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Abstract

Cryptanalysis of symmetric-key ciphers, e.g., linear/differential cryptanalysis, requires an
adversary to know the internal structures of the targeted ciphers. On the other hand, deep
learning-based cryptanalysis has attracted significant attention because the adversary is not
assumed to have knowledge of the targeted ciphers except the interfaces of algorithms. Such
a blackbox attack is extremely strong; thus we must design symmetric-key ciphers that are
secure against deep learning-based cryptanalysis. However, previous attacks do not clarify what
features or internal structures affect success probabilities; therefore it is difficult to employ the
results of such attacks to design deep learning-resistant symmetric-key ciphers. In this paper, we
focus on toy SPN block ciphers (small PRESENT and small AES) and propose deep learning-
based output prediction attacks. Due to its small internal structures, we can build learning
models by employing the maximum number of plaintext/ciphertext pairs, and we can precisely
calculate the rounds in which full diffusion occurs. We demonstrate the following: (1) our attacks
work against a similar number of rounds attacked by linear/differential cryptanalysis, (2) our
attacks realize output predictions (precisely plaintext recovery and ciphertext prediction) that
are much stronger than distinguishing attacks, and (3) swapping the order of components or
replacement components affects the success probabilities of the attacks. It is particularly worth
noting that swapping/replacement does not affect the success probabilities of linear/differential
cryptanalysis. We expect that our results will be an important stepping stone in the design of
deep learning-resistant symmetric key ciphers.

1 Introduction

Unlike public-key cryptography, where security is reduced to mathematically difficult problems, the
security of symmetric-key ciphers is evaluated by resistance against existing attacks, e.g., differen-
tial, linear, and integral cryptanalysis. Specifically, corresponding statistical characteristics, e.g.,
differential, linear, and integral characteristics, are searched by automatic evaluation programs and
tools, e.g., SAT and MILP solvers. If there is a significant security margin against these characteris-
tics, the cipher can be considered secure against these attacks. Generally, these evaluations require
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deep knowledge of the target algorithms and state-of-the-art cryptanalysis techniques because au-
tomatic programs and tools must be customized for different target algorithms and attacks.

Recently, deep learning-based cryptanalysis has received significant attention in the symmetric-
key cryptography field [1, 4, 5, 6, 8, 9, 10, 11, 14, 18, 19, 21, 33, 34]. Remarkably, this type of
attack does not require knowledge of the targeted ciphers, except algorithm interfaces, i.e., the
attack is feasible even if the adversary does not know the algorithm of the target ciphers. Such
blackbox attacks are extremely strong in that the adversary can mount an attack with minimum
knowledge of cryptanalysis and target ciphers. In this context, we must consider deep learning-
based cryptanalysis when designing symmetric-key ciphers. However, previous results [1, 4, 5, 6,
8, 9, 10, 11, 14, 18, 19, 21, 33, 34] have not clarified which features or internal structures affect
success probabilities; thus, it is difficult to employ the results of these attacks to design such deep
learning-resistant symmetric-key ciphers.

1.1 Our Contribution

In this paper, we present new deep learning attacks on SPN block ciphers in a blackbox setting
where the adversary does not know the algorithm of the target ciphers, except algorithm interfaces
such as key and block sizes, and we explore the relationship between the internal structure and
success probability of the attack using a white box analysis technique.

1.1.1 New Deep Learning-based Output Prediction Attacks.

We focus on toy SPN block ciphers (16-bit block variants of PRESENT [7] and AES) because
the linear/differential probabilities of 16-bit permutations can be computed. This enables us to
compare the power of these classical attacks and the proposed deep learning-based attacks which
guess the ciphertext/plaintext from the corresponding plaintext/ciphertext without any knowledge
of keys.

Due to its small internal structures, we can construct learning models by exploiting the maxi-
mum number of plaintext/ciphertext pairs, and we can precisely calculate linear/differential prob-
ability in each round. We demonstrate that the proposed attacks work against a similar number of
rounds attacked by linear/differential cryptanalysis. For small PRESENT, we successfully mount
output prediction attacks on 4 rounds, while the number of rounds that can be attacked by differ-
ential distinguisher is also 4. For small AES, we can mount prediction attacks on 1 round, while
differential distinguishing attacks reach 2 rounds. Note that our attacks realize output predic-
tions (i.e., plaintext recovery and ciphertext prediction) that are much stronger than distinguishing
attacks even without knowing the algorithm of the target ciphers.

