
SAFELearn: Secure Aggregation for private
FEderated Learning (Full Version)?

Hossein Fereidooni1, Samuel Marchal2, Markus Miettinen1, Azalia Mirhoseini3, Helen Möllering4,
Thien Duc Nguyen1 Phillip Rieger1, Ahmad-Reza Sadeghi1, Thomas Schneider4,

Hossein Yalame4, and Shaza Zeitouni1
1 System Security Lab, Technical University of Darmstadt, Germany

{hossein.fereidooni, markus.miettinen, ducthien.nguyen, phillip.rieger, ahmad.sadeghi, shaza.zeitouni}@trust.tu-darmstadt.de
2 Aalto University and F-Secure Corporation, Finland − samuel.marchal@aalto.fi

3 Google, USA − azalia@google.com
4 ENCRYPTO, Technical University of Darmstadt, Germany − {moellering, schneider, yalame}@encrypto.cs.tu-darmstadt.de

Abstract—Federated learning (FL) is an emerging distributed
machine learning paradigm which addresses critical data pri-
vacy issues in machine learning by enabling clients, using an
aggregation server (aggregator), to jointly train a global model
without revealing their training data. Thereby, it improves not
only privacy but is also efficient as it uses the computation power
and data of potentially millions of clients for training in parallel.

However, FL is vulnerable to so-called inference attacks by
malicious aggregators which can infer information about clients’
data from their model updates. Secure aggregation restricts
the central aggregator to only learn the summation or average
of the updates of clients. Unfortunately, existing protocols for
secure aggregation for FL suffer from high communication,
computation, and many communication rounds.

In this work, we present SAFELearn, a generic design for
efficient private FL systems that protects against inference
attacks that have to analyze individual clients’ model updates
using secure aggregation. It is flexibly adaptable to the efficiency
and security requirements of various FL applications and can be
instantiated with MPC or FHE. In contrast to previous works, we
only need 2 rounds of communication in each training iteration,
do not use any expensive cryptographic primitives on clients,
tolerate dropouts, and do not rely on a trusted third party.
We implement and benchmark an instantiation of our generic
design with secure two-party computation. Our implementation
aggregates 500 models with more than 300K parameters in less
than 0.5 seconds.

Index Terms—Federated Learning, Inference Attacks, Secure
Computation, Data Privacy

I. INTRODUCTION

Federated Learning (FL) became a distributed machine
learning (ML) paradigm since it was introduced by Google in
2017 [2]. It aims at improving privacy by enabling data owners
to efficiently train a model on their joint training data with the
help of a central aggregator and without sharing their potentially
sensitive data with each other or with the aggregator. FL offers
efficiency and scalability as the training task is distributed
between many participants and executed in parallel [3], [4].
Possible applications include, e.g., next word prediction for
mobile keyboards from Google [5], the analysis of medical

?Please cite the version of this paper published at IEEE Deep Learning and
Security Workshop (DLS’21) [1].

data [6], communication between vehicles [7], and intrusion
detection systems [8]. While FL leverages the power of the
massive amount of data available at edge devices nowadays, it
improves data privacy by enabling to keep data locally at the
clients [5]. This becomes particularly relevant not only because
of legal obligations such as the GDPR [9] and HIPAA [10], but
also in general when working with personal and sensitive data
like in the health sector where ML gets increasing attention. In
applications being deployed on end-users’ devices, FL helps
to increase the acceptance as the user’s data never leaves its
device such that more users might be willing to contribute to
a training. A real-world example for such a system is GBoard,
a mobile keyboard for Android smartphones using FL for
training word suggestions [5], which was downloaded more
than a million times by the end of 2020 [11].

Despite these benefits, FL is vulnerable to adversarial attacks
aiming at extracting information about the used training data.
In these so-called inference attacks, the adversary can, for
example, infer if a specific image was used in training an
image classifier by inferring the model updates [12], [13].
This violates the principal design goal of FL, i.e., protecting
data privacy. Several secure aggregation protocols have been
proposed to address this problem by hindering the aggregator
from analyzing clients’ model updates [3], [14]–[23]. However,
existing approaches are inefficient, impractical, and/or rely on
a trusted third party (TTP) [15]–[17]. In particular, they are
computationally expensive [3], [14], [21], [24], increase the
number of communication rounds [14], [22], and do not tolerate
dropouts [15], [16]. Especially the increase in communication
rounds is problematic, as FL is typically used in a mobile
setting where mobile or edge devices are involved and the
network tends to be unstable, slow, and with low bandwidth [2].
Mobile devices regularly go offline such that dropouts must be
tolerated. Most importantly, these aggregation schemes hinder
the aggregator from accessing the local updates, therefore,
making it impossible to analyze these updates for malicious
client behavior that sabotage the training [25].
Our Contributions and Outline. In this work, we introduce
SAFELearn, an efficient secure aggregation system, prohibiting



access to model updates to impede powerful inference attacks
on FL. In particular, we provide the following contributions
after giving the preliminaries in §II:
• We survey state-of-the-art secure aggregation protocols

for FL and analyze their limitations (§III).
• We introduce a generic design called SAFELearn for

secure aggregation for FL. It is adaptable to various secu-
rity and efficiency requirements and multiple aggregation
mechanisms (§IV).

• We implement and benchmark an instantiation of
SAFELearn using secure two-party computation on multi-
ple FL applications and datasets (§V). Our system aggre-
gates 500 models with more than 300K parameters in less
than 0.5 seconds. Our implementation is available as open
source at https://github.com/TRUST-TUDa/SAFELearn.

II. PRELIMINARIES

In this section, we introduce FL and inference attacks on
FL as well as the cryptographic building blocks we use.

