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Abstract. The construction of linear codes from functions over finite fields has been
extensively studied in the literature since determining the parameters of linear codes based
on functions is rather easy due to the nice structure of functions. In this paper, we derive
3-weight and 4-weight linear codes from weakly regular plateaued unbalanced functions in
the recent construction method of linear codes over the finite fields of odd characteristics.
The Hamming weights and their weight distributions for proposed codes are determined
by using the Walsh transform values and Walsh distribution of the employed functions,
respectively. We next derive projective 3-weight punctured codes with good parameters
from the constructed codes. These punctured codes may be almost optimal due to the
Griesmer bound, and they can be employed to obtain association schemes. We also derive
projective 2-weight and 3-weight subcodes with flexible dimensions from partially bent
functions, and these subcodes can be employed to design strongly regular graphs. We finally
show that all constructed codes are minimal, which approve that they can be employed to
design high democratic secret sharing schemes.

Keywords: Linear code · minimal code · weight distribution · weakly regular plateaued
function · unbalanced function

1 Introduction

Linear codes with few weights have a wide range of applications in practical systems.
There are many construction methods for linear codes, one of them is derived from func-
tions over finite fields. Constructing linear codes from functions is still a popular research
topic in the literature although considerable progress has been done in this direction. A
large number of linear codes have been constructed from popular cryptographic func-
tions including quadratic functions [9,10,13,14,29,33], (weakly regular) bent functions
[9,10,24,28,30,33], (almost) perfect nonlinear functions [6,20,31] and (weakly regular)
plateaued functions [9,23,25,26]. Two generic (say, first and second) construction meth-
ods of linear codes from functions can be isolated from the others in the literature. In the
past two decades, several linear codes with excellent parameters have been derived from
cryptographic functions based on the first generic construction method (e.g. [6,10,24,25])
and the second generic construction method (e.g. [10,14,28,29,33]). Recently, weakly reg-
ular plateaued (especially, bent) functions have been employed to design (minimal) linear
codes with a few weights over odd characteristic finite fields ([23,24,25,26,28,30]). In this
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paper, motivated by [19,30], we use some unbalanced weakly regular plateaued functions
so that we can get new minimal linear codes with flexible parameters. It is worth noting
that a very nice survey [21] written by Li and Mesnager is devoted to the construction
methods of linear codes from cryptographic functions over finite fields.

The rest of this paper is structured as follows. In Section 2, we set the main notation
and give some properties of weakly regular plateaued functions. In Section 3, we intro-
duce the parameters of 3-weight and 4-weight linear codes derived from these functions
over finite fields. Section 4 is devoted to proposing subcodes and punctured codes for
the constructed codes. We hereby obtain projective 2-weight and 3-weight codes with
flexible parameters. In Section 5, we highlight that our codes are minimal, and so secret
sharing schemes based on their dual codes have interesting access structures.

2 Preliminaries

For a set S, its size is denoted by #S, and S⋆ = S \ {0}. The magnitude of a complex
number z ∈ C is denoted by |z|. The finite field with q elements is represented by Fq,
where q = pn for a positive integer n and an odd prime p. The trace of α ∈ Fq over Fp is

defined as Trn(α) = α+ αp + αp2 + · · ·+ αpn−1
. The set of all non-squares and squares

in F⋆
p are represented by NSQ and SQ, respectively. The quadratic character of F⋆

p is
denoted by η0, and for simplicity we write p∗ = η0(−1)p, which is frequently used in the
sequel.

A cyclotomic field Q(ξp) can be obtained from the rational field Q by joining the
complex primitive p-th root of unity ξp. The field Q(ξp) is the splitting field of the
polynomial xp−1, and so the field Q(ξp)/Q is a Galois extension of degree p−1. Here, a

field basis for an extension Q(ξp)/Q is the subset {1, ξp, ξ2p , . . . , ξp−2
p } of the cyclotomic

field Q(ξp). The Galois group Gal(Q(ξp)/Q) is described as the set {σa : a ∈ F⋆
p}, where

σa is the automorphism of Q(ξp) defined as σa(ξp) = ξap . The cyclotomic field Q(ξp) has
a unique quadratic subfield Q(

√
p∗), and its Galois group Gal(Q(

√
p∗)/Q) = {1, σγ} for

some γ ∈ NSQ. For a ∈ F⋆
p and b ∈ Fp, we clearly have σa(ξ

b
p) = ξabp and σa(

√
p∗

n
) =

η0
n(a)

√
p∗

n
. The following lemma is frequently used in the subsequent proofs.

Lemma 1. [22] Under the above notation, we have the following facts.

i.)
∑

a∈F⋆
p
η0(a) = 0,

ii.)
∑

a∈F⋆
p
ξabp = −1 for every b ∈ F⋆

p,

iii.)
∑

a∈F⋆
p
η0(a)ξ

a
p =

√
p∗.

2.1 Linear codes

An [n, k, d] linear code C over Fp is a k-dimensional subspace of the n-dimensional vector
space Fn

p . Here, n is the length of C, k is its dimension and d is its minimum Hamming
distance. For a vector v = (v1, . . . , vn) ∈ Fn

p , its Hamming weight WH(v) is the size of
its support defined as supp(v) = {1 ≤ i ≤ n : vi 6= 0}. We remark that d is the smallest
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Hamming weight of the nonzero elements (codewords) of C. The dual code of C is defined
to be the set

C⊥ = {(u1, . . . , un) ∈ Fn
p : u1v1 + · · ·+ unvn = 0 for all (v1, . . . , vn) ∈ C},

which is represented by [n, n − k, d⊥] over Fp, where d⊥ is the minimum Hamming
distance of C⊥. The weight distribution of C is given by (1, A1, . . . , An) and its weight
enumerator is denoted by the polynomial 1+A1y+ · · ·+Any

n, where Aω is the number
of nonzero codewords with weight ω in C. As a result, we say that C is an l-weight linear
code if the number of nonzero Aω in {Ai}i≥1 is equal to l, where l is an integer with
1 ≤ l ≤ n.

2.2 Weakly regular plateaued functions

Let f : Fq −→ Fp be a p-ary function. The Walsh transform of f is a complex valued
function defined as

Wf (β) =
∑

x∈Fq

ξp
f(x)−Trn(βx), β ∈ Fq.

A function f is called balanced over Fp if f gets all elements of Fp with the same
number of pre-images; otherwise, f is said to be unbalanced. Note that f is balanced iff
Wf (0) = 0.

A function f is called bent if |Wf (β)|2 = pn for every β ∈ Fq (see [27] for Boolean bent
and [18] for p-ary bent). In addition, f is said to be s-plateaued if |Wf (β)|2 ∈ {0, pn+s} for
every β ∈ Fq, with 0 ≤ s ≤ n, (see [32] for Boolean plateaued and [8] for p-ary plateaued).
A plateaued function f is the partially bent function if f(x + a) − f(x) is balanced or
constant for all a ∈ Fpn . The notion of partially bent Boolean functions was firstly
defined by Carlet [5]. In particular, a 0-plateaued function is the bent function. For an s-
plateaued f , its Walsh support is described as the set Sf = {β ∈ Fq : |Wf (β)|2 = pn+s}.
A plateaued function with affine Walsh support is trivially the partially bent function.
From the Parseval identity, we have #Sf = pn−s, and also its explicit Walsh distribution
is given as follows.

