
Disappearing Cryptography in
the Bounded Storage Model

Jiaxin Guan? and Mark Zhandry??

Princeton University and NTT Research, USA

Abstract. In this work, we study disappearing cryptography in the
bounded storage model. Here, a component of the transmission, say a
ciphertext, a digital signature, or even a program, is streamed bit by bit.
The stream is so large for anyone to store in its entirety, meaning the
transmission effectively disappears once the stream stops.
We first propose the notion of online obfuscation, capturing the goal of
disappearing programs in the bounded storage model. We give a negative
result for VBB security in this model, but propose candidate construc-
tions for a weaker security goal, namely VGB security. We then demon-
strate the utility of VGB online obfuscation, showing that it can be used
to generate disappearing ciphertexts and signatures. All of our applica-
tions are not possible in the standard model of cryptography, regardless
of computational assumptions used.

1 Introduction

The bounded storage model [Mau92] leverages bounds on the adversary’s storage
ability to enable secure applications. A typical bounded storage model scheme
will involve transmitting more information than what the adversary can possibly
store. One approach is then to use some small piece of the transmission to
perform, say, a one-time pad or other tasks. Since the adversary cannot record
the entire transmission, they most likely will not be able to recover the small
piece that is used, preventing attacks. Other approaches, say those based on
taking parities [Raz16, GZ19], are also possible. In any case, the honest users’
space requirements are always much less than the adversary’s storage bound;
usually, if the honest parties have space N , the adversary is assumed to have
space up to roughly O(N2).

The bounded storage model has mostly been used to give protocols with
information-theoretic, unconditional, and everlasting security; in contrast, the
usual time-bounded adversary model generally requires making computational
assumptions.

This Work: Disappearing Cryptography. A critical feature of the bounded storage
model is that the large transmission cannot be entirely stored by the adversary.

? jiaxin@guan.io
?? mzhandry@cs.princeton.edu

This large transmission is then subsequently used in such a way that whatever
space-limited information the adversary managed to record about the trans-
mission will become useless. In this way, the large transmission is ephemeral,
effectively disappearing immediately after it is sent.

Most work in the bounded storage model uses this disappearing communi-
cation as a tool to achieve information-theoretic security for primitives such as
key agreement, commitments, or oblivious transfer, for which computational as-
sumptions are necessary in the standard model. However, apart from insisting on
statistical security, the security goals are typically the same as standard-model
schemes.

The goal of this work, in contrast, is to use such “disappearing” communi-
cation to realize never-before-possible security goals, especially those that are
impossible in the standard model.

1.1 Motivating Examples

Example 1: Deniable Encryption. Deniable encryption [CDNO97] concerns the
following scenario: Alice has the secret key sk for a public key encryption scheme.
At some point, Bob sends a ciphertext ct encrypting message m to Alice. Charlie
observes the ciphertext ct.

Later, Charlie obtains the ability to force that Alice reveals sk (say, through
a warrant), so that he can decrypt ct and learn the message m. Alice wants to
maintain the privacy of the message m in this scenario, so she reveals a fake
decryption key sk′, such that decrypting ct with sk′ will result in a fake message
m′. This version of deniable encryption is called receiver deniable encryption.

Unfortunately, as shown in [BNNO11], such receiver deniable encryption is
impossible for “normal” encryption where the ciphertext is just a single (con-
cise) transmission from Bob to Alice1. Prior works [CDNO97, CPP20] therefore
consider a more general notion of encryption that involves back-and-forth com-
munication between the parties.

In this work, we consider a different solution: what if the ciphertext is so large
that it cannot be recorded by Charlie? Alice also cannot store the ciphertext in its
entirety, but she will be able to decrypt it live using her secret key. Charlie, who
does not know the secret key, will be unable to decrypt during the transmission.
Then we may hope that, even if Alice subsequently reveals the true secret key
sk, that Charlie will not be able to learn the message m since he no longer has
access to ct. Such a scheme would immediately be deniable: Alice can claim
that ct encrypted any arbitrary message m′, and Charlie would have no way to
verify whether or not she was telling the truth. Relative to the solution in prior
work, such a scheme would then require only one-way communication, but at
the expense of greatly increased communication in order to ensure that Charlie
cannot record all of ct. Such a scheme might make sense in a setting where Bob
is unable to receive incoming communication.

1 The deniable encryption literature often refers to such a scheme as having two-
messages, as they consider the transmission of the public key from Alice to Bob as
the first message.

2

Example 2: Second-hand Secret Keys. Consider an encrypted broadcast service
where a user may buy a decoder box which decrypts broadcasts. The content
distributor wants to enforce that for each decoder box, only one individual at
a time can decrypt broadcasts. Specifically, the content distributor is concerned
about the following attack: Alice has a decoder box, and uses it to decrypt a
broadcast live at broadcast time. Then, post broadcast, she gives the box to
Bob. Bob has previously stored the encrypted broadcast, and then feeds it into
the decoder box to receive the broadcast. The result is that two individuals are
able to use one box to decrypt the broadcast.

Our solution, again, is to imagine the ciphertexts being so long that they
cannot be stored. As such, Alice’s decoder box will be completely useless to Bob
after the broadcast occurs.

Example 3: Non-interactive Security Against Replay Attacks. Consider a scenario
where instructions are being broadcast from a command center to a number
of recipients. Suppose that the recipients are embedded devices with limited
capabilities; in particular, they cannot keep long-term state. We are concerned
that an attacker may try to issue malicious instructions to the recipients.

The natural solution is to authenticate the instructions, say by signing them.
However, this still opens up the possibility of a replay attack, where the adver-
sary eavesdrops on some signed instruction, and then later on sends the same
instruction a second time, causing some adverse behavior.

In the classical model with stateless recipients, the only way to prevent replay
attacks is with an interactive protocol, since a stateless recipient cannot distin-
guish the command center’s original message and signature from the adversary’s
replay. In a broadcast scenario, interacting with each recipient may be imprac-
tical. Moreover, interaction requires the recipients themselves to send messages,
which may be infeasible, especially if the recipients are low-power embedded
devices.

As before, our idea is to have the signatures on the instructions be so large
that the adversary cannot record them in their entirety. The recipients can
nonetheless validate the signatures, but an adversary will be unable to ever
generate a valid signature, even after witnessing many authenticated instruc-
tions from the command center. The result is non-interactive security against
replay attacks.

Example 4: Software Subscription. The traditional software model involves the
software company sending the software to users, who then run the software for
themselves. Software-as-a-Service, instead, has the software company centrally
host the software, which the users run remotely. The centralized model allows for
subscription-based software services—where the user can only have access to the
program by making recurring payments—that are impossible in the traditional
software model.

On the other hand, software-as-a-service requires the user to send their inputs
to the software company. While many technologies exist to protect the user data,
this model inherently requires interaction with the users.

3

We instead imagine the company sends its software to the users, but the
transmissions are so large that the users cannot record the entire program. Nev-
ertheless, the users have the ability to run the program entirely locally during
the transmission, and do not have to send any information to the software com-
pany. Then, once the transmission ends, the user will be unable to further run
the program.

Example 5: Overcoming Impossibility Results for Obfuscation. Program obfus-
cation is a form of intellectual property protection whereby a program is trans-
formed so that (1) all implementation details are hidden, but (2) the program
can still be run by the recipient.

