
GLV+HWCD for 2y^2=x^3+x/GF(8^91+5)

Dan Brown∗

March 22, 2021

Abstract

This report considers combining three well-known optimization
methods for elliptic curve scalar multiplication: Gallant–Lambert–
Vanstone (GLV) for complex multiplication endomorphisms [i] and
[i + 1]; 3-bit fixed windows (signed base 8); and Hisil–Wong–Carter–
Dawson (HWCD) curve arithmetic for twisted Edwards curves.

An x-only Diffie–Hellman scalar multiplication for curve 2y2 =
x3+x over field size 891+5 has arithmetic cost 947M+1086S, where M

is a field multiplication and S is a field squaring. This is approximately
(3.55M +4.07S)/bit, with 1S/bit for input decompression and 1S/bit
for output normalization. Optimizing speed by allowing uncompressed
input points leads to an estimate (3.38M + 2.95S)/bit.

To mitigate some side-channel attacks, the secret scalar is only
used to copy curve points from one array to another: the field opera-
tions used are fixed and independent of the secret scalar. The method
is likely vulnerable to cache-timing attacks, nonetheless.

1 Review of HWCD elliptic curve arithmetic

This section reviews how Hisil–Wong–Carter–Dawson (HWCD) arithmetic
for twisted Edwards elliptic curve can be applied to Montgomery (Miller?)
curve 2y2 = x3 + x.

∗danibrown@blackberry.com

1

1.1 Twisted Edwards in extended coordinates

This report considers a special twisted Edwards elliptic curve E defined by
equations:

−X2 + Y 2 = T 2 + Z2, (1.1)

XY = TZ, (1.2)

with points in projective coordinates (X : Y : T : Z), known as HWCD
extended coordinates. The curve is the intersection of two quadric equations
in projective 3-space. The zero point of the group of points is chosen to be
O = (0 : 1 : 0 : 1).

(The usual parameters (a, d) for a general twisted Edwards elliptic curve
have been set to (a, d) = (−1, 1) in the case of this curve E.)

1.2 Conversion between Montgomery and Edwards

The curve E is isomorphic to Montgomery curve, M : 2y2 = x3 + x. The
isomorphism is ε : M → E:

ε : P 7→

(0 : 1 : 0 : 1) if P = ∞,

(0 : −1 : 0 : 1) if P = (0, 0),

(x(x − 1) : y(x + 1) : x(x + 1) : y(x − 1)) if P = (x, y) 6= (0, 0).

An inverse isomorphism ε−1 : E → M is

ε−1 : P 7→

∞ if P = (0 : 1 : 0 : 1),

(0, 0) if P = (0 : −1 : 0 : 1),
(

T +X
T −X

, Y +Z
T −X

)

if P = (X : Y : T : Z) 6= (0 : ±1 : 0 : 1).

Computing the isomorphism ε from an uncompressed input

a = x2 b = x c = xy d = y

X = a − b Y = c + d T = a + b Z = c − d

has cost 1M + 1S, plus four field additions.

1.3 Endomorphisms

The curves E and M are special with complex multiplication (CM) by i.

2

1.3.1 Multiplication by i

The map [i] : E → E can be computed as:

[i](X : Y : T : Z) = (iT : Z : iX : Y), (1.3)

with arithmetic cost 2M. The two multiplication are by a constant field
element i (which perhaps permits some further optimization, which was not
attempted in this report).

The shuffling of coordinates should also has a cost, but it should be much
lower, so we do not include it here, or in other arithmetic costs. Such details
are accounted for in the final runtime cost of the implementation.

1.3.2 Multiplication by 1+i

The map [1 + i] : E → E can be computed as:

[1 + i](x : y : t : z) = (ixz + yt : yz + ixt : xz + iyt : yz − ixt), (1.4)

which can be computed with the intermediate steps

E = x F = z G = y H = it

a = EF b = GH c = HE d = FG

X = i(a − b) Y = d + c T = a + b Z = d − c

for an arithmetic cost of approximately 6M. In more detail, it is four general
field multiplication, plus two multiplications by the constant i, and four field
additions, which tend to have relative low cost.

