METHOD OF GENERALIZED PLATEAUED

FUNCTIONS

In this section, we provide a generalized indirect sum construction method of generalized

s-plateaued functions, where s ≥ 0. In particular, we show that the canonical way to construct

Generalized Maiorana-McFarland bent functions can be obtained by the generalized indirect sum

construction method and we illustrate that the generalized indirect sum construction method can

be used to construct bent functions not in the completed Generalized Maiorana-McFarland class.

Furthermore, based on this construction method, we give constructions of plateaued functions

in the subclass WRP of the class of weakly regular plateaued functions and vectorial plateaued

functions.

The following construction method called generalized indirect sum construction method is an

extension of indirect sum construction method [4].

Theorem 5. Let p be a prime. Let k, t, r,m be positive integers, s(≤ r) be a non-negative

integer and m be even for p = 2, r + s be even for p = 2, k = 1. Let fi(i ∈ Ftp) : Vr → Zpk be

generalized s-plateaued functions. Let gi(0 ≤ i ≤ t) : Vm → Fp be bent functions which satisfy
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that for any j = (j1, . . . , jt) ∈ Ftp, Gj , (1− j1−· · ·− jt)g0 + j1g1 + · · ·+ jtgt is a bent function

and G∗j = (1− j1−· · ·− jt)g∗0 + j1g
∗
1 + · · ·+ jtg

∗
t and µGj = u, where µGj is defined by (3) and

u is a function from Vm to {±1,±
√
−1} independent of j. Let g : Ftp → Zpk be an arbitrary

function. Then h(x, y) = f(g0(y)−g1(y),...,g0(y)−gt(y))(x) + pk−1g0(y) + g(g0(y)− g1(y), . . . , g0(y)−

gt(y)), (x, y) ∈ Vr × Vm is a generalized s-plateaued function from Vr × Vm to Zpk .

Proof: For any (a, b) ∈ Vr × Vm, we have

Wh(a, b)

=
∑

x∈Vr,y∈Vm

ζ
f(g0(y)−g1(y),...,g0(y)−gt(y))(x)+pk−1g0(y)+g(g0(y)−g1(y),...,g0(y)−gt(y))

pk
ζ−〈a,x〉−〈b,y〉p

=
∑

i1,...,it∈Fp

∑
y:g0(y)−gj(y)=ij ,1≤j≤t

∑
x∈Vr

ζ
f(i1,...,it)(x)+g(i1,...,it)

pk
ζg0(y)−〈a,x〉−〈b,y〉
p

= p−t
∑

i1,...,it∈Fp

ζ
g(i1,...,it)

pk
Wf(i1,...,it)

(a)
∑
y∈Vm

ζg0(y)−〈b,y〉
p

∑
j1∈Fp

ζ(i1−(g0−g1)(y))j1
p · · ·

∑
jt∈Fp

ζ(it−(g0−gt)(y))jt
p

= p−t
∑

i1,...,it∈Fp

ζ
g(i1,...,it)

pk
Wf(i1,...,it)

(a)
∑

j1,...,jt∈Fp

ζ i1j1+···+itjt
p WG(j1,...,jt)

(b)

= u(b)p
m
2 p−tζg

∗
0(b)
p

∑
i1,...,it∈Fp

ζ
g(i1,...,it)

pk
Wf(i1,...,it)

(a)
∑
j1∈Fp

ζ(g∗1(b)−g∗0(b)+i1)j1
p · · ·

∑
jt∈Fp

ζ(g∗t (b)−g∗0(b)+it)jt
p

= u(b)p
m
2 ζg

∗
0(b)
p ζ

g(g∗0(b)−g∗1(b),...,g∗0(b)−g∗t (b))

pk
Wf(g∗0(b)−g∗1(b),...,g∗0(b)−g∗t (b))

(a),

(21)

where the fifth equation is obtained by the properties of bent functions gi(0 ≤ i ≤ t). By (21),

it is easy to see that h : Vr × Vm → Zpk is a generalized s-plateaued function if fi, i ∈ Ftp are

generalized s-plateaued functions from Vr to Zpk .

If s = 0, then Theorem 5 can be used to construct (non)-weakly regular generalized bent func-

tions and the dual function can be given. The following corollary is an immediate consequence

of Theorem 5 and its proof.