1.1.2 Whitebox Analysis for Deep Learning-based Attacks.

To investigate the relationship between the internal components and success probability of our
deep learning-based attacks, we replace or swap internal components and evaluate the impact of
these modifications relative to the success probability of the prediction attacks. As a result, we
find that swapping the component order or replacement of components significantly affects success
probabilities of the proposed attacks. It is particularly worth noting that component swapping
and replacements that we did in this paper do not affect success probabilities of linear/differential
cryptanalysis. We expect that our results will be an important foundation in the design of deep
learning-resistant symmetric key ciphers.
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Table 1: Comparison of Deep Leaning-based Cryptanalysis. OP:=Output Prediction,
DD:=Differential Distinguisher, PR:=Plaintext Recovery, KR:=Key Recovery, and LD:=Linear
Distinguisher.

Cipher (Block size) Structures
Blackbox
Model

Target
#Round
(#Full)

Whitebox
Analysis

AAAA12 [1] SDES (12 bits) Feistel Yes OP 2 (2) No
XHY19 [33] DES (64 bits) Feistel Yes PR 2 (16) No
BSS08 [4] Serpent (128 bits) SPN No DD 7 (32) No

DH14 [11] SDES (12 bits) Feistel Yes KR 2 (2) No

Gohr19 [14] Speck32/64 (32/64 bits) Feistel Yes DD 11 (22) No
YK20 [34] Speck 32 (32 bits) Feistel No DD 9 (22) No

YK20 [34] Simon 32 (32 bits) Feistel No DD 12 (32) No
YK20 [34] GIFT 64 (64 bits) SPN No DD 8 (28) No
HLZW20 [18] DES (64 bits) Feistel No LD 4 (16) No

BBDC21 [5] Gimli-Perm. (384 bits) N/A No DD 8 (48) No

BBDC21 [5] ASCON-Perm. (320 bits) N/A No DD 3 (16) No
BBDC21 [5] KNOT-256 (256 bits) Feistel No DD 10 (28) No

BBDC21 [5] KNOT-512 (512 bits) Feistel No DD 12 (52) No
BBDC21 [5] CHASKEY-Perm. (128 bits) N/A No DD 4 (8) No
CY20 [8] Speck 32/64 (32/64 bits) Feistel No DD 13 (22) No

CY20 [8] Speck 48/72 (48/72 bits) Feistel No DD 13 (22) No
CY20 [8] Speck 48/96 (48/96 bits) Feistel No DD 13 (22) No
CY20 [8] DES (64 bits) Feistel No DD 8 (16) No

CY21 [10] DES (64 bits) Feistel No DD 6 (16) No
CY21 [10] Speck 32 (32 bits) Feistel No DD 7 (22) No

CY21 [10] PRESENT (64 bits) SPN No DD 7 (31) No

CY21 [9]
Speck32/64 (32/64 bits)

48/72 (48/72 bits)
48/96 (48/96 bits)

Feistel No DD
13(22)
12(22)
12(23)

No

ITYY21 [21] TWINE (64 bits) Feistel No DD 8(36) No
Jaewoo20 [30] Simplified DES (8 bits) Feistel No KR 8 (8) No

Jaewoo20 [30] Speck 32/64 (32/64 bits) Feistel No KR 22 (22) No

Jaewoo20 [30] Simon 32/64 (32/64 bits) Feistel No KR 32 (32) No
HRC21 [19] Simon 32 (32 bits) Feistel No DD 13 (32) No

BGPT21 [6] Speck 32/64 (32/64 bits) Feistel No DD 7 (22) No

BGPT21 [6] Simon 32/64 (32/64 bits) Feistel No DD 8 (32) No
This paper small PRESENT-[4] (16 bits) SPN Yes OP 4 Yes
This paper small AES (16 bits) SPN Yes OP 1 Yes

1.2 Comparison with Existing Work

Table 1 compares existing deep learning-based attacks and our attacks. Here blackbox attacks mean
that the adversary does not have knowledge of the targeted ciphers (except algorithm interfaces),
and whitebox analysis explores the relationship between the ability of deep learning-based attacks
and the internal components ciphers. As shown in Table 1, the proposed attacks are the first output
prediction attacks on SPN structures in a blackbox model.