Virtual Black Box (VBB) obfuscation, as defined by Barak et al. [BGI+01],
is the ideal form of obfuscation: it informally says that having the obfuscated
code is “no better than” having black box access to the functionality. Un-
fortunately, Barak et al. show that such VBB obfuscation is impossible. The
counter-example works by essentially running the program on its own descrip-
tion, something that is not possible just given oracle access. As a consequence,
other weaker notions have been used, including indistinguishability obfuscation
(iO) and differing inputs obfuscation [BGI+01], as well as virtual grey box ob-
fuscation (VGBO) [BCKP14]. These notions have proven tremendously useful
for cryptographic applications, where special-purpose programs are designed to
be compatible with the notion of obfuscation used. However, for securing intel-
lectual property inside general programs, these weaker notions offer only limited
guarantees.

Our model for transmitting programs above may appear to give hope for
circumventing this impossibility. Namely, if the obfuscated program is so large
that it cannot be recorded in its entirety, then maybe it also becomes impossible
to run the program on its own description.

1.2 Our Results

In this work, we explore the setting of disappearing cryptography, giving both
negative and positives results.

Online Obfuscation. First, we propose a concrete notion of online obfuscation,
which is streamed to the recipient. We then explore what kinds of security guar-
antees we can hope for, motivated by Examples 4 and 5 above.

First, we demonstrate that VBB obfuscation is still impossible in most set-
tings, assuming the hardness of the Learning With Errors (LWE) problem. The
proof closely follows the Barak et al. proof in the case of circuits, but shows that
it can be adapted to work on online obfuscation. Thus we show that Example 5
is not possible.

This still leaves open the hope that online obfuscation can yield something
interesting that is not possible classically. We next define a useful notion of on-
line obfuscation, motivated by the goal of classically-impossible tasks. Towards
that end, we note that differing inputs obfuscation is known to be a problematic

4

definition [GGH+13b] in the standard model. We also observe that indistin-
guishability obfuscation offers no advantages in the streaming setting over the
classical setting. We therefore settle on a notion of virtual grey box (VGB) ob-
fuscation for online obfuscation. We formulate a definition of VGB obfuscation
which allows the recipient to evaluate the program while it is being transmitted,
but then lose access to the program after the transmission completes.

We give two candidate constructions of VGB online obfuscation, based on
different ideas. We leave as an open question constructing a provably secure
scheme.

Applications of Online Obfuscation. Next we turn to applications, establishing
VGB online obfuscation as a central tool in the study of disappearing cryptog-
raphy, and providing techniques for its use. We show how to use VGB online
obfuscation to realize each of the Examples 1-3.

Specifically, assuming VGB online obfuscation (and other comparatively mild
computational assumptions), we define and construct the following:

– Public key encryption with disappearing ciphertext security in the bounded
storage model. Here, ciphertexts are streamed to the recipient, and message
secrecy holds against adversaries with bounded storage2, even if the adver-
sary later learns the secret key. This immediately solves Examples 1 and
2.

– We generalize to functional encryption with disappearing ciphertext secu-
rity, which combines the disappearing security notion above with the ex-
pressive functionality of functional encryption. This allows, for example, to
combine the advantages of disappearing ciphertext security with traditional
functional encryption security goals of fine-grained access control.

– Digital signatures with disappearing signature security, where signatures are
streamed, and the recipient loses the ability to verify signatures after the
stream is complete. This solves Example 3.

In the following, we expand and explain our results in more detail.

1.3 Defining Obfuscation in the Bounded Storage Model

We first study obfuscation in the bounded storage model. We specifically imagine
that obfuscated programs are too large to store, but can be streamed and run
in low space while receiving the stream.

Negative Result for VBB Obfuscation. Our first result is that, virtual black box
(VBB) security remains impossible, even for this model. Recall that VBB secu-
rity requires that anything which can be efficiently learned from the obfuscated
code can be efficiently learned given just oracle access to the function. We follow
the Barak et al. [BGI+01] impossibility, but take care to show that it still works
for online obfuscation.

2 We also require the usual polynomial time constraint of the adversary.

5

The Barak et al. impossibility works roughly as follows. Let (Enc,Dec) be a
fully homomorphic encryption scheme. Choose random values α, β, γ as well as
keys sk, pk for Enc, and consider the following program:

P (x) =

pk,Enc(pk, α) if x = 0

β if x = α

γ if Dec(sk, x) = β

⊥ otherwise

An attacker with black box access to this program can learn pk and an encryption
of α. But to learn anything about β, they need to query on α; by the security
of Enc, this is impossible. Thus, the attacker cannot learn anything about γ.

On the other hand, an attacker with (perhaps obfuscated) code for P can
homomorphically apply P to Enc(pk, α) to get Enc(pk, β). Then they can feed
Enc(pk, β) into the program to learn γ.

For online obfuscation, we show that this works, provided the attacker has
access to three sequential streams of the program. In the first stream the attacker
evaluates on 0 to learn pk,Enc(pk, α). In the second stream, it uses its evaluation
procedure and the program stream to homomorphically evaluate P on Enc(pk, α),
learning Enc(pk, β). Finally, in the third stream it runs P on Enc(pk, β) to learn
γ.

The only challenging part is the second stream. Here, we use the evaluation
procedure for the online obfuscation. Specifically, the evaluation procedure main-
tains a state, which is updated as each bit of the stream comes in. We run the
evaluation algorithm homomorphically on the input Enc(pk, α), by maintaining
an encrypted state, which we update homomorphically.

We then explain how to remove the final stream using Compute-and-Compare
obfuscation [GKW17, WZ17], a technique used toward a similar goal in [AP20].
The first stream can also be removed in an auxiliary input setting, which is
needed for most interesting applications. Thus, in the auxiliary input setting
we obtain an impossibility even for a single stream. The full proof is given in
Section 4.

Defining Online Obfuscation. Above, we only considered the standard notions
of security, but for online obfuscation. We now seek to formulate a definition
which captures the goal of having the obfuscated program “disappear” after the
stream is complete. Concretely, we want that, after the stream is complete, it is
impossible to evaluate the program on any “new” inputs.

Our formalization of this is roughly as follows: we imagine the attacker gets
the program stream, and then later learns some additional information. We ask
that any such attacker can be simulated by an oracle algorithm. This algorithm
makes queries to the program, and then receives the same additional information
the original adversary received. Importantly, after the additional information
comes in, the simulator can no longer query the program any more.

Some care is needed with the definition. VBB security, which requires the sim-
ulator to be computationally bounded, is impossible for the reasons discussed

6

above. Indistinguishability obfuscation (iO) allows for a computationally un-
bounded simulator and thus avoids the impossibility3. While iO is useful in the
standard model, we observe that there is little added utility to considering iO in
the online model. Indeed, an unbounded simulator can query the entire function
on all inputs during the query phase, and thus has no need to make additional
queries after receiving the additional information.

We therefore settle on a virtual grey box (VGB) notion of security [BCKP14],
where the simulator is computationally unbounded, but can only make a polyno-
mial number of queries. The computationally unbounded simulator then receives
the additional information, but can make no more queries. Our full definition is
in Section 3.

We note that it may be possible to also consider a version of differing in-
puts obfuscation (diO) in our setting, but there is evidence that diO may be
impossible [GGHW14]. So we therefore stick to VGB obfuscation.

1.4 Applications

Before giving our candidate constructions of VGB online obfuscation, we discuss
applications.

Disappearing Ciphertext Security. We first demonstrate how to use online obfus-
cation to construct public key encryption where ciphertexts effectively disappear
after being transmitted. Concretely, we define a version of public key encryption
where the attacker gets to learn the secret key after the ciphertext is transmit-
ted. We require that the attacker nevertheless fails to learn anything about the
message.

