
Analysis and Probing of Parallel Channels in the
Lightning Network

Alex Biryukov1, Gleb Naumenko2, and Sergei Tikhomirov1

1 University of Luxembourg
alex.biryukov@uni.lu, sergey.s.tikhomirov@gmail.com

2 thelab31.xyz
gleb@thelab31.xyz

Abstract. Bitcoin can process only a few transactions per second, which
is insufficient for a global payment network. The Lightning Network (LN)
aims to address this challenge. The LN allows for low-latency bitcoin
transfers through a network of payment channels. In contrast to regu-
lar Bitcoin transactions, payments in the LN are not globally broadcast.
Thus it may improve not only Bitcoin’s scalability but also privacy. How-
ever, the probing attack allows an adversary to discover channel balances,
threatening users’ privacy. Prior work on probing did not account for
the possibility of multiple (parallel) channels between two nodes. Naive
probing algorithms yield false results for parallel channels.
In this work, we develop a new probing model that accurately accounts
for parallel channels. We describe jamming-enhanced probing that allows
for full balance information extraction in multi-channel hops, which was
impossible with earlier probing methods. We quantify the attacker’s in-
formation gain and propose an optimized algorithm for choosing probe
amounts for N -channel hops. We demonstrate its efficiency based on
real-world data using our own probing-focused LN simulator. Finally,
we discuss countermeasures such as new forwarding strategies, intra-hop
payment split, rebalancing, and unannounced channels.

Keywords: Lightning network · Bitcoin · payment channels · privacy

1 Introduction

To ensure public verifiability on widely available hardware, the throughput of
Bitcoin [20] is limited to around 7 transactions per second. Second-layer (L2)
protocols [9] aim to address this issue. The most prominent L2 protocol for
Bitcoin is a payment channel network called the Lightning Network [25]. A pay-
ment channel is a trust-minimized two-party protocol for low-latency bitcoin3

payments [12] with minimal interaction with the base layer. A channel network
allows for multi-hop payments between users who do not share a channel.

Bitcoin transactions are globally broadcast, harming users’ privacy [1, 18].
This is not the case for L2 payments, hence the LN may also be seen as a privacy-
enhancing technology. However, attacks on LN privacy have been described,

3 Similar protocols are possible for other cryptocurrencies.

2 Alex Biryukov, Gleb Naumenko, and Sergei Tikhomirov

including balance probing. Probing allows for cheaply revealing channel balances
by sending fake payments (probes) [13, 16, 42, 39]. Probing can be used as a
building block to spy on payments or node balances, or to deanonymize LN
users. Prior work on probing assumed at most one channel between each pair of
nodes4. However, the LN allows multiple parallel channels between the same pair
of nodes. Naive probing algorithms may give false results for multi-channel hops.
Moreover, for certain configurations of parallel channel capacities and balances,
full balance extraction may be impossible.

Our contributions After providing the necessary background (Section 2),
we introduce the probing model (Section 3) and propose N-dimensional binary
search (NBS) to choose probe amounts that maximize probing speed. We en-
hance the probing attack by combining it with jamming or fee selection. Using
simulations based on a real-world data, we show that enhanced probing extracts
full balance information in parallel channels, which was impossible with ear-
lier probing methods (Section 4). Moreover, NBS increases probing speed by up
to 15%, compared to single-dimensional binary search (BS). We discuss model
limitations, attack cost and trade-offs, payment flow discovery, and countermea-
sures in Section 5. We review related work in Section 6 and conclude in Section 7.

2 Background

To open a payment channel, Alice and Bob lock coins into a cooperatively owned
Bitcoin address, establishing the initial channel state. To make a payment, the
parties negotiate a new state, thereby provably invalidating the old one [9]. Any
party can close the channel and withdraw their coins on-chain at any time.

The total number of coins in a channel, constant throughout its life, is called
capacity. The number of coins owned by one party is called its balance and
changes as payments are made. We refer to a pair of adjacent nodes along with
all channels they share as a hop. Parallel channels may have different security and
fee policies [3]. A node may disable a channel direction (e.g., before an expected
loss of connectivity or channel settlement), making the channel unidirectional5.

An LN user can send multi-hop payments without establishing a channel with
the receiver. Nodes gossip about availability, capacities, and fee policies of public
channels6. The receiver generates a payment secret and sends a hash of it (the
payment hash) to the sender. The sender chooses the payment path (an ordered
list of nodes) based on its local view of the network graph7. If an intermediary
hop in the path contains parallel channels, a routing node may choose any of

4 The paper [21] writes: “Our tool failed to produce accurate results in this [multi-
channel hops] scenario [. . .] further research on how to deal with this complication
would be highly appreciated.”

5 Not to be confused with an earlier unidirectional channel construction [12].
6 Users may keep their channels unannounced. A 2020 study estimated that 28.7% of

LN channels were unannounced [26].
7 Alternative approaches are trampoline [36] and rendezvous routing [44].

Analysis and Probing of Parallel Channels in the Lightning Network 3

them (non-strict forwarding). Upon receiving a payment, the receiver propagates
the payment secret along the path back to the sender. This ensures that balances
along the path are shifted atomically as they all depend on the same secret being
revealed8. LN nodes are only aware of payments that they forward. Intermediary
nodes see the amount as well as the immediate previous and next node in the
path, but not the ultimate sender and receiver, due to onion routing.

The sender only knows the capacities of remote channels, but their forwarding
ability is determined by their balances. Therefore, multi-hop payment attempts
may fail due to low balance at an intermediary hop. In that case, the erring node
notifies the sender which error has occurred and where. The sender may have to
make multiple payment attempts using different paths until one succeeds.

The three major LN implementations – lnd, c-lightning, and eclair – use
different channel selection strategies when routing payments through a multi-
channel hop. eclair selects the channel with the lowest capacity (among the
channels with the same capacity, it prefers a lower balance)9. lnd chooses a
random channel10. c-lightning does not support parallel channels.

Attacks on Lightning Multiple attacks on the LN have been described (see
Section 6). Most relevant for our work are probing and jamming.

Probing allows an attacker to reveal the balance of any forwarding channel
(assuming no multi-channel hops) by sending probes through it [13, 16, 39]. A
probe is a payment with amount a that contains a random number instead of a
payment hash. A probe fails either at an intermediary node due to insufficient
balance, or at the receiver because it does not know the preimage of the pay-
ment hash11. The location of the erring node within the path reveals whether the
probe has reached the receiver, hence, whether the balance of the target chan-
nel is above or below a. The attacker sends probes with different amounts to
infer the target channel balance with high accuracy. Assuming uniform balance
distribution, the best strategy for choosing probe amounts is binary search.