Corollary 2. If s = 0, then the function h : Vr × Vm → Zpk constructed by Theorem 5

is a generalized bent function and its dual function h∗(x, y) = f ∗(g∗0(y)−g∗1(y),...,g∗0(y)−g∗t (y))(x) +

pk−1g∗0(y) + g(g∗0(y) − g∗1(y), . . . , g∗0(y) − g∗t (y)). Furthermore, h is non-weakly regular if any

one of the following conditions holds:

(1) There exists i ∈ Ftp such that fi is non-weakly regular and |{b ∈ Vm : (g∗0(b)− g∗1(b), . . . ,
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g∗0(b)− g∗t (b)) = i}| ≥ 1;

(2) u is a constant function and there exist i1 6= i2 ∈ Ftp such that fi1 , fi2 are weakly regular

with µfi1 6= µfi2 and |{b ∈ Vm : (g∗0(b)− g∗1(b), . . . , g∗0(b)− g∗t (b)) = ij}| ≥ 1 for j = 1, 2;

(3) u is not a constant function and µfi = c, i ∈ Ftp, where c is a constant function independent

of i.

Now we illustrate that why we call Theorem 5 generalized indirect sum construction method.

Note that when p = 2 and t = 1, it is easy to verify that any Boolean bent functions g0, g1

satisfy the condition of Theorem 5. Let p = 2, k = t = 1, f0, f1 : Vr → F2 be Boolean plateaued

functions, g0, g1 : Vm → F2 be Boolean bent functions and g = 0, the plateaued function

constructed by Theorem 5 is h(x, y) = fg0(y)+g1(y)(x) + g0(y) = g0(y) + f0(x) + (f0(x) +

f1(x))(g0(y) +g1(y)). It is just the famous indirect sum construction [4]. Hence, Theorem 5 can

be seen as an extension of indirect sum construction. Also note that Theorem 4.2 (i) of [34]

for generalized Boolean plateaued functions as a generalization of indirect sum construction

is a special case of the above more general construction. If gi(0 ≤ i ≤ t) are bent functions

satisfying gi = g0 − ci, 1 ≤ i ≤ t, where ci(1 ≤ i ≤ t) are constants, then gi(0 ≤ i ≤ t) satisfy

the condition of Theorem 5. In this case h(x, y) = f(c1,...,ct)(x)+pk−1g0(y)+g(c1, . . . , ct), which

belongs to direct sum construction. We call it a trivial case. When p is an odd prime or t ≥ 2,

except the trivial case, the condition of Theorem 5 for gi(0 ≤ i ≤ t) is not trivial.

In [9], the authors defined a class of bent functions

F (x, y) = fy(x), (x, y) ∈ Fmp × Fsp,

where m, s are positive integers with s ≤ m and fy, y ∈ Fsp are pairwise disjoint spectra

partially bent functions with s-dimensional linear kernel, which are called Generalized Maiorana-

McFarland bent functions. We will show that the canonical way to construct Generalized Maiorana-

McFarland bent functions given in (6) of [9] can be obtained by Theorem 5. Let gi(0 ≤ i ≤ t)

be Maiorana-McFarland bent functions from Fmp × Fmp to Fp defined as g0(y1, y2) = y1 · π(y2),

gi(y1, y2) = g0(y1, y2) + hi(y2), 1 ≤ i ≤ t, where π is a permutation over Fmp and for any

1 ≤ i ≤ t, hi is an arbitrary function from Fmp to Fp. Then it is easy to verify that gi(0 ≤ i ≤ t)

satisfy the condition of Theorem 5. When k = 1,m = t, s = 0, g = 0, hi(y2) = −y2,i, 1 ≤ i ≤ t,

where y2 = (y2,1, . . . , y2,t) ∈ Ftp and fi(i ∈ Ftp) are bent functions, the bent function constructed

by Theorem 5 is h(x, y1, y2) = fy2(x) + y1 · π(y2), (x, y1, y2) ∈ Frp × Ftp × Ftp. It is just the
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canonical way to construct Generalized Maiorana-McFarland bent functions given in (6) of [9].

By Theorem 2 and its proof of [9], any bent function in the completed Generalized Maiorana-

McFarland class (that is, equivalent to a Generalized Maiorana-McFarland bent function) is

equivalent to an Maiorana-McFarland bent function or a bent function of the form (6) of [9].

