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Abstract

The problem of Isomorphism of Polynomials (IP problem) is known to be important
to study the security of multivariate public key cryptosystems, one of major candidates of
post-quantum cryptography, against key recovery attacks. In these years, several schemes
based on the IP problem itself or its generalization have been proposed. At PQCrypto 2020,
Santoso introduced a generalization of the problem of Isomorphism of Polynomials, called
the problem of Blockwise Isomorphism of Polynomials (BIP problem), and proposed a new
Diffie-Hellman type encryption scheme based on this problem with Circulant matrices (BIPC
prolbem). Quite recently, Ikematsu et al. proposed an attack called the linear stack attack
to recover an equivalent key of Santoso’s encryption scheme. While this attack reduced the
security of the scheme, it does not contribute to solve the BIPC problem itself. In the present
paper, we describe how to solve the BIPC problem directly by simplifying the BIPC problem
due to the conjugation property of circulant matrices. In fact, we experimentally solved the
BIPC problem with the parameter, which has 256 bit security by Santoso’s security analysis
and has 72.7 bit security against the linear stack attack, by about 10 minutes.
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1 Introduction

The problem of Isomorphism of Polynomials (IP problem) is the problem to recover two affine
maps S, T satisfying

g = T ◦ f ◦ S

for given polynomial maps g, f over a finite field. This problem was introduced by Patarin [8]
and has been discussed mainly in the context of the security analyses of multivariate public key
cryptosystems, one of major candidates of post-quantum cryptography [7, 4, 2], since the public
key g of most such cryptosystems are generated by g = T ◦ f ◦S with a (not necessarily public)
quadratic map f inverted feasibly, and recovering S, T is enough to break the corresponding
schemes (e.g. [1, 5]).

In these years, several schemes based on the IP problem or its generalization have been
proposed. For example, Wang et al. [10] proposed a key exchange scheme and an encryption
scheme based on the IP problem with S, T chosen in commutative rings of square matrices.
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While the commutativity for S, T was required for convenience of these schemes, it yields a
vulnerability; in fact, it was broken by Chen et al. [3] since the numbers of unknowns of the
IP problem in Wang’s schemes is too small. Later, at PQCrypto 2020, Santoso [9] introduced a
generalization of the IP problem, called the problem of Blockwise Isomorphism of Polynomials
(BIP problem), and proposed a new Diffie-Hellman type encryption scheme based on the BIP
problem with Circulant matrices (BIPC problem). It had been considered that the BIP problem
was more difficult against analogues of known attacks on the original IP problem (see, e.g. [1])
and then it had been expected that Santoso’s scheme was secure enough under suitable parameter
selections. However, Ikematsu et al. [6] discovered that this scheme is less secure than expected
against the linear stack attack, which is an attack to recover an equivalent key by studying a
special version of sufficiently larger size BIPC problem than the original BIPC problem. Remark
that, while this attack works to reduce the security of Santoso’s scheme, it does not contribute
to solve the BIPC problem itself.

In the present paper, we describe how to solve the BIPC problem directly. Since any circulant
matrices can be diagonalized or block-diagonalized simultaneously, the BIPC problem can be
simplified drastically after (block-) diagonalization. Our approach is quite effective; in fact, the
BIPC problem with the parameter, which has 256 bit security by Santoso’s security analysis
and has 72.7 bit security against the linear stack attack, was experimentally solved by about 10
minutes.

2 Isomorphism of Polynomials

In this section, we describe the Isomorphism of Polynomials, the Blockwise Isomorphism of
Polynomials and the encryption scheme proposed by Santoso [9].

2.1 Isomorphism of Polynomials

Let q be a power of prime and Fq a finite field of order q. For integers n,m ≥ 1, denote by
MQ(n,m) the set of m-tuples of homogeneous quadratic polynomials t(f1(x)), . . . , fm(x)) of n
variables x = t(x1, . . . , xn) over Fq. We call that f ,g ∈ MQ(n,m) are isomorphic if there exist
two invertible linear maps S : Fn

q → Fn
q , T : Fm

q → Fm
q such that

g = T ◦ f ◦ S, (1)

i.e.  g1(x)
...

gm(x)

 = T

 f1(S(x))
...

fm(S(x))