Our first attempt is the following, which essentially uses an online obfuscator
as a witness encryption scheme [GGSW13]: the public key pk is set, say, to be
the output of a one-way function f on the secret key sk. To encrypt a message
m to pk, generate an online obfuscation of the program P (sk′) which outputs m
if and only if f(sk′) = pk. Decryption just evaluates the program on the secret
key.

For security, we note that, by the one-wayness of f , an attacker who just
knows pk and sees the ciphertext cannot evaluate the ciphertext program on
any input that will reveal m. Hence, m presumably remains hidden. Moreover,
even if the attacker learns sk after seeing the ciphertext, it should not help the
attacker learn m, since the attacker no longer has access to the program stream.

Formalizing this intuition, however, leads to difficulties. Suppose we have
an adversary A for the encryption scheme. We would like to use A to reach a
contradiction. To do so, we invoke the security of the online obfuscator to ar-
rive at a simulator S that can only query the ciphertext program, but does not
have access to the program stream. Unfortunately, this simulator is computa-
tionally unbounded, meaning it can invert f to recover sk at the beginning of
the experiment, and then query the program on sk.

3 Concretely, it can break Enc to learn α.

7

Our solution is to replace f with a lossy function [PW08], which is a function
with two modes: an injective mode (where f is injective) and a lossy mode (where
the image of f is small). The security requirement is that the two modes are
indistinguishable.

We start with f being in the injective mode. In the proof, we first switch
the ciphertext program to output m if and only if sk′ = sk; by the injectivity
of f this change does not affect the functionality of the program. Hence, the
simulator cannot detect the change (even though it can invert f and learn sk for
itself), meaning the adversary cannot detect the change either.

In the next step, we switch f to being lossy, which cannot be detected by
a computationally bounded attacker. We next change the ciphertext program
again, this time to never output m. This only affects the program’s behavior
on a single point sk. But notice that for lossy f , sk is statistically hidden from
the attacker, who only knows pk when the ciphertext is being streamed. This
means the simulator, despite being computationally unbounded, will be unable
to query on sk, meaning the simulator cannot detect the change. This holds true
even though the simulator later learns sk, since at this point it can no longer
query the ciphertext program. Since indistinguishability holds relative to the
simulator, it also holds for the original attacker. The full construction and proof
are given in Section 5.

Extension to Functional Encryption. We can also extend disappearing ciphertext
security to functional encryption. Functional encryption allows users to obtain
secret keys for functions g, which allow them to learn g(m) from ciphertext en-
crypting m. The usual requirement for functional encryption is that an attacker,
who has secret keys for functions gi such that gi(m0) = gi(m1) for all i, cannot
distinguish encryptions of m0 from encryptions of m1.

In Section 7, we consider a similar notion, but where the requirement that
gi(m0) = gi(m1) only holds for secret keys in possession when the ciphertext is
communicated. Even if the attacker later obtains a secret key for a function g
such that g(m0) 6= g(m1), indistinguishability will still hold. Analogous to the
case of plain public key encryption, this captures the intuition that the ciphertext
disappears, becoming unavailable once the transmission ends.

We show how to combine standard-model functional encryption with online
VGB obfuscation to obtain functional encryption with such disappearing cipher-
text security. The basic idea is as follows. To encrypt a message m, first compute
an encryption c of m under the standard-model functional encryption scheme.
Then compute an online obfuscation of the program which takes as input the
secret key skg for a function g, and decrypts c using skg, the result being g(m).

This construction seems like it should work, but getting the proof to go
through using computationally unbounded simulators is again non-trivial. We
show how to modify the sketch above to get security to go through.

Disappearing Signatures. We next turn to constructing disappearing signatures,
signatures that are large streams that can be verified online, but then the signa-
ture disappears after the transmission ends. We formalize this notion by modi-

8

fying the usual chosen message security game to require that the attacker (who
does not know the signing key) cannot produce a signature on any message, even
messages that it previously saw signatures for.

We show how to construct such signatures in Section 6, using online obfusca-
tion. An additional building block we need is a prefix puncturable signature. This
is a signature scheme where, given the signing key sk, it is possible to produce a
“punctured” signing key skx∗ which can sign any message of the form (x,m) such
that x 6= x∗. We require that, even given skx∗ , no message of the form (x∗,m)
can be signed. Such prefix puncturable signatures can be built from standard
tools [BF14].

We construct a signature scheme with disappearing signatures by setting the
signature on a message m to be an online obfuscation of the following program
P . P has sk hardcoded, and on input x outputs a signature on (x,m). To verify,
simply run the streamed program on a random prefix to obtain a signature, and
then verify the obtained signature.

We then prove that an attacker cannot produce a valid signature stream on
any message, even messages for which it already received signature streams. For
simplicity, consider the case where the attacker gets to see a signature on a single
message m. Let x∗ be the prefix that the verifier will use to test the adversary’s
forgery. Note that x∗ is information-theoretically hidden to the adversary at the
time it produces its forgery. We will switch to having the signature program for
m that rejects the prefix x∗. Since the program no longer needs to sign the prefix
x∗, it can use the punctured key skx∗ to sign instead. The only point where the
program output changes is on x∗. The simulator will be unable to query on x∗

(since it is information-theoretically hidden), meaning the simulator, and hence
the original adversary, cannot detect this change.

Now we rely on the security of the puncturable signature to conclude that
the adversary’s forgery program cannot output a signature on any message of
the form (x∗,m), since the entire view of the attacker is simulated with the
punctured key skx∗ . But such a signature is exactly what the verifier expects to
see; hence the verifier will reject the adversary’s program.

1.5 Constructing Online Obfuscation

We finally turn to giving two candidate constructions of online obfuscation. We
unfortunately do not know how to prove the security of either construction,
which we leave as an interesting open problem. However, we discuss why the
constructions are presumably resistant to attacks.

Construction 1: Large Matrix Branching Programs. Our first construction is
based on standard-model obfuscation techniques, starting from [GGH+13a]. As
in [GGH+13a], we first convert an NC1 circuit into a matrix branching program
using Barrington’s theorem [Bar86]. In [GGH+13a], the program is then “re-
randomized” following Kilian [Kil88] by left and right multiplying the various
branching program components with random matrices, such that the randomiza-
tion cancels out when evaluating the program. We instead first pad the matrices

9

to be very large, namely so large that honest users can record a single column,
but the adversary cannot write down the entire matrix. We then re-randomize
the large padded matrix.

We show that, if the matrix components are streamed in the correct order,
honest users can evaluate the program in low space. However, since the program
is too large to write down, malicious users will presumably be unable to evaluate
the program once the stream concludes.

We note that in the standard model, re-randomizing the branching program is
not enough to guarantee security. Indeed, linear algebra attacks on the program
matrices are possible, as well as “mixed-input” attacks where multiple reads of
the same input bit are set to different values. Garg et al. [GGH+13a] and follow-
up works block these attacks by placing the branching program matrices “in the
exponent” of a cryptographic multilinear map.

In our setting, the large matrices presumably prevent linear algebra attacks.
Moreover, we show how to block mixed-input attacks by choosing the matrix
padding to have a special structure. While we are unable to prove the security
of our multilinear-map-less scheme, we conjecture that it nevertheless remains
secure. The result is a plausible VGB online obfuscator for NC1 circuits. Details
are given in Section 8.

Construction 2: Time-stamping. Our second construction is based on time-
stamping [MST04] in the bounded storage model. Here, a large stream is sent.
Anyone listening can use the stream to compute a time-stamp on any message.
However, once the stream concludes, it will be impossible to time-tamp a “new”
message. The concrete security notion guarantees a fixed (polynomial-sized) up-
per bound on the total number of stamped messages any adversary can produce.