Hence, any bent function in the completed Generalized Maiorana-McFarland class and not in the

completed Maiorana-McFarland class is equivalent to a bent function which can be constructed

by the generalized indirect sum construction.

We provide another construction for gi(0 ≤ i ≤ t) to satisfy the condition of Theorem 5. For

any 0 ≤ i ≤ t, let

gi(y1, y2) = Trm1 (αiG(y1y
pm−2
2 )), (y1, y2) ∈ Fpm × Fpm ,

where m ≥ t + 1, G is a permutation over Fpm with G(0) = 0 and α0, α1, . . . , αt ∈ Fpm are

linearly independent over Fp. Then gi(0 ≤ i ≤ t) are in bent function class PSap which is a sub-

class of the famous class of partial spread bent functions (see [10], [17]). Since all partial spread

bent functions are regular and the dual function of gi is g∗i (y1, y2) = Trm1 (αiG(−yp
m−2

1 y2)), one

can easily verify that gi(0 ≤ i ≤ t) satisfy the condition of Theorem 5.

As the above gi(0 ≤ i ≤ t) satisfy the condition of Theorem 5, we obtain the following

corollary from Theorem 5.

Corollary 3. Let p be a prime. Let k, t, r,m be positive integers with m ≥ t + 1, s(≤ r)

be a non-negative integer and r + s be even for p = 2, k = 1. Let fi(i ∈ Ftp) : Vr → Zpk

be generalized s-plateaued functions. Let gi(0 ≤ i ≤ t) : Fpm × Fpm → Fp be defined as

gi(y) = Trm1 (αiG(y1y
pm−2
2 )), y = (y1, y2) ∈ Fpm × Fpm , where G is a permutation over Fpm

with G(0) = 0 and α0, α1, . . . , αt ∈ Fpm are linearly independent over Fp. Let g : Ftp → Zpk

be an arbitrary function. Then h(x, y) = f(g0(y)−g1(y),...,g0(y)−gt(y))(x) + pk−1g0(y) + g(g0(y) −

g1(y), . . . , g0(y) − gt(y)), (x, y) = (x, y1, y2) ∈ Vr × Fpm × Fpm is a generalized s-plateaued

function from Vr × Fpm × Fpm to Zpk .

We give two examples by using Corollary 3. The second example gives a non-weakly regular

bent function which is not in the completed Generalized Maiorana-McFarland class.

Example 8. Let p = 7, k = 2, t = 1, r = 3, m = 2, s = 1. Let f0(x1, x2, x3) = 7(x2
1 +

x2
2), f1(x1, x2, x3) = 7(x2

1 + 3x2
2), f2(x1, x2, x3) = 7(x2

1 + 2x2
3), f3(x1, x2, x3) = 7(x2

1 + 5x2
3),
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f4(x1, x2, x3) = 7(x2
2+4x2

3), f5(x1, x2, x3) = 7(x2
2+6x2

3), f6(x1, x2, x3) = 7(x2
1+3x2

2+x3). Then

f0, . . . , f6 : F3
7 → Z72 are generalized 1-plateaued functions. Let z be the primitive element of F72

with z2 +6z+3 = 0. Let g0(y1, y2) = Tr2
1(y1y

47
2 ), g1(y1, y2) = Tr2

1(zy1y
47
2 ), (y1, y2) ∈ F72×F72 .

Let g : F7 → Z72 be defined as g(x) = x5 + 2x3. Then the function h : F3
7 × F72 × F72 → Z72

constructed by Corollary 3 is a generalized 1-plateaued function and one can verify that the

Walsh support is not an affine subspace.

Example 9. Let p = 3, k = 1, t = 1, r = 4,m = 2, s = 0. Let ξ be the primitive element of

F34 with ξ4 + 2ξ3 + 2 = 0. Let z be the primitive element of F32 with z2 + z + 2 = 0. Let

f0(x) = Tr4
1(x34 +x2), f1(x) = Tr4

1(x2), f2(x) = Tr4
1(ξx2), x ∈ F34 . Then f0, f1, f2 are weakly

regular bent functions with µf0 = µf1 = −1, µf2 = 1. Let g0(y1, y2) = Tr2
1(y1y

7
2), g1(y1, y2) =

Tr2
1(zy1y

7
2), (y1, y2) ∈ F32 × F32 . Let g = 0. Then the function h : F34 × F32 × F32 → F3

constructed by Corollary 3 is a non-weakly regular bent function. Further, we will prove in

Appendix that it is not in the completed Generalized Maiorana-McFarland class.