Regarding whitebox analysisis, Danziger et al. presented deep learning-based attacks that
predict key bits of 2-round DES from a plaintext/ciphertext set, and analyze the relationship
between these attacks and the differential probability [11]. They compared variants employing
several types of S-boxes with different properties for differential attacks, and they concluded that
there is a nontrivial relationship between the differential characteristics and success probability of
their deep learning-based attacks. However, their results are very limited because they targeted a
two-round Feistel construction, which is quite insecure even if component is ideal function. It is
unclear that how much the property of the internal components affects the security of the while
construction. In addition to improve the Gohr deep learning-based attack [14], Benamira et al. [6]
improved success probability of traditional distinguishers using characteristics that are expected to
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Figure 1: Round Functions (small PRESENT and small AES)

be reacted by the Gohr attack. In other words, their work confirms whether or not characteristics
explored by Gohr can actually be employed in the traditional distinguishing attacks. On the other
hand, we calculated the ability of the traditional distinguisher and our deep learning-based attack,
and compared them to investigate a relationship between them. To sum up, to the best of our
knowledge, our results are the first ones that perform the whitebox analysis.

1.3 Other Related Work

Alani and Hu presented plaintext recovery attacks on DES, 3-DES and AES [2, 20] that guess
plaintexts from given ciphertexts. They claimed that attacks on DES, 3-DES and AES are feasible
with 211, 211 and 1741 (≃ 210.76) plaintext/ciphertext pairs, respectively. However, Xiao et al.
doubted the correctness of their results [2, 20] because they could not be reproduced. Baek et al.
also pointed this out in the literature [28]. Therefore, we exclude these results in Table 1. Mishra
et al. reported that they mounted output prediction attacks on full-round PRESENT; however
it did not work well [13]. In addition, some results have been obtained classical ciphers such as
Caesar cipher, Vigenere cipher and Enigma [12, 15, 16, 26]. Other machine learning-based analyses
have also been reported, e.g., [25, 24]. Tan et al. demonstrated that deep learning can be used
to distinguish ciphertexts encrypted by AES, Blowfish, DES, 3-DES, and RC5, respectively [31],
for detection of the encryption algorithm that malware utilizes. Alshammari et al. attempted to
classify encrypted Skype and SSH traffic [3].

2 Preliminaries

In this section, we introduce small PRESENT [23] and small AES.

small PRESENT-[n]: PRESENT [7] is a lightweight SPN block cipher with a 64-bit block size,
31 rounds, and a key length of either 80 or 128 bits. A toy model of PRESENT called small
PRESENT-[n] [23] has been proposed to analyze PRESENT. We show the round function of small
PRESENT-[n] in Fig. 1. Since the block size is 4n, small PRESENT-[16] is equivalent to PRESENT-
80. The variant n, which specifies the block size and round key length, allows us to control the
round of full diffusion. The S-box has 4-bit input and output. We give the correspondence table
in Table 2 that maps F4

2 → F4
2.
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Table 2: S-box (PRESENT and small PRESENT-[n])
x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

The pLayer is described as bit permutation P (i), which is defined as follows. Note that this is
a generalization of that of PRESENT, and is equivalent to that of PRESENT when n = 16. P (i)
is used for encryption and P−1(i) is used for decryption.

P (i) =

{
n× i mod (4n− 1) (0 ≤ i < 4n− 1)

4n− 1 (i = 4n− 1)

P−1(i) =

{
4× i mod (4n− 1) (0 ≤ i < 4n− 1)

4n− 1 (i = 4n− 1)

For key scheduling, the key scheduling algorithm of PRESENT-80 is executed, and the 4n rightmost
bits are used.

small AES: We design small AES in this paper. The round function of small AES is shown in
Fig. 1. Here, the S-box and key scheduling are the same as those of small PRESENT-[4]. The
maximum distance separable (MDS) matrix (over GF (24) defined by the irreducible polynomial
x4 + x+ 1) is the same as that of Piccolo [29], which is expressed as follows.

