
ZXAD: Zero-knowledge Exit Abuse Detection for Tor

Akshaya Mani
University of Waterloo

akshaya.mani@uwaterloo.ca

Ian Goldberg
University of Waterloo

iang@uwaterloo.ca

Abstract
The Tor anonymity network is often abused by some attackers
to (anonymously) convey attack traffic. These attacks abuse
Tor exit relays (i.e., the relays through which traffic exits Tor)
by making it appear the attack originates there; as a result,
many website operators indiscriminately block all Tor traffic
(by blacklisting all exit IPs), reducing the usefulness of Tor.

Recent research shows that majority of these attacks are
ones that generate high traffic volume (e.g., Denial-of-Service
attacks). This suggests that a simple solution such as throttling
traffic flow at the Tor exits may permit early detection of these
attacks.

However, naïvely monitoring and throttling traffic at the
Tor exits can endanger the privacy of the network’s users.
Indeed, many recent works have proposed private measure-
ment systems that support safe aggregation of exit statistics.
However, these systems do not permit identification of “un-
linkable” connections that are part of a high-volume attack.
Doing so could allow Tor to take proper remedial actions,
such as dropping the attack traffic, but care must be taken to
protect privacy.

We present ZXAD (pronounced “zed-zad”), the first zero-
knowledge based private Tor exit abuse detection system.
ZXAD detects large-volume traffic attacks without reveal-
ing any information, apart from the fact that some user is
conveying a high volume of traffic through Tor. We formally
prove the correctness and security of ZXAD. We also measure
two proof-of-concept implementations of our zero-knowledge
proofs and show that ZXAD operates with low bandwidth and
processing overheads.

1 Introduction

Tor [23] is used by millions of people daily for anonymous
communication over the Internet. While Tor has many legiti-
mate uses such as whistleblowing, censorship avoidance, and
protecting one’s security and privacy online [51], it is often
abused by some attackers to (anonymously) convey attack

traffic supporting spam campaigns, vulnerability scanning,
content scraping, etc. [44].

Since all traffic exits Tor through a set of publicly listed
special relays, called the Tor exits, these relays often end
up being blacklisted for all the malicious (or objectionable)
content routed through Tor. This acts as strong disincentive,
discourages volunteers from running exit nodes, and hinders
the growth of a volunteer-operated network like Tor.

Moreover, even the actions of a single malicious user can
trigger the automated abuse detectors at the destination web
servers, cause content providers to blacklist the exit, and in
turn block all users (including legitimate users) connecting
through that exit; i.e., fate-sharing. Some website operators
even go to the extent of providing differential treatment to
all Tor users — ranging from solving simple CAPTCHAs
to outright blocking [34]. As a result, over time the entire
network may become unusable. Abuse of Tor exits therefore
tends to be one of the greatest threats against the growth of
Tor.

Recent research by Singh et al. [48] shows that a majority of
the attacks originating from Tor are those that generate high
traffic volume (e.g., SSH brute-force or Denial-of-Service
attacks). This suggests that a simple solution, such as rate lim-
iting the number of connections allowed per client to a target
destination at the exits, could potentially stop most of these
attacks. For instance, the threshold number of connections
can be set to 1 for an SSH connection, 10 for websites whose
resources appear on multiple pages, or unlimited for very
popular destinations such as facebook.com or google.com.

However Tor’s protections make rate limiting challenging:
(i) multiple connections from the same client are supposed to
be unlinkable, yet in order to limit per-client connections, the
exits must be able to identify connections coming from the
same client and (ii) naïvely monitoring and throttling attack
traffic using an Intrusion Detection System (IDS), such as
Zeek [60] or Suricata [43], at the Tor exits can pose significant
privacy risk to the network’s users. Besides, monitoring users’
communications is antithetical to the Tor Project’s goals.

To address all these challenges, we introduce ZXAD (pro-

1

mailto:akshaya.mani@uwaterloo.ca
mailto:iang@uwaterloo.ca

nounced “zed-zad”), a zero-knowledge based exit abuse de-
tection system for Tor. ZXAD incurs low bandwidth and
moderate processing overheads, and does not require any sig-
nificant changes to Tor’s existing design. The goal of ZXAD
is to detect large-volume traffic (from an individual Tor client)
destined to a target server, in a privacy-preserving way. That
is, ZXAD does not reveal any information other than the fact
that some Tor client is making numerous connections to a
target destination. ZXAD provides just enough information
for the exits to take proper remedial actions (e.g., dropping
attack traffic).

ZXAD achieves these goals by providing a virtual token
dispenser to each Tor client that allows the client to dispense
at most n anonymous and unlinkable tokens per ZXAD epoch
for every destination. The value of n is set based on the popu-
larity of the destination (e.g., 1 for port 22). The client uses
these tokens to authenticate to the Tor exits every time it
makes a connection to a new destination using the same exit
or the same destination using a different exit. This way a
client has to “double-spend” (or re-use) a token to make more
than n connections to a target destination, linking them.

Malicious clients can still try to connect using different
exits — but then the Tor exits can forward the token to the
target destination, which has a “global view” to rate limit
double-spending clients. Importantly, these tokens are unlink-
able; i.e., given two different tokens neither the Tor exit nor
the destination server can tell if the tokens were from the
same Tor client or not. Therefore, the server and the exit learn
no other information apart from the fact that some client is
double-spending.

In the following sections, we introduce ZXAD, formally
prove its correctness and security, implement our zero-
knowledge proofs, and demonstrate that ZXAD operates with
low bandwidth and processing overheads.

2 Background

In this section, we present a brief overview of Tor and review
some well-known cryptographic primitives and protocols that
are used as building blocks in the construction of ZXAD.

2.1 Tor
Tor [23] provides anonymity by relaying traffic via “anony-
mous paths”, called circuits, that are constructed by randomly
selecting multiple (usually three) relays. Along the path, lay-
ered encryption is used to conceal the actual sender (i.e., the
Tor client) and the receiver (i.e., the destination), so that each
relay knows only the previous hop and the next hop. Traffic
flows down the circuit in fixed-size cells carrying encrypted
routing information and data [22].

The first relay in a circuit is usually the guard, a Tor relay
that is relatively stable, fast, and reliable. The next hop, the
middle relay, relays traffic from the guard to the final relay,

called the exit, which finally establishes a TCP connection to
the intended destination. Since traffic exits the Tor network
through the exit relays, they are often blamed when something
malicious or objectionable is routed through them.

Tor maintains long-standing TLS connections between re-
lays that are adjacent on some Tor circuit. Communications
over different circuits that share a hop between two relays are
sent over the same TLS connection. A Tor stream is analo-
gous to a regular TCP connection between the Tor client and
a target destination. Several streams may be multiplexed over
the same circuit. The Tor client usually switches to a new
circuit every ten minutes.

To ensure all Tor clients have the same “view” of the Tor
network, the Tor directory authorities (DirAuths), a set of nine
dedicated servers, periodically publish a consensus document,
containing information on all currently running relays that
make up the Tor network. The consensus is reached using the
Tor directory protocol [50], a majority voting protocol which
makes sure that only “updates” signed by a majority (at least
five) of the authorities are added to the consensus document.

Creating Tor circuits. A Tor client maintains a single con-
nection to each of its guards, through which multiple circuits
may be created. To begin creating a new circuit, the client first
sends a create cell to the Tor guard in the chosen path, initi-
ating a Diffie-Hellman handshake. The guard then responds
with a created cell, completing the handshake and the first
hop of the circuit. Next, to extend the circuit one hop further,
the client sends a relay extend cell to the guard, specifying
the address of the middle node, and the Diffie-Hellman hand-
shake for the middle node. On receiving the relay extend cell,
the guard copies the handshake into a create cell, and passes it
to the middle node to extend the circuit. The middle node then
responds with a created cell to the guard, which then encrypts
the payload into a relay extended cell and passes it back to
the client. Finally, to extend the circuit to a third hop (usually
an exit relay), the client informs the middle relay to extend
the circuit one hop further, which proceeds in a similar way
as above, and the circuit is complete. Once the Tor client has
established the circuit, it sends begin cells to create streams
to a specified destination server and port, and relay data cells
that carry end-to-end stream data.

Tor Browser. The Tor Browser first creates a new circuit
for each unique domain entered by the user in the browser
address bar. It then creates a new stream over this circuit for
retrieving the web page. Subsequent streams that are created
for fetching the embedded resources, such as images, scripts,
etc., are multiplexed over the same circuit.

2.2 Preliminaries

We now briefly review some concepts and background that
are necessary for understanding ZXAD.

Decisional Diffie-Hellman assumption. LetG be a cyclic

2

multiplicative group of prime order q and д be one of its gener-
ators. The Decisional Diffie-Hellman (DDH) assumption [6]
states that it is computationally hard to distinguish between
the two distributions 〈дa ,дb ,дab 〉 and 〈дa ,дb ,дc 〉 where a,b,c
are drawn uniformly at random from Z∗q .

Bilinear groups. Let G be an asymmetric bilinear group
generator that takes as input a security parameter 1k and re-
turns a tuple Λ = 〈q,G1,G2,Gt ,e,д1,д2,H1,H2〉 where G1, G2,
and Gt are cyclic multiplicative groups of prime order q,
e : G1×G2→ Gt is an efficient and non-degenerate bilinear
map, д1 and д2 are generators of the groups G1 and G2 respec-
tively, and H1 : {0,1}∗→ G1 and H2 : {0,1}∗→ G2 are hash
functions that map binary strings to elements of G1 and G2
respectively.

ZXAD uses Type III pairings [25]:G1 ,G2 and there exists
no efficiently computable homomorphisms between G1 and
G2. In other words, the Symmetric eXternal Diffie-Hellman
(SXDH) assumption holds; i.e., the DDH assumption holds
in both G1 and G2.

BLS signature. A primary primitive used in our construc-
tion is the BLS signature [7]. We use the notation BLS to
define a variant with public key in G1 and signature in G2.

Let Λ = 〈q,G1,G2,Gt ,e,д1,д2,H1,H2〉 be the output of an
asymmetric bilinear group generator. In BLS, a keypair (ν ,V)
is generated by choosing a private key ν R

← Zq and setting
the public key to V = дν1 . A message M ∈ {0,1}∗ is signed
by producing the signature σ = H2(M)

ν . A signature σ on

message M is valid if and only if e(д1,σ)
?
= e(V ,H2(M)).

Zero-knowledge proofs. Zero-knowledge proofs
(ZKPs) [26] limit the amount of information transferred
between a prover P and a verifier V in a cryptographic
protocol. Throughout this paper, we make use of the
Generalized Schnorr Proofs (GSPs) introduced by Camenisch
and Stadler [12] and formally defined by Camenisch et al.
[14] to prove knowledge and relationships of discrete
logarithms. The Σ-protocol for such proofs are usually
defined as a three-phase interactive protocol. Non-interactive
versions of such proofs can be obtained using the Fiat-Shamir
heuristic [24].

A zero-knowledge proof satisfies the following three prop-
erties: (i) Completeness guarantees that a valid proof will
always be accepted by the verifier; (ii) Soundness guarantees
that only a valid proof will be accepted by the verifier; and
(iii) Zero-knowledgeness guarantees that a valid proof does
not reveal anything about the witnesses.

zkSNARKs. Informally, a Zero-Knowledge Succinct Non-
Interactive Argument of Knowledge (zkSNARK) [5] is a
proof construction, where one can prove the truth of a state-
ment without revealing any information (besides the fact that
the statement is true), and without any interaction between
the prover and verifier. Additionally, it satisfies the succinct-
ness condition; i.e., the proof size and verification time are

constant even for arbitrarily large statements.

Shamir’s secret-sharing scheme. A threshold based
secret-sharing scheme by Shamir [47] allows subsets of t
or more parties to recover a split secret. It distributes the se-
cret using a t −1 degree polynomial and is based on the idea
that at least t points are required to reconstruct a polynomial
of degree t −1. Therefore, no group of fewer than t parties
can reconstruct the secret.

3 Overview

We first present the current state of Tor exit abuse detection
and mitigation. Next, we introduce ZXAD by describing an
IP-based credential issuing service (for use mainly by ZXAD),
the participants, threat model, the system model, and the dif-
ferent phases of the protocol.