In the rest of this paper, by using Corollary 3, we give constructions of plateaued functions

in the subclass WRP of the class of weakly regular plateaued functions and vectorial plateaued

functions.

In [27], Mesnager and Sınak introduced the notion of class WRP, which is a subclass of

the class of weakly regular plateaued functions and plays an important role in constructing

minimal linear codes and strongly regular graphs (see [27], [28]). Let p be an odd prime. Let

f : Vn → Fp be an unbalanced weakly regular s-plateaued function. If f(0) = 0 and there exists

an even positive integer h with gcd(h− 1, p− 1) = 1 such that f(ax) = ahf(x), x ∈ Vn for any

a ∈ F∗p, then f belongs to the class WRP. Note that all quadratic functions without affine term

are in the class WRP and h = 2. We give a construction of non-quadratic plateaued functions

in the class WRP by using Corollary 3.

Let p be an odd prime and m be an even positive integer. Let f : Fmp → Fp be a partial spread

bent function (see [17]). Then by Theorem 3.3 and Theorem 3.6 of [17], it is easy to see that

for any a ∈ F∗p, f(ax) = f(x). Let t, r be positive integers, s be a non-negative integer and

r − s be an even positive integer. For any i ∈ Ftp, let bi : Fr−sp → Fp be a partial spread bent

function, Mi ∈ GL(r,Fp), Ei ⊆ Frp be an (r − s)-dimensional linear subspace and Ri be the
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corresponding matrix defined by Lemma 1. Define

fi(x) = bi(xM
T
i R

T
i ), x ∈ Frp, i ∈ Ftp. (22)

Then for any i ∈ Ftp, fi is an s-plateaued function with µfi(x) = 1, x ∈ Sfi by Theorem 1. And

for any a ∈ F∗p, fi(ax) = fi(x), x ∈ Frp.

Theorem 6. Let p be an odd prime and k = 1. Let t, r,m be positive integers with m ≥ t+ 1.

Let s(< r) be a non-negative integer. Let gj(0 ≤ j ≤ t) : Fpm × Fpm → Fp be defined as

gj(y) = Trm1 (αjG(y1y
pm−2
2 )), y = (y1, y2) ∈ Fpm × Fpm , where G is a permutation over Fpm

with G(0) = 0 and α0, α1, . . . , αt ∈ Fpm are linearly independent over Fp.

• Case p = 3: Let fi(i ∈ Ftp) : Vr → Fp be weakly regular s-plateaued functions satisfying

µfi(x) = u, x ∈ Sfi , i ∈ Ftp, where µfi is defined by (3) and u is some constant independent

of i, fi(ax) = a2fi(x), x ∈ Vr, i ∈ Ftp for any a ∈ F∗p and 0 ∈ Sf(0,...,0) . Let g : Ftp → Fp be

an arbitrary function with g(0, . . . , 0) = −f(0,...,0)(0).

• Case p ≥ 5 : Let r − s be even. Let fi, i ∈ Ftp be defined as (22). Let g : Ftp → Fp be an

arbitrary function with g(0, . . . , 0) = −f(0,...,0)(0).

Then the function h : Vr × Fpm × Fpm → Fp constructed by Corollary 3 is a weakly regular

s-plateaued function and in the class WRP.

Proof: By Corollary 3, h is an s-plateaued function. And by the proof of Theorem 5, it

is easy to see that h is weakly regular and Sh = ∪y∈Fpm×FpmSf(g∗0(y)−g∗1(y),...,g∗0(y)−g∗t (y))
× {y}.

Since g∗0(0, 0) − g∗j (0, 0) = 0, 1 ≤ j ≤ t and 0 ∈ Sf(0,...,0) , we have (0, 0, 0) ∈ Sh, that is, h is

unbalanced. Since g(0, . . . , 0) = −f(0,...,0)(0), h(0, 0, 0) = 0. As fi(ax) = fi(x), x ∈ Vr, i ∈ Ftp,

gj(ay) = gj(y), y ∈ Fpm ×Fpm , 0 ≤ j ≤ t for any a ∈ F∗p, the weakly regular plateaued function

h constructed by Corollary 3 satisfies h(ax, ay) = h(x, y) = ap−1h(x, y), (x, y) ∈ Vr×Fpm×Fpm

for any a ∈ F∗p. Note that p − 1 is even and gcd(p − 2, p − 1) = 1. By definition, h is in the

WRP class.