1.4 Hisil–Wong–Carter–Dawson double and add

The HWCD formulas for doubling and adding points are reviewed for the
special case of our curve E.

3

1.4.1 Point addition

Given two input points (Xj : Yj : Tj : Zj) for j ∈ {1, 2}, we can compute a
point (X : Y : T : Z) = (X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2) follows:

e = Y1 − X1 f = Y2 − X2 g = Y1 + X1 h = Y2 + X2 (1.5)

a = ef b = gh c = 2T1T2 d = 2Z1Z2 (1.6)

E = b − a F = d − c G = d + c H = b + a (1.7)

X = EF Y = GH T = HE Z = FG. (1.8)

The arithmetic cost is 8M. In detail, eight field general multiplication, and
ten field additions.

1.4.2 Point doubling

Given a point (X1 : Y1 : T1 : Z1), we can compute a point (X : Y : T : Z) =
2(X1 : Y1 : Z1) as follows:

a = X2

1 b = Y 2

1 c = Z2

1 d = (X1 + Y1)
2 (1.9)

E = d − b − a F = −2c − a + b G = b − a H = b + a (1.10)

X = EF Y = GH T = HE Z = FG. (1.11)

The arithmetic cost is 4M + 4S. In more detail, there four field squarings,
four general field multiplication, and six field additions.

The step of computing T = HE should usually be considered as part of
a point addition, which we explain in the next section. This means a point
doubling has arithmetic cost 3M + 4S

1.4.3 Tracking the cost of T

In point doubling, the input coordinate T1 is not used. The previous point
operation, whether addition or doubling can skip the step of computing T1. In
the general, the step of computing this T coordinate took the form T = HE.
Skipping it saves 1M.

In a sequence of repeated doublings, no intermediate T coordinates are
needed, so each doubling costs 3M + 4S.

The last addition addition before a sequence of doublings, can save 1M,
but then the last doubling in the sequence will need to compute T for the
next point addition, at a cost 1M.

4

By attributing the extra cost of computing T in the final doubling to
the addition before the first doubling, we can attribute 8M to each point
addition, and 3M + 4S to each point doubling.

2 Precomputing a table

Given a point P , we pre-compute 64 fixed multiples of P . Dropping the
square bracket notation, and abbreviating τ = 1 + i, the points are:

P0,0 = O P1,0 = P P1,1 = τP P0,1 = iP

P−1,1 = iP1,1 P−1,0 = −P P−1,−1 = −P1,1 P0,−1 = −P0,1

P1,−1 = −P−1,1, P2,−1 = P + P1,−1 P2,0 = τP1,−1 P2,1 = P + P1,1

P2,2 = τP2,0 P1,2 = iP2,−1 P0,2 = iP2,0 P−1,2 = iP2,1

P−2,2 = iP2,2 P−2,1 = −P2,−1 P−2,0 = −P2,0 P−2,−1 = −P2,1

P−2,−2 = −P2,2 P−1,−2 = −P1,2 P0,−2 = −P0,2 P1,−2 = −P−1,2

P2,−2 = −P−2,1 P3,−2 = P + P2,−3 P3,−1 = τP1,−2 P3,0 = P + P2,0

P3,1 = τP−1,2 P3,2 = P + P2,2 P3,3 = τP3,0 P2,3 = iP3,−2

P1,3 = iP3,−1 P0,3 = iP3,0 P−1,3 = iP3,1 P−2,3 = iP3,2

P−3,3 = iP3,3 P−3,2 = −P3,−2 P−3,1 = −P3,−1 P−3,0 = −P3,0

P−3,−1 = −P3,1, P−3,−2 = −P3,2 P−3,−3 = −P3,3 P−2,−3 = −P3,2

P−1,−3 = −P1,3 P0,−3 = −P0,3 P1,−3 = −P−1,3 P2,−3 = −P−2,3

P3,−3 = −P−3,3 P4,−3 = P + P3,−3 P4,−2 = τP1,−3 P4,−1 = P + P3,−1

P4,0 = τP2,−2 P4,1 = P + P3,1 P4,2 = τP3,−1 P4,3 = P + P3,3

P4,4 = τP4,0 P3,4 = iP4,−3 P2,4 = iP4,−2 P1,4 = iP4,−1

P0,4 = iP4,0 P−1,4 = iP4,1 P−2,4 = iP4,2 P3,4 = iP4,−3

A case-by-case formula for Pj,k is this:

Pj,k =

O if (j, k) = (0, 0)

P if (j, k) = (1, 0)

−P−j,−k if j + k < 0 or (−k) = j > 0

iPk,−j if k > 0 and − k ≤ j < k

P + Pj−1,k if j > 1 and j > |k| and j 6≡ k mod 2

τP j+k

2
,

k−j

2

if j > 0 and j > |k − 1| and j ≡ k mod 2

(2.1)

5

The computation above can be visualized as a spiral, with the computation
starting from 0, moving to 1, then moving up, and so on, the in the following
array.

i i i i i i i τ

i i i i i i τ +
− i i i i τ + τ

− − i i τ + τ +
− − − 0 1 τ + τ

− − − − − + τ +
− − − − − − + τ

− − − − − − − +

An iteration rule for the next pair (j′, k′) in the spiral after (j, k) is:

(j′, k′) =

(j + 1, k) if k ≤ j ≤ −k

(j, k + 1) if − j < k < j

(j − 1, k) if − k < j ≤ k

(j, k − 1) if j < k ≤ −j

(2.2)

Once we arrive at (j, k) = (−4, 4) we should stop.
The total number of general field multiplications (not counting field mul-

tiplications by constant i), is thus:

10 × 4 + 9 × 8 = 112, (2.3)

because each of the ten τ operations requires four general field multiplica-
tions, and each of the nine point additions requires eight general field multi-
plications. We should also count field multiplications by i, which we probably
should, then there is an extra

10 × 2 + 19 × 2 = 58 (2.4)

field multiplications. So, the total arithmetic cost of the pre-computation is
approximately 170M.

2.1 Decompression

If input point P is received in compressed form, then the step of decompress-
ing P will be necessary in the GLV+HWCD scalar multiplication. Decom-
pression is part of the pre-computation phase, because it does not depend on
the (secret) scalar.

6

This report has not focused on optimizing decompression. Instead, it has
considered that main benefit of GLV+HWCD scalar multiplication will be
speed-prioritized settings, where uncompressed points P will be transmitted.

2.2 Cofactor multiplication

Once a point P is validated for being on the curve, it often makes sense to
either check that it has the correct prime order, or to modify it by using
cofactor multiplication.

The curve M has a cofactor of 72, meaning that the 72n points on M ,
where n is a large prime. Actually, for any point P on M , the point [12]P
belongs to the order n subgroup. So, [12]P has prime order n or 1. The
latter case, means [12]P = O, and that P had order dividing 12.

In this case, when using Diffie–Hellman, if P is the received point of the
peer, usually the peer’s ephemeral public key, then we may wish to replace
it by [12]P . Then we check that [12]P 6= O.

Alternatively, we can opt to not use cofactor multiplication. In this case,
we might risk an attacker sending P with order other than n. The attack
might be able to use such a point P of invalid order to learn s mod 12,
where s is the secret scalar. Diffie–Hellman can probably tolerate an attacker
learning s mod 12. For signatures, the attacker does not get to choose which
P gets combined with a secret scalar. So, in typical applications, cofactor
multiplication is perhaps not that helpful.