 ,

where f = t(f1(x), . . . , fm(x)) and g = t(g1(x), . . . , gm(x)). The problem of Isomorphism of
Polynomials (IP problem) is the problem to recover invertible linear maps S : Fn

q → Fn
q , T :

Fm
q → Fm

q satisfying (1) for given f ,g ∈ MQ(n,m).
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2.2 Blockwise Isomorphism of Polynomials

For n,m, k ≥ 1, let f ,g ∈ MQ(n,mk) and divide f ,g by f = (f1, . . . , fk), g = (g1, . . . ,gk) with
f1, . . . , fk,g1, . . . ,gk ∈ MQ(n,m). We call that f and g are blockwise isomorphic if there exist
invertible or zero linear maps S1, . . . , Sk : Fn

q → Fn
q , T1, . . . , Tk : Fm

q → Fm
q satisfying

gu =
∑

1≤l≤k

Tl ◦ fu+l−1 ◦ Sl (2)

for 1 ≤ u ≤ k, where 1 ≤ a ≤ k is given by a ≡ a mod k, i.e.

g1 =T1 ◦ f1 ◦ S1 + T2 ◦ f2 ◦ S2 + · · ·+ Tk ◦ fk ◦ Sk,
g2 =T1 ◦ f2 ◦ S1 + T2 ◦ f3 ◦ S2 + · · ·+ Tk ◦ f1 ◦ Sk,

...

gk =T1 ◦ fk ◦ S1 + T2 ◦ f1 ◦ S2 + · · ·+ Tk ◦ fk−1 ◦ Sk.

The problem of blockwise isomorphism of polynomials (BIP prolbem) is the problem to recover
invertible or zero linear maps S1, . . . , Sk : Fn

q → Fn
q , T1, . . . , Tk : Fm

q → Fm
q satisfying (2) for

given f ,g ∈ MQ(n,mk).

2.3 Blockwise Isomorphism of Polynomials with Circulant matrices

Santoso’s encryption scheme is based on BIP problem with circulant matrices.

Let In be the n × n identity matrix and Jn :=

(
1

.
.
.
1

1

)
the n-cyclic permutation matrix.

A circulant matrix is a linear sum of In, Jn, J
2
n, . . . , J

n−1
n , i.e. a circulant matrix is given by

a0In + a1Jn + a2J
2
n + · · ·+ an−1J

n−1
n =



a0 a1 · · · an−2 an−1

an−1 a0
. . . an−3 an−2

...
. . .

. . .
. . .

...

a2 a3
. . . a0 a1

a1 a2 · · · an−1 a0


for some a0, . . . , an−1 ∈ Fq. Note that the multiplication between circulant matrices is commu-
tative. Let Circ(n) be the set of n× n circulant matrices and

Ψ(n,m, k) :=

{
(S1, . . . , Sk, T1, . . . , Tk)

∣∣∣ S1, . . . , Sk ∈ Circ(n),
T1, . . . , Tk ∈ Circ(m),

invertible or 0

}
.

For f ∈ MQ(n,mk) and ψ = (S1, . . . , Sk, T1, . . . , Tk) ∈ Ψ(n,m, k), define the operator ∗ such
that g = ψ ∗ f is as given in (2). Note that ψ,φ ∈ Ψ(n,m, k) is commutative for the operator
∗ , i.e. it holds

φ ∗ (ψ ∗ g) = ψ ∗ (φ ∗ g)

for any f ∈ MQ(n,mk) (see Lemma 1 in [9]).
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2.4 Encryption scheme based on BIP with Circulant matrices

Santoso’s El-Gammal-like encryption scheme is constructed as follows [9].

Parameters. n,m, k ≥ 1: integers.

Secret key. Υ ∈ Ψ(n,m, k).

Public key. f ,g ∈ MQ(n,mk) with g = Υ ∗ f .

Encryption. For a plain-text ν ∈ MQ(n,mk), choose ψ ∈ Ψ(n,m, k) randomly and compute

c0 := ψ ∗ g, c1 := ν + ψ ∗ f .

The cipher-text is (c0, c1) ∈ MQ(n,mk)2.

Decryption. The plain-text is recovered by

ν = c1 −Υ ∗ c0.

Since the operations by ψ and Υ are commutative, the cipher-text can be decrypted correctly.