M =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


When a 16-bit input X(16) is given, the output is computed as t(x0(4), x1(4), x1(4), x1(4)) ← M ·t
(x0(4), x1(4), x1(4), x1(4)).

3 Proposed Attacks

In this section, we present the proposed deep learning-based output prediction attacks under the
blackbox model. To realize the proposed attacks, we construct deep learning models for ciphertext
prediction and plaintext recovery, respectively. In the following, we first discuss the goals of these
attacks and then explain the construction of the deep learning models and their evaluation.

3.1 Goals of Attack

To date, the relationship between the abilities of attackers in previous works and deep learning-
based ones has not been clarified; thus, here, we focus on clarifying this relationship. We then
revisit the common sense in previous works using deep learning-based attacks. The targets of this
work are summarized as follows:

1. We clarify the difference in capabilities between existing attacks and deep learning-based
attacks. Specifically, we compare the success probabilities of deep learning-based attacks
with those of existing attacks.
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2. The order of components or component replacement does not affect the success probability
of linear/differential cryptanalysis. We clarify how such modifications to cipher’s algorithms
affect the success probability of deep learning-based attacks.

We evaluate the success probabilities of attacks using the following models.

Known-plaintext attack model: Here, the adversary is given 2n/2 plaintext/
ciphertext pairs relating to a single secret key, and the pairs are used as training data to
generate a deep learning model.

Blackbox model: In this model, the adversary does not have knowledge about the target ciphers,
except algorithm interfaces such as key and block sizes.

In both of these models, the adversary is a very weak cryptographic attacker.
The blackbox model assumes that the adversary does not know the internal structures of the

cipher. In addition, the adversary does not know the cipher is a permutation. The blackbox model
also assumes that the adversary only knows the input-output format and possesses deep learning
knowledge.

Regarding attack models, a ciphertext-only attack model, which allows the adversary to obtain
only the ciphertext, is the weakest model. However, information-theoretically no information is
provided to the adversary in the model except for several special cases, e.g., the broadcast setting
of RC4 [27]. In fact, the attack in this model is practically impossible. The known-plaintext attack
model is the next weakest model. Here, the adversary can obtain some information from the given
plaintext/ciphertext pairs and use it for the attack. The other attack models, e.g., chosen-plaintext
attack models, require the adversary to possess some knowledge about the ciphertext, and the
adversary in this model is stronger than the adversary in the known-plaintext attack model. Thus
we employ the known-plaintext attack model.

In these models, we set the adversary’s goal to ciphertext prediction or plaintext recovery, and
we evaluate the success probabilities of these attacks. The ciphertext prediction and plaintext
recovery attacks are summarized as follows:

Ciphertext prediction attack: In this attack, the adversary obtains 2n/2 plaintext/ciphertext
pairs regarding a single secret key, where n is the block size. Then the adversary predicts a
ciphertext of a plaintext not included in the previously given pairs.

Plaintext recovery attack: Here, the adversary obtains 2n/2 plaintext/ciphertext pairs regard-
ing a secret key, and then the adversary recovers a plaintext of a ciphertext that is not included
in the pairs given previously.

If the ciphertext prediction attack is possible, forgery of the Cipher-based Message Authentication
Code (CMAC) is possible. If the plaintext recovery attack is possible, the adversary can obtain the
plaintext of any ciphertext without possessing the secret key used for encryption.

3.2 Neural Network and Hyperparameters

Deep learning allows us to automatically extract features unlike statistical machine learning tech-
niques, e.g., Bayesian inference. Deep learning treats nonlinear separable problems; thus, it appears
to work well for simulating cryptographic functions with nonlinearity. Hyperparameters such as
the initial learning rate, number of hidden nodes (neurons), and optimizers, are defined prior to
the learning phase and are used to construct models. These parameters affect model performance;
thus, they are optimized using assessment metrics.
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Table 3: Hyperparameters
Hyperparameters Search ranges

Number of hidden nodes 100, 200, 300, 400, 500

Initial value of learning rates 0.0001, 0.001, 0.01

Number of hidden layers 1, 2, 3, 4, 5, 6, 7

Optimizers SGD, Adam [22], RMSprop [32]