We give an example of non-quadratic plateaued function in the WRP class by using Theorem

6.

Example 10. Let p = 3, t = 1, r = 2,m = 2, s = 1. Let z be the primitive element of

F32 with z2 + 2z + 2 = 0. Let g0(y1, y2) = Tr2
1(y1y

7
2), g1(y1, y2) = Tr2

1(zy1y
7
2), (y1, y2) ∈

December 20, 2021 DRAFT



27

F32 ×F32 . Let f0(x1, x2) = x2
1, f1(x1, x2) = x2

2, f2(x1, x2) = x2
1 + x1x2 + x2

2, (x1, x2) ∈ F2
3. Then

fi, i ∈ F3 are 1-plateaued functions with µfi(x1, x2) =
√
−1, (x1, x2) ∈ Sfi and fi(ax1, ax2) =

a2fi(x1, x2), (x1, x2) ∈ F2
3 for any a ∈ F∗3 and (0, 0) ∈ Sf0 . Let g = 0. Then the function h

constructed by Theorem 6 is h(x1, x2, y1, y2) = Tr2
1(y1y

7
2) + x2

1 + (Tr2
1((1 − z)y1y

7
2))2(x2

1 +

2x1x2 + x2
2) + (Tr2

1((1− z)y1y
7
2))(x2

1 + x1x2), (x1, x2, y1, y2) ∈ F2
3 × F32 × F32 , which is a non-

quadratic weakly regular 1-plateaued function and in the WRP class. Furthermore, one can

verify that the Walsh support of h is not an affine subspace, that is, h is not a partially bent

function.

Let f = (f1, . . . , fm) be a vectorial function from Vn to Fmp . Then f is said to be a vectorial

plateaued function if for any nonzero vector (c1, . . . , cm) ∈ Fmp ,
∑m

i=1 cifi is a plateaued function

from Vn to Fp. We give a construction of vectorial plateaued functions by using Corollary 3.

Theorem 7. Let p be a prime. Let r ≥ 1,m ≥ 3, 0 ≤ s ≤ r be integers and r + s be even

for p = 2. Let {α0, . . . , αm−1} be a basis of Fpm over Fp. Let f0, . . . , fp−1 : Vr → Fp be

s-plateaued functions. Let G be a permutation over Fpm with G(0) = 0. Let hi(x, y1, y2) =

f
Trm1 (α0G(y1y

pm−2
2 ))

(x) + Trm1 (αiG(y1y
pm−2
2 )), (x, y1, y2) ∈ Vr × Fpm × Fpm , 1 ≤ i ≤ m− 1. Then

vectorial function H = (h1, . . . , hm−1) is a vectorial plateaued function from Vr × Fpm × Fpm

to Fm−1
p .

Proof: First we observe that if α, β ∈ Fpm are linearly independent over Fp, then function

h(x, y1, y2) = f
Trm1 (βG(y1y

pm−2
2 ))

(x) + Trm1 (αG(y1y
pm−2
2 )), (x, y1, y2) ∈ Vr × Fpm × Fpm is an

s-plateaued function, where f0, . . . , fp−1 are s-plateaued functions and G is a permutation over

Fpm with G(0) = 0. Indeed, we have h(x, y1, y2) = fg0(y1,y2)−g1(y1,y2)(x) + g0(y1, y2), where

g0(y1, y2) = Trm1 (αG(y1y
pm−2
2 )), g1(y1, y2) = Trm1 ((α − β)G(y1y

pm−2
2 )). By Corollary 3, h is

an s-plateaued function since α, α− β are linearly independent over Fp.