Lemma 2. Let f be an s-plateaued function. For β ∈ Fq, |Wf (β)|2 takes the values pn+s

and 0 for the times pn−s and pn − pn−s, respectively.

Mesnager et al. [25] have recently described the notion of weakly regular plateaued
functions. An s-plateaued f is said to be weakly regular if we have

Wf (β) ∈
{

0, up
n+s
2 ξf

⋆(β)
p

}

,

where u ∈ {±1,±i}, f⋆ is a p-ary function over Fq with f⋆(β) = 0 for every β ∈ Fq \ Sf ;
otherwise, f is called non-weakly regular. We remark that a weakly regular 0-plateaued
is the weakly regular bent function.

The following lemma is very useful to compute the Hamming weights of proposed
codes.
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Lemma 3. [25] Let f be a weakly regular s-plateaued function. Then, we have

Wf (β) = ǫf
√

p∗
n+s

ξf
⋆(β)

p

for every β ∈ Sf , where ǫf ∈ {±1} is the sign of Wf and f⋆ is a p-ary function over Sf .

The following two lemmas are needed to determine the weight distributions of pro-
posed codes.

Lemma 4. [26] Let f be a weakly regular s-plateaued function. For x ∈ Fq,

∑

β∈Sf

ξf
⋆(β)+Trn(βx)

p = ǫfη
n
0 (−1)

√

p∗
n−s

ξf(x)p ,

where ǫf = ±1 is the sign of Wf and f⋆ is a p-ary function over Sf .

Lemma 5. [26] Let f be a weakly regular s-plateaued function with Wf (β) = ǫf
√
p∗

n+s
ξ
f⋆(β)
p

for every β ∈ Sf , where ǫf = ±1 is the sign of Wf . For j ∈ Fp, define Nf⋆(j) = #{β ∈
Sf : f⋆(β) = j}. Then we have

Nf⋆(j) =

{

pn−s−1 + ǫfη
n+1
0 (−1)(p− 1)

√
p∗

n−s−2
, if j = 0,

pn−s−1 − ǫfη
n+1
0 (−1)

√
p∗

n−s−2
, if not,

when n− s is even; otherwise,

Nf⋆(j) =







pn−s−1, if j = 0,

pn−s−1 + ǫfη
n
0 (−1)

√
p∗

n−s−1
, if j ∈ SQ,

pn−s−1 − ǫfη
n
0 (−1)

√
p∗

n−s−1
, if j ∈ NSQ.

Mesnager et al. [26] have very recently introduced the subclass WRP of the class of
weakly regular plateaued functions over odd characteristic finite fields. For an integer
sf with 0 ≤ sf ≤ n, WRP defines the set of weakly regular sf -plateaued unbalanced
functions f : Fq → Fp that satisfy two homogeneous conditions:

- f(0) = 0, and
- f(ax) = akf f(x) for all x ∈ Fq and a ∈ F⋆

p, where kf is a positive even integer with
gcd(kf − 1, p− 1) = 1.

In this paper, to construct linear codes with new parameters, we use a large class WRP
of functions in the recent construction method of [17,19,30] based on the second generic
construction method. The class WRP is a non-trivial and non-empty set of functions
since for example, all quadratic unbalanced functions belong to this class.

We end this section with giving the following results that are used in the subsequent
proofs.

Proposition 1. [26] If f ∈ WRP, then f⋆(0) = 0 and f⋆(aβ) = alf f⋆(β) for all a ∈ F⋆
p

and β ∈ Sf , where lf is a positive even integer with gcd(lf − 1, p− 1) = 1.

Lemma 6. [26] If f ∈ WRP, then for every β ∈ Sf (resp., β ∈ Fq \ Sf ), we have
zβ ∈ Sf (resp., zβ ∈ Fq \ Sf ) for every z ∈ F⋆

p.
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3 Linear codes derived from weakly regular plateaued unbalanced

functions over Fp

In this section, weakly regular plateaued unbalanced functions are employed to obtain
minimal linear codes in the second generic construction method.

3.1 The construction method of linear codes from functions

For a long time, cryptographic functions have been extensively used to design linear codes
with few weights in coding theory. Constructing linear codes from functions including
quadratic, almost bent, (almost) perfect nonlinear, (weakly regular) bent and plateaued
functions is a highly interesting research topic in the literature. Remarkably, determining
the parameters of the codes derived from these functions is rather easy due to the nice
structure of these functions although it is generally a difficult problem in coding theory.

Two construction methods of linear codes from functions are generic in the sense
that several classes of known codes could be obtained from these construction methods.
We below define two generic construction methods of linear codes from functions. For a
polynomial F (x) on Fq, the first generic construction method of linear codes is given by

C(F ) = {(Trn(aF (x) + bx))x∈F⋆
q
: a, b ∈ Fq},

whose length is (q−1) and dimension is at most 2n. For a subset D = {d1, . . . , dm} ⊆ Fq,
the second generic construction method based on D is defined as

CD = {(Trn(ad1), . . . ,Trn(adm)) : a ∈ Fq}, (1)

whose length is m and dimension is at most n. The set D is called the defining set of
CD, and the quality of CD depends on the choice of D. The construction method of the
form (1) has been initially studied by Ding et al. [11,12], and many linear codes have
been proposed in [9,10,11,12,13,14]. Furthermore, new linear codes have been obtained
from some cryptographic functions in this construction method (see e.g. [23,26,29,28,33]).
Motivated by the method of the form (1), for a subset D = {(x1, y1), . . . , (xm, ym)} ⊆ F2

q ,
Li et al. [19] have defined the following linear code

CD = {c(a,b) = (Trn(ax1 + by1), . . . ,Tr
n(axm + bym)) : a, b ∈ Fq}, (2)

whose length is m and dimension at most 2n. They have then constructed some linear
codes by using the set D = {(x, y) ∈ F2

q \ {(0, 0)} : Trn(xk + yl) = 0}, where k, l ∈
{1, 2, pn/2 + 1}. Recently, Jian et al. [17] have constructed further linear codes of the
form (2) by using the defining set D = {(x, y) ∈ F2

q \ {(0, 0)} : Trn(xk + yp
u+1) = 0},

where k ∈ {1, 2}. Very recently, Wu et al. [30] have constructed new linear codes of the
form (2) based on the set

D = {(x, y) ∈ F2
q \ {(0, 0)} : f(x) + g(y) = 0} ⊂ F2

q , (3)

where f and g are two weakly regular bent functions from Fq to Fp. Motivated by the
works [17,19,30], we in this paper construct minimal linear codes of the form (2) based
on the set D of the form (3) for the following two cases:
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1) f(x) = Trn(x) and g(y) ∈ WRP,

2) both f(x) ∈ WRP and g(y) ∈ WRP.

Let f and g be two p-ary functions from Fq to Fp, and let D be the set of the form
(3). From the definition of the code CD of the form (2), we define

N (a, b) = #{(x, y) ∈ F2
q \ {(0, 0)} : f(x) + g(y) = 0 and Trn(ax+ by) = 0} (4)

and hence, the Hamming weight of the nonzero codeword c(a,b) is given by WH(c(a,b)) =
#D −N (a, b) for every (a, b) ∈ F2

q \ {(0, 0)}, and we clearly have WH(c(0,0)) = 0.

3.2 Three-weight linear codes derived from Trn(x) + g(y) ∈ WRP

In this subsection, we construct the linear code CD of the form (2) for the defining set
D of the form (3) when f(x) = Trn(x) and g(y) ∈ WRP, where g is an sg-plateaued
function with 0 ≤ sg ≤ n.