In this paper, we consider ciphertext prediction and plaintext recovery as regression problems
with supervised learning where plaintext/ciphertext pairs are used as training data. To solve these
problems, we must extract numerous features from the plaintext/ciphertext pairs obtained under
the known-plaintext attack; therefore, we employ long short-term memory (LSTM) which is a type
of recurrent neural networks (RNN) [17]. By using the LSTM, which enables long-term memory
of input sequences, we consider that numerous features can be extracted from plaintext/ciphertext
pairs, i.e., the inputs to our deep learning models. We then optimize hyperparameters, e.g., number
of hidden nodes, initial learning rates, number of hidden layers, and optimizers. Table 3 shows the
search ranges for each hyperparameter. During the hyperparameter optimization, we use different
secret keys from those used in the construction of deep learning models because we strictly evaluate
the success probabilities of ciphertext prediction and plaintext recovery without depending on secret
keys. As explained in the following subsection, the procedure to optimize hyperparameters is similar
to constructing deep learning models, with the exception of the number of secret keys.

3.3 Deep Learning Models and Their Evaluation

We construct and evaluate deep learning models for ciphertext prediction according to the following
procedure. Note that we show the plaintext recovery case in parentheses.

Step 1. The adversary obtains 2n/2 plaintext/ciphertext pairs under the known-plaintext attack.
In our experiments, we randomly select 2n/2 plaintexts and generate ciphertexts corresponding
to the selected plaintexts.

Step 2. The adversary uses the obtained plaintext/ciphertext pairs as training data to construct
deep learning models. Then, the adversary constructs a deep learning model for ciphertext
prediction (plaintext recovery) using the plaintexts (ciphertexts) as inputs and the ciphertexts
(plaintexts) as the correct outputs.

Step 3. The adversary uses the remaining 2n/2 plaintexts (ciphertexts), which were not used as
training data, to evaluate the constructed deep learning models. The adversary uses these
plaintexts (ciphertexts) as the input to the constructed deep learning models. Then, the
adversary predicts the unknown ciphertext (plaintext) corresponding to each plaintext (ci-
phertext).

Step 4. The adversary calculates the percentage of exact match between the predicted ciphertext
(plaintext) and the correct ciphertext (plaintext) as the predicted probability.

If the predicted probability is greater than 2−n/2, we consider the proposed attacks to be
successful. This means that an attacker without knowledge of the target algorithms can predict
the output value with a higher probability than a random probability.
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Table 4: Experimental hyperparameters
Hyperparameters Values

Number of plaintext/ciphertext pairs for learning phase 215

Number of plaintext/ciphertext pairs for prediction phase 215

Number of input layer nodes 250

Number of output layer nodes 1

Batch size 100

Number of epochs 100

Figure 2: Experimental flow

4 Comparison with Linear/Differential Cryptanalysis

In this section, we compare the number of rounds attacked by the proposed attack to that of
existing classically attacks (linear/differential cryptanalysis) using a whitebox analysis technique.

4.1 Experiments

For comparison, we apply the proposed attack to two toy ciphers, i.e., small PRESENT-[4] and
small AES. Here, we attempt ciphertext prediction and plaintext recovery against these toy ciphers
using the proposed attack with common experimental hyperparameter values (Table 4). In our
experiments, we implement the proposed attack using Keras1, which is a deep learning library, and
we employ TensorFlow as the backend. This experiment involves two sub-experiments (Fig. 2).

In the first sub-experiment (experiment 1), we optimize the hyperparameters for the target
ciphers in each round using the proposed attack and procedures described in Section 3.2. Here, for
the hyperparameter optimization, we employ Optuna2, which is an automatic optimization tool.
The search algorithm for the hyperparameter optimization is used the default one. We adopt the
success probabilities of ciphertext prediction or plaintext recovery as the measure for hyperparame-
ter optimization. In hyperparameter optimization, we obtain 100 hyperparameter candidates using
Optuna from the plaintext/ciphertext pairs generated by 20 secret keys, where the next hyper-
parameter candidate is searched using the information of the previous hyperparameter candidate.
Here, the parameter corresponding to the highest average success probabilities of ciphertext pre-
diction/plaintext recovery with 20 secret keys is selected as the next hyperparameter candidate.
Each ciphertext prediction/plaintext recovery success probability is obtained from 215 randomly
generated plaintext/ciphertext pairs and a deep learning model, where the deep learning model