A. Federated Learning (FL)

Federated Learning (FL) [2], [4] is a concept for distributed
machine learning that links K clients and an aggregator A
who collaboratively build a global model G. In each training
iteration t, A chooses a subset of the K clients and sends
the current global model Gt−1 to them. Instead of sharing
gradients after each training iteration as in standard distributed
machine learning, each of these clients i ∈ K then trains Gt−1
on multiple batches of its training data for multiple epochs
before sending the resulting locally updated model Wi to the
aggregator. Then, A aggregates the received updates Wi into
the global model Gt. FL results in less global training iterations
than in standard distributed machine learning and, hence, in
less communication.

Several aggregation mechanisms have been proposed for
FL: (1) Federated-Averaging (FedAvg) [2], (2) Krum [26],
(3) Adaptive Federated Averaging [27], and (4) Trimmed mean
or median [28]. In this work, we focus on FedAvg, which is the
original FL aggregation mechanism, because it is commonly
applied in FL and related work on secure aggregation [3],
[14], [19]–[21]. In FedAvg, the global model is updated by
summing the weighted (by the number of training samples
used to train it) models Gt =

∑|K|
i=1

si×Wi

s , where K is the set
of clients, si = ‖Di‖ for training data Di of a client i ∈ K,
s =

∑|K|
i=1 si, and Wi is client i’s update [2]. To hinder a

malicious client from exaggerating its dataset’s size to amplify
the effect of its update, previous works employ equal weights
(si = 1, s = K) for all clients’ contributions [2], [25], [26].
We adopt this approach in §IV.

B. Inference Attacks on FL

In an inference attack, an adversary aims at learning informa-
tion about the data used for training a ML model. Membership
inference attacks determine whether certain samples were used
for training [29], property inference attacks infer properties of
training samples independent of the original learning task [13],

distribution estimation attacks estimate the proportions of
training labels in the data [30], and reconstruction attacks
reconstruct training samples [30]. Another distinction can be
made between black box attacks, that are restricted to interpret
the model predictions [30], and white box attacks, that use
model parameters of either the trained model or from the
clients’ updates during the training [29], [30].

FL protects the privacy of the clients’ data against inference
attacks run by third parties, as they can only access the
global model and cannot relate the information inferred from
a global model to a specific client. Additionally, attacks on the
global models tend to be weak and fail to achieve good attack
performance [29]. However, the aggregator in FL has access
to the local updates of each client making FL vulnerable to
strong inference attacks by a corrupted aggregator. Thus, in
this work, we aim at hindering the aggregator from accessing
clients’ update to prohibit powerful inference attacks that are
leveraging individual local updates of clients while enabling
efficient FL.

C. Secure Multi-Party Computation (MPC)

Secure Multi-Party Computation (MPC) enables the secure
evaluation of a public function on private data provided by N
mutually distrusting parties [31].

Secure two-party computation (STPC) [32]–[35], a special
case of MPC with two parties (N = 2), allows two parties to
securely evaluate a function on their private inputs.

Thereby, the parties have only access to so-called secret-
shares of the inputs that are completely random and therefore do
not leak any information. The real value can only be obtained if
both shares are combined. STPC can be used in an outsourcing
scenario [33], where an arbitrary number of weak but even
malicious clients can secret-share their private inputs among
two non-colluding but well-connected and powerful servers
who then run the STPC protocol.

D. Homomorphic Encryption (HE)

Homomorphic Encryption (HE) enables computations on
encrypted data. It allows to perform operations on a ciphertext,
the decryption of which corresponds to algebraic operations
on the plaintext. HE schemes can be classified into partially
(PHE), somewhat (SHE), or fully homomorphic encryption
(FHE). PHE [36] supports either multiplication or addition
under encryption, SHE supports a bounded number of both,
and FHE [37] supports both without limitations.

E. Differential Privacy

Although Differential Privacy (DP) [38] is not the focus
of our work, we shortly summarize it here for the sake of
completeness as it is used in some related works (cf. §III).

Informally, DP [38] randomizes the result of an evaluation
(e.g., by adding noise) to reduce information leakage. More
formally, a randomized algorithm M with domain D satisfies
(ε, δ)-DP if for all adjacent datasets d, d∗ ∈ D and for all
S ⊆ Range(M) it holds, that Pr[M(d) ∈ S] ≤ eεPr[M(d∗) ∈
S] + δ.

https://github.com/TRUST-TUDa/SAFELearn


III. RELATED WORK

Several works aim at improving data privacy in FL. They
typically prevent access to the local updates using secret sharing
techniques, encryption, and/or reduce information leakage by
applying noise to achieve differential privacy (DP) [38]. We
survey these works in the following. Tab. I shows a comparison
between SAFELearn and previous works with respect to their
usability and their privacy guarantees.

A. Secure Aggregation for FL with Secret Sharing

Bonawitz et al. [14] introduced secure aggregation for FL.
Their protocol can tolerate client dropouts. They use blinding
with random values, Shamir’s Secret Sharing (SSS) [40], and
symmetric encryption to prohibit access to local models. How-
ever, their aggregation requires at least 4 communication rounds
between each client and the aggregator in each iteration. This
causes a significant overhead for clients typically connected
via WAN and with limited resources.

VerifyNet [17], and VeriFL [23] use the protocol of Bonawitz
et al. [14]. VerifyNet and VeriFL add verifiability on top of [14]
to guarantee the correctness of the aggregation, but these
protocols rely on a trusted party to generate public/private
key pairs for all clients.

Recently, the authors of [3] and [20] introduced secure
aggregation protocols with polylogarithmic communication and
computation complexity which reduce the overhead compared
to [14]. Their key idea is to replace the star topology of the
communication network in [14] by random subgroups of clients
and to use secret sharing only for a subset of clients instead
of for all client pairs. Both approaches require 3 rounds of
interaction between the server and clients.