We introduce a couple of lemmas to find the Hamming weights of the code CD. We
first derive the following one from the proof of [30, Lemma 5].

Lemma 7. [30] Let N (a, b) be defined as in (4) for (a, b) ∈ (F2
q)

⋆. Then, N (a, b) =

p2n−2 − 1 + A
p2
, where

A =
∑

x,y∈Fq

∑

z1,z2∈F⋆
p

ξz1(Tr
n(x)+g(y))+z2(Tr

n(ax+by))
p .

Moreover, if a ∈ Fq \ F⋆
p then we have A = 0, if a ∈ F⋆

p then

A = pn
∑

z1∈F⋆
p

σz1





∑

y∈Fq

ξ
g(y)−Trn( b

a
y)

p



 . (5)

The following lemma calculates the value A by using the Walsh spectrum of the
employed function.

Lemma 8. Let g ∈ WRP and A be defined as in (5) for a ∈ F⋆
p and b ∈ Fq. Then, for

every b
a ∈ Fq \ Sg we have A = 0, and for every b

a ∈ Sg

A =

{

ǫg(p− 1)pn
√
p∗

n+sg , if g⋆( ba) = 0,

−ǫgp
n√p∗

n+sg , if not,

when n+ sg is even; otherwise,

A =







0, if g⋆( ba) = 0,

ǫgp
n√p∗

n+sg+1
, if g⋆( ba) ∈ SQ,

−ǫgp
n√p∗

n+sg+1
, if g⋆( ba) ∈ NSQ.
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Proof. When b
a ∈ Fq \ Sg, we clearly get A = 0. When b

a ∈ Sg, we have

A = pn
∑

z1∈F⋆
p

σz1

(

Wg

(

b

a

))

= pn
∑

z1∈F⋆
p

σz1

(

ǫg
√

p∗
n+sg

ξ
g⋆( b

a
)

p

)

= pnǫg
√
p∗

n+sg
∑

z1∈F⋆
p

η
n+sg
0 (z1)ξ

z1g⋆(
b
a
)

p ,

where Lemma 3 is used in the second equality. The proof is completed from Lemma 1.
�

The following lemma helps to determine the weights of codewords in CD.

Lemma 9. Let g ∈ WRP and N (a, b) be defined as in (4) for (a, b) ∈ (F2
q)

⋆. Then, we

have N (a, b) = p2n−2 − 1 if a ∈ Fq \ F⋆
p or if b

a /∈ Sg for a ∈ F⋆
p. For every b

a ∈ Sg for
a ∈ F⋆

p, we have

N (a, b) =

{

p2n−2 − 1 + ǫg(p− 1)pn−2√p∗
n+sg , if g⋆( ba) = 0,

p2n−2 − 1− ǫgp
n−2√p∗

n+sg , if not,

when n+ sg is even; otherwise,

N (a, b) =







p2n−2 − 1, if g⋆( ba) = 0,

p2n−2 − 1 + ǫgp
n−2√p∗

n+sg+1
, if g⋆( ba) ∈ SQ,

p2n−2 − 1− ǫgp
n−2√p∗

n+sg+1
, if g⋆( ba) ∈ NSQ.

Proof. The proof follows from the combination of Lemmas 7 and 8. �

The following theorem proposes the code CD of the form (2) based on the set

D = {(x, y) ∈ F2
q \ {(0, 0)} : Trn(x) + g(y) = 0}, (6)

where g(y) ∈ WRP. We can calculate its size #D = p2n−1 − 1 from the orthogonality of
exponential sums.

Theorem 1. Let D be defined as in (6) and g ∈ WRP. Then, the code CD of the form
(2) is a 3-weight linear [p2n−1 − 1, 2n] code over Fp. All parameters are listed in Tables
1 and 2 when n+ sg is even and odd, respectively.

Proof. From the definition of CD, its length is the size of D, and for every (a, b) ∈ (F2
q)

⋆,
its Hamming weight WH(c(a,b)) = #D − N (a, b), where N (a, b) is defined as in (4).

Then the Hamming weights can be obtained from Lemma 9. If a ∈ Fq \ F⋆
p or if b

a /∈ Sg

for a ∈ F⋆
p, then we have WH(c(a,b)) = (p − 1)p2n−2, and its weight distribution is

p2n − (p− 1)pn−sg − 1 by Lemma 2. Additionally, for every b
a ∈ Sg for a ∈ F⋆

p, we have

WH(c(a,b)) =

{

(p− 1)p2n−2 − ǫg(p− 1)pn−2√p∗
n+sg , if g⋆( ba) = 0,

(p− 1)p2n−2 + ǫgp
n−2√p∗

n+sg , if not,
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when n+ sg is even; otherwise,

WH(c(a,b)) =







(p− 1)p2n−2, if g⋆( ba) = 0,

(p− 1)p2n−2 − ǫgp
n−2√p∗

n+sg+1
, if g⋆( ba) ∈ SQ,

(p− 1)p2n−2 + ǫgp
n−2√p∗

n+sg+1
, if g⋆( ba) ∈ NSQ.

In this case, the weight distribution of each weight is derived from Lemma 5. All Ham-
ming weights and their weight distributions are given in Tables 1 and 2, completing the
proof. �

We below give an example of the code CD constructed in Theorem 1, which is verified
by MAGMA in [2].

Example 1. The function g : F34 → F3 defined as g(x) = Tr4(2x92) is weakly regular

2-plateaued function from WRP, and Wg(β) ∈ {0, ǫgη30(−1)33ξ
g⋆(β)
3 }, where ǫg = 1 and

g⋆ is a function with g⋆(0) = 0. Then, CD is a 3-weight minimal ternary [2186, 8, 1215]
code with the weight enumerator 1 + 16y1215 + 6542y1458 + 2y1944.

Remark 1. When g is a weakly regular 0-plateaued (bent) function in Theorem 1, one
can easily obtain the linear code given in [30, Theorem 3].

3.3 Three-weight and four-weight linear codes derived from
f(x), g(y) ∈ WRP

In this subsection, we construct the linear code CD of the form (2) based on the set

D = {(x, y) ∈ F2
q \ {(0, 0)} : f(x) + g(y) = 0}, (7)

where f, g ∈ WRP are sf -plateaued and sg-plateaued functions from Fq to Fp, respec-
tively, for 0 ≤ sf , sg ≤ n.

We first introduce three lemmas by using the exponential sums and Walsh spectrum
of a weakly regular plateaued function. They are needed to compute the lengths, weights,
and weight distributions of codes.

We begin with finding the size of the set D of the form (7) by using the Walsh
transform values of the functions at the zero points.

Lemma 10. Let D be defined as in (7) and let f, g ∈ WRP. Then

#D =

{

p2n−1 − 1, if 2n+ sf + sg is odd,

p2n−1 − 1 + ǫf ǫg
p−1
p

√
p∗

2n+sf+sg , if not.