1https://github.com/keras-team/keras
2https://github.com/optuna/optuna
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Table 5: Average success probabilities of ciphertext prediction/plaintext recovery by proposed
attack

Cipher Round
Category
of Attack

# nodes of
hidden layer

# layers of
hidden layer

Initial
learning rate

Optimizer
Succ.
prob.

small
PRESENT-[4]

1
Ciphertext
Prediction

400 5 0.001 Adam 1

Plaintext
Recovery

100 2 0.001 RMSprop 1

2
Ciphertext
Prediction

400 4 0.001 RMSprop 1

Plaintext
Recovery

400 1 0.001 Adam 1

3
Ciphertext
Prediction

300 6 0.001 RMSprop 1

Plaintext
Recovery

300 5 0.001 RMSprop 1

4
Ciphertext
Prediction

300 4 0.01 Adam 2−5.63

Plaintext
Recovery

300 1 0.01 Adam 2−14.50

5
Ciphertext
Prediction

200 7 0.001 Adam 2−14.08

Plaintext
Recovery

300 6 0.001 Adam 2−15.73

small AES 1
Ciphertext
Prediction

300 4 0.001 RMSprop 1

Plaintext
Recovery

200 4 0.001 RMSprop 1

2
Ciphertext
Prediction

300 1 0.01 Adam 2−16.02

Plaintext
Recovery

200 2 0.01 Adam 2−15.00

is constructed using the other 215 plaintext/ciphertext pairs. After obtaining 100 candidates, we
use the highest average success probabilities of ciphertext prediction/plaintext recovery among all
100 candidates as the optimized hyperparameter. If the average success probabilities of ciphertext
prediction/plaintext recovery with the optimized hyperparameter is greater than 2−15, then the
round number for searching the optimized hyperparameter is incremented by one; otherwise, the
second sub-experiment is executed using all optimized hyperparameters.

In the second sub-experiment (experiment 2), we obtain the average success probabilities of ci-
phertext prediction/plaintext recovery using the optimized hyperparameters and plaintext/ciphertext
pairs generated using 100 secret keys. Here the secret keys differ from those used in the hyper-
parameter optimization process. We then compare the proposed attack to the linear/differential
cryptanalysis using the experimental results and linear/differential probability of the target ciphers.

4.2 Experimental Results and Comparison

Table 5 shows the experimental results of experiment 2 and the hyperparameter obtained in exper-
iment 1.

First, we compare the proposed attack and the linear/differential cryptanalysis for small PRESENT-
[4]. From the experimental result, the proposed attack succeeds 5 rounds of ciphertext prediction
and 4 rounds of plaintext recovery against small PRESENT-[4]. Although the success probability
of ciphertext prediction for 5-round small PRESENT-[4] is nearly 2−15, the success probability of
plaintext recovery for 4-round small PRESENT-[4] is sufficiently greater than 2−15.

Here, we consider that the number of rounds attacked by the proposed attack is at least 4.
On the other hand, from the precisely calculated differential probability of small PRESENT-[4]
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Table 6: Maximum differential probability of small PRESENT-[4] and small AES
Cipher Round Maximum differential probability

small PRESENT-[4] 1 2−2

2 2−4

3 2−7

4 2−9

5 2−14

6 2−15

7 2−15

8 2−15

small AES 1 2−2

2 2−9

3 2−11

4 2−11

5 2−11

6 2−11

7 2−11

8 2−12

(Table 6), the largest number of rounds attacked by the differential cryptanalysis is 4. Similarly,
from the precisely calculated linear probability, the largest number of rounds attacked by the linear
cryptanalysis is 4. Therefore, the largest number of rounds attacked by the proposed attack and
that of the linear/differential cryptanalysis are equivalent on small PRESENT-[4].