2.5 Previous security analyses and parameter selections

We first note that this scheme was proven to be secure against one way under chosen plain-text
attack (OW-CPA) under the assumption that the CDH-BIPC problem, an analogue of the Com-
putational Diffie-Hellman problem for BIP with Circulant matrices, is hard [9]. Furthermore,
it was pointed out that this scheme can be transformed into an IND-CCA secure encryption
scheme by an approach of Fujisaki-Okamoto-like transformation. Until now, the following three
attacks have been studied by by Santoso himself [9] and Ikematsu et al. [6].

(1) Attack by Bouillagust et al. Bouillagust et al. [1] proposed an attack to solve the IP
problem to recover S, T with g = T ◦ f ◦ S. The basic approach is to find a pair of vectors
a,b ∈ Fn

q such that S̄−1a = b, where S̄ is an linear map with g = T̄ ◦ f ◦ S̄. Santoso [9]
generalized this attack on the BIP problem with circulant matrices and estimated the complexity

by O
(
k2n52n

k
k+1

)
.

(2) The Gröbner basis attack. The unknown parameters in S1, . . . , Sk ∈ Circ(n) and
T1, . . . , Tk ∈ Circ(m) are nk + mk in the total, and the coefficients of the quadratic polyno-
mials in g = Υ ∗ f give a system of 1

2n(n + 1)mk equations over Fq, which are linear for the
unknowns in T ’s, quadratic for the unknowns in S’s and cubic in the total. The Gröbner basis
attack is to solve such a system equations directly by the Gröbner basis algorithm. Santoso [9]
estimated its complexity by O

(
2k log(nm)/4m

)
.

(3) Linear stack attack. The linear stack attack [6] is an attack to recover Υ1, . . . ,ΥN ∈
Ψ(n,m, k) such that g =

∑
1≤i≤N Υi ∗ f for sufficiently large N (usually ∼ 1

2n
2m). It is easy

to check that, if such Υ1, . . . ,ΥN are recovered, the cipher-text (c0, c1) is decrypted by ν =
c1 −

∑
1≤i≤N Υi ∗ c0. Its complexity is (heuristically) estimated by O

(
n6m3k3

)
.

Table 1 shows the the parameter selections by Santoso [9] based on the security analyses (i),
(ii) above, and their security against the attack (iii).
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Table 1: Parameter selections of Santoso’s encryption scheme and previous security analyses
(n,m, k) (1), (2) [9] (3) [6]

(84,2,140) 128 bit 62.7 bit
(206,2,236) 256 bit 72.7 bit

(16,2,205) 128 bit 50.0 bit
(16,2,410) 256 bit 53.0 bit

3 Solving the BIP problem with Circulant matrices

In this section, we describe how to solve the BIP problem with circulant matrices. Before it, we
study the conjugations of circulant matrices to simplify the problem.

3.1 Conjugations of circulant matrices

Let n ≥ 1 be an integer and p the characteristic of Fq. When p ∤ n, denote by θn an n-th root of
1, i.e. θn is an element of Fq or its extension field satisfying θnn = 1 and θln ̸= 1 for 1 ≤ l ≤ n−1.
Define the n× n matrix Θn by

Θn :=
(
θ(i−1)(j−1)
n

)
1≤i,j≤n

=


1 1 · · · 1
1 θn · · · θn−1

n
...

...
. . .

...

1 θn−1
n · · · θ

(n−1)2

n

 .

We also define the n× n matrices Bn by the lower triangular matrix whose (i, j)-entries (i ≥ j)
is
(
i−1
j−1

)
, and Ln by the upper triangular matrix whose (i, i + 1)-entries are 1 (1 ≤ i ≤ n) and

other entries are 0, i.e.

Bn :=


1
1 1
1 2 1
...

...
...

. . .

1 n− 1
(
n−1
2

)
· · · 1

 , Ln :=


0 1

0 1
. . .

. . .

0 1
0

 .

Note that

L2
n :=


0 0 1

. . .
. . .

. . .

0 0 1
0 0

0

 , . . . , Ln−1
n :=


1


and Ln
n = 0n. We also denote by

diag(a1, . . . , an) :=

a1 . . .

an

 , A⊗B :=

a11B · · · a1nB
...

. . .
...

an1B · · · annB
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for scalars or matrices a1, . . . , an and matrices A = (aij)i,j , B. Then the following lemmas hold.