Our construction uses time-stamping, together with standard-model obfus-
cation. To obfuscate a program P , first send the random stream. Then, compute
a standard-model obfuscation of the program P ′, which takes as input x and a
time-stamp for x, verifies the time-stamp, and then runs P if the stamp is valid.

Assuming the standard model obfuscation is has VGB security, this construc-
tion should be an online obfuscation with VGB security. The intuition is to start
with a VGB simulator for the standard-model scheme. This simulator is allowed
to make queries at any time after the obfuscation of P ′ is generated, even after
receiving the additional information. However, the only useful queries to P ′ are
on inputs with valid time-stamps. The intuition is that, by the security of the
time-stamping scheme, it should be information-theoretically possible to deter-
mine all the time-stamped messages that the adversary could possibly produce
once the stream concludes. The simulator will determine the possible queries,
and make each of them while it has access to the program. All future queries by
the simulator will then be rejected.

Unfortunately, we do not know how to actually rigorously prove that this
construction works. The difficulty is justifying that we can actually anticipate
all valid time-stamps that may be produced. We therefore leave formalizing the
above intuition as an interesting open question.

10

1.6 Related Work

Time-stamping in the bounded storage model [MST04], as discussed above,
is perhaps the first application of the bounded storage model beyond achiev-
ing information-theoretic security. We note, however, that non-interactive time-
stamping was recently achieved in the standard model using appropriate com-
putational assumptions [LSS19].

Dziembowski [Dzi06] consider a notion of forward-secure storage, which is
very similar to our notion of disappearing ciphertext security for encryption. A
key difference is that their work only considers the secret key case, and it is
unclear how to adapt their constructions to the public key setting.

Our notion of disappearing ciphertext security can be seen as achieving a
notion of forward security, where a key revealed does not affect the security of
prior sessions. Forward security has been studied in numerous standard-model
contexts (e.g. [DvW92]). However, standard-model constructions of forward se-
curity (non-interactive) encryption such as [CHK03] always involve updating the
secret keys. Our construction does not require the secret key to be updated.

2 Preliminaries

Different sections of this paper rely on different cryptographic primitives. To
minimize the page-turning effort of our reader, we will introduce the related
notions and definitions separately in each section. Here we will just state the
notations that are used throughout this paper.

We use capital bold letters to denote a matrix M. Lowercase bold letters
denote vectors v. For n ∈ N we let [n] denote the ordered set {1, 2, . . . , n}. For a
bit-string x ∈ {0, 1}n, we let xi denote the i-th bit of x. We use diag(M1, . . . ,Mn)
to denote a matrix with block diagonals M1, . . . ,Mn.

3 Defining Obfuscation in the Bounded Storage Model

In this section we will formally define online obfuscation (oO) and its corre-
sponding security notions, but before we start, we will first introduce an idea
called a stream.

A stream s� is a sequence of bits sent from one party to another. Generally,
we require that the length of the stream, denoted as |s�|, to be greater than
the memory bound of the users and adversaries. This means that a properly
constructed stream can not be stored in its entirety. However, algorithms or
programs can still take a stream as an input. This means that the algorithm or
program would operate in an online manner - it actively listens to the stream
as the bits come in, and performs the computation simultaneously. We denote a
variable as a stream by putting a ”�” in the subscript.

Definition 1 (Online Obfuscator). Let λ, n be security parameters. An on-
line obfuscator oO for a circuit class {Cλ} consists of a pair of uniform PPT
machines (Obf,Eval) that satisfy the following conditions:

11

– Obf takes as input a circuit C ∈ Cλ, uses up to O(n) memory bits, and
produces a stream s� ← Obf(C).

– Eval takes as input a stream s� and an input x, uses up to O(n) memory
bits, and outputs y ← Eval(s�, x).

– For all C ∈ Cλ, for all inputs x, we have that

Pr [C(x) = y : s� ← Obf(C), y ← Eval(s�, x)] = 1.

To define security for an online obfuscator oO = (Obf,Eval), consider the
following two experiments:

1. ExpA,ch,oO(C ∈ Cλ, k):
– The experiment consists of an arbitrary number of rounds. At each

round, one of the following two scenarios happens:
• At an interaction round, the adversary A interacts arbitrarily with

the challenger ch.
• At a stream round, the adversary A receives a fresh stream4 of the

obfuscated circuit s� ← Obf(C). The challenger ch will receive a
special tag notifying it that a streaming has happened.

– The challenger ch may choose to terminate the experiment at any time
by outputting a bit b ∈ {0, 1}, and b will be the output of the program.

– Whenever the number of stream rounds is greater than k, the challenger
ch immediately outputs 0 and terminates the experiment.

2. ExpS,ch,oO(C ∈ Cλ, k, q):
– The experiment consists of an arbitrary number of rounds:
• At an interaction round, the simulator S interacts arbitrarily with

the challenger ch.
• At a stream round, the simulator S may send up to q adaptive oracle

queries to the circuit C and receive corresponding responses. The
challenger ch will receive a special tag notifying it that a streaming
has happened.

– The challenger ch may choose to terminate the experiment at any time
by outputting a bit b ∈ {0, 1}, and b will be the output of the program.

– Whenever the number of stream rounds is greater than k, the challenger
ch immediately outputs 0 and terminates the experiment.

Definition 2 (k-time Virtual Grey-Box (VGB) Security). Let λ, n be se-
curity parameters. Let k be a fixed positive integer. For an online obfuscator oO
to satisfy k-time Virtual Grey-Box security, we require that there exists a mem-
ory bound S(n), such that for any challenger ch, and any adversary A that uses
up to S(n) memory bits, there exists a computationally unbounded simulator S
s.t. for all circuits C ∈ Cλ:

|Pr[ExpA,ch,oO(C, k) = 1]− Pr[ExpS,ch,oO(C, k, q) = 1]| ≤ negl(λ),

where q = poly(λ).

4 Notice that a fresh stream is sampled every time, so that no single stream is sent
repeatedly.

12

The definitions for Indistinguishability Obfuscation (iO) security and Virtual
Black-Box (VBB) security are obtained analogously by applying minor changes
to the VGB security definition.

Remark 1 (k-time iO Security). We modify Definition 2 to allow q = superpoly(λ)
to obtain the definition for k-time iO Security.

Remark 2 (k-time VBB Security). We modify Definition 2 to restrict S to be
a PPT simulator to obtain the definition for k-time VBB Security. We show in
Section 4 that online obfuscators with VBB security do not exist.

Remark 3 (1-time VBB/VGB/iO Security). Under the special case where k = 1,
we obtain the definitions for 1-time VBB/VGB/iO security correspondingly.

Remark 4 (Unbounded VBB/VGB/iO Security). Under the special case where
k = superpoly(λ), we obtain the definitions for unbounded VBB/VGB/iO secu-
rity correspondingly.

4 Impossibility of VBB Online Obfuscation

In this section, we show that online obfuscation with VBB security does not
exist in the Bounded Storage Model if fully homomorphic encryptions and ob-
fuscation of multi-bit compute-and-compare programs exist. Note that both of
these primitives can be built from the assumption that the Learning With Errors
(LWE) problem is hard.

4.1 Fully Homomorphic Encryption

A Fully Homomorphic Encryption (FHE) scheme is a public key encryption
scheme with an additional Eval procedure that allows arbitrary computations on
the ciphertexts.

Definition 3 (Fully Homomorphic Encryption). Let λ be the security pa-
rameter. A fully homomorphic encryption scheme for circuit class {Cλ} is a tuple
of PPT algorithms Π = (Gen,Enc,Eval,Dec) with the following syntax.