Next, we compare the proposed attack and the linear/differential cryptanalysis for small AES.
From Table 5, we evaluate the largest number of rounds attacked by the proposed attack is 1. From
the precisely calculated linear/differential probabilities, the largest number of rounds attacked by
the differential cryptanalysis is 2, and that of linear cryptanalysis is 3. Therefore, the largest number
of rounds attacked by the proposed attack is less than that of linear/differential cryptanalysis
for small AES. However, the proposed attack realizes output ciphertext prediction and plaintext
recovery that are much stronger than the distinguishing attacks of linear/differential cryptanalysis.

5 Additional Whitebox Analysis

As shown in Table 5, the average success probability of ciphertext prediction by the proposed
attack in 4-round small PRESENT-[4] is approximately 29 times greater than that of plaintext
recovery. In the success probability of linear/differential cryptanalysis on small PRESENT-[4], the
security of the encryption and decryption are equivalent. Therefore, the result of the proposed
attack in 4-round small PRESENT-[4] seems contrary to intuition. In this section, we replace or
swap internal components in order to reveal the relationship between internal components and the
success probability of deep learning-based attacks.

5.1 Experiments

Here, we discuss two kinds of experiments, i.e., we investigate the average success probabilities of
ciphertext prediction/plaintext recovery by the proposed attack under the conditions that 1) the
substitution layer (sLayer) and inverse function (sLayer-inv) are replaced, and 2) the order of the
sLayer and permutation layer (pLayer) are swapped in the encryption/decryption algorithm. The
target toy ciphers are 4-round small PRESENT-[4] and 2-round small AES.
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Table 7: Average of success probabilities when swapping the order of components or replacing
components on small PRESENT-[4]

Category
of Attack

# nodes of
hidden layer

# layers of
hidden layer

Initial
learning rate

Optimizer
Succ.
prob.

Original
small PRESENT-[4]

Ciphertext
Prediction

300 4 0.01 Adam 2−5.63

Plaintext
Recovery

300 1 0.01 Adam 2−14.50

Replacement
of components

Ciphertext
Prediction

200 4 0.01 Adam 2−3.75

(Enc: sLayer-inv→pLayer)
(Dec: pLayer→sLayer)

Plaintext
Recovery

500 1 0.001 Adam 2−12.13

Swapping the order
of components

Ciphertext
Prediction

500 1 0.001 Adam 2−12.21

(Enc: pLayer→sLayer)
(Dec: sLayer-inv→pLayer)

Plaintext
Recovery

400 7 0.001 Adam 2−13.74

5.2 Experimental Results

The results for 4-round small PRESENT-[4] are shown in Table 7. In ciphertext prediction, the
average of success probability when the sLayer is replaced with sLayer-inv is greater than that of the
original small PRESENT-[4]. However, the average success probability when the order of the sLayer
and pLayer is replaced is less than that of the original small PRESENT-[4]. Thus, the differences
in success probabilities are relatively large, and we think that swapping the component order of
replacing components affects the success probabilities of the proposed attack. It is particularly
worth noting that swapping and replacing components does not affect the success probabilities
of linear/differential cryptanalysis. Therefore, we expect that our results can be an important
stepping stone for designing deep learning-resistant symmetric-key ciphers.

In plaintext recovery, the averages success probabilities of both cases are greater than that of
the original small PRESENT-[4], and this result tends to differ from ciphertext prediction. Since
the probabilities are nearly 2−15, the results require more detailed analyses to increase reliability,
which we leave as a future work.

In the experiment results of 2-round small AES, all average success probabilities for ciphertext
prediction/plaintext recovery by the proposed attack are less than 2−15. Therefore, the results do
not demonstrate whether swapping the order of components or replacing components has any effect
on the success probabilities of the proposed attack in 2-round small AES.

6 Conclusion

In this paper, we have presented deep learning attacks on SPN block ciphers in a blackbox setting,
where the adversary does not know the algorithm of the target ciphers, with the exception of
the interface such as key size and block size. In addition, we have investigated the relationship
between the internal structure and the success probability of the attack using a whitebox analysis
technique. We expect that the obtained results will be a foundation for designing deep learning-
resistant symmetric-key ciphers.

As future works, it is interested in whether the proposed attacks also work on Feistel block
ciphers, and it is also desirable to clarify why differences are observed in the success probabilities
regarding the underlying optimizer. Moreover, how to feedback our results for designing deep
learning-resistant symmetric-key ciphers is also regarded important future work.
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