Lemma 3.1. Let n be an integer factored by n = n1p
r with p ∤ n1, r ≥ 0. Then there exists an

n× n permutation matrix Kn such that

Q−1
n JnQn = diag

(
1, θn1 , . . . , θ

n1−1
n1

)
⊗ (Ipr + Lpr) ,

where Qn := Kn · (Θn1 ⊗Bpr).

Proof. (i) When p ∤ n (r = 0), the (i, j)-entries of JnΘn and Θndiag
(
1, θn, . . . , θ

n−1
n

)
are θ

i(j−1)
n

for 1 ≤ i ≤ n− 1 and 1 for i = n since θnn = 1. Then it holds

JnΘn = Θndiag
(
1, θn, . . . , θ

n−1
n

)
.

(ii) When n = pr (n1 = 1), the (i, j)-entries of JnBn are
(

i
j−1

)
for j − 1 ≤ i ≤ n − 1, 1 for

(i, j) = (n, 1) and 0 otherwise. On the other hand, the (i, j)-entries of Bn (In + Ln) is 1 for
j = 1,

(
i−1
j−2

)
+
(
i−1
j−1

)
=
(

i
j−1

)
for 2 ≤ j ≤ i + 1 and 0 otherwise. Since

(
pr

j−1

)
= 0 in Fq for

2 ≤ j ≤ pr, we have
JprBpr = Bpr (Ipr + Lpr) .

(iii) Since both Jn and Jn1⊗Jpr are of n-cyclic, these are conjugate to each other in the symmetric
group Sn, i.e. there exists an n× n permutation matrix Kn such that

K−1
n JnKn = Jn1 ⊗ Jpr .

We thus obtain

Q−1
n JnQn =(Θn1 ⊗Bpr)

−1 (Jn1 ⊗ Jpr) (Θn1 ⊗Bpr)

=
(
Θ−1

n1
Jn1Θn1

)
⊗
(
B−1

pr JprBpr
)

=diag
(
1, θn1 , . . . , θ

n1−1
n1

)
⊗ (Ipr + Lpr) .

Lemma 3.2. Let n be an integer factored by n = n1p
r with p ∤ n1, r ≥ 0 and Qn := Kn(Θn1 ⊗

Bpr). Then, for S ∈ Circ(n), there exist s11, . . . , s1pr ∈ Fq and s21, . . . , s2pr , s31, . . . , . . . , sn1pr ∈
Fq(θn1) such that

Q−1
n SQn =diag

(
s11Ipr + s12Lpr + · · ·+ s1prL

pr−1
pr ,

s21Ipr + s22Lpr + · · ·+ s2prL
pr−1
pr ,

· · · , sn11Ipr + sn12Lpr + · · ·+ sn1prL
pr−1
pr

)

=diag



s11 s12 · · · s1pr

. . .
. . .

...
s11 s12

s11

 , . . . ,


sn11 sn12 · · · sn1pr

. . .
. . .

...
sn11 sn12

sn11


 .
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Proof. A circulant matrix S is written by

S = a1In + a2Jn + · · ·+ anJ
n−1
n

for some a1, . . . , an ∈ Fq. Then, according to Lemma 3.1, we have

Q−1
n SQn =a1In + a2 · diag

(
1, θn1 , . . . , θ

n1−1
n1

)
⊗ (Ipr + Lpr)

+ a3 · diag
(
1, θ2n1

, . . . , θ2(n1−1)
n1

)
⊗ (Ipr + Lpr)

2

+ · · ·+ an · diag
(
1, θn−1

n1
, . . . , θ(n1−1)(n−1)

n1

)
⊗ (Ipr + Lpr)

n−1 .

Since Lpr

pr = 0, the matrices Ipr , Ipr + Lpr , (Ipr + Lpr)
2, . . . , (Ipr + Lpr)

n−1 are linear sums of

Ipr , Lpr , L
2
pr , . . . , L

pr−1
pr . Thus we can easily check that Lemma 3.2 holds.

3.2 Equivalent keys

Let n,m ≥ 1 be integers factored by n = n1p
a, m = m1p

b with a, b ≥ 0, p ∤ n1,m1. For
1 ≤ l ≤ k, define

f̄l := Q−1
m ◦ fl ◦Qn, ḡl := Q−1

m ◦ gl ◦Qn,

S̄l := Q−1
n ◦ Sl ◦Qn, T̄l := Q−1

m ◦ Tl ◦Qm.