– Gen(1λ) → (pk, sk) takes as input the security parameter λ, and outputs a
public key pk and a secret key sk.

– Enc(pk,m)→ ct takes as input the public key pk and a message m ∈ {0, 1}∗,
and outputs a ciphertext ct.

– Eval(C, ct) → ct′ takes as input a circuit C ∈ Cλ and a ciphertext ct, and
outputs an evaluated ciphertext ct′.

– Dec(sk, ct) → m takes as input a private key sk and a ciphertext ct, and
outputs a decrypted message m.

In addition to the usual PKE correctness and security requirements (which
don’t involve Eval at all), we require correctness of homomorphic evaluations.

13

Definition 4 (Correctness of Homomorphic Evaluations). A fully homo-
morphic encryption scheme Π = (Gen,Enc,Eval,Dec) is correct for homomor-
phic evaluations if for all messages m and circuits C ∈ Cλ,

Pr

y = C(m) :

(pk, sk)← Gen(1λ)
ct← Enc(pk,m)
ct′ ← Eval(C, ct)
y ← Dec(sk, ct′)

 ≥ 1− negl(λ).

Gentry, Sahai and Waters [GSW13] have shown how to construct such an
FHE scheme assuming the hardness of the LWE problem.

4.2 Obfuscation of Compute-and-Compare Programs

The idea of compute-and-compare programs was first raised by Wichs and Zird-
elis [WZ17] in 2017. Around the same time, the work of Goyal, Koppula and
Waters [GKW17] essentially shows the same result which they named “lockable
obfuscation”, with some slight differences in presentation and focus. Here, we
will use the notion of multi-bit compute-and-compare programs from Wichs and
Zirdelis [WZ17].

Definition 5 (Multi-Bit Compute-and-Compare Program). Given a
function f : {0, 1}`in → {0, 1}`out , a target value y ∈ {0, 1}`out , and a message
z ∈ {0, 1}`msg , a multi-bit compute-and-compare program P is defined as follows:

Pf,y,z(x)=

{
z if f(x) = y

⊥ otherwise
.

Wichs and Zirdelis [WZ17] have shown that obfuscation of multi-bit compute-
and-compare programs exists, assuming the hardness of the LWE problem.

Lemma 1 ([WZ17]). If the LWE problem is hard, then there exists an obfus-
cator (Obf,Eval) for multi-bit compute-and-compare programs such that:

– For any multi-bit compute-and-compare program P and input x,

Pr [P (x) = w : P ← Obf(P), w ← Eval(P, x)] = 1.

– For any multi-bit compute-and-compare program P with size parameters
`in, `out, and `msg, if the target value y for P is chosen uniformly at random,
then there exists a (non-uniform) PPT simulator S, such that

Obf(P)
c
≈ S(`in, `out, `msg).

14

4.3 Proof of VBB Impossibility

Theorem 1. If fully homomorphic encryptions and obfuscation of multi-bit
compute-and-compare programs exist, then online obfuscators with VBB secu-
rity do not exist.

Proof. Let FHE = (Gen,Enc,Dec,Eval) be a secure FHE scheme. First, we
run FHE.Gen(1λ) to obtain (pk, sk), and sample uniformly at random α, β, γ ∈
{0, 1}λ. Let Q be a multi-bit compute-and-compare program where f is the FHE
decryption function FHE.Dec with the secret key sk hardcoded in, and y = β
and z = γ. Notice that we have:

Qβ,γ(x) =

{
γ if FHE.Decsk(x) = β

⊥ otherwise
.

Let Q be the obfuscated version of Q and define the program P as follows:

Pα,β(x) =

FHE.Encpk(α),Q if x = 0

β if x = α

⊥ otherwise

.

We assume that there exists an online obfuscator oO with 2-time VBB secu-
rity, and consider the following adversary A for the experiment ExpA,ch,oO(P, k =
2):

– In the first stream round, A receives a stream s� ← oO.Obf(P). A computes
oO.Eval(s�, 0), obtaining FHE.Encpk(α) and Q5.

– In the second stream round, A receives another stream s′� ← oO.Obf(P).
A homomorphically evaluates P on ciphertext FHE.Encpk(α) by computing

FHE.Eval
(
oO.Eval(s′�, ·),FHE.Encpk(α)

)
= FHE.Eval

(
P,FHE.Encpk(α)

)
= FHE.Encpk

(
P (α)

)
= FHE.Encpk(β).

– In the next interaction round, A runs the program Q on input FHE.Encpk(β)
to obtain γ. Then A sends γ to the challenger.

VBB security of the online obfuscator requires that there exists a compu-
tationally bounded simulator S for the experiment ExpS,ch,oO(P, k = 2, q =
poly(λ)). Given the security of the FHE scheme and that S is only allowed
q = poly(λ) number of oracle queries to the program P , with overwhelming
probability S can obtain only FHE.Encpk(α) and Q in the stream rounds. Notice
that FHE.Encpk(α) does not depend on γ at all, and for the computationally

5 If there is an interaction round before the first stream round, during which the
challenger sends FHE.Encpk(α) and Q to A as auxiliary input, then we can build a
similar A for the experiment with k = 1, breaking the 1-time VBB security with
auxiliary input.

15

bounded S, by lemma 1, Q is indistinguishable from a simulator that has no
knowledge of γ. Hence, the probability that S can send γ to the challenger is
negligible, as opposed to A, who always sends γ successfully. Therefore, a chal-
lenger can easily distinguish between the two experiments, thus breaking the
2-time VBB security of the online obfuscator. ut

5 Public Key Encryption with Disappearing Ciphertext
Security

5.1 Definition

We will start by defining a security notion for public key encryption that we
name Disappearing Ciphertext Security.

Essentially, it captures the security game where the adversary is given the
private key after all of its queries but before it outputs a guess for the bit b. In
traditional models, this definition does not make much sense, as the adversary
can simply store the query responses, and then later use the received private
key to decrypt. However, in the bounded storage model, the adversary cannot
possibly store the ciphertexts, so even if the adversary is handed the private key
afterwards, it cannot possibly use it to decrypt anything.

Put formally, for security parameters λ and n, a public key encryption scheme
in the bounded storage model is a tuple of PPT algorithms Π = (Gen,Enc,Dec)
that each uses up to O(n) memory bits. The syntax is identical to that of a
classical PKE, except that now the ciphertexts are streams ct�. For the security
definition, consider the following experiment:

Disappearing Ciphertext Security Experiment DistDisCt
A,Π (λ, n):

– Run Gen(1λ, 1n) to obtain keys (pk, sk).
– Sample a uniform bit b ∈ {0, 1}.
– The adversary A is given the public key pk.
– The adversaryA submits two messages m0 and m1, and receives Enc(pk,mb),

which is a stream.
– The adversary A is given the private key sk.
– The adversary A outputs a guess b′ for b. If b′ = b, we say that the adversary

succeeds and the output of the experiment is 1. Otherwise, the experiment
outputs 0.

Using this experiment, we are now able to formally define disappearing ci-
phertext security.

Definition 6 (Disappearing Ciphertext Security). Let λ, n be security pa-
rameters. A public key encryption scheme Π = (Gen,Enc,Dec) has disappearing
ciphertext security under memory bound S(n) if for all PPT adversaries A that
use at most S(n) memory bits:

Pr
[
DistDisCt

A,Π (λ, n) = 1
]
≤ 1

2
+ negl(λ).