Jamming is a family of denial-of-service attacks on LN channels [7, 37]. An
attacker initiates a payment along a route that goes through a target channel
and terminates at another node controlled by the attacker, and refuses to reveal
the payment secret, locking the funds along the path. Shortly before timelocks
expire, the attacker fails the payment to release their coins without paying rout-
ing fees. In capacity-based jamming, an attacker initiates payments of a given
(presumably high) value [22]. In slot-based jamming, an attacker sends a series
of small12 payments to reach the limit of payment slots for in-flight payments
(at most 483 in each direction; channel parties may set lower limits) [38]. We re-

8 It may be argued though that the wormhole attack [17] violates atomicity.
9 https://github.com/ACINQ/eclair/blob/5f9d0d/eclair-core/src/main/scala/

fr/acinq/eclair/payment/relay/ChannelRelay.scala\#L199
10 https://github.com/lightningnetwork/lnd/blob/f98a3c/htlcswitch/switch.

go\#L1091
11 We do not consider other potential errors for simplicity.
12 Above the dust limit of 546 satoshis.

4 Alex Biryukov, Gleb Naumenko, and Sergei Tikhomirov

fer to jamming payments as jams. Onion routing complicates protection against
jamming: the victim does not know who is sending the jams.

3 Probing model

We assume the following threat model. The goal of the attacker is to reveal exact
channel balances in target hops as quickly as possible13. The attacker only uses
public knowledge about nodes and channels. The attacker can run multiple LN
nodes, open channels, and maintain them for the duration of the attack14. The
attacker can run modified software but has no control over other users’ software.

We define channel direction as follows. Direction dir0 is the direction from
the node with the alphanumerically smaller ID to the other node. Direction dir1
is the opposite. We define channel balance (in satoshis15) as the balance of the
node with the alphanumerically smaller ID. Note that the dir0 / dir1 notation
is defined by random node IDs. It neither depends on the viewpoint (local /
remote) nor on who opened the channel (inbound / outbound).

A hop with N channels is characterized by channel capacities C = (c1, . . . , cN)
and balances B = (b1, . . . , bN). Let Ed be the set of channels enabled in direction
d, where d ∈ {dir0, dir1}. The forwarding ability of a hop is determined by the
maximal balances among the channels enabled in a given direction, which we
denote as h for dir0 and g for dir1 : h = maxi∈Edir0 bi; g = maxi∈Edir1(ci − bi).
C, Edir0, Edir1 are public knowledge; B, h, and g are private.

In the general case, probes only give the attacker information about h or g,
not about individual balances16. The attacker maintains the current lower and
upper bounds17 for h and g: hl < h ≤ hu and gl < g ≤ gu, initially set to
hl = gl = −1, hu = maxi∈Edir0 ci, g

u = maxi∈Edir1 ci.
Let F be the set of all possible values of B, as per the attacker’s current

knowledge. S(F) is the number of values F contains. Each probe cuts F in two
parts, one of which is excluded from further consideration. Assuming uniform
balance distribution, an optimal probe should cut F in half.

3.1 Examples

As the simplest example, consider a hop with one channel of capacity c (Fig-
ure 1). Let bl and bu be the current lower and upper bounds for the true balance
b, respectively. Initially, bl = 0 and bu = c. F = [bl, bu]. The prober chooses
a = (bl + bu)/2. If the probe fails, F is updated to [bl, a], otherwise to [a, bu].

13 We assume that all target channels are equally interesting for the attacker.
14 Sending one probe normally takes a few seconds.
15 The LN operates with millisatoshi precision off-chain, but such amounts cannot be

settled on-chain. For simplicity, our model operates with a satoshi-level precision.
16 Enhanced probing techniques described in Section 3.4 overcome this limitation.
17 Note that for lower bound is strict, and the upper bound is non-strict. If the probe

of amount a in direction dir0 succeeds, h is greater or equal to a, but if the probe
fails, it is strictly less than a (same with g and dir1). Our definitions reflect this
asymmetry and thus allow for uniform calculations when deriving Equation 1.

Analysis and Probing of Parallel Channels in the Lightning Network 5

0 cbubl

probe

a

Fig. 1. Probing one-channel hop with single-dimensional binary search.

Next, consider a two-channel hop with capacities c1 = c2 = c and balances
b1, b2 (Figure 2). Initially, S(F) = c2. The probe value a should cut F in half:
a = c/

√
2. Note that a = c/2 would be suboptimal, as it divides S(F) in the

proportion 3:1, not 1:1.

0

с

сa

a

probe

fir
st

 c
ha

nn
el

second channel

cut-below-a

cut-above-a

Fig. 2. Probing two-channel hop with two-dimensional binary search.

3.2 Generalized geometrical model

In the general case, we consider an N -channel hop, where some channels may be
disabled in some directions. The prober wants to shrink F using as few probes as
possible. The key task is to choose each next probe amount optimally, regardless
of hop properties and current bounds.

We can think of an N -channel hop as an N -dimensional (hyper-)rectangle
R, with sides parallel to the axes18. Each side corresponds to one channel. The
i-th side is defined by the coordinates [0, ci].

18 The model applies to N dimensions, but we continue using two-dimensional terms
such as “rectangle” and “area” for clarity.

6 Alex Biryukov, Gleb Naumenko, and Sergei Tikhomirov

hl

hu

c

c

F

gl

gu

Fig. 3. Defining F using probe rectangles.

A probe with amount a “cuts” an a-sided cube from one of the two opposite
corners of R (depending on probe direction). If the probe fails, all coordinates of
B are lower than a (a new upper bound19), otherwise at least one coordinate of
B is greater than or equal to a (a new lower bound). We can define F in terms of
four rectangles (Figure 3 illustrates a two-dimensional case) corresponding to the
four bounds: hl, hu, gl, gu. Denoting x = x + 1 and using subscript i for the i-th
coordinate, we calculate S(F) as follows (for full derivation, see Appendix A):

S(F) =

N∏
i=1

(hu
i +gui −ci)−

N∏
i=1

(hl
i+gui −ci)−

N∏
i=1

(hu
i +gli−ci)+

N∏
i=1

(hl
i+gli−ci) (1)

In prior probing algorithms, each next amount a is chosen as the mid-point
between the current lower and upper bounds (simple binary search, or BS). BS
is suboptimal in the multi-dimensional case, as illustrated earlier (Section 3.1).
N -dimensional binary search (NBS) chooses a that cuts F in half20. Let Sa be

the area under the cut. The prober finds a such that Sa = S(F)
2 as follows.

Initially, set al = hl +1, au = hu, and consider a candidate value a = (al +au)/2
(for dir0 ; dir1 in handled analogously). If Sa < S

2 , set al = a, else set au = a.

Repeat until Sa is close enough21 to S
2 .

19 More precisely, we use effective amounts as bounds, as defined in Appendix A.
20 For N = 1, NBS is equivalent to BS.
21 It is not always possible to cut F in half precisely, i.e., when S(F) is odd.