Note that, due to Lemma 3.2, we see that S̄l, T̄l are written by

S̄l =diag



s
(l)
11 s

(l)
12 · · · s

(l)
1pa

. . .
. . .

...

s
(l)
11 s

(l)
12

s
(l)
11

 , . . . ,


s
(l)
n11

s
(l)
n12

· · · s
(l)
n1pa

. . .
. . .

...

s
(l)
n11

s
(l)
n12

s
(l)
n11


 ,

T̄l =diag



t
(l)
11 t

(l)
12 · · · t

(l)

1pb

. . .
. . .

...

t
(l)
11 t

(l)
12

t
(l)
11

 , . . . ,


t
(l)
m11

t
(l)
m12

· · · t
(l)

m1pb

. . .
. . .

...

t
(l)
m11

t
(l)
m12

t
(l)
m11


 .

(3)

Since

Q−1
m ◦ (Tl ◦ fu ◦ Sl) ◦Qn =(Q−1

m ◦ Tl ◦Qm) ◦ (Q−1
m ◦ fu ◦Qn) ◦ (Q−1

n ◦ Sl ◦Qn)

=T̄l ◦ f̄u ◦ S̄l,

we have

ḡu =
∑

1≤l≤k

T̄l ◦ f̄u+l−1 ◦ S̄l. (4)
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This means that the BIP problem with Circulant matrices is reduced to the problem recovering
S̄1, . . . , S̄k, T̄1, . . . , T̄k in the forms (3) for given f̄ and ḡ. Furthermore, since

(α2T̄l) ◦ f̄u ◦ (α−1S̄l) = T̄l ◦ f̄u ◦ S̄l

for any α ∈ Fq\{0} and
0 ◦ f̄u ◦ S̄l = T̄l ◦ f̄u ◦ 0 = 0,

we can take s
(l)
11 = 1 for 1 ≤ l ≤ k without loss generality. In the next subsection, we describe

how to recover other parameters in S̄l and T̄l.

3.3 Solving the BIP problem with Circulant matrices

For 1 ≤ u ≤ k and 1 ≤ v ≤ m, denote by

f̄u(x) =
t(f̄u1(x), . . . , f̄um(x)), f̄uv(x) =

∑
1≤i≤j≤n

α
(uv)
ij xixj ,

ḡu(x) =
t(ḡu1(x), . . . , ḡum(x)), ḡuv(x) =

∑
1≤i≤j≤n

β
(uv)
ij xixj .

We can recover S̄l and T̄l as follows.

3.3.1 Recovering T̄l.

We first study the polynomial ḡum(x) for 1 ≤ u ≤ k. Since S̄l, T̄l are as in (3) and s
(l)
11 = 1, we

see that the coefficient of x21 of ḡum(x) in (4) gives the equation

β
(um)
11 =

∑
1≤l≤k

α
(u+l−1,m)
11 t

(l)
m11

. (5)

Since the set of the equations (5) for 1 ≤ u ≤ k is a system of k linear equations of k variables

t
(1)
m11

, . . . , t
(k)
m11

, one can recover t
(1)
m11

, . . . , t
(k)
m11

by solving this system.
Next, the coefficient of x21 of ḡu,m−1(x) in (4) gives

β
(u,m−1)
11 =

∑
1≤l≤k

(
α
(u+l−1,m−1)
11 t

(l)
m11

+ α
(u+l−1,m)
11 t

(l)
m12

)
.

Since t
(1)
m11

, . . . , t
(k)
m11

are already given, one can recover t
(1)
m12

, . . . , t
(k)
m12

by solving the equations
above for 1 ≤ u ≤ k. Other parameters in T̄ can be recovered by the equations derived from
the coefficients of x21 in ḡu,m−2(x), . . . , ḡu,1(x) recursively.

3.3.2 Recovering S̄l.

Study ḡum(x) again. Since s
(l)
11 = 1, the coefficient of x1x2 of ḡum(x) gives the equation

β
(um)
12 =

∑
1≤l≤k

(
2α

(u+l−1,m)
11 s

(l)
12 + α

(u+l−1,m)
12

)
t
(l)
m11

. (6)



Solving the BIPC problem 9

Since t
(l)
m11

is already given, one can recover s
(l)
12 by solving the system of k linear equations of k

variables s
(1)
12 , . . . , s

(k)
12 derived from the equation (6) for 1 ≤ u ≤ k.

