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1 Introduction

In [LSL21], the framework of rotational differential-linear cryptanalysis was
established by replacing the differential part of the differential-linear frame-
work [LH94,LGZL09,Lu15,BLN17,BDKW19,BLT20] with rotational-xor differ-
entials [KN10,KNR10,KNP+15,KAR20,AJN14,MPS13,AL16,LWRA17,LLA+20].
This work left it as an open problem to derive a closed formula for the bias of a
rotational differential-linear distinguisher. In this note, we solve this open prob-
lem and investigate the so-called multidimensional rotational differential-linear
distinguishers, which completely generalizes the results on ordinary differential-
linear distinguishers due to Blondeau, Leander, and Nyberg [BLN17] to the case
of rotational differential-linear distinguishers.

2 Notations and Preliminaries

Let F2 = {0, 1} be the field with two elements. We denote by xi the i-th bit
of a bit string x ∈ Fn2 . For a vectorial Boolean function F : Fn2 → Fm2 with
y = F (x) ∈ Fm2 , its i-th output bit yi is denoted by (F (x))i. The XOR-difference
and rotational-xor difference with offset t of two bit strings x and x′ in Fn2 are
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defined as x⊕x′ and (x≪ t)⊕x′, respectively. For the rotational-xor difference
δ = (x ≪ t) ⊕ x′, we may omit the rotation offset and write δ = ←−x ⊕ x′

or δ = rot(x) ⊕ x′ to make the notation more compact when it is clear from
the context. Correspondingly, −→x and rot−1(x) rotate x or its substrings to the
right. Similar to differential cryptanalysis with XOR-difference, we can define
the probability of an RX-differential as follows.

Definition 1 (RX-differential probability). Let f : Fn2 → Fn2 be a vectorial
boolean function. Let α and β be n-bit words. Then, the RX-differential proba-
bility of the RX-differential α→ β for f is defined as

Pr[α
RX−−→ β] = 2−n#{x ∈ Fn2 : rot(f(x))⊕ f(rot(x)⊕ α) = β}

Finally, the definitions of correlation, bias, and some lemmas concerning
Boolean functions together with the piling-up lemma are needed.

Definition 2 ([Car06,Can16]). The correlation of a Boolean function f :
Fn2 → F2 is defined as cor(f) = 2−n(#{x ∈ Fn2 : f(x) = 0} − #{x ∈ Fn2 :
f(x) = 1}).

Definition 3 ([Car06,Can16]). The bias ε(f) of a Boolean function f : Fn2 →
F2 is defined as 2−n#{x ∈ Fn2 : f(x) = 0} − 1

2 .

From Definition 2 and Definition 3 we can see that cor(f) = 2ε(f).

Definition 4. Let f : Fn2 → F2 be a Boolean function. The Walsh-Hadamard

transformation takes in f and produces a real-valued function f̂ : Fn2 → R such
that

∀w ∈ Fn2 , f̂(w) =
∑
x∈Fn

2

f(x)(−1)x·w.

Definition 5. Let f : Fn2 → F2 and g : Fn2 → F2 be two Boolean functions. The
convolutional product of f and g is a Boolean function defined as

∀y ∈ Fn2 , (f ? g)(y) =
∑
x∈Fn

2

g(x)f(x⊕ y).

Lemma 1 ([Car06], Corollary 2). Let f̂ be the Walsh-Hadamard transfor-

mation of f . Then the Walsh-Hadamard transformation of f̂ is 2nf .

Lemma 2 ([Car06], Proposition 6). (̂f ? g)(z) = f̂(z)ĝ(z) and thus (̂f ? f) =

(f̂)2.