Analysis and Probing of Parallel Channels in the Lightning Network 7

3.3 Metrics

The uncertainty U of a hop is the number of bits required to encode the posi-
tion of B, given the current attacker’s knowledge. As the result of probing, U
decreases from Ubefore =

∑N
i=1 log2(ci + 1) to Uafter = log2(S(F)). For a set T

of target hops, the final achieved information gain is:

I = 1−
∑
t∈T

(U t
after)/

∑
t∈T

(U t
before) (2)

Assuming m messages sent in total, the probing speed is defined as:

S =

∑
t∈T (U t

before)−
∑

t∈T (U t
after)

m
(3)

Messages include probes (including those that did not reach the target hop, for
remote probing) and jams (for jamming-enhanced probing).

3.4 Enhanced probing

There are two reasons why information gain for multi-channel hops may be
bounded.

First, if there is a large difference between channel capacities in a hop, larger
channels can “mask” smaller ones by forwarding all probes that go through the
hop. This case is illustrated in Figure 4: no probe can shrink F along the vertical
axis, as all probes go through the channel with the larger capacity c1.

hl

hu

c2

c1

gu

gl

0

Fig. 4. The challenge of probing a multi-channel hop with different channel capacities.

Second, hops with more than two channels cannot be fully probed due to
dimensionality. To get an intuition why, consider the intersection of two cubes

8 Alex Biryukov, Gleb Naumenko, and Sergei Tikhomirov

that represent probes in a 3-channel hop with equal capacities c (Figure 5). The
green and blue cubes correspond to precise bounds on h and g, respectively
(thus further probes would give no new information). F is their intersection
(six red intervals). It is impossible to shrink F into single points, in contrast to
lower-dimensional cases22.

(0, 0, 0)

(c, c, c)

h

g

Fig. 5. A 3-channel hop that cannot be fully probed due to dimensionality.

The only way for the attacker to gain more balance information in these
cases would be to force probes to go through specific channels. The attacker
cannot affect how other nodes choose channels, but can reduce the set of suitable
channels the victim picks from.

We consider two probing enhancement techniques to achieve this goal. In
jamming-enhanced probing, the prober jams all channels in a target hop except
one, and then probes the remaining channel. In fee-aware probing [27], the prober
sets the fee offered along with the probe such that the probe can only be for-
warded through a subset of cheapest channels in the target hop. In the best
case (for the attacker), fees for all channels in the target hop are different. In
the worst case, all channels require equal fees, and fee-aware probing yields no
advantage. Jamming-enhanced and fee-aware probing may be combined, which
allows for probing individual channels inside one fee level. More generally, the
prober may tune other parameters, such as timeouts, instead of or in addition
to fee levels (policy-aware probing).

We use an isolated testing environment based on real LN nodes to confirm
that enhanced probing indeed allows a prober to infer individual balances of
parallel channels. Setup details are provided in Appendix B.

22 The only exception is a degenerate case when all three balances are equal.

Analysis and Probing of Parallel Channels in the Lightning Network 9

4 Evaluation

4.1 Data source

We captured an LN snapshot using our own c-lightning node on 2021-09-09.
The snapshot contains 13627 nodes and 65824 channels23 with a total capacity of
2505 BTC. This is in line with public explorers such as the one ran by ACINQ24

(the developers of eclair), which on the same day reported 13778 nodes and
65909 channels. 52985 channels (80%) are enabled in both directions. Multi-
channel hops hold a disproportionately large share of capacity (Table 1) and
thus presumably play a more important role in routing than single-channel hops.

Channels in a hop Share of hops (%) Share of capacity (%)

1 94.1 71.6

2 4.9 11.3

3 0.7 6.7

≥ 4 0.3 10.4

Table 1. Share of hops by the number of channels and by total capacity.

4.2 Results

For each channel in the snapshot, we generate a balance uniformly at random
between 0 and the channel capacity. We probe randomly chosen target hops with
various probing configurations in the simulator. We average the results across
multiple experiment runs. We only consider hops with 1 to 5 channels (hops
with more channels are rare in the snapshot). We measure the information gain
and probing speed for two probe amount choice methods (BS and NBS) and
two types of probing (direct and remote). In direct probing, the attacker opens
a channel to one of the parties of the target hop and sends probes via the 2-
hop path, avoiding failed routes (all probes reach the target hop). Opening a
channel requires paying on-chain fees, locking up capital, and cooperation of the
counterparty (though public nodes usually allow opening channels to them if a
user fully funds it). In remote probing, the attacker sends probes along multi-hop
routes. This introduces potential routing errors, especially for larger amounts.
On the other hand, each probe yields information not only about the target hop
but also about intermediary hops. The attacker accumulates this data to avoid
sending probes via hops that have previously failed routing smaller amounts.

First, consider the information gain. For non-enhanced probing, the infor-
mation gain decreases as N increases (Figure 6), as expected (see Section 3.4).

23 We only consider the largest connected component, which contains 99.1% of nodes
and 99.9% of channels.

24 https://explorer.acinq.co/

10 Alex Biryukov, Gleb Naumenko, and Sergei Tikhomirov

0 1 2 3 4 5 6
Number of channels in target hops.

Runs per experiment: 50, target hops: 20, snapshot date: 2021-09-09

0.0

0.2

0.4

0.6

0.8

1.0

Ac
hi

ev
ed

 in
fo

rm
at

io
n

ga
in

 (s
ha

re
 o

f i
ni

tia
l u

nc
er

ta
in

ty
)

Achieved information gain (non-enhanced probing)

Direct probing (NBS = BS)
Remote probing, NBS
Remote probing, BS

Fig. 6. Final information gain for non-enhanced probing.

0 1 2 3 4 5 6
Number of channels in target hops.

Runs per experiment: 50, target hops: 20, snapshot date: 2021-09-09

0.0

0.2

0.4

0.6

0.8

1.0

Ac
hi

ev
ed

 in
fo

rm
at

io
n

ga
in

 (s
ha

re
 o

f i
ni

tia
l u

nc
er

ta
in

ty
)

Achieved information gain (jamming-enhanced probing)

Direct probing (NBS = BS)
Remote probing, NBS
Remote probing, BS

Fig. 7. Final information gain for jamming-enhanced probing.

Analysis and Probing of Parallel Channels in the Lightning Network 11

0 1 2 3 4 5 6
Number of channels in target hops.

Runs per experiment: 50, target hops: 20, snapshot date: 2021-09-09

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
in

g
sp

ee
d

(b
its

 /
m

es
sa

ge
)

Probing speed (non-enhanced probing)

Direct probing, NBS
Direct probing, BS
Remote probing, NBS
Remote probing, BS

Fig. 8. Probing speed for non-enhanced probing.

0 1 2 3 4 5 6
Number of channels in target hops.