Next, the coefficient of x1x3 in ḡum(x) is

β
(um)
13 =

∑
1≤l≤k

(
2α

(u+l−1,m)
11 s

(l)
13 + α

(u+l−1,m)
12 s

(l)
12 + α

(u+l−1,m)
13

)
t
(l)
m11

. (7)

Since t
(l)
m11

, s
(l)
12 are already given, s

(l)
13 can be recovered from the equation above for 1 ≤ l ≤ k.

It is easy to see that one can recover other parameters s
(l)
14 , . . . , s

(l)
n1pa by the systems of linear

equations derived from the coefficients of x1x4, . . . , x1xn in ḡum(x) recursively.

Remark 3.3. If q is even, s
(l)
12 does not appear in the equation (6) and then s

(l)
12 cannot be

recovered from the coefficient of x1x2. On the other hand, the equation (7) derived from the

coefficient of x1x3 includes s
(l)
12 but not s

(l)
13 . This means that s

(l)
12 is recovered from the coefficient

of x1x3 instead of x1x2. Similarly, we can easily check that s
(l)
13 , . . . , s

(l)
1pa are recovered from the

coefficients of x1x4, . . . , x1xpa , x2xpa respectively instead of x1x3, . . . , x1xpa.

Remark 3.4. There is a possibility that the parameters in (S̄1, . . . , S̄k, T̄1, . . . , T̄k) are not fixed
uniquely from the linear equations derived from the coefficients of x21 in ḡu1(x), . . . , ḡum(x) and of
x1x2, . . . , x1xn in ḡum(x). If such a case occurs, recover the parameters in (S̄1, . . . , S̄k, T̄1, . . . , T̄k)
as possible, study the coefficients not used to recover such parameters and state the equations for
the parameters not fixed uniquely yet. Then one can expect to fix them uniquely. For example,

the coefficients of x22 includes s
(l)
12 quadratically and then it helps to fix s

(l)
12 .

3.3.3 Complexity.

It is easy to see that, to compute f̄ , ḡ totally, we need (at most) O(n3mk) arithmetics on
Fq(θn1 , θm1). However, we use only the coefficients of x21, x1x2, . . . , x1xn and then the number
of required arithmetics in this process is O(n2mk). Furthermore, since the attacker solves the
systems of k linear equations of k variables in m times for recovering T̄l and in n times for
recovering S̄l, the number of required arithmetics for recovering them is (at most) O(k3(n+m))
over Fq(θn1 , θm1). We thus conclude that the total number of arithmetics on Fq(θn1 , θm1) of our
approach is estimated by O(kn2m+ k3n+ k3m).

3.3.4 Experiments.

We implemented our attack on Magma ver.2.24-5 under macOS Mojave ver.10.14.16, Intel Core
i5, 3 GHz. In Table 2, we describe the experimental results of our attack for the parameters
selected in [9] and studied in [6]. This shows that our approach is quite effective to solve the
BIP problem with Circulant matrices.

4 Conclusion

The present paper shows that solving the BIP problem with Circulant matrices directly is not
difficult since the secret maps S1, . . . , Sk, T1, . . . , Tk are known to be circulant. We consider that,
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Table 2: Parameter selections of the proposed encryption scheme
(n,m, k) (1), (2) [9] (3) [6] Our Attack

(42,2,102) — — 4.8 days 9.9 sec.
(84,2,140) 128 bit 62.7 bit — 34.5 sec.
(206,2,236) 256 bit 72.7 bit — 619 sec.