2.3 Validation

Given an uncompressed point P in the affine plane to which M belongs, the
GLV+HWCD only works properly if point P lies on the curve M .

Checking that P ∈ M can be tested at arithmetic cost of 1M + 2S, along
with two field additions.

There is slight reason to hope that GLV+HWCD is not vulnerable to
attacks based on point P 6∈ M . Perhaps, complex multiplication or the
HWCD formula themselves, mean that when secret scalar applied to the
invalid point, nothing predictable is leaked to the attacker. However, the
cost of validation is so small, that it is better to validate the point than to
rely on this hope.

7

3 Scalar multiplication

Suppose that we have two polynomials t and u of degree 45, with coefficients
in the set the {−3, −2, −1, 0, 1, 2, 3, 4}.

Let s = t(8) + iu(8) mod n, where n is the order of the point P , and i is
an integer such that i2 = −1 mod n. We wish to compute [s]P .

(Finding polynomials t and u given arbitrary integer s, is called re-coding,
but is not the focus of this report.)

The coefficients of t and u give indices into the pre-computed table. The
resulting is multiplied by, with three consecutive point doublings. Then
another point from the pre-computed is added. This takes 44 point additions,
and 44 point doublings. The total arithmetic cost is:

44 × (8M + 3 × (3M + 4S)) = 748M + 528S. (3.1)

3.1 Forming a scalar-dependent array

Mitigations against cache-timing side channel attacks include using very little
memory, and avoiding secret-dependent table lookups. These mitigations
seem not to work for GLV+HWCD.

Instead, an alternative method has been tried (but not tested). Do all the
secret table-lookups by copying between the pre-computed table to a table
of coefficients. No elliptic curve or field arithmetic is done between any the
point copying steps. Hopefully, copying is fast enough to reduce the time
window of opportunity for a cache miss to a short enough time to render the
attacker’s task too difficult.

3.2 Normalization

In most situations, after computing sP , the next step is to convert sP to a
normalized form, such as affine Montgomery form.

For the field of size 891+5, a conversion from extended Edward coordinate
to affine Montgomery coordinates can be done with a cost of 4M + 273S.

4 Arithmetic cost per bit

Assuming an uncompressed point P on curve M , and s given by the polyno-
mials t and u, the arithmetic cost of computing x([s]P) by the GLV+HWCD

8

method is

(2M + 3S) + (170M) + (748M + 528S) + (4M + 273S) = 924M + 804S

This ignored cofactor multiplication.
Considering the scalars as 273 bits, then the cost per is approximately:

3.38M + 2.95M.

A Speculative questions

Does GLV+HWCD under-utilize the specialness of curve 2y2 = x3 +x? Both
optimization methods, GLV and HWCD, work for curves more generic than
2y2 = x3 + x.

The GLV method optimizes quite a few less special curves. The curve
needs an efficient endomorphism, but it does not need complex multiplication
by i. It is believe the GLV offers an advantage if the endomorphism has a
speed competitive with a few doublings. Also, the version of GLV described
in this report uses the endomorphisms [i] and [i + 1], many times, not just
once as was the case in GLV. Perhaps, straying from the original way that
GLV used the endomorphism resulted less of an acceleration.

The HWCD method optimizes many far less special curves. Up to a
quarter of all randomly chosen curves can be optimized using HWCD. Any
curve with order divisible by four is isomorphic to an twisted Edwards curve,
and thus optimizable with HWCD. Maybe elliptic curve experts as clever as
Montgomery, Hisil, Wong, Carter or Dawson, could, if they felt like it, find
new point addition formulas that are specialized to curves with three-term
equations, such as 2y2 = x3 + x. Besides being just too greedy, why not ask
them to find a point addition formula with arithmetic cost 6M, instead of
8M formula for four-term curves?