Runs per experiment: 50, target hops: 20, snapshot date: 2021-09-09

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

in
g

sp
ee

d
(b

its
 /

m
es

sa
ge

)

Probing speed (jamming-enhanced probing)

Direct probing, NBS
Direct probing, BS
Remote probing, NBS
Remote probing, BS

Fig. 9. Probing speed for jamming-enhanced probing.

12 Alex Biryukov, Gleb Naumenko, and Sergei Tikhomirov

E.g., 5-channel hops can only be probed up to 0.4 information gain. This applies
for direct as well as remote probing. The difference in information gain between
BS and NBS is small. Jamming-enhanced probing achieves high information gain
(above 0.9) for all values of N (Figure 7). We thus confirm that jamming allows
the prober to extract balance information that is otherwise unavailable. Lower
information gain for remote probing is explained by routing issues.

In terms of probing speed, direct probing consistently outperforms remote
probing, as no probes are wasted (Figures 8 and 9). NBS outperforms BS for
all values of N in direct probing and for N = 2 for remote probing. For remote
probing, BS and NBS perform similarly at N = 3 and N = 4. For N = 5, BS
slightly outperforms NBS, which is explained by the fact NBS generally chooses
higher amounts (e.g., 1/2 vs 1/

√
2 in a 1-by-1 square) that are more likely to

fail in multi-hop probes. This effect is more pronounced for high values of N .
We also observe that jamming-enhanced probing (Figure 9) lowers the prob-

ing speed compared to non-enhanced probing (Figure 8). This is expected be-
cause jamming-enhanced probing implies sending jams in addition to probes.
NBS outperforms BS for all values of N in direct probing and for N = 2 for
remote probing (for N > 2, the two methods perform similarly).

Additional simulations show how the ratio between capacities in two-channel
hops affects information gain (see Appendix C).

5 Discussion

The simulations have demonstrated that jamming-enhanced probing allow to
extract nearly full balance information, which is otherwise impossible for hops
with three channels or more, and that NBS amount selection increases probing
speed. We now discuss the limitations of our model and avenues for future work.

5.1 Limitations

Our model ignores regular LN activity. If a target hop is heavily used, balances
may shift between probes, making attacker’s estimations incorrect. This is one of
the reasons why minimizing the attack time is important: it reduces the proba-
bility of interference with honest payments. Moreover, we do not model in-flight
payments. Our model assumes that the two channel balances sum up to its ca-
pacity, which allows us to derive one balance from the other. In the real network,
channel capacity is composed of the two balances and in-flight payments. We as-
sume that in-flight payments resolve quickly enough to have no effect on probing
results. We also do not account for LN routing fees in multi-hop probes.

We make some simplifying assumptions about jamming. First, we assume
that the attacker can jam any hop. In practice, jamming requires additional
liquidity and channel slots, which may be unavailable. Second, we assume that
the attacker can jam a specific channel within a remote hop. In practice, inter-
mediary nodes choose which parallel channel to forward the jam through (just
like with regular payments). As a result, the attacker only knows how many

Analysis and Probing of Parallel Channels in the Lightning Network 13

channels are jammed but does not know which ones. Even if the attacker derives
N channel balances exactly, they are only known up to a permutation. Third,
we assume that the attacker can jam channels in both directions. In practice,
leaf hops can only be jammed in one direction25.

5.2 Attack cost and trade-offs

Probing is relatively cheap. The attacker pays on-chain fees for opening and clos-
ing channels, but never pays LN routing fees, because probing payments never
complete. There is a trade-off between direct and remote probing. Direct probing
increases probing speed but requires more on-chain fees and locked capital. We
leave the evaluation of this trade-off for future work.

Jamming-enhanced probing brings additional costs. Capacity-based jamming
requires at least one high-capacity channel. The amount of funds locked is close
to the aggregate balance of all parallel target channels. Slot-based jamming
requires opening many low-capacity channels. The exact number of attacker’s
channels equals the number of channels to be jammed: the attacker’s path is
limited by the same number of slots26.

Jamming might be challenging for certain hop configurations. For example, it
would be impossible to slot-jam more than one channel in a multi-channel target
hop that is only connected to the rest of the network with a single channel. The
same applies for capacity jamming27. To overcome this limitation, the attacker
needs to connect to the target hop via several disjoint paths.

5.3 Payment flow inference

Probing can be a building block for more advanced attacks, for instance, payment
flow inference. Given a series of balance snapshots, the attacker can construct a
balance difference graph, in which edges with non-zero value correspond to pay-
ments. The attacker can then discover the sender, the receiver, and the amount,
as the balances along the route are shifted by the same amount (modulo fees).
Note that payments that pass through the same hop distort the picture, there-
fore, snapshots should be frequent. Prior work [16] has shown that 30-second
snapshots allow revealing payments with 66% success rate, assuming relatively
low network usage (2000 payments per day). Obtaining a full network snapshot
that quickly is challenging: each probe takes a few seconds. A more realistic
goal could be to infer payment flows between a given pair of nodes by tracking
balances in a few shortest paths between them. LN diameter is 6 hops [34], typ-
ical path lengths are 3–6 hops, and the target sub-network may be comprised of
around 50 nodes.

25 The attacker may still distinguish between parallel channels in leaf hops using fee-
aware probing (see Section 3.4).

26 Assuming all channels have the same number of slots. The attacker may have higher
limits than the victim, but no channel can have more than 483 slots per direction.

27 Note that channels might be bottlenecked by slots, but available by capacity.

14 Alex Biryukov, Gleb Naumenko, and Sergei Tikhomirov

5.4 Countermeasures

The fact that failed payment attempts are free in the LN makes probing cheap.
Proposals to incur upfront fees for all payment attempts are being discussed [14].
Assuming no such changes to the LN protocol, we now discuss countermeasures
that individual nodes can apply.

Alternative forwarding strategies A routing node can try to obfuscate the
state of its channels if probing is detected (i.e., if it notices a series of failed
payments with amounts that follow the binary search pattern). In particular,
routing nodes may choose forwarding channels to minimize changing h and g.
A heavily used routing node could execute payments in batches. Within one
batch, payments can be re-ordered so that they partially or even fully cancel
each other out. More generic flow concealment strategies are also possible.

Intra-hop payment split A routing node can potentially divide a payment
among parallel channels in the next hop, which may optimize hop bandwidth
and hinder probing. This technique is being discussed as part of the future switch
to a new type of channel construction [24, 45]. From the prober’s viewpoint, a
multi-channel hop with intra-hop payment split is equivalent to a single-channel
hop. The prober can thus reveal the sum of channel balances. Note the difference
compared to multi-part payments (MPP): in MPP, the sender fully determines
how to split the payment [6], whereas in intra-hop split, such decisions are made
locally by routing nodes.