(16,2,205) 128 bit 50.0 bit 10 hr. 15.5 sec.
(16,2,410) 256 bit 53.0 bit — 150 sec.

while the original BIP problem is difficult enough at the present time, it will be solved similarly
if the secret maps to be recovered have some kind of “special” structures. Then, to build a
secure scheme based on the BIP problem, one should choose the secret maps as randomly as
possible.
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A Toy example

We now demonstrate how to solve the BIPC problem for (q, n,m, k) = (2, 6, 2, 2) as a toy
example. The public keys f = (f1, f2) = (f11, f12, f21, f22) and g = (g1,g2) = (g11, g12, g21, g22)
are as follows.

f11(x) =
tx


1 0 0 0 0 0

1 0 0 0 1
0 0 0 0

0 0 0
1 1

0

x, f12(x) =
tx


0 0 0 1 1 1

1 1 0 0 1
1 0 1 1

0 0 0
1 1

1

x,

f21(x) =
tx


0 0 1 1 1 0

1 1 1 1 1
0 1 0 0

0 1 1
0 0

1

x, f22(x) =
tx


1 1 1 0 1 0

0 0 1 1 1
0 1 0 0

0 0 1
1 1

1

x,

g11(x) =
tx


1 1 1 1 0 1

0 1 0 0 0
1 0 0 1

0 1 1
1 0

1

x, g12(x) =
tx


1 0 0 0 0 0

1 0 0 0 0
0 1 1 1

1 1 1
0 0

1

x,

g21(x) =
tx


1 0 1 0 0 0

0 1 1 0 1
1 1 0 1

0 0 1
1 0

1

x, g22(x) =
tx


0 1 1 0 0 0

1 1 1 1 0
0 0 0 1

0 0 0
1 0

0

x,

where the coefficient matrices are expressed by triangular matrices. Our aim is to recover recover
S1, S2 ∈ Circ(6), T1, T2 ∈ Circ(2) satisfying(

g11(x)
g12(x)

)
=T1

(
f11(S1(x))
f12(S1(x))

)
+ T2

(
f21(S2(x))
f22(S2(x))

)
,(

g21(x)
g22(x)

)
=T1

(
f21(S1(x))
f22(S1(x))

)
+ T2

(
f11(S2(x))
f12(S2(x))

)
.

(8)

Let θ be a cubic root of 1 (i.e. θ2 + θ + 1 = 0),

K6 :=


1

1
1

1
1

1

, Θ3 :=

1 1 1
1 θ θ2

1 θ2 θ

 , Q2 = B2 :=

(
1 0
1 1

)
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and Q6 := K6 (Θ3 ⊗B2). Then f̄1 = Q−1
2 ◦ f1 ◦ Q6 = (f̄11, f̄12), f̄2 = Q−1

2 ◦ f2 ◦ Q6 = (f̄21, f̄22),
ḡ1 = Q−1

2 ◦ g1 ◦Q6 = (ḡ11, ḡ12), ḡ2 = Q−1
2 ◦ g2 ◦Q6 = (ḡ21, ḡ22) are as follows.

f̄11(x) =
tx


1 1 0 θ 0 θ2

0 θ2 1 θ 1
1 1 0 θ

θ θ2 1
1 1

θ2

x, f̄12(x) =
tx


1 0 1 θ2 1 θ

1 0 0 0 0
θ2 1 0 0

θ 0 0
θ 1

θ2

x,

f̄21(x) =
tx


0 1 1 1 1 1

1 1 0 1 0
θ θ 0 θ

1 θ2 1
θ2 θ2

1

x, f̄22(x) =
tx


0 1 0 θ2 0 θ

1 θ2 0 θ 0
0 1 0 1

θ2 1 0
0 1

θ1

x,

ḡ11(x) =
tx


0 0 θ2 θ θ θ2

0 1 θ 1 θ2

θ2 1 0 0
1 0 1

θ 1
1

x, ḡ12(x) =
tx


1 1 1 θ2 1 θ

0 1 0 1 0
θ2 θ 0 1

θ 1 0
θ θ2

θ2

x,

ḡ21(x) =
tx


1 1 1 0 0 1

0 θ2 0 θ 0
1 0 0 1

θ 1 1
1 0

θ2

x, ḡ22(x) =
tx


1 1 θ θ θ2 θ2

0 θ2 θ2 θ θ
θ θ 0 1

θ2 1 0
θ2 θ2

θ

x.

Then the problem of recovering S1, S2, T1, T2 with (8) is reduced to the problem of recovering
S̄1 = Q−1

6 ◦ S1 ◦Q6, S̄2 = Q−1
6 ◦ S2 ◦Q6, T̄1 = Q−1

2 ◦ T1 ◦Q2, T̄2 = Q−1
2 ◦ T2 ◦Q2 satisfying(

ḡ11(x)
ḡ12(x)

)
=T̄1

(
f̄11(S̄1(x))
f̄12(S̄1(x))

)
+ T̄2

(
f̄21(S̄2(x))
f̄22(S̄2(x))

)
,(

ḡ21(x)
ḡ22(x)

)
=T̄1

(
f̄21(S̄1(x))
f̄22(S̄1(x))

)
+ T̄2

(
f̄11(S̄2(x))
f̄12(S̄2(x))

)
.