FastSecAgg [21] provides a secure aggregation based on
the Fast Fourier Transform multi-secret sharing. It is robust
against adaptive adversaries where the clients can adaptively
be corrupted during the execution of the protocol. FastSecAgg
is a 3 round interactive protocol for private FL.

Turbo-Aggregate [22] reduces the communication and com-
putation overhead of secure aggregation over [14] (cf. Tab. II)
and uses a circular communication topology. The main bottle-
neck of Turbo-Aggregated is its O(n/ log n) round complexity,
where n is the number of updates/clients (cf. §IV).

SAFER [19] reduces communication costs in FL by com-
pressing updates and combines it with a secure aggregation
protocol based on arithmetic sharing. However, SAFER con-
siders only training with less than 10 clients and no dropouts.
Moreover, SAFER was only benchmarked on independent and
identically distributed (IID) data such that it is unclear if it
works with the typically non-IID data used in FL.

B. Secure Aggregation for FL with Encryption

Truex et al. [15] combine additively homomorphic encryption
(HE) with DP but cannot tolerate client dropouts. Using HE
results in a significant runtime overhead and their system also
requires 3 rounds of communication. These aspects make it
impractical for real-world FL.

EaSTFfly [18] uses either additively HE with packing
or Shamir’s secret sharing (SSS) [40] in combination with
quantization. The clients share their gradients after each training
iteration instead of using FL’s FedAvg mechanism [14] which
significantly increases the number of training iterations. FedAvg
requires division which is not possible with additively HE/SSS.
Furthermore, in EaSTFfly’s HE protocol all clients have to
hold the same secret key such that if a client colludes with the
aggregator all updates can be decrypted.

BatchCrypt [24] reduces the encryption and communication
overhead of HE-based aggregation with a batch encryption
technique and requires only a single round of communication.
Again, using expensive HE (like [15], [18]) makes it unusable
for real-world training with FL.

HybridAlpha [16] uses functional encryption and DP. With
functional encryption, public keys for all clients are derived
from a private/public master key pair. It improves [15]’s runtime
by a factor of 2× and tolerates dropouts. However, HybridAlpha
relies on a trusted party that holds the master keys and controls
if the aggregator manipulates the aggregation weights.

POSEIDON [39] encrypts the complete FL process including
the local training executed by the clients and, thus, adds
significant computational overhead on each client’s device.
The authors suggest to reduce the clients’ communication by
combining them in a tree-like network instead of the classical
star topology where each client directly communicates with
the central aggregator. Additionally, a distributed bootstrapping
efficiently refreshes ciphertexts and an alternating packing
approach enhances the efficiency of neural network training
under encryption. However, POSEIDON only supports clients’
dropouts when the decentralized bootstrapping is not used.

Generally, all existing protocols for secure aggregation hinder
the aggregators from deploying defenses against so-called
backdooring or poisoning attacks [25], [41] that aim at injecting
a “backdoor” into the ML model, i.e., the model is manipulated
such that it misclassifies a small set of attacker-chosen inputs
as attacker-chosen outputs. Bagdasryan et al. [25] show, inter
alia, how a single client can manipulate FL by injecting a
backdoor that causes green cars to be misclassified as birds.
Such targeted image misclassification can, for example, be
dangerous for face recognition systems deployed at airports.
FLGUARD [42] and BaFFLe [43] combine secure aggregation
with defenses against backdoor injections.

C. General Approaches to Privacy-preserving ML

Other works such as [44]–[47] combine secure computation
techniques and/or DP with ML. However, these designs are
often tailored for specific ML algorithms, and do not focus on
FL such that they cannot handle client dropouts, do not scale
to a large number of clients, use very expensive cryptography,
and/or are not suitable for a distributed training.

IV. PRIVATE FEDERATED LEARNING

In this section, we introduce SAFELearn for the secure
aggregation of clients’ updates in FL to hamper powerful infer-
ence attacks analyzing the clients’ updates [29]. SAFELearn



TABLE I
COMPARISON OF PRIVACY-PRESERVING FL FRAMEWORKS. OUR PRIVACY ANALYSIS INCLUDES THE INVOLVEMENT OF A TRUSTED THIRD PARTY AND IF
THE SCHEMES ARE ADAPTABLE TO ACTIVE SECURITY. OUR USABILITY ANALYSIS INCLUDES THE COMMUNICATION ROUND-EFFICIENCY, ROBUSTNESS TO

DYNAMIC CLIENT DROPOUT, THE USAGE OF EXPENSIVE CRYPTOGRAPHIC OPERATIONS, AND THE AVAILABILITY OF OPEN-SOURCE CODE.

Proposed Approach Privacy Usability

No Trusted Party Extend-to-Active Round-efficient Dropout No Expensive Operations Open-Source

Truex et al. [15] 7∗ 7 7 7 7 7

HybridAlpha [16] 7∗ 7 7† 3 7 7

Bonawitz et al. [14] 3 3‡ 7 3 7 7
BatchCrypt [24] 3 7 3 3 7 31

VeriFL [23] 3 7 7 3 7 7
Choi et al. [20] 3 7 7 3 7 7
FastSecAgg [21] 3 7 7 3 7 7
SAFER [19] 3 3 3 7 3 7
POSEIDON [39] 3 3 3 3? 7 7
Bell et al. [3] 3 3 7 3 7 7
Turbo-Aggregate [22] 3 3 7 3 7 7
SAFELearn (This work) 3 3 3 3 3 32

∗ Assume a third trusted party for key distribution
† Considering the key distribution communication round.
‡ Requires an extra round.
? Can support dropouts when the decentralized bootstrapping is not used.
1 https://github.com/marcoszh/BatchCrypt
2 https://github.com/TRUST-TUDa/SAFELearn

has three major design goals to overcome the limitations of
previous work (cf. §III): (G1) prohibiting access to individual
model updates to counter powerful inference attacks, (G2)
efficiency, and (G3) tolerance to outliers.