For any nonzero vector a = (a1, . . . , am−1) ∈ Fm−1
p , let ā =

∑m−1
i=1 ai, αa =

∑m−1
i=1 aiαi. If

ā 6= 0, in this case
∑m−1

i=1 aihi(x, y1, y2) = āf
Trm1 (α0G(y1y

pm−2
2 ))

(x) + Trm1 (αaG(y1y
pm−2
2 )). By

Theorem 1 of [8], āf0, . . . , āfp−1 are s-plateaued functions. Since āf0, . . . , āfp−1 are s-plateaued

functions and α0, αa are linearly independent, we have
∑m−1

i=1 aihi is an s-plateaued function. If

ā = 0, in this case
∑m−1

i=1 aihi(x, y1, y2) = Trm1 (αaG(y1y
pm−2
2 )). Since αa 6= 0, it is easy to see

that
∑m−1

i=1 aihi is an r-plateaued function.
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We give an example of vectorial plateaued function by using Theorem 7.

Example 11. Let p = 3, r = 3,m = 4, s = 0. Let fj(x) = Tr3
1(ξjx2), x ∈ F33 , j ∈ F3,

where ξ is a primitive element of F33 . Then fj(j ∈ F3) are weakly regular bent functions with

µf0 = µf2 = −
√
−1, µf1 =

√
−1. Let hi(x, y1, y2) = fTr41(y1y792 )(x) + Tr4

1(ziy1y
79
2 ), (x, y1, y2) ∈

F33 × F34 × F34 , i = 1, 2, 3, where z is a primitive element of F34 . Then H = (h1, h2, h3) is a

vectorial plateaued function. Furthermore, one can verify that H contains non-weakly regular

plateaued component functions and weakly regular plateaued component functions.

Remark 3. Let H = (h1, . . . , hm−1) be the constructed vectorial plateaued function by Theorem

7 with s = 0. Define gi = hi+1, 0 ≤ i ≤ m − 2. Then one can verify that gi(0 ≤ i ≤ m − 2)

satisfy the condition of Theorem 5.

V. CONCLUSION

Stimulated by the research works and one open problem of Hodžić et al. [14] on constructions

of Boolean plateaued functions in spectral domain, we studied constructions of generalized

plateaued functions in spectral domain in this paper.

(1) We provided a necessary and sufficient condition of constructing generalized plateaued

functions in spectral domain.

(2) We gave a complete characterization of generalized plateaued functions whose Walsh

support is an affine subspace in spectral domain, which generalizes the case of Boolean plateaued

functions [14].

(3) We provided some new constructions of generalized plateaued functions with (non)-affine

Walsh support in spectral domain. These constructions provide an answer to one open problem

proposed by Hodžić et al. [14].

(4) We presented a generalized indirect sum construction method of generalized plateaued

functions. In particular, we showed that the canonical way to construct Generalized Maiorana-

McFarland bent functions can be obtained by the generalized indirect sum construction method

and we illustrated that the generalized indirect sum construction method can be used to construct

bent functions not in the completed Generalized Maiorana-McFarland class. Furthermore, based

on this construction method, we gave constructions of plateaued functions in the class WRP and

vectorial plateaued functions.
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Plateaued functions have important applications in coding theory, sequences and combinatorics.

For examples, Mesnager et al. [23] presented constructions of linear codes from weakly regular

plateaued functions and the secret sharing schemes based on these linear codes. Mesnager and

Sınak [27], [28] constructed several classes of minimal linear codes with few weights and

strongly regular graphs from weakly regular plateaued functions. Boztaş et al. [1] used plateaued

functions to design sequences with good correlation properties. It is interesting to further study the

applications of generalized plateaued functions in coding theory, sequences and combinatorics.

For examples, constructing linear codes, sequences and strongly regular graphs from generalized

plateaued functions.

APPENDIX

We prove that the bent function constructed in Example 9 is not in the completed Generalized

Maiorana-McFarland class.

Recall that the bent function constructed in Example 9 is h(x, y1, y2) = fg0(y1,y2)−g1(y1,y2)(x)+

g0(y1, y2) = f0(x)+g0(y1, y2)+(g0(y1, y2)−g1(y1, y2))2(−f0(x)−f1(x)−f2(x))+(g0(y1, y2)−

g1(y1, y2))(2f1(x) + f2(x)), (x, y1, y2) ∈ F34 ×F32 ×F32 , where f0(x) = Tr4
1(x34 +x2), f1(x) =

Tr4
1(x2), f2(x) = Tr4

1(ξx2), g0(y1, y2) = Tr2
1(y1y

7
2), g1(y1, y2) = Tr2

1(zy1y
7
2) and ξ is the

primitive element of F34 with ξ4+2ξ3+2 = 0, z is the primitive element of F32 with z2+z+2 = 0.