16

Now we will show how to use online obfuscation to construct a public key
encryption scheme with disappearing ciphertext security. One important tool
that we will take advantage of is lossy functions, which we will introduce in the
following.

5.2 Lossy Function

Lossy functions are a subset of Lossy Trapdoor Functions due to Peikert and
Waters [PW08] that do not require the existence of a trapdoor for the injective
mode. To put formally:

Definition 7 (Lossy Function). Let λ be the security parameter. For `(λ) =
poly(λ) and k(λ) ≤ `(λ) (k is referred to as the “lossiness”) , a collection of
(`, k)-lossy functions is given by a tuple of PPT algorithms (S, F) with the fol-
lowing properties. As short-hands, we have Sinj(·) denote S(·, 1) and Slossy(·)
denote S(·, 0).

– Easy to sample an injective function: Sinj outputs a function index
s, and F (s, ·) computes an injective (deterministic) function fs(·) over the
domain {0, 1}`.

– Easy to sample a lossy function: Slossy outputs a function index s, and
F (s, ·) computes a (deterministic) function fs(·) over the domain {0, 1}`
whose image has size at most 2`−k.

– Hard to distinguish injective mode from lossy mode: Let Xλ be the
distribution of s sampled from Sinj, and let Yλ be the distribution of s sampled
from Slossy, the two distributions should be computationally indistinguishable,

i.e. {Xλ}
c
≈ {Yλ}.

5.3 Construction

Here we present our construction of a PKE scheme with disappearing ciphertext
security, using online obfuscation and lossy function as building blocks.

Construction 1. Let λ, n be the security parameters. Let LF = (S, F) be a
collection of (`, k)-lossy functions, and oO = (Obf,Eval) an online obfuscator
with 1-time VGB security under S(n) memory bound. The construction Π =
(Gen,Enc,Dec) works as follows:

– Gen(1λ, 1n): Sample an injective function index fs from Sinj, and a uniform
sk ← {0, 1}`. Compute y = F (s, sk) = fs(sk), and set pk = (s, y). Output
(pk, sk).

– Enc(pk,m): Construct the program Pfs,y,m as follows:

Pfs,y,m(x) =

{
m if fs(x) = y

⊥ otherwise
.

Obfuscate the above program to obtain a stream ct� ← Obf(Pfs,y,m). The
ciphertext is simply the stream ct�.

– Dec(sk, ct�): Simply evaluate the streamed obfuscation using sk as input.
An honest execution yields Eval(ct�, sk) = Pfs,y,m(sk) = m as desired.

17

5.4 Proof of Security

Now we show that if LF is a collection of (`, k)-lossy functions with a lossiness
k = poly(λ), and oO is an online obfuscator with 1-time VGB security under
S(n) memory bound, then the above construction has disappearing ciphertext
security under S(n) memory bound.

We organize our proof into a sequence of hybrids. In the very first hybrid, the
adversary plays the disappearing ciphertext security game DistDisCt

A,Π (λ, n) where
b is fixed to be 0. Then we gradually modify the hybrids to reach the case where
b = 1. We show that all pairs of adjacent hybrids are indistinguishable from each
other, and therefore by a hybrid argument the adversary cannot distinguish
between b = 0 and b = 1. This then directly shows disappearing ciphertext
security.

Sequence of Hybrids

– H0: The adversary plays the original disappearing ciphertext security game
DistDisCt

A,Π (λ, n) where b = 0, i.e. it always receives Enc(pk,m0).
– H1: The same as H0, except that in Enc(pk,mb), we replace Pfs,y,mb

with
P ′sk,mb

such that

P ′sk,mb
(x) =

{
mb if x = sk

⊥ otherwise
.

So now instead of checking the secret key by checking its image in the injec-
tive function, the program now directly checks for sk.

– H2: The same as H1, except that instead of sampling fs from Sinj, we now
use fs′ sampled from Slossy.

– H3: The same as H2, except that now we set b = 1 instead of 0.
– H4: Switch back to using injective fs instead of the lossy fs′ .
– H5: Switch back to using the original program Pfs,y,mb

instead of P ′sk,mb
.

Proof of Hybrid Arguments

Lemma 2. If the online obfuscator oO has 1-time VGB security under memory
bound S(n), then no (potentially computationally unbounded) adversary that uses
up to S(n) memory bits can distinguish between H0 and H1 with non-negligible
probability.

Proof. This step actually only relies on indistinguishability obfuscation security
of the obfuscator oO, which is implied by its online VGB security. Notice that
the only difference between H0 and H1 is the program Pfs,y,mb

and P ′sk,mb
being

obfuscated. Now notice that if fs is injective, and that y = fs(sk), then fs(x) = y
is equivalent to x = sk. Hence, Pfs,y,mb

and P ′sk,mb
have the exact same function-

ality, i.e. on the same input x, their outputs Pfs,y,mb
(x) and P ′sk,mb

(x) are always
the same. Then by the VGB (or even iO) security under memory bound S(n), no
adversary under memory bound S(n) should not be able to distinguish between
the obfuscations of these two programs with non-negligible probability. ut

18

Lemma 3. If LF is a collection of (`, k)-lossy functions, then no PPT adversary
can distinguish between H1 and H2 with non-negligible probability.

Proof. This step is quite straightforward. Notice that the only difference between
H1 and H2 is that an injective fs is sampled in H1 while a lossy fs′ is sampled
in H2. Therefore, the only way an adversary can distinguish between H1 and H2

is by directly distinguishing fs from fs′ , which contradicts with the security of
the lossy function that it is hard to distinguish injective mode from lossy mode.

Put formally, we show how one can use an adversary A that distinguishes H1

from H2 to construct an adversary A′ that distinguishes between the injective
mode and the lossy mode of the lossy function.
A′ receives a distribution X of function indices s sampled from either Sinj

or Slossy and it needs to tell which mode the distribution is sampled from. A′
would run Gen(1λ, 1n), except that now sample s directly from the distribution
X. Then A′ simulates the rest of the disappearing ciphertext security game for
A by playing the role of the challenger with fixed b = 0. At the end of the game,
A should be able to tell if it is in H1 or H2. If A says it is in H1, A′ claims that
X is sampled from Sinj, and if A says it is in H2, A′ claims that X is sampled
from Slossy.

Notice that if X is sampled from Sinj, then the view of A is identical to the
one in H1, and if X is sampled from Slossy, the view of A is identical to the one
in H2. Therefore, if A succeeds in distinguishing H1 from H2, A′ succeeds in
distinguishing between the injective mode and the lossy mode. ut

Lemma 4. If the online obfuscator oO has 1-time VGB security under memory
bound S(n), and the lossiness k of LF is poly(λ), then no (potentially com-
putationally unbounded) adversary under memory bound S(n) can distinguish
between H2 and H3 with non-negligible probability.

Proof. First, we show that if the lossiness k = poly(λ), the secret key sk is
information theoretically hidden from the adversary before it is sent. Recall that
y = F (s′, sk) = fs′(sk) where fs′ is a lossy function. For fs′ , the size of the
domain is 2`, while the size of the range is only 2`−k. This implies that for an
image y of a random input, the number of possible pre-images is at least 2k/2,
except with probability at most 2−k/2. Now if the lossiness k is poly(λ), the
number of possible pre-images is exponential, except with negligible probability.
Given that the only constraint on sk is uniformly random conditioned on being a
pre-image of y, it is information theoretically unpredictable from the adversary.

