
Towards Practical and Round-Optimal Lattice-Based

Threshold and Blind Signatures

Shweta Agrawal∗ Damien Stehlé† Anshu Yadav‡

Abstract

Threshold and blind signature schemes have found numerous applications in cryptocurrencies,
e-cash, e-voting and other privacy-preserving technologies. In this work, we make advances in
bringing lattice-based constructions for these primitives closer to practice.

1. Threshold Signatures. For round optimal threshold signatures, we improve the only
known construction by Boneh et al [CRYPTO’18] as follows:

• Efficiency. We reduce the amount of noise flooding from 2Ω(λ) down to
√
QS , where QS

is the bound on the number of generated signatures and λ is the security parameter.
By using lattice hardness assumptions over polynomial rings, this allows to decrease
signature bit-lengths from Õ(λ3) to Õ(λ).

• Towards Adaptive Security. The construction of Boneh et al satisfies only selective
security, where all the corrupted parties must be announced before any signing queries
are made. We improve this in two ways: in the ROM, we obtain partial adaptivity where
signing queries can be made before the corrupted parties are announced but the set of
corrupted parties must be announced all at once. In the standard model, we obtain
full adaptivity, where parties can be corrupted at any time but this construction is in a
weaker pre-processing model where signers must be provided correlated randomness of
length proportional to the number of signatures, in an offline pre-processing phase.

2. Blind Signatures. For blind signatures, we improve the state of art lattice-based
construction by Hauck et al [CRYPTO’20] as follows:

• Round Complexity. We improve the round complexity from three to two – this is optimal.

• Efficiency. Again, we reduce the amount of noise flooding from 2Ω(λ) down to
√
QS ,

where QS is the bound on the number of signatures and λ is the security parameter.

• Number of Signing Queries. Unlike the scheme from Hauck et al, our construction enjoys
a proof that is not restricted to a polylogarithmic number of signatures. Using lattice
hardness assumptions over rings, we obtain signatures of bit-lengths bounded as Õ(λ).
In contrast, the signature bit-length in the scheme from Hauck et al is Ω(λ3 +QS · λ).

Concretely, we can obtain blind/threshold signatures of size ≈ 3 KB using a variant of
Dilithium-G with ≈ 128 bit-security, for adversaries limited to getting 256 signatures. In contrast,
parameters provided by Hauck et al lead to blind signatures of ≈ 7.73 MB, for adversaries
limited to getting 7 signatures, while concrete parameters are not provided for the construction
of threshold signatures by Boneh et al.

∗IIT Madras, shweta.a@cse.iitm.ac.in.
†ENS de Lyon and Institut Universitaire de France, damien.stehle@ens-lyon.fr.
‡IIT Madras, anshu.yadav06@gmail.com

1

Contents

1 Introduction 3

1.1 State of the Art from Lattices . 3

1.2 Our Contributions . 4

1.3 Technical Overview . 5

1.4 Perspective and Open Problems . 8

2 Preliminaries 9

2.1 Threshold Signatures . 9

2.2 Blind Signatures . 11

2.3 Lattices and Discrete Gaussians . 12

2.4 Hardness Assumptions . 12

2.5 Rényi Divergence . 13

2.6 Homomorphic Encryption (HE). 14

2.7 Secret Sharing. 16

2.8 Threshold Homomorphic Encryption . 18

3 Lyubashevsky’s Signature Without Aborts 20

3.1 Construction . 20

3.2 From Gaussian to Uniform . 22

3.3 Instantiation . 23

4 More Efficient Threshold Signatures from Lattices 23

4.1 Optimizing the Boneh et al scheme using the Rényi Divergence 24

4.2 On the Optimality of Our Flooding . 30

5 Adaptive Security for Threshold Signatures 32

5.1 Partially Adaptive Unforgeability . 32

6 Blind Signatures 40

6.1 Construction . 41

6.2 Comparison with the Hauck et al scheme . 44

6.3 Towards an Instantiation . 45

A Additional Preliminaries 52

A.1 Multi-data Homomorphic Signature. 52

B Missing Details in Section 3 54

B.1 Proof of Lemma 3.5 . 54

B.2 Optimality of Flooding in Section 3 . 55

C Fully Adaptive Unforgeability in the Preprocessing Model 56

D Threshold Signatures for t-out-of-N access structures 62

2

1 Introduction

Threshold and blind signatures are fundamental cryptographic primitives with numerous applications
in cryptocurrencies and blockchains [74], e-cash [21], e-voting [46], and other privacy-preserving
technologies [75]. In a threshold signature scheme [25], the signature issuing capacity is shared
among several users, and a signature can be generated only if a sufficient number of users collaborate
to sign a message. In a blind signature scheme [21], a user may request a signature from a signer,
with the signer not being able to link a message-signature pair with a protocol execution, and the
user not being able to forge signatures even after several interactions with the signer.

While there exist many practical realizations of threshold [50, 38, 26, 19, 20] and blind signatures
[61, 62, 63, 64, 68, 57] under number-theoretic assumptions, the situation is very unsatisfactory in
the post-quantum regime, especially for optimal round complexity. Below, we summarize the state
of the art from lattice assumptions, which is the focus of our work.

1.1 State of the Art from Lattices

Threshold Signatures. The thresholdisation of lattice-based signatures from the NIST post-
quantum cryptography project has been investigated in [22] but this resulted in several rounds
of communication, as well as slow runtime estimates. To the best of our knowledge, the only
lattice-based, round-optimal threshold signature construction is by Boneh et al [12]. However, while
this construction provided the first feasibility result for a long-standing open problem, it is far from
being deployable in practice for the following reasons:

1. Noise Flooding and Impact on Parameters. It makes use of the so-called “noise flooding”
technique [39, 9, 42], which aims to hide a noise term e ∈ Z that possibly contains sensitive
information, by adding to it a fresh noise term e′ whose distribution has a standard deviation
that is much larger than an a priori upper bound on |e|. To get security against attackers
with advantage 2−o(λ), the standard deviation of e′ must be a factor 2Ω(λ) larger than the
upper bound on |e|.
Unfortunately, this precludes the use of an efficient parametrisation of the Learning With
Errors problem (LWE). Concretely, one has to set the LWE noise rate α as 2−Ω(λ) so that |e′|
remains small compared to the working modulus q. As the best known algorithms for attacking
LWE with (typical) parameters n, q, α have run-times that grow as exp(Õ(n log q/ log2 α))
(see, e.g., [44]) this leads to setting n log q = Ω̃(λ3). As the signature shares have bit-sizes that
grow as Ω(n log q), this degrades signature size to Ω̃(λ3) which is prohibitively expensive in
practice.

2. Selective Security. It only achieves a very restricted selective notion of security, where all
the corrupted parties must be announced before any partial signing queries are made. To be
secure in the more realistic adaptive setting, we must rely on complexity leveraging, which
further degrades the parameters.

3. Lack of Instantiation for Building Blocks. It evaluates a generic signature scheme within a
homomorphic encryption (HE) scheme but does not instantiate either the signature or the
encryption scheme. In general, it is nontrivial to find the right HE-compatible building blocks –
for instance, a natural choice for a lattice-based signature would be that by Gentry, Peikert and
Vaikuntanathan [40] or Lyubashevsky [52, 53] but both constructions use rejection sampling.

3

When converted to a circuit, rejection sampling leads to very large circuit depth, which is not
suited to homomorphic evaluation. It is not clear whether using these signatures within a
homomorphic encryption scheme is even feasible.

Blind Signatures. The first proposal of a lattice-based blind signature was by Rückert [67], which
has been investigated in a series of works, all of which have been shown to have incomplete security
proofs and sometimes even attacks [67, 4, 3, 14, 49, 59] (we refer to [43] for a discussion). The state
of art construction in this regime is due to Hauck et al [43], who state their main contribution as
providing a scheme with a correct proof. However, this construction suffers from some significant
drawbacks impacting its efficiency:

1. Noise Flooding. Similarly to the above one-round threshold signature, it relies on a variant
of noise flooding, used this time with the Short Integer Solution problem (SIS). For λ-bit
security, it leads to setting the SIS parameters such that n log q = Ω̃(λ3), which is a lower
bound on the signature bit-length.

2. Loss in Security Proof. The scheme is an adaptation of the Okamoto-Schnorr blind
signature [57] from the discrete logarithm setting to the lattice setting. The best known
security proof for the Okamoto-Schnorr blind signature under standard assumptions [64]
suffers from a loss in advantage larger than 2QS/|C|. Here QS denotes an upper bound on the
number of generated signatures and C denotes the challenge space. This drastically limits QS
or forces signature bit-lengths to grow at least linearly in QS .

3. Suboptimal Round Complexity. Finally, the scheme of [43] uses three rounds, while optimal
round complexity is two.

We emphasize that the above blind signature constructions are in the random oracle model. There
does exist a round-optimal construction in the standard model [37], but this construction is primarily
a feasibility result, since it relies heavily on expensive complexity leveraging and general purpose
witness indistinguishable proofs. Indeed, the subsequent work of [36] was dedicated to mitigating
the impact of complexity leveraging and instantiating the proofs to minimize costs, but this work is
restricted to the number-theoretic setting.

1.2 Our Contributions

We make several advances on round-optimal lattice-based threshold and blind signatures to bring
them closer to practice.

1. Threshold Signatures. For round-optimal threshold signatures, we improve the construction
from [12] as follows:

• Efficiency. We decrease the noise flooding ratio from 2Ω(λ) down to
√
QS , where QS is the

bound on the number of generated signatures. This gives a one-round threshold signature
of bit-length growing as Õ(λ log2QS), which is Õ(λ) for any polynomially bounded QS ,1 in

1For many applications, the bound QS is quite limited and can be considered to be a small polynomial in λ. For
example, for applications pertaining to cryptocurrencies, the bound QS captures the total number of transactions
made with a user’s wallet during the lifetime of a signing key. According to statistics available at the URLs

4

contrast with Õ(λ3) for the construction from [12]. These bit-lengths are obtained when
relying on the ring variants of SIS and LWE [54, 60, 71, 55]. Additionally, we show that the
amount of noise flooding used in our construction is optimal, by exhibiting an attack when
smaller noise is used.

• Selective versus Adaptive. The construction of [12] satisfies only selective security, where all
the corrupted parties must be announced before any signing queries are made. We improve
this in two ways: in the random oracle model, we obtain a notion of partial adaptivity
where signing queries can be made before the corrupted parties are announced. However,
the set of corrupted parties must be announced all at once. In the standard model, we
obtain a construction with full adaptivity, where parties can be corrupted at any stage in
the protocol. However, this construction is in a weaker pre-processing model2 where signers
must be provided correlated randomness of length proportional to the number of signing
queries.

2. Blind Signatures. For blind signatures, we improve the state of art (in the ROM) lattice-
based construction [43] in several ways.

• Round Complexity. We improve the round complexity of [43] from three to two rounds –
this is optimal.

• Efficiency. We reduce the amount of noise flooding from 2Ω(λ) down to
√
QS , where QS is

the bound on the number of generated signatures and λ is the security parameter.

• Number of Signing Queries. Unlike the scheme from Hauck et al, our construction enjoys a
proof that is not restricted to a polylogarithmic number of signatures. Using lattice hardness
assumptions over rings, we obtain signatures of bit-lengths bounded as Õ(λ). In contrast,
the signature bit-length in the scheme from Hauck et al is Ω(λ3 +QS · λ).

1.3 Technical Overview

The starting point of our work is to observe that homomorphic encryption (HE) can been used
to achieve optimal round complexity for both threshold and blind signatures in the lattice regime
[12, 37]. Historically, in both cases, these solutions were treated primarily as feasibility results,
and an independent line of work investigated practical, “direct” constructions with limited success,
as discussed above. In this work, we argue that the HE based approach can in fact be made to
outperform direct constructions where they exist, in several important parameters of interest. Thus,
we contend that this approach may be the most viable design strategy for practical constructions of
threshold and blind signatures with low round complexity. However, making this approach work
requires several new ideas, which we describe next.

below, one transaction per day and per user is a generous upper bound. This suggests that number of signing
queries in the lifecycle of the key will be quite small. https://www.blockchain.com/charts/n-transactions, https:
//www.statista.com/statistics/647374/worldwide-blockchain-wallet-users/

2The informed reader may notice similarities with the “MPC with Preprocessing” model (please see [35] and
references therein).

5

https://www.blockchain.com/charts/n-transactions
https://www.statista.com/statistics/647374/worldwide-blockchain-wallet-users/
https://www.statista.com/statistics/647374/worldwide-blockchain-wallet-users/

Circuitizing the Underlying Signature. Both the threshold and blind signature constructions
require to homomorphically evaluate a signing algorithm. For this to be efficient, we need a lattice-
based signature scheme that can be expressed as a relatively simple circuit. The GPV signature
scheme [40] and its practical versions [29, 65, 34] seem ill-suited to our needs, as the signing algorithm
is very sequential, and the requisite 1-dimensional Gaussian samples are obtained via algorithms
based on rejection sampling (see [45, 76] and the references therein) that are costly to transform
into circuits. The other candidate is Lyubashevsky’s signature scheme [52, 53]. It has the advantage
of being far less sequential, but it also relies on rejection sampling: when some rejection test does
not pass, then one needs to restart the signing process. The rejection probability is typically a
non-zero constant: for example, it is ≈ 0.85 for the recommended parameter set of [27].

We show that Lyubashevsky’s signature is suitable for transformation into a circuit using two
modifications which enjoy different performance properties. The first possibility is to run QS ·ω(log λ)
executions of Lyubashevsky’s signing algorithm in parallel and keep one that passes the rejection test
(return ⊥ if they all fail). If no more than QS signatures are generated, then for each of them the
signing algorithm succeeds with probability ≥ 1− λ−ω(1). However, this approach requires parallel
repetition, implementing the rejection test and choosing the right output which may be cumbersome
to implement homomorphically, and additionally results in some error of correctness. Another
possibility is to remove the rejection test from Lyubashevsky’s signature altogether, which we
describe next. Observe that Lyubashevsky’s signature consists of a pair of matrices or polynomials
over the integers (depending whether one relies on the SIS assumption or its ring variant). It is
well-known that when the magnitudes of these integers is bounded by λO(1), then removing the
rejection test leads to polynomial-time attacks. Oppositely, taking exponential magnitudes allows,
via the noise flooding technique, to prove unforgeability of the rejection-free variant [23], but this
leads to setting n log q = Ω̃(λ3). In this work, we show that limited magnitudes of the order of

√
QS

suffice to ensure unforgeability. The proof is based on the Rényi divergence technique [55, 48, 7]
and results in a sufficient condition n log q = Ω̃(λ log2QS). Since QS is often a small polynomial in
practice as discussed above, this improvement is significant. Furthermore, we show that this amount
of noise flooding is optimal by exhibiting a statistical attack if smaller noise is used. We believe this
contribution could have other applications, for instance in evaluating this signature within an MPC
protocol. Please see Section 3 for more details.

Threshold Signatures. We improve the threshold signature scheme by Boneh et al [12] in two
ways:

Efficiency. For threshold signatures, the main efficiency bottleneck in the construction from [12] is
the exponential noise flooding as described above. Again, we show that a limited flooding growing
as
√
QS suffices by using Rényi divergence instead of statistical distance in the analysis. This leads

to a significant improvement in the signature bit size. Moreover, we show that this magnitude of
flooding is necessary for this construction, by exhibiting a statistical attack when smaller noise is
used. At a high level, our attack proceeds as follows. First we show that using legitimate information
available to her, the adversary can compute errM + e1,M where errM is the error that results from
homomorphically evaluating the signing algorithm for message M and e1,M is the flooding noise
that is used in the partial signature of the first party. As a warmup, consider the setting where
the flooding noise is randomized. Now, since the signature scheme is deterministic, the term errM
depends only on M and remains fixed across multiple queries for the same message. On the other
hand, the term e1,M keeps changing. Using Hoeffding’s bound, it is possible to estimate the average

6

of e1,M across multiple queries and use this to recover errM , leading to an attack.

However, the above attack may be easily fixed by making the flooding noise deterministic for a
given message, say by using a PRF evaluated on the message to generate the noise. In this setting,
we devise a new signature scheme which includes “useless” encryptions of 0 in the signature which
do not add to any functionality but allow us to recreate the attack from the randomized setting. In
more detail, these encryptions are designed to be a deterministic function of the secret key so that
across multiple messages, the error term recovered by the adversary contains a fixed term dependent
on the secret key and a fresh term dependent on the message. This allows to launch the attack
described previously. Please see Section 4 for more details.

Security. Another limitation of the construction of Boneh et al [12] is that security is proved in
the weak “selective” model where the adversary must announce all corrupted users before receiving
the public parameters and verification key. In contrast, the more reasonable adaptive model allows
the adversary to corrupt users based on the public parameters, the verification key and previous
user corruptions it may have made. We briefly describe the difficulty in achieving adaptive security.
Intuitively, in the selective game, the challenger proceeds by simulating the partial keys corresponding
to the honest parties in a “special way”. The challenge in the adaptive setting is that without
knowing who are the honest/corrupted parties, the challenger does not know which partial keys to
program thus.

We overcome this hurdle in the ROM by having the challenger simulate all partial keys as though
corresponding to a corrupt user and when later, the list of corrupted parties becomes available,
“program” the ROM to “explain” the returned keys in a consistent way. This yields an intermediate
notion of “partial adaptivity”, in which the attacker can make signing queries before corruption,
but must announce its corrupted users all at once. We also provide a construction in the standard
model which achieves full adaptivity, but in a weaker pre-processing model where the signers must
be provided correlated randomness of length proportional to the number of signing queries, in an
offline pre-processing phase. We emphasize that the correlated randomness is independent of the
messages to be signed later. This model is reminiscent of the “MPC with Preprocessing” model
(please see [35] and references therein). We refer the reader to Section 5 for more details.

Blind Signatures. For blind signatures, we start by observing that i) all direct constructions of
lattice-based blind signatures are only secure in the ROM, ii) the two round construction of Garg et
al [37] has been considered unrealistic for practice primarily because it is in the standard model and
therefore must use complexity leveraging due to lower bounds [33]. Because of this, no effort has
been made in the last decade to instantiate this construction and it has been considered strictly a
feasibility result.

We revisit the construction of Garg et al [37] and observe that if it is degraded to rely on the
random oracle (its primary objective was to provide a standard model construction), then the
primary source of inefficiency, namely complexity leveraging, can be removed. Similarly, expensive
witness indistinguishable ZAPs can be replaced by simple and efficient zero-knowledge proofs for
specific algebraic statements [52, 53]. This yields a simple and efficient blind signature in two rounds,
that outperforms the state of the art [43] in almost all measures. To take a decade old, unrealistic
protocol that uses complexity leveraging and use ROM to convert it to a simple, practical protocol
which can be suitably instantiated, is one of the main conceptual contributions of this work. We
proceed to discuss the technical challenges in making this template work, and our approaches to
handling these.

7

Circuit Private Homomorphic Encryption. Having removed complexity leveraging, the main difficulty
in instantiating the generic blind signature construction of [37] is the need of a homomorphic
encryption scheme that enjoys circuit privacy. Informally, circuit privacy requires that the ciphertext
distribution obtained by homomorphically evaluating a circuit depends only on the size of the circuit
and the underlying plaintext, but not on the circuit itself. This property should hold even if the
decryption key is known. A first proposal to get circuit privacy was described in [39, Chapter 20] but
is based on the noise flooding technique. More efficient strategies have been designed later in [30]
and [15]. The latter works for all homomorphic encryption schemes but requires bootstrapping,
whereas the former does not have this limitation but is limited to the homomorphic encryption
scheme from [41]. Unfortunately, none of these three approaches fulfills our needs as they only
achieve a weak notion of circuit privacy in which the secret and public keys and the input ciphertexts
are assumed to be honestly generated. To prove that our blind signature is unforgeable, we need a
stronger notion of circuit privacy in which the keys and ciphertexts may be maliciously generated.
Such notion was studied in [58] but, being in the standard model, required an inefficient simulator
due to lower bounds. Again, we leverage the random oracle model to upgrade the homomorphic
encryption scheme from [15] from weak to malicious circuit privacy, in an efficient way. For this,
we rely on the specific proof of circuit privacy in [15], which shows that it suffices to ensure
that some component of the public key is uniform and that the rest of the public key and the
ciphertexts are well-formed (but not necessarily well-distributed). We achieve the former by letting
it be output by the random oracle, and the latter with non-interactive zero-knowledge (NIZK) proofs.

Suitable Non-Interactive Zero Knowledge Proofs. It remains to instantiate suitable NIZK proofs.
This requires care since NIZK proofs can often be expensive. In recent years, there has been
significant progress in constructing efficient lattice-based proofs for specific statements, in particular
for linear statements with small unknowns[73, 13, 31]. These constructions greatly improve over
older zero-knowledge proofs such as those based on [51]. We show that the algebraic structure of
the [15] ciphertexts is compatible with these efficient zero-knowledge proofs, leading to an efficient
lattice instantiation. Please see Section 6 for details.

Note that we make heavy use of the random oracle – not only to bypass the (partial) impossibility
result [33] on the number of rounds of blind signatures and get rid of complexity leveraging, but also
to upgrade FHE with a special form [15] to satisfy malicious circuit privacy in a simple and efficient
way. We also carefully “stitch together” the specific algebraic structure of the FHE [15] with efficient
proofs for specific languages [73, 13, 31] to obtain an overall simple and efficient instantiation from
lattices. We are optimistic that these techniques may find other applications.

1.4 Perspective and Open Problems

Since threshold and blind signatures are practice oriented primitives, the final goal in this line of
work would be an implementation with concrete parameter sets to provide a benchmark. We do not
claim to provide a full solution towards this goal and hence do not provide a benchmark, since several
highly non-trivial issues still remain to be tackled. We view our work as taking a first, important step
in this direction and discuss here some remaining challenges. As an example, both our constructions
rely on the homomorphic evaluation of a signing algorithm. While we designed an “HE compatible”
signature scheme in Section 3, our construction, along with all practical lattice-based signature
schemes (in the NIST competition for instance), relies on the random oracle. In practice, this must

8

be instantiated by a hash function, which implies homomorphic evaluation of a hash function by the
signer. Choosing a hash function that is suitable for homomorphic evaluation is a serious research
question – while there has been some effort in the community to design block ciphers that minimize
multiplicative size and depth of description, so as to be more “HE compatible” (see, e.g., [2, 1]), this
question has not been studied sufficiently for the case of hash functions that must model random
oracles. We discuss some approaches towards this instantiation, but a full solution is beyond the
scope of the present work. Please see Section 6.3 for a detailed discussion on this and other issues.

2 Preliminaries

In this section, we define some preliminaries used in our work. Additional preliminaries may be
found in Appendix A.