Lemma 3 (Piling-up Lemma [Mat93]). Let Z0, · · · , Zm−1 be m indepen-
dent binary random variables with Pr[Zi = 0] = pi. Then we have that

Pr[Z0 ⊕ · · · ⊕ Zm−1 = 0] =
1

2
+ 2m−1

m−1∏
i=0

(pi −
1

2
),

or alternatively, 2 Pr[Z0 ⊕ · · · ⊕ Zm−1 = 0]− 1 =
∏m−1
i=0 (2pi − 1).
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3 Rotational Differential-linear cryptanalysis

A natural extension of the differential-linear cryptanalysis is to replace the differ-
ential part of the attack by rotational-xor (RX) differentials. Let E = E1 ◦E0 be
an encryption function. Assume that we have an RX-differential δ → ∆ covering
E0 with Pr[rot(E0(x)) ⊕ E0(rot(x) ⊕ δ) = ∆] = p and a linear approximation
Γ → γ of E1 such that{

εΓ,γ = Pr[Γ · y ⊕ γ · E1(y) = 0]− 1
2 ,

εrot−1(Γ ),rot−1(γ) = Pr[rot−1(Γ ) · y ⊕ rot−1(γ) · E1(y) = 0]− 1
2 .

Let x′ = rot(x)⊕ δ. If the assumption

Pr[Γ · (rot(E0(x))⊕ E0(x′)) = 0 | rot(E0(x))⊕ E0(x′) 6= ∆] =
1

2
(1)

holds. We have

Pr[Γ · (rot(E0(x))⊕ E0(x′)) = 0] =
1

2
+

(−1)Γ ·∆

2
p.

Since

γ · (rot(E(x))⊕ E(x′)) = γ · rot(E(x))⊕ Γ · rot(E0(x))

⊕ Γ · (rot(E0(x))⊕ E0(x′))

⊕ Γ · E0(x′)⊕ γ · E(x′)

= rot(rot−1(γ) · E(x)⊕ rot−1(Γ ) · E0(x))

⊕ Γ · (rot(E0(x))⊕ E0(x′))

⊕ Γ · E0(x′)⊕ γ · E(x′),

the bias of the rotational differential-linear distinguisher can be estimated by
piling-up lemma as

ER-DL
δ,γ = Pr[γ · (

←−
E (x)⊕ E(x′)) = 0]− 1

2
= (−1)Γ ·∆ · 2pεΓ,γεrot−1(Γ ),rot−1(γ),

and the corresponding correlation of the distinguisher is

CR-DL
δ,γ = 2ER-DL

δ,γ = (−1)Γ ·∆ · 4pεΓ,γεrot−1(Γ ),rot−1(γ).

We can distinguish E from random permutations if the absolute value of ER−DL
δ,γ

or CR-DL
δ,γ is sufficiently high. Note that if we set the rotation offset to zero,

the rotational differential-linear attack is exactly the ordinary differential-linear
cryptanalysis. Therefore, the rotational differential-linear attack is a strict gen-
eralization of the ordinary differential-linear cryptanalysis. However, as in ordi-
nary differential-linear attacks, the assumption described by Equation (1) may
not hold in practice, and we prefer a closed formula for the bias ER-DL

δ,γ without
this assumption for much the same reasons leading to Blondeau, Leander, and
Nyberg’s work [BLN17].
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4 The Bias of A Rotational Differential-Linear
Distinguisher

In [BLN17], Blondeau, Leander, and Nyberg proved the following theorem based
on the general link between differential and linear cryptanalysis [CV94].

Theorem 1 ([BLN17]). If E0 and E1 are independent, the bias of a differential-
linear distinguisher with input difference δ and output linear mask γ can be com-
puted as

Eδ,γ =
∑
v∈Fn

2

εδ,vc
2
v,γ , (2)

for all δ 6= 0 and γ 6= 0, where{
εδ,v = Pr[v · (E0(x)⊕ E0(x⊕ δ)) = 0]− 1

2

cv,γ = cor(v · y ⊕ γ · E1(y))
.

To replay Blondeau, Leander, and Nyberg’s technique in an attempt to derive
the rotational differential-linear counterpart of Equation (2), we have to first
establish the relationship between rotational differential-linear cryptanalysis and
linear cryptanalysis.