3.1 Abuse of Tor exits

Tor currently does not have any built-in mechanisms to detect
malicious users that abuse benign Tor exits by conveying
attack traffic. A malicious Tor user can abuse Tor exits in
three ways: (i) circuit level — by sending malicious stream(s)
within a single circuit, (ii) exit level — by generating multiple
malicious circuits through a single exit, and (iii) Tor level —
by generating malicious circuits through multiple exits.

The circuit-level attacks are the easiest to mitigate — the
exits can just rate limit the number of streams per circuit.
However, the exit-level and Tor-level attacks are much harder
to mitigate since exits cannot perceive different circuit con-
nections that are a part of large-volume attack (by a single
Tor client) as connections coming from the same client. This
is because the traffic from different circuit connections are
unlinkable — given two Tor circuits, the exits cannot tell if
the circuits originate from the same Tor client or not.

Currently, opportunistic onions [46] by Cloudflare is the
closest solution to evade exit-level and Tor-level attacks. It
relies on malicious clients repeating the time-consuming “ren-
dezvous protocol” to rate limit the number of circuits created
by each Tor client. However, their solution only works for web-
sites hosted by Cloudflare (i.e., ∼ 10% of the Internet [45]), it
does not stop exits from being abused or service providers (at
large) from blocking Tor. Section 4.2 describes how ZXAD
can be used to mitigate exit-level and Tor-level attacks.

3.2 IP-based credential service

Fundamentally, ZXAD requires some way to distinguish
many users making one connection each to some particu-
lar webserver from one user making many connections (a
Sybil attack).

Many previous related research works [28; 29; 31; 54; 55],
as well as common deployed network services, limit clients

3

based on their IP address. However, using IP address as a
client identifier has the major limitation that it is neither per-
manent nor unique [27] (e.g., mobile clients with dynamic
IP addresses, clients behind a Network Address Translation
(NAT), etc.). Nonetheless, IP address is a ubiquitous identifier
websites use today outside of Tor to block abusers; therefore
we allow the use of an IP address as the client identifier in
ZXAD as well. In any case, ZXAD is sufficiently general to
be adapted for any type of ‘one-per-person’ identifier, such
as a government-issued ID [27] (e.g., e-Passport, enhanced
driver’s license, etc.), a valid X.509 certificate chain, and so on.
ZXAD does not require the identifier to be high entropy, and
where possible, will allow the client to prove its possession in
zero knowledge [21].

In order to prove possession of an IP address, however,
the Tor client must make a direct connection using that IP
address. This can potentially deanonymize the Tor client if
this connection can be linked to the sites it visits over Tor.
Therefore, we introduce an IP-based credential issuing service
from which the client can obtain an IP-based credential and
prove possession of the same (in zero-knowledge) to ZXAD
entities. The client uses this credential as its verifiable iden-
tifier (or long-term key) in the ZXAD protocol. However, in
the case of client identifiers that can change over time, such
as the IP address, this credential must be refreshed based on
the expected lifetime of the identifier (e.g., monthly). In other
words, every month the credential issuer regenerates fresh
signing key(s) and all clients obtain a new credential. In this
case, the Sybil attacks are limited to how many identifiers the
attacker can control in a month (i.e., a single long-term key
lifetime).

The IP-based credential issuing service can be run by any
set of honest-majority servers (e.g., the DirAuths in Tor). Note
that if the DirAuths were to act as the credential issuers, a
malicious DirAuth can learn the list of all users requesting
a credential. However, we envision that the IP-based creden-
tial issuing service could be useful for (anonymously) prov-
ing possession of an IP to a variety of services through any
anonymizing network. In such a case, many more people
could be using this service (not just the users of Tor or ZXAD)
and hence it is justified to be an independent or standalone
service by itself. For now, however, we ignore this wide ap-
plicability and prove the security of ZXAD, even in a setting
where the DirAuths are the credential issuers.

3.3 Participants and threat model
ZXAD is a distributed system that relies on multiple entities
to achieve its privacy and security goals. The participants of
the system are the Tor clients, the nine DirAuths, the exits,
and the end server. We now detail the trust assumptions on
the different entities of ZXAD.
Tor clients. The Tor clients can behave maliciously: (i) they
can try to make more than the allowed number of connections

to a target website or (ii) they can try to impersonate other
honest clients such that an honest client’s connections are
rate-limited by the target destination before the threshold is
reached. As mentioned in Section 3.2, ZXAD uses IP address
as the client identifier to detect such abuse by a Tor client.

Malicious clients can also cause a denial-of-service by sub-
mitting far too many long-term and periodic key (described
in Section 3.4 below) requests to the DirAuths. However,
the DirAuths can rate-limit these requests without affecting
honest clients much (for details see Section 9).

DirAuths. As with Tor, in ZXAD we assume that at least
five out of the nine DirAuths are honest. If a majority of
the DirAuths are compromised, then the DirAuths can even
compromise Tor, let alone relay attack traffic through exit
nodes by exploiting ZXAD.

In ZXAD, any malicious DirAuth learns the IP addresses
of all ZXAD users when they obtain or refresh long-term
keys. However, if the IP-based credential service is run as
a standalone separately useful entity, we envision that more
people would be using this service (not just the users of Tor
or ZXAD), which will mitigate this effect. In any case, mali-
cious DirAuths do not have enough information to link any
connection to a specific Tor user even when they collude with
malicious exits (or end servers).

Exit nodes and servers. Malicious exits (and end servers)
can collude with malicious DirAuths and try to deanonymize
a user. However, ZXAD guarantees that no information about
an honest client is ever leaked.

In short, ZXAD is secure as long as a majority of the
DirAuths are honest. Informally, the privacy guarantees of
ZXAD are (i) A set of honest exits (collectively) will accept
no more than n

S
connections (to a target destination S) from

a single Tor client in any given epoch and (ii) no information
about the identity of an honest Tor client is ever exposed. We
provide the formal security definitions and proof in Section 5.

3.4 System model

The workflow of ZXAD begins when a Tor client joins the Tor
network for the first time. During the bootstrapping process,
the client directly connects to the DirAuths and obtains a
deterministic signature on its IP address. The client uses this
signature as its long-term key in ZXAD. Note that the long-
term key is never revealed to any ZXAD entity (not even the
DirAuths).

After joining the network, the client sends its blinded long-
term key to the DirAuths. The DirAuths first verify if the
blinded key is valid and then perform a ‘blind signature trans-
fer’; i.e., issue another deterministic signature on the same
IP address embedded in the long-term key. Unlike the long-
term key, this signature is valid only for a short period (e.g., a
week) and hence called the periodic key. The client updates
its periodic key every period (e.g., weekly).

4

TCP Handshake

Client Guard Middle Exit

TLS Encrypted

Server

Create

Created

Create

Create

Created

{Extend}

{Extended}

{Extend}

{{Extend}}

Created
{Extended}

{{Extended}}

{{Begin <website>:80}}

{{{Begin <website>:80}}}

ZXAD Phase

N

{Begin <website>:80}

Token Request

Connected
Token Request

Connected
Token Request

Connected
Token Request

{{{Data, }}}Stream Token
{{Data, }}Stream Token

{Data, }Stream Token

H(Stream Token)

{Data, Accepted}
{{Data, Accepted}}

{{{Data, Accepted}}}

Y

Drop

Seen

N

Y

Drop

Valid

Accepted

Circuit Token
+ Circuit Token

+ Circuit Token
+

Figure 1: The flow diagram of the Tor client connecting to a
website under a large-volume attack (via a three-hop circuit)
— the shaded boxes represent different ZXAD phases.

ZXAD operates in 10-minute epochs. Figure 1 illustrates
how the different phases of ZXAD are performed when a
Tor client connects to a connection-throttling destination via
a three-hop circuit. As shown in Figure 1, the destination
requests tokens only when it is facing a large-volume attack
from Tor (see Section 9 for implementation details). When
the destination requests a token, the client (generates and)
sends an unlinkable and unique stream token and a zero-
knowledge proof (that the stream token is well-formed) to
the exit node. Recall that the maximum number of unlinkable
connections allowed per epoch, n

S
, to a target destination

S is preset based on the popularity of the destination (e.g.,
1 for port 22). Therefore, the Tor client can create at most
n
S

unique stream tokens per epoch for every destination S
and must (linkably) open multiple streams in a single circuit
to make more than n

S
connections. On receiving the stream

token and the zero-knowledge proof, the exit accepts the token
if and only if (i) the proof is valid and (ii) it has not previously
seen this token in the current epoch. The latter check ensures
that the client does not “double spend” a token.

In simple terms, ZXAD provides a virtual token dispenser
(to each Tor client) that allows the client to dispense at most
n
S

anonymous and unlinkable tokens per epoch for every
destination S.

3.5 ZXAD Phases
The ZXAD protocol has seven phases (the post-initialization
phases are illustrated in Figure 2):
Initialization phase. The initialization phase involves the

Figure 2: An overview of the post-initialization phases in the
ZXAD protocol in a single-DirAuth setting.

configuration of system parameters and the generation of
threshold 5-out-of-9 long-term and periodic signing keys for
the DirAuths.

The long-term signing key is comparable to the long-term
identity keys in Tor [23], which are usually never changed.
However, only when using client identifiers that can change
over time (e.g., the IP address), the long-term signing key must
be regenerated based on the expiry of the client identifiers
(as mentioned in Section 3.2) by running a rekeying phase
similar to the periodic rekeying phase described below. For
simplicity, we present the long-term signing keys as static in
the rest of the paper.

We use additive secret sharing [4] to generate additively
shared long-term and periodic signing keys once at the initial-
ization phase, and then use share conversion [18] to turn them
into a Shamir-shared key. This way, the later rekeying phases
can be performed locally, without any communication among
the DirAuths. We describe this key generation protocol in
Section 4.3.

Long-term key generation phase. In the the long-term
key generation phase, the client obtains its deterministic long-
term key from the DirAuths. In the case where the IP-based
credential issuing service is a standalone entity, the client just
uses its IP-based credential as the long-term key (as men-
tioned in Section 3.2).

This step is done so that during every run of the periodic
rekeying phase, the DirAuths just verify a signature (with
their joint long-term secret key) on the client’s IP address,
rather than verifying the client IP address itself.

Rekeying phase. In the (unlikely) event where a majority
of the DirAuths’ periodic secret keys are compromised in the
same period, the adversary would be able to learn the client’s
identity by performing a brute-force attack over all possible
IP addresses.

Therefore to limit the amount of time a periodic key is
vulnerable, the DirAuths periodically compute a new shared
secret signing key (and the associated joint public key) for
the next period, in a forward-secret manner.

Note that the period duration can be anywhere between
a day and several months. A small duration (such as a day)
would increase the load on the DirAuths as they would need

5

to issue a periodic key to each Tor user every day. Similarly,
a longer duration (such as several months) would increase
the amount of exposure in the unlikely case where a major-
ity of the DirAuths’ periodic secret keys are compromised.
Therefore, to moderate the performance and security risks
involved, we suggest a reasonable default period of one week.
Throughout the paper, we refer to the period as the ZXAD
period (or the period in general).

As described below in the key publishing phase, the clients
and the exits use the Tor’s existing consensus protocol to
obtain copies of the DirAuths’ public key. Additionally, every
Tor client obtains a periodic key (i.e., runs the periodic key
generation phase) once per period, since the DirAuths’ joint
key has changed.

Key publishing phase. The key publishing phase is per-
formed once, at the beginning of every ZXAD period. The
DirAuths publish the current and the next period public keys
in the Tor consensus.

The Tor clients and the exits obtain the DirAuths’ public
key when they update their consensus. Note that the exits
always obtain the current period’s public key while the clients
obtain the current (or the next period’s) public key depending
on which keypair is used to generate the periodic key (in the
periodic key generation phase described below).