A. Adversary Model — Goals and Capabilities

The adversary is a semi-honest1 aggregator such that we
assume it follows the protocol honestly, but attempts to infer
sensitive information about clients’ data Di from their model
updates Wi [48], [49].

In the standard FL setting, the aggregator has access to
all local model updates Wi, such that it can perform model
inference attacks on each local model to extract information
about the corresponding participant’s data Di used for training.
Some existing attacks, e.g., [50], consider that the adversary
(either a semi-honest aggregator or client) aims at inferring
information about training data from the global model Gt.
However, these attacks obtain negligible aggregated information
about data (and cannot link it to individual clients) like the
number of classes [50]. For example, Nasr et al. [29] show
that the success of membership inference attacks on only the
global model significantly degrades with an increasing number
of clients. Therefore, our goal is to hide local models from
the aggregator to impede powerful inference attacks while still
enabling efficient and accurate FL.

B. SAFELearn

The simple and generic design of SAFELearn that realizes
the adapted FedAvg with equal weights (cf. §II) in a private
manner is depicted in Alg. 1. It takes the set of clients K, the
initial global model G0, and the number of training iterations T
as input. Then, in each iteration t ∈ [1, T ], a random subset

1Can be extended to active security, cf. §V.

Algorithm 1 SAFELearn
1: Input: K, G0, T . K: set of clients, G0: initial global model,

T : # iterations
2: Output: GT . GT is the global model after T iterations
3: for each training iteration t ∈ [1, T ] do
4: for each client i ∈ Kt ⊆ K do . Kt ⊆ K is randomly

chosen in every iteration.
5: [Wi]← CLIENTUPDATE([Gt−1])
6: end for
7: [Gt]←

∑|Kt|
i=1 [Wi]/|Kt|

8: end for

of clients Kt ⊆ K is chosen following the original design
of FL [2]. Each client i ∈ Kt receives the encrypted/secret
shared global model [Gt−1] from the aggregator(s) which it
decrypts to train a new updated local model Wi. The client
sends encrypted/secret shared update [Wi] to the aggregator(s)
for the aggregation of a new global model [Gt] in Line 6.

Depending on the efficiency and security requirements of
the concrete application, SAFELearn can be realized with
fully homomorphic encryption (FHE), multi-party computation
(MPC), or secure two-party computation (STPC). These secure
computation techniques ensure that the aggregator cannot
access clients’ model updates and intermediate global models
to effectively thwart powerful inference attacks (G1, cf. §IV).

1) FHE: If FHE with a single semi-honest server (acting as
the aggregator) is used, [Gt] and [Wi] are the encryption of the
models’ parameters. The clients use a multi-party encryption
scheme [51] for encrypting their updates. The secret key
is securely split among the clients such that each of them
can decrypt and access the global updates in plaintext for
local training. The clients then re-encrypt the resulting local
model updates and return it to the server who aggregates the
encrypted data to the new global model [Gt] using the additive

https://github.com/marcoszh/BatchCrypt
https://github.com/TRUST-TUDa/SAFELearn


homomorphic properties of the encryption scheme. Such FHE
is computationally expensive and should only be used if using
non-colluding servers is not possible due to the application
and its security requirements.

2) MPC/STPC: If MPC/STPC is used, [Gt] and [Wi] are a
set of secret shares of the models created with the Arithmetic
Sharing technique [52] (cf. §V-A) and held by the N ≥ 2
non-colluding servers. They jointly run the secure aggregation
on these shares (i.e., the N servers together compose the
aggregator). After the secure aggregation, in which the division
is realized with Boolean circuit-based protocols called Yao’s
garbled circuits for STPC [32] or BMR for MPC [31] that
can efficiently compute non-linear operations, the servers send
the secret shares of the new global models to the clients who
combine them to receive the plaintext global model for the
next local training iteration. Afterwards, they again secretly
share their updates and send one share to each server.

3) Secure Aggregation in SAFELearn: While we used
FedAvg as an example in Line 6 of Alg. 1 given its popularity in
the FL literature (cf. §II-A), different kinds of aggregation can
also be realized with SAFELearn. Concretely, MPC and STPC
support arbitrary computations expressed as Boolean circuit.
Hence, also different aggregation mechanisms can be realized
in a straightforward fashion. For example, the aggregation
mechanism of Krum [26] consists of Argmin, multiplication,
and addition operations. These can be realized by combination
of different MPC/STPC protocols: Boolean sharing for the
secure evaluation of Argmin and Arithmetic sharing for the
secure evaluation of multiplication and addition operations.
Similarly also other aggregation mechanisms (e.g., [27], [28])
can be realized by combining different MPC/STPC techniques.
Moreover, we can also adopt other aggregation mechanisms for
SAFELearn with FHE as FHE supports an unlimited number
of additions and multiplications and can, e.g., also realize the
(approximated) determination of minimums2 [53], [54].

C. Privacy & Usability of SAFELearn

SAFELearn needs only 2 rounds of communication per
iteration (Line 5). It allows an arbitrary number of clients
to drop out and rejoin as the aggregator(s) can simply adjust
the division factor |Kt| by the number of clients that respond
to CLIENTUPDATE(..). Thus, SAFELearn offers efficiency
(G2, §IV) with respect to the number of communication rounds3

and tolerance to outliers (G3, §IV).
The aggregating server(s) do only learn the number of clients

in each training iteration and, hence, SAFELearn effectively
prevents the individual aggregation server(s) from running
inferences attacks on the clients’ local model updates. Moreover,
the aggregator(s) only hold secret shared or encrypted global
models such that they also cannot run inference attacks on
the global model. Even when the adversary controls a client,
who still has access to the plaintext global model parameters,

2This typically has a higher computational overhead than with MPC/STPC.
3Its efficiency w.r.t. communication and computation heavily depends on

its concrete instantiation and cannot be generally assessed. We benchmark it
for an instantiation with STPC in §V to show its practicality.

the aggregation of the models averages the parameters of all
contributing clients and, thus, makes inference attacks harder
and less effective [29]. Additionally, information extracted
from a global model cannot be linked to a single client.
Therefore, SAFELearn supports the anonymisation of the
individual contributions.