By Theorem 2 of [9], if h is in the completed Generalized Maiorana-McFarland class, then

for an integer 1 ≤ s ≤ 4 there exists an s-dimensional subspace V of F34 × F32 × F32 such that

the second order derivative

DaDch(x, y1, y2) = 0 (23)

for any a = (a0, a1, a2), c = (c0, c1, c2) ∈ V, (x, y1, y2) ∈ F34 × F32 × F32 . Define ḡi(y) =

gi(y1, y2), i = 0, 1 and h̄(x, y) = fḡ0(y)−ḡ1(y)(x) + ḡ0(y), where y = (y1,1, y1,2, y2,1, y2,2) ∈

F4
3, (y1, y2) ∈ F32 ×F32 , y1 = y1,1 + y1,2z, y2 = y2,1 + y2,2z. Then h̄ is a non-weakly regular bent

function from F34×F4
3 to F3. By simple calculation we have ḡ0(y)−ḡ1(y) = (y1,1+y1,2)y2

2,1y2,2+

(2y1,1 + y1,2)y2,1y
2
2,2 + 2y1,1y2,2 + 2y1,2y2,1, (ḡ0(y)− ḡ1(y))2 = y2

1,1y
2
2,2 + y2

1,2y
2
2,1 + y1,1y1,2y2,1y2,2,

where y = (y1,1, y1,2, y2,1, y2,2) ∈ F4
3.

Suppose (23) holds. Then

DāDc̄h̄(x, y) = 0 (24)
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for any a = (a0, a1,1, a1,2, a2,1, a2,2), c = (c0, c1,1, c1,2, c2,1, c2,2) ∈ V̄ , (x, y) ∈ F34 × F4
3, where

V̄ = {(a0, a1,1, a1,2, a2,1, a2,2) ∈ F34 × F4
3 : (a0, a1,1 + a1,2z, a2,1 + a2,2z) ∈ V }, y = (y1,1, y1,2,

y2,1, y2,2) ∈ F4
3. As {30 · 3i (mod (34 − 1)) : i ≥ 0} = {10, 30} and

 34

10

 ≡ 0 (mod 3), 34

30

 ≡ 2 (mod 3), DāDc̄h̄ contains −y2
1,1y

2
2,2Tr

4
1(2((a0 + c0)4− a4

0− c4
0)x30). Then by (24),

Tr4
2((a0+c0)4−a4

0−c4
0) = 0 for any ā = (a0, a1,1, a1,2, a2,1, a2,2), c̄ = (c0, c1,1, c1,2, c2,1, c2,2) ∈ V̄ .

One can verify that for a ∈ F34 , Tr4
2(a4) = 0 if and only if a = 0. If there exists a0 6= 0 such

that ā = (a0, a1,1, a1,2, a2,1, a2,2) ∈ V̄ , let c̄ = ā, then c0 = a0 6= 0 and Tr4
2((a0 +c0)4−a4

0−c4
0) =

Tr4
2(2a4

0) 6= 0, which is a contradiction. Hence V̄ ⊆ {0}×F4
3, that is, V ⊆ {0}×F32 ×F32 . For

any fixed (0, a1, a2), (0, c1, c2) ∈ V and (y1, y2) ∈ F32 × F32 , let d0 = D(a1,a2)D(c1,c2)g0(y1, y2),

d1 = D(a1,a2)D(c1,c2)(g0(y1, y2) − g1(y1, y2)), d2 = D(a1,a2)D(c1,c2)(g0(y1, y2) − g1(y1, y2))2. By

D(0,a1,a2)D(0,c1,c2)h(x, y1, y2) = D(a1,a2)D(c1,c2)g0(y1, y2)+(−f0(x)−f1(x)−f2(x))D(a1,a2)D(c1,c2)

(g0(y1, y2) − g1(y1, y2))2 + (2f1(x) + f2(x))D(a1,a2)D(c1,c2)(g0(y1, y2) − g1(y1, y2)) = 0 for any

(0, a1, a2), (0, c1, c2) ∈ V, (x, y1, y2) ∈ F34 × F32 × F32 , for any fixed (0, a1, a2), (0, c1, c2) ∈ V

and (y1, y2) ∈ F32 ×F32 , we have −d2f0(x) + (2d1− d2)f1(x) + (d1− d2)f2(x) = −d0, x ∈ F34 .