Notation. We write vectors with bold small letters and matrices with bold capital letters. For
any vector v, we denote its ith element by v[i] or vi. Similarly, for any matrix M, M[i][j] or Mij

represents the element in the jth column of ith row. Let S be any set, then |S| represents the
cardinality of S, while in case of any x ∈ R, |x| represents absolute value of x. For any n ∈ N, we
let the set {1, 2, . . . , n} be denoted by [n]. For any set S, we let P(S) denote the power set of S,
i.e., the set of all subsets of S. DΛ,s,c represents discrete Gaussian distribution over lattice Λ, with
center c and standard deviation parameter s. When c = 0, we omit it. Similarly, we omit Λ, if
Λ = Z.

2.1 Threshold Signatures

Definition 2.1 (Threshold Signatures). Let P = {P1, . . . , PN} be a set of N parties. A threshold
signature scheme for a class of efficient access structures S on P is a tuple of PPT algorithms denoted
by TS = (TS.KeyGen, TS.PartSign,TS.PartSignVerify,TS.Combine,TS.Verify) defined as follows:

• TS.KeyGen(1λ,A)→ (pp, vk, {ski}Ni=1): On input the security parameter λ and an access structure
A, the KeyGen algorithm outputs public parameters pp, verification key vk and a set of key shares
{ski}Ni=1.

• TS.PartSign(pp, ski,m)→ σi: On input the public parameters pp, a partial signing key ski and a
message m ∈ {0, 1}∗ to be signed, the partial signing algorithm outputs a partial signature σi.

• TS.PartSignVerify(pp,m, σi) → accept/reject: On input the public parameters pp, a message
m ∈ {0, 1}∗ and a partial signature σi, the partial signature verification algorithm outputs accept
or reject.

• TS.Combine(pp, {σi}i∈S) → σm: On input the public parameters pp and the partial signatures
{σi}i∈S for S ∈ A, the combining algorithm outputs a full signature σm.

• TS.Verify(vk,m, σm)→ accept/reject: On input a verification key vk, a message m and a signature
σm, the verification algorithm outputs accept or reject.

A TS scheme should satisfy the following compactness, correctness and security requirements.

9

Definition 2.2 (Compactness). A TS scheme for S satisfies compactness if there exist poly-
nomials poly1(·),poly2(·) such that for all λ, A ∈ S and S ∈ A, the following holds. For
(pp, vk, {ski}Ni=1)←TS.KeyGen(1λ,A), σi←TS.PartSign(pp, ski,m) for i ∈ S, and σ←TS.Combine(pp, {σi}i∈S),
we have that |σ| ≤ poly1(λ) and |vk| ≤ poly2(λ).

Definition 2.3 (Evaluation Correctness). A signature scheme TS for S satisfies evaluation
correctness if for all λ,A ∈ S and S ∈ A, the following holds. For (pp, vk, {ski}Ni=1) ←
TS.KeyGen(1λ,A), σi ← TS.PartSign(pp, ski,m) for i ∈ [N] and σm ← TS.Combine(pp, {σi}i∈S),
we have:

Pr[TS.Verify(vk,m, σm) = accept] ≥ 1− λ−ω(1).

Definition 2.4 (Partial Verification Correctness). A signature scheme TS for S satisfies partial
verification correctness if for all λ and A ∈ S, the following holds. For (pp, vk, {ski}Ni=1) ←
TS.KeyGen(1λ,A),

Pr[TS.PartSignVerify(pp,m,TS.PartSign(pp, ski,m)) = 1] = 1− λ−ω(1).

Definition 2.5 (Unforgeability). A TS scheme is unforgeable if for any adversary A with run-
time 2o(λ), the output of the following experiment ExptA,TS,uf (1λ) is 1 with probability 2−Ω(λ):

1. On input the security parameter λ, the adversary outputs an access structure A ∈ S.

2. Challenger runs the TS.KeyGen(1λ) algorithm and generates public parameters pp, verification
key vk and set of N key shares {ski}Ni=1. It sends pp and vk to A.

3. Adversary A then outputs a maximally invalid party set S ⊆ [N] to get key shares ski for
i ∈ S.

4. Challenger provides the set of keys {ski}i∈S to A.

5. Adversary A issues polynomial number of adaptive queries of the form (m, i), where i ∈
[N] \ S to get partial signature σi for m. For each query the challenger computes σi as
TS.PartSign(pp, ski,m) and provides it to A.

6. At the end of the experiment, adversary A outputs a message-signature pair (m∗, σ∗).
The experiment outputs 1 if m∗ was not queried previously as a signing query and
TS.Verify(vk,m∗, σ∗) = accept.

Robustness. A TS scheme for S satisfies robustness if for all λ, the following holds. For all adversary
A with run-time 2o(λ), the following experiment ExptA,TS,rb(1

λ) outputs 1 with probability 2−Ω(λ):

1. On input the security parameter 1λ, the adversary outputs an access structure A ∈ S.

2. The challenger samples (pp, vk, sk1, . . . , skN)←TS.KeyGen(1λ,A) and provides (pp, vk, sk1, . . . , skN)
to A.

3. Adversary A outputs a partial signature forgery (m∗, σ∗i , i).

4. The experiment outputs 1 if TS.PartSignVerify(pp,m∗, σ∗i) = 1 and σ∗i 6= TS.PartSign(pp, ski,m
∗).

10

2.2 Blind Signatures

To begin, we introduce some notation for interactive executions between algorithms X and Y. By
(a, b)← 〈X (x),Y(y)〉, we denote the joint execution of X and Y where X has private input x, Y
has private input y and X receives private output a while Y receives private output b.

Definition 2.6 (Blind Signature). A blind signature scheme BS consists of PPT algorithms Gen,
Vrfy along with interactive PPT algorithms S, U such that for any λ:

• Gen(1λ) generates a key pair (Sig.sk, Sig.vk).

• The joint execution of S(Sig.sk) and U(Sig.vk,m), where m ∈ {0, 1}∗, generates an output σ for
the user and no output for the signer. This is denoted as (⊥, σ)← 〈S(Sig.sk),U(Sig.vk,m)〉.

• Algorithm Vrfy(Sig.vk,m, σ) outputs a bit b.

We assume completeness: for any m ∈ {0, 1}∗, (Sig.sk,Sig.vk)←Gen(1λ) and σ output by U in the
joint execution of S(Sig.sk) and U(Sig.vk,m), it holds that Vrfy(Sig.vk,m, σ) = 1 with probability
1− λ−ω(1).

Blind signatures must satisfy two properties: one more unforgeability and blindness [47].

Definition 2.7 (One More Unforgeability). The blind signature BS = (Gen,S,U ,Vrfy) is one more
unforgeable if for any polynomial `, and any algorithm U∗ with run-time 2o(λ), the success probability
of U∗ in the following game is 2−Ω(λ):

1. Gen(1λ) outputs (ssk, svk), and U∗ is given svk.

2. Algorithm U∗ interacts concurrently with ` instances S1
ssk, . . . ,S`ssk.

3. Algorithm U∗ outputs (m1, σ1, . . . ,m`+1, σ`+1).

Algorithm U∗ succeeds if the mi’s are distinct and Vrfy(svk,mi, σi) = 1 for all i ∈ [`+ 1].

The blindness condition says that it should be infeasible for any malicious signer S∗ to decide
which of two messages m0 and m1 of its choice has been signed first in two executions with a honest
user U . If one of these executions has returned ⊥, then the signer is not informed about the other
signature either. We will focus on the following notion of honest signer blindness.

Definition 2.8 (Honest Signer Blindness). The blind signature BS = (Gen,S,U ,Vrfy) satisfies
honest signer blindness if for any algorithm S∗ with run-time 2o(λ), the advantage of S∗ in the
following game is 2−Ω(λ):

1. Gen(1λ) outputs (ssk, svk), and S∗ is given (ssk, svk).

2. A random bit b is chosen and S∗ interacts concurrently with U1 := U(svk,mb) and U2 :=
U(svk,mb̄) by honestly following the protocol. When U1,U2 have completed their executions,
the values σb, σb̄ are defined as follows:

• If either U1 or U2 abort, then (σb, σb̄) := (⊥,⊥).

• Otherwise, let σb (resp. σb̄) be the output of U1 (resp. U2).

11

Algorithm S∗ is given (σ0, σ1).

3. Algorithm S∗ outputs a bit b′.

Algorithm S∗ succeeds if b′ = b. If succ denotes the latter event, then the advantage of S∗ is defined
as |Pr[succ]− 1

2 |.

Full-fledged blindness lets the adversary S∗ sample its own pair (ssk, svk) at Step 1 (possibly
maliciously), and gives svk to the challenger. At Step 2, the adversary may decide not to follow the
specified protocol. A blind signature scheme is secure if it is unforgeable and blind.

2.3 Lattices and Discrete Gaussians

In this section we provide definitions of lattices and discrete Gaussian distributions.

2.3.1 Lattices

: An n-dimensional lattice Λ is a discrete additive subgroup of Rn. For an integer k < n and a rank
k matrix B ∈ Rn×k, Λ(B) = {Bx : x ∈ Zk} is the lattice generated by integer linear combinations
of columns of matrix B. The matrix B is called a basis of the lattice.

Dual of a lattice: The dual of a lattice Λ is defined by Λ∗ = {y ∈ Rn : yTΛ ⊆ Z}.

2.3.2 Gaussian distribution

For any vector c ∈ Rn and any real s > 0, the (spherical) Gaussian function with standard deviation
parameter s and center c is defined as:

∀x ∈ Rn, ρs,c(x) = exp(−π‖x− c‖2

s2
).

The Gaussian distribution is Ds,c(x) = ρs,c(x)/sn.

The (spherical) discrete Gaussian distribution over a lattice Λ ⊆ Rn, with standard deviation
parameter s > 0 and center c is defined as:

∀x ∈ Λ,DΛ,s,c =
ρs,c(x)

ρs,c(Λ)
,

where ρs,c(Λ) =
∑

x∈Λ ρs,c(x). When c = 0, we omit the subscript c.

2.3.3 Smoothing parameter

The smoothing parameter of an n-dimensional lattice Λ with respect to ε > 0, denoted by ηε(Λ), is
the smallest s > 0, such that ρ1/s(Λ

∗ \ {0}) ≤ ε.

2.4 Hardness Assumptions

We will need the Learning With Errors (LWE) problem, which is known to be at least as hard as
certain standard lattice problems in the worst case [66, 17].

12

Definition 2.9 (Learning With Errors (LWE)). Let q, α,m be functions of a parameter n. For a
secret s ∈ Znq , the distribution Aq,α,s over Znq × Zq is obtained by sampling a←Znq and an e←DZ,αq,
and returning (a, 〈a, s〉 + e) ∈ Zn+1

q . The Learning With Errors problem LWEq,α,m is as follows:
For s←Znq , the goal is to distinguish between the distributions:

D0(s) := U(Zm×(n+1)
q) and D1(s) := (Aq,α,s)

m.

We say that a PPT algorithm A solves LWEq,α if it distinguishes D0(s) and D1(s) with non-negligible
advantage (over the random coins of A and the randomness of the samples), with non-negligible
probability over the randomness of s.

Definition 2.10 (Short Integer Solution (SISq,n,m,d) problem). Let A←Zn×mq , s←{−d, . . . , 0, . . . , d}m
and t = As. Then given A, t, the task is to find s′ ∈ {−d, . . . , 0, . . . , d}m such that As′ = t.

The problem can be defined with respect to different norms as well. Below we give the definition
for `2-SIS.

Definition 2.11 (Short Integer Solution (`2-SISq,n,m,β)). Given a random matrix A← Zn×mq , find
a vector v ∈ Zm \ {0} such that Av = 0 and ‖v‖ ≤ β.

In order for the above problem to not be vacuously hard, we need to have β ≥
√
mqn/m. This

ensures that there exists a solution v.

2.5 Rényi Divergence

The Rényi Divergence (RD) is a measure of closeness of any two probability distributions. In certain
cases, especially in proving the security of cryptographic primitives where the adversary is required
to solve a search-based problem, the RD can be used as an alternative to the statistical distance [7],
which may help obtain security proofs for smaller scheme parameters and may sometimes lead to
simpler proofs.

Definition 2.12 (Rényi Divergence). Let P and Q be any two discrete probability distributions
such that Supp(P) ⊆ Supp(Q). Then for a ∈ (1,∞), the Rényi Divergence of order a is defined by

Ra(P ||Q) =

 ∑
x∈Supp(P)

P (x)a

Q(x)a−1

 1
a−1

.

For a = 1 and a =∞, the RD is defined as

R1(P ||Q) = exp

 ∑
x∈Supp(P)

P (x) log
P (x)

Q(x)

 and R∞(P ||Q) = max
x∈Supp(P)

P (x)

Q(x)
.

For any fixed distributions P and Q, the function f(a) = Ra(P‖Q) is non decreasing, continuous
over (1,∞) and tends to R∞(P‖Q) as a goes to infinity. Further, if Ra(P‖Q) is finite for some a,
then it tends to R1(P‖Q) as a tends to 1.

Lemma 2.13 ([7, Lemma 2.9]). Let a ∈ [1,∞]. Let P and Q denote distributions with Supp(P) ⊆
Supp(Q). Then the following properties hold

13

• Log Positivity: Ra(P ||Q) ≥ Ra(P ||P) = 1.

• Data Processing Inequality: Ra(P
f ||Qf) ≤ Ra(P ||Q) for any function f , where P f (resp.

Qf) denotes the distribution of f(y) induced by sampling y←P (resp. y←Q).

• Probability preservation: Let E ⊆ Supp(Q) be an arbitrary event. If a ∈ (1,∞), then

Q(E) ≥ P (E)
a

a−1 /Ra(P‖Q).

For a =∞,
Q(E) ≥ P (E)/R∞(P‖Q).

For a = 1, Pinsker’s inequality gives the following analogue property:

Q(E) ≥ P (E)−
√

lnR1(P ||Q)/2.

• Multiplicativity: Assume that P and Q are two distributions of a pair of random variables
(Y1, Y2). For i ∈ {1, 2}, let Pi (resp. Qi) denote the marginal distribution of Yi under P (resp. Q),
and let P2|1(·|y1) (resp. Q2|1(·|y1)) denote the conditional distribution of Y2 given that Y1 = y1.
Then we have:

• Ra(P ||Q) = Ra(P1||Q1) ·Ra(P2||Q2) if Y1 and Y2 are independent for a ∈ [1,∞].

• Ra(P ||Q) ≤ R∞(P1||Q1) ·maxy1∈Y1 Ra(P2|1(·|y1)||Q2|1(·|y1)).

• Weak Triangle Inequality: Let P1, P2, P3 be three distributions with Supp(P1) ⊆ Supp(P2) ⊆
Supp(P3). Then we have

Ra(P1||P3) ≤

{
Ra(P1||P2) ·R∞(P2||P3),

R∞(P1||P2)
a

a−1 ·Ra(P2||P3) if a ∈ (1,+∞).
(2.1)

We will use the following RD bounds. Note that proof tightness can often be improved by
optimizing over a, as suggested in [72].

Lemma 2.14 ([7]). For any n-dimensional lattice, Λ ⊆ Rn and s > 0, let P be the distribution
DΛ,s,c and Q be the distribution DΛ,s,c′ for some fixed c, c′ ∈ Rn. If c, c′ ∈ Λ, let ε = 0. Otherwise
fix ε ∈ (0, 1) and assume that s > ηε(Λ). Then for any a ∈ (1,+∞)

Ra(P ||Q) ∈

[(
1− ε
1 + ε

) 2
a−1

,

(
1 + ε

1− ε

) 2
a−1

]
· exp

(
aπ
||c− c′||2

s2

)
.

2.6 Homomorphic Encryption (HE).

A homomorphic encryption scheme is an encryption scheme that allows computations on encrypted
data.

Definition 2.15 (Homomorphic Encryption). A homomorphic encryption scheme HE is a tuple of
PPT algorithms HE = (HE.KeyGen,HE.Enc, HE.Eval,HE.Dec) defined as follows:

14

• HE.KeyGen(1λ, 1d)→(pk, sk): On input the security parameter λ and a depth bound d, the KeyGen
algorithm outputs a key pair (pk, sk).

• HE.Enc(pk, µ)→ct: On input a public key pk and a message µ ∈ {0, 1}, the encryption algorithm
outputs a ciphertext ct.

• HE.Eval(pk, C, ct1, . . . , ctk)→ĉt: On input a public key pk, a circuit C : {0, 1}k→{0, 1} of depth
at most d, and a tuple of ciphertexts ct1, . . . , ctk, the evaluation algorithm outputs an evaluated
ciphertext ĉt.

• HE.Dec(pk, sk, ĉt)→µ̂: On input a public key pk, a secret key sk and a ciphertext ĉt, the decryption
algorithm outputs a message µ̂ ∈ {0, 1,⊥}.

The definition above can be adapted to handle plaintexts over larger sets than {0, 1}. Note that
the evaluation algorithm takes as input a (deterministic) circuit rather than a possibly randomized
algorithm. An HE should satisfy compactness, correctness and security properties defined below.

Definition 2.16 (Compactness). We say that an HE scheme is compact if there exists a polynomial
function f(·, ·) such that for all λ, depth bound d, circuit C : {0, 1}k→{0, 1} of depth at most d, and
µi ∈ {0, 1} for i ∈ [k], the following holds: for (pk, sk)←HE.KeyGen(1λ, 1d), cti←HE.Enc(pk, µi) for
i ∈ [k], ĉt←HE.Eval(pk, C, ct1, . . . , ctk), the bit-length of ĉt is at most f(λ, d).

Definition 2.17 (Correctness). We say that an HE scheme is correct if for all λ, depth bound d,
circuit C : {0, 1}k→{0, 1} of depth at most d, and µi ∈ {0, 1} for i ∈ [k], the following holds: for
(pk, sk)←HE.KeyGen(1λ, 1d), cti←HE.Enc(pk, µi) for i ∈ [k], ĉt←HE.Eval(pk, C, ct1, . . . , ctk), we have

Pr[HE.Dec(pk, sk, ĉt) = C(µ1, . . . , µk)] = 1− λ−ω(1).

Definition 2.18 (Security). We say that an HE scheme is secure if for all λ and depth bound d,
the following holds: for any adversary A with run-time 2o(λ), the following experiment outputs 1
with probability 2−Ω(λ):

1. On input the security parameter λ and a depth bound d, the challenger runs (pk, sk)←HE.KeyGen(1λ, 1d)
and ct←HE.Enc(pk, b) for b←{0, 1}. It provides (pk, ct) to A.

2. A outputs a guess b′. The experiment outputs 1 if b = b′.

In this work, our constructions use a special HE having some additional properties as described
in [12]. These properties are satisfied by direct adaptations of typical HE schemes such as [18, 41]
(see, e.g., [12, Appendix B]).

Definition 2.19 (Special HE). An HE scheme is a special HE scheme if it satisfies the following
properties:

1. On input (1λ, 1d), the key generation algorithm HE.KeyGen outputs (pk, sk), where the public
key contains a prime q and the secret key is a vector sk ∈ Zmq for some m = poly(λ, d).

2. The decryption algorithm HE.Dec consists of two functions (HE.decode0, HE.decode1) defined
as follows:

15

• HE.decode0(sk, ct): On input an encryption of a message µ ∈ {0, 1} and a secret key vector sk,
it outputs p = µ bq/2e+ e ∈ Zq for e ∈ [−cB, cB] with B = B(λ, d, q) and e is an integer
multiple of c. This algorithm must be a linear operation over Zq in the secret key sk.

• HE.decode1(p): On input p ∈ Z, it outputs 1 if p ∈ [−bq/4e , bq/4e], and 0 otherwise.

The bound B = B(λ, d, q) is referred to as the associated noise bound parameter of the
construction and c as the associated multiplicative constant.

For the blind signature construction, we will also need the HE scheme to satisfy an additional
security property called circuit privacy.

Definition 2.20 (Circuit Privacy). We say that the homomorphic encryption scheme HE is semi-
honest circuit private if for (pk, sk)← HE.KeyGen(1λ, 1d), any circuit C : {0, 1}k→{0, 1} of depth at
most d, µi ∈ {0, 1} for i ∈ [k], and cti ← HE.Enc(pk, µi) for i ∈ [k], the statistical distance between
the distributions: (

HE.Eval(pk, C, {cti}i≤k), {cti}i≤k, pk, sk
)

and
(
HE.Eval(pk, C0, {ct′i}i≤k), {cti}i≤k, pk, sk

)
is 2−Ω(λ), where ct′1 = HE.Enc(pk, C(µ1, . . . , µk)), ct′i = HE.Enc(pk, 0) for 1 < i ≤ k and C0 :
{0, 1}k→{0, 1} is the trivial circuit of depth d that outputs its first input and ignores the others.

We say that HE is maliciously circuit private if the above holds even if the keys (pk, sk) and
ciphertexts cti for i ∈ [k] are not necessarily generated honestly.

2.7 Secret Sharing.

We now recall some standard definitions related to secret sharing.

Definition 2.21 (Monotone Access Structure). Let P = {Pi}i∈[N] be a set of parties. A collection
A ⊆ P(P) is monotone if for any two sets B,C ⊆ P , if B ∈ A and B ⊆ C, then C ∈ A. A monotone
access structure on P is a monotone collection A ⊆ P(P) \ ∅. The sets in A are called valid sets and
the sets in P(P) \ A are called invalid sets.

Let S ⊆ P be a subset of parties in P . S is called maximal invalid party set if S 6∈ A, but for
any Pi ∈ P \ S, we have S ∪ {Pi} ∈ A. S is called minimal valid party set if S ∈ A, but for any
S′ (S, we have S′ 6∈ A.

In this work, since we only use monotone access structures, we sometimes drop the word
monotone. When it is clear from the context, we use either i or Pi to represent party Pi.

Definition 2.22 (Threshold Access Structure). Let P = {Pi}i∈[N] be a set of N parties. An access
structure At is called a threshold access structure, if for all S ⊆ P , we have S ∈ A iff |S| ≥ t. We let
TAS denote the class of all access structures At for all t ∈ N.

For any set of parties S ⊆ P , we define xS = (x1, . . . , xN) ∈ {0, 1}N with xi = 1 iff Pi ∈ S.

Definition 2.23 (Efficient Access Structure). An access structure A on set P as defined above is
called an efficient access structure if there exists a polynomial size circuit fA : {0, 1}N→{0, 1}, such
that for all S ⊆ P , fA(xS) = 1 iff S ∈ A.

16

Definition 2.24 (Secret sharing). Let P = {P1, . . . , PN} be a set of parties and S be a class of
efficient access structures on P . A secret sharing scheme SS for a secret space K is a tuple of PPT
algorithms SS = (SS.Share, SS.Combine) defined as follows:

• SS.Share(k,A)→(s1, . . . , sN): On input a secret k ∈ K and an access structure A, the sharing
algorithm returns shares s1, . . . , sN for all parties.