To summarize, SAFELearn is a generic system for secure
aggregation in FL and supports a wide range of applications by
choosing the number of servers based on the specific security
and efficiency requirements. It addresses all design goals (G1-
G3) from the beginning of §IV. FHE/MPC/STPC support many
operations such as addition, multiplication, and comparison.
Those atomic operations also enable to privately realize
aggregation functions beyond FedAvg, e.g., Krum [26]. For our
MPC/STPC-based version of SAFELearn, this only requires
to create the corresponding Boolean/Arithmetic circuit which
can be automated with tools like HyCC [55]. Additionally,
efficiency at the server side could be further improved by
decrypting the intermediate global model in Line 6 of Alg. 1
after the aggregation and adding noise instead to achieve DP.

V. EXPERIMENTAL EVALUATION OF SAFELEARN WITH
STPC

Our framework SAFELearn is generic and can be instantiated
with one (FHE) or multiple non-colluding servers (MPC/STPC).
We implement one instantiation of SAFELearn using STPC
as it is often a good trade-off between security and efficiency.
We securely outsource the computation of the SAFELearn
algorithm to two servers that are (1) non-colluding and (2)
semi-honest. These properties and assumptions are described
and justified next.

1) Non-colluding semi-honest servers: We assume that
the two servers are non-colluding. In our envisioned FL
applications mentioned in §I, the two non-colluding servers
could, e.g., be run by two competing antivirus software
companies for network intrusion detection or by two competing
smartphone manufacturers for word prediction. These parties
are assumed to not collude to protect their business secrets and
customers’ data. Moreover, the two servers are assumed to be
semi-honest, meaning that they honestly follow the protocol, but
seek to learn as much information as possible. Service providers,
like antivirus companies or smartphone manufacturers, have an
inherent motivation to follow the protocol because they want
to offer a privacy-preserving service to their customers and if
cheating would be detected, this would seriously damage their
reputation, which is the foundation of their business models.
This assumption of non-colluding semi-honest servers is also
justified by legal regulations like the GDPR [9] that mandate
companies to properly protect users’ data. Moreover, it allows
to build highly efficient STPC protocols. Hence, it is very
common in private ML applications, e.g., [34], [46].

2) Two servers: We choose N = 2 servers, i.e., STPC,
as a reasonable trade-off between security and efficiency:
With only one server, we would not need the non-collusion
assumption, but this requires very expensive cryptographic
primitives like fully homomorphic encryption [37] or several



rounds of interaction with the clients. As discussed in §I,
it is beneficial to minimize the number of communication
rounds because of the mobile setting with unstable and slow
connections between clients and the aggregator in which FL
is typically used.

Using protocols such as [44] with three or even more non-
colluding servers of which at most one can be corrupted allows
to construct even more efficient protocols than with two servers,
but this has a larger attack surface because an attacker can
attack any of the N ≥ 3 servers and also more non-colluding
parties have to be found to run these servers. However, our
implementation can be easily extended to 3 semi-honest servers
by using the ABY3 [44] framework, N semi-honest servers
by using the MOTION [31] framework, or p malicious servers
by using MP-SPDZ [56].

A. Benchmarks
For our instantiation, we use a combination of two STPC

techniques, which are implemented with state-of-the-art opti-
mizations in the ABY framework [33]: Boolean sharing using
Yao’s garbled circuits [32] for secure evaluation of Boolean
division circuits in a constant number of rounds, as well as
Arithmetic sharing for secure evaluation of additions using the
GMW protocol of Goldreich-Micali-Wigderson [52]. We use
the PyTorch framework [57] for neural network training. All
STPC results are averaged over 10 experiments and run on
two separate servers with Intel Core i9-7960X CPUs with 2.8
GHz and 128 GB RAM connected over a 10 Gbit/s LAN with
0.2 ms RTT.

B. Applications
We test SAFELearn on three datasets for typical FL appli-

cations:
1) Natural Language Processing (NLP): We use a recurrent

neural network with 20M parameters from two long short-term
memory (LSTM) and one linear output layer [25]. In each
iteration t, Kt = 100 clients are randomly chosen to train the
model. We use the Reddit dataset from November 2017 [58]
with 20.6M records. Each Reddit user with at least 150 posts
and less than 500 posts is considered as a FL client. We
generated a dictionary based on the most frequent 50 000 words.

2) Image Classification (IC): Following [25], we used the
CIFAR-10 dataset [59] with 50 000 images and a lightweight
version of ResNet-18 with 2.7M parameters from 4 convolu-
tional layers and a fully connected output layer. We split the
dataset among 100 clients as done in [25]. In each training
iteration, the clients locally update the model with a learning
rate of 0.1.

3) Network Intrusion Detection System (NIDS): We use
the IoT NIDS DÏoT [8] with three datasets by [8], [60] and
one self-collected dataset from homes and offices located in
Germany and Australia. Following [8], we extracted device-
type-specific datasets capturing the communication behavior of
a smart weather station. We simulate the FL setup by splitting
the data among 106 clients, each having three hours of traffic
measurements and select 100 clients from them at random in
each training iteration. The learning rate is 0.1.