Rebalancing and JIT routing Channel rebalancing is a process by which
an LN node sends (presumably circular) payments to bring the ratio of local to
remote balance in its channels closer to some desirable value (i.e., make them
equal). Just-in-time (JIT) routing [23] is a form of rebalancing done while for-
warding another payment. If a routing node is asked to forward a payment for
which it lacks balance, it first moves some funds to the local side of one of its
channels using a circular payment, and then proceeds with the forwarding. From
a prober’s standpoint, rebalancing changes the properties of a hop mid-probe,
distorting the estimates. Without intra-hop splitting, a multi-channel hop be-
tween Alice and Bob with JIT routing becomes equivalent to a single-channel
hop with balances bA = maxi∈[0,N] bi,A and bB = maxi∈[0,N] bi,B , where bi,A and
bi,B are balances of the i-th channel at Alice’s and Bob’s sides, respectively.

Unannounced channels A node may open unannounced channels parallel to
public ones to hide public channel balances. Depending on the relation between
the balances of announced and unannounced channels, the attacker may still
be able to discover unannounced channel balances (e.g., if the balance of the
unannounced channel exceeds the balances of public channels). Even in that
case, the standard probing technique needs to be modified.

Analysis and Probing of Parallel Channels in the Lightning Network 15

6 Related work

Attacks on the LN can be grouped into privacy-related [31, 29, 2, 16, 42, 39, 13,
21, 30], DoS-related [33, 10, 38, 19, 40, 22, 29] and incentive-related [41].

Prior work on channel probing introduced the general idea [13], suggested
probing channels from both ends [42], controlling both the sender and the re-
ceiver of probes [16], and multi-hop probing [39]. Multiple LN simulators have
been designed to analyze honest economic activity [2, 43, 5] or the cost of open-
ing payment channels [4, 8]. Rate-limiting has been proposed to mitigate issues
like probing and jamming [37, 32, 28, 15]. The fee structure [2] and the tension
between privacy and utility of routing nodes [35, 11] have also been discussed.
Other relevant prior work focused on channel jamming [38, 19], channel policy
exploitation [27], and improved payment forwarding [45].

7 Conclusion

In this work, we have developed a comprehensive model for LN balance probing
that accounts for parallel channels. We have introduced enhanced versions of the
probing attack, combining it with channel jamming and fee targeting. Enhanced
probing overcomes the limit on information gain in multi-channel hops and allows
for nearly full balance extraction. Moreover, we have proposed binary-search-
based algorithm (NBS) for choosing probe amounts that improves probing speed.

We have confirmed our findings experimentally in an isolated testing envi-
ronment and using a specially developed probing-focused LN simulator. The
simulations based on a real-world network snapshot show that NBS speeds up
probing by up to 15% compared to single-dimensional binary search (two-channel
hops, direct non-enhanced probing). The experiments also illustrate the trade-off
between opening channels to target hops vs probing through multi-hop paths.
Finally, we have outlined potential countermeasures and avenues for future work.

The LN promises to significantly improve Bitcoin’s scalability and privacy. In
order for the LN to realize its potential, it should defend against attacks such as
balance probing and channel jamming. We hope that this work helps improve the
trade-offs between scalability, security, and privacy for the LN, while preserving
its permissionless nature.

Acknowledgments

We thank Antoine Riard for thoughtful feedback. This work was partially sup-
ported by the Luxembourg National Research Fund (FNR) project FinCrypt
(C17/IS/11684537). Contributions of Gleb Naumenko were supported with a
grant by 100x Group, the holding structure for the BitMEX platform.

References

1. Elli Androulaki, Ghassan Karame, Marc Roeschlin, Tobias Scherer, and Srdjan
Capkun. Evaluating user privacy in Bitcoin. In Ahmad-Reza Sadeghi, editor,

16 Alex Biryukov, Gleb Naumenko, and Sergei Tikhomirov

Financial Cryptography and Data Security - 17th International Conference, FC
2013, Okinawa, Japan, April 1-5, 2013, Revised Selected Papers, volume 7859 of
Lecture Notes in Computer Science, pages 34–51. Springer, 2013.

2. Ferenc Béres, István András Seres, and András A. Benczúr. A cryptoeconomic
traffic analysis of Bitcoin’s Lightning network. CoRR, abs/1911.09432, 2019.

3. BOLT. Lightning network specifications. https://github.com/

lightningnetwork/lightning-rfc, 2019.
4. Simina Brânzei, Erel Segal-Halevi, and Aviv Zohar. How to charge Lightning.

https://arxiv.org/abs/1712.10222, 2017.
5. Marco Conoscenti, Antonio Vetrò, J. Martin, and Federico Spini. The CLoTH

simulator for HTLC payment networks with introductory Lightning network per-
formance results. Inf., 9(9):223, 2018.

6. LND developers. Multi-path payments in lnd: Making channel balances add up.
https://lightning.engineering/posts/2020-05-07-mpp/, 2020.

7. EmelyanenkoK. Payment channel congestion via spam-attack. https://github.

com/lightningnetwork/lightning-rfc/issues/182, 2017.
8. Felix Engelmann, Henning Kopp, Frank Kargl, Florian Glaser, and Christof Wein-

hardt. Towards an economic analysis of routing in payment channel networks.
Proceedings of the 1st Workshop on Scalable and Resilient Infrastructures for Dis-
tributed Ledgers, Dec 2017.

9. Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and
Arthur Gervais. SoK: Layer-two blockchain protocols. In Joseph Bonneau and
Nadia Heninger, editors, Financial Cryptography and Data Security - 24th Inter-
national Conference, FC 2020, Kota Kinabalu, Malaysia, February 10-14, 2020,
volume 12059 of Lecture Notes in Computer Science, pages 201–226. Springer,
2020.

10. Jona Harris and Aviv Zohar. Flood & loot: A systemic attack on the Lightning net-
work. In AFT ’20: 2nd ACM Conference on Advances in Financial Technologies,
New York, NY, USA, October 21-23, 2020, pages 202–213. ACM, 2020.

11. Tankred Hase and Valentine Wallace. Smarter autopilot. https:

//blog.lightning.engineering/announcement/2019/04/23/mainnet-app.html,
Apr 2019.

12. Mike Hearn and Jeremy Spilman. Anti dos for tx replacement. https://lists.

linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002417.html, 2013.
13. Jordi Herrera-Joancomart́ı, Guillermo Navarro-Arribas, Alejandro Ranchal Pe-

drosa, Cristina Pérez-Solà, and Joaqúın Garćıa-Alfaro. On the difficulty of hiding
the balance of Lightning network channels. In Steven D. Galbraith, Giovanni Rus-
sello, Willy Susilo, Dieter Gollmann, Engin Kirda, and Zhenkai Liang, editors,
Proceedings of the 2019 ACM Asia Conference on Computer and Communications
Security, AsiaCCS 2019, Auckland, New Zealand, July 09-12, 2019, pages 602–612.
ACM, 2019.