• SS.Combine(B)→k: On input a set of shares B = {si}i∈S , where S ⊆ [N], the combining algorithm
outputs a secret k ∈ K.

A secret sharing algorithm must satisfy the following correctness and privacy properties.

Definition 2.25 (Correctness). For all S ∈ A and k ∈ K, if (s1, . . . , sN)←SS.Share(k,A), then

SS.Combine({si}i∈S) = k.

Definition 2.26 (Privacy). For all S 6∈ A and k0, k1 ∈ K, if (sb,1, . . . , sb,N)←SS.Share(kb,A) for
b ∈ {0, 1}, then the distributions {s0,i}i∈S and {s1,i}i∈S are identical.

Definition 2.27 (Linear Secret Sharing (LSSS)). Let P = {Pi}i∈[N] be a set of parties and S be a
class of efficient access structures. A secret sharing scheme SS with secret space K = Zp for some
prime p is called a linear secret sharing scheme if it satisfies the following properties:

• SS.Share(k,A): There exists a matrix M ∈ Z`×Np called the share matrix, and each party Pi is
associated with a partition Ti ⊆ [`]. To create the shares on a secret k, the sharing algorithm first
samples uniform values r2, . . . , rN←Zp and defines a vector w = M · (k, r2, . . . , rN)T . The share
for Pi consists of the entries {wj}j∈Ti .

• SS.Combine(B): For any valid set S ∈ A, we have

(1, 0, . . . , 0) ∈ span({M[j]}j∈⋃i∈S Ti
).

over Zp where M [j] denotes the jth row of M . Any valid set of parties S ∈ A can efficiently find
the coefficients {cj}j∈⋃i∈S Ti

satisfying∑
j∈

⋃
i∈S Ti

cj ·M[j] = (1, 0, . . . , 0)

and recover the secret by computing k =
∑

j∈
⋃

i∈S Ti
cj · wj . The coefficients {cj} are called

recovery coefficients.

Definition 2.28. Let P = {P1, . . . , PN} be a set of parties, S a class of efficient structures on P ,
and SS a linear secret sharing scheme with share matrix M ∈ Z`×Nq . For a set of indices T ⊆ [`], T
is said to be a valid share set if (1, 0, . . . , 0) ∈ span({M[j]}j∈T), and an invalid share set otherwise.
We also use following definitions:

• A set of indices T ⊆ [`] is a maximal invalid share set if T is an invalid share set, but for any
i ∈ [`] \ T , the set T ∪ {i} is a valid share set.

• A set of indices T ⊆ [`] is a minimal valid share set if T is a valid share set, but for any T ′ (T ,
T ′ is an invalid share set.

17

The class of access structures that can be supported by a linear secret sharing scheme on N
parties is represented by LSSSN . When the context is clear LSSSN is simply written as LSSS. We
let {0,1}-LSSS denote the class of access structures that can be supported by a LSSS where the
recovery coefficients are binary: for a set P of N parties, let k be the shared secret and {wj}j∈Ti be
the share of party Pi for i ∈ [N]; then for every set S ∈ A, there exists a subset T ⊆

⋃
i∈S Ti such

that k =
∑

j∈T wj . It was shown in [12] that such a set T ⊆
⋃
i∈S Ti can be computed efficiently,

and that TAS belongs to {0, 1}-LSSS. Hence, we can use {0, 1}-LSSS for secret sharing in TAS.

To secret-share a vector s = {s1, . . . , sn} ∈ Znp , we can simply secret-share each entry si using
fresh randomness. This gives secret share vectors s1, . . . , s` ∈ Znp . Using these secret shares, the
secret vector s can be recovered using the same coefficients as that for a single field element.

2.8 Threshold Homomorphic Encryption

Definition 2.29 (Threshold Homomorphic Encryption). A threshold homomorphic encryption for
a class of efficient access structures S, defined on a set P = {P1, P2, . . . , PN} of parties is defined
by a tuple of five algorithms THE = (THE.KeyGen,THE.Enc,THE.Eval,THE.PartDec,THE.FinDec)
with the following specifications:

• THE.KeyGen(1λ, 1d,A)→ (pk, sk1, . . . , skN): On input the security parameter λ, a depth bound d
and an access structure A ∈ S, the KeyGen algorithm outputs a public key pk and a set of secret
key shares {ski}Ni=1.

• THE.Enc(pk, µ)→ ct: On input a public key pk and a single bit message µ ∈ {0, 1}, the encryption
algorithm outputs a ciphertext ct.

• THE.Eval(pk, C, ct1, ct2, . . . , ctk) → ĉt: On input a public key pk, a circuit C : {0, 1}k → {0, 1}
of depth at most d and a set of ciphertexts ct1, . . . , ctk, the evaluation algorithm outputs an
evaluated ciphertext ĉt.

• THE.PartDec(pk, ski, ct)→ pi: On input a public key pk, a secret key share ski and a ciphertext
ct, the partial decryption algorithm outputs a partial decryption pi corresponding to the party Pi.

• THE.FinDec(pk, {pi}i∈S) → µ̂ : On input a public key pk and a set of partial decryptions
corresponding to parties in some set S ⊆ [N], the final decryption algorithm outputs a message
µ̂ ∈ {0, 1,⊥}.

Correctness. A THE scheme for S is said to satisfy evaluation correctness if for all λ, depth
bound d, access structure A ∈ S, circuit C : {0, 1}k → {0, 1} of depth at most d, S ∈ A, and
µi ∈ {0, 1} for i ∈ [k], the following condition holds. For (pp, sk1, . . . , skN)←THE.KeyGen(1λ, 1d,A),
cti←THE.Enc(pk, µi) for i ∈ [k], ĉt←THE.Eval(pk, C, ct1, . . . , ctk):

Pr[THE.FinDec(pk, {THE.PartDec(pk, ski, ĉt)}i∈S) = C({µi}i∈[k])] = 1− λ−ω(1).

Semantic security. A THE scheme is said to satisfy semantic security if for all λ and depth
bound d, the following holds. For any adversary A with run-time bounded as 2o(λ), the experiment
below outputs 1 with probability 2−Ω(λ):

18

1. On input the security parameter λ, and a circuit depth d, the adversary A outputs an access
structure A ∈ S.

2. The challenger runs (pk, sk1, . . . , skN)←THE.KeyGen(1λ, 1d,A) and provides pk to A.

3. A outputs a set S of participants, such that S /∈ A.

4. The challenger provides {ski}i∈S and THE.Enc(pk, b), where b←{0, 1} to A.

5. A outputs a guess bit b′. The experiment outputs 1 if b = b′.

Simulation security. A THE scheme for S is said to satisfy simulation security if for all λ,
depth bound d and access structure A, the following holds: there exists a stateful PPT algorithm
S = (S1,S2) such that for any adversary A with run-time bounded as 2o(λ), the following two
experiments are indistinguishable.

ExptA,Real(1
λ,1d) :

1. On input the security parameter λ and a circuit depth d, the adversary A outputs an access
structure A ∈ S.

2. The challenger runs (pk, sk1, . . . , skN)←THE.KeyGen(1λ, 1d,A) and provides pk to A.

3. Adversary A outputs a maximal invalid party set S∗ ⊆ [N] and a set of message bits,
µ1, µ2, . . . , µk ∈ {0, 1}.

4. The challenger provides {ski}i∈S∗ and {cti = THE.Enc(pk, µi)}i∈[k] to A.

5. Adversary A issues a polynomial number of adaptive queries of the form (S ⊆ {P1, . . . , PN}, C)
for circuits C : {0, 1}k → {0, 1} of depth at most d.

6. For each query, the challenger computes ĉt←THE.Eval(pk, C, ct1, . . . , ctk) and sends {THE.PartDec(pk, ski, ĉt)}i∈S
to A.

7. At the end of the experiment, adversary A outputs a bit b.

ExptA,Ideal(1
λ,1d) :

1. On input the security parameter λ and circuit depth d, the adversary A outputs an access
structure A ∈ S.

2. The challenger runs (pk, sk1, . . . , skN , st)←S1(1λ, 1d,A) and provides pk to A.

3. Adversary A outputs a maximal invalid party set S∗ ⊆ P and a set of message bits,
µ1, µ2, . . . , µk ∈ {0, 1}.

4. The challenger provides {ski}i∈S∗ and {cti = THE.Enc(pk, µi)}i∈[k] to A.

5. Adversary A issues a polynomial number of adaptive queries of the form (S ⊆ [N], C) for
circuits C : {0, 1}k → {0, 1} of depth at most d.

6. For each query, the challenger runs the simulator S2 to compute partial decryptions as
{pi}i∈S←S2(C, ct1, . . . , ctk, C(µ1, . . . , µk), S, st) and sends {pi}i∈S to A.

7. At the end of the experiment, adversary A outputs a bit b.

19

3 Lyubashevsky’s Signature Without Aborts

As discussed in Section 1, we provide a rejection-free variant of Lyubashevsky’s signature scheme
from [53]. Since our applications use this signature within an HE scheme, we also need to derandomize
the signing algorithm. To achieve this, we use a pseudorandom function (PRF) to generate the
randomness.

3.1 Construction

We use the following building blocks:

• A hash function H : {0, 1}∗→{v : v ∈ {−1, 0, 1}k; ‖v‖1 ≤ α}, modeled as a random oracle.
Here α is a parameter to the scheme.

• A PRF F : {0, 1}r × {0, 1}∗ → {0, 1}r.

Our signature scheme is described in Figure 1.

KeyGen(1λ): Upon input the security parameter λ, do the following:

1. Sample the key of PRF F as kprf←{0, 1}r.
2. Sample A←Zn×mq and S←{−d, . . . , 0, . . . , d}m×k.

3. Set T = AS.

4. Output vk = (A,T), sk = (kprf ,S).

Sign(sk, µ): Upon input the signing key sk and a message µ, do the following:

1. Generate message specific randomness by setting u = F (kprf , µ).

2. Sample y←Dmσ using randomness u computed in the previous step.

3. Set c = H(Ay, µ).

4. Set z = y + Sc.

5. Output (z, c).

Verify(vk, µ, (z, c)): Upon input the verification key vk, a message µ, and a signature (z, c), do the following:

1. Check if ‖z‖ ≤ γ, where γ = (σ + αd)
√
m.

2. Check if H(Az−Tc, µ) = c.

3. If both checks pass, then accept.

Figure 1 Lyubashevsky’s Signature Without Aborts

Correctness. Since z = y + Sc, where y←Dmσ , we get z←Dmσ,Sc. Hence, we have ‖z‖ ≤ σ
√
m+

‖Sc‖ with probability 1 − 2−Ω(m), using standard Gaussian tail bounds. Since ‖S‖∞ ≤ d and
‖c‖1 ≤ α, we have ‖Sc‖ ≤ dα

√
m. This gives us ‖z‖ ≤ (σ + dα)

√
m with overwhelming probability.

Finally, note that

H(Az−Tc, µ) = H(A(y + Sc)−ASc, µ) = H(Ay, µ) = c.

20

Security. Next, we establish security via the following theorem.

Theorem 3.1. Assume that `2-SISq,n,m,β for β = 2γ + 2dα
√
m is hard, that F is a secure PRF,

and that σ ≥ αd
√
mQ, where Q is the maximum number of signing queries an attacker can make.

Then the above construction of signature scheme satisfies unforgeability in the ROM.

We prove the security via the following hybrids:

Hybrid0: This is the real world, i.e., with honest executions of the Sign algorithm on signing queries
by the adversary.

Hybrid1: In this hybrid, the vector y is sampled directly from Dmσ .

Hybrid2: In this hybrid the challenger responds to the signing query for any message µ as follows:

1. Sample y←Dmσ (using genuine randomness u).

2. Sample c←{v : v ∈ {−1, 0, 1}k, ‖v‖1 ≤ α}.
3. Set z = y + Sc.

4. Set H(Az−Tc, µ) = c.

5. Output (z, c).

Hybrid3: In this hybrid the challenger responds to the signing query for any message µ as follows:

1. Sample c←{v : v ∈ {−1, 0, 1}k, ‖v‖1 ≤ α}.
2. Sample z←Dmσ .

3. Set H(Az−Tc, µ) = c.

4. Output (z, c).

Claim 3.2. Assume that F is a secure PRF. Then Hybrid0 is indistinguishable from Hybrid1.

Proof. The only difference between the two hybrids is how u is sampled: using a PRF in Hybrid0,
while sampled uniformly in Hybrid1. Hence the two hybrids are indistinguishable because of the
PRF security.

Claim 3.3 ([53, Lemma 5.3]). Let D be any distinguisher who distinguishes Hybrid1 and Hybrid2

and makes QH oracle queries for H and QS signing queries. Then for (1− e−Ω(n)) fraction of all
possible matrices A, the distinguishing advantage of D is at most QS(QS +QH)2−n.

Claim 3.4. If there is an adversary who makes at most QS signing queries and can win the
game in Hybrid2 with probability δ, then the probability of winning in Hybrid3 is polynomial in δ, if
σ ≥ αd

√
mQS.

Proof. The only difference between the two hybrids is in the value of z. For 1 ≤ i ≤ QS , in Hybrid2,
we have zi = yi + Sci with yi←Dmσ , while in Hybrid3, we have zi←Dmσ . Let us refer to the joint
distribution of all z’s in Hybrid2 as D1 and that in Hybrid3 as D2. Let E denote the event that the

21

adversary wins the game. Then by our assumption, we have D1(E) = δ. From the probability
preservation property (Lemma 2.13) of the Rényi Divergence, we get:

D2(E) ≥ δ
a

a−1

Ra(D1‖D2)
, for any a ∈ (1,∞). (3.1)

Computing Ra(D1‖D2): For 1 ≤ i ≤ QS , the vector zi is from distribution D1i := Dσ,Sci in
Hybrid2 and from distribution D2i = Dmσ in Hybrid3. Note that D1 = (D11, . . . , D1QS

) and D2 =
(D21, . . . , D2QS

). By Lemma 2.14, we have

Ra[D1i‖D2i] = exp

(
aπ
‖Sci‖2

σ2

)
for any a ∈ (1,∞).

As seen in the correctness proof, we have ‖Sci‖ ≤ dα
√
m. By using the multiplicativity property of

the Rényi divergence (Lemma 2.13), we get:

Ra(D1‖D2) ≤ exp

(
aπ
QS(dα

√
m)2

σ2

)
, for any a ∈ (1,∞). (3.2)

Using the assumption σ ≥ dα
√
m ·
√
QS , we get Ra(D1‖D2) ≤ exp(aπ). Using Equation (3.1), we

obtain that D2(E) ≥ δ
a

a−1 exp(−aπ). Taking any value of a > 1 provides the result.

Claim 3.5. If there is a forger F who makes at most QS signing queries and QH queries to the
random oracle and succeeds in forging a valid signature with probability δ in Hybrid3, then we can
define an algorithm B which given A←Zn×mq , finds a non-zero v such that ‖v‖ ≤ (2γ + 2dα

√
m)

and Av = 0 with probability at least(
1

2
− ε

2

)(
δ − 1

|DH |

)(
δ − 1/|DH |
QH +QS

− 1

|DH |

)
.

Here DH denotes the range of the hash function and ε = qn

(2d+1)m , which for m > λ+(n log q)/(log(2d+

1), is below 2−λ.

This claim and its proof are identical to [53, Lemma 5.4]. We provide it in Appendix B.1 for
the sake of completeness. In Appendix B.2, we show that the flooding noise used in the above
construction is essentially optimal, and in particular that the dependence on

√
QS is necessary, by

exhibiting an attack when flooding noise is smaller.

3.2 From Gaussian to Uniform

In some applications, it may be preferable to use a vector y whose coordinates are uniform in some
interval [−B,B] rather than Gaussian (at Step 2 of the Sign algorithm). This is the choice made
for the regular Dilithium signature scheme [27]. Looking ahead, if the sampling of y is done under a
homomorphic encryption layer, this may be significantly simpler to implement.

To adapt the current proof, the only step that needs to be modified is in the transition between
Hybrid 2 and Hybrid 3. A difficulty is that the support of the distribution of z in Hybrid 3 has to contain
the support of the distribution of z in Hybrid 2, for the Rényi divergence to be defined. For this

22

purpose, we consider a wider interval in Hybrid 3, which contains all possible intervals [−B,B]m+Sc
of Hybrid 2. Concretely, in Hybrid 2, the vector z is sampled from D1 = U([−B,B]m) + Sc, whereas
in Hybrid 3, the vector z is sampled from D2 = U([−B′, B′]m). As ‖Sc‖∞ ≤ αd, we can take
B′ = B + αd. Assuming that both B and B′ are integers, we have

Ra(D1‖D2) =

(
2B′ + 1

2B + 1

)QSm

≤
(

1 +
2αd

B

)QSm

, for any a ∈ (1,∞).

We obtain that for transiting from Hybrid 2 to Hybrid 3, it suffices to set B ≥ Ω(mdαQS).

3.3 Instantiation

In this section, we analyze the concrete size of the above signature. For efficiency, it is preferable to
consider variants over polynomial rings [52] (note that the above proofs carry over directly to the
ring and module settings). We consider the Dilithium-G signature scheme from [28, Appendix B].
It is a variant of Dilithium [27], a concrete implementation of Lyubashevsky’s signature scheme
designed to reach a compromise between efficiency and simplicity. Dilithium-G has slightly smaller
signature sizes than Dilithium, but requires that y has Gaussian coordinates rather than having
them uniform in an interval. This makes it more cumbersome to implement, but our analysis is
directly applicable. We note that for the application to threshold signatures described in Section 4,
regular Dilithium would be more suitable, as the sampling of y happens below the HE layer. Note
that for the blind signature application described in Section 6, the sampling of y is done in the clear.

Rather than defining new parameter sets for Dilithium-G (which would most likely be preferable
for target concrete applications), we show that Dilithium-G already offers significant security when
removing rejection sampling. We consider two variants of Dilithium-G: with the Bai-Galbraith [6]
signature truncation technique as in [28], and without it.3 Indeed, a variant without the truncation
technique may be more convenient to evaluate homomorphically.

For security, we place ourselves in the (classical/quantum) core-SVP hardness model, like in [28].
State of the art cryptanalysis suggests that bit security is expected to be at least 10-15 bits higher
than core-SVP security (see [69, Section 5.2]). We consider the ‘medium’, ‘recommended’ and
‘very high’ parameter sets from [28]. For a given value of QS , and use the analysis above to derive
core-SVP hardness estimates for this number of signature queries. Concretely, we use Equations (3.1)
and (3.2) with δ ≈ 1 (which can be assumed in the multi-user setting, and can also be justified by
considering known attack strategies [28]) and a ≈ 1 (which minimizes the upper bound on the Rényi
divergence). By adapting the figures from [28, Table 2], we obtain Table 1.

For example, using the ‘very high’ parameter set, we lose no more than 100 bits of security by
removing rejection sampling, when the number of signature queries is limited to 256. In this setting,
the overall classical bit security remains close to 128 bits (more precisely, 118 bits of classical
core-SVP hardness). And the signature size is below 3KB.

4 More Efficient Threshold Signatures from Lattices

In this section, we show how to drastically decrease the exponential flooding used in the scheme
by Boneh et al [12]. We also show that the limited flooding that we use is in fact optimal, and

3Concretely, Algorithm 14 from [28] is modified by removing Step 6, replacing w1 by w in Step 7, removing Step 13
and replacing h by z2 in Step 14. Algorithm 15 is updated accordingly.

23

medium recommended very high

Standard deviation σ of z 48127 44868 31082
Dimension m of z 1536 2048 2560

Secret key magnitude bound d 6 5 3
Hamming weight α of c 60 60 60

pk size 1184 1568 1952
sig size with truncation 1850 2435 2950

sig size without truncation 3200 4225 5105

Security with rejection 109 / 99 162 / 147 228 / 206

Security loss with QS = 64 25 27 25
Security loss with QS = 128 50 53 50
Security loss with QS = 256 100 106 100

Table 1: Security of Dilithium-G without rejection sampling. Sizes are given in bytes, security
corresponds to classical/quantum core-SVP hardness, security losses are in bits. Note that due
to a different Gaussian normalization, our Gaussian standard deviation is

√
2π times higher than

in [28, Table 2]. Adapting the methodology from [28, Appendix B.5], we bound the no-truncation
signature size by 32 + (2.25 + log2(σ/

√
2π)) ·m/8 bytes.

smaller noise would lead to an attack. For ease of exposition, the construction below is for the
special case of N out of N threshold (where all the N members need to collaborate to construct a
valid signature on any message M) and restricted to selective security. We extend it to t out of N
threshold in Appendix D and to adaptive security in Section 5.

4.1 Optimizing the Boneh et al scheme using the Rényi Divergence

Our scheme is similar to the one in [12]. We improve it in terms of flooding amount for which we
use the Rényi Divergence as a measure of distance between two distributions. The construction
uses the following building blocks:

• A PRF F : K × {0, 1}∗→{0, 1}r, where K is the PRF key space and r is the bit-length of
randomness used in sampling from discrete Gaussian Ds.

• A homomorphic encryption scheme HE = (HE.KeyGen,HE.Enc,HE.Dec, HE.Eval). As in [12], we
also assume that the HE.Dec can be divided into two sub-algorithms: HE.decode0 and HE.decode1

as defined in Appendix 2.6.

• A UF-CMA signature scheme Sig = (Sig.KeyGen,Sig.Sign,Sig.Verify).

• A context hiding homomorphic signature scheme
HS = (HS.PrmsGen, HS.KeyGen,HS.Sign,HS.SignEval,HS.Process,HS.Verify,HS.Hide, HS.HVerify)
to provide robustness.

• An N out of N secret sharing scheme Share.

4.1.1 Construction.

We proceed to describe our construction.

24

TS.KeyGen(1λ): Upon input the security parameter λ, do the following.

1. For each party Pi, sample a PRF key sprfi←K.

2. Generate the signature scheme keys (Sig.vk,Sig.sk)←Sig.KeyGen(1λ).

3. Generate the HE keys (HE.PK,HE.SK)←HE.KeyGen(1λ) and compute an HE encryption
of Sig.sk as CTSig.sk←HE.Enc(HE.PK,Sig.sk).

4. Generate the HS public parameters HS.pp←HS.PrmsGen(1λ, 1n) and the public and
the signing keys (HS.pk,HS.sk)←HS.KeyGen(1λ,HS.pp). Here n is the bit-length of
(HE.SK, sprfi).

5. Share HE.SK as {ski}Ni=1←Share(HE.SK) such that
∑N

i=1 ski = HE.SK.