Now since sk is information theoretically hidden, the program P ′ is essentially
a point function on a random point. And the only difference between H2 and H3

is the output of the point function. If an adversary is able to distinguish between
H2 and H3, this means that the adversary is able to distinguish the output of an
obfuscated point function without even knowing the point. This directly presents
an adversary A for the 1-time VGB security game. In experiment ExpA,ch,oO,
the adversary A is always able to obtain the output of an obfuscated point
function. However, in game ExpS,ch,oO, the simulator S is only allowed to make
q = poly(λ) number of oracle queries to the point function. The probability that

19

the simulator is able to obtain the output is only q/2k/2 = poly(λ)/2poly(λ) =
negl(λ). Therefore, the challenger can easily tell if it is interacting with the
adversary A or the simulator S, which contradicts with the 1-time VGB security
of the online obfuscator. ut

Lemma 5. If LF is a collection of (`, k)-lossy functions, then no PPT adversary
can distinguish between H3 and H4 with non-negligible probability.

The proof of this lemma follows analogously from the one of Lemma 3.

Lemma 6. If the online obfuscator oO has 1-time VGB security under memory
bound S(n), then no (potentially computationally unbounded) adversary that uses
up to S(n) memory bits can distinguish between H4 and H5 with non-negligible
probability.

The proof of this lemma follows analogously from the one of Lemma 2.

Theorem 2. If LF is a collection of (`, k)-lossy functions with lossiness k =
poly(λ), and oO is an online obfuscation with 1-time VGB security under S(n)
memory bound, then Construction 1 has disappearing ciphertext security under
S(n) memory bound.

Proof. The lemmas above show a sequence of a polynomial number of hybrid
experiments where no PPT adversary with S(n) memory bound can distinguish
one from the next with non-negligible probability. Notice that the first hybrid
H0 corresponds to the disappearing ciphertext security game where b = 0, and
the last hybrid H5 corresponds to one where b = 1. The security of the indistin-
guishability game follows. ut

6 Disappearing Signature Scheme

6.1 Definition

In this section, we define a public-key signature scheme in the bounded storage
model which we call Disappearing Signatures. The idea is that we make the sig-
natures be streams such that one can only verify them on the fly, and cannot
possibly store them. The security game requirement is also different. Tradition-
ally, for an adversary to win the signature forgery game, the adversary would
need to produce a signature on a fresh new message. However, in the disappear-
ing signature scheme, the adversary can win even by producing a signature on a
message that it has previously queried. The catch here is that even though the
message might have been queried by the adversary before, the adversary has no
way to store the valid signature on the message due to its sheer size.

Put formally, for security parameters λ and n, a disappearing signature
scheme consists of a tuple of PPT algorithms Π = (Gen,Sign,Ver) that each
uses up to O(n) memory bits. The syntax is identical to that of a classical public
key signature scheme, except that now the signatures are streams σ�. For the
security definition, consider the following experiment:

Signature Forgery Experiment SigForgeA,Π(λ, n):

20

– Run Gen(1λ, 1n) to obtain keys (pk, sk).
– The adversary A is given the public key pk.
– For q = poly(λ) rounds, the adversary A submits a message m, and receives
σ� ← Sign(sk,m), which is a stream.

– The adversary A outputs m′ and streams a signature σ′�. The output of the
experiment is Ver(pk,m′, σ′�).

Notice that traditionally, we would require m′ to be distinct from the mes-
sages m’s queried before, but here we have no such requirement. With this
experiment in mind, we now define the security requirement for a disappearing
signature scheme.

Definition 8. Let λ, n be security parameters. A disappearing signature scheme
Π = (Gen,Sign,Ver) is secure under memory bound S(n), if for all PPT adver-
saries A that use up to S(n) memory bits,

Pr
[
SigForgeA,Π(λ, n) = 1

]
≤ negl(λ).

To construct such a disappearing signature scheme, one tool that we will use
alongside online obfuscation is a prefix puncturable signature.

6.2 Prefix Puncturable Signature

A prefix puncturable signature is similar to a regular public key signature scheme
that works for messages of the form (x,m), where x is called the prefix. Addi-
tionally, it has a puncturing procedure Punc that takes as input the secret key
sk and a prefix x∗, and outputs a punctured secret key skx∗ . skx∗ allows one to
sign any message of the form (x,m) with x 6= x∗. The security requirement is
that, given skx∗ , one cannot produce a signature on any message of the form
(x∗,m).

To put formally, in addition to the usual correctness and security require-
ments of a signature scheme, we also have a correctness requirement and a se-
curity requirement for the punctured key.

Definition 9 (Correctness of the Punctured Key). Let λ be the security
parameter. We require that for all m ∈ {0, 1}∗ and x, x∗ ∈ {0, 1}λ s.t. x 6= x∗:

Pr

σ = σ′ :

(pk, sk)← Gen(1λ)
σ ← Sign(sk, (x,m))
skx∗ ← Punc(sk, x∗)

σ′ ← Sign(skx∗ , (x,m))

 = 1.

Definition 10 (Security of the Punctured Key). Let λ be the security pa-
rameter. We require that for all x∗ ∈ {0, 1}λ and m ∈ {0, 1}∗, for all PPT
adversaries A, we have

Pr

Ver(pk, (x∗,m), σ) = 1 :
(pk, sk)← Gen(1λ)
skx∗ ← Punc(sk, x∗)

σ ← A(skx∗ , pk, (x
∗,m))

 ≤ negl(λ).

Bellare and Fuchsbauer [BF14] have shown that such a signature scheme can
be built from any one-way function.

21

6.3 Construction

We now present our construction of the disappearing signature scheme.

Construction 2. Let λ, n be the security parameters. Let PPS = (Gen,Sign,
Ver,Punc) be a prefix puncturable signature scheme, and oO = (Obf,Eval) be
an online obfuscator with 1-time VGB security under S(n) memory bound. The
construction Π = (Gen,Sign,Ver) works as follows:

– Gen(1λ, 1n): Run (pk, sk)← PPS.Gen(1λ), and output (pk, sk).
– Sign(sk,m): Construct the program P as follows:

Psk,m(x) = PPS.Sign(sk, (x,m)).

Obfuscate the above program to obtain a stream σ� ← Obf(P). The signa-
ture is simply the stream σ�.

– Ver(pk,m, σ�): Sample a random prefix x∗ ∈ {0, 1}λ, and evaluate the
streamed obfuscated program using x∗ as input. This yields

σ∗ = Eval(σ�, x
∗) = PPS.Sign(sk, (x∗,m)).

Then, output PPS.Ver(pk, (x∗,m), σ∗) as the result.

The correctness of the construction comes directly from the correctness of
the underlying prefix puncturable signature scheme.

6.4 Proof of Security

Theorem 3. If PPS is a correct and secure prefix puncturable signature scheme,
and oO is an online obfuscator with 1-time VGB security under S(n) memory
bound, then Construction 2 is secure under S(n) memory bound.

Proof. We prove the security of Construction 2 through a sequence of hybrids.
Recall what happens in the signature forgery game H0. At the end of the

game, the adversary A outputs a message m′ and a signature σ′�. We verify it
by sampling a random x∗ ∈ {0, 1}λ, obtain σ∗ = Eval(σ′�, x

∗) = PPS.Sign(sk,
(x∗,m′)), and then output PPS.Ver(pk, (x∗,m′), σ∗).

Now imagine that in H1, we sample x∗ ∈ {0, 1}λ at the very beginning of
the game. We also obtain a punctured key skx∗ ← PPS.Punc(sk, x∗), which we
don’t use yet. H1 should be indistinguishable from H0 for any adversary, since
x∗ and skx∗ are never sent to the adversary.