Periodic key generation phase. In the periodic key gener-
ation phase, the client obtains the periodic key (for the current
or the next ZXAD period), by specifying which keypair the
DirAuths must use for generating the periodic key. Although
the client can obtain both the current and the next period’s
key (in the current ZXAD period itself), it can only use the
current periodic key to generate the current period’s circuit
and stream tokens (described below). However, we still rec-
ommend that a client obtains its periodic key in advance to
evade deanonymization by malicious DirAuths using traffic
correlation [33]. We note that as long as the client does not
use Tor right after obtaining the current period’s key from the
DirAuths, it is not prone to such deanonymization attacks.

In short, this phase produces a deterministic unique short-
term identifier that can be used to produce the stream and
circuit tokens (described below) that are globally unique to a
given long-term key (or an individual client when using ‘one-
per-person’ identifiers). The tokens produced are unlinkable;
i.e., given two different tokens the Tor exit (or the destination
server) cannot tell if the tokens were from the same Tor client
or not.

Circuit token showing and verification phase. A client
sends a circuit token and a zero-knowledge proof along with
the first stream token (within a circuit) to the exit. These
tokens and proofs can be computed offline in advance. This
proof ensures that the client possesses a credential on the IP
address (embedded in the token) used to create the periodic
key, without revealing it. The circuit token and proof is purely
for optimization purposes and reduces the verifying time at

the exit for subsequent stream tokens sent within the circuit.

Stream token showing and verification phase. As men-
tioned before, ZXAD operates in 10-minute epochs, in order
to limit the amount of time a stream token is usable by a Tor
client. This is comparable to the default circuit lifetime of
ten minutes in Tor. Throughout this paper, we refer to this
ten-minute period as a ZXAD epoch and this should not be
confused with the hour-long Tor epoch used to create consen-
suses.

Every time the client creates a stream to a new destination
under a large-volume attack within any given circuit, it sends
a stream token and a zero-knowledge proof to the exit that the
token is valid. The Tor exit accepts the token if and only if the
proof is valid and it has not seen that stream token before in
the ZXAD epoch (in which the associated circuit was created).
Otherwise, the exit terminates the circuit.

4 Protocol Details

We first describe a basic version of the ZXAD protocol in
a single-DirAuth setting, which is easy to understand. Next,
we describe how ZXAD can be used to combat exit-level and
Tor-level attacks. Finally, we extend the basic ZXAD protocol
to a t-out-of-n DirAuths setting (in Section 4.3) and describe
the changes pertaining to handling distributed DirAuths in
each of the phases.

4.1 Basic ZXAD Protocol
We now describe a basic version of the ZXAD protocol in
a setting with a single DirAuth, which is clear and easy to
understand.

Initialization phase. Let Λ = 〈q,G1,G2,Gt ,e,д1,д2,
H1,H2〉 be the output of an asymmetric bilinear group
generator and let Y1

R
← G1 be a public parameter. Let

〈ρ,P = д
ρ
1 〉 and 〈α ,A = дα1 〉 be the long-term and the periodic

keypair of DirAuth A.

Long-term key generation phase. Consider a Tor client C.
Let IP

C
be the IP address of client C. During the bootstrapping

process, the Tor client directly connects to the DirAuthA and
obtains its long-term key σ

P
= H2(IPC)ρ (a BLS signature)

from A.

Key publishing and Rekeying. At the beginning of every
period, the DirAuth creates the secret signing key α and public
key д

α
1 for the next period, and publishes the current and

the next period public keys in the Tor consensus. The Tor
clients and the exits obtain the DirAuths’ public key when
they update their consensus.

Periodic key generation phase. In the the periodic key
generation phase, C first specifies which keypair the DirAuth
should use (i.e., the current or the next ZXAD period’s) and
obtains a blind BLS signature [7] on its IP address from

6

the DirAuth A. The client uses this signature as its periodic
key (for the corresponding period) in the remainder of the
protocol.

To receive its blind signature, C first computes B =H2(IPC).
C then blinds B and its long-term key σ

P
by choosing random

r
C

R
← Z∗q and setting B̃ = B

r
C and σ̃

P
= σ

r
C

P
. Finally, C sends

〈B̃, σ̃
P
〉 through one of its guards to the DirAuthA. Note that

blinding B prevents the DirAuth and the guard from learning
B and σ

A
(below).

On receiving the blinded hash B̃ of the client’s IP address
and the blinded BLS signature σ̃

P
, the DirAuth A verifies if

e(д1, σ̃P)
?
= e(P , B̃) and performs a BLS blind signature transfer

by computing σ̃
A
= B̃ α . That is, if the client already possesses

a valid signature under ρ on some value IP
C
, thenA issues the

client a BLS blind signature under α on the same value. Note
that, the DirAuth does not learn IP

C
or its hash B = H2(IPC).

A then sends σ̃
A

back to C through the same guard.
Note that the client need not separately prove knowledge of

r
C
, since σ̃

A
is useless without the correct r

C
value. Therefore,

the client can choose some random r
C

R
← Z∗q , compute B̃ and

σ̃
P

offline (any time after getting the long-term key), and even
discard the r

C
values.

On receiving σ̃
A

, C verifies if e(д1, σ̃A)
?
= e(A, B̃) and aborts

if not. This check ensures that the DirAuth’s BLS signature
on B̃ is valid. C then unblinds σ̃

A
and obtains σ

A
= (σ̃

A
)
1/r
C =

Bα , the DirAuth’s BLS signature on B (which is the same
B embedded in the long-term key). Note that the client can
of course unblind wrongly to produce a valid signature on
some other random (unknown) hash value, but then the BLS
signature here will not match the circuit token proof (defined
below), and the client’s circuit tokens will not verify.

Observe that σ
A

is a deterministic function of IP
C

and α and
has high entropy and so cannot be brute-forced. Therefore,
we use σ

A
to produce randomized circuit and deterministic

stream tokens (defined below) that are bound to the client C.
The client obtains a new periodic key every ZXAD period

(at most one period in advance) when the DirAuth’s signing
key changes (i.e., after every rekeying).
Circuit token showing and verification phase. At this
point C has obtained a blind signature σ

A
from A, has

an active circuit through some exit, and has established
a connection to some connection-throttling destination
server-port combination, represented as S. If S is the first
destination (within the circuit) requesting for a ZXAD token,
then C produces a circuit token Tc and a zero-knowledge
proof ΠTc

as follows:
1. Token: The token Tc is a randomized commitment to the

periodic key σ
A

. To generate the token, C chooses r2
R
← Z∗q ,

computes д′′2 = д
r2
2 and σ ′′

A
= σ

A

r2 , and sets Tc = 〈д
′′
2 ,σ

′′
A
〉.

Note that the client can compute the circuit tokens offline
(any time after getting the new periodic key) by just choos-
ing some random r2

R
← Z∗q .

2. Zero-Knowledge Proof: C constructs a non-interactive
zero-knowledge proof ΠTc

(that Tc is well formed):
ΠTc
= PK

{
(r2, σA, B, IPC) : [д

′′
2 = д

r2
2]

∧
[σ ′′
A
= σ

A

r2]∧
[siд

A,A(B) = σA]
∧
[B = H2(IPC)]

}
where siд

A,A(B) = σ
A

means that σ
A

is a valid BLS
signature on message B (with B already hashed, as
B = H2(IPC)) by the DirAuth A with the secret key
corresponding to the public key A.

The proof has three parts: First it proves that the client knows
some r2 such that д′′2 = д

r2
2 and σ ′′

A
= σ

A

r2 , for some σ
A

. Next,
it proves σ

A
is a valid signature on some B by the DirAuth

A (with the secret key corresponding to the public key A).
Finally, it proves that B is the hash of some IP

C
that the client

knows. The latter part ensures that C has not unblinded the
BLS signature (produced in the periodic key generation phase
above) to a valid signature on some other random (unknown)
message.
C then sends 〈Tc ,ΠTc

〉 to the exit only for the first
connection-throttling destination within the circuit.

On receiving the token Tc and the proof ΠTc
, the Tor exit

verifies the proof to check ifTc is well formed, and terminates
the circuit otherwise.
Stream token showing and verification phase. At this
point C has obtained a blind signature from A, has an active
circuit through some exit, and has established a connection
to some connection-throttling destination server-port com-
bination, represented as S. As defined earlier, let n

S
be the

maximum number of allowable unlinkable connections per
client to destination S. The client obtains the appropriate
value of n

S
for each destination S from the Tor consensus

(see Section 9).
When the destination dynamically requests stream tokens,

the Tor client C produces a deterministic stream token Ts and
a zero-knowledge proof ΠTs

as follows:
1. Token: The token Ts is a deterministic function

f (σ
A
,cnt

S
,n
S
,n
E
), where cnt

S
is a counter that keeps track

of the number of connections the Tor client C has made to
the target destination S in a given ZXAD epoch and n

E
is

the ZXAD epoch number.

Let 〈h1 =H1(1,S,nE) . . . , hnS =H1(nS,S,nE)〉 be a public
n
S
-value list of elements of G1 corresponding to S. Note

that both the client and the exit (or end server) can compute
these values locally after obtaining the appropriate value
of n

S
from the Tor consensus. C computes the token Ts as

follows:
Ts = e(h`,σA),1 ≤ ` ≤ nS

where ` is the current value of the counter cnt
S

2. Zero-Knowledge Proof: C constructs a non-interactive
zero-knowledge proof ΠTs

(that Ts is well formed):

ΠTs
= PK

{
(σ
A
, `) :

[
Ts = e(h`,σA) ∧ 1 ≤ ` ≤ n

S

]∧
[σ
A
= σ

A
(Tc)]

}
where σ

A
(Tc) denotes the σ

A
in the circuit token Tc .

7

The proof has two parts: First it proves that the token Ts is
of the form e(h`,σA), where h` is one of the n

S
valid values

(i.e., h1 . . . ,hn
S
), for some σ

A
. Next, it proves that the σ

A
is

the same value embedded in the circuit token. The latter part
ensures that σ

A
is a valid BLS signature on the hash of some

IP
C

that the client knows.
The Tor client C then sends 〈Ts ,ΠTs

〉 to the exit. We ob-
serve that C can re-use the stream token and the proof as
long as it makes connections (to the same destination-port
combination) using the same circuit within a ZXAD epoch.
Note that the n

E
value at the circuit creation is used until the

circuit expires.
On receiving 〈Ts ,ΠTs

〉, the exit first checks it has not al-
ready seen Ts during the current (or the previous) epoch (e.g.,
by keeping a hash table of stream tokens seen in the current
and the previous epochs at any point in time). This ensures
that the client does not “double spend” a token. The exit then
verifies the proof to check if Ts is well formed, and takes any
remedial action.

4.2 Exit abuse detection
We now describe how ZXAD can be used to combat exit-
level and Tor-level attacks (defined in Section 3.1). Recall
that circuit-level attacks can be rate limited without the use
of ZXAD.
Exit-level attacks. The exits do not even require the coop-
eration of the destination server to combat exit-level attacks.
ZXAD stream tokens provide a mechanism for individual Tor
exits to rate limit the number of unlinkable connections to
any target destination; i.e., the number of different circuits
containing streams to that destination. The exits can take any
remedial action (plausibly decided by the maintainers of Tor)
such as killing circuits that reuse tokens too often. We note
that the exits can link circuits that reuse tokens to each other,
but not back to a particular client.
Tor-level attacks. ZXAD stream tokens can further be for-
warded by the exits to the destination servers to evade Tor-
level attacks. As described in Section 3.4, the destinations
can dynamically turn stream tokens on only when they are
facing a large-volume attack from Tor (at large) or some Tor
exit(s). The exits can then request clients to send a stream
token, perform the token verification locally, and just forward
well-formed stream tokens (or even just their hashes) to avoid
burden on the destination servers (as shown in Figure 1). This
provides much more fine-grained control to the destination
servers — using the stream tokens, the servers can distinguish
when one client (IP address) is making too many connec-
tions to them over Tor, even using multiple exits, and throttle
them in the same way as they would throttle a non-Tor client
making too many connections.

We discuss how the exits can forward the stream tokens
and how the end servers can request exits to dynamically turn
stream tokens on or off in Section 9.

4.3 Extension to t-out-of-n DirAuths

Using Shamir’s secret-sharing scheme [47] (described in Sec-
tion 2), ZXAD can be easily extended to Tor’s existing t-out-
of-n threshold DirAuths threat model. This guarantees that
ZXAD is secure as long as a majority (5 out of 9) of the
DirAuths are honest.