Proof. We can write Wf (0) = ǫf
√
p∗

n+sf and Wg(0) = ǫg
√
p∗

n+sg from Lemma 3,
where ǫf , ǫg ∈ {±1}, since we know f⋆(0) = g⋆(0) = 0 from Proposition 1. Hence, from
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the orthogonality of exponential sums, we have

#D + 1 = 1
p

∑

x,y∈Fq

∑

z∈Fp

ξz(f(x)+g(y))
p

= 1
p



p2n +
∑

z∈F⋆
p

σz(
∑

x∈Fq

ξf(x)p

∑

y∈Fq

ξg(y)p )





= 1
p



p2n +
∑

z∈F⋆
p

σz(ǫf ǫg
√

p∗
2n+sf+sg

)





= 1
p



p2n + ǫf ǫg
√
p∗

2n+sf+sg
∑

z∈F⋆
p

η
2n+sf+sg
0 (z)





=

{

p2n−1, if 2n+ sf + sg is odd,

p2n−1 + ǫf ǫg
p−1
p

√
p∗

2n+sf+sg , if not,

where Lemma 1 is used in the last equality, thereby completing the proof. �

Lemma 11. Let f, g ∈ WRP and lf , lg be defined as in Proposition 1. For (a, b) ∈ (F2
q)

⋆,
define

B =
∑

z1,z2∈F⋆
p

∑

x,y∈Fq

ξz1(f(x)+g(y))−z2Tr
n(ax+by)

p .

Then, we have B = 0 for (a, b) /∈ Sf ×Sg, and for (a, b) ∈ Sf ×Sg, we have two distinct
cases.

– When 2n+ sf + sg is odd, we have

B =







0, if ab 6= 0 or b = f⋆(a) = 0 or a = g⋆(b) = 0,

ǫf ǫg(p− 1)
√
p∗

2n+sf+sg+1
, if b = 0 and f⋆(a) ∈ SQ or a = 0 and g⋆(b) ∈ SQ,

−ǫf ǫg(p− 1)
√
p∗

2n+sf+sg+1
, if b = 0 and f⋆(a) ∈ NSQ or a = 0 and g⋆(b) ∈ NSQ.

– When 2n+ sf + sg is even, we have for lf = lg

B =

{

ǫf ǫg(p− 1)2
√
p∗

2n+sf+sg , if C1,

−ǫf ǫg(p− 1)
√
p∗

2n+sf+sg , otherwise,

and for lf 6= lg

B =











ǫf ǫg(p− 1)2
√
p∗

2n+sf+sg , if C2,

ǫf ǫg(p+ 1)
√
p∗

2n+sf+sg , if − f⋆(a)
g⋆(b) ∈ SQ,

−ǫf ǫg(p− 1)
√
p∗

2n+sf+sg , otherwise,

where C1 is the condition a = g⋆(b) = 0 or b = f⋆(a) = 0 or f⋆(a) + g⋆(b) =
0 for ab 6= 0, and C2 is the condition a = g⋆(b) = 0 or b = f⋆(a) = 0 or f⋆(a) =
g⋆(b) = 0 for ab 6= 0.
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Proof. From the definition of B, we have

B =
∑

z1,z2∈F⋆
p

∑

x∈Fq

ξz1(f(x)−Trn(z2ax))
p

∑

y∈Fq

ξz1(g(y)−Trn(z2by))
p

=
∑

z1∈F⋆
p

σz1(
∑

z2∈F⋆
p

Wf (z2a)Wg(z2b)),

where we use the fact that z2
z1

runs all over F⋆
p for a fixed z1 when z2 runs through F⋆

p in
the first equality. For every (a, b) /∈ Sf × Sg, i.e., (z2a, z2b) /∈ Sf × Sg for every z2 ∈ F⋆

p

by Lemma 6, we can see that B = 0. For every (a, b) ∈ Sf ×Sg, i.e., (z2a, z2b) ∈ Sf ×Sg,
there are two cases: ab = 0 and ab 6= 0.

– In the case of ab = 0, suppose a = 0 and b 6= 0, without loss of generality. We then
have

B =
∑

z1∈F⋆
p

σz1





∑

z2∈F⋆
p

ǫf
√

p∗
n+sf

ǫg
√

p∗
n+sg

ξg
⋆(z2b)

p





=
∑

z1∈F⋆
p

σz1





∑

z2∈F⋆
p

ǫf ǫg
√

p∗
2n+sf+sg

ξ
z
lg
2 g⋆(b)

p





= ǫf ǫg
√

p∗
2n+sf+sg

∑

z1∈F⋆
p

η
2n+sf+sg
0 (z1)

∑

z2∈F⋆
p

ξ
z1z

lg
2 g⋆(b)

p ,

where we use Lemmas 3, 6 and Proposition 1 in the first and second equality, respec-
tively. With the help of Lemma 1, we get

B =







0, if g⋆(b) = 0,

ǫf ǫg(p− 1)
√
p∗

2n+sf+sg+1
, if g⋆(b) ∈ SQ,

−ǫf ǫg(p− 1)
√
p∗

2n+sf+sg+1
, if g⋆(b) ∈ NSQ,

when 2n+ sf + sg is odd; otherwise,

B =

{

ǫf ǫg(p− 1)2
√
p∗

2n+sf+sg , if g⋆(b) = 0,

−ǫf ǫg(p− 1)
√
p∗

2n+sf+sg , if not.

Similarly, for b = 0 and a 6= 0, the analogous computations yield the same results
above with respect to the parameter a.

– In the case of ab 6= 0, we get

B =
∑

z1∈F⋆
p

σz1





∑

z2∈F⋆
p

ǫf
√

p∗
n+sf

ξf
⋆(z2a)

p ǫg
√

p∗
n+sg

ξg
⋆(z2b)

p





=
∑

z1∈F⋆
p

σz1





∑

z2∈F⋆
p

ǫf ǫg
√

p∗
2n+sf+sg

ξ
z
lf
2 f⋆(a)+z

lg
2 g⋆(b)

p





= ǫf ǫg
√

p∗
2n+sf+sg

∑

z1∈F⋆
p

η
2n+sf+sg
0 (z1)

∑

z2∈F⋆
p

ξ
z1(z

lf
2 f⋆(a)+z

lg
2 g⋆(b))

p ,
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where we use Lemmas 3, 6 and Proposition 1 in the first and second equality, re-
spectively. We hence compute B by using Lemma 1 and also some properties of the
cyclotomic field and quadratic character η0. When 2n+ sf + sg is odd, we make that
B = 0. When 2n+ sf + sg is even, we get for lf = lg

B =

{

ǫf ǫg(p− 1)2
√
p∗

2n+sf+sg , if f⋆(a) + g⋆(b) = 0,

−ǫf ǫg(p− 1)
√
p∗

2n+sf+sg , otherwise,

and for lf 6= lg

B =











ǫf ǫg(p− 1)2
√
p∗

2n+sf+sg , if f⋆(a) = g⋆(b) = 0,

ǫf ǫg(p+ 1)
√
p∗

2n+sf+sg , if − f⋆(a)
g⋆(b) ∈ SQ,

−ǫf ǫg(p− 1)
√
p∗

2n+sf+sg , otherwise.

The proof is then complete. �

The following lemma helps to compute the weights and their weight distributions.

Lemma 12. Let N (a, b) be defined as in (4) for (a, b) ∈ (F2
q)

⋆, and lf , lg be defined as
in Proposition 1.

– Suppose that 2n + sf + sg is odd. For every (a, b) /∈ Sf × Sg, we have N (a, b) =
p2n−2 − 1, and for every (a, b) ∈ Sf × Sg, we have

N (a, b) =







p2n−2 − 1, if ab 6= 0 or b = f⋆(a) = 0 or a = g⋆(b) = 0,
p2n−2 − 1 + E, if b = 0 and f⋆(a) ∈ SQ or a = 0 and g⋆(b) ∈ SQ,
p2n−2 − 1− E, if b = 0 and f⋆(a) ∈ NSQ or a = 0 and g⋆(b) ∈ NSQ,

where E = ǫf ǫg
1
p2
(p− 1)

√
p∗

2n+sf+sg+1
.