14. Joost Jager. A proposal for up-front payments. https://lists.linuxfoundation.
org/pipermail/lightning-dev/2020-March/002585.html, 2020.

15. Joost Jager. Circuit breaker. https://github.com/lightningequipment/

circuitbreaker, 2021.
16. George Kappos, Haaroon Yousaf, Ania M. Piotrowska, Sanket Kanjalkar, Sergi

Delgado-Segura, Andrew Miller, and Sarah Meiklejohn. An empirical analysis of
privacy in the Lightning network. CoRR, abs/2003.12470, 2020.

17. Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and
Matteo Maffei. Anonymous multi-hop locks for blockchain scalability and inter-
operability. In 26th Annual Network and Distributed System Security Symposium,

Analysis and Probing of Parallel Channels in the Lightning Network 17

NDSS 2019, San Diego, California, USA, February 24-27, 2019. The Internet So-
ciety, 2019.

18. Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon Mc-
Coy, Geoffrey M. Voelker, and Stefan Savage. A fistful of bitcoins: Characterizing
payments among men with no names. login Usenix Mag., 38(6), 2013.

19. Ayelet Mizrahi and Aviv Zohar. Congestion attacks in payment channel networks.
CoRR, abs/2002.06564, 2020.

20. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https:

//bitcoin.org/bitcoin.pdf, 2008.
21. Utz Nisslmueller, Klaus-Tycho Foerster, Stefan Schmid, and Christian Decker. To-

ward active and passive confidentiality attacks on cryptocurrency off-chain net-
works. In Steven Furnell, Paolo Mori, Edgar R. Weippl, and Olivier Camp, editors,
Proceedings of the 6th International Conference on Information Systems Security
and Privacy, ICISSP 2020, Valletta, Malta, February 25-27, 2020, pages 7–14.
SCITEPRESS, 2020.

22. Cristina Pérez-Solà, Alejandro Ranchal-Pedrosa, Jordi Herrera-Joancomart́ı,
Guillermo Navarro-Arribas, and Joaqúın Garćıa-Alfaro. Lockdown: Balance avail-
ability attack against Lightning network channels. In Joseph Bonneau and Nadia
Heninger, editors, Financial Cryptography and Data Security - 24th International
Conference, FC 2020, Kota Kinabalu, Malaysia, February 10-14, 2020 Revised Se-
lected Papers, volume 12059 of Lecture Notes in Computer Science, pages 245–263.
Springer, 2020.

23. René Pickhardt. Just in time routing (JIT-routing) and a chan-
nel rebalancing heuristic as an add on for improved routing success in
BOLT 1.0. https://lists.linuxfoundation.org/pipermail/lightning-dev/

2019-March/001891.html, 2019.
24. Andrew Poelstra. Lightning in scriptless scripts.

https://lists.launchpad.net/mimblewimble/msg00086.html, Mar 2017.
25. Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning network: Scalable off-

chain instant payments. Technical report, 2016.
26. BitMEX Research. Proportion of public vs

private channels. https://blog.bitmex.com/

lightning-network-part-7-proportion-of-public-vs-private-channels/,
2020.

27. Antoine Riard. Route blinding. https://github.com/lightningnetwork/

lightning-rfc/pull/765\#pullrequestreview-511147029, Oct 2020.
28. Antoine Riard and Gleb Naumenko. Stake certificates. https://thelab31.xyz/

stake-certificates, 2020.
29. Elias Rohrer, Julian Malliaris, and Florian Tschorsch. Discharged payment chan-

nels: Quantifying the Lightning network’s resilience to topology-based attacks. In
2019 IEEE European Symposium on Security and Privacy Workshops, EuroS&P
Workshops 2019, Stockholm, Sweden, June 17-19, 2019, pages 347–356. IEEE,
2019.

30. Elias Rohrer and Florian Tschorsch. Counting down thunder: Timing attacks
on privacy in payment channel networks. In AFT ’20: 2nd ACM Conference on
Advances in Financial Technologies, New York, NY, USA, October 21-23, 2020,
pages 214–227. ACM, 2020.

31. Matteo Romiti, Friedhelm Victor, Pedro Moreno-Sanchez, Bernhard Haslhofer, and
Matteo Maffei. Cross-layer deanonymization methods in the Lightning protocol.
CoRR, abs/2007.00764, 2020.

18 Alex Biryukov, Gleb Naumenko, and Sergei Tikhomirov

32. Rusty Russel. A proposal for up-front payments. https://lists.

linuxfoundation.org/pipermail/lightning-dev/2019-November/002275.html.
33. Rusty Russel. Loop attack with onion routing.. https://lists.linuxfoundation.

org/pipermail/lightning-dev/2015-August/000135.html, Aug 2015.
34. István András Seres, László Gulyás, Dániel A. Nagy, and Péter Burcsi. Topological

analysis of Bitcoin’s Lightning network. In MARBLE, pages 1–12. Springer, 2019.
35. Weizhao Tang, Weina Wang, Giulia C. Fanti, and Sewoong Oh. Privacy-utility

tradeoffs in routing cryptocurrency over payment channel networks. In Edmund
Yeh, Athina Markopoulou, and Y. C. Tay, editors, Abstracts of the 2020 SIGMET-
RICS/Performance Joint International Conference on Measurement and Modeling
of Computer Systems, Boston, MA, USA, June, 8-12, 2020, pages 81–82. ACM,
2020.

36. Bastien Teinturier. Trampoline onion format (feature 24/25). https://github.

com/lightningnetwork/lightning-rfc/pull/836.
37. Bastien Teinturier. Spamming the Lightning network. https:

//github.com/t-bast/lightning-docs/blob/master/spam-prevention.md\

#costless-channel-probing, Nov 2020.
38. Sergei Tikhomirov, Pedro Moreno-Sanchez, and Matteo Maffei. A quantitative

analysis of security, anonymity and scalability for the Lightning network. In 2020
IEEE European Symposium on Security and Privacy Workshops, EuroS&P Work-
shops 2020, September 7-11, 2020. IEEE, 2020.

39. Sergei Tikhomirov, René Pickhardt, Alex Biryukov, and Mariusz Nowostawski.
Probing channel balances in the Lightning network. CoRR, abs/2004.00333, 2020.

40. Saar Tochner, Stefan Schmid, and Aviv Zohar. Hijacking routes in payment channel
networks: A predictability tradeoff. CoRR, abs/1909.06890, 2019.

41. Itay Tsabary, Matan Yechieli, and Ittay Eyal. MAD-HTLC: because HTLC is
crazy-cheap to attack. CoRR, abs/2006.12031, 2020.