However, Shamir’s secret-sharing scheme requires a central
trusted dealer, which can securely generate and distribute
secret shares to all DirAuths — Tor cannot afford such a
high degree of trust in a single individual. Therefore, we use
additive secret-sharing scheme [4] to first create a shared
secret without a trusted dealer and then a share conversion
scheme [18] to non-interactively create and update the Shamir
secret shares.

Let the DirAuths be Â = {A1,A2, . . .An}. We consider
subsets of Â of size n−(t −1). Let Pj ,1 ≤ j ≤

(n
t−1

)
be such

subsets and let s j be a random secret in Zq for each Pj . Then
each Ai ∈ Pj is given a copy of s j by an arbitrary member

of Pj . Let α =
(nt−1)∑
j=1

s j be the joint secret key. Note that any t

DirAuths between them hold all
(n
t−1

)
of the sj values, and so

can compute α , but any smaller set is missing at least one of
the sj , and so cannot compute α .

We now describe the share conversion procedure [18]
to non-interactively convert the additive sj shares of α
into Shamir shares. For each Pj , define the polynomial
дj (x) =

∏
i :Ai ∈Â\Pj

i−x
i .

Note that for each Pj of size n−(t −1), дj (x) is of degree
t−1, satisfiesдj (i)= 0 for eachAi ∈ Â\Pj , andдj (0)= 1. Now
define f (x) =

∑
Pj
s j ·дj (x), which similarly is a degree t −1

polynomial. Each DirAuth Ai can compute f (i) using their
knowledge of s j for each Pj that contains Ai , but no other
evaluation of f . Therefore, as f (0) =

∑
Pj

s j ·дj (0) =
∑
Pj

s j = α ,

each f (i) is indeed a t-out-of-n Shamir secret share of α .
Importantly, the DirAuths need not communicate at all

when updating this Shamir secret sharing of a random value
in a forward-secret manner. We now describe in detail the
changes to the initialization, rekeying, key publishing, and
periodic key generation phases. There are no changes in any
of the other phases.
� Initialization phase. Some DirAuth A ∈ Pj , 1 ≤ j ≤

(n
t−1

)
chooses s j

R
← Zq and sends it to all other DirAuths in the

subset Pj\A. Additionally, A adds a commitment to the
Tor consensus [50], which can be verified by all other Dir-
Auths that received the share s j . The commitment is the hash
of 〈s j ,T ,nW〉, where T is the Tor shared randomness [32]
and n

W
is the ZXAD period number.

Once all DirAuths have thus received their additive shares
of α , they can independently compute their own Shamir
shares αi of α as described above, and 〈αi ,Ai = д

αi
1 〉 will

8

be used as their periodic key pair for the first ZXAD period.
Finally, all DirAuths can publish their individual public
keys Ai in the Tor consensus.

The DirAuths follow a similar procedure (to the one
described above) to generate their long-term keypairs
〈ρi ,Pi = д

ρi
1 〉. A small change is that the DirAuths omit

the period number in the commitments. As mentioned in
Section 3.3 the long-term key is usually never changed (like
the long-term identity keys in Tor [23]).

� Long-term key generation phase. C follows a similar proce-
dure (described in the periodic key generation phase below)
to receive the blind signature σ

P
on its IP address. That is,

C first chooses t of the DirAuths to contact, and performs
the single-DirAuth long-term key generation phase proto-
col described in Section 4.1 with each of these t DirAuths,
yielding t partial BLS signatures. C then combines these
signatures to form σ

P
.

� Rekeying phase. Each DirAuth first increments n
W

and uses
a common Key Derivation Function (KDF) to indepen-
dently convert each current share s j to a new additive share
ŝ j = KDF (s j ,T ,nW). The old s j should be discarded for for-
ward secrecy purposes. The DirAuths then proceed as above
to independently compute their new 〈αi ,Ai = д

αi
1 〉 keypairs.

Note that the rekeying phase is completely noninteractive.

� Key publishing phase. At the beginning of every ZXAD
period, when the Tor DirAuths generate the first hourly
consensus, they can compute and publish their individual
public keys Ai that they will be using in the current and
the next periods. At the beginning of every period, all exits
and clients can update their view of the Ai values (for the
current and the next period respectively) from the Tor con-
sensus. Additionally, the clients compute the joint public

key (for the next period) A =
t∏
i=1

Aλii , where λi is the La-

grange coefficient for interpolating on the set {1,2 . . . ,t}.

� Periodic key generation phase. To receive its blind signa-
ture, C specifies which keypair the DirAuths need to use
(i.e., the current or the next period’s) and chooses t of the
DirAuths to contact; say {Ai }i ∈V , where V is a subset of
{1, . . . ,n} of size t . C then performs the single-DirAuth
periodic key generation phase protocol described in Sec-
tion 4.1 with each of these t DirAuths, yielding t partial
blind signatures 〈σi 〉i ∈V with the specified period’s secret
key. C then combines these signatures to form σ̃

A
=

∏
i ∈V

σ λii ,

where the λi are the Lagrange coefficients for interpolating
over the set of indices V . Finally, C uses the specified pe-
riod’s public key to verifies if σ̃

A
is a valid signature by the

DirAuths and unblinds it.

5 Security

ZXAD is a zero-knowledge based protocol that helps Tor exits
to detect large-volume traffic to a target server (by a single
Tor client), without revealing any information about the client.
It uses Tor’s existing threat model; i.e., the anonymity of a
Tor client is compromised if a majority of the Tor directory
authorities are compromised.

The security of ZXAD relies on the security of (i) the blind
signature transfer; (ii) the BLS signature used by the DirAuths
to issue the long-term and periodic client keys; (iii) the Dir-
Auths’ threshold key generation and non-interactive rekeying
protocol (see Section 4.3); (iv) the zero-knowledge proof
(ZKP) used to prove that the circuit token is well formed;
and (v) the ZKP used to prove that the stream token is well
formed.

The security of the (blind) BLS signature scheme [7] and
the share conversion scheme [18] that we adapt for ZXAD
imply the security for steps (i), (ii), and (iii) above. Therefore,
we focus on the security of our ZKPs (i.e., (iv) and (v) above)
from here on.

ZXAD uses two ZKPs as sub-protocols: (i) the Discrete
Log Equality (DLE) and (ii) the Discrete Log Product Equal-
ity (DLEP). DLE is the standard Chaum-Pedersen proof of
equality of discrete logs [17], while DLEP is a Generalized
Schnorr Proof [12] of a discrete log product. For reference,
we define these ZKPs and prove their security in Appendix A.

5.1 Circuit Token Zero-knowledge Proof
We now describe and prove correct a zero-knowledge proof
that proves that token Tc is well formed:

(i) the client knows some r2 such that д′′2 = д
r2
2 and

σ ′′
A
= σ

A

r2 , for some σ
A

; (ii) σ
A

is a valid signature on some B
by the DirAuth A (with the secret key corresponding to the
public key A); and (iii) B is the hash of some IP

C
that the

client knows.
To prove that σ

A
is a valid signature, we first randomize B

by setting B′′ = B
r2 . As B′′ is uniform in G2, we reveal its

value rather than proving knowledge of it. Next, we formulate
the following proof statements (the secret witnesses are
underlined for clarity).

ΠTc
= PK

{
(r2, IPC) :

ŝTc 1 : e(д1, σ
′′
A
) = e(A, B′′)

ŝTc 2 : [д′′2 = д
r2
2] ∧ [B

′′ = H2(IPC)
r2
]

}
We observe that statement ŝTc 2 proves knowledge of a pre-

image under H2. This is hard to prove using a Σ-protocol.
Therefore, we use a zkSNARK [5] instead.

With the zkSNARK proving knowledge of r2 and IP
C
, state-

ment sTc 1 then shows that σ ′′
A

can be unblinded to some σ
A

that is a valid BLS signature on B = H2(IPC). Also, ŝTc 1 does
not involve any secret terms and hence can be easily verified
by the verifier (i.e., DirAuth A).

9

Recall (from Section 4.1) that the circuit tokens can be
computed offline by choosing r2

R
← Z∗q . Further, we note that

the private inputs to the zkSNARK are just the client’s IP ad-
dress and r2. Therefore the client can compute the zkSNARK
proofs also offline along with the circuit tokens. This way
the clients’ most expensive step in ZXAD can be performed
completely offline.

Let Π′Tc be the zkSNARK proof. The client sends σ ′′
A

and
Π
′
Tc

(which contains д′′2 and B′′) to the Tor exit. д1, д2,A are
public and known to both client and exit. The exit verifies the
zkSNARK proof and statement ŝTc 1.

It is easy to check that our zero-knowledge proof is com-
plete. We prove the soundness and the zero-knowledgeness in
Appendices B.1 and B.2 respectively.

5.2 Stream Token Proof Σ-Protocol

We now describe and prove correct a Σ-protocol that proves
the stream token Ts is well formed: (i) Ts = e(h`, σA), where
h` is one of the n

S
valid values h1,h2 . . . ,hn

S
(defined in Sec-

tion 4.1), for some σ
A

and (ii) σ
A

is the same value embedded
in the circuit token.

To prove that token Ts is well formed, we formulate a
Σ-protocol that proves these statements (the secret witnesses
are underlined for clarity). Note that sTs 2 shows that the σ

A
is

the same value committed to as 〈д′′2 = д
r2
2 ,σ

′′
A
= σ

r2
A 〉 in the

circuit token Tc .

sTs 1 :
n
S∨

i=1
Ts = e(hi , σA)

sTs 2 : [д′′2 = д
r2
2] ∧ [σ

′′
A
= σ

A

r2]

We observe that statement sTs 1 is an OR-proof and hence the
proof size grows linearly with n

S
, and could potentially be

expensive if the prover or verifier had to compute n
S

pairings.
Therefore to prove sTs 1 (without n

S
pairings), we choose

r1
R
← Zq and compute public component Y

′

1 = Y
r1
1 ·h` , where

` is the correct value of i in sTs 1 such thatTs = e(h`,σA). Addi-
tionally, to prove knowledge of r1, we compute another public
component д′1 = д

r1
1 .

Now we rewrite the proof statements as follows (the secret
witnesses are underlined for clarity):

ΠTs
= PK

{
(`,r1, r2) :

ŝTs 1 :
n
S∨

i=1
[i = `] DLEr1

[
д1, д

′
1 , Y1, Y

′

1 ·h
−1
i

]
ŝTs 2 : DLEPr1,r2

[
д1, д

′
1, д2, д

′′
2 , e(Y1, σ

′′
A
),Ts , e(Y

′

1 , σ
′′
A
)
]}

We use the Chaum-Pedersen Σ-protocol to prove knowl-
edge of r1, a Borromean ring OR proof [38] to prove knowl-
edge of `, and our DLEP Σ-protocol to prove knowledge of
r2 and that the token Ts = e(h`,σA) for some σ

A
such that

σ ′′
A
= σ

r2
A .

The client sends 〈Ts , ΠTs
〉 to the Tor exit.

д1, д2, Y1, h1 . . . ,hn
S

are public and are known (or can
be computed) by both the client and the exit.

We summarize the complete Σ-protocol in Appendix C. It
is easy to check that our ZKP is complete. We leave the sound-
ness and the zero-knowledgeness proofs to Appendices C.1
and C.2 respectively.

Optimization. To improve the performance of ZXAD,
computing the product of multiple pairings (in Sec-
tions 4.1, 5.1, and 5.2) can be optimized by computing the
product of the Miller loops [40], followed by a single final
exponentiation. This makes the cost of computing a batch
pairing (of three pairings) roughly the same as that of two
individual pairings.

6 Implementation

We built two proof-of-concept implementations for our zero-
knowledge proofs: (i) in C++ using the libsnark [36] library
(ii) in Go using the Kyber [20] cryptographic library.