– Suppose that 2n + sf + sg is even. For every (a, b) /∈ Sf × Sg, we have N (a, b) =

p2n−2− 1+ ǫf ǫg
1
p2
(p− 1)

√
p∗

2n+sf+sg . For every (a, b) ∈ Sf ×Sg, we have for lf = lg

N (a, b) =

{

p2n−2 − 1 + ǫf ǫg
1
p(p− 1)

√
p∗

2n+sf+sg , if C1,

p2n−2 − 1, otherwise,

and for lf 6= lg

N (a, b) =











p2n−2 − 1 + ǫf ǫg
1
p(p− 1)

√
p∗

2n+sf+sg , if C2,

p2n−2 − 1 + ǫf ǫg
2
p

√
p∗

2n+sf+sg , if − f⋆(a)
g⋆(b) ∈ SQ,

p2n−2 − 1, otherwise,

where C1 is the condition a = g⋆(b) = 0 or b = f⋆(a) = 0 or f⋆(a) + g⋆(b) =
0 for ab 6= 0, and C2 is the condition a = g⋆(b) = 0 or b = f⋆(a) = 0 or f⋆(a) =
g⋆(b) = 0 for ab 6= 0.
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Proof. By the definition of N (a, b) and using the orthogonality of exponential sums, we
get

N (a, b) + 1 = p−2
∑

x,y∈Fq





∑

z1∈Fp

ξ
z1(f(x)+g(y))
p









∑

z2∈Fp

ξ
−z2Trn(ax+by)
p



 = p
2n−2 +

1

p2
(A+B),

where

A =
∑

z1∈F⋆
p

∑

x,y∈Fq

ξz1(f(x)+g(y))
p and B =

∑

z1,z2∈F⋆
p

∑

x,y∈Fq

ξz1(f(x)+g(y))−z2Tr
n(ax+by)

p .

We clearly have A = p(#D + 1) − p2n in the light of Lemma 10. The proof is then
complete from Lemmas 10 and 11. �

We now construct the code CD of the form (2) when 2n+ sf + sg is odd.

Theorem 2. Let D be defined as in (7), and let f, g ∈ WRP. Suppose that n+sf is odd
and n+ sg is even. Then, the code CD of the from (2) is a 3-weight linear [p2n−1− 1, 2n]
code whose parameters are listed in Table 3.

Proof. From the definition of CD, its length equals the size of D, and the weight of each
codeword is WH(c(a,b)) = #D−N (a, b) for every (a, b) ∈ (F2

q)
⋆, where N (a, b) is defined

as in (4). By Lemma 10, we have #D = p2n−1 − 1, and the Hamming weights can be
derived from Lemma 12. To put it more explicitly, for every (a, b) /∈ Sf × Sg, we have
WH(c(a,b)) = (p− 1)p2n−2, and the number of such codewords equals p2n− p2n−sf−sg by
Lemma 2. Additionally, for every (a, b) ∈ Sf × Sg, we get

WH(c(a,b)) =











(p− 1)p2n−2, A1 times,

(p− 1)p2n−2 − ǫf ǫg
1
p2
(p− 1)

√
p∗

2n+sf+sg+1
, A2 times,

(p− 1)p2n−2 + ǫf ǫg
1
p2
(p− 1)

√
p∗

2n+sf+sg+1
, A3 times,

whose weight distribution is determined by Lemmas 2, 5 and 12. Firstly, to compute
A1, we define the following three sets: {(a, b) ∈ S⋆

f × S⋆
g}, {a ∈ S⋆

f : f⋆(a) = 0} and
{b ∈ S⋆

g : g⋆(b) = 0}. Here, A1 can be expressed as the sum of the sizes of these sets,
and hence by Lemmas 2 and 5, we get A1 = p2n−sf−sg − 1− (p− 1)(pn−sf−1+ pn−sg−1−
ǫgǫ

n+1√p∗
n−sg−2

). Similarly, A2 and A3 can be expressed as

A2 = #{a ∈ S⋆
f : f⋆(a) ∈ SQ}+#{b ∈ S⋆

g : g⋆(b) ∈ SQ},
A3 = #{a ∈ S⋆

f : f⋆(a) ∈ NSQ}+#{b ∈ S⋆
g : g⋆(b) ∈ NSQ}.

By Lemma 5,A2 = (p−1
2 )(pn−sf−1+pn−sg−1+ǫfη

n
0 (−1)

√
p∗

n−sf−1−ǫgη
n+1
0 (−1)

√
p∗

n−sg−2
)

and A3 = (p−1
2 )(pn−sf−1 + pn−sg−1 − ǫfη

n
0 (−1)

√
p∗

n−sf−1 − ǫgη
n+1
0 (−1)

√
p∗

n−sg−2
),

thereby completing the proof. �

The following numerical examples are given for the code CD constructed in Theorem
2, which are verified by MAGMA in [2].
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Example 2. Let f, g : F32 → F3 be defined as f(x) = Tr2(ζx4 + ζ8x2) and g(x) =
Tr2(x10), where ζ is a primitive element of F32 . Then f, g ∈ WRP with sf = 1, sg = 0
and ǫf = ǫg = 1, and hence CD is a 3-weight ternary [26, 4, 12] code with the weight
enumerator 1 + 4y12 + 70y18 + 6y24.

Example 3. Let f, g : F33 → F3 be defined as f(x) = Tr3(x10) and g(x) = Tr3(ζx4 +
ζ8x2), where ζ is a primitive element of F33 . Then f, g ∈ WRP with sf = 0, sg = 1
and ǫf = ǫg = 1, and hence CD is a 3-weight minimal ternary [242, 6, 144] code with
1 + 14y144 + 706y162 + 8y180. It is worth noting that this code is better than the code
[242, 6, 135]3, which is obtained in [30, Example 6] only from quadratic weakly regular
bent f(x) = Tr3(x10).

The following lemma is needed to determine the weight distribution.

Lemma 13. Let f, g ∈ WRP, and define Sf,g = #{(a, b) ∈ Sf ×Sg : f⋆(a)+g⋆(b) = 0}.
Then,

Sf,g =

{

p2n−sf−sg−1, if 2n− sf − sg odd,

p2n−sf−sg−1 + ǫf ǫg
p−1
p

√
p∗

2n−sf−sg , if not.

Proof. From the orthogonality of exponential sums, we have

Sf,g = 1
p

∑

a∈Sf

∑

b∈Sg

∑

z∈Fp

ξz(f
⋆(a)+g⋆(b))

p = 1
p(p

2n−sf−sg +
∑

z∈F⋆
p

σz(
∑

a∈Sf

ξf
⋆(a)

p

∑

a∈Sg

ξg
⋆(b)

p ))

= 1
p(p

2n−sf−sg +
∑

z∈F⋆
p

σz(ǫf ǫg
√

p∗
2n−sf−sg

)),

where Lemma 4 is used in the last equality. The proof is hence complete by Lemma 1.
�

We below construct the code CD of the form (2) when 2n+ sf + sg is even.