Then we move to H2, where we modify the way the signature is generated in
response to the adversary’s last query. Now instead of sending the obfuscation
of the program P , we send the obfuscation of the following program P ′:

P ′skx∗ ,m,x∗(x) =

{
PPS.Sign(skx∗ , (x,m)) if x 6= x∗

⊥ otherwise
.

22

Notice that this program rejects the input x∗, but produces a valid signature
on all other inputs. The only point where P and P ′ differ is on input x∗.

Note that before the obfuscation of P ′ is streamed back to the adversary, x∗

is information theoretically hidden. Therefore, to distinguish between H1 and
H2, the adversary needs to distinguish between two obfuscated programs which
differ on a single input that is information theoretically hidden. By the same
argument as in Lemma 3, this would break the 1-time VGB security of the
underlying online obfuscator. Therefore, no adversary with up to S(n) memory
bits can distinguish between H1 and H2 with non-negligible probability.

Now we repeat the process to modify our response to the adversary’s second-
to-last query and obtain H3, all the way until we reach Hq+1, where now all the
signatures streamed to the adversary use P ′ instead of P . Since here we have
a sequence of a polynomial number of hybrids that no adversary with a S(n)
memory bound can distinguish one from the next with non-negligible probability,
no adversary with a S(n) memory bound can distinguish Hq+1 from H0. Notice
that in H0, the adversary plays the original security game. However, in Hq+1,
all the responses to the queries use P ′ instead of P .

Now notice that the entire game Hq+1 can be simulated using only the punc-
tured secret key skx∗ . If an adversary is able to win this game, then we can
use this adversary to obtain a signature on (x∗,m) for some m, even if we only
have skx∗ . This directly contradicts with the security of the underlying prefix
puncturable signature scheme. Therefore, no PPT adversary A with S(n) mem-
ory bound can win any of H0, H1, . . . , Hq−1. Since H0 is the original signature
forgery experiment, we conclude that Construction 2 is secure. ut

7 Functional Encryption

7.1 Definition

The concept of Functional Encryption (FE) is first raised by Sahai and Wa-
ters [SW05] and later formalized by Boneh, Sahai, Waters [BSW11] and
O’Neill [O’N10]. Here we review the syntax and security definition of functional
encryption and how they would translate to the bounded storage model.

Syntax of Functional Encryption. Let λ be the security parameter. Let {Cλ}
be a class of circuits with input space Xλ and output space Yλ. A functional
encryption scheme for the circuit class {Cλ} is a tuple of PPT algorithms Π =
(Setup,KeyGen,Enc,Dec) defined as follows:

– Setup(1λ)→ (pk,msk) takes as input the security parameter λ, and outputs
the public key pk and the master secret key msk.

– KeyGen(msk, C)→ skC takes as input the master secret key msk and a circuit
C ∈ {Cλ}, and outputs a function key skC .

– Enc(pk,m) → ct takes as input the public key pk and a message m ∈ Xλ,
and outputs the ciphertext ct.

23

– Dec(skC , ct)→ y takes as input a function key skC and a ciphertext ct, and
outputs a value y ∈ Yλ.

We require correctness and security of a functional encryption scheme.

Definition 11 (Correctness). A functional encryption scheme Π = (Setup,
KeyGen,Enc,Dec) is said to be correct if for all C ∈ {Cλ} and m ∈ Xλ:

Pr

y = C(m) :

(pk,msk)← Setup(1λ)
skC ← KeyGen(msk, C)

ct← Enc(pk,m)
y ← Dec(skC , ct)

 ≥ 1− negl(λ).

For the security definition, consider the following experiment:

Functional Encryption Security Experiment DistFEA,Π(λ):

– Run Setup(1λ) to obtain keys (pk,msk) and sample a uniform bit b ∈ {0, 1}.
– The adversary A is given the public key pk.
– For a polynomial number of rounds, the adversary submits a circuit C ∈
{Cλ}, and receives skC ← KeyGen(msk, C).

– The adversary A submits the challenge query consisting of 2 messages m0

and m1 s.t. C(m0) = C(m1) for any circuit C that has been queried before,
and receives Enc(pk,mb).

– For a polynomial number of rounds, the adversary submits a circuit C ∈ {Cλ}
s.t. C(m0) = C(m1), and receives skC ← KeyGen(msk, C).

– The adversary A outputs a guess b′ for b. If b′ = b, we say that the adversary
succeeds and the output of the experiment is 1. Otherwise, the experiment
outputs 0.

Definition 12 (Adaptive Security). A functional encryption scheme Π =
(Setup,KeyGen,Enc,Dec) is said to be secure if for all PPT adversaries A :

Pr
[
DistFEA,Π(λ) = 1

]
≤ 1

2
+ negl(λ).

Now we discuss how these definitions would need to be modified for defining
functional encryption in the bounded storage model. As we have seen in the
PKE with disappearing ciphertext security construction, the core idea here is
similar: we now produce ciphertexts that are streams.

Concretely, for security parameters λ and n, a functional encryption scheme
in the bounded storage model consists of a tuple of PPT algorithms Π =
(Setup,KeyGen,Enc,Dec) that each uses up to O(n) memory bits. The rest of
the syntax is identical to that of the classical FE scheme, except that now the
ciphertexts ct� are streams. The correctness requirement remains unchanged
apart from the syntax change, but the security definition would need to be sup-
plemented with a memory bound for the adversary and a slightly different secu-
rity experiment DistFE-BSMA,Π . DistFE-BSMA,Π is identical (apart from syntax changes)

to DistFEA,Π except that for function key queries submitted after the challenge
query, we no longer require that C(m0) = C(m1).

24

Definition 13 (Adaptive Security in the Bounded Storage Model). A
functional encryption scheme Π = (Setup,KeyGen,Enc,Dec) is said to be secure
under memory bound S(n) if for all PPT adversaries A that use at most S(n)
memory bits:

Pr
[
DistFE-BSMA,Π (λ, n) = 1

]
≤ 1

2
+ negl(λ).

With these definitions in mind, we now present how one can construct a
secure functional encryption scheme in the bounded storage model using online
obfuscation. The construction will also be based on three classical cryptographic
primitives: a Non-Interactive Zero Knowledge (NIZK) proof system, a secure
classical functional encryption scheme, and a Pseudo-Random Function (PRF).

7.2 Construction

Construction 3. Let λ, n be the security parameters. Let NIZK = (P,V) be a
non-interactive zero knowledge proof system, FE = (Setup,KeyGen,Enc,Dec) a
functional encryption scheme, PRF : {0, 1}w×{0, 1}∗ → {0, 1}w a pseudorandom
function for w = poly(λ), and oO = (Obf,Eval) an online obfuscator with 1-
time VGB security under memory bound S(n). We construct the functional
encryption scheme Π = (Setup,KeyGen,Enc,Dec) as follows:

– Setup(1λ, 1n): Sample (pk,msk)← FE.Setup(1λ). Sample the common refer-
ence string crs for the NIZK system. Output (pk, crs) as the overall public
key. Output msk as the master secret key.

– KeyGen(msk, C): Sample random x, y ∈ {0, 1}w. Consider the following func-
tion:

FC,x,y(m, k) =

{
C(m) if k = ⊥ or PRF(k, (C, y)) 6= x

⊥ otherwise
.

Compute skF ← FE.KeyGen(msk, FC,x,y). Also, produce a NIZK proof π that
skF is correctly generated, i.e. the tuple (pk, C, x, y, skF) is in the language

Lpk,C,x,y,skF :=

{
(pk, C, x, y, skF)

∣∣∣∣ (pk,msk)← FE.Setup(1λ)
skF ← FE.KeyGen(msk