We implemented the complete ZXAD protocol (to test
its correctness) over the MNT curve [41] of embedding de-
gree 4 using libsnark. However, libsnark does not have well-
optimized implementations of group operations (see Section 7
for timing comparisons). Therefore, we also implemented a
faster Go version using the Kyber [20] library (to evaluate
the performance). Since the Kyber library does not support
zkSNARKs or the MNT curves, we implemented all of our
zero-knowledge proofs (except the zkSNARK) over the 256-
bit Barreto-Naehrig curve [42].

Our implementations are available for download at https:
//git-crysp.uwaterloo.ca/iang/zxad.

7 Evaluation

To evaluate the performance of ZXAD, we first tested the
end-to-end libsnark implementation for correctness. Next to
evaluate the performance of ZXAD, we performed a series of
micro-benchmarks on both the libsnark and the Kyber imple-
mentations. All experiments were run using a single thread
(since Tor mainly uses a single thread [37]) on a 4.00 GHz
i7-6700K desktop machine running Ubuntu 16.04.

Experimental setup. We evaluate ZXAD mainly by con-
sidering the load placed on the DirAuths (which verify the
long-term key and issue the periodic key) and the exits (which
verify the circuit and stream token proofs). To be practical,
ZXAD should incur low overheads for both the DirAuths and
the exits. We observe that the bulk of ZXAD’s overhead is
the blind signature transfer and the zero-knowledge proofs.
We therefore measure the load placed on the DirAuths and
the exits in terms of the computation (i.e., the verifying times)
and the communication costs (i.e., sizes) for these operations.

10

https://git-crysp.uwaterloo.ca/iang/zxad
https://git-crysp.uwaterloo.ca/iang/zxad

Table 1: The mean and standard deviation over 2500 runs of
different operations.

Library Operation Offline Execution
Time (ms)

Verifying
Time (ms)

Size
(bytes)

Kyber Blind signature transfer 0.83±0.04 1.82±0.04 256
Circuit token generation 0.44±0.07 1.81±0.04 128

Blind signature transfer 2.91±0.08 2.60±0.03 800
libsnark Circuit token generation 1.46±0.06 2.62±0.05 160

zkSNARK proof 3270±20 8.4±0.1 169

Additionally, we also measure the load placed on the clients
in terms of the execution times for these operations.

We measure (a) the execution and verification times and
(b) the size for the blind signature transfer and the two ZXAD
zero-knowledge proofs (i.e., the circuit and stream token
proofs). We observe that the performance of our circuit token
proof is independent of the destination visited (i.e., S) and the
current connection count (i.e., `) to that destination. However,
the OR-proof (in the stream token proof) depends on n

S
, the

threshold number of unlinkable connections (circuits contain-
ing streams) to the destination S in a given epoch. Therefore,
to explore how n

S
affects the performance, we consider a Tor

client that connects to a regular connection-throttling desti-
nation and vary n

S
from 1 to 25 in our stream token proof

experiments.
For the execution and verification times, we repeat each

experiment 2500 times and report the mean over the 2500
iterations with their standard deviations (see Table 1). Note
that the blind signature transfer, the circuit token, and the
zkSNARK proof can be computed offline (see Sections 4.1
and 5.1) and therefore all the execution times reported in
Table 1 are offline execution times.

For the size experiments, we run each experiment once and
report the results in Table 1 (as the communication cost does
not vary for every run).

Finally, for the stream token proof experiments we measure
both proving and verifying times and the proof size 100 times
for every value of n

S
from 1 to 25 and plot the results in Fig-

ures 3 and 4. We use the results from the Kyber experiments
for our analysis (unless otherwise explicitly stated) as they
are significantly faster than the libsnark results.

Load on the DirAuths. Recall (from Section 4.1) that the
DirAuths: (i) issue a long-term key to new Tor clients, (ii)
verify before the blind signature transfer, and (iii) issue a
periodic key to every Tor client. As mentioned before, to be
practical ZXAD should incur low overheads for the DirAuths,
which may have a large volume of clients connecting to them.

To evaluate the suitability of ZXAD for Tor, we derive our
“ground truth” — the number of new clients connecting to
Tor in a week — using data from the Tor Metrics Portal [52].
Tor reports ∼ 1.9 million daily users [52] in November 2020.
Assuming the worst (and unlikely) case that all daily users
connecting to Tor in a week are new and unique (i.e., require
both long-term and periodic keys), the DirAuths would get
around 1.9× 7 ≈ 13.4 million long-term and periodic key

requests in a week.
We now consider the computation overhead for the Dir-

Auths while issuing the long-term and the periodic keys, each
of which involves issuing a BLS signature. We find that a
BLS signature computation takes 0.40±0.02 ms. Next, we
consider the computation overhead for the DirAuths while
verifying before the blind signature transfer. From Table 1,
we observe that the verification time is 1.82 ms. Therefore
the total overhead on the DirAuths is 2×0.4+1.82 ≈ 2.62 ms.
That is, the DirAuths can handle up to ∼ 381 clients per sec-
ond. Moreover, since the DirAuths are usually multiple-core
machines, they can easily verify the proofs in parallel on the
spare cores. Therefore for the default ZXAD period of one
week, even with a single spare core, the DirAuths can verify
up to 381× 3600× 24× 7 ≈ 230.4 million clients. In other
words, the DirAuths can easily handle far more than the ex-
pected 13.4 million long-term and periodic key requests in a
week.

Next we consider the communication overhead for the Dir-
Auths. We find that the size of a BLS signature is 128 bytes.
From Table 1, we observe that the blind signature transfer
communication cost is 256 bytes. So, the overall computa-
tional overhead on the DirAuths is 2×128+256 ≈ 512 bytes.
Therefore, even for handling 230.4 million clients in a week
(i.e., 381 clients per second), the DirAuths would just require
a low bandwidth of 512×381×10−3 ≈ 196 KB/sec.

Load on the exits. Recall (from Section 4.1) that a Tor
client generates: (i) the circuit token proof once per circuit (for
the first connection-throttling destination) and (ii) the stream
token proof once per circuit for every unique destination. As
mentioned before, to be practical ZXAD should incur low
overheads for the exits, which may have numerous circuits
created through them. Note that we are interested in the num-
ber of circuits (and not streams) created per exit per epoch, as
ZXAD rate-limits clients based on n

S
, the maximum number

of allowable unlinkable connections (or circuits containing
streams) to the destination S every epoch. Hence to evaluate
the suitability of ZXAD for Tor, here we derive our “ground
truth” — the maximum number of circuits per exit per epoch
— using empirical values modeled from the Tor network [35]
and data from the Tor Metrics Portal [52]. Komlo et al. [35] re-
port that on an average, 8.9 circuits are created every hour per
client. Tor reports ∼ 1.9 million daily users [52] in November
2020, so the total number of circuits created across Tor every
hour is 8.9×1,900,000 ≈ 17,000,000 circuits. That is, in ev-
ery ZXAD epoch 17,000,000/6 ≈ 2,850,000 circuits are be-
ing created across all exits. From the Tor Metrics Portal [52],
the current maximum weighted exit has an exit weight equal-
ing ∼ 0.45% of the total available exit weight in Tor. There-
fore, the maximum number of circuits created through a single
Tor exit every ZXAD epoch is 0.0045×2,850,000 ≈ 13,000
circuits.

Since the Kyber library does not support zkSNARKs,
we use the libsnark results just for the zkSNARK analysis.

11

1 7 13 19 25

Ring Length

0

10

20

30

40

M
ea

n
P

ro
ve

Ti
m

e
(m

s)

1 7 13 19 25

Ring Length

0

10

20

30

40

M
ea

n
Ve

rif
y

Ti
m

e
(m

s)

Kyber libsnark Std dev

Figure 3: The mean of 100 runs of prove (left) and verify
(right) times for our stream token proof Σ-protocol as a func-
tion of n

S
, the maximum number of unlinkable connections

allowed to a destination S. The dashed lines represent the
standard deviation.

Though the zkSNARK proof is implemented over a different
curve (i.e., the MNT4 curve), combining the results would
give us an approximate measure of the overheads for verify-
ing a circuit proof. This is because all zkSNARKs are fast to
verify (just a few milliseconds) and result in very small proofs
(less than 500 bytes).

We first focus on the overall computational overhead for
the exits. First, we observe that the time taken for verify-
ing the circuit token and the zkSNARK proof is 1.81 ms
and 8.4 ms respectively. Therefore the exit takes a total of
1.81 + 8.4 = 10.21 ms to verify the circuit token and the
proof. Next, we focus on the computation overhead for ver-
ifying a stream token proof, which also involves computa-
tion of the n

S
-value list (i.e., hashing to G1, n

S
times). We

find that for a reasonable value of n
S
= 10, the hashing to

G1 (which is a linear function of n
S
) and the stream token

proof verification take 0.55± 0.01 ms and 8 ms (from Fig-
ure 3) respectively. That is, overall the busiest exit takes
(10.21+0.55+8)×13,000 ≈ 243,880 ms or 4.1 minutes per
epoch for verification. However, this 4.1 minutes overhead
is only in the worst (and unlikely) case where every circuit
through the busiest Tor exit contains a stream to a connection-
throttling destination under an attack. Note that for subsequent
streams connecting to new connection-throttling destinations
(under attack) within the same circuit, the exit needs to verify
only the stream token. This reduces the verification time to
almost half for subsequent destinations.

Moreover, we observe that the cryptographic verification
of the circuit (and the stream) tokens is embarrassingly par-
allel; i.e., the most overloaded (or the high-bandwidth) exits
can easily verify multiple tokens in parallel on a multi-core
machine. Therefore, even an eight-core processor can reduce
exit verification time further down to ∼ 31 s per epoch even
in the worst case.

We now consider the overall communication overhead for
the exits. First, we observe that (from Table 1) the circuit
token and the zkSNARK proof sizes are 128 and 169 bytes
respectively. Next from Figure 4, we observe that, up to a
reasonable value of n

S
= 10, the stream token proof size is

1 7 13 19 25
Ring Length

0

4000

8000

12000

S
tre

am
to

ke
n

+
P

ro
of

S
iz

e
(b

yt
es

)

Kyber libsnark

Figure 4: The stream token and proof (i.e., Ts and ΠTs
) size

for our stream token proof Σ-protocol as a function of n
S
, the

maximum number of unlinkable connections allowed to a
destination S.

928 bytes. Therefore, the overall communication cost incurred
by the exits is 128+169+928 = 389 bytes per circuit. That
is, for handling 13,000 circuits per epoch (in the worst case),
the busiest exit would just require a low bandwidth of (389×
13,000×10−3)/(10×60) ≈ 8.5 KB/sec.

Load on the clients. Recall (from Section 4.1) that a Tor
client computes: (i) the computation for the blind signature
transfer once every period; (ii) the circuit token proof once
per circuit (for the first connection-throttling destination) and
(iii) the stream token proof once per circuit for every unique
destination.

As already mentioned (in Sections 4.1 and 5.1), (i) and
(ii) above can be computed offline anytime after the client
gets its long-term and periodic key respectively. Therefore,
the client only creates the stream token proof online (which
also involves computation of the n

S
-value list). As already

mentioned for a reasonable value of n
S
= 10, the hashing to

G1 takes 0.55±0.01 ms. From Figure 3, we observe that the
proving time for the stream token proof is 8 ms (for n

S
= 10).

Therefore, the overall online overhead of the client is 8.55 ms.
That is, the client would just experience a latency of 8.55 ms
every time it accesses a new connection-throttling website
(under attack) via the Tor Browser and a regular load time
for all subsequent accesses in a given epoch. Therefore, the
8.55 ms overhead is negligible for the client.

8 Related Work

Attacks stemming from Tor can be caused by malicious ex-
its themselves or by benign exits that are being abused by
malicious users.

Malicious exits. Prior research works [16; 39; 59] have
found evidence of malicious behavior such as traffic snoop-
ing, SSL stripping, etc. by Tor exit relays. To mitigate these
attacks, the Tor project actively scans for “bad” exit relays
using tools like exitmap [58], sybilhunter [57], and torscan-
ner [1]. Moreover, Tor users can also report suspicious ac-
tivities performed by misconfigured or malicious exits [56].
Once a suspected activity is reported, it is reproduced and

12

verified. Then, based on the severity of the attack, the exit is
assigned one of the three flags — BadExit, Invalid, or Reject
— so that clients will no longer select them as the last hop (or
for any hop).