C. Impact on the the accuracy of the resulting model

To measure SAFELearn’s impact on the model’s accuracy,
we run experiments on all three datasets presented in §V-B.
Tab. III shows our results as well as the experimental setup,
including the number of local training epochs, the number of
previously trained rounds and the total number of clients for
that dataset, from which a subset of 100 clients is randomly
chosen to perform the training in each training iteration. The
results show that SAFELearn has the same accuracy as plaintext
FedAvg.

D. Efficiency of SAFELearn

The results of our efficiency evaluation of SAFELearn with
STPC between the two servers for the three datasets with
different numbers of clients per training iteration, ranging from
10 to 5004, are shown in Figs. 1 and 2. The runtime scales
linearly with the number of clients and the communication is
about constant. For NIDS, aggregating 500 models takes 0.5
seconds and the communication between the two servers is
8 MB. Even for the very large NLP model with more than
20M parameters, the aggregation takes less than 80 seconds
and 316 MB between the two servers.

0 100 200 300 400 500
Number of Clients

0.0

0.5

1.0

1.5

Co
m

m
un

ica
tio

n 
(b

yt
es

) 1e8
NLP
IC
NIDS

Fig. 1. Communication Costs per Server in SAFELearn

0 100 200 300 400 500
Number of Clients

0.1

1

10

100

Ru
nt

im
e 

(s
)

NLP
IC
NIDS

Fig. 2. Total Execution Time of SAFELearn

E. Analytical Complexity

Tab. II shows the substantially improved complexities of
SAFELearn over the five previous works on secure aggregation
for FL that consider dropouts and are not based on computa-
tionally expensive HE [3], [14], [20]–[22].

4We aim at assessing SAFELearn’s communication and computation
complexity here. Thus, this range is already sufficient to show the approximately
constant communication costs and the linear scaling of the communication
costs w.r.t. the number of clients.



TABLE II
COMPUTATION, COMMUNICATION, AND COMMUNICATION ROUNDS (BETWEEN SERVER AND CLIENTS) PER TRAINING ITERATION OF SAFELEARN AND

RELATED WORKS BASED ON SECRET SHARING. HERE n IS THE TOTAL NUMBER OF LOCAL MODELS (I.E., NUMBER OF CLIENTS) AND m IS THE LENGTH OF
MODEL UPDATES. BEST MARKED IN BOLD.

Approach Computation (Server) Communication (Server) Computation (Client) Communication (Client) Rounds
Turbo-Aggregate [22] O(m logn log2 logn) O(mn logn) O(m logn log2 logn) O(m logn) n/ logn
Bonawitz et al. [14] O(mn2) O(mn+ n2) O(mn+ n2) O(m+ n) 4

Bell et al. [3] O(mn logn+ n log2 n) O(mn+ n logn) O(m logn+ log2 n) O(m+ logn) 3
FastSecAgg [21] O(m logn) O(mn+ n2) O(m logn) O(m+ n) 3
Choi et al. [20] O(mn logn) O(n

√
n logn+mn) O(n logn+m

√
n logn) O(

√
n logn+m) 3

SAFELearn (This work) O(mn) O(mn) O(m) O(m) 2

TABLE III
EXPERIMENTAL SETUP AND ACCURACY OF FEDAVG AND SAFELEARN
FOR THE FL APPLICATIONS NATURAL LANGUAGE PROCESSING (NLP),
IMAGE CLASSIFICATION (IC), AND NETWORK INTRUSION DETECTION

SYSTEM (NIDS).

NLP IC NIDS
Local Epochs 250 2 10
Pretrained Rounds 5 000 10 000 10
Available Clients 80 000 100 106
FedAvg 22.5% 91.7% 100.0%
SAFELearn (This work) 22.5% 91.7% 100.0%

VI. CONCLUSION

In this paper, we introduce SAFELearn, a generic private fed-
erated learning design that enables to efficiently thwart strong
inference attacks that need access to clients’ individual model
updates. Moreover, SAFELearn tolerates dropouts and does
not require expensive cryptographic operations, making it more
efficient than previous works with respect to communication
and computation. Furthermore, it does not rely on a trusted
third party. Our evaluation shows that aggregating 500 models
with more than 300K parameters takes less than 0.5 seconds
on commodity hardware.

Future work can realize more instantiations of SAFELearn.
Also the combination of privacy and security in FL which
was considered to be contradicting by Bagdasaryan et al. [25]
can be investigated. SAFELearn’s design could also enable to
integrate a defense against manipulations of malicious clients.

Acknowledgements. This project received funding from the
European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (grant agree-
ment No. 850990 PSOTI), was co-funded by the DFG —
SFB 1119 CROSSING/236615297 and GRK 2050 Privacy
& Trust/251805230, and by the BMBF and HMWK within
ATHENE. It was partially funded by the European Commission
through the SHERPA Horizon 2020 project under grant
agreement No. 786641. It was partially funded by the Private
AI Collaborative Research Institute (PrivateAI) established by
Intel, Avast and Borsetta.

REFERENCES

[1] H. Fereidooni, S. Marchal, M. Miettinen, A. Mirhoseini, H. Möllering,
T. D. Nguyen, P. Rieger, A. R. Sadeghi, T. Schneider, H. Yalame,
and S. Zeitouni, “SAFELearn: Secure Aggregation for privateFEderated
Learning,” in DLS, 2021.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Arcas,
“Communication-Efficient Learning of Deep Networks from Decentralized
Data,” in International Conference on Artificial Intelligence and Statistics,
2017.

[3] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova,
“Secure Single-Server Aggregation with (Poly)logarithmic Overhead,” in
CCS, 2020.

[4] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov,
C. Kiddon, J. Konecný, S. Mazzocchi, B. McMahan, T. V. Overveldt,
D. Petrou, D. Ramage, and J. Roselander, “Towards Federated Learning
at Scale: System Design,” in SysMl, 2019.