Theorem 3. Let D be defined as in (7), and let f, g ∈ WRP. Suppose that 2n+ sf + sg
is even and lf , lg are defined as in Proposition 1. Then, the code CD of the form (2) with

parameters [p2n−1 − 1 + ǫf ǫg
1
p(p− 1)

√
p∗

2n+sf+sg , 2n]

– is a 3-weight linear p-ary code over Fp when lf = lg,
– is a 4-weight linear p-ary code over Fp for p > 3 when lf 6= lg, in particular, it is a

3-weight ternary code for p = 3.

The Hamming weights are listed in Tables 4 and 5 when lf = lg and lf 6= lg, respectively.

Proof. The length of the code CD follows from Lemma 10, and for every (a, b) ∈ (F2
q)

⋆,
the weight WH(c(a,b)) = #D −N (a, b) can be obtained from Lemmas 10 and 12. To be
more precise, when (a, b) /∈ Sf × Sg, we have

WH(c(a,b)) = (p− 1)(p2n−2 + ǫf ǫg
1

p2
(p− 1)

√

p∗
2n+sf+sg

),

whose weight distribution is p2n − p2n−sf−sg from Lemma 2. In addition, when (a, b) ∈
Sf × Sg, there are two distinct cases.
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– When lf = lg,

WH(c(a,b)) =

{

(p− 1)p2n−2, A1 times,

(p− 1)(p2n−2 + ǫf ǫg
1
p

√
p∗

2n+sf+sg), A2 times,

whose weight distribution can be determined from Lemma 12. To compute A1, we
define the following three sets by using the condition C1 given in Lemma 12, and so
A1 can be expressed as

A1 = #{(a, b) ∈ S⋆
f × S⋆

g : f⋆(a) + g⋆(b) = 0}
+#{a ∈ S⋆

f : f⋆(a) = 0}+#{b ∈ S⋆
g : g⋆(b) = 0}.

We hence conclude that A1 = Sf,g − 1, where Sf,g is defined as in Lemma 13. We
clearly have A2 = p2n−sf−sg − Sf,g due to the fact that the dimension is 2n. The
Hamming weights and their weight distributions are given in Table 4.

– When lf 6= lg,

WH(c(a,b)) =











(p− 1)p2n−2, Aω1 times,

(p− 1)p2n−2 + ǫf ǫg
(p−3)

p

√
p∗

2n+sf+sg , Aω2 times,

(p− 1)(p2n−2 + ǫf ǫg
1
p

√
p∗

2n+sf+sg), Aω3 times.

In this case, to determine the weight distribution, we define the following four sets
by using the condition C2 given in Lemma 12. Aω1 and Aω2 can be written as

Aω1 = #{(a, b) ∈ S⋆
f × S⋆

g : f⋆(a) = g⋆(b) = 0}+#{a ∈ S⋆
f : f⋆(a) = 0}

+#{b ∈ S⋆
g : g⋆(b) = 0} = #{(a, b) ∈ Sf × Sg : f⋆(a) = g⋆(b) = 0} − 1

= Nf⋆(0) ∗ Ng⋆(0)− 1,

Aω2 = #{(a, b) ∈ S⋆
f × S⋆

g : − f⋆(a)
g⋆(b) ∈ SQ} = (p−1)2

4 Nf⋆(i) ∗ Ng⋆(j),

where i, j ∈ SQ. Here, the numbers Nf⋆(i) and Ng⋆(j) depend on the parity of sf
and sg, and they are given in Lemma 5. Additionally, we have Aω3 = p2n−sf−sg −1−
Aω1 − Aω2 due to the fact that the dimension is 2n. Hence, the weight distribution
follows from Lemma 5 for each case, and the Hamming weights are given in Table 5.

The proof of this theorem is finally complete. �

We end this subsection giving a numerical example for the code CD constructed in
Theorem 3, verified by MAGMA in [2].

Example 4. Let f, g : F35 → F3 be defined as f(x) = Tr5(ζx10 + ζ20x4) and g(x) =
Tr5(ζx10 + 2x4 + x2), where ζ is a primitive element of F35 . Then f, g ∈ WRP with
sf = sg = 1, lf = lg = 2, ǫf = 1 and ǫg = −1. Hence, CD is a 3-weight minimal ternary
[19196, 10, 12636] code with 1 + 4428y12636 + 52488y12798 + 2132y13122.

Remark 2. When f and g are two weakly regular 0-plateaued (bent) functions in Theo-
rem 3, we have the same linear code given in [30, Theorem 4].
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4 Punctured codes and Subcodes of the constructed codes

In this section, we derive punctured codes and subcodes with flexible parameters from
the linear codes constructed in Section 3.

4.1 Three-weight punctured codes

In this subsection, we derive shorter linear codes from the constructed codes by using a
special subset of the defining set D of the form (7). Such a code is said to be a punctured
code of the original code. The minimum distance and length of a punctured code are
rather smaller than the original ones while its dimension is the same as the original one.

We deal with the code CD of the form (2) for the defining set D of the form (7).
In Theorems 2 and 3, the length and Hamming weights of CD have a common factor
(p− 1), which suggests that CD can be punctured into a shorter linear code over Fp. Let
f, g ∈ WRP with kf = kg. For every x, y ∈ Fq, f(ax) + g(ay) = 0 iff f(x) + g(y) = 0 for
every a ∈ F⋆

p because f(ax) + g(ay) = akf (f(x) + g(y)). We can then choose a subset D
of D such that

⋃

a∈F⋆
p
aD is a partition of D:

D = F⋆
pD = {a(x, y) : a ∈ F⋆

p and (x, y) ∈ D}.

Thus, CD can be punctured into a shorter one C
D based on the defining set D. Since

#D = (p − 1)#D, the length and Hamming weights of the punctured code C
D can be

derived from that of CD by dividing by (p− 1).

We introduce the parameters of the punctured codes in the following corollaries.

Corollary 1. Let D be defined as in (7), where f, g ∈ WRP, and suppose kf = kg.
Let CD be the 3-weight code proposed in Theorem 2. Then, its punctured code C

D is a
3-weight [(p2n−1 − 1)/(p− 1), 2n] code whose parameters are documented in Table 6.

As examples, we give the following punctured codes, which are almost optimal.

Example 5. The punctured code CD of the code given in Example 2 is a 3-weight ternary
[13, 4, 6] code with 1+4y6+70y9+6y12. This punctured code is almost optimal ternary
code because the best ternary code with length 13 and dimension 4 has d = 7 in [15].

Example 6. The punctured code C
D of the code given in Example 3 is a 3-weight ternary

[121, 6, 72] minimal code with 1 + 14y72 + 706y81 + 8y90. Note that d = 78 for the best
ternary code with length 121 and dimension 6 in [15].

Corollary 2. Let D be defined as in (7), where f, g ∈ WRP, and suppose that kf = kg
and lf = lg. Let CD be the 3-weight code proposed in Theorem 3 when lf = lg. Then, its

punctured code CD is a 3-weight [(p2n−1− 1)/(p− 1)+ ǫf ǫg
1
p

√
p∗

2n+sf+sg , 2n] code whose
parameters are listed in Table 7.
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4.2 Two-weight and three-weight subcodes from partially bent functions

There are several ways to obtain subcodes from the known linear codes over finite fields.
To obtain subcodes from our constructed codes, we restrict the element of the finite field
to an affine Walsh support of a partially bent function over a finite field.