Exit abuse. Tor currently does not have any built-in mech-
anisms to prevent benign exits being abused by malicious
users. There has been a considerable line of research [8; 9;
10; 28; 29; 31; 54; 55] in anonymous blacklisting and revo-
cation systems in the past. However, as Henry and Goldberg
[27] mention most of these systems either offer weaker pri-
vacy guarantees, such as linkable pseudonymity, or leverage
(semi-)trusted third parties to provide anonymity, or incur
high computational overhead for service providers and users
of the system.

Differential treatment to Tor users. A recent study by Khat-
tak et al. [34] showed that website operators have started
providing second-class treatment to all Tor users, to miti-
gate the attacks stemming from Tor. Tor users now often
face CAPTCHAs or even outright blocking. Their study
showed that 3.67% of Alexa top 1000 sites were blocking Tor
users and many publicly available Tor blacklists [3; 15] have
evolved.

Singh et al. [48] characterized the nature of undesired traf-
fic originating from Tor by considering e-mail contents sent
to exits, blacklisting of Tor relays, and the server response to
Tor traffic. They found that 7% of IP blacklists list exit IPs
immediately after they were listed in the consensus. Moreover
they found that a majority of the attacks stemming from Tor
were large-volume ones, such as DDoS, port scanning, etc.
suggesting possibilities of privacy-preserving detection and
mitigation.

Related cryptographic protocols. Camenisch et al. [13]
propose a n-times anonymous authentication system that re-
lies on a Public Key Infrastructure (PKI) trust setting. In
their scheme, each user generates their own key pair and gets
anonymously authenticated from a single credential issuer
using CL signatures [11] (which are far slower than the BLS
signatures [7] used in ZXAD). Our solution uses a completely
different approach that yields a practical, efficient, and more
suitable solution for the Tor network. In our approach, we
use a distributed issuer with malicious minority setting (just
like the DirAuths in Tor) so that the users can be individually
authenticated by the issuers. We also provide a method to non-
interactively generate and update (in a forward-secret manner)
a joint secret key among the issuers (i.e., the DirAuths) and
evaluate the suitability of ZXAD for Tor.

Existing solutions. Privacy Pass [19] is a zero-knowledge
based solution to prevent users (of Tor mainly) from being
victims of a disproportionate amount of internet challenges
such as CAPTCHAs. It grants users 30 anonymous tokens
for every CAPTCHA they solve; these tokens may be used
later in an unlinkable manner to avoid future CAPTCHAs.
However, the computational asymmetry [27] may allow some
users (especially the ones computationally capable to exe-

cute a large-volume attack) to obtain more tokens than others.
Therefore, Privacy Pass is more a CAPTCHA avoidance solu-
tion, than an exit abuse solution [2].

Opportunistic onions [46], introduced by Cloudflare, uses
Tor’s onion service protocol to monitor and limit individ-
ual circuits — while a destination server views the same IP
address (i.e., the Tor exit IP) for each individual Tor client con-
nection or circuit, an onion service views a unique ephemeral
circuit ID number. Opportunistic onions uses this ephemeral
ID to rate limit the circuit. Malicious users may still repeat the
onion service protocol and establish a fresh circuit, but doing
so involves repeating the costly Tor rendezvous protocol.

9 Discussion and Limitations

In this section, we discuss practical aspects of deploying
ZXAD, and some of its limitations.

Choice of n
S

values. An important question for ZXAD is
selecting an appropriate value for n

S
, the maximum number

of allowable unlinkable connections (on different circuits)
per client to a given destination S, so that the abuse detec-
tion is not triggered in the normal course of browsing. We
come up with some reasonable n

S
values for different types

of destinations based on how Tor operates: (i) unlimited for
very popular destinations (such as Google ads, analytics, etc.)
and Alexa top 1000 sites that are likely to appear in multi-
ple tabs (recall each first-party tab gets its own circuit in Tor
Browser); (ii) 10 or a moderate value for third-party services
such as OAuth that one expects to see embedded in multiple
first-party tabs; and (iii) 1 or 2 for other sites.

At the beginning of every day, the DirAuths can add the
hash of destinations in category (i) and (ii) above to the Tor
consensus, and all clients and exits can update their view of
the n

S
values. We suggest updating the n

S
values once per

day, since updating even the hash of 1000 or so destinations
every hour can be quite tedious.

Sending stream tokens to destination servers. To com-
bat Tor-level attacks as described in Section 4.2 (with the
cooperation of the destination server), we suggest sending
a hash of the ZXAD stream token along with the TCP con-
nection from the exit to the server, perhaps by embedding
it in a TCP option [53] or by having a separate application-
level service for sending (and receiving) ZXAD stream tokens.
The TCP option [53] solution is somewhat similar to Cloud-
flare’s [46] approach of encoding the circuit ID as an IPv6
address and using the Proxy Protocol header [49] for sending
it to the destination server. The server would then check if it
had seen the stream token hash before (from any exit), closing
the connection if it had.

A similar approach can be used by the destination servers to
dynamically turn tokens on or off (by encoding the operation
as a single bit).

zkSNARK deployment. The deployment of the zk-

13

SNARK version requires a Common Reference String (CRS)
to generate the initialization parameters. Precautions must be
taken to destroy this initial secret, as otherwise anyone who
has access to the secret can generate false proofs. We envision
that the maintainers of the Tor Project can follow similar steps
followed by other popular zkSNARK based systems such as
Zcash [30], but the contributors can simply be the DirAuths,
a majority of which are assumed honest already.

Denial-of-Service attacks. A malicious client can dis-
rupt ZXAD (i.e., cause denial-of-service) by submitting mal-
formed stream and circuit tokens or proofs. ZXAD is not im-
mune to this type of DoS attack. However, the damage done
can be minimized (for malformed stream tokens or proofs)
by rate-limiting the number of streams per circuit at the exits.
Malicious clients can still DoS ZXAD by submitting mal-
formed circuit or stream tokens and proofs through different
circuits. In this case, the exits can first verify the SNARK and
the DLEP proofs (defined in Sections 5.1 and 5.2) which are
significantly smaller in size, and reject all proofs that do not
verify. Then for the remaining “almost-verifiable” responses,
it can verify the complete circuit (or stream) token proof. We
believe that the latter case will not be that common, since the
client needs to spend ∼ 9 ms (for n

S
= 10) of online compu-

tation per stream token for generating such almost-verifiable
proofs. This is, to some degree, similar to the opportunistic
onions solution [46], wherein malicious clients creating a
fresh circuit have to repeat the time-consuming “rendezvous
protocol” over and over again.

Malicious clients can also try to disrupt ZXAD by submit-
ting far too many long-term or periodic key requests to the
DirAuths. The DirAuths can limit long-term key requests by
dynamically requesting a client proof of work (e.g., a com-
putational puzzle) [27]. Note that, since the long-term key
request is performed infrequently, this does not affect hon-
est clients much. The DirAuths can rate-limit periodic key
requests (without even turning on proof of work) — honest
clients that had obtained their periodic key in advance (in
the previous ZXAD period) are not affected by this in any
way. All other clients can still access destinations (that are
not under attack) through Tor, as today, and resend a request
for the periodic key later.

10 Conclusion

We present ZXAD, a zero-knowledge based exit abuse detec-
tion system for Tor, that detects large-volume attacks (e.g.,
DoS attacks) by a single Tor client in a privacy-preserving
way. ZXAD does not reveal any information other than the
fact that some client is making numerous connections to a
target destination. Unlike existing work, ZXAD has wide
applicability — rather than just relying on the high compu-
tational cost for performing a large-volume attack, ZXAD
allows a threshold to be set (per destination server) for the

number of per-client connections allowed through Tor in a
given epoch and helps to detect Tor users that exceed this
limit. We formally prove that ZXAD provides strong privacy
guarantees as long as a majority of the DirAuths are honest.

Additionally, we propose a t-out-of-n threshold DirAuth
key generation protocol for ZXAD, which allows DirAuths to
rekey a Shamir-shared private key in a forward-secret manner
without any communication between the DirAuths.

We demonstrate using proof-of-concept implementations
that on an average ZXAD incurs ∼ 8.55 ms (on a single core)
of client-side computation, 31 s (using eight cores) of exit-side
computation per 10-minute epoch for the busiest exit in the
worst case, and an exit-side bandwidth of at most 8.5 KB/sec,
making it practical for Tor. We envision that ZXAD, if de-
ployed in Tor, could reduce high-bandwidth exit abuse to a
great extent and in turn encourage more volunteers to run exit
relays.

Acknowledgments

This research was undertaken, in part, thanks to funding from
the Canada Research Chairs program.

References

[1] torscanner: A console application to track bad exit
nodes on Tor. https://github.com/torscanner/torScanner,
2013. Accessed Dec 2020.

[2] Review Cloudflare’s Official "Privacy Pass" ad-
don to evaluate inclusion in Tor Browser. https:
//trac.torproject.org/projects/tor/ticket/24321, 2017.

[3] Daniel Austin. TOR Node List. https://
www.dan.me.uk/tornodes, 2020. Accessed Dec 2020.

[4] Josh Benaloh and Jerry Leichter. Generalized secret
sharing and monotone functions. In Conference on the
Theory and Application of Cryptography, pages 27–35.
Springer, 1988.

[5] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and
Eran Tromer. From extractable collision resistance
to succinct non-interactive arguments of knowledge,
and back again. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, pages
326–349, 2012.

[6] Dan Boneh. The decision diffie-hellman problem. In
Proceedings of the Third Algorithmic Number Theory
Symposium, pages 48–63, 1998.

[7] Dan Boneh, Ben Lynn, and Hovav Shacham. Short
signatures from the weil pairing. In International Con-
ference on the Theory and Application of Cryptology

14

https://github.com/torscanner/torScanner
https://trac.torproject.org/projects/tor/ticket/24321
https://trac.torproject.org/projects/tor/ticket/24321
https://www.dan.me.uk/tornodes
https://www.dan.me.uk/tornodes

and Information Security, pages 514–532. Springer,
2001.

[8] Stefan Brands, Liesje Demuynck, and Bart De Decker.
A practical system for globally revoking the unlinkable
pseudonyms of unknown users. In Australasian Con-
ference on Information Security and Privacy, pages
400–415. Springer, 2007.

[9] Ernie Brickell and Jiangtao Li. Enhanced Privacy ID:
A direct anonymous attestation scheme with enhanced
revocation capabilities. In Proceedings of the 2007
ACM workshop on Privacy in electronic society, pages
21–30, 2007.

[10] Jan Camenisch and Anna Lysyanskaya. An efficient
system for non-transferable anonymous credentials
with optional anonymity revocation. In International
conference on the theory and applications of crypto-
graphic techniques, pages 93–118. Springer, 2001.

[11] Jan Camenisch and Anna Lysyanskaya. A signature
scheme with efficient protocols. In International
Conference on Security in Communication Networks,
pages 268–289. Springer, 2002.

[12] Jan Camenisch and Markus Stadler. Efficient group
signature schemes for large groups. In Annual In-
ternational Cryptology Conference, pages 410–424.
Springer, 1997.

[13] Jan Camenisch,Susan Hohenberger,Markulf
Kohlweiss, Anna Lysyanskaya, and Mira Meyerovich.
How to Win the Clone Wars: Efficient Periodic n-Times
Anonymous Authentication. In Proceedings of the 13th
ACM Conference on Computer and Communications
Security, pages 201–210, 2006.

[14] Jan Camenisch, Aggelos Kiayias, and Moti Yung. On
the Portability of Generalized Schnorr Proofs. In
Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 425–
442. Springer, 2009.

[15] Inc. CGP Holdings. DNSBL.info: Spam
Database Lookup. https://www.dnsbl.info/dnsbl-
details.php?dnsbl=exitnodes.tor.dnsbl.sectoor.de, 2020.
Accessed Dec 2020.

[16] Sambuddho Chakravarty, Georgios Portokalidis,
Michalis Polychronakis, and Angelos D Keromytis.
Detecting Traffic Snooping in Tor using Decoys. In
Recent Advances in Intrusion Detection (RAID), 2011.