4.1 The Link between RX and Linear Cryptanalysis

Let F : Fn2 → Fn2 be a vectorial Boolean function. The cardinality of the set

{x ∈ Fn2 :
←−
F (x)⊕ F (←−x ⊕ a) = b}

is denoted by ξF (a, b), and the correlation of u ·x⊕v ·F (x) is cor(u ·x⊕v ·F (x)).

Let
←−
F−→ : Fn2 → Fn2 be the vectorial Boolean function mapping x to

←−
F (−→x ). It is

easy to show that cor(u · x⊕ v ·
←−
F−→(x)) = cor(−→u · x⊕−→v ·F (x)). In what follows,

we are going to establish the relationship between

ξF (a, b), cor(u · x⊕ v · F (x)), and cor(−→u · x⊕−→v · F (x)).

Definition 6. Given a vectorial Boolean function F : Fn2 → Fn2 , the Boolean
function θF : F2n

2 → F2 is defined as

θF (x, y) =

{
1 if y = F (x),

0 otherwise.

Lemma 4. Let F : Fn2 → Fn2 be a vectorial Boolean function. Then for any
(a, b) ∈ F2n

2 , we have ξF (a, b) = (θ←−
F−→
? θF )(a, b).
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Proof. According to Definition 5, we have

(θ←−
F−→
? θF )(a, b) =

∑
x||y∈F2n

2

θ←−
F−→

(x, y)θF (a⊕ x, b⊕ y)

=
∑
x∈Fn

2

∑
y∈Fn

2

θ←−
F−→

(x, y)θF (a⊕ x, b⊕ y)

=
∑
x∈Fn

2

θ←−
F−→

(x,
←−
F−→(x))θF (a⊕ x, b⊕

←−
F−→(x)) =

∑
x∈Fn

2

θF (a⊕ x, b⊕
←−
F−→(x))

= #{x ∈ Fn2 : b⊕
←−
F−→(x) = F (a⊕ x)} = ξF (a, b).

ut
Lemma 5. Let F : Fn2 → Fn2 be a vectorial Boolean function. Then for any

(a, b) ∈ F2n
2 , we have cor(a · x⊕ b · F (x)) = 2−nθ̂F (a, b).

Proof. According to Definition 4, we have

θ̂F (a, b) =
∑

x||y∈F2n
2

θF (x, y)(−1)(x||y)·(a||b)

=
∑
x∈Fn

2

∑
y∈Fn

2

θF (x, y)(−1)a·x⊕b·y

=
∑
x∈Fn

2

(−1)a·x⊕b·F (x) = 2ncor(a · x⊕ b · F (x)).

ut
In addition, applying Lemma 5 to

←−
F−→ gives cor(a · x⊕ b ·

←−
F−→(x)) = 1

2n θ̂←−F−→
(a, b).

Theorem 2. The link between RX-differentials and linear approximations can
be summarized as

ξF (a, b) =
∑
u∈Fn

2

∑
v∈Fn

2

(−1)u·a⊕v·bcor(−→u · x⊕ −→v · F (x))cor(u · x⊕ v · F (x)).

Proof. According to Lemma 4 and Lemma 2, we have

22nξF (a, b) =
̂̂

(θ←−
F−→
? θF )(a, b) = ̂̂θ←−

F−→
θ̂F (a, b).

Since θ̂←−
F−→
θ̂F = 22ncor(u · x⊕ v ·

←−
F−→(x))cor(u · x⊕ v · F (x)) due to Lemma 5,

̂̂θ←−
F−→
θ̂F (a, b) = 22n

∑
u||v∈F2n2

(−1)(u||v)·(a||b)cor(u · x⊕ v ·
←−
F−→(x))cor(u · x⊕ v · F (x))

= 22n
∑

u,v∈Fn2

(−1)u·a⊕v·bcor(u · x⊕ v ·
←−
F−→(x))cor(u · x⊕ v · F (x))