[5] B. McMahan and D. Ramage, “Federated Learning: Collaborative
Machine Learning without Centralized Training Data,” in Google
Research Blog. Google AI, 2017, https://ai.googleblog.com/2017/04/fe
derated-learning-collaborative.html.

[6] T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Paschalidis, and
W. Shi, “Federated Learning of Predictive Models from Federated
Electronic Health Records,” International Journal of Medical Informatics,
2018.

[7] S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Federated Learning
for Ultra-Reliable Low-Latency V2V Communications,” in GLOBECOM,
2018.

[8] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and
A.-R. Sadeghi, “DÏoT: A Federated Self-learning Anomaly Detection
System for IoT,” in ICDCS, 2019.

[9] “General Data Protection Regulation,” 2018, https://eur-lex.europa.eu/eli
/reg/2016/679/oj.

[10] “Health Insurance Portability and Accountability Act,” 1996,
https://www.govinfo.gov/content/pkg/PLAW-104publ191/pdf/PLAW
-104publ191.pdf.

[11] “Gboard - the Google Keyboard - Apps on Google Play.” [Online].
Available: https://play.google.com/store/apps/details?id=com.google.and
roid.inputmethod.latin

[12] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song, “The Secret
Sharer: Evaluating and Testing Unintended Memorization in Neural
Networks,” in USENIX Security, 2019.

[13] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
Unintended Feature Leakage in Collaborative Learning,” in S&P, 2019.

[14] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical Secure Aggregation
for Privacy-preserving Machine Learning,” in CCS, 2017.

[15] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, and Y. Zhou,
“A Hybrid Approach to Privacy-preserving Federated Learning,” in AISec,
2019.

[16] R. Xu, N. Baracaldo, Y. Zhou, A. Anwar, and H. Ludwig, “Hybridalpha:
An Efficient Approach for Privacy-preserving Federated Learning,” in
AISec, 2019.

[17] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “VerifyNet: Secure and
Verifiable Federated Learning,” in Transactions on Information Forensics
and Security, 2020.

[18] Y. Dong, X. Chen, L. Shen, and D. Wang, “EaSTFLy: Efficient and
Secure Ternary Federated Learning,” in Computers & Security, 2020.

[19] C. Beguier and E. Tramel, “SAFER: Sparse Secure Aggregation for
Federated Learning,” 2020, https://arxiv.org/abs/2007.14861.

[20] B. Choi, J.-y. Sohn, D.-J. Han, and J. Moon, “Communication-
Computation Efficient Secure Aggregation for Federated Learning,” 2020,
https://arxiv.org/abs/2012.05433.

[21] S. Kadhe, N. Rajaraman, O. O. Koyluoglu, and K. Ramchandran, “Fast-
SecAgg: Scalable Secure Aggregation for Privacy-Preserving Federated

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://www.govinfo.gov/content/pkg/PLAW-104publ191/pdf/PLAW-104publ191.pdf
https://www.govinfo.gov/content/pkg/PLAW-104publ191/pdf/PLAW-104publ191.pdf
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin
https://arxiv.org/abs/2007.14861
https://arxiv.org/abs/2012.05433


Learning,” ICML Workshop on Federated Learning for User Privacy
and Data Confidentiality, 2020.

[22] J. So, B. Güler, and A. S. Avestimehr, “Turbo-Aggregate: Breaking the
Quadratic Aggregation Barrier in Secure Federated Learning,” Journal
on Selected Areas in Information Theory, 2021.

[23] X. Guo, Z. Liu, J. Li, J. Gao, B. Hou, C. Dong, and T. Baker, “VeriFL:
Communication-Efficient and Fast Verifiable Aggregation for Federated
Learning,” TIFS, 2020.

[24] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “BatchCrypt:
Efficient Homomorphic Encryption for Cross-Silo Federated Learning,”
in USENIX ATC, 2020.

[25] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to
Backdoor Federated Learning,” in AISTATS, 2020.

[26] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine
Learning with Adversaries: Byzantine Tolerant Gradient Descent,” in
NIPS, 2017.

[27] L. Muñoz-González, K. T. Co, and E. C. Lupu, “Byzantine-Robust
Federated Machine Learning through Adaptive Model Averaging,” 2019,
https://arxiv.org/abs/1909.05125.

[28] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-Robust
Distributed Learning: Towards Optimal Statistical Rates,” in ICML, 2018.

[29] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive Privacy
Analysis of Deep Learning: Passive and Active White-box Inference
Attacks against Centralized and Federated Learning,” in S&P, 2019.

[30] A. Salem, A. Bhattacharya, M. Backes, M. Fritz, and Y. Zhang, “Updates-
leak: Data Set Inference and Reconstruction Attacks in Online Learning,”
in USENIX Security, 2020.

[31] L. Braun, D. Demmler, T. Schneider, and O. Tkachenko, “MOTION–A
Framework for Mixed-Protocol Multi-Party Computation,” 2020.

[32] A. C.-C. Yao, “How to Generate and Exchange Secrets,” in FOCS, 1986.
[33] D. Demmler, T. Schneider, and M. Zohner, “ABY - A Framework for

Efficient Mixed-Protocol Secure Two-Party Computation,” in NDSS,
2015.

[34] A. Patra, T. Schneider, A. Suresh, and H. Yalame, “ABY2. 0: Improved
Mixed-protocol Secure Two-party Computation,” in USENIX Security,
2020.

[35] H. Yalame, H. Farzam, and S. Bayat-Sarmadi, “Secure Two-Party
Computation Using an Efficient Garbled Circuit by Reducing Data
Transfer,” in Applications and Techniques in Information Security, 2017.

[36] P. Paillier, “Public-key Cryptosystems Based on Composite Degree
Residuosity Classes,” in EUROCRYPT, 1999.