[17] David Chaum and Torben P. Pedersen. Wallet
Databases with Observers. In Advances in Cryptology
(CRYPTO ’92), 1992.

[18] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share
conversion, pseudorandom secret-sharing and applica-
tions to secure computation. In Theory of Cryptography
Conference, pages 342–362. Springer, 2005.

[19] Alex Davidson, Ian Goldberg, Nick Sullivan, George
Tankersley, and Filippo Valsorda. Privacy Pass: Bypass-
ing Internet Challenges Anonymously. Proceedings
on Privacy Enhancing Technologies, 2018(3):164–180,
2018.

[20] Decentralized and Distributed Systems Lab. kyber:
Dedis advanced crypto library for go. https://godoc.org/
go.dedis.ch/kyber, 2020.

[21] Antoine Delignat-Lavaud, Cédric Fournet, Markulf
Kohlweiss, and Bryan Parno. Cinderella: Turning
shabby x. 509 certificates into elegant anonymous
credentials with the magic of verifiable computation. In
2016 IEEE Symposium on Security and Privacy (SP),
pages 235–254. IEEE, 2016.

[22] Roger Dingledine and Nick Mathewson. Tor Protocol
Specification. https://spec.torproject.org/tor-spec,
2020.

[23] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The second-generation onion router. In USENIX
Security Symposium, pages 303–320, 2004.

[24] A. Fiat and A. Shamir. How to prove yourself: Practical
solutions to identification and signature problems. In
Advances in Cryptology CRYPTO ’86, pages 186–194.
Springer, 1986.

[25] Steven D Galbraith, Kenneth G Paterson, and Nigel P
Smart. Pairings for cryptographers. Discrete Applied
Mathematics, 156(16):3113–3121, 2008.

[26] Shafi Goldwasser, Silvio Micali, and Charles Rackoff.
The knowledge complexity of interactive proof systems.
SIAM Journal on computing, 18(1):186–208, 1989.

[27] Ryan Henry and Ian Goldberg. Formalizing anony-
mous blacklisting systems. In 2011 IEEE Symposium
on Security and Privacy, pages 81–95. IEEE, 2011.

[28] Ryan Henry, Kevin Henry, and Ian Goldberg. Making
a Nymbler Nymble using VERBS. In International
Symposium on Privacy Enhancing Technologies Sym-
posium, pages 111–129. Springer, 2010.

[29] Jason E Holt and Kent E Seamons. Nym: Practical
pseudonymity for anonymous networks. Internet
Security Research Lab Technical Report, 4:1–12, 2006.

[30] Daira Hopwood, Sean Bowe, Taylor Hornby, and
Nathan Wilcox. Zcash protocol specification. GitHub:
San Francisco, CA, USA, 2016.

15

https://www.dnsbl.info/dnsbl-details.php?dnsbl=exitnodes.tor.dnsbl.sectoor.de
https://www.dnsbl.info/dnsbl-details.php?dnsbl=exitnodes.tor.dnsbl.sectoor.de
https://godoc.org/go.dedis.ch/kyber
https://godoc.org/go.dedis.ch/kyber
https://spec.torproject.org/tor-spec

[31] Peter C Johnson, Apu Kapadia, Patrick P Tsang, and
Sean W Smith. Nymble: Anonymous IP-address
blocking. In International Workshop on Privacy
Enhancing Technologies, pages 113–133. Springer,
2007.

[32] George Kadianakis. Mission: Montreal! (Build-
ing the Next Generation of Onion Services). https:
//blog.torproject.org/mission-montreal-building-next-
generation-onion-services, 2016.

[33] Dogan Kedogan, Dakshi Agrawal, and Stefan Penz.
Limits of anonymity in open environments. In Interna-
tional Workshop on Information Hiding, pages 53–69.
Springer, 2002.

[34] Sheharbano Khattak, David Fifield, Sadia Afroz, Mobin
Javed, Srikanth Sundaresan, Damon McCoy, Vern
Paxson, and Steven J Murdoch. Do You See What I
See? Differential Treatment of Anonymous Users. In
Network and Distributed Systems Security Symposium.
The Internet Society, 2016.

[35] Chelsea Komlo, Nick Mathewson, and Ian Goldberg.
Walking Onions: Scaling Anonymity Networks while
Protecting Users. In 29th USENIX Security Symposium,
2020.

[36] SCIPR Lab. libsnark: a C++ library for zkSNARK
proofs. https://github.com/scipr-lab/libsnark, 2020.

[37] Nick Mathewson. Threads in Tor. https://
people.torproject.org/~nickm/tor-auto/internal/01f-
threads.html, 2015.

[38] Gregory Maxwell and Andrew Poelstra. Borromean
ring signatures, 2015.

[39] Damon McCoy, Kevin Bauer, Dirk Grunwald, Ta-
dayoshi Kohno, and Douglas Sicker. Shining Light
in Dark Places: Understanding the Tor Network. In
Privacy Enhancing Technologies Symposium, 2008.

[40] Victor S. Miller. Short programs for functions on
curves. IBM Thomas J. Watson Research Center, 1986.

[41] Atsuko Miyaji, Masaki Nakabayashi, and Shunzou
Takano. New explicit conditions of elliptic curve traces
for FR-reduction. IEICE Transactions on Fundamen-
tals of Electronics, Communications and Computer
Sciences, 84(5):1234–1243, 2001.

[42] Michael Naehrig, Ruben Niederhagen, and Peter
Schwabe. New software speed records for crypto-
graphic pairings. In International Conference on
Cryptology and Information Security in Latin America,
pages 109–123. Springer, 2010.

[43] The Open Information Security Foundation. Suricata:
An open source network threat detection engine. https:
//suricata-ids.org/, 2020. Accessed Dec 2020.

[44] Matthew Prince. The Trouble with Tor. Cloudflare
Blog Post, 2016. https://blog.cloudflare.com/the-
trouble-with-tor/.

[45] John Roberts. Control your traffic at the edge with
Cloudflare. https://blog.cloudflare.com/cloudflare-
traffic/, 2016.

[46] Mahrud Sayrafi. Introducing the Cloudflare Onion
Service. https://blog.cloudflare.com/cloudflare-onion-
service/, 2018.

[47] Adi Shamir. How to share a secret. Communications of
the ACM, 22(11):612–613, 1979.

[48] Rachee Singh, Rishab Nithyanand, Sadia Afroz, Paul
Pearce, Michael Carl Tschantz, Phillipa Gill, and Vern
Paxson. Characterizing the nature and dynamics of Tor
exit blocking. In 26th USENIX Security Symposium,
pages 325–341, 2017.

[49] Willy Tarreau. The PROXY protocol. https:
//www.haproxy.org/download/1.8/doc/proxy-
protocol.txt, 2020.

[50] Inc. Tor Project. Tor directory protocol, version 3.
https://gitweb.torproject.org/torspec.git/plain/dir-
spec.txt, 2020.

[51] The Tor Project. Who uses Tor? https://
www.torproject.org/about/torusers.html, 2019.

[52] The Tor Project. Tor Metrics Portal. https:
//metrics.torproject.org/, 2020.

[53] Viet-Hoang Tran and Olivier Bonaventure. Beyond
socket options: making the Linux TCP stack truly
extensible. In IFIP International Conference on Net-
working, 2019.

[54] Patrick P Tsang, Apu Kapadia, and Sean W Smith.
Anonymous IP-address Blocking in Tor with Trusted
Computing (Short Paper: Work in Progress). Proceed-
ings of WATC, 2006.

[55] Patrick P Tsang, Apu Kapadia, Cory Cornelius, and
Sean W Smith. Nymble: Blocking misbehaving users
in anonymizing networks. IEEE Transactions on
Dependable and Secure Computing, 8(2):256–269,
2009.

[56] Philipp Winter. How to report bad relays. https:
//blog.torproject.org/how-report-bad-relays, 2014.

16

https://blog.torproject.org/mission-montreal-building-next-generation-onion-services
https://blog.torproject.org/mission-montreal-building-next-generation-onion-services
https://blog.torproject.org/mission-montreal-building-next-generation-onion-services
https://github.com/scipr-lab/libsnark
https://people.torproject.org/~nickm/tor-auto/internal/01f-threads.html
https://people.torproject.org/~nickm/tor-auto/internal/01f-threads.html
https://people.torproject.org/~nickm/tor-auto/internal/01f-threads.html
https://suricata-ids.org/
https://suricata-ids.org/
https://blog.cloudflare.com/the-trouble-with-tor/
https://blog.cloudflare.com/the-trouble-with-tor/
https://blog.cloudflare.com/cloudflare-traffic/
https://blog.cloudflare.com/cloudflare-traffic/
https://blog.cloudflare.com/cloudflare-onion-service/
https://blog.cloudflare.com/cloudflare-onion-service/
https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt
https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt
https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt
https://gitweb.torproject.org/torspec.git/plain/dir-spec.txt
https://gitweb.torproject.org/torspec.git/plain/dir-spec.txt
https://www.torproject.org/about/torusers.html
https://www.torproject.org/about/torusers.html
https://metrics.torproject.org/
https://metrics.torproject.org/
https://blog.torproject.org/how-report-bad-relays
https://blog.torproject.org/how-report-bad-relays

[57] Philipp Winter. sybilhunter: A Go-based command
line tool to discover and analyse Sybil relays in Tor.
https://github.com/NullHypothesis/sybilhunter, 2016.
Accessed Dec 2020.

[58] Philipp Winter. exitmap: A fast and modular
Python-based exit relay scanner. https://github.com/
NullHypothesis/exitmap, 2020. Accessed Dec 2020.

[59] Philipp Winter, Richard Köwer, Martin Mulazzani,
Markus Huber, Sebastian Schrittwieser, Stefan Lind-
skog, and Edgar Weippl. Spoiled Onions: Exposing
Malicious Tor Exit Relays. In Privacy Enhancing
Technologies Symposium, 2014.

[60] The Zeek Project. zeek: An open source network
security monitoring tool. https://zeek.org/, 2020.
Accessed Dec 2020.

A Standard ZKPs used by ZXAD

We now detail the DLE and DLEP zero-knowledge sub-
protocols used by ZXAD.

A.1 ZKP for Knowledge of Equality of Dis-
crete Logs

Let G be a cyclic multiplicative group of prime order q and
д be one of its generators. Given a tuple of group elements
(A, A′, B, B′), a prover P wants to prove the existence of
some r such that A′ =Ar and B′ = Br . Chaum and Pedersen
[17] describe a Σ-protocol to prove the knowledge of r ,
which can be made non-interactive using the the Fiat-Shamir
heuristic [24] as follows, denoted DLEr [A,A

′,B,B′]:

i) P selects t R
← Zq and sets T1 =A

t , T2 = B
t .

ii) P computes the Fiat-Shamir hash:
c = H (д,T1,T2,A,A

′,B,B′) ∈ Zq .

iii) P computes v = t −r ·c and sends c,v to the verifierV.

iv) V computesT ′1 =A
v ·A′c ,T ′2 = B

v ·B′c , and accepts the

proof iff c ?
= H (д,T ′1,T

′
2,A,A

′,B,B′).

We leave off the completeness, soundness, and zero-
knowledgeness proof of this Σ-protocol as it is standard.

A.2 ZKP for Knowledge of Equality of Dis-
crete Logs Product

Let Λ = 〈q,G1,G2,Gt ,e,д1,д2,H1,H2〉 be the output of an
asymmetric bilinear group generator. Given A,A′ ∈ G1,
B,B′′ ∈ G2, and C,D,E ∈ Gt , a prover P wants to prove the
existence of some r1,r2 such that A′ = A

r1 , B′′ = B
r2 , and

E =C
r1 ·D

r2 . We now describe a non-interactive Σ-protocol
to prove the knowledge of r1,r2 using the the Fiat-Shamir
heuristic [24], denoted DLEPr1,r2

[A,A′,B,B′′,C,D,E]:

i) P selects t1,t2
R
← Zq and sets T1 = A

t1 , T2 = B
t2 , and

T3 =C
t1 ·D

t2 .

ii) P computes the Fiat-Shamir hash:
c = H (д1,д2,T1,T2,T3,A,A

′,B,B′′,C,D,E) ∈ Zq .

iii) P computes v1 = t1 − r1 · c and v2 = t2 − r2 · c and sends
c,v1,v2 to the verifierV.

iv) V computes T ′1 = Av1 · A′c , T ′2 = Bv2 · B′c , and
T ′3 = Cv1 · Dv2 · Ec and accepts the proof iff

c
?
= H (д1,д2,T

′
1,T
′
2,T
′
3,A,A

′,B,B′′,C,D,E).