42. Gijs van Dam, Rabiah Abdul Kadir, Puteri N. E. Nohuddin, and Halimah Badioze
Zaman. Improvements of the balance discovery attack on Lightning network pay-
ment channels. In Marko Hölbl, Kai Rannenberg, and Tatjana Welzer, editors, ICT
Systems Security and Privacy Protection - 35th IFIP TC 11 International Confer-
ence, SEC 2020, Maribor, Slovenia, September 21-23, 2020, Proceedings, volume
580 of IFIP Advances in Information and Communication Technology, pages 313–
323. Springer, 2020.

43. Y. Zhang, D. Yang, and G. Xue. Cheapay: An optimal algorithm for fee minimiza-
tion in blockchain-based payment channel networks. In ICC 2019 - 2019 IEEE
International Conference on Communications (ICC), pages 1–6, 2019.

44. ZmnSCPxj. Outsourcing route computation with trampoline payments.
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-April/

001950.html, 2019.
45. ZmnSCPxj. A payment point feature family. https://lists.linuxfoundation.

org/pipermail/lightning-dev/2019-October/002225.html, Oct 2019.

A Derivation of Equation 1

Consider an N -dimensional grid of points with integer coordinates. We can define
a rectangle R(L,U) using its lower-left vertex L = (l1, . . . , lN) (closest to the
origin) and upper-right vertex U = (u1, . . . , uN) (opposite to L). If li ≤ ui∀i ∈
[1, N], the area of R(L,U) is:

Analysis and Probing of Parallel Channels in the Lightning Network 19

S(R) =

N∏
i=1

(ui − li + 1) (4)

Both L and U belong to R(L,U), hence the +1. If ∃i ∈ [1, N] : li > ui, then
we define R(L,U) = ∅, and S(R(L,U)) = 0. The intersection of R1 = R(L1, U1)
and R2 = R(L2, U2) is a rectangle: R = R1 ∩R2 = R(L2, U1). We can calculate
its area using Equation 4. The area of a difference of rectangles (which is not
necessarily a rectangle) is S(R1 \R2) = S(R1)− S(R1 ∩R2).

Let us now define S(F) in terms of rectangles. Let 0 be the origin (the
vector of N zeros). Let us denote ĝl = (ci − gli) and ĝu = (ci − gui). Each
probe corresponds to a rectangle. For probes in dir0 , the lower-left vertex is 0;
for probes in dir1 , the upper vertex is C. The other vertex reflects the probe
amount. Each of the four current bounds (hl, hu, gl, gu) defines a rectangle:

R→l = R(0, hl)

R→h = R(0, hu)

R←l = R(ĝl, C)

R←h = R(ĝu, C)

The upper bounds hu and gu imply that B is within the intersection of their
corresponding rectangles, which we will call Rin:

Rin = R→h ∩R←h

The lower bounds hl and gl imply that B is outside their corresponding
rectangles. Hence, we exclude from Rin the points that belong to R→l and R←l

(Figure 3 shows an example for N = 2 and c1 = c2 = c):

F = Rin \ (R→l ∪R←l) (5)

The area S(F) can be calculated as:

S(F) = S(Rin)− S(Rin ∩R→l)− S(Rin ∩R←l) + S(R→l ∩R←l) (6)

The last component corresponds to R→l ∩ R←l. We must add the area
of this intersection to compensate for having subtracted it twice. Note that
R→l ∩R←l ⊆ Rin, which follows from the definition of lower and upper bounds28.

Let us now calculate S(F) following Equation 6. By definition, probes with
amounts hl and hu are issued in dir0 , and gl and gu – in direction dir1 . Hence
we omit the directions: hl

i = hl,dir0
i , hu

i = hu,dir0
i , gli = gl,dir1i , gui = gu,dir1i .

First, consider Rin. To calculate S(Rin) using Equation 4, we need to know
where the lower-left and upper-right vertices of Rin are. The upper-right vertex

28 Indeed, R→l ⊆ R→h and R←l ⊆ R←h, hence R→l ∩ R←l ⊆ R→h and R→l ∩ R←l ⊆
R←h. Therefore, R→l ∩R←l ⊆ Rin, and Rin ∩R→l ∩R←l = R→l ∩R←l.

20 Alex Biryukov, Gleb Naumenko, and Sergei Tikhomirov

is defined by the upper-bound probe in dir0 , therefore its i-th coordinate is hu
i .

Let us denote x = x + 1. The corresponding rectangle R→h cuts hu
i + 1 points

along the i-th dimension. The lower-left vertex is defined by the upper-bound
probe in dir1 , therefore its i-th coordinate is ci−gui . The corresponding rectangle
R←h cuts gui + 1 points along the i-th dimension. Applying Equation 4, we get:

S(Rin) =

N∏
i=1

(hu
i + gui − ci) (7)

This formula has a geometrical interpretation. Each of the two probes – in
dir0 and dir1 – cuts an interval along the i-th dimension. The former probe
cuts [0, hu

i]. This means that bi can take any of hu
i + 1 values from 0 to hu

i . The
latter probe cuts [ci − gui , ci]. This means that bi can take any of gui + 1 values
from ci − gui to ci. Adding up the lengths of the two intervals would “cover” all
points in [0, ci], and the points at the intersection would be covered twice. We
can calculate its length as the sum of the two lengths minus the length of the
whole interval [0, ci]: (hu

i + 1) + (gui + 1)− (ci + 1) = hu
i + gui − ci.

Now consider the lower bounds (this corresponds to subtracting R→l ∪R←l

in Equation 1). The probe with amount hl in dir0 defines R→l. The intersection
Rin ∩R→l = R(ci − gui , h

l
i) has the area:

S(Rin ∩R→l) =

N∏
i=1

(hl
i + gui − ci) (8)

Analogously for R←l = R(ci − gli, h
u
i):

S(Rin ∩R←l) =

N∏
i=1

(hu
i + gli − ci) (9)

Finally, for R→l ∩R←l:

S(R→l ∩R←l) =

N∏
i=1

(hl
i + gli − ci) (10)

Combining equations 6, 7, 8, 9, and 10, we get Equation 1:

S(F) =

N∏
i=1

(hu
i + gui − ci)−

N∏
i=1

(hl
i + gui − ci)−

N∏
i=1

(hu
i + gli− ci) +

N∏
i=1

(hl
i + gli− ci)

To add jamming-enhanced probing to the model, we assume that the attacker
can jam and unjam any channel in any hop. The attacker probes a target hop
without jamming, and then iterates through channels whose balances are not
precisely known, jams all other channels, and probes the only unjammed channel.