(9)

Due to Lemma 3.2, we see that S̄1, S̄2, T̄1, T̄2 are written by

S̄1 =diag

((
1 s

(1)
12

1

)
,

(
s
(1)
21 s

(1)
22

s
(1)
21

)
,

(
s
(1)
31 s

(1)
32

s
(1)
31

))
,

S̄2 =diag

((
1 s

(2)
12

1

)
,

(
s
(2)
21 s

(2)
22

s
(2)
21

)
,

(
s
(2)
31 s

(2)
32

s
(2)
31

))
,

T̄1 =

(
t
(1)
1 t

(1)
2

t
(1)
1

)
, T̄2 =

(
t
(2)
1 t

(2)
2

t
(2)
1

)
.

We first study the coefficients of x21 in ḡ12, ḡ22. The relation (9) gives the following equations.(
1
1

)
=

(
1 0
0 1

)(
t
(1)
1

t
(2)
1

)
.
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We then get t
(1)
1 = 1 and t

(2)
1 = 1. Similarly, from the coefficients of x21 in ḡ11, ḡ21, we have(
0
1

)
=

(
1 0
0 1

)(
t
(1)
2

t
(2)
2

)
+

(
1 0
0 1

)(
t
(1)
1

t
(2)
1

)
.

From the equations above, we obtain t
(1)
2 = 1 and t

(2)
2 = 0. We thus have T1, T2 as

T1 = Q2

(
1 1

1

)
Q−1

2 = J2, T2 = Q2

(
1

1

)
Q−1

2 = I2. (10)

Next, we study the coefficient of x1x3 in ḡ12, ḡ22. From (9) and (10), we have(
1
θ

)
=

(
1 0
0 1

)(
s
(1)
21

s
(2)
21

)
.

We then get s
(1)
21 = 1, s

(2)
21 = θ. Similarly, the following equations are derived from the coefficients

of x1x4, x1x5 and x1x6 in ḡ12, ḡ22.(
θ2

θ

)
=

(
θ2 θ2

θ2 θ2

)(
s
(1)
21

s
(2)
21

)
+

(
1 0
0 1

)(
s
(1)
22

s
(2)
22

)
,

(
1
θ2

)
=

(
1 0
0 1

)(
s
(1)
31

s
(2)
31

)
,

(
θ
θ2

)
=

(
θ θ
θ θ

)(
s
(1)
31

s
(2)
31

)
+

(
1 0
0 1

)(
s
(1)
32

s
(2)
32

)
.

Then we get s
(1)
22 = 1, s

(2)
22 = 0, s

(1)
31 = 1, s

(2)
31 = θ2, s

(1)
32 = 1 and s

(2)
32 = 0. To recover the

remaining parameters s
(1)
12 , s

(2)
12 , we study the coefficients of x22 in ḡ12, ḡ22 and have

0 = s
(1)
12

2 + s
(2)
12 , 0 = s

(1)
12 + s

(2)
12

2.

Since s
(1)
12 , s

(2)
12 ∈ F2, the solution of the equations above is s

(1)
12 = s

(2)
12 . Since the unique solution

is not give yet, we further study the coefficients x2x3 in ḡ12, ḡ22 and have the equations

1 = s
(1)
12 s

(1)
21 + θ2s

(2)
21 , θ2 = θ2s

(1)
21 + s

(2)
12 s

(2)
21 .

Since s
(1)
21 = 1, s

(2)
21 = θ, we obtain s

(1)
12 = s

(2)
12 = 0. We thus conclude that

S1 =Q6 · diag
((

1 0
1

)
,

(
1 1

1

)
,

(
1 1

1

))
Q−1

6 = I6 + J6 + J2
6 + J4

6 + J5
6 ,

S2 =Q6 · diag
((

1 0
1

)
,

(
θ 0

θ

)
,

(
θ2 0

θ2

))
Q−1

6 = J4
6 .

(11)

The solution of this BIPC problem is given by (10) and (11).