= 22n
∑

u,v∈Fn2

(−1)u·a⊕v·bcor(−→u · x⊕−→v · F (x))cor(u · x⊕ v · F (x))

ut
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If the function F is rotation invariant, i.e.,
←−−−
F (x) = F (←−x ), then we have

cor(−→u · x ⊕ −→v · F (x)) = cor(u · x ⊕ v · F (x)). As a result, the theoretical link
between rotational-xor and linear cryptanalysis degenerates to the link between
ordinary differential cryptanalysis and linear cryptanalysis. Moreover, based on
the link between differential and linear cryptanalysis, Blondeau, Leander, and
Nyberg derived a closed formula for the bias of an ordinary differential-linear
distinguisher as shown in Equation (2). We now try to mimic Blondeau, Leander,
and Nyberg’s approach to obtain a closed formula for the bias of rotational
differential-linear distinguishers.

Note that this attempt was failed in [LSL21] and it was noted that this was
due to a fundamental difference between rotational-xor differentials and ordinary
differentials: the output RX-difference is not necessarily zero when the input RX-
difference rot(x)⊕ x′ is zero. In this work, we show that the difficulty brought
by the difference is only technical.

4.2 A Closed Formula

Hereafter, we will denote cor(−→u · x⊕−→v · F (x))cor(u · x⊕ v · F (x)) by λF (u, v).

Definition 7. Let V ⊆ Fn2 be a linear space and δ ∈ Fn2 be a given vector. The
probability of an RX-differential from δ to V is defined as

Pr[δ
RX−−→
F

V ] =
∑
b∈V

Pr[δ
RX−−→
F

b].

Definition 8. Let F : Fn2 → Fn2 be a vectorial Boolean function. The probability
of the RX-differential from a linear space U ⊆ Fn2 to a linear space V ⊆ Fn2 for
F is defined as

Pr[U
RX−−→
F

V ] =
1

2n · |U |
#{(x, a) ∈ Fn2 × U :

←−
F (x)⊕ F (←−x ⊕ a) ∈ V }

=
1

2n · |U |
#{(x, a, b) ∈ Fn2 × U × V :

←−
F (x)⊕ F (←−x ⊕ a) = b}

=
1

|U |
∑
a∈U

∑
b∈V

Pr[a
RX−−→
F

b] =
1

|U |
∑
a∈U

Pr[a
RX−−→
F

V ].

Denote by sp(δ) the linear space spanned by δ. According to Definition 8 and
Definition 7, we have

Pr[sp(δ)
RX−−→
F

V ] =
1

2
Pr[δ

RX−−→
F

V ] +
1

2
Pr[0

RX−−→
F

V ],

which implies that

Pr[δ
RX−−→
F

V ] = 2 Pr[sp(δ)
RX−−→
F

V ]− Pr[0
RX−−→
F

V ]. (3)
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Lemma 6 ([Bon20]). Let H be an additive subgroup of Fn2 and f : Fn2 → R be
a function. Then

f(x) =
∑
h∈H

(−1)x·h =

{
|H|, x ∈ H⊥

0, x /∈ H⊥
.

Proof. Let {h1, · · · , hc} be a basis of H, and thus H = {τ1h1 + · · · + τchc :
(τ1, · · · , τc) ∈ Fc2} has totally 2c elements. Consequently, we have∑

h∈H

(−1)x·h =
∑

(τ1,··· ,τc)∈Fc
2

(−1)x·(τ1h1+···+τchc)

=
∑

(τ1,··· ,τc)∈Fc
2

(−1)x·τ1h1 · · · (−1)x·τchc

=
∑
τ1∈F2

(−1)x·τ1h1 · · ·
∑
τc∈F2

(−1)x·τchc

= (1 + (−1)x·h1) · · · (1 + (−1)x·hc),

which equals to H = 2c if and only if x · h1 = · · · = x · hc = 0. ut

Theorem 3. Let U and V be linear spaces in Fn2 , then we have

Pr[U⊥
RX−−→
F

V ⊥] =
1

|V |
∑
u∈U
v∈V

cor(−→u · x⊕−→v · F (x))cor(u · x⊕ v · F (x)).