We notice that the Walsh support of a plateaued function is in general not necessarily
a vector space. If it is a vector space, then such a plateaued function is said to be a
trivial plateaued function that essentially corresponds to a partially bent function (see
[5,7,16]). Hence, the Walsh support of any partially bent function over Fq is an affine
subspace of Fq. It is well-known that the Walsh support of any partially bent function
(and also, quadratic function) over Fq is a certain coset of the orthogonal complement of
an affine subspace of its linear structures in Fq. We remark that all quadratic unbalanced
functions and some partially bent unbalanced functions belong to this class WRP. For
any partially bent function g ∈ WRP, there exists an integer sg with 0 < sg ≤ n such
that the vector space of its linear structures has dimension sg, and so its affine Walsh
support has dimension n− sg.

To define a subcode of the code CD constructed in Theorem 1, we restrict an element
b from Fpn to an (n− sg)-dimensional affine Walsh support Sg of a function g ∈ WRP.
We define a subcode

CD = {c(a,b) = (Trn(ax1 + by1), . . . ,Tr
n(axm + bym)) : a ∈ Fpn and b ∈ Sg}

based on the defining set D of the form (6). The length of CD is m and its dimension
is 2n − sg. The following corollary presents the parameters of this subcode CD for CD
proposed in Theorem 1.

Corollary 3. Let D be defined as in (6) and g ∈ WRP. Let CD be the 3-weight code
proposed in Theorem 1. Then, its subcode CD is a 3-weight [p2n−1−1, 2n−sg] code whose
parameters follow from Tables 1 and 2 when n+ sg is even and odd, respectively.

For the codes CD proposed in Theorems 2 and 3, we restrict an element (a, b) from
F2
q to its affine subspace Sf × Sg, where Sf and Sg are the affine Walsh supports of

f, g ∈ WRP with order pn−sf and pn−sg , respectively. We then define a subcode

CD = {c(a,b) = (Trn(ax1 + by1), . . . ,Tr
n(axm + bym)) : (a, b) ∈ Sf × Sg} (8)

based on the defining set D of the form (7). It is clear that the length of CD is m and
its dimension is 2n− sf − sg.

The following corollaries introduce the parameters of the subcodes of the form (8),
which follow from that of the corresponding original codes.

Corollary 4. Let D be defined as in (7), and let f, g ∈ WRP. Let CD be the 3-weight
code proposed in Theorem 2. Then, its subcode CD of the form (8) is a 3-weight [p2n−1−
1, 2n− sf − sg] code whose parameters follow from Table 3.

Corollary 5. Let D be defined as in (7), and let f, g ∈ WRP. Let CD be the code
proposed in Theorem 3. Then, its subcode CD of the form (8) with [p2n−1−1+ ǫf ǫg

1
p(p−

1)
√
p∗

2n+sf+sg , 2n− sf − sg] is a p-ary subcode over Fp
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– with 2-weights when lf = lg,
– with 3-weights for p > 3 when lf 6= lg, in particular, it is a 2-weight ternary subcode

for p = 3.

The parameters of this subcode are given in Tables 8 and 9.

Corollary 6. Let D be defined as in (7), where f, g ∈ WRP, and suppose kf = kg. Let
C
D be the 3-weight punctured code obtained in Corollary 1. Then, its subcode C

D
of the

form (8) is a 3-weight [(p2n−1 − 1)/(p − 1), 2n − sf − sg] code whose parameters follow
readily from Table 6.

Example 7. The subcode C
D of Example 6 is a 3-weight minimal ternary [121, 5, 72] code

with 1 + 14y72 + 220y81 + 8y90.

Corollary 7. Let D be defined as in (7), where f, g ∈ WRP, and suppose that kf = kg
and lf = lg. Let CD be the 3-weight punctured code given in Corollary 2. Then, its subcode
C
D

of the form (8) is a 2-weight

[(p2n−1 − 1)/(p− 1) + ǫf ǫg
1

p

√

p∗
2n+sf+sg

, 2n− sf − sg]

code whose parameters are listed in Table 10.

The method proposed above for obtaining subcodes decreases the dimension of the
original code while its length does not change. Also, this method does not change the
minimum distances of our codes although it may usually change that of a linear code.
Consequently, the dimension of a dual subcode is rather greater than that of the original
dual code. This suggests that the obtained subcodes may be used to construct more
flexible secret sharing schemes with high democracy.

5 Minimality of the constructed codes

In this section, we show that the constructed codes are minimal and investigate the
minimum Hamming distances of their dual codes.

A nonzero codeword v of a linear code C is the minimal codeword if v covers only
the codewords jv for all j ∈ Fp. A linear code C is minimal if its all nonzero codewords
are minimal. The following lemma introduces the well-known sufficient condition on the
minimal codes.

Lemma 14. (Ashikhmin-Barg,1998) [1] Let C be a linear code over Fp, and let wmin

and wmax represent the minimum and maximum Hamming weights of C, respectively.
Then, C is minimal if

p− 1

p
<

wmin

wmax
. (9)

By (9), our linear codes are minimal codes for almost all integers sf and sg with
0 ≤ sf , sg ≤ n. The following proposition finds the bounds on the integers sf and sg
that make the associated codes are minimal.
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Proposition 2. Let f, g ∈ WRP, and let sf and sg be two integers with 0 ≤ sf , sg ≤ n.
We have the following bounds on the parameters.

i.) The code CD in Theorem 1 is minimal for 0 ≤ sg ≤ n−3 if n+sg is even; otherwise,
it is minimal for 0 ≤ sg ≤ n− 2 and 4 ≤ n.

ii.) The code CD in Theorem 2 is minimal when 0 ≤ sf + sg ≤ 2n− 4 and 3 ≤ n.

iii.) The code CD in Theorem 3 is minimal for 0 ≤ sf+sg ≤ 2n−4 if ǫf ǫgη
(2n+sf+sg+1)/2
0 (−1) =

1; otherwise, it is minimal for 0 ≤ sf + sg ≤ 2n− 6 and 3 ≤ n.

Remark 3. Our punctured codes and subcodes are minimal for almost all cases.

Since our codes are minimal, we can describe the access structures of the secret
sharing schemes based on their dual codes as described in [6, Theorem 17]. We first
consider the minimum distances d⊥ of the dual codes of our minimal codes.

For the codes CD constructed in Theorems 1, 2 and 3, their dual codes C⊥
D have

d⊥ = 2 due to the fact that two entries of each codeword in CD are linearly dependent iff
the minimum distance d⊥ of C⊥

D is equal to 2. Moreover, for each subcode CD proposed

in Corollaries 3, 4 and 5, its dual code C⊥

D has d⊥ = 2 due to the same fact. Hence, these
minimal codes can be used to design high democratic secret sharing schemes with good
access structures as introduced in [6, Theorem 17] (developed in [12, Proposition 2]).

On the other hand, for the punctured codes CD given in Corollaries 1 and 2 (and
also for their subcodes CD given in Corollaries 6 and 7), the minimum distances of their
dual codes are at least 3 since no two of the vectors are dependent. As a consequence,
the punctured codes and their subcodes are projective minimal codes. The projective
3-weight codes given in Corollaries 1, 2 and 6 can be employed to obtain association
schemes introduced in [3], and projective 2-weight codes given in Corollary 7 can be
used in strongly regular graphs defined in [4]. Additionally, they can be employed to
design democratic secret sharing schemes as introduced in [6, Theorem 17].

6 Conclusion

In this paper, motivated by the work of [17,19,30], to construct minimal codes, we con-
sider weakly regular plateaued unbalanced functions in the recent construction method
of linear codes. As far as we search, our minimal codes have new parameters since we
for the first time use a new class WRP of functions in the recent construction method
proposed in [17,19,30]. In conclusion, the main contributions of the paper are given as
follows.