By f0(0) = f1(0) = f2(0) = 0, we have d0 = 0. By i + jξ 6= 0 for any i, j ∈ F3 and

the algebraic degree of f0 is 4, the algebraic degree of f1 and f2 is 2, we have f0, f1, f2

are linearly independent, hence d1 = d2 = 0. Therefore, (23) holds if and only if for any

(0, a1, a2), (0, c1, c2) ∈ V, (y1, y2) ∈ F32 × F32 ,

D(a1,a2)D(c1,c2)g0(y1, y2) = 0 (25)

and

D(a1,a2)D(c1,c2)(g0(y1, y2)− g1(y1, y2)) = 0 (26)

and

D(a1,a2)D(c1,c2)(g0(y1, y2)− g1(y1, y2))2 = 0. (27)

By (25), (26) and the fact that {1, 1 − z} is a basis of F32 over F3, we have for any fixed

(0, a1, a2), (0, c1, c2) ∈ V and (y1, y2) ∈ F32 × F32 , Tr2
1(((y1 + a1 + c1)(y2 + a2 + c2)7 − (y1 +

a1)(y2+a2)7−(y1+c1)(y2+c2)7+y1y
7
2)x) = 0, x ∈ F32 , which yields (y1+a1+c1)(y2+a2+c2)7−

(y1+a1)(y2+a2)7−(y1+c1)(y2+c2)7+y1y
7
2 = 0 for any (0, a1, a2), (0, c1, c2) ∈ V and (y1, y2) ∈
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F32×F32 . We claim V ⊆ {0}×F32×{0}. If there exists a2 6= 0 such that a = (0, a1, a2) ∈ V , let

c = a. Then c2 = a2 6= 0 and the coefficient of y1y
3
2 is C3

7((a2 + c2)4−a4
2− c4

2) = a4
2 6= 0, which

is a contradiction. Hence V ⊆ {0} × F32 × {0}, that is, V̄ ⊆ {0} × F2
3 × {(0, 0)}. By (27), we

have D(a1,1,a1,2,0,0)D(c1,1,c1,2,0,0)(ḡ0(y)− ḡ1(y))2 = 0 for any (0, a1,1, a1,2, 0, 0), (0, c1,1, c1,2, 0, 0) ∈

V̄ , y = (y1,1, y1,2, y2,1, y2,2) ∈ F4
3. By simple calculation, we have 2a1,1c1,1y

2
2,2 + 2a1,2c1,2y

2
2,1 +

(a1,1c1,2 + a1,2c1,1)y2,1y2,2 = 0, which yields a1,1c1,1 = a1,2c1,2 = a1,1c1,2 + a1,2c1,1 = 0 for

any (0, a1,1, a1,2, 0, 0), (0, c1,1, c1,2, 0, 0) ∈ V̄ . If there exists (a1,1, a1,2) 6= (0, 0) such that ā =

(0, a1,1, a1,2, 0, 0) ∈ V̄ , let c̄ = ā, then a1,1c1,1 = a2
1,1 6= 0 or a1,2c1,2 = a2

1,2 6= 0 since (a1,1, a1,2) 6=

(0, 0), which is a contradiction. Hence, V̄ = {(0, 0, 0, 0, 0)}, that is, V = {(0, 0, 0)}. By Theorem

2 of [9], h is not in the completed Generalized Maiorana-McFarland class.
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[19] T. Martinsen, W. Meidl and P. Stănică, Partial spread and vectorial generalized bent functions, Des. Codes Cryptogr., vol.

85, no. 1, pp. 1-13, 2017.

[20] W. Meidl and A. Pott, Generalized bent functions into Zpk from the partial spread and the Maiorana-McFarland class,

Cryptogr. Commun., vol. 11, no. 6, pp. 1233-1245, 2019.

[21] S. Mesnager, Bent Functions-Fundamentals and Results, Springer, Switzerland, 2016.

[22] S. Mesnager, On generalized hyper-bent functions, Cryptogr. Commun., vol. 12, no. 3, pp. 455-468, 2020.
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