Proof. Let λ(u, v) = cor(−→u · x ⊕ −→v · F (x))cor(u · x ⊕ v · F (x)). According to
Definition 8 and Theorem 2, we have

Pr[U⊥
RX−−→
F

V ⊥] =
1

|U⊥|
∑
a∈U⊥
b∈V ⊥

1

2n

∑
u∈Fn

2
v∈Fn

2

(−1)u·a⊕v·bλ(u, v)

=
1

2n
· 1

|U⊥|
∑
u∈Fn

2
v∈Fn

2

λ(u, v)
∑
a∈U⊥

(−1)u·a
∑
b∈V ⊥

(−1)v·b.

Applying Lemma 6 gives

Pr[U⊥
RX−−→
F

V ⊥] =
1

2n
· 1

|U⊥|
· |U⊥| · |V ⊥|

∑
u∈U
v∈V

λ(u, v)

=
1

|V |
∑
u∈U
v∈V

λ(u, v).

ut
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Lemma 7. Let λ(u, v) = cor(−→u · x ⊕ −→v · F (x))cor(u · x ⊕ v · F (x)). For ∆,
w ∈ Fn2 , we have

Pr[∆
RX−−→
F

sp(w)⊥] =
1

2

∑
u∈sp(∆)⊥

λ(u,w)− 1

2

∑
u∈Fn2 \sp(∆)⊥

λ(u,w) +
1

2
. (4)

Proof. According to Equation (3), we have

Pr[∆ RX−−→
F

sp(w)⊥] = 2 Pr[sp(∆)
RX−−→
F

sp(w)⊥]− Pr[0
RX−−→
F

sp(w)⊥]

= 2 · 1

2

∑
u∈sp(∆)⊥

v∈sp(w)

λ(u, v)− 1

2

∑
u∈Fn

2

v∈sp(w)

λ(u, v) (Theorem 3)

=
1

2

∑
u∈sp(∆)⊥

v∈sp(w)

λ(u, v)− 1

2

 ∑
u∈Fn

2

v∈sp(w)

λ(u, v)−
∑

u∈sp(∆)⊥

v∈sp(w)

λ(u, v)


=

1

2

∑
u∈sp(∆)⊥

v∈sp(w)

λ(u, v)− 1

2

∑
u∈Fn

2 \sp(∆)⊥

v∈sp(w)

λ(u, v)

ut

Since λ(u, 0) = 0 for u 6= 0 and λ(u, 0) = 1 for u = 0,

Pr[∆
RX−−→
F

sp(w)⊥] =
1

2

∑
u∈sp(∆)⊥

λ(u,w)− 1

2

∑
u∈Fn

2 \sp(∆)⊥

λ(u,w) +
1

2
.

Theorem 4. If two parts E0 and E1 of an n-bit block cipher E = E1 ◦ E0 are
RX-differentially independent, that is, for all (a, b) ∈ Fn2 × Fn2 ,

Pr[a
RX−−→
E

b] =
∑
∆∈Fn

2

Pr[a
RX−−→
E0

∆] · Pr[∆
RX−−→
E1

b],

then we have

Pr[δ
RX−−→
E

sp(w)⊥]− 1

2
=
∑
u∈Fn

2

(
Pr[δ

RX−−→
E0

sp(u)⊥]− 1

2

)
· λE1

(u,w).

Proof. Substituting Equation (4) into the right-hand side of

Pr[δ
RX−−→
E

sp(w)⊥]− 1

2
=
∑
∆∈Fn

2

Pr[δ
RX−−→
E0

∆] Pr[∆
RX−−→
E1

sp(w)⊥]− 1

2

gives

1

2

 ∑
∆∈Fn

2

u∈sp(∆)⊥

Pr[δ
RX−−→
E0

∆]λ(u,w)−
∑
∆∈Fn

2

u∈Fn
2 \sp(∆)⊥

Pr[δ
RX−−→
E0

∆]λ(u,w)