6. For each party Pi, randomly choose a tag τi ∈ {0, 1}∗ and compute
(πτi , πi)←HS.Sign(HS.sk, (ski, sprfi), τi).

7. Output TSig.pp = {HE.PK,CTSig.sk,HS.pp,HS.pk, {τi, πτi}Ni=1}, TSig.vk = Sig.vk, TSig.sk =
{ski, sprfi, πi, }Ni=1.

TS.PartSign(TSig.pp,TSig.ski,M): Upon input the public parameters TSig.pp, a partial signing
key TSig.ski and a message M , parse TSig.pp as
(HE.PK,CTSig.sk,HS.pp,HS.pk, {τi, πτi}Ni=1}), parse TSig.ski as (ski, sprfi, πi) and do the
following.

1. Compute u = F (sprfi,M) and sample e′i←Ds(u), where Ds(u) represents sampling from
Ds using u as the randomness.

2. Let CM be the signing circuit, with message M being hardwired. Compute CTσ =
HE.Eval(HE.PK, CM ,CTSig.sk).

3. Compute σi = HE.decode0(ski,CTσ) + e′i.

4. This step computes a homomorphic signature π̃i on partial signature σi to provide
robustness).
Let CPS be the circuit to compute HE.decode0(ski,CTσ) + e′i in which CTσ is hardcoded
and the HE key share ski and the PRF key sprfi are given as inputs.

• Compute π∗i = HS.SignEval(HS.pp, CPS, πτi , (ski, sprfi), πi).
• Compute π̃i = HS.Hide(HS.pk, σi, π

∗
i).

5. Output yi = (σi, π̃i).

TS.Combine(TSig.pp, {yi}i∈[N]): Upon input the public parameters TSig.pp and a set of partial

signatures {yi}i∈[N], parse yi as (σi, π̃i) and output σM = HE.decode1(
∑N

i=1 σi).

TS.PartSignVerify(TSig.pp,M, yi): On input the public parameters TSig.pp, message M , and a
partial signature yi, parse yi as (σi, π̃i) and do the following.

1. Compute CTσ = HE.Eval(HE.PK, CM ,CTSig.sk).

2. Compute α = HS.Process(HS.pp, CPS), where CPS is as described above.

3. Output HS.HVerify(HS.pk, α, σi, τi, (πτi , π̃i)).

25

TS.Verify(TSig.vk,M, σM): Upon input the verification key TSig.vk, a message M and a signature
σM , output Sig.Verify(TSig.vk,M, σM).

In the above, we set s = Beval ·
√
Qλ, where where Beval ≤ poly(λ) is a bound on the HE

decryption noise after homomorphic evaluation of the signing circuit CM , and Q is the bound on
the number of signatures.

Correctness. From the correctness of HE.Eval algorithm, CTσ is an encryption of CM (Sig.sk) =
Sig.Sign(Sig.sk,M) = σM , which decrypts with the HE secret key HE.SK. So, HE.decode0(HE.SK,CTσ) =
σM bq/2e+ e. The signature computed by the TS.Combine algorithm is

HE.decode1(
N∑
i=1

σi) = HE.decode1(
N∑
i=1

HE.decode0(ski,CTσ) +
N∑
i=1

e′i)

= HE.decode1(HE.decode0(
N∑
i=1

ski,CTσ) +
N∑
i=1

e′i)

= HE.decode1(HE.decode0(HE.SK,CTσ) +

N∑
i=1

e′i)

= HE.decode1(σM bq/2e+ e+

N∑
i=1

e′i) = σM

Security. For security, we prove the following theorem.

Theorem 4.1. Assume F is a secure PRF, Sig is a UF-CMA secure signature scheme, HE is a
secure homomorphic encryption scheme (Definition 2.18), Share is a secret sharing scheme that
satisfies privacy (Definition 2.26) and HS is a context hiding secure homomorphic signature scheme
(Definitions A.4 and A.3). Then the construction for threshold signatures satisfies unforgeablity if
the flooding noise is of the size poly(λ) ·

√
Q, where Q is the number of the signing queries.

The security of the construction can be argued using a sequence of hybrids. We assume w.l.o.g.
that the adversary queries for all but the first key share, i.e., S = [N] \ {1}.

Hybrid0: This is the real world.

Hybrid1: Same as Hybrid0, except that now PartSign differs in the computation of π̃1 in y1 = (σ1, π̃1).
To generate π̃1, the challenger now uses the simulator for HS as follows:

π̃1 = Sim(HS.sk, α, σ1, τ1, πτ1),

where α = HS.Process(HS.pp, CPS).

Hybrid2: Same as Hybrid1 except that to compute σ1 = HE.decode0(sk1,CTσ) + e′1, the randomness
u used to sample e′1←Ds(u) is chosen uniformly randomly instead of computing it using the
PRF.

Hybrid3: Same as Hybrid2, except that now, for signing query for (m, 1), the challenger simulates
σ1 as follows:

26

1. Compute CTσ = HE.Eval(HE.PK, Cm,CTSig.sk).

2. For i ∈ [2, n], compute σ′i = HE.decode0(ski,CTσ).

3. Compute σm = Sig.Sign(Sig.sk,m).

4. Set σ1 = σm · bq/2e −
∑N

i=2 σ
′
i + e′1, where e′1 ← Ds.

Hybrid4: Same as Hybrid3 except that instead of sharing HE.SK, now the challenger generates the
HE key shares as {ski}Ni=1←Share(0).

Hybrid5: Same as Hybrid4, except that CTSig.sk in TSig.pp is replaced by CT0, i.e., a ciphertext of
0.

Indistinguishability of Hybrids. Next, we show that consecutive hybrids are indistinguishable.

Claim 4.2. Assume HS is a context hiding homomorphic signature scheme. Then, Hybrid0 and
Hybrid1 are indistinguishable.

Proof. The two hybrids differ only in the way π̃1 is computed. In Hybrid0, π̃1 = HS.Hide(HS.pk, σ1, π
∗
1),

where π∗1 = HS.SignEval(HS.pp, CPS, πτ1 , (sk1, sprf1), π1). In Hybrid1, π̃1 = Sim(HS.sk, α, σ1, τ1, πτ1),
where α = HS.Process(HS.pp, CPS). Hence, the two hybrids are indistinguishable because of context
hiding property of HS which ensures that HS.Hide(HS.pk, σ1, π

∗
1) ≈ Sim(HS.sk, α, σ1, τ1, πτ1).

Claim 4.3. Assume F is a secure PRF. Then Hybrid1 and Hybrid2 are indistinguishable.

The proof follows via a standard reduction to PRF security and is omitted.

Claim 4.4. If there is an adversary that can win the game in Hybrid2 with probability ε, then its
probability of winning in Hybrid3 is at least ε2/2.

Proof. Let the number of signing queries that the adversary can make be bounded by Q. The
two hybrids differ only in the error term in σ1, as shown below. In Hybrid2, we have σ1 =
HE.decode0(sk1,CTσ) + e′1, for e′1 ← Ds. In Hybrid3, we have:

σ1 = σm. bq/2e −
∑N

i=2
HE.decode0(ski,CTσ) + e′1

= σm. bq/2e −
∑N

i=1
HE.decode0(ski,CTσ) + HE.decode0(sk1,CTσ) + e′1

= σm. bq/2e − HE.decode0(
∑N

i=1
ski,CTσ) + HE.decode0(sk1,CTσ) + e′1

= σm. bq/2e − HE.decode0(HE.SK,CTσ) + HE.decode0(sk1,CTσ) + e′1

= σm. bq/2e − σm. bq/2e+ e+ HE.decode0(sk1,CTσ) + e′1

= HE.decode0(sk1,CTσ) + (e′1 + e),

for some e satisfying |e| ≤ Beval. Thus, the difference in the two hybrids is in the error terms in
σ1. In Hybrid2, the error is e′1, while in Hybrid3, it is e′1 + e. Since e′1 is sampled from a discrete
Gaussian with standard deviation parameter s, we consider the distributions Ds,0 and Ds,e. For
simplicity, we refer to the former as D0 and the latter as D1.

27

To begin, consider an adversary that makes a single query. In this case, let E represents the event
that the adversary wins the game. We assumed that D0(E) = ε. From the probability preservation
property of the Rényi divergence (Lemma 2.13), we have:

D1(E) ≥ D0(E)
a

a−1

Ra(D0‖D1)
, for any a ∈ (1,∞). (4.1)

By Lemma 2.14, we have that Ra(D0‖D1) = exp(aπ e
2

s2
).

The error term e in the above discussion is the error in HE ciphertext CTσ and thus depends
on the evaluation circuit Cm. Notice that the adversary can make adaptive queries based on the
response obtained for previous queries. Therefore, the centers of discrete Gaussian distributions in
the second distribution can be correlated. Thus, for Q queries,

Ra(D0‖D1) = Ra(Ds, . . . ,Ds︸ ︷︷ ︸
Q

‖Ds,e1 , . . . ,Ds,eQ),

where e1, . . . , eQ can be correlated. We can replace the Q Gaussian distributions with standard
deviation parameter s and centers e1, . . . , eQ with a single Q-dimensional Gaussian distribution
with center e = (e1, . . . , eQ) and standard deviation parameter s. Thus, we get Ra(D0‖D1) =
Ra(DZQ,s,0‖DZQ,s,e), for some vector e satisfying ‖e‖ ≤

√
Q · Beval. Using Lemma 2.14, we have

Ra(DZQ,s,0‖DZQ,s,e) = exp(aπ‖e‖2/s2). Hence, we obtain Ra(D0‖D1) ≤ exp(aπQ ·B2
eval/s

2), for all
a ∈ (1,∞). As s = Beval ·

√
Qλ, we get Ra(D0‖D1) ≤ exp(aπ/λ). Therefore, from Equation (4.1),

we have

D1(E) ≥ D0(E)
a

a−1

Ra(D0‖D1)
≥ D0(E)

a
a−1 exp(−aπ

λ
).

The result is obtained by setting a = 2.

Claim 4.5. Assume that Share is a secret sharing scheme that satisfies privacy (Definition 2.26).
Then, Hybrid3 and Hybrid4 are indistinguishable.

Proof. The only difference between Hybrid3 and Hybrid4 is in the way the key shares sk1, sk2, . . . , skN
are generated. In Hybrid3 (sk1, sk2, . . . , skN)←Share(HE.SK), while in Hybrid4, we have that
(sk1, sk2, . . . , skN)←Share(0). Since, the adversary is given secret shares for an invalid set of parties,
distribution in the two hybrids are identical.

Claim 4.6. Assume the HE is a secure homomorphic encryption (Definition 2.18). Then Hybrid4

and Hybrid5 are indistinguishable.

Proof. Let A be an adversary who can distinguish Hybrid4 and Hybrid5. Then we construct an
adversary B against the HE scheme as follows.

1. After receiving HE.PK from the HE challenger, adversary B generates (Sig.sk,Sig.vk)←Sig.KeyGen(1λ)
and HS keys.

2. It generates secret shares of 0 as (sk1, sk2, . . . , skN)←Share(0).

3. It sends the challenge messages m0 = Sig.sk and m1 = 0 to the HE challenger.

28

4. After receiving the challenge ciphertext CTb from the HE challenger, adversary B constructs
TSig.pp using CTb. It also generates TSig.vk and TSig.sk as defined for the hybrid.

5. To answer a PartSign query for a message m made by adversary A, adversary B computes
σ1 as follows. It computes σ = Sig.Sign(Sig.sk,m); for i ∈ [2, N], it computes σi =
TS.decode0(TSig.ski,CTb) and samples a flooding noise e′1←Ds,0. It sets σ1 = σ−

∑N
i=2 σi+e

′
1.

6. Finally, if A outputs the guess as Hybrid4, then B sends b′ = 0, else b′ = 1 to the HE challenger.

Claim 4.7. If the underlying signature scheme Sig is unforgeable, then an attacker has negligible
probability of winning the unforgeability game in Hybrid5.

Proof. Let A be an adversary who wins the unforgeability game in Hybrid5. Then we can construct
an adversary B against the signature scheme Sig as follows:

1. On receiving verification key Sig.vk from Sig challenger, adversary B runs HE.KeyGen to
generate HE.SK,HE.PK, and HS.PrmsGen and HS.KeyGen to generate HS.pp, HS.pk and HS.sk.
Then B computes TS public parameters, TSig.pp, key shares {TSig.ski}Ni=1 as defined for the
hybrid. Note that since in Hybrid5, TSig.pp contains CT0 instead of CTSig.sk, B can generate a
valid TSig.pp. It sends {TSig.vk = Sig.vk,TSig.pp, {TSig.ski}Ni=2} to A.

2. To simulate PartSign query σ1 for any message m, adversary B needs σm. For this, it issues a
signing query on message m to the Sig challenger and receives σm.

3. Let (m∗, σ∗) be a message-signature pair returned by A. Then B also returns the same pair
to the Sig challenger.

Since B issues signing queries on only those messages m for which A also issues signing queries to
B, if (m∗, σ∗) is a valid forgery for A, then it is a valid forgery for B as well.

Robustness.

Claim 4.8. If HS is multi data secure (Definition A.3) homomorphic signature, then the construction
of TS satisfies robustness.

Proof. In the robustness security experiment ExptA,TS,rb(1
λ), the adversary wins if A outputs a

partial signature forgery (M∗, y∗i , i) such that

1. TS.PartSignVerify(TSig.pp,M∗, y∗i) = 1

2. y∗i = (σ∗i , π̃
∗
i) 6= TS.PartSign(TSig.pp,TSig.ski,M

∗).

TS.PartSignVerify(TSig.pp,M∗, y∗i) first computes CTσ←HE.Eval(HE.PK, CM∗ ,CTSig.sk) and outputs
1 iff
HS.HVerify(HS.pk, α, σ∗i , τi, (πτi , π̃

∗
i)) = 1, where α = HS.Process(HS.pp, CPS). Thus, A wins the

experiment iff both the following two conditions are true.

29

1. For α = HS.Process(HS.pp, CPS)

HS.HVerify(HS.pk, α, σ∗i , τi, (πτi , π̃
∗
i)) = 1,

2. y∗i = (σ∗i , π̃
∗
i) 6= TS.PartSign(TSig.pp,TSig.ski,M

∗), which implies σ∗i 6= HE.decode0(ski,CTσ)+
e′i, which in turn is same as

σ∗i 6= CPS(ski, sprfi).

But this is a case for valid forgery of type 2 (Definition A.3) against HS scheme, which can happen
only with negligible probability. Note that since (τi, πτi) are part of HS.pp, case of type 2 in HS
security definition is inherently applied.

4.2 On the Optimality of Our Flooding

We show that the flooding amount that we achieved is optimal for our threshold signature scheme.
To argue this, we show how to attack it if the flooding amount is below Ω(

√
Q). For simplicity,

we restrict to the case of N = 2. Recall that in our construction, TS.PartSign(TSig.pp,TSig.ski,M)
outputs σi,M = HE.decode0(ski,CTσM) + e′i,M , where TSig.ski = (ski, sprfi).

4 W.l.o.g, assume that
the adversary gets the partial signing key TSig.sk2 and the response for any signing query is a
partial signature corresponding to party P1. For any message M of its choice, the adversary receives
σ1,M = HE.decode0(sk1,CTσM) + e′1,M . From this the adversary can compute:

σ1,M + HE.decode0(sk2,CTσM) = HE.decode0(HE.SK,CTσM) + e′1,M

= σM + errM + e′1,M ,

where errM is the error in CTσM . Note that if the adversary succeeds in computing errM for
polynomially many M ’s, then it can compute HE.SK.

As a warm-up, we show that if the error e′1,M is randomized, small and of center 0, then
the adversary can indeed compute errM . Later, we will show that even for deterministic
flooding e′1,M , there exist secure signature schemes for which the attack can be extended. Since
the adversary knows the key share sk2, it can compute σ2,M on its own and hence can compute
σM = TS.Combine(TSig.pp, σ1,M , σ2,M). Hence, from σM + errM + e′1,M , the adversary can compute
errM + e′1,M . Since, the signature scheme is deterministic, errM depends only on M . Thus, if the
same message is queried for signature multiple times, then each time the term errM remains the
same, but since flooding is randomized, the term e′1,M is different.

To compute errM , the adversary issues all Q signing queries for the same message M and receives

σ
(1)
1,M , . . . , σ

(Q)
1,M , where σ

(i)
1,M denotes the partial signature returned for message M in the ith query.

From these responses the adversary gets Q different values of the form

wi = errM + e′i1,M (4.2)

Since errM is same, taking average on both sides of Equation (4.2) over all the Q samples, we get∑
i∈[Q] w

i

Q = errM +
∑

i∈[Q] e
′i
1,M

Q . If | 1Q
∑

i∈[Q] e
′i
1,M | < 1/2, then the adversary can recover errM as

4We focus only on the σi,M component of PartSign’s output since the second component, the HS signature of σi,M ,
is not relevant here.

30

errM =
⌊

1
Q

∑
i∈[Q]w

i
⌉
. As e′11,M , . . . , e

′Q
1,M are independently and identically distributed with mean 0,

by Hoeffding’s inequality, we have

Pr
[∣∣∣∑i∈[Q] e

′i
1,M

Q

∣∣∣ < 1/2
]
≥ 1− 2exp(− Q

2s2
).

If Q ≥ Ω(s2 log λ), then 1−2exp(−Q/(2s2)) ≥ 1−λ−Ω(1), in which case the adversary can recover
errM with probability sufficiently close to 1 to recover sufficiently many errM ’s to compute HE.SK.
To prevent this, we do need s to grow at least proportionally to

√
Q. Next, we provide the argument

for deterministic flooding error.

Attack for Deterministic Error. In the argument for randomized error, the fact that e′i1,M is

randomized is crucial - the same attack strategy would not work if e′i1,M is deterministic, i.e., the
same across different signature queries for the same message M . Note that it is possible to modify
the scheme to make e′i1,M deterministic, by deriving it from a PRF evaluated in M . However, as
promised above, we show that in case of deterministic flooding too, there exist secure signature
schemes for which a variant of the attack can (heuristically) apply.

We consider a special (contrived) signature scheme Sig′ = (Sig′.KeyGen, Sig′.Sign,Sig′.Verify)
derived from a secure signature scheme Sig = (Sig.KeyGen, Sig.Sign, Sig.Verify) as follows:

1. Sig′.KeyGen is identical to Sig.KeyGen.
Let (Sig.sk, Sig.vk) be the signing and verification keys, respectively, and Sig.ski denote the
ith bit of Sig.sk for i ∈ [`], where ` is the bit-length of Sig.sk.

2. Sig′.Sign(Sig.sk,M) is modified as follows:

• Compute σM = Sig.Sign(Sig.sk,M). Set σ′M := σM .

• For i from 1 to `: if Sig.ski = 0, then set σ′M := σ′M‖Sig.ski.
• Output σ′M .

3. Sig′.Verify(Sig.vk,M, σ′M) is defined as Sig.Verify(Sig.vk,M, σM), where σM is obtained from
σ′M by removing all bits after the kth bit, where k is the bit-length of signatures in Sig.

We assume that the signing key of Sig is a uniform bit-string among those with the same number of
0’s and 1’s. This is without loss of generality, as we may use an extractor to get a uniform bit-string
and a PRG to expand randomness, if necessary.

Security of Sig′: Since Sig.sk has always `/2 bits equal to 0, the number of zeroes appended to
the signature will be `/2 and hence does not leak any extra information to the adversary. Hence, it
follows easily that if Sig is a secure signature scheme, then so is Sig′.

Now, consider using Sig′ to instantiate our threshold signature scheme. Then, for any message M ,
the HE ciphertext CTσM now additionally includes homomorphically evaluated encryptions of
{Sig.ski}i∈[`]:Sig.ski=0. Let CTσM , errM , e

′
M respectively to denote the encryption of σM , the error in

CTσM and the flooding noise added to partial decryption of CTσM . Let CT∗, err∗ and e∗M denote
the components corresponding to {Sig.ski}i∈[`]:Sig.ski=0.

31

For any message M , the adversary can compute errM + e′M as described previously, from which
the adversary gets err∗ + e∗M . If the adversary manages to compute err∗ (for sufficiently many
instances), then it can also recover HE.SK.

Note that err∗ is independent of any message and hence is constant across different messages,
while e∗M does depend on M and is different for different messages. This gives an attack strategy.
To compute err∗, the adversary issues Q signing queries on different messages {Mj}j∈[Q], and from
the received partial signatures, derives the values for

w∗j = err∗ + e∗Mj
for j ∈ [Q],

This equation is of the same form as Equation (4.2).

Heuristically, one would expect the e∗Mj
to behave as independent and identically distributed

random variables with centre 0. Hence, we can argue in similar way that if Q ≥ Ω(s2 log λ) then
the adversary can recover err∗ with probability 1− 1/ poly(λ). This implies that for hiding err∗, the
standard deviation parameter s must grow at least proportionally to

√
Q.

5 Adaptive Security for Threshold Signatures

As discussed in Section 1, we provide two constructions to improve the selective security achieved by
[12]. Below, we describe our construction in the ROM, which satisfies partially adaptive unforgeability
where the adversary is allowed to make signing queries before revealing the set of corrupted parties,
but must reveal the set of all the corrupted parties all at once. We provide our construction in the
standard model with pre-processing that satisfies fully adaptive unforgeability in Appendix C.

5.1 Partially Adaptive Unforgeability

A TS scheme satisfies partially adaptive unforgeability if for any adversary A with run-time 2o(λ),
the output of the following experiment is 1 with probability 2−Ω(λ):
ExptA,TS,PA−uf (1λ):

1. On input the security parameter λ, A outputs an access structure A ∈ S.

2. The challenger runs the TS.KeyGen(1λ) algorithm and generates public parameters pp,
verification key vk and a set of N key shares {ski}Ni=1. It sends pp and vk to A.

3. Adversary A issues polynomial number of adaptive signing queries where in each query, A
outputs a message m and the challenger computes σi←TS.PartSign(pp, ski,m) for i ∈ [N] and
provides {σi}Ni=1 to A.

4. Adversary A then outputs a maximal invalid party set S ⊆ [N] to get key shares ski for i ∈ S.

5. Challenger provides the set of keys {ski}i∈S to A.

6. Adversary A continues to issue polynomial number of adaptive signing queries of the form
(m, i), where i ∈ [N] \ S, to get a partial signature σi for m. For each query the challenger
computes σi as TS.PartSign(pp, ski,m) and provides it to A.

7. At the end of the experiment, adversary A outputs a forgery (m∗, σ∗). The experiment outputs
1 if TS.Verify(vk,m∗, σ∗) = accept and m∗ was not queried previously as a signing query.

32

5.1.1 Construction.

We use the same building blocks for construction as those used for the non-adaptive construction.
We also use two keyed hash function modelled as random oracles: H : {0, 1}λ × {0, 1}∗→ZNq and

H1 : {0, 1}λ × {0, 1}∗→{0, 1}r. The construction is provided in Figure 2.

Correctness. From the correctness of the HE.Eval algorithm,
CTσM = HE.Eval(HE.PK, CM ,CTSig.sk) is an encryption of CM (Sig.sk) = Sig.Sign(Sig.sk,M) = σM ,
which decrypts with the HE secret key HE.SK. So, HE.decode0(HE.SK,CTσM) = σM bq/2e+ e. The
signature computed by the TS.Combine algorithm is

HE.decode1(

N∑
i=1

σi,M)

= HE.decode1(
N∑
i=1

HE.decode0(ski,CTσM) +
N∑
i=1

ri,M +
N∑
i=1

e′i)

= HE.decode1(
N∑
i=1

HE.decode0(ski,CTσM) +
N∑
i=1

H(K,M)TRi +
N∑
i=1

e′i)

= HE.decode1(HE.decode0(

N∑
i=1

ski,CTσM) +H(K,M)T
N∑
i=1

Ri +

N∑
i=1

e′i)

= HE.decode1(HE.decode0(HE.SK,CTσM) + 0 +
N∑
i=1

e′i) (because
N∑
i=1

Ri = 0)

= HE.decode1(σM bq/2e+ e+
N∑
i=1

e′i) = σM

Proof of Security.

Theorem 5.1. Assume the signature scheme Sig satisfies unforgeability, HE is a semantically secure
homomorphic encryption scheme (Definition 2.18), HS is context hiding homomorphic signature
scheme (Definition A.4) and Share satisfies privacy (Definition 2.26). Then the TS construction in
Section 5 satisfies partially adaptive unforgeability in ROM if the flooding error is of size poly(λ)

√
Q,

where Q is the upper bound on the number of signing queries.

Proof. The security of the construction can be argued using the following hybrids:

Hybrid0: The real world.

Hybrid1: Same as Hybrid0 except that now instead of using HS.SigEval algorithm to compute the
homomorphic signature π̃i,M on σi,M in yi,M = (σi,M , π̃i,M), the challenger simulates π̃i,M as

π̃i,M = Sim(HS.sk, α, σi,M , τi, πτi),

where α = HS.Process(HS.pp, CPS).

33

TS.KeyGen(1λ): Upon input the security parameter λ, do the following:

1. Randomly choose K ← {0, 1}λ and N vectors R1, R2, . . . , RN ∈ ZNq such that
∑N
i=1Ri = 0.

2. Generate the keys for the signature scheme (Sig.vk,Sig.sk)←Sig.KeyGen(1λ).

3. Generate the keys for the HE scheme
(HE.PK,HE.SK)←HE.KeyGen(1λ) and share HE.SK into N shares as (sk1, sk2, . . . , skN) =

Share(HE.SK) such that
∑N
i=1 ski = HE.SK.

4. Compute an HE encryption of the signing key as
CTSig.sk = HE.Enc(HE.PK,Sig.sk).

5. For each party Pi, randomly choose a tag τi ∈ {0, 1}∗, a hash key hkeyi←{0, 1}λ and
generate HS public parameters HS.pp←HS.PrmsGen(1λ, 1n) and HS public and signing keys
as (HS.pk,HS.sk)←HS.KeyGen(1λ,HS.pp). Here, n is the length of input to PartSign circuit which
depends on (HE.SK,K,Ri, hkeyi).

6. Compute (πτi , πi) = HS.Sign(HS.sk, (ski,K,Ri, hkeyi), τi).

7. Output TSig.pp = (HE.PK,HS.pp,HS.pk,CTSig.sk, {τi, πτi}Ni=1), TSig.vk = Sig.vk, TSig.sk =
{TSig.ski = (ski,K,Ri, hkeyi, πi)}Ni=1.

TS.PartSign(TSig.pp,TSig.ski,M): Upon input the public parameters TSig.pp, the key share TSig.ski =
(ski,K,Ri, hkeyi, πi) and a message M , do the following:

1. Compute ui = H1(hkeyi,M) and sample e′i←Ds(ui).
2. Let CM be the signing circuit, with message M being hardcoded. Compute an HE encryption of

signature σM as CTσM
= HE.Eval(HE.PK, CM ,CTSig.sk).

3. Compute ri,M = H(K,M)TRi.

4. Compute σi,M = HE.decode0(ski,CTσM
) + ri,M + e′i.

5. Let CPS be the circuit to compute HE.decode0(ski,CTσM
) +H(K,M)TRi + e′i in which CTσM

is
hardcoded and the key share TSig.ski is given as the input.

(a) Compute π∗i,M = HS.SignEval(HS.pp, CPS, πτi , (ski,K,Ri, hkeyi), πi).
(b) Compute π̃i,M = HS.Hide(HS.pk, σi,M , π

∗
i,M).

6. Output yi,M = (σi,M , π̃i,M).

TS.PartSignVerify(TSig.pp,M, yi,M): Upon input the public parameters TSig.pp, message M , and a partial
signature yi,M , the partial signature verifier does the following.

1. Computes CTσM
= HE.Eval(HE.PK, CM ,CTSig.sk).

2. Defines circuit CPS as described before and computes α = HS.Process(HS.pp, CPS).

3. Parses yi,M as (σi,M , π̃i,M) and outputs

HS.HVerify(HS.pp, α, σi,M , τi, (πτi , π̃i,M)).

TS.Combine(TSig.pp, {yi,M}i∈[N]): Upon input the public parameters TSig.pp and a set of partial signatures

{yi,M}i∈[N], parses yi,M as (σi,M , π̃i,M) and outputs σM = HE.decode1(
∑N
i=1 σi,M).

TS.Verify(TSig.vk,M, σM): Upon input the verification key TSig.vk, a message M and a signature σM ,
output Sig.Verify(TSig.vk,M, σM).

Figure 2 Partially Adaptive Threshold Signature.

34

Hybrid2: Same as Hybrid1, except that the randomness ui used in sampling the flooding noise in
PartSign algorithm is chosen uniformly randomly from {0, 1}r and then H1 is programmed as
H1(hkeyi,M) = ui. For random oracle queries for hash H1 by the adversary on an input x,
the challenger first checks if H1(x) is already set. If so, then returns that value else chooses a
value uniformly randomly from {0, 1}r and saves and returns it.

Hybrid3: Same as Hybrid2 except that the value of H(K,M) for all M in pre corruption signing
queries is set in reverse order, i.e., firstly partial signatures are computed and then H(K,M)
is set accordingly as follows:

1. The challenger computes CTσM = HE.Eval(HE.PK, CM ,CTSig.sk).

2. It then computes HE.decode0(HE.SK,CTσM) and divides it into N shares {si,M}Ni=1 such

that
∑N

i=1 si,M = HE.decode0(HE.SK,CTσM).

3. Returns partial signatures as {σi,M = si,M + e′i}Ni=1. Also, if a message M is repeated for
signing query, then the challenger uses same {si,M}Ni=1 shares of HE.decode0(HE.SK,CTσM)
again.

4. When the adversary outputs the set S of corrupted parties, the challenger first sets the
value of H(K,M) for each M in pre corruption signing queries as described next, and
then provides key shares for i ∈ S to the adversary.

• ∀i ∈ [N], compute ri,M = si,M − HE.decode0(ski,CTσM).

• Solve for vector b ∈ ZNq such that ∀ i ∈ [N],bTRi = ri,M . Set H(K,M) = b. Note
that since there are N − 1 independent equations in N unknowns, such a b exists and
can be computed.

5. To answer a random oracle query for hash function H on input x, the challenger first
checks if the value is already set, if so then returns that value, else randomly samples a
fresh vector rx and sets and returns H(x) = rx.

Hybrid4: Same as Hybrid3, except that now the signing queries are answered differently. For each
pre-corruption signing query for a message M , the challenger computes σi,M as follows:

1. Computes σM = Sig.Sign(Sig.sk,M) and generates random shares of σM bq/2e as
{si,M}Ni=1 ← Share(σM bq/2e) such that

∑N
i=1 si,M = σM bq/2e.

2. Returns σi,M = si,M + e′i, where e′i ← Ds

When the adversary outputs the set S of corrupted parties, the challenger does the following:

1. Let PreQ be the set of messages for which signing queries were made before. Then
for each M ∈ PreQ it does the following. For each i ∈ S, computes ri,M = si,M −
HE.decode0(ski,CTσM). Computes b such that ∀ i ∈ S,bTRi = ri,M . Sets H(K,M) = b.
Such a b exists and can be computed since there are only N − 1 equations to solve in N
unknowns.

2. Returns the secret key shares {TSig.ski}i∈S .

35

For each post corruption signing query on message M , the challenger does the following. Let
the uncorrupted party be Pa.

1. Computes CTσM = HE.Eval(HE.PK, CM ,CTSig.sk).

2. For each i ∈ S, computes σ′i,M = HE.decode0(ski,CTσM) + H(K,M)TRi and σi,M =
σ′i,M + e′i, where e′i←Ds.

3. Computes σM = Sig.Sign(Sig.sk,M).

4. Sets σa,M = σM bq/2e −
∑

i∈S σ
′
i,M + e′a, where e′a←Ds.

5. Sends σa,M to the adversary.

Hybrid5: Same as Hybrid4 except that now instead of secret sharing HE.SK to generate ski in
TSig.ski, ski is generated as secret share of zero vector as {ski}Ni=1←Share(0).

Hybrid6: Same as Hybrid5 except that now CTSig.sk in public parameters TSig.pp is replaced by
CT0, i.e., an HE encryption of zero vector.

Indistinguishability of Hybrids. Next, we show that consecutive hybrids are indistinguishable.

Claim 5.2. If the underlying homomorphic signature scheme HS is context hiding then Hybrid0 and
Hybrid1 are indistinguishable.

Proof. The two hybrids differ only in the way π̃i,M is computed. In Hybrid0 it is computed using
HS.SignEval while in Hybrid1 it is generated by HS simulator. Hence, from the context hiding
property of HS, the two hybrids are indistinguishable.

Claim 5.3. If H1 is modeled as random oracle then Hybrid1 and Hybrid2 are indistinguishable.

Proof. The two hybrids differ only in the way uis are computed while computing partial signatures.
In Hybrid1, ui = H1(hkeyi,M), while in Hybrid2, it is chosen uniformly randomly and then H1 is
programmed accordingly. Since H1 is modeled as random oracle the two hybrids are indistinguishable
in adversary’s view.

Claim 5.4. Hybrid2 and Hybrid3 are indistinguishable in random oracle model.

Proof. The two hybrids differ only in the order in which H(K,M) and ri,M = H(K,M)TRi are
computed in pre-corruption queries. In Hybrid2, H(K,M) is set first and then ri,M is computed
accordingly. In Hybrid3, ri,M is fixed first and then H(K,M) is programmed after the adversary
reveals the set S of corrupted parties such that H(K,M)TRi = ri,M is satisfied for each i ∈ S.

Since the adversary gets to know the secret K only after revealing the set S of corrupted parties,
there is only negligible probability that the adversary makes a random oracle query for input (K,M)
before revealing the set S (which could lead to inconsistent values for H(K,M)). Hence, setting
H(K,M) for pre-corruption queries in the two hybrids in the above described ways, does not change
adversary’s view.

Claim 5.5. Assume that the flooding error is of the order poly(λ) ·
√
Q. If there is an adversary

who can win the ExptA,TS,PA−uf (1λ) game in Hybrid3 with probability ε, then then its probability of
winning in Hybrid4 is at least ε2/2.

36

Proof. Let the adversary makes Q signing queries. Wlog let the corrupted parties be {P2, . . . , PN}.
Then in the adversary’s view the two hybrids differ only in the error term in σ1,M , as shown below.

Let e′1 ← Ds. In Hybrid3, for pre-corruption queries, the partial signature σ1,M is computed as

σ1,M = s1,M + e′1

=

N∑
i=1

si,M −
N∑
i=2

si,M + e′1

= HE.decode0(HE.SK,CTσM)−
N∑
i=2

si,M + e′1

= HE.decode0(HE.SK,CTσM)−
N∑
i=2

(HE.decode0(ski,CTσM) + ri,M) + e′1

= HE.decode0(HE.SK,CTσM)−
N∑
i=1

HE.decode0(ski,CTσM)

+HE.decode0(sk1,CTσM)−
N∑
i=2

H(K,M)TRi + e′1

= HE.decode0(HE.SK,CTσM)− HE.decode0(
N∑
i=1

ski,CTσM)

+HE.decode0(sk1,CTσM)−
N∑
i=1

H(K,M)TRi +H(K,M)TR1 + e′1

= HE.decode0(sk1,CTσM) +H(K,M)TR1 + e′1 (∵
N∑
i=1

Ri = 0;

N∑
i=1

ski = HE.SK)

In Hybrid3, for any post-corruption signing query on message M , the partial signature σ1,M is
computed as:

HE.decode0(sk1,CTσM) +H(K,M)TR1 + e′1

37

In Hybrid4, for pre-corruption queries, we have

σ1,M = s1,M + e′1

= σM bq/2e −
N∑
i=2

si,M + e′1

= σM bq/2e −
N∑
i=2

(HE.decode0(ski,CTσM) +H(K,M)TRi) + e′1

= σM bq/2e −
N∑
i=1

HE.decode0(ski,CTσM)−
N∑
i=1

H(K,M)TRi

+ HE.decode0(sk1,CTσM) +H(K,M)TR1 + e′1

= σM bq/2e −
N∑
i=1

HE.decode0(ski,CTσM)−H(K,M)T
N∑
i=1

Ri

+ HE.decode0(sk1,CTσM) +H(K,M)TR1 + e′1

= σM bq/2e − HE.decode0(

N∑
i=1

ski,CTσM)

+ HE.decode0(sk1,CTσM) +H(K,M)TR1 + e′1 (∵
N∑
i=1

Ri = 0)

= σM bq/2e − HE.decode0(HE.SK,CTσM) + HE.decode0(sk1,CTσM)

+H(K,M)TR1 + e′1

= HE.decode0(sk1,CTσ) +H(K,M)TR1 + e+ e′1

In Hybrid4, for any post-corruption query for a message M , we have

σ1,M = σM . bq/2e −
N∑
i=2

(HE.decode0(ski,CTσM) +H(K,M)TRi) + e′1

= σM . bq/2e −
N∑
i=1

(HE.decode0(ski,CTσM) +H(K,M)TRi)

+ HE.decode0(sk1,CTσM) +H(K,M)TR1 + e′1

= σM . bq/2e − HE.decode0(

N∑
i=1

ski,CTσM) +H(K,M)T
N∑
i=1

Ri

+ HE.decode0(sk1,CTσM) +H(K,M)TR1 + e′1

= σM . bq/2e − HE.decode0(HE.SK,CTσM) + HE.decode0(sk1,CTσM)

+H(K,M)TR1 + e′1

= HE.decode0(sk1,CTσM) +H(K,M)TR1 + (e′1 + e).

Thus, the difference in the two hybrids is in the error terms in σ1. In Hybrid3, the error is e′1,
while in Hybrid4, it is e′1 + e. This is the same case as in Section 4. Hence we can use exactly the

38

same analysis using Rényi Divergence as in Claim 4.4 to show that the claim is true when s is of
the order poly(λ) ·

√
Q.

Claim 5.6. Assuming the privacy property of secret sharing scheme Share, Hybrid4 and Hybrid5 are
indistinguishable.

Proof. The only difference between Hybrid4 and Hybrid5 is in the way the key shares sk1, . . . , skN
are generated. In Hybrid4, {ski}i∈[N]←Share(HE.SK), while in Hybrid5, {ski}i∈[N]←Share(0). Since
the adversary is given the key shares only for an invalid set of parties, the two distributions are
identical due to the privacy property of secret sharing scheme Share.

Claim 5.7. Assume that HE is semantically secure. Then Hybrid5 and Hybrid6 are computationally
indistinguishable.

Proof. Let A be an adversary who can distinguish Hybrid5 and Hybrid6. Then we construct an
adversary B against the HE scheme as follows.

• Upon receiving HE.PK from the HE challenger, B runs (Sig.sk,Sig.vk)← Sig.KeyGen and sends
the challenge messages m0 = Sig.sk and m1 = 0 to the HE challenger.

• The challenger replies with ciphertext CTb.

• B generates secret shares of zero vector as {ski}Ni=1←Share(0). It also generates all other
components of TSig.pp,TSig.vk and TSig.ski for i ∈ [N] and invokes A.

• Adversary B answers all the queries (both signing and secret key shares, as well as random oracle
queries) of A, as defined. Note that to respond to these queries, HE.SK is not needed and hence
B can respond to them on its own.

• Finally, if A guesses to be in Hybrid5, then B replies with b′ = 0, else b′ = 1 to the HE challenger.

Claim 5.8. If the underlying signature scheme Sig is unforgeable, then the unforgeability experiment
ExptA,TS,PA−uf in Hybrid6 cannot be won.

Proof. Let A be an adversary that wins the unforgeability game in Hybrid6. Then we can construct
an adversary B against the underlying signature scheme as follows:

• On receiving verification key Sig.vk from Sig challenger, adversary B generates all the other secret
and public values defined for Hybrid6 on its own.

• To answer a pre-corruption as well as a post-corruption signing query from A for any message M ,
adversary B issues a signing query for same message M to the Sig challenger and receives σM . For
pre-corruption queries, it simulates partial signatures using σM , for each i ∈ [N], as defined for
the hybrid. For post-corruption queries, for each j ∈ S, adversary B computes partial signatures
using the key share TSig.ski and simulates the signature for i 6∈ S using σM as defined for the
hybrid.

39

• Adversary B answers the key share queries for set S of corrupted parties issued by A as defined
for the hybrid. Note that the key shares does not depend on Sig.sk and hence, adversary B can
send a valid response to A.

• In the end, let (M∗, σ∗) be the forgery returned by A. Then B returns (M∗, σ∗) to the Sig
challenger.

Since B issues signing queries for only those messages for which A issues partial signature queries, if
(M∗, σ∗) is a valid forgery for A, then it is also a valid forgery for B.

This proves the partially adaptive unforgeability of our construction.

Robustness. It can be seen that if HS is a multi data secure homomorphic signature, then the
construction of TS satisfies robustness. The proof is the same as in Claim 4.8.

6 Blind Signatures

In this section, we describe our two-round construction of blind signatures in the random oracle
model. Our construction uses the following building blocks:

• A circuit private homomorphic encryption scheme HE = (HE.KeyGen,HE.Enc, HE.Dec,HE.Eval)
instantiated using [15] (denoted by BdPMW).

• An “HE-friendly” signature scheme Sig = (Sig.KeyGen, Sig.Sign, Sig.Verify) as constructed in
Section 3.

• Zero-knowledge proofs of knowledge (ZKPoK) for linear relations with small coefficients, i.e., for
the existence of a vector t such that t has low Euclidean norm and Bt = u mod q for some public
(B,u, q). We require the extraction algorithm to exactly recover t. Efficient realizations of such
proof systems have been recently proposed [73, 13, 31].

• A hash function H modelled as a random oracle.

Maliciously Secure Circuit Private HE. Our construction makes use of a circuit private HE
which is secure in the malicious setting. We leverage the random oracle model to upgrade a
semi-honest circuit private HE (Definition 2.20) to malicious security using NIZK proofs (see [58] for
a discussion). To instantiate the underlying semi honest circuit private HE we use the construction
from [15], which modifies the GSW HE scheme [41].

Theorem 6.1 ([15]). There exists a homomorphic encryption scheme BdPMW for branching
programs that is semi honest circuit private and whose security is based on the LWE assumption
with polynomial noise-to-modulus ratio.

In BdPMW, the secret key SK and public key PK are, respectively:

s = (−s̄, 1) and Â =

(
A

s̄>A + e>

)

40

where s̄← Zn−1
q , A← Z(n−1)×m

q and e← DZm,α. Here m = nk with k = dlog2 qe.
We modify the BdPMW scheme to make it maliciously circuit private (denoted BdPMW′) as

follows:

1. We sample the secret key s̄ from the LWE error distribution, so that it has small coefficients.
This does not impact functionality of BdPMW, nor its semantic security under the LWE
assumption [5].

2. The matrix A is generated using ROM.

3. The public key PK contains a ZKPoK that the last row of Â is of the form x>A + y> for
some low-norm vector (x,y).

4. The ciphertext contains a ZKPoK that it is of the form CT = ÂR + µG for some low-norm R
and binary µ, where G is obtained by appending the matrix (1, 2, . . . , 2k−1)⊗ In−1 on top of
the zero vector of dimension m = nk. Such a ZKPoK is for example given in [73, Section 4.2].

Claim 6.2. The BdPMW′ construction satisfies malicious circuit privacy.

Proof. We argue malicious circuit privacy for BdPMW′ by observing that the proof of semi-honest
circuit privacy in [15] only makes use of the following properties: i) the matrix A must be generated
uniformly to satisfy the condition in [15, Lemma 3.1], ii) the ciphertext and public key must be
structured as in the honest scheme, so that [15, Lemma 3.1] may be applied during the analysis of
circuit privacy. We observe in particular, that [15, Lemma 3.1] makes no assumption about the
distribution of the error terms in the public key or the ciphertext, nor does it rely on any distributional
requirement from the secret key. In particular, if we choose s̄ from the error distribution, this
does not impact circuit privacy. Hence, by ensuring that A is uniform and that PK and CT are
well-formed by providing zero knowledge proofs, we satisfy all the conditions required for the proof
of circuit privacy in [15] to follow.

6.1 Construction

Setup. Gen(1λ): Upon input the security parameter 1λ, invoke (Sig.sk,Sig.vk)← Sig.KeyGen(1λ)
using the signature scheme provided in Section 3, and output (Sig.sk,Sig.vk).

Signing. 〈S(Sig.sk),U(Sig.vk,m)〉:

1. User:

• User U samples the HE secret key SK as in BdPMW′. It computes A = H(Sig.vk, id)
where id is a user identifier. It samples both s̄ and e from the LWE error distribution

and computes the PK as Â =

(
A

s̄>A + e>

)
• User U generates a ZKPoK πSK to prove that it knows a low-norm vector (x,y) such

that the last row of Â is of the form x>A + y>.

• It computes CTm = HE.Enc(PK,m) and a proof πCT that CTm is well-formed, i.e.,
CTm = ÂR + µG, for a low-norm R and a binary µ.

• It sends (PK, πSK,CTm, πCT) to signer S.

41

2. Signer:

• Upon receiving (PK, πSK,CTm, πCT), signer S verifies the proofs πSK and πCT and
outputs ⊥ if any of these fails.

• It computes CTσ = HE.Eval(PK, Sig.SignSig.sk,CTm). It sends CTσ to user U .

3. User: User U runs HE.Dec(SK,CTσ) to recover σ and outputs it.

Verifying. Vrfy(Sig.vk,m, σ) is identical to Sig.Verify.

Correctness. From the correctness of the ZKPoK schemes, the signer accepts πSK and πCT (and
does not abort) if the user computed the HE public key and ciphertexts correctly. From the correctness
of HE.Eval(Sig.SignSig.sk,CTm), CTσ is an HE encryption of Sig.SignSig.sk(m) = Sig.Sign(Sig.sk,m) =
σ. Hence, from the correctness of the HE decryption algorithm, HE.Dec(Sig.sk,CTσ) outputs a
signature σ = Sig.Sign(Sig.sk,m). It passes verification, by correctness of the Sig.Verify algorithm.

Security. We show honest signer blindness of the construction in the following theorem.

Theorem 6.3. Assume that the underlying proof systems are ZKPoK. Then the BS construction
satisfies (honest signer) blindness.

Proof. The argument proceeds via a sequence of hybrids.

Hybrid0: This is the real world.

1. The challenger generates (Sig.sk, Sig.vk) and returns (Sig.sk, Sig.vk) to the adversary S∗.
2. The signer S∗ outputs two messages m0 and m1. The challenger picks a random bit b.

3. The signer S∗ interacts concurrently with U1(Sig.vk,mb) and U2(Sig.vk,mb̄), played by
the challenger as follows:

(a) User U1 (resp. U2) generates A1 = H(Sig.vk, id1) (resp. A2 = H(Sig.vk, id2)) using
the random oracle. Users U1 and U2 generate the HE secret keys SK1, SK2 and
public keys PK1 = Â1 and PK2 = Â2 honestly, along with proofs π1

SK and π2
SK of the

well-formedness of the public keys.

(b) Additionally, users U1 and U2 provide their respective ciphertexts CTb = HE.Enc(PK1,mb)
and CTb̄ = HE.Enc(PK2,mb̄) along with their proofs π1

CT and π2
CT to S∗.

(c) The signer S∗ evaluates the signing algorithm homomorphically on ciphertexts CTb
and CTb̄ to obtain CTσb and CTσb̄ , respectively.

(d) After receiving the evaluated HE ciphertexts from the signer S∗, users U1 and U2

decrypt them using the HE secret keys SK1 and SK2 to obtain signatures σb and σb̄
respectively.

(e) The signer S∗ is given σ0, σ1.

(f) The signer S∗ outputs its guess for bit b.

Hybrid1: In this world, the proofs π1
SK and π2

SK are replaced with simulated proofs.

Hybrid2: In this world, the proofs π1
CT and π2

CT are replaced with simulated proofs.

42

Hybrid3: In this world, at Step 3(d), the signatures σb and σb̄ are generated using Sig.Sign directly.

Hybrid4: In this world, we replace HE.Enc(PK1,mb) by HE.Enc(PK1, 0) and HE.Enc(PK2,mb̄) by
HE.Enc(PK2, 0).

One can see that the advantage of the adversary in Hybrid4 is 0 since the bit b is information
theoretically hidden. We proceed to argue that consecutive hybrids are indistinguishable.
Indistinguishability of Hybrid0 and Hybrid1 as well as Hybrid1 and Hybrid2 follows from the zero-
knowledge property of the underlying ZKPoKs. Indistinguishability of Hybrid2 and Hybrid3 follows
from the correctness of BdPMW′ and Sig.

Indistinguishability of Hybrid3 and Hybrid4 follows from the semantic security of BdPMW′. The
proof is a standard reduction to the semantic security. Note that due to the previous hybrids, the
blindness challenger does not need the HE secret key for any operations and can obtain the HE
public keys and ciphertexts from the HE challenger. The proofs πSK and πCT are simulated, and the
signatures σb and σb̄ are computed directly using the signing key Sig.sk.

To upgrade BS from honest signer blindness to full-fledged blindness, we modify the scheme as
follows:

• We use a ZKPoK to construct a proof πvk that the verification key Sig.vk is well-formed (as we
use Lyubashevsky’s signature scheme, this is again a linear statement with a low-norm secret
vector), and have the signer append πvk to its verification key Sig.vk.

• We use a homomorphic signature scheme enjoying context hiding security to authenticate the
correct homomorphic evaluation of the Sig.Sign signing algorithm.

We defer the formal description and analysis of this variant of BS to the full version of this article.

Next, we show that our construction achieves one-more unforgeability.

Theorem 6.4. Assume that the underlying signature scheme satisfies UF-CMA security. Then the
BS construction satisfies one-more unforgeability.

Proof. Assume there exists an adversary U∗ who wins the one-more unforgeability game against the
BS blind signature. Then we build an adversary B against the UF-CMA security of the underlying
signature scheme Sig. B does the following:

1. It obtains Sig.vk from the signature challenger and forwards it to U∗.

2. It runs the signing protocol with adversary U∗ simulating the BS signer as follows:

(a) Adversary U∗ outputs the HE public key PK along with proof of knowledge πPK of a
corresponding SK. Adversary B rewinds U∗ to extract SK.

(b) Adversary U∗ also outputs ` ciphertexts CT1, . . . ,CT` along with their proofs πCT1 , . . . , πCT`
.

Adversary B uses SK to decrypt CT1, . . . ,CT` to obtain m1, . . . ,m`.

(c) Adversary B sends m1, . . . ,m` to the UF-CMA signature challenger and obtains signatures
σ1, . . . , σ`.

43

(d) It encrypts σ1, . . . , σ` using HE to obtain CT′σ1
, . . . ,CT′σ` . It runs HE.Eval(PK, C0, (CT′σi , ?))

for all i ∈ [`] to obtain CTσ1 . . . ,CTσ` . Here C0 is a dummy circuit that has the same
depth and number of inputs as the Sig.Sign signing circuit and outputs its first input
(see Definition 2.20), and ? represents as many independent encryptions of 0 as required.
Finally, it returns CTσ1 . . . ,CTσ` to U∗.

(e) When U∗ outputs `+ 1 distinct message-signature pairs (mi, σi) for i ∈ [`+ 1] that pass
verification, it outputs any of these for which mi had not been queried to the UF-CMA
signature challenger.

As BdPMW′ satisfies malicious circuit privacy, it follows that U∗’s view is indistinguishable from
what it expects. As a result, it follows that the success probability of B is a polynomial function of
the success probability of U∗.

6.2 Comparison with the Hauck et al scheme

Below, we describe the main sources of inefficiency in the scheme of [43] and how we overcome these:

1. Noise Flooding. [43] relies on a variant of noise flooding, used with the Short Integer Solution
problem (SIS). For λ-bit security, it leads to setting the SIS parameters such that n log q =
Ω̃(λ3), which is a lower bound on the signature bit-length. More precisely, the noise flooding
derives from the requirement that the lattice-based linear hash function must be (ε,Q)-regular
(see [43, Section 3]) with an ε that is 2−Ω(λ) for [43, Theorem 1] to be applicable to adversaries
succeeding with probability 2−o(λ). This is achieved in [43, Section 6] by considering two balls
of the same radius that is 2Ω(λ) larger than the offset between the ball centers. In contrast, by
a more careful proof using Rényi divergence, we only require flooding of Ω̃(

√
QS), where QS

is the bound on the number of generated signatures.

2. Loss in Security Proof. The scheme by Hauck et al is an adaptation of the Okamoto-Schnorr
blind signature [57] from the discrete logarithm setting to the lattice setting. The best known
security proof for the Okamoto-Schnorr blind signature under standard assumptions [64],
suffers from a loss in advantage larger than 2QS/|C|. Here QS denotes an upper bound on
the number of generated signatures and C denotes the challenge space. Note that log |C| is
a lower bound on the signature bit-length. This advantage loss stems from the ability of a
malicious user to perform concurrent protocol executions with the signer and was recently
shown to be intrinsic [10]. In the lattice setting, the proof from [43] suffers from a similar loss,
which drastically limits QS or forces to have signature bit-lengths that grow at least linearly
in QS (note that no devastating attack as the one from [10] is known for the scheme [43], so a
better proof could possibly exist). In contrast, our protocol has only two rounds and hence
concurrency issues do not come up.

These differences lead to the following comparison in terms of concrete parameters. As discussed
in Section 3.3, by using a variant of Dilithium-G with ≈ 128 classical bit security, the size of our
signature is below 3 KB, where the adversary is limited to getting 256 signatures. In contrast, using
the parameters provided by [43], the authors obtain signatures of size ≈ 7.73MB, for adversaries
limited to getting 7 signatures. In terms of verification cost, our scheme also significantly outperforms
the one of Hauck et al, as verification boils down to Dilithium-G signature verification.

44

At the outset, the user has to generate HE keys and ciphertexts and appropriate NIZK proofs.
A standard trick used in the context of HE to reduce communication complexity is to use HE in
conjunction with an efficient, plain symmetric key encryption scheme SKE. Let K be the secret key
of SKE. Then, the user computes an HE encryption of K and an SKE encryption of the message
m that it wishes to sign. To sign the message, the signer first computes an HE evaluation of a
“translation” circuit that takes the HE ciphertext of K and the SKE ciphertext of message m and
outputs an HE ciphertext of m by running the SKE decryption circuit homomorphically on the SKE
ciphertext. As the SKE expansion factor is much less than the HE expansion factor, this reduces
the communication cost of the first round very significantly. Another advantage of this approach is
that we now need to only provide proof of well-formedness of the single HE ciphertext of K, since
well-formedness of the SKE ciphertexts when translated to HE is automatic by the correctness of
the HE decryption algorithm. The downside is that it increases the signer cost, but probably not
very significantly, because it already has to homomorphically evaluate a hash function (see below).

The transcript of the second round of communication is an HE ciphertext that decrypts to the
desired signature. Its bit-size greatly depends on how much work we push to the signer side. Given
that the last steps of the signing algorithm are linear algebra operations, it is likely that the chosen
HE solution would be BGV [16] or FV [32] with multiple plaintext slots [70]. In that case, one could
use a modulus-switch before sending the ciphertext, to decrease its size. A more costly strategy
would be to bootstrap to a format that has smaller ciphertext expansion factor (note that no more
HE computations have to be performed, at that stage). Depending on the chosen solution, one may
probably expect a blow-up between a factor of 20 and 200. Starting with a 3 KB signature, this
remains below the communication cost of the Hauck et al scheme, which is ≈ 33.2 MB.5

The comparison is more complex, and likely less favourable, for the signer cost. It is difficult to
assess it precisely, as this depends on specific choices of building blocks, as discussed below.

6.3 Towards an Instantiation

The core task in instantiating the blind signature scheme based on the rejection-free Lyubashevsky
signature from Section 3 is to select components that can be efficiently evaluated homomorphically.
A central difficulty is the choice of the hash function that is modelled as a random oracle: choosing
an “HE-friendly” hash function is a highly nontrivial question. While there has been some effort in
the community to design block ciphers that minimize multiplicative size and depth of description, so
as to be more HE-friendly [2, 1], this question has not been studied sufficiently for the case of hash
functions which must model random oracles, to the best of our knowledge. A starting point idea,
discussed in [24], is to use a block cipher with small multiplicative complexity such as LowMC [2] as
a permutation in a sponge construction [11]. This would result in a hash function which behaves
like a random oracle, and with low multiplicative size and depth. An alternative path would be to
start from the FLIP stream cipher [56], which is HE-friendly for the GSW homomorphic encryption
scheme [41].

Another difficulty in concrete instantiation is to handle the diverse formats of the quantities
involved during the homomorphic signing. If the message to be signed is encrypted using an SKE,
as suggested above, then the first step of the signer is to convert it to an HE-ciphertext. Next, the

5Using the notations from [43, Figure 9], the first transcript has size ηn log2(q), which is ≈ 26 MB, the second
transcript has size n log2(2dc), which is much smaller, and the third transcript has size mn log2(2ds), which is
≈ 7.2 MB.

45

message is fed to the hash function (along with a vector that can be computed in the clear). Hence,
the first HE-format should be compatible with the one needed for evaluating the hash function. In
Dilithium-G, the output of the hash function is a sparse polynomial with ternary coefficients with
exactly 60 non-zero entries (which are uniform and independent). Mapping the output of the hash
function to such a format may prove complex to do homormorphically, and it may be better to
choose a more amenable format for the signature challenge.

Other decisions include how to choose the HE scheme [16, 32] with appropriately chosen plaintext
slots [70] to perform linear algebra operations, how to compress the signature elements to decrease
bitlength in lieu of homomorphism – for instance, Dilithium-G uses a Huffman encoding but this
may be expensive to perform under an HE layer.

Acknowledgments. The authors thank Léo Ducas and Adeline Roux-Langlois for insightful
discussions. This work was partly supported by the DST “Swarnajayanti” fellowship, an Indo-
French CEFIPRA project, National Blockchain Project, the CCD Centre of Excellence, European
Union Horizon 2020 Research and Innovation Program Grant 780701, and BPI-France in the
context of the national project RISQ (P141580). Part of the research corresponding to this work
was conducted while the first two authors were visiting the Simons Institute for the Theory of
Computing.

46

References

[1] M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. MiMC: Efficient encryption
and cryptographic hashing with minimal multiplicative complexity. In ASIACRYPT, 2016.

[2] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. Ciphers for MPC
and FHE. In EUROCRYPT, 2015.

[3] N. A. Alkadri, R. E. Bansarkhani, and J. Buchmann. BLAZE: practical lattice-based blind
signatures for privacy-preserving applications. In Financial Cryptography, 2020.

[4] N. A. Alkadri, R. E. Bansarkhani, and J. Buchmann. On lattice-based interactive protocols:
An approach with less or no aborts. In ACISP, 2020.

[5] B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives and circular-
secure encryption based on hard learning problems. In CRYPTO, 2009.

[6] S. Bai and S. D. Galbraith. An improved compression technique for signatures based on learning
with errors. In CT-RSA, 2014.

[7] S. Bai, T. Lepoint, A. Roux-Langlois, A. Sakzad, D. Stehlé, and R. Steinfeld. Improved security
proofs in lattice-based cryptography: using the Rényi divergence rather than the statistical
distance. J. Cryptol., 2018.

[8] M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking
lemma. In CCS, 2006.

[9] R. Bendlin and I. Damg̊ard. Threshold decryption and zero-knowledge proofs for lattice-based
cryptosystems. In TCC, 2010.

[10] F. Benhamouda, T. Lepoint, M. Orrù, and M. Raykova. On the (in)security of ROS. IACR
Cryptol. ePrint Arch., 2020.

[11] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. On the indifferentiability of the sponge
construction. In EUROCRYPT, 2008.

[12] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. R. Rasmussen, and A. Sahai.
Threshold cryptosystems from threshold fully homomorphic encryption. In CRYPTO, 2018.

[13] J. Bootle, V. Lyubashevsky, and G. Seiler. Algebraic techniques for short(er) exact lattice-based
zero-knowledge proofs. In CRYPTO, 2019.

[14] S. Bouaziz-Ermann, S. Canard, G. Eberhart, G. Kaim, A. Roux-Langlois, and J. Traoré.
Lattice-based (partially) blind signature without restart. IACR Cryptol. ePrint Arch., 2020.

[15] F. Bourse, R. del Pino, M. Minelli, and H. Wee. FHE circuit privacy almost for free. In
CRYPTO, 2016.

[16] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic encryption
without bootstrapping. ACM Trans. Comput. Theory, 2014.

47

[17] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hardness of learning
with errors. In STOC, 2013.

[18] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. In FOCS, 2011.

[19] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. Two-party ECDSA
from hash proof systems and efficient instantiations. In CRYPTO, 2019.

[20] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. Bandwidth-efficient
threshold EC-DSA. In PKC, 2020.

[21] D. Chaum. Blind signatures for untraceable payments. In CRYPTO, 1982.

[22] D. Cozzo and N. P. Smart. Sharing the LUOV: threshold post-quantum signatures. In IMACC,
2019.

[23] I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat
homomorphic encryption. In CRYPTO, 2012.

[24] D. Derler, S. Ramacher, and D. Slamanig. Post-quantum zero-knowledge proofs for accumulators
with applications to ring signatures from symmetric-key primitives. In PQCrypto, 2018.

[25] Y. Desmedt. Threshold cryptography. European Transactions on Telecommunications, 1994.

[26] J. Doerner, Y. Kondi, E. Lee, and A. Shelat. Threshold ECDSA from ECDSA assumptions:
The multiparty case. In S&P, 2019.

[27] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehlé.
CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018.

[28] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehlé. CRYSTALS –
Dilithium: Digital signatures from module lattices. Cryptology ePrint Archive, 2017. Version
1, dated 27/06/2017.

[29] L. Ducas and T. Prest. Fast Fourier orthogonalization. In ISSAC, 2016.

[30] L. Ducas and D. Stehlé. Sanitization of FHE ciphertexts. In EUROCRYPT, 2016.

[31] M. F. Esgin, N. K. Nguyen, and G. Seiler. Practical exact proofs from lattices: New techniques
to exploit fully-splitting rings. 2020.

[32] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryptol.
ePrint Arch., 2012.

[33] M. Fischlin and D. Schröder. On the impossibility of three-move blind signature schemes. In
EUROCRYPT, 2010.

[34] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest, T. Ricosset,
G. Seiler, W. Whyte, and Z. Zhang. Falcon: Fast-Fourier lattice-based compact signatures
over NTRU. Technical report. Specification v1.0, available at https://falcon-sign.info/.

48

https://falcon-sign.info/

[35] T. K. Frederiksen, M. Keller, E. Orsini, and P. Scholl. A unified approach to MPC with
preprocessing using OT. In ASIACRYPT, 2015.

[36] S. Garg and D. Gupta. Efficient round optimal blind signatures. In EUROCRYPT, 2014.

[37] S. Garg, V. Rao, A. Sahai, D. Schröder, and D. Unruh. Round optimal blind signatures. In
CRYPTO, 2011.

[38] R. Gennaro and S. Goldfeder. Fast multiparty threshold ECDSA with fast trustless setup. In
CCS, 2018.

[39] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.
crypto.stanford.edu/craig.

[40] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In STOC, 2008.

[41] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO, 2013.

[42] S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan. Robustness of the learning
with errors assumption. In ICS, 2010.

[43] E. Hauck, E. Kiltz, J. Loss, and N. K. Nguyen. Lattice-based blind signatures, revisited. In
CRYPTO, 2020.

[44] G. Herold, E. Kirshanova, and A. May. On the asymptotic complexity of solving LWE. Des.
Codes Cryptogr., 2018.

[45] J. Howe, T. Prest, T. Ricosset, and M. Rossi. Isochronous gaussian sampling: From inception
to implementation. In PQCrypto, 2020.

[46] S. Ibrahim, M. Kamat, M. Salleh, and S. A. Aziz. Secure E-voting with blind signature. In
NCTT, 2003.

[47] A. Juels, M. Luby, and R. Ostrovsky. Security of blind digital signatures (extended abstract).
In CRYPTO, 1997.

[48] A. Langlois, D. Stehlé, and R. Steinfeld. GGHLite: More efficient multilinear maps from ideal
lattices. In EUROCRYPT, 2014.

[49] H. Q. Le, W. Susilo, T. X. Khuc, M. K. Bui, and D. H. Duong. A blind signature from module
lattices. In DSC, 2019.

[50] Y. Lindell and A. Nof. Fast secure multiparty ECDSA with practical distributed key generation
and applications to cryptocurrency custody. In CCS, 2018.

[51] S. Ling, K. Nguyen, D. Stehlé, and H. Wang. Improved zero-knowledge proofs of knowledge for
the ISIS problem, and applications. In PKC, 2013.

[52] V. Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based
signatures. In ASIACRYPT, 2009.

49

crypto.stanford.edu/craig

[53] V. Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT, 2012.

[54] V. Lyubashevsky and D. Micciancio. Generalized compact knapsacks are collision resistant. In
ICALP, 2006.

[55] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over
rings. In EUROCRYPT, 2010.

[56] P. Méaux, A. Journault, F. Standaert, and C. Carlet. Towards stream ciphers for efficient FHE
with low-noise ciphertexts. In EUROCRYPT, 2016.

[57] T. Okamoto. Provably secure and practical identification schemes and corresponding signature
schemes. In CRYPTO, 1992.

[58] R. Ostrovsky, A. Paskin-Cherniavsky, and B. Paskin-Cherniavsky. Maliciously circuit-private
FHE. In CRYPTO, 2014.

[59] D. Papachristoudis, D. Hristu-Varsakelis, F. Baldimtsi, and G. Stephanides. Leakage-resilient
lattice-based partially blind signatures. IET Information Security, 2019.

[60] C. Peikert and A. Rosen. Efficient collision-resistant hashing from worst-case assumptions on
cyclic lattices. In TCC, 2006.

[61] D. Pointcheval and J. Stern. Provably secure blind signature schemes. In ASIACRYPT, 1996.

[62] D. Pointcheval and J. Stern. Security proofs for signature schemes. In EUROCRYPT, 1996.

[63] D. Pointcheval and J. Stern. New blind signatures equivalent to factorization (extended
abstract). In CCS, 1997.

[64] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. J.
Cryptol., 2000.

[65] T. Pornin and T. Prest. More efficient algorithms for the NTRU key generation using the field
norm. In PKC, 2019.

[66] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of
the ACM (JACM), 2009.

[67] M. Rückert. Lattice-based blind signatures. In ASIACRYPT, 2010.

[68] C.-P. Schnorr. Efficient signature generation by smart cards. J. Cryptol., 1991.

[69] P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
G. Seiler, and D. Stehlé. CRYSTALS-Kyber: Algorithm specifications and supporting docu-
mentation (version 3.0). https://csrc.nist.gov/Projects/post-quantum-cryptography/
round-3-submissions.

[70] N. P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Des. Codes Cryptogr.,
2014.

50

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions

[71] D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa. Efficient public key encryption based on
ideal lattices. In ASIACRYPT, 2009.

[72] K. Takashima and A. Takayasu. Tighter security for efficient lattice cryptography via the rényi
divergence of optimized orders. In ProvSec, 2015.

[73] R. Yang, M. H. Au, Z. Zhang, Q. Xu, Z. Yu, and W. Whyte. Efficient lattice-based zero-
knowledge arguments with standard soundness: Construction and applications. In CRYPTO,
2019.

[74] X. Yi and K.-Y. Lam. A new blind ECDSA scheme for bitcoin transaction anonymity. In
Asia-CCS, 2019.

[75] C. Yin, S. Huang, P. Su, and C. Gao. Secure routing for large-scale wireless sensor networks.
In ICCT, 2003.

[76] R. K. Zhao, R. Steinfeld, and A. Sakzad. COSAC: compact and scalable arbitrary-centered
discrete Gaussian sampling over integers. In PQCrypto, 2020.

51

Supplementary Material

A Additional Preliminaries

A.1 Multi-data Homomorphic Signature.

A homomorphic signature scheme is a signature scheme that allows computations on authenticated
data. In a multi-data homomorphic signature scheme, the signer can sign many different datasets of
arbitrary size. Each dataset is tied to some label τ (e.g., the name of the dataset) and the verifier is
assumed to know the label of the dataset over which it wishes to verify computations.

Definition A.1 (Multi-data Homomorphic Signature). A multi-data homomorphic signature for
messages over a set X is a tuple of PPT algorithms (PrmsGen,KeyGen,Sign,SignEval,Process,Verify)
with the following syntax.

• prms←PrmsGen(1λ, 1N): Gets the security parameter λ and a data-size bound N and generates
public parameters prms.

• (pk, sk)←KeyGen(1λ, prms): Produces a public verification key pk and a secret signing key sk.

• (στ , σ1, . . . , σN)←Sign(sk, (x1, . . . , xN), τ): Signs some data (x1, . . . , xN) ∈ X ∗ under a label
τ ∈ {0, 1}∗.

• σ∗ = SignEval(prms, g, στ , (x1, σ1), (x`, σ`)): Homomorphically computes a signature σ∗ for
g(x1, . . . , xN).

• αg←Process(prms, g): Produces a “public-key” αg for the function g.

• Verify(pk, αg, y, τ, (στ , σ
∗)): Verifies that y ∈ X is indeed the output of the function g over the data

signed with label τ . We can define the “combined verification procedure” Verify∗(pk, g, y, τ, στ , σ
∗)

as: Compute αg←Process(prms, g) and output Verify(pk, αg, y, τ, (στ , σ
∗)).

A homomorphic signature should satisfy the correctness and security properties defined below.

Definition A.2 (Correctness). Correctness of Signing. Let idi : XN → X be a canonical description
of the function idi(x1, ..., xN) = xi (i.e., a circuit consisting of a single wire taking the i’th input to the
output). We require that for any prms←PrmsGen(1λ, 1N), (pk, sk)←KeyGen(1λ, prms), (x1, . . . , xN) ∈
XN , any τ ∈ {0, 1}∗, and any (στ , σ1, . . . , σN)←Sign(sk, (x1, . . . , xN), τ) following must satisfy:
Verify∗(pk, idi, xi, τ, (στ , σi)) = accept. In other words, the pair (στ , σi) certifies xi as the ith data
item of the data with label τ .

Correctness of Evaluation. For any functions h1, . . . , h` with hi : XN→X for i ∈ [`], any function
g : X `→X , any (x1, . . . , x`) ∈ X `, any τ ∈ {0, 1}∗ and any (στ , σ1, . . . , σ`):

{{Verify(pk, hi, xi, τ, (στ , σi)) = accept}i∈[`],

σ∗←SignEval(prms, g, στ , (x1, σ1), (x`, σ`))}
⇒ Verify∗(pk, (g ◦ h̄), g(x1, . . . , x`), τ, (στ , σ

∗)) = accept.

In other words, if the signatures (στ , σi) certify xi as the outputs of function hi over the data
labeled with τ for all i ∈ [`], then (στ , σ

∗) certifies g(x1, . . . , x`) as the output of g ◦ h̄ over the data
labeled with τ .

52

Definition A.3 (Security). The security is defined via the following game between an attacker A
and a challenger:

• The challenger runs prms←PrmsGen(1λ, 1N) and (pk, sk)←KeyGen(prms, 1λ), and gives prms, pk
to the attacker A.

• Signing queries: The attacker A can ask an arbitrary number of signing queries. In each
query j, the attacker chooses a fresh tag τj which was never queried previously and a message
(xj1, . . . , xjNj) ∈ X ∗. The challenger responds with

(στj , σj1, . . . , σjNj)←Sign(sk, (xj1, . . . , xjNj), τj).

• The attacker A outputs a function g : XN ′→X and values τ, y′, (σ′τ , σ
′). The attacker wins if

Verify∗(pk, g, y′, τ, (σ′τ , σ
′)) = accept and either:

– Type 1 forgery : τ /∈ {τj}j or τ = τj for some j but N ′ 6= Nj , i.e., the signing query with label τ
was never made or there is a mismatch between the size of the data signed under label τ and
the arity of the function g.

– Type 2 forgery : τ = τj for some j with corresponding message xj,1, . . . , xj,N ′ such that (a) g is
admissible on xj,1, . . . , xj,N ′ and (b) y′ 6= g(xj,1, . . . , xj,N ′).

We require that for all A with run-time 2o(λ), we have Pr[A wins] ≤ 2−Ω(λ) in the above game.

We now give a simulation-based notion of context-hiding security, requiring that a context
hiding signature σ̃ can be simulated given the knowledge of only the computation g and output
y, but without any other knowledge of underlying data. The simulation remains indistinguishable
even given the underlying data, the underlying signatures, and even the public/secret key of the
scheme. In other words, the derived signature does not reveal anything beyond the output of the
computation even to an attacker that may have some partial information on the underlying values.

Definition A.4 (Context Hiding). A multi-data homomorphic signature supports context hiding if
there exist additional PPT procedures σ̃←Hide(pk, y, σ), HVerify(pk, g,Process(g), y, τ, (στ , σ̃)) such
that:

• Correctness: For any prms←PrmsGen(1λ, 1N), any (pk, sk)←KeyGen(1λ, prms) and any α, y, τ, στ , σ
such that Verify(pk, α, y, τ, (στ , σ)) = accept, for any σ̃←Hide(pk, y, σ) we have

HVerify(pk, α, y, τ, (στ , σ̃) = accept.

• Unforgeability: Multi-data signature security holds when we replace the Verify procedure by
HVerify in the security game.

• Context hiding security: Firstly, in the procedure (στ , {σi}i∈[N])←Sign(sk, {xi}i∈[N], τ), we require
that στ can only depend on (sk, N, τ) but not on the data {xi}. Secondly, we require that there is
a simulator Sim such that for any fixed (worst-case) choice of prms, (pk, sk) and any α, y, τ, στ , σ
such that Verify(pk, α, y, τ, (στ , σ)) = accept, we have that the distributions Hide(pk, y, σ) and
Sim(sk, α, y, τ, στ) are indistinguishable, where the randomness is only over the random coins of
the simulator and the Hide procedure. We say that such schemes are statistically context hiding
if the above indistinguishability holds statistically.

53

B Missing Details in Section 3

B.1 Proof of Lemma 3.5

Let DH = {c : c ∈ {−1, 0, 1}k, ‖c‖1 ≤ α}. Using F we design B for the SIS problem. Given
A ∈ Zn×mq , B does the following:

1. Randomly selects S←{−d, . . . , 0, . . . , d}m×k. Sets Sign.vk = (A,T = AS) and Sign.sk = S.

2. Sets random coins φ and ψ to be used by the forger F and the signing challenger, respectively.

3. Randomly selects r1, . . . , rt←DH , where t = QS+QH . These values are used to answer random
oracle queries by the forger or to program the random oracle in the process of answering
signing queries.

4. Calls a sub-routine A(A,T, φ, ψ, {r1, . . . , rt}) which initializes the forging algorithm F with
the verification key Sign.vk. Then runs F using the random coins φ.

(a) To answer any signing query issued by F , the random oracle is programmed with the
first unused value ri. Similarly, any random oracle query made by F is answered with
the first unused value ri. If a random oracle query is repeated on the same input, then
the same value is returned (for this, A maintains a list).

(b) With probability δ, F outputs a valid forgery (µ, (z, c)). B uses this to find a small vector
v such that Av = 0.

Let us refer to the list {r1, . . . , rt} as R. Then we can assume that c ∈ R and was programmed
on some input w = Az − Tc for some RO or signing query. Because otherwise it means F has
produced c such that H(w, µ) = c which is possible with probability at most 1

|DH | . Hence with

probability at least (δ − 1
|DH |), F outputs a forgery where c ∈ R. Now, two cases are possible:

Case(i): c = ri, where ri is programmed while answering a signing query on message µ′. Let
the signature returned by the challenger be (z′, ri). Thus, H(Az′ −Tri, µ

′) = ri = H(Az−Tri, µ).
This implies that (Az′ −Tri, µ

′) = (Az−Tri, µ) (because otherwise it means that the forger has
found a different preimage for ri). Thus, µ = µ′ and Az′−Tri = Az−Tri =⇒ A(z−z′) = 0. But
(z− z′) 6= 0 because in that case the forgery is not a valid one since both message and signature are
same as the one already queried for. Thus B can output v = z−z′. Also, since ‖z‖ ≤ γ, ‖z−z′‖ ≤ 2γ.

Case(ii): c = ri, where ri is response to a random oracle query by F . Adversary B
notes the signature (z, ri), randomly selects r′i, . . . , r

′
k from DH and again runs the subroutine

A(A,T, φ, ψ, {r1, . . . , ri−1, r
′
i, . . . , r

′
t}). By using general forking lemma ([8, Lemma 1]), probability

that F will use r′i in generating the forgery (i.e., outputs (z′, r′i) as the new forgery) is at least(
δ − 1

|DH |

)(
δ − 1/|DH |
QS +QH

− 1

|DH |

)
.

Hence, with the above probability we get Az−Tri = Az′ −Tr′i which implies A(z− z′) + A(Sr′i −
Sri) = 0. Thus B can set v = z− z′ + Sr′i − Sri which has size at most 2γ + 2

√
mdα.

All that is now left is to show that z − z′ + Sr′i − Sri is not zero. Here, we use the result
from [53, Lemma 5.2] that with probability at least (1− ε), where ε = qn

(2d+1)m , there exists another

54

S′ which differs from S only at column i such that AS = AS′. Since the secret S is not given
to the subroutine A, none of the responses depend on S. Also, if z − z′ + Sr′i − Sri = 0, then
z − z′ + S′r′i − S′ri cannot be zero. Thus with probability at least 1/2 the secret S chosen will
satisfy the condition that z− z′ + Sr′i−Sri 6= 0. Combining all the cases, we get that B succeeds in
outputting a vector v such that ‖v‖ ≤ (2γ + 2

√
mdα) and Av = 0 with probability at least(

1

2
− ε

2

)(
δ − 1

|DH |

)(
δ − 1/|DH |
QS +QH

− 1

|DH |

)
.

B.2 Optimality of Flooding in Section 3

In this section, we show that the flooding amount used in the construction in Section 3 is essentially
optimal, and in particular that the dependence on

√
Q is necessary. In more detail, we show that if

the flooding noise is smaller than this, then an adversary can recover the signing key. Note that this
attack is folklore, we recall it for the sake of completeness.

Statistical Attack. Recall that the signature for messageMi is of the form (zi, ci), where zi = Sci+yi,
ci ∈ {−1, 0, 1}k, ‖ci‖1 ≤ α, and S is the signing key. The adversary can obtain many such pairs
corresponding to different messages. Let Q be the maximum number of signing queries that the
adversary can make. Let Si represents the ith row of matrix S. Let cij , yij and Sij represent the
jth entry in vectors ci, yi and Si respectively. Consider such tuples (zi, ci) where ci1 = 1. Let
B ⊆ [Q] be the set of such indices. The adversary gets approximately Q/3 such tuples corresponding
to i ∈ B. For each i, using the first row of S, we may write:

S11 +

k∑
j=2

S1jcij + yi1 = zi1 (B.1)

We denote the average of
∑k

j=2 S1jcij + yi1 over i ∈ B as avg. We show that unless yi1 is O(
√
Q),

we can recover S11. To conduct the attack, we bound each summand of avg separately.

Claim B.1. Let t1 < 1/2 be a positive constant and Q, k, d, α be as above. Then,

Pr
[∣∣∣∑i∈B

∑k
j=2 S1jcij

|B|

∣∣∣ < t1

]
≥ 1− 2 exp(

−Qt21
6(α− 1)2d2

)

Proof. Note that
∑k

j=2 S1jcij takes values in the range [−(α− 1)d, (α− 1)d], with mean at 0. In

more detail, let X be a random variable, with mean 0 and bound [−(α− 1)d, (α− 1)d], then for
some positive constant t1 < 1/2, we have from Hoeffding’s bound

Pr[|X̄ − E[X]| ≥ t1] ≤ 2 exp(
−(Q/3)t21

2(α− 1)2d2
)

=⇒ Pr[|X̄| ≥ t1] ≤ 2 exp(
−Qt21

6(α− 1)2d2
)

=⇒ Pr[|X̄| < t1] ≥ 1− 2 exp(
−Qt21

6(α− 1)2d2
)

Since d is small, in particular if (6(α− 1)2d2 < Qt21), then 1− 2 exp(
−Qt21

6(α−1)2d2) is non-negligible.

55

Let us assume that the average of yi1 is also smaller than 1/2− t1 with non negligible probability.
Then, avg < 1/2 with non negligible probability. Summing both sides of Equation B.1 over the set
B, we get

S11 + avg =

∑
i∈B zi1

|B|

In this case the adversary can successfully recover S11 as

S11 =

⌊∑
i∈B zi1

|B|

⌉
We now examine how large yi1 must be to avoid this attack. Let Y←Dσ be the random variable
representing the distribution of yi1 values. Then from Hoeffding’s bound, for some constant c′ and
t2 < (1/2− t1),

Pr[|Ȳ − E[Y]| ≥ t2] ≤ 2 exp(−c′Qt22/3σ2)

=⇒ Pr[|Ȳ | ≥ t2] ≤ 2 exp(−c′Qt22/3σ2)

=⇒ Pr[|Ȳ | < t2] ≥ 1− 2 exp(−c′Qt22/3σ2)

Thus, if 3σ2 < c′Qt22, then 1− 2 exp(−c′Qt22/3σ2) is non-negligible. Hence, for the average of yi1 to
be greater than t2, we need that 3σ2 ≥ c′Qt22, i.e. σ must grow proportional to

√
Q.

C Fully Adaptive Unforgeability in the Preprocessing Model

A TS scheme satisfies fully adaptive unforgeability if for any adversary A with run-time 2o(λ), the
output of the following experiment is 1 with probability 2−Ω(λ):
ExptA,TS,FA−uf (1λ):

1. On input the security parameter λ, the adversary A outputs an access structure A ∈ S.

2. The challenger runs the TS.KeyGen(1λ) algorithm and generates public parameters pp,
verification key vk and the set of N key shares {ski}Ni=1. It sends pp and vk to A.

3. Initialize S = φ. Repeat:

• Adversary A issues a polynomial number of adaptive signing queries where in each query,
A outputs a message m and the challenger computes σi←TS.PartSign(pp, ski,m) for all
i ∈ [N] \ S, and provides {σi}i∈[N]\S to A.

• Adversary A issues a query for key shares for a set S′ ⊆ [N] of parties, such that S ∪ S′ is
an invalid set of parties.

• Challenger provides the set of key shares {ski}i∈S′ to A and sets S = S ∪ S′

4. Adversary A continues to issue a polynomial number of adaptive queries of the form (m, i),
where i ∈ [N] \ S to get partial signature σi on m. For each query, the challenger computes σi
as TS.PartSign(pp, ski,m) and provides it to A.

5. At the end of the experiment, adversary A outputs a forgery (m∗, σ∗). The experiment outputs
1 if TS.Verify(vk,m∗, σ∗) = accept and m∗ was not queried previously as a signing query.

56

Construction. In this section we provide our construction for fully adaptive threshold signatures in
the standard model but with pre-processing, where signers must be provided correlated randomness of
length proportional to the number of signing queries. We emphasize that this correlated randomness
is independent of messages, and that this processing can be done in an offline phase before any
messages are made available. The informed reader may notice similarities with the “MPC with
Preprocessing” model (please see [35] and references therein).

The construction in standard model differs from the one in ROM in the way the random values
ri,j are chosen. In this construction, ri,j is sampled directly for all possible signing query j in such

a way that for each j,
∑N

i=1 ri,j = 0. This helps to achieve full adaptivity because when key shares
of one or more parties in S′ ⊆ [N] are revealed to the adversary, it does not fix ri,j values for
i ∈ [N] \ S′. This gives the challenger the flexibility to simulate partial signature for uncorrupted
parties and adjust their randomness ri,j later. Let Q be the maximum number of signing queries,
then the signature scheme is defined as follows. For a stateless scheme, we use a collision resistant
hash function H which maps a message to an index in [Q].

Let H : {0, 1}∗→[Q] be a collision resistant hash function and H1 : {0, 1}λ × {0, 1}∗→{0, 1}r be
a hash function modelled as random oracle.

TS.KeyGen(1λ): Upon input the security parameter λ, do the following:

1. For j = 1 to Q, generate random values {rij}Ni=1 such that
∑N

i=1 rij = 0.

2. Generate the verification and signing keys for the signature scheme (Sig.vk,Sig.sk)←Sig.KeyGen(1λ).

3. Generate the public and the secret keys for the HE scheme
(HE.PK,HE.SK)←HE.KeyGen(1λ) and generate N shares of HE.SK as (sk1, sk2, . . . , skN) =
Share(HE.SK) such that

∑N
i=1 ski = HE.SK.

4. Compute an HE encryption of Sig.sk as CTSig.sk←HE.Enc(HE.PK,Sig.sk).

5. For each Pi, randomly choose a tag τi ∈ {0, 1}∗ and a hash key hkeyi←{0, 1}λ. Generate
HS public parameters HS.pp←HS.PrmsGen(1λ, 1n), and the public and signing keys as
(HS.pk,HS.sk)←HS.KeyGen(1λ,HS.pp). Here, n is the bit length of input to PartSign
circuit which depends on (HE.SK, rij , hkeyi).

6. Compute (πτi , πi) = HS.Sign(HS.sk, (ski, {rij}j∈[Q], hkeyi), τi) for each i ∈ [N].

7. Output TSig.pp = (HE.PK,HS.pp,HS.pk,CTSig.sk, {τi, πτi}Ni=1), TSig.vk = Sig.vk, TSig.sk =
{TSig.ski = (ski, {rij}j∈[Q], hkeyi, πi)}Ni=1.

TS.PartSign(TSig.pp,TSig.ski,M): Upon input the public parameters TSig.pp, a partial signing
key TSig.ski = (ski, {rij}j∈[Q], hkeyi, πi) and a message M , do the following:

1. Compute j = H(M), ui = H1(hkeyi,M) and sample e′i←Ds(ui).
2. Let CM be the Sig.Sign circuit with message M being hardcoded. Compute HE encryption

of signature σM as CTσM←HE.Eval(HE.PK, CM ,CTSig.sk).

3. Compute σi,M = HE.decode0(ski,CTσM) + rij + e′i.

4. Let CPS be a circuit with CTσM being hardcoded and which takes as input the key share
TSig.ski to compute HE.decode0(ski,CTσM) + rij + e′i.

• Compute π∗i,M = HS.SignEval(HS.pp, CPS, πτi , (ski, {rij}j∈[Q], hkeyi), πi).

57

• Compute π̃i,M = HS.Hide(HS.pk, σi,M , π
∗
i,M).

5. Output yi,M = (σi,M , π̃i,M).

TS.PartSignVerify(TSig.pp,M, yi,M): Upon input the public parameters TSig.pp, message M , and
a partial signature yi,M , the verifier does the following.

1. Computes CTσM = HE.Eval(HE.PK, CM ,CTSig.sk).

2. Defines circuit CPS as described before and computes α = HS.Process(HS.pp, CPS).

3. Parses yi,M as (σi,M , π̃i,M) and outputs
HS.HVerify(HS.pp, α, σi,M , τi, (πτi , π̃i,M)).

TS.Combine(TSig.pp, {yi,M}i∈[N]): Upon input the public parameters TSig.pp and a set of partial

signatures {yi,M}i∈[N], parse yi,M as (σi,M , π̃i,M) and output σM = HE.decode1(
∑N

i=1 σi,M).

TS.Verify(TSig.vk,M, σM): Upon input a verification key TSig.vk, a message M and signature σM ,
output Sig.Verify(TSig.vk,M, σM).

Correctness. From the correctness of HE.Eval, CTσM = HE.Eval(HE.PK, CM ,CTSig.sk) is the
encryption of CM (Sig.sk) = Sig.Sign(Sig.sk,M) = σM , which decrypts with the HE secret key
HE.SK. So, HE.decode0(HE.SK,CTσM) = σM bq/2e+e. The signature computed by the TS.Combine
algorithm is

HE.decode1(

N∑
i=1

σi,M) = HE.decode1(

N∑
i=1

HE.decode0(ski,CTσM
) +

N∑
i=1

rij +

N∑
i=1

e′i)

= HE.decode1(HE.decode0(

N∑
i=1

ski,CTσM
) + 0 +

N∑
i=1

e′i)

= HE.decode1(HE.decode0(HE.SK,CTσM
) +

N∑
i=1

e′i)

= HE.decode1(σM bq/2e+ e+

N∑
i=1

e′i) = σM .

Theorem C.1. Assume the signature scheme Sig satisfies unforgeability, HE is a CPA secure
homomorphic encryption scheme (Definition 2.18), HS is context hiding homomorphic signature
scheme (Definition A.4) and Share satisfies privacy (Definition 2.26). Then the above construction
satisfies adaptive unforgeability if the flooding error is of the size poly(λ)

√
Q, where Q is the number

of signing queries.

Proof. The security of the construction can be argued using the following hybrids:

Hybrid0: The real world.

58

Hybrid1 : Same as Hybrid0, except that now instead of using HS.SigEval algorithm to compute the
homomorphic signature π̃i,M on σi,M in yi,M = (σi,M , π̃i,M), the challenger simulates π̃i,M as
π̃i,M = Sim(HS.sk, α, σi,M , τi, πτi), where α = HS.Process(HS.pp, CPS).

Hybrid2: Same as Hybrid1, except that now the randomness ui used in sampling flooding noise in
PartSign algorithm is chosen uniformly randomly from {0, 1}r and then H1 is programmed as
H1(hkeyi,M) = ui. For random oracle queries by the adversary on an input x, the challenger
first checks if H1(x) is already set. If so, then returns it else chooses a value uniformly
randomly from {0, 1}r and saves and returns it.

Hybrid3: Same as Hybrid2 except that now the rij values are set in a different order. In particular,
for each i ∈ [N], let PreQi be the set of messages for which partial signatures are computed
before corrupting Pi. Then, for each j ∈ {H(M) : M ∈ PreQi}, rij is set in reverse order, i.e
the challenger first computes the partial signature σi,M and then sets the value for ri,H(M)

accordingly as follows. For any signing query on message M , let SM ⊆ [N] be the set of parties
corrupted by the adversary so far. Then to compute σi,M , the challenger does the following.

1. If M was queried before then returns σ′iM + e′i for each i ∈ [N] \ S, where σ′i,M is the
same value as in the earlier response, but e′i is sampled afresh. Else,

2. Computes CTσM = HE.Eval(HE.PK, CM ,Sig.sk) and

3. For each i ∈ SM , computes σ′i,M = HE.decode0(ski,CTσM) + ri,H(M) and sets σi,M =
σ′i,M + e′i.

4. For i ∈ [N] \ SM ,

• Divide HE.decode0(HE.SK,CTσM)−
∑

k∈SM
σ′k,M into N − |SM | shares {si,M}i∈[N]\SM

.

• Set σ′i,M = si,M and σi,M = σ′i,M + e′i

5. Return {σi,M}i∈[N]\S to the adversary.

When the adversary asks for key share for some i ∈ [N], the challenger does the following.

1. For each M ∈ PreQi, computes ri,H(M) = si,M − HE.decode0(ski,CTσM).

2. For j ∈ [Q] \ {H(M) : M ∈ PreQi} chooses ri,j randomly.

Hybrid4: Same as Hybrid3, except the following changes:

To answer signing query on any message M , for each i ∈ SM , the challenger computes the
response as in Hybrid3, but for i ∈ [N] \ SM the challenger simulates the response differently
from Hybrid3. In particular, instead of sharing HE.decode0(HE.SK,CTσM)−

∑
i∈SM

σ′i,M among
N − |SM | uncorrupted parties, the challenger now shares σM bq/2e −

∑
i∈SM

σ′i,M among the
uncorrupted parties as described below.

1. Computes CTσM = HE.Eval(HE.PK, CM ,CTSig.sk) and
σM = Sig.Sign(Sig.sk,M).

2. For each i ∈ SM , compute j = H(M), σ′i,M = HE.decode0(ski,CTσM) + rij , and σi,M =
σ′i,M + e′i, where e′i←Ds.

59

3. For each i ∈ [N] \ SM , do the following: divide σM bq/2e −
∑

k∈SM
(σ′k,M) into N − |SM |

shares to get {si,M}i∈[N]\SM
. Set σi,M = si,M + e′i.

4. Return σi,M for i ∈ [N] \ SM .

Response to key share queries is given in the same way as in the previous hybrid.

Hybrid5: Same as Hybrid4, except that now the challenger shares zero vector {ski}Ni=1←Share(0)
instead of HE.SK to generate key shares ski in TSig.ski.

Hybrid6: Same as Hybrid5, except that now CTSig.sk in public parameters, TSig.pp is replaced by
CT0, i.e., an HE encryption of zero vector.

Indistinguishability of Hybrids. Next, we show that consecutive hybrids are indistinguishable.

Proof for indistinguishability between Hybrid0, Hybrid1 and Hybrid2 is the same as for partially
adaptive construction (Section 5.1.1).

Claim C.2. Hybrid2 and Hybrid3 are statistically indistinguishable

Proof. Let Query be the set of all messages for which the adversary issued signing queries during
the experiment. Let T = {H(M)}M∈Query. Then Hybrid2 and Hybrid3 differ only in the way
{ri,j}i∈[N],j∈T are set. Consider any j ∈ T . Let j = H(M) for some M ∈ Query. Then in Hybrid3,
{ri,j}i∈SM

are randomly chosen. For i ∈ [N] \ SM , ri,j = si,j − HE.decode0(ski,CTσM), where
{si,j}i∈[N]\SM

are obtained by randomly sharing HE.decode0(HE.SK,CTσM)−
∑

k∈SM
(HE.decode0(skk,CTσM)+

rk,j) into N − |SM | shares. Thus,

HE.decode0(HE.SK,CTσM
) =

∑
k∈SM

HE.decode0(skk,CTσM
) +

∑
k∈SM

rk,j +
∑

i∈[N]\SM

si,j

=
∑
k∈SM

HE.decode0(skk,CTσM
) +

∑
k∈SM

rk,j

+
∑

i∈[N]\SM

HE.decode0(ski,CTσM
) +

∑
i∈[N]\SM

ri,j

=
∑
i∈[N]

HE.decode0(ski,CTσM
) +

∑
i∈[N]

ri,j

= HE.decode0(HE.SK,CTσM
) +

∑
i∈[N]

ri,j

This implies
∑

i∈[N] ri,j = 0, and since {si,j}i∈[N]\SM
are random shares, we can conclude that

{ri,j}i∈[N] are random shares of 0, which is same as Hybrid2.

Claim C.3. Assume that the flooding error is of the order poly(λ) ·
√
Q. If there is an adversary who

can win the ExptA,TS,FA−uf (1λ) game in Hybrid3 with probability ε, then its probability of winning
in Hybrid4 is at least ε2/2.

Proof. Let the adversary issues Q signing queries. Wlog let the corrupted parties be {P2, . . . , PN}.
Then, the two hybrids differ only in the error term in σ1,M , as shown below.

Consider any signing query for a message M . Let SM be the set of corrupted parties so far and
let H(M) = j and e′1 ← Ds. Then,

60

In Hybrid4, we have:

σ1 = s1,M + e′1

= σM bq/2e −
∑
i∈SM

σ′i,M −
∑

i∈[N]\SM

i 6=1

si,M + e′1

= σM bq/2e −
∑
i∈SM

(HE.decode0(ski,CTσM
) + rij)

−
∑

i∈[N]\SM

i6=1

(HE.decode0(ski,CTσM
) + rij) + e′1

= σM bq/2e −
∑
i∈[N]

HE.decode0(ski,CTσM
)−

∑
i∈[N]\{1}

rij + HE.decode0(sk1,CTσM
) + e′1

= σM bq/2e − HE.decode0(
∑
i∈[N]

ski,CTσM
)−

∑
i∈[N]\{1}

rij + HE.decode0(sk1,CTσM
) + e′1

= σM bq/2e − HE.decode0(HE.SK,CTσM
)−

∑
i∈[N]\{1}

rij + HE.decode0(sk1,CTσM
) + e′1

= HE.decode0(sk1,CTσM
) + r1j + e+ e′1

In Hybrid3,

σ1,M = s1,M + e′1

= HE.decode0(HE.SK,CTσM
)−

∑
i∈SM

σ′i,M −
∑

i∈[N]\SM

i6=1

si,M + e′1

= HE.decode0(HE.SK,CTσM
)−

∑
i∈SM

(HE.decode0(ski,CTσM
) + rij)

−
∑

i∈[N]\SM

i 6=1

(HE.decode0(ski,CTσM
) + rij) + e′1

= HE.decode0(HE.SK,CTσM
)−

∑
i∈[N]

HE.decode0(ski,CTσM
)−

∑
i∈[N]\{1}

rij

+HE.decode0(sk1,CTσM
) + e′1

= HE.decode0(HE.SK,CTσM
)− HE.decode0(

∑
i∈[N]

ski,CTσM
)−

∑
i∈[N]\{1}

rij

+HE.decode0(sk1,CTσM
) + e′1

= HE.decode0(sk1,CTσM
) + e′1 −

∑
i∈[N]\{1}

rij

= HE.decode0(sk1,CTσM
) + r1j + e′1

In the third step, σ′i,M is computed as HE.decode0(ski,CTσM)+rij , while si,M = HE.decode0(ski,CTσM)+
rij because of the setting of rij such that the equality holds. In the last step we replace

61

−
∑

i∈[N]\{1} rij by r1j because
∑

i∈[N] rij = 0. However note that r1j is never actually set since
TSig.sk1 is never queried for.

Thus, the difference in the two hybrids is in the error terms in σ1. In Hybrid3, the error is e′1,
while in Hybrid4, it is e′1 + e. This is the same case as in Section 4. Hence, the claim can be proved
in the same way as Claim 4.4.

Claim C.4. Assuming the privacy property of secret sharing scheme, Share, Hybrid4 and Hybrid5

are indistinguishable.

Proof. The only difference between Hybrid4 and Hybrid5 is in the way the key shares sk1, sk2, . . . , skN
are generated. In Hybrid4 (sk1, sk2, . . . , skN←Share(HE.SK), while in Hybrid5, (sk1, sk2, . . . , skN)←Share(0).
Hence as long as the adversary is given the key shares for an invalid set of parties, the two distributions
are indistinguishable due to the privacy property of secret sharing scheme Share.

Claim C.5. Assume the HE scheme is semantically secure. Then Hybrid5 and Hybrid6 are
indistinguishable.

Proof. Let A be an adversary who can distinguish Hybrid5 and Hybrid6 with non-negligible
probability ε. Then we construct an adversary B against the HE scheme. The proof is similar to the
one in Claim 5.7.

Claim C.6. If the underlying signature scheme Sig is unforgeable, then the unforgeability game in
Hybrid6 cannot be won.

Proof. Let A be an adversary that wins the experiment ExptA,TS,FA−uf (1λ) in Hybrid6. We can
construct an adversary B against the signature scheme in the same way as described in the proof of
Claim 5.8

Above arguments prove the fully adaptive unforgeability of our threshold signature scheme.

Robustness.

Claim C.7. If HS is multi data secure homomorphic signature, then the construction of TS satisfies
robustness.

Proof. The proof is same as in Claim 4.8.

D Threshold Signatures for t-out-of-N access structures

In this section we give a general construction for t-out-of -N access structure using {0, 1}-LSSS.

The construction uses following building blocks:

1. A special homomorphic encryption scheme HE = (HE.KeyGen,HE.Enc, HE.Dec,HE.Eval). Let
B be the error bound of the HE scheme.

2. A UF-CMA signature scheme Sig = (Sig.KeyGen, Sig.Sign, Sig.Verify).

3. A t out of N {0, 1}-LSSS, Share.

62

Construction

TS.KeyGen(1λ, t): Upon input the security parameter λ and the threshold t do the following:

1. Generate the verification and signing keys for the signature scheme (Sig.vk,Sig.sk)←Sig.KeyGen(1λ).

2. Generate the keys for the HE scheme
(HE.PK,HE.SK)←HE.KeyGen(1λ) and compute an HE encryption of the signing key as
CTSig.sk = HE.Enc(HE.PK, Sig.sk).

3. Share the HE secret key as: {TSig.ski}Ni=1←Share(HE.SK). Note that for {0, 1}-LSSS,
each TSig.ski can be a set of more than one secret shares.
Notation: Let M be the share matrix of dimension `×N . Then for i ∈ [N], Ti refers to
the partition of [`] corresponding to party Pi and TSig.ski = {skj}j∈Ti , where skj , is the
jth (out of ` shares) share of HE.SK.

4. Output TSig.pp = {HE.PK,CTSig.sk}, TSig.vk = Sig.vk, TSig.sk = {TSig.ski}Ni=1.

TS.PartSign(TSig.pp,TSig.ski,m): Upon input the public parameters TSig.pp, the partial signing
key TSig.ski and a message m, do the following:

1. Let Cm be the signing circuit, with message m being hardcoded. Homomorphically
compute an HE encryption of the signature as
CTσ = HE.Eval(HE.PK, Cm,CTSig.sk).

2. Output σi = {σ̂j}j∈Ti , where σ̂j = HE.decode0(skj ,CTσ) + e′j , where, e′j ← Ds.

TS.Combine(TSig.pp, {σi}i∈S): Upon input the public parameters TSig.pp and a set of partial
signatures {σi}i∈S , where S ⊆ [N], the Combine algorithm first checks if |S| ≥ t - if not then
output ⊥, else computes a minimum valid share set T ⊆

⋃
i∈S Ti and outputs

σm = HE.decode1(
∑
j∈T

σ̂j).

TS.Verify(TSig.vk,m, σm): Upon input the verification key TSig.vk, a message m and signature
σm, output Sig.Verify(TSig.vk,m, σm).

Correctness. From the correctness of HE.Eval algorithm, CTσ = HE.Eval(HE.PK, Cm,CTSig.sk) is
the encryption of Cm(Sig.sk) = Sig.Sign(Sig.sk,m) = σm, which decrypts with the HE secret key
HE.SK. So, HE.decode0(HE.SK,CTσ) = σm bq/2e+ e, where e is the error in CTσ. The signature

63

computed by the TS.Combine algorithm is

HE.decode1(
∑
j∈T

σ̂j) = HE.decode1(
∑
j∈T

HE.decode0(skj ,CTσ) +
∑
j∈T

e′j)

= HE.decode1(HE.decode0(
∑
j∈T

skj ,CTσ) +
∑
j∈T

e′j)

(from linearity of HE.decode0)

= HE.decode1(HE.decode0(HE.SK,CTσ) +
∑
j∈T

e′j)

(from correctness of Share algorithm.)

= HE.decode1(σm bq/2e+ e+
∑
j∈T

e′j) = σm.

Unforgeability

Theorem D.1. Assume HE is a homomorphic encryption that satisfies security (Definition 2.18),
Share is a {0, 1}-LSSS t-out-of-N secret sharing scheme that satisfies privacy(Definition 2.26) and
Sig is a signature scheme that satisfies unforgeability then the above construction of threshold
signature satisfies unforgeability.

Proof. We prove the theorem using following hybrids.

Hybrid0 : Is the real world; i.e. the challenger generates the signing key shares, {TSig.ski}i∈[N], the
verification key TSig.vk, and the public parameters TSig.pp and sends TSig.vk and TSig.pp to
the adversary, A. A outputs a maximal invalid party set S∗ (i.e. |S∗| = t − 1) tofor which
the challenger returns the corresponding key shares {TSig.ski}i∈S∗ . In response to (partial)
signing query (m, i) for any i ∈ [N] \ S∗, the challenger computes it as per the scheme.

Hybrid1: Same as Hybrid0 except that now the signing queries are answered differently.

1. On receiving the (invalid) party set S∗ from A, the challenger commits to a maximal
invalid share set T ∗ which contains

⋃
i∈S∗ Ti.

2. To respond to any partial signing query (m, i) on message m for party Pi (i ∈ [N] \ S∗),
the challenger computes σ̂j for j ∈ Ti as follows:

• If j ∈ Ti ∩ T ∗, then computes σ̂j = HE.decode0(skj ,CTσ) + e′j , i.e. as in the real world.

• If j 6∈ Ti ∩ T ∗, then the challenger does the following: computes a minimal valid
share set T ⊆ T ∗ ∪ {j}. (Note that such a set always exists and contains j because
T ∗ is a maximal invalid share set and j 6∈ T ∗, hence T ∗ ∪ {j} is a valid share set.)
Computes σm = Sig.Sign(Sig.sk,m) and {σ̂j′ = HE.decode0(skj′ ,CTσ) + e′j′)}j′∈T\{j}
Then it computes σ̂j as

σ̂j = bq/2e · σm −
∑

j′∈T\{j}

σ̂j′ + e′j .

64

Hybrid2: Same as Hybrid1, except that instead of sharing HE.SK the challenger now computes key
shares as (TSig.sk1, . . . ,TSig.skN)←Share(0, t).

Hybrid3: Same as Hybrid2, except that CTSig.sk in TSig.pp is replaced by CT0, i.e. ciphertext of 0
using same encryption key HE.PK.

Indistinguishability of Hybrids. Next, we show that consecutive hybrids are indistinguishable.

Claim D.2. If the flooding error is of the size poly(λ)
√
Q, then if there is an adversary who can

win the game in Hybrid0 with probability ε, then its probability of winning in Hybrid1 is at least ε2/2.

Proof. Let the number of signing queries that an adversary can make be bounded by Q.

The two hybrids differ only in the error term in partial signatures returned by the challenger.
Let the adversary issues partial signing query for (m, i). Let Ti, S

∗ and T ∗ be as defined in Hybrid1.
Then for j ∈ Ti ∩ T ∗, σ̂j is computed in the same way in both the hybrids. The difference is in the
error term in σ̂j for j ∈ Ti \ T ∗.

Let us focus on one such j. Let e′j ← Ds and T be a minimal valid share set contained in
T ∗ ∪ {j}.

In Hybrid0, we have:
σ̂j = HE.decode0(skj ,CTσ) + e′j .

In Hybrid1, we have:

σ̂j = σm. bq/2e −
∑

j′∈T\{j}

HE.decode0(skj′ ,CTσ) + e′j

= σm. bq/2e −
∑
j′∈T

HE.decode0(skj′ ,CTσ) + HE.decode0(skj ,CTσ) + e′j

= σm. bq/2e − HE.decode0(
∑
j′∈T

skj′ ,CTσ) + HE.decode0(skj ,CTσ) + e′j

= σm. bq/2e − HE.decode0(HE.SK,CTσ) + HE.decode0(skj ,CTσ) + e′j

= σm. bq/2e − σm. bq/2e+ e+ HE.decode0(skj ,CTσ) + e′j

= HE.decode0(skj ,CTσ) + (e′j + e)

Thus, the difference in the two hybrids is in the error terms in σ̂j for j ∈ Ti \ T ∗. In Hybrid0, the
error is e′j , while in Hybrid1, it is e′j + e. The proof is similar to the Rényi Divergence based proof
given for claim 4.4, with few modifications made for t-out-of-N access structure. Since e′j is sampled
from a discrete Gaussian with std. deviation s, we consider the distributions Ds,0 and Ds,|e| for each
j ∈ Ti \ T ∗. For simplicity, we refer to the error distribution in Hybrid0 as D0 and in Hybrid1 as D1.
Then D0 = DZni ,s,0 and D1 = DZni ,s,e, where e = (e, . . . , e (|Ti \ T ∗| times)) and ni = |Ti \ T ∗|. To
begin with, consider an adversary that makes a single signing query. In this case, let E represent
the event that the adversary wins the game. Then, we assumed that

D0(E) = ε.

65

From the probability preservation property (Lemma 2.13), we have

D1(E) ≥ D0(E)
a

a−1

Ra(D0‖D1)
, for a ∈ (1,∞)

From Lemma 2.14,

Ra(D0‖D1) = exp(aπ
‖e‖2

s2
)

= exp(aπ
e2 · |Ti \ T ∗|

s2
)

In general, let the adversary adaptively issues Q signing queries as (m1, i1), . . . , (mQ, iQ). Then,
D0 = DZd,s,0 and D1 = DZd,s,e, where

e =
((ei1 ,...,ei1),...,(eiQ ,...,eiQ))

|Ti1\T
∗| |TiQ\T

∗|
times times

,

where d =
∑

j∈Q nij and eij is the error in CTσMj
. Errors ei1 , . . . , eiQ can be mutually dependent

and each eij ≤ Beval for 1 ≤ j ≤ Q. Thus, for Q queries,

Ra(D0‖D1) = exp(aπ
‖e‖2

s2
)

= exp(aπ

∑
j∈[Q] |Tij \ T ∗| · e2

ij

s2
)

≤ exp(aπ

∑
j∈[Q] ` ·B

2
eval

s2
)

= exp(aπ
Q · ` ·B2

eval

s2
)

Setting s = Beval ·
√
` ·Qλ, where ` is bounded by poly(N), we get

Ra(D0‖D1) ≤ exp(
aπ

λ
)

Therefore,

D1(E) ≥ D0(E)
a

a−1

Ra(D0‖D1)

≥ D0(E)
a

a−1 exp(−aπ
λ

)

The claim is proved by taking a = 2. Thus, if the probability of success in Hybrid0 is non-negligible
then it is non-negligible in Hybrid1 as well.

Claim D.3. Assume that Share is secure sharing scheme, then Hybrid1 and Hybrid2 are
indistinguishable.

Proof. The two hybrids differ only in the generation of key shares. In Hybrid1, {TSig.ski}i∈[N] =
Share(HE.SK, t), while in Hybrid2 {TSig.ski}i∈[N] is computed as Share(0, t). Hence by the privacy
property (Definition 2.26) of Share the two hybrids are identical since the key shares given to the
adversary is only for an invalid set of participants.

66

Claim D.4. Assume the HE scheme is secure (Definition 2.18). Then Hybrid2 and Hybrid3 are
indistinguishable.

Proof. Let A be an adversary who can distinguish Hybrid2 and Hybrid3 with non-negligible
probability ε. Then we construct an adversary B against the HE scheme as follows.

1. Adversary B receives HE.PK from the HE challenger.

2. It generates (Sig.sk,Sig.vk)←Sig.KeyGen(1λ) and computes the key shares as {TSig.sk1, . . . ,TSig.skN}←Share(0, t).

3. It sends the challenge messages: m0 = Sig.sk and m1 = 0 to the HE challenger.

4. The HE challenger responds with a ciphertext CTb.

5. Adversary B sets TSig.pp = {HE.PK,CTb} and sends Sig.vk,TSig.pp to A.

6. Adversary A outputs a maximal invalid party set S∗ for which B returns {TSig.ski}i∈S∗ .

7. To answer PartSign query, (m, i), for any message m and participant Pi by A, B computes
CTσm = HE.Eval(HE.PK, Cm,CTb) and then computes σj in the way described in the hybrids.

8. Finally, if A outputs its guess as Hybrid2, then B sends b′ = 0, else b′ = 1 to the HE challenger.

Claim D.5. If the underlying signature scheme Sig is unforgeable, then the unforgeability game in
Hybrid3 cannot be won.

Proof. Let A be an adversary that wins the unforgeability game in Hybrid3. We can construct an
adversary B against the signature scheme as follows:

1. On receiving verification key Sig.vk from Sig-challenger, B runs HE.KeyGen to get HE.PK,HE.SK;
computes key shares {TSig.ski}Ni=1←Share(0, t) and CT0 and sends {TSig.vk = Sig.vk,TSig.pp =
(HE.PK,CT0)} to A.

2. A outputs a maximal invalid party set S∗ to which B responds with {TSig.ski}i∈S∗}.

3. To simulate PartSign query on message m for any participant Pi, B requires σm which it gets
by issuing signing query on message m to Sig challenger and computes σi as described in the
hybrid.

4. At the end of the experiment, let (m∗, σ∗) be a message-signature pair returned by A, then B
also returns the same pair to the Sig challenger.

Since B issues signing queries to Sig challenger on only those messages m, for which A issues signing
queries, if (m∗, σ∗) is a valid forgery for A, then it is a valid forgery for B as well.

The arguments above prove the unforgeability of our threshold signature scheme if the underlying
HE scheme, secret sharing scheme and signature scheme are secure.

67

Robustness

To add robustness in the above scheme, we can use context hiding secure homomorphic signature
in the same way as in Section 4. In particular, the KeyGen algorithm also includes in TSig.ski a
HS signature of party Pi’s key shares. To prove the honest evaluation of PartSign algorithm, the
signer homomorphically computes a signature on σi,m and gives it to the verifier. The unforgeability
property of HS provides robustness and its context hiding property ensures that unforgeability of
TS is maintained.

68

	Introduction
	State of the Art from Lattices
	Our Contributions
	Technical Overview
	Perspective and Open Problems

	Preliminaries
	Threshold Signatures
	Blind Signatures
	Lattices and Discrete Gaussians
	Hardness Assumptions
	Rényi Divergence
	Homomorphic Encryption (HE).
	Secret Sharing.
	Threshold Homomorphic Encryption

	Lyubashevsky's Signature Without Aborts
	Construction
	From Gaussian to Uniform
	Instantiation

	More Efficient Threshold Signatures from Lattices
	Optimizing the Boneh et al scheme using the Rényi Divergence
	On the Optimality of Our Flooding

	Adaptive Security for Threshold Signatures
	Partially Adaptive Unforgeability

	Blind Signatures
	Construction
	Comparison with the Hauck et al scheme
	Towards an Instantiation

	Additional Preliminaries
	Multi-data Homomorphic Signature.

	Missing Details in Section 3
	Proof of Lemma 3.5
	Optimality of Flooding in Section 3

	Fully Adaptive Unforgeability in the Preprocessing Model
	Threshold Signatures for t-out-of-N access structures