We introduce a rectangle B = R((bl1, . . . , b
l
N), (bh1 , . . . , b

h
N)), where bli and bhi

are the current balance bounds: bli < bi ≤ bhi . Similarly to Equation 6, we define:

Analysis and Probing of Parallel Channels in the Lightning Network 21

FB = Rin,B \ (R→l
B ∪R←l

B) (11)

where Rin,B = Rin ∩ B, R→l
B = R→l ∩ B, and R←l

B = R←l ∩ B. In the pre-
jamming phase, individual balance bounds are also updated where possible (in
addition to the bounds on h and g). At each step of jamming-enhanced probing,
B shrinks in half along the i-th (currently unjammed) dimension. Ultimately,
FB is reduced to a single point.

Effective probe amounts Small probes that are forwarded through a large inter-
mediary channel do not give the attacker any new information. Similarly, probing
give no information about channels that are disabled in the probe direction. To
account for this in our model, we introduce the notion of the effective probe
amount for channel i and direction dir0 as follows:

ai =

{
a, i ∈ E and a ≤ ci

ci + 1, otherwise
(12)

We also define the effective lower bound hl
i for h along the dimension i:

hl
i =

{
a− 1, i ∈ E and a ≤ ci

ci, otherwise
(13)

The definitions for hu
i , g

l
i, g

u
i are analogous. The intuition here is that if a

channel is disabled in a given direction, no probe in this direction gains any
information about it. To reflect this fact, the length of the rectangle being cut
along the i-th dimension is either a or ci+1, or, equivalently, hl

i+1. This notation
allows for generalized formulas regardless of hop configuration.

B Experimental setup in an isolated network

Prober

Jammer

VictimA VictimB JamRecv

500k : 0

500k :
 0

166k : 334k

68k : 432k

500k : 0

Fig. 10. Experimental setup in an isolated network.

22 Alex Biryukov, Gleb Naumenko, and Sergei Tikhomirov

Our setting consisted of five nodes running on different ports on the same
machine (Figure 10)29. For Prober and Jammer, we used the c-lightning im-
plementation to build on the previous work on channel probing. We use a probing
tool implemented as a plugin for c-lightning. For JamRecv, used a modified c-
lightning implementation. We changed the source code so that the node waits
for 120 seconds after receiving a payment for an unknown invoice, so that the
channels on the route from the Jammer are indeed jammed. For VictimA and
VictimB, we used eclair (c-lightning does not support parallel channels).
Experiments only involved our own nodes; no LN users were impacted.

For both experiments, we opened two channels between VictimA and Vic-
timB and allocated the balances (in satoshis) as 68k:432k and 166k:334k (we
write Xk for X thousand). We also opened channels from the attacker’s node to
VictimA. Non-enhanced probing provided an upper bound of 167k satoshis for
both target channels and the lower bound 165k satoshis for the entire hop.

Jamming-enhanced probing To infer the balance of the smaller channel, the
attacker sent a payment of 150k satoshis from Jammer to JamRecv, which held
it for two minutes. The available balances were 68k:432k and 16k:334k (note that
the in-flight balance was unavailable for either direction). Since the 67k channel
had the largest balance in the hop, the attacker could probe it. Probing yielded
an estimate of [66k : 68k], which indeed represented the second channel balance.
After the probing was done, JamRecv failed the in-flight payment. Thus, we
confirmed that channel jamming can indeed improve balance estimated when
probing multi-channel hops.

Fee-aware probing For fee-aware probing, only three nodes were relevant:
Prober, VictimA, and VictimB. We updated the larger channel from the previous
experiment to require non-zero fees. The Prober node was first configured to
send probes with sufficient fees for the more expensive channel. By sending such
probes, the attacker yielded the same result, inferring the balance of the larger
(non-zero-fee) channel. To probe the smaller channel, the attacker configured the
Prober node to send only zero-fee probes and successfully inferred the balance
of the smaller channel: [66k : 68k].

C Experiments on synthetic hops

We now demonstrate how the hop structure influences information gain. In this
experiment, we use synthetic two-channel hops with considerably different ca-
pacities (in satoshis): either cbig = 220 or csmall = 215. We do not consider
channels disabled in both directions. We denote a hop configuration as “x-y-c1-
c2” if x channels are enabled in dir0 , and y channels are enabled in dir1 . If
capacities are different, we denote them as c1 and c2 (if they are the same, it

29 Note that Prober and Jammer can be the same node with two channels for each
activity, but we make them distinct for simplicity.

Analysis and Probing of Parallel Channels in the Lightning Network 23

makes no difference whether they equal cbig or csmall, so we omit this part of
the notation). For example, type “2-1” means that two equal-capacity channels
are enabled in dir0 , but only one is enabled in dir1 . Accounting for symmetry,
there are 12 hop configurations (Table 2).

Configuration First channel Second channel

Capacity dir0 dir1 Capacity dir0 dir1

2-2 cbig + + cbig + +

2-2-big-small cbig + + csmall + +

2-2-small-big csmall + + cbig + +

1-1 cbig + cbig +

1-1-big-small cbig + csmall +

1-1-small-big csmall + cbig +

2-1 cbig + + cbig +

2-1-big-small cbig + + csmall +

2-1-small-big csmall + + cbig +

2-0 cbig + + cbig
2-0-big-small cbig + + csmall

2-0-small-big csmall + + cbig

Table 2. Configurations of two-channel hops (+ means enabled).

We generate synthetic hops for each configuration and measure the informa-
tion gain and probing speed achieved using BS and NBS probe amount selection
methods (Table 3). Hop configurations 2-2 and 1-1 are most vulnerable. The
configuration least prone to probing is 2-0 (0.49 information gain). In general,
asymmetric hop configurations are less prone to probing compared to hops with
equal balances, except for “2-1-small-big”. The intuition is that in a “2-1-small-
big” hop all probes go through the larger channel, while the smaller one remains
“masked” (if it is not the only enabled channel in a given direction). Practically
speaking, users should only enable channels in directions they intend to use. If
payments in both direction are needed, users should avoid the configuration “2-
1-small-big” (i.e., a small channel enabled in both directions and a large channel
enabled in one direction).

24 Alex Biryukov, Gleb Naumenko, and Sergei Tikhomirov

Configuration Information gain
Speed (bits / message)
BS NBS Advantage

2-2 0.95 0.97 1.0 0.02

2-2-big-small 0.58 0.52 0.97 0.85

2-2-small-big 0.59 0.53 0.97 0.83

1-1 0.98 1.0 1.0 0.0

1-1-big-small 0.97 1.0 1.0 0.0

1-1-small-big 0.97 1.0 1.0 0.0

2-1 0.75 0.77 0.98 0.28

2-1-big-small 0.58 0.52 0.97 0.87

2-1-small-big 0.96 0.99 1.0 0.01

2-0 0.49 0.99 0.99 0.0

2-0-big-small 0.57 1.0 1.0 0.0

2-0-small-big 0.57 1.0 1.0 0.0

Table 3. Probing results for various configurations of two-channel hops.