 . (5)
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Since S = {(u,∆) : ∆ ∈ Fn2 , u ∈ sp(∆)⊥} = {(u,∆) : u ∈ Fn2 , ∆ ∈ sp(u)⊥} and
thus (Fn2 ,Fn2 )\S = {(u,∆) : ∆ ∈ Fn2 , u ∈ Fn2\sp(∆)⊥} = {(u,∆) : u ∈ Fn2 , ∆ ∈
Fn2\sp(u)⊥}, Equation (5) can be written as

1

2

 ∑
u∈Fn

2

∆∈sp(u)⊥

Pr[δ
RX−−→
E0

∆]λ(u,w)−
∑
u∈Fn

2

∆∈Fn
2 \sp(u)

⊥

Pr[δ
RX−−→
E0

∆]λ(u,w)


=

1

2

∑
u∈Fn

2

Pr[δ
RX−−→
E0

sp(u)⊥]λ(u,w)−
∑
u∈Fn

2

Pr[δ
RX−−→
E0

Fn2\sp(u)⊥]λ(u,w)


=
∑
u∈Fn

2

(
Pr[δ

RX−−→
E0

sp(u)⊥]− 1

2

)
λ(u,w).

ut

4.3 The Multidimensional Case

Let U and W be subspaces of Fn2 , we define the bias of the rotational differential-
linear distinguisher in the multidimensional case by

ER-DL
U,W = Pr[U⊥\{0} RX−−→

E
W⊥]− 1

|W |
.

The following lemma can be regarded as the dual of Theorem 2.

Lemma 8. For any permutation F : Fn2 → Fn2 , we have

λF (u, v) =
1

2n

∑
a,b∈Fn

2

(−1)u·a⊕v·b Pr[a
RX−−→
F

b].

Proof. According to Lemma 4 and Lemma 2, we have

ξ̂F (u, v) = ̂(θ←−
F−→
? θF )(u, v) = θ̂←−

F−→
θ̂F (u, v).

Applying Definition 4 and Lemma 5 gives

2n
∑
a,b∈Fn

2

(−1)u·a⊕v·b Pr[a
RX−−→
F

b] = 22nλF (u, v),

which completes the proof. ut

Lemma 9. If two parts E0 and E1 of an n-bit block cipher E = E1 ◦ E0 are
RX-differentially independent, that is, for all (a, b) ∈ Fn2 × Fn2 ,

Pr[a
RX−−→
E

b] =
∑
∆∈Fn

2

Pr[a
RX−−→
E0

∆] · Pr[∆
RX−−→
E1

b],

then for all u, w ∈ Fn2 , we have λE(u,w) =
∑
v∈Fn

2
λE0

(u, v)λE1
(v, w).
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Proof. According to Lemma 8, we have

λE(u,w) =
1

2n

∑
a,b∈Fn

2

(−1)u·a⊕v·b Pr[a
RX−−→
F

b].

Since E0 and E1 are RX-differentially independent,

λE(u,w) =
1

2n

∑
a,b∈Fn

2

(−1)u·a⊕v·b
∑
c∈Fn

2

Pr[a
RX−−→
E0

c] · Pr[c
RX−−→
E1

b].

Applying Theorem 2 gives

λE(u,w) =
1

22n

∑
c∈Fn

2

∑
m,v∈Fn

2

∑
a∈Fn

2

(−1)(u⊕m)·a⊕c·vλE0(m, v)
∑
b∈Fn

2

Pr[c
RX−−→
E1

b]

=
1

23n

∑
m,v∈Fn

2

∑
s,p∈Fn

2

λE0
(m, v)λE1

(p, s)
∑
a∈Fn

2

(−1)(u⊕m)·a
∑
b∈Fn

2

(−1)(w⊕s)·b
∑
c∈Fn

2

(−1)(v⊕p)·c

=
∑
v∈Fn

2

λE0
(u, v)λE1

(v, w)

ut

Theorem 5. If two parts E0 and E1 of an n-bit block cipher E = E1 ◦ E0 are
RX-differentially independent, that is, for all (a, b) ∈ Fn2 × Fn2 ,

Pr[a
RX−−→
E

b] =
∑
∆∈Fn

2

Pr[a
RX−−→
E0

∆] · Pr[∆
RX−−→
E1

b],

then we have

ER-DL
U,W =

2

|W |
∑
v∈Fn

2

εR-DL
U,v CR-DL

v,W

where εR-DL
U,v = Pr[U⊥\{0} RX−−→

E0

sp(v)⊥] and CR-DL
v,W =

∑
w∈W\{0} λE1

(v, w).