Completeness. P chooses r1,r2,t1, and t2 such that it can
properly compute v1 and v2. Clearly, the Σ-protocol is com-
plete.
Special Soundness. Suppose P provides two proofs with
the same commitment values t1 and t2 with challenges c1 and
c2 respectively. Then we get:

v1 = t1−r1 ·c1 v ′1 = t1−r1 ·c2

v2 = t2−r2 ·c1 v ′2 = t2−r2 ·c2

We observe that r1 =
v1−v

′
1

c2−c1
and r2 =

v2−v
′
2

c2−c1
. Therefore, spe-

cial soundness is satisfied.
Honest Verifier Zero Knowledge. We define an honest
verifier zero-knowledge simulator that is given the challenge
c. The simulator chooses v1,v2

R
← Zq and sets:

T ′1 = Av1 ·A′c T ′2 = Bv2 ·B′c

T ′3 = Cv1 ·Dv2 ·Ec

As we can see, the verification equation holds for the simu-
lation and the verifierV accepts the proof.

B Circuit Token Zero-knowledge Proof

We now prove the soundness and zero-knowledgeness of our
circuit token zero-knowledge proof defined in Section 5.1.

B.1 Soundness
First, we prove that our circuit token zero-knowledge proof is
sound:

� Statement ŝTc 2 (i.e., the zkSNARK proof Π
′
Tc

) proves
that the client knows some r2 and a pre-image IP

C
under

H2, such that:

д
′′
2 = д

r2
2

B′′ = H2(IPC)
r2 (1)

17

https://github.com/NullHypothesis/sybilhunter
https://github.com/NullHypothesis/exitmap
https://github.com/NullHypothesis/exitmap
https://zeek.org/

� Since the client knows r2 and σ ′′
A

is public, the client
knows some σ

A
such that:

σ ′′
A
= σ

r2
A (2)

� Now substituting Equation 1 and Equation 2 in State-
ment ŝTc 1 we get:

e(д1, σA) = e(A, B) (3)

� Therefore, we can conclude that: (i) the prover can un-
blind σ ′′

A
to σ

A
, which is a valid signature on some B by

the DirAuthA (with the secret key corresponding to the
public key A) and (ii) B is the hash of some IP

C
that the

client knows.

B.2 Zero-knowledgeness
Informally, zero-knowledgeness guarantees that a valid proof
ΠTc

does not reveal anything about the witnesses; i.e., r2 or
IP
C
.

This is formalized by constructing a simulator that outputs
the public values in the same distribution as the honest prover,
without knowing the witnesses. We then show that an adver-
sary that distinguishes this simulation from a real proof with
non-negligible probability, can be turned into an adversary
that breaks an instance of the DDH problem in G2.

We now prove the zero-knowledgeness of our zero-
knowledge proof by defining an honest verifier zero-
knowledge simulator. We allow the simulator to have access
to a single BLS signature 〈K ,K ′ = Kα 〉 from the DirAuths
for arbitrary K ∈ G2 (not of the simulator’s choosing). Note
that the simulator does not learn α , nor is the simulated proof
claiming to know α .

To output the responses, our simulator first chooses
b,r2

R
← Z∗q and sets д′′2 = д

r2
2 , B

′′ = K
b ·r2 , and σ ′′

A
= K

′b r2 .
Next, our simulator runs the simulator for the zkSNARK proof
on inputs д′′2 and B′′ to obtain the public outputs. Finally, our
simulator also runs a hash oracle for H2 which outputs Kb for
IP
C

and random r
R
← Z∗q for all other inputs.

The simulator then sends the token σ ′′
A

, the simulated
zkSNARK proof Π′Tc , and our simulated proof ΠTc

to the ver-

ifier. As we can see, the verification equation e(д1, σ
′′
A
)

?
=

e(A, B′′) holds for the simulation and the exit (i.e., the veri-
fier) accepts the proof. An adversary that distinguishes this
simulation from a real proof can be turned into an adversary
that given a B can solve an instance of the DDH(д2,д

′′
2 ,B,B

′′)
in G2.

C Stream Token Σ-Protocol

We now summarize the complete Σ-protocol to prove state-
ments ŝTs 1 and ŝTs 2 (defined in Section 5.2) in Figure 5. We
leave off the verification as it is the standard Schnorr-type

StreamTokenProof(д1,д2,Y1, `,nS,h1, . . . ,hn
S
,σ
A
,σ ′′
A
,

д
′
1 ,д
′′
2 ,Y

′

1)
1) C first chooses r̄1, r̄2, r̄3

R
← Zq .

2) C then computes the commitments by substituting the
random values (chosen in step 1) for the secret terms
in statement ŝTs 2:

T2 = д
r̄1
1 , T3 = д

r̄2
2 , T4 = e(Y1,σ

′′
A
)
r̄1 ·e(h`,σA)

r̄2

3) Next, to prove statement ŝTs 1, C computes the Bor-
romean [38] OR-proof starting from index `:

� C first sets the commitments for the `th index:
T1, `,0 = д

r̄3
1 , T1, `,1 = Y

r̄3
1

� C then computes the Fiat-Shamir hash for index ` as
follows:

i) If ` , 1, c` = H (д1, д
′
1 , Y1, Y

′

1 , h`,T1, `,0,T1, `,1)

else, c` = H (д1, д2, Y1,h`,Ts ,T1, `,0,T1, `,1,T2,

T3,T4, д
′
1 , Y

′

1 , д
′′
2 , σ

′′
A
)

� Next C chooses ` − 1 “fake” re-
sponse values for all indices i , `:
Vr1a,1 . . . ,Vr1a, `−1,Vr1a, `+1 . . . ,Vr1a,nS

R
← Zq .

� C then computes the the commitments and the Fiat-
Shamir hash in a ring ordering starting from index
i = `+1 to n

S
and then from i = 1 to `−1 as follows:

i) C first sets the commitments for the ith index:

T1,i,0 = д
Vr1a , 1
1 ·д

′ci−1
1 , T1,i,1 = Y

Vr1a , 1
1 · (Y

′

1 ·h
−1
i)

ci−1

ii) If i , 1, ci = H (д1, д
′
1 , Y1, Y

′

1 , hi ,T1,i,0,T1,i,1)

else, c1 = H (д1, д2, Y1,h1,Ts ,T1, `,0,T1, `,1,T2,

T3,T4, д
′
1 , Y

′

1 , д
′′
2 , σ

′′
A
)

� Finally, C sets the response for the `th index:
Vr1a, `

= r̄3−r1 ·c`−1

4) Finally, C sets the response values for all other secret
terms using the Fiat-Shamir hash c1 produced above:

Vr1b
= r̄1−r1 ·c1 Vr2

= r̄2−r2 ·c1

5) C sends the token Ts and the proof ΠTs
= 〈д

′
1 ,Y
′

1 ,
Vr1a,1 . . . ,Vr1a,nS

,Vr1b
,Vr2
〉 to the Tor exit.

Figure 5: Σ-protocol to prove that the stream tokenTs is well
formed

18

proof verification (defined in Section 2.2) and is straightfor-
ward.

C.1 Soundness
Informally, soundness guarantees that only clients with a well-
formed token Ts can generate a valid proof ΠTs

, that will be
accepted by the verifier (i.e., the Tor exit). We now prove that
our Σ-protocol is sound:

� Statement sTs 1 proves that the client knows some r1 and `,
1 ≤ ` ≤ n

S
such that д′1 = д

r1
1 and Y

′

1 = Y
r1
1 ·h` .

� Statement sTs 2 proves that the client knows some r2 such
that д′′2 = д

r2
2 , and

e(Y
′

1 ,σ
′′
A
) = e(Y1,σ

′′
A
)
r1 ·Ts

r2

⇔ e(Y
r1
1 ·h`,σ

′′
A
) = e(Y

r1
1 ,σ

′′
A
) ·Ts

r2

(since Y
′

1 = Y
r1
1 ·h`)

⇔ e(h`,σ
′′
A
) = Ts

r2 (4)

� Since σ ′′
A

is public, the client knows some σ
A

such that
σ ′′
A
= σ

r2
A .

� Now substituting σ ′′
A
= σ

r2
A in Equation 4 we get:

Ts = e(h`,σA) (5)

� Finally, from Equation 1 and Equation 3 we get:

σ
A
= Bα (6)

� Therefore, from Equations 4–6 we can conclude that Ts is
well formed.

C.2 Zero-knowledgeness
Informally, Zero-knowledgeness guarantees that a valid proof
ΠTs

does not reveal anything about the witnesses; `, r1, or r2.
This is formalized by constructing a simulator that outputs

the public values in the same distribution as the honest prover,
without knowing the witnesses. We then show that an adver-
sary that distinguishes this simulation from a real proof with
non-negligible probability, can be turned into an adversary
that breaks an instance of the DDH problem in G1.

We now prove the zero-knowledgeness of our Σ-protocol.
We first define an honest verifier zero-knowledge simulator
that is given the challenge c1 for the Schnorr-type proof (de-
fined in Section 2.2).

To output the responses, our simulator first chooses random
Vr1b
,Vr2
,Vr1a,1 . . . ,Vr1a,nS

, r̄1, r̄2
R
← Zq and sets д′1 = д

r̄1
1 , д

′′
2 =

д
r̄2
2 . Next, it chooses L

R
← G1 and σ

A

R
← G2 and sets

Ts = e(L,σA), Y
′

1 = Y
r̄1
1 · L, and σ ′′

A
= σ

r̄2
A . Finally, it finishes

the simulation of the proof as follows:

� For the statement sTs 1, our simulator runs the
simulator for the Borromean ring OR-proof on
n
S∨

i=1
DLE

[
д1,д

′
1 ,Y1,Y

′

1 ·h
−1
i

]
with the given challenge

c1 and obtains the responses Vr1a,1 . . . ,Vr1a,nS
. It uses the

Σ-protocols for the Borromean ring OR-proof [38] and the
Chaum and Pedersen [17] proof for knowledge of equality
of discrete logs. We omit the zero-knowledgeness proofs
for these Σ-protocols as they are standard.

� For statement sTs 1, our simulator runs the simulator for
DLEP

[
д1,д

′
1 ,д2,д

′′
2 ,e(Y1,σ

′′
A
),Ts ,e(Y

′

1 ,σ
′′
A
)
]

with the chal-
lenge c1 and obtains the responses Vr1b

,Vr2
. The zero-

knowledgeness of DLEP is proved in Appendix A.2.

The simulator then sends the token Ts and the simulated
proof ΠTs

to the verifier. An adversary that distinguishes this
simulation from a real proof can be turned into an adver-
sary that given a h` , 1 ≤ ` ≤ n

S
can solve an instance of the

DDH(д1,д
′
1 ,Y1,Y

′

1 ·h
−1
`) in G1.

19

	Introduction
	Background
	Tor
	Preliminaries

	Overview
	Abuse of Tor exits
	IP-based credential service
	Participants and threat model
	System model
	ZXAD Phases

	Protocol Details
	Basic ZXAD Protocol
	Exit abuse detection
	Extension to t-out-of-n DirAuths

	Security
	Circuit Token Zero-knowledge Proof
	Stream Token Proof -Protocol

	Implementation
	Evaluation
	Related Work
	Discussion and Limitations
	Conclusion
	Standard ZKPs used by ZXAD
	ZKP for Knowledge of Equality of Discrete Logs
	ZKP for Knowledge of Equality of Discrete Logs Product

	Circuit Token Zero-knowledge Proof
	Soundness
	Zero-knowledgeness

	Stream Token -Protocol
	Soundness
	Zero-knowledgeness