– We construct new infinite classes of 3-weight and 4-weight linear codes from the
class WRP of plateaued functions over Fp. To find the Hamming weights, we benefit
from the exponential sums and Walsh spectrums of the employed functions f, g ∈
WRP. To determine the weight distributions, we use the exponential sums and Walsh
distributions of f, g ∈ WRP as well as the numbers of the pre-images of the associated
functions f⋆ and g⋆ on the Walsh supports Sf and Sg.
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– We derive 3-weight punctured codes from the constructed codes, by deleting some
special coordinates in the defining set. Note that they contain almost optimal codes
due to the Griesmer bound. We also derive 2-weight and 3-weight subcodes with
flexible dimensions from partially bent functions f and g by considering their affine
Walsh supports Sf and Sg instead of the finite field Fq in the construction method
of the form (2). As a result of this technique, the dimension of the dual subcode is
rather greater than that of the original dual code, which implies that the subcode
produces a more flexible secret sharing scheme with new parameters.

– We show that our obtained codes are minimal, which says that they can be used
to design high democratic secret sharing schemes with new parameters under the
framework introduced in [12, Proposition 2].

– We finally consider the minimum Hamming distances of the dual codes of our min-
imal codes. We conclude that the proposed punctured codes and their subcodes are
projective. Hence, the proposed projective 2-weight and 3-weight codes can be used
to obtain strongly regular graphs in [4] and association schemes in [3], respectively.
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7 Appendix

The appendix presents the Hamming weights and weight distributions of the minimal
codes obtained in this paper.

Table 1. The Hamming weights of CD in Theorem 1 when n+ sg is even

Hamming weight ω Multiplicity Aω

0 1
(p− 1)p2n−2 p2n − (p− 1)pn−sg − 1

(p− 1)(p2n−2 − ǫgp
n−2√p∗

n+sg ) (p− 1)(pn−sg−1 + ǫgǫ
n+1(p− 1)

√
p∗

n−sg−2
)

(p− 1)p2n−2 + ǫgp
n−2√p∗

n+sg (p− 1)2(pn−sg−1 − ǫgǫ
n+1√p∗

n−sg−2
)
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Table 2. The Hamming weights of CD in Theorem 1 when n+ sg is odd

Hamming weight ω Multiplicity Aω

0 1
(p− 1)p2n−2 p2n − (p− 1)2pn−sg−1 − 1

(p− 1)p2n−2 − ǫgp
n−2√p∗

n+sg+1 (p−1)2

2
(pn−sg−1 + ǫgη

n
0 (−1)

√
p∗

n−sg−1
)

(p− 1)p2n−2 + ǫgp
n−2√p∗

n+sg+1 (p−1)2

2
(pn−sg−1 − ǫgη

n
0 (−1)

√
p∗

n−sg−1
)

Table 3. The Hamming weights of CD in Theorem 2 when n+ sf is odd and n+ sg is even

Hamming weight ω Multiplicity Aω

0 1
(p− 1)p2n−2 p2n − p2n−sf−sg +A1

(p− 1)(p2n−2 − ǫf ǫg
1
p2

√
p∗

2n+sf+sg+1
) A2

(p− 1)(p2n−2 + ǫf ǫg
1
p2

√
p∗

2n+sf+sg+1
) A3

Table 4. The Hamming weights of CD in Theorem 3 when 2n+ sf + sg is even and lf = lg

Hamming weight ω Multiplicity Aω

0 1

(p− 1)(p2n−2 + ǫf ǫg
1
p2
(p− 1)

√
p∗

2n+sf+sg ) p2n − p2n−sf−sg

(p− 1)p2n−2 p2n−sf−sg−1 + ǫf ǫg
1
p
(p− 1)

√
p∗

2n−sf−sg − 1

(p− 1)(p2n−2 + ǫf ǫg
1
p

√
p∗

2n+sf+sg ) p2n−sf−sg − p2n−sf−sg−1 − ǫf ǫg
1
p
(p− 1)

√
p∗

2n−sf−sg

Table 5. The Hamming weights of CD in Theorem 3 when 2n+ sf + sg is even and lf 6= lg

Hamming weight ω Multiplicity Aω

0 1

(p− 1)(p2n−2 + ǫf ǫg
1
p2
(p− 1)

√
p∗

2n+sf+sg ) p2n − p2n−sf−sg

(p− 1)p2n−2 Aω1

(p− 1)p2n−2 + ǫf ǫg
(p−3)

p

√
p∗

2n+sf+sg Aω2

(p− 1)(p2n−2 + ǫf ǫg
1
p

√
p∗

2n+sf+sg ) Aω3

Table 6. The Hamming weights of C
D

in Corollary 1 when 2n+ sf + sg is odd and kf = kg

Hamming weight ω Multiplicity Aω

0 1
p2n−2 p2n − p2n−sf−sg +A1

p2n−2 − ǫf ǫg
1
p2

√
p∗

2n+sf+sg+1
A2

p2n−2 + ǫf ǫg
1
p2

√
p∗

2n+sf+sg+1
A3
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Table 7. The Hamming weights of C
D

in Corollary 2 when 2n+ sf + sg is even, kf = kg and lf = lg

Hamming weight ω Multiplicity Aω

0 1

p2n−2 + ǫf ǫg
1
p2
(p− 1)

√
p∗

2n+sf+sg p2n − p2n−sf−sg

p2n−2 p2n−sf−sg−1 + ǫf ǫg
1
p
(p− 1)

√
p∗

2n−sf−sg − 1

p2n−2 + ǫf ǫg
1
p

√
p∗

2n+sf+sg p2n−sf−sg − p2n−sf−sg−1 − ǫf ǫg
1
p
(p− 1)

√
p∗

2n−sf−sg

Table 8. The Hamming weights of CD in Corollary 5 when 2n+ sf + sg is even and lf = lg

Hamming weight ω Multiplicity Aω

0 1

(p− 1)p2n−2 p2n−sf−sg−1 + ǫf ǫg
1
p
(p− 1)

√
p∗

2n−sf−sg − 1

(p− 1)(p2n−2 + ǫf ǫg
1
p

√
p∗

2n+sf+sg ) p2n−sf−sg − p2n−sf−sg−1 − ǫf ǫg
1
p
(p− 1)

√
p∗

2n−sf−sg

Table 9. The Hamming weights of CD in Corollary 5 when 2n+ sf + sg is even and lf 6= lg

Hamming weight ω Multiplicity Aω

0 1
(p− 1)p2n−2 Aω1

(p− 1)p2n−2 + ǫf ǫg
(p−3)

p

√
p∗

2n+sf+sg Aω2

(p− 1)(p2n−2 + ǫf ǫg
1
p

√
p∗

2n+sf+sg ) Aω3

Table 10. The Hamming weights of C
D

in Corollary 7 when 2n+ sf + sg is even, kf = kg and lf = lg

Hamming weight ω Multiplicity Aω

0 1

p2n−2 p2n−sf−sg−1 + ǫf ǫg
1
p
(p− 1)

√
p∗

2n−sf−sg − 1

p2n−2 + ǫf ǫg
1
p

√
p∗

2n+sf+sg p2n−sf−sg − p2n−sf−sg−1 − ǫf ǫg
1
p
(p− 1)

√
p∗

2n−sf−sg
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