[37] C. Gentry, “A Fully Homomorphic Encryption Scheme,” Ph.D. disserta-
tion, Stanford University, 2009.

[38] C. Dwork and A. Roth, “The Algorithmic Foundations of Differential
Privacy,” in Foundations and Trends in Theoretical Computer Science,
2014.

[39] S. Sav, A. Pyrgelis, J. R. Troncoso-Pastoriza, D. Froelicher, J.-P. Bossuat,
J. S. Sousa, and J.-P. Hubaux, “POSEIDON: Privacy-Preserving Federated
Neural Network Learning,” in NDSS, 2021.

[40] A. Shamir, “How to Share a Secret,” in Communications of the ACM,
1979.

[41] T. D. Nguyen, P. Rieger, M. Miettinen, and A.-R. Sadeghi, “Poisoning
Attacks on Federated Learning-Based IoT Intrusion Detection System,”
in Workshop on Decentralized IoT Systems and Security @ NDSS, 2020.

[42] T. D. Nguyen, P. Rieger, H. Yalame, H. Möllering, H. Fereidooni,
S. Marchal, M. Miettinen, A. Mirhoseini, A.-R. Sadeghi, T. Schneider,
and S. Zeitouni, “FLGUARD: Secure and Private Federated Learning,”
2021, https://ia.cr/2021/025.

[43] S. Andreina, G. A. Marson, H. Möllering, and G. Karame, “BaFFLe:
Backdoor Detection via Feedback-based Federated Learning,” in ICDCS,
2021.

[44] P. Mohassel and P. Rindal, “ABY3: A Mixed Protocol Framework for
Machine Learning,” in CCS, 2018.

[45] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “CryptoNets: Applying Neural Networks to Encrypted Data
with High Throughput and Accuracy,” in ICML, 2016.

[46] F. Boemer, R. Cammarota, D. Demmler, T. Schneider, and H. Yalame,
“MP2ML: a Mixed-protocol Machine Learning Framework for Private
Inference,” in ARES, 2020.

[47] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and T. Rabin,
“FALCON: Honest-Majority Maliciously Secure Framework for Private
Deep Learning,” PETS, 2021.

[48] A. Pyrgelis, C. Troncoso, and E. De Cristofaro, “Knock Knock, Who’s
There? Membership Inference on Aggregate Location Data,” in NDSS,
2018.

[49] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
Inference Attacks Against Machine Learning Models,” in S&P, 2017.

[50] L. Wang, S. Xu, X. Wang, and Q. Zhu, “Eavesdrop the Composition
Proportion of Training Labels in Federated Learning,” 2019, https://arxi
v.org/abs/1910.06044.

[51] C. Mouchet, J. R. Troncoso-Pastoriza, and J.-P. Hubaux, “Multiparty
Homomorphic Encryption from Ring-Learning-With-Errors,” 2020, https:
//ia.cr/2020/304.

[52] O. Goldreich, S. Micali, and A. Wigderson, “How to Play ANY Mental
Game,” in STOC, 1987.

[53] J. H. Cheon, D. Kim, D. Kim, H. H. Lee, and K. Lee, “Numerical
Method for Comparison on Homomorphically Encrypted Numbers,” in
ASIACRYPT, 2019.

[54] J. H. Cheon, D. Kim, and D. Kim, “Efficient Homomorphic Comparison
Methods with Optimal Complexity,” in ASIACRYPT, 2020.

[55] N. Büscher, D. Demmler, S. Katzenbeisser, D. Kretzmer, and T. Schneider,
“HyCC: Compilation of Hybrid Protocols for Practical Secure Computa-
tion,” in CCS, 2018.

[56] M. Keller, “MP-SPDZ: A Versatile Framework for Multi-Party Compu-
tation,” in CCS, 2020.

[57] “Pytorch,” 2019, https://pytorch.org.
[58] “Reddit dataset,” 2017, https://bigquery.cloud.google.com/dataset/fh-big

query:reddit_comments.
[59] A. Krizhevsky and G. Hinton, “Learning Multiple Layers of Features

from Tiny Images,” Tech. Rep., 2009, https://www.cs.toronto.edu/~kriz/
learning-features-2009-TR.pdf.

[60] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake,
A. Vishwanath, and V. Sivaraman, “Classifying IoT Devices in Smart
Environments Using Network Traffic Characteristics,” in Transactions
on Mobile Computing, 2018.

https://arxiv.org/abs/1909.05125
https://ia.cr/2021/025
https://arxiv.org/abs/1910.06044
https://arxiv.org/abs/1910.06044
https://ia.cr/2020/304
https://ia.cr/2020/304
https://pytorch.org
https://bigquery.cloud.google.com/dataset/fh-bigquery:reddit_comments
https://bigquery.cloud.google.com/dataset/fh-bigquery:reddit_comments
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

	Introduction
	Preliminaries
	Federated Learning (FL)
	Inference Attacks on FL
	Secure Multi-Party Computation (MPC)
	Homomorphic Encryption (HE)
	Differential Privacy

	Related Work
	Secure Aggregation for FL with Secret Sharing
	Secure Aggregation for FL with Encryption
	General Approaches to Privacy-preserving ML

	Private Federated Learning
	Adversary Model — Goals and Capabilities
	SAFELearn
	FHE
	MPC/STPC
	Secure Aggregation in SAFELearn

	Privacy & Usability of SAFELearn

	Experimental Evaluation of SAFELearn with STPC
	Non-colluding semi-honest servers
	Two servers

	Benchmarks
	Applications
	Natural Language Processing (NLP)
	Image Classification (IC)
	Network Intrusion Detection System (NIDS)

	Impact on the the accuracy of the resulting model
	Efficiency of SAFELearn
	Analytical Complexity

	Conclusion
	References