Proof. According to the Theorem 2, we have

Pr[U⊥
RX−−→
E0

sp(w)⊥] =
1

2

∑
u∈U

v∈sp(w)

λE0
(u, v)

=
1

2

∑
u∈U

λE0
(u, v) +

1

2

∑
u∈U

λE0
(u, 0)

=
1

2

∑
u∈U

λE0(u, v) +
1

2

Thus,

2 Pr[U⊥
RX−−→
E0

sp(w)⊥]− 1 =
∑
u∈U

λE0
(u, v) (6)

10



For any subspaces U and W ⊆ Fn2 , we have

Pr[U⊥
RX−−→
E

W⊥]

=
1

|W |
∑
u∈U
w∈W

λE(u,w)

=
1

|W |
∑
u∈U
w∈W
v∈Fn

2

λE0
(u, v)λE1

(v, w) (Lemma 9)

=
1

|W |
∑
v∈Fn

2

∑
u∈U

λE0
(u, v)

∑
w∈W

λE1
(v, w) (Equation (6))

=
∑
v∈Fn

2

1

|W |
(2 Pr[U⊥

RX−−→
E0

sp(v)⊥]− 1)
∑
w∈W

λE1(v, w).

Thus, when U = {0} = (Fn2 )⊥,

Pr[U⊥
RX−−→
E

W⊥] =
∑
v∈Fn

2

1

|W |
(2 Pr[0

RX−−→
E0

sp(v)⊥]− 1)
∑
w∈W

λE1(v, w).

According to Definition 8, for any F , the following relation holds

(|U⊥| − 1) Pr[U⊥\{0} RX−−→
F

W⊥] = |U⊥|Pr[U⊥
RX−−→
F

W⊥]− Pr[0
RX−−→
F

W⊥]

Then, we have

(|U⊥| − 1) Pr[U⊥\{0} RX−−→
F

W⊥]

=
∑
v∈Fn

2

1

|W |
|U⊥|(2 Pr[U⊥

RX−−→
E0

sp(v)⊥]− 1)
∑
w∈W

λE1
(v, w)

−
∑
v∈Fn

2

1

|W |
(2 Pr[0

RX−−→
E0

sp(v)⊥]− 1)
∑
w∈W

λE1(v, w)

=
1

|W |
∑
v∈Fn

2

2(|U⊥|Pr[U⊥
RX−−→
E0

sp(v)⊥]− Pr[0
RX−−→
E0

sp(v)⊥])− (|U⊥| − 1)
∑
w∈W

λE1
(v, w)

=
1

|W |
∑
v∈Fn

2

2(|U⊥| − 1) Pr[U⊥\{0} RX−−→
E0

sp(v)⊥]− (|U⊥| − 1)
∑
w∈W

λE1(v, w)

Dividing both sides by |U⊥| − 1 gives

Pr[U⊥\{0} RX−−→
F

W⊥] =
2

|W |
∑
v∈Fn

2

(Pr[U⊥\{0} RX−−→
E0

sp(v)⊥]− 1

2
)
∑
w∈W

λE1
(v, w).

11



Since Pr[U⊥\{0} RX−−→
E0

sp(0)⊥] = 1, λ(u, 0) = 0 for u 6= 0 and λ(u, 0) = 1 for

u = 0, Pr[U⊥\{0} RX−−→
F

W⊥] can be computed as

2

|W |
∑
v∈Fn

2

(Pr[U⊥\{0} RX−−→
E0

sp(v)⊥]− 1

2
)
∑
w∈W
w 6=0

λE1
(v, w) +

1

|W |
.

ut
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