B Sample code

The following sample code is an edited excerpt pasted from an preliminary
experimental implementation of some ideas in this report. The code is very
incomplete, and has not been tested for quality. It is likely vulnerable to side
channel attacks, particular cache-timing attacks.

9

#include "8^91+5.c"

#define _2(E) (1<<(0 E))

#define LEF(a,B) (mal(a,1,B))

typedef struct ed_s { f X,Y,T,Z;} ed;

ed o = {{0},{1},{0},{1}};

int ed_on_curve (ed p, int t, int debugging)

{

int r; f a,b;

if (t) {

mul(a,p.X,p.Y);

mul(b,p.T,p.Z);

r = eq(a,b);

squ(p.X,p.X);

squ(p.Y,p.Y);

squ(p.T,p.T);

squ(p.Z,p.Z);

sub(a,p.Y,p.X);

add(b,p.T,p.Z);

r *= eq(a,b);

r *= 1- eq(p.X,_0)*eq(p.Y,_0)*eq(p.T,_0)*eq(p.Z,_0);

} else {

squ(p.X,p.X);

squ(p.Y,p.Y);

squ(p.Z,p.Z);

mul(p.T,p.X,p.Y);

mul(p.X,p.X,p.Z);

mul(p.Y,p.Y,p.Z);

squ(p.Z,p.Z);

sub(a,p.Y,p.X);

add(b,p.T,p.Z);

r = eq(a,b);

r *= 1- eq(p.X,_0)*eq(p.Y,_0)*eq(p.Z,_0);

}

return r;

}

inline FUN ed_n (ed*q, ed p)

{

*q=p;

10

mal(q->X, -1, p.X);

mal(q->T, -1, p.T);

}

inline FUN ed_i (ed*q, ed p)

{

mul(q->X, I, p.T);

LEF(q->Y, p.Z);

mul(q->T, I, p.X);

LEF(q->Z, p.Y);

}

inline FUN ed_EFGH (ed *q, ed p, int t)

{

mul(q->X, p.X, p.Y); // EF

mul(q->Y, p.T, p.Z); // GH

if(t)

mul(q->T, p.Z, p.X); // HE (optional)

mul(q->Z, p.Y, p.T); // FG

}

inline FUN ed_tau (ed*q, ed p)

{

LEF(q->X, p.X);

LEF(q->Y, p.Z);

LEF(q->T, p.Y);

mul(q->Z,I,p.T);

ed_EFGH(&p,*q,1);

sub(q->X, p.X, p.Y);

add(q->Y, p.Z, p.T);

add(q->T, p.X, p.Y);

sub(q->Z, p.Z, p.T);

mul(q->X,I,q->X);

}

FUN ed_add (ed*r, ed p, ed q, int t)

{

f a,b,c,d,e,f,g,h ;

sub(e,p.Y,p.X), sub(f,q.Y,q.X);

add(g,p.Y,p.X), add(h,q.Y,q.X);

mul(a, e, f);

mul(b, g, h);

11

mul(c,p.T,q.T);

mul(d,p.Z,q.Z);

mal(c,2,c), mal(d,2,d);

sub(p.X, b, a);

sub(p.Y, d, c);

add(p.T, d, c);

add(p.Z, b, a);

ed_EFGH(r,p,t);

}

inline FUN ed_dub (ed *q, ed p, int t)

{

add(q->Z, p.X,p.Y);

squ(p.X, p.X);

squ(p.Y, p.Y);

squ(p.T, p.Z);

squ(p.Z,q->Z);

add(q->Z, p.Y, p.X); // H = b+a

sub(q->T, p.Y, p.X); // G = b-a

mal(q->Y, -2, p.T); // F = -2c

add(q->Y, q->Y, q->T); // + b-a

sub(q->X, p.Z, q->Z); // E = d - b-a

ed_EFGH(q,*q,t);

}

FUN ed_dbs(ed *p, int e)

{

int i=e;

for (;i--;) ed_dub (p, *p, !i);

}

FUN ed_3(ed *q, ed p)

{

ed_dub(q,p,1);

ed_add(q,*q,p,0);

}

FUN ed_12 (ed *q, ed p)

{

ed_3(q,p);

ed_dbs(q, 2);

}

12

#define W 3 // 2

#define P(j,k) (w[(j)+M-1][(k)+M-1])

FUN glv_win_spiral (ed w[_2(^W)][_2(^W)], ed p, int cofactor)

{

int j,k,t,M=_2(^(W-1));

if (cofactor) ed_12(&p,p);

for (j=k=0; j>-M;

t = j + (k <=j && j<=-k) - (-k<j && j<= k),

k = k + (-j< k && k< j) - (j<k && k<=-j),

j = t

) {

if (j+k<0 || (-k == j && j > 0))

ed_n(&P(j,k),

P(-j,-k));

else if (k>0 && -k<=j && j <k)

ed_i(&P(j,k),

P(k,-j));

else if (j>0 && j>-(k-1) && j >(k-1) && (j-k)%2==0)

ed_tau(&P(j,k),

P((j+k)/2, (k-j)/2));

else if (j>1 && j>-k && j>k && (j-k)%2!=0)

ed_add(&P(j,k),

p, P(j-1,k), 1);

else if (j==1 && k==0)

P(j,k) = p ;

else if (j==0 && k==0)

P(j,k) = o ;

}

}

#undef P

typedef struct {

int degree ;

int coeff[300];

} poly;

FUN glv_fill (ed q[], ed w[_2(^W)][_2(^W)], poly *s)

{

int c,k,M=_2(^W);

for (k=0;k<s->degree;k+=1) {

13

c=s->coeff[k];

if ((W > 2) || 1) {

q[k]=w[c/M][c%M];

}

}

}

FUN glv_mul (ed*sp, poly *s, ed p, int cofactor)

{

unsigned i ;

ed w[_2(^W)][_2(^W)], q[s->degree] ;

glv_win_spiral(w,p,cofactor);

glv_fill(q,w,s);

for(i=0;i<s->degree-1;i+=1){

if (0==i)

*sp=q[i];

else

ed_add(sp, *sp, q[i], W==1);

ed_dbs(sp, W);

}

ed_add(sp, *sp, q[i], 1);

}

FUN to_eddie (ed*p, f x, f y)

{

f xx,xy;

mul(xx,x,x),mul(xy,x,y);

sub(p->X,xx,x);

add(p->Y,xy,y);

add(p->T,xx,x);

sub(p->Z,xy,y);

}

FUN to_monty (f x, f y, ed p)

{

/* To do: check if T=X */

f tsx,tax,yaz ;

add(tax,p.T,p.X), sub(tsx,p.T,p.X), add(yaz,p.Y,p.Z);

inv(tsx,tsx);

mul(x,tax,tsx), mul(y,yaz,tsx);

fix(x),fix(y);

14

}

FUN decompress(f x, f y)

{

/* To do: public key validation */

f t;

squ(t,x) ;

mul(t,x,t);

add(t,x,t);

mul(t,t,(f){3,0,0,0,(1LL<<52)});

root(y,t);

}

15

	1 Review of HWCD elliptic curve arithmetic
	1.1 Twisted Edwards in extended coordinates
	1.2 Conversion between Montgomery and Edwards
	1.3 Endomorphisms
	1.3.1 Multiplication by i
	1.3.2 Multiplication by 1+i

	1.4 Hisil–Wong–Carter–Dawson double and add
	1.4.1 Point addition
	1.4.2 Point doubling
	1.4.3 Tracking the cost of T

	2 Precomputing a table
	2.1 Decompression
	2.2 Cofactor multiplication
	2.3 Validation

	3 Scalar multiplication
	3.1 Forming a scalar-dependent array
	3.2 Normalization

	4 Arithmetic cost per bit
	A Speculative questions
	B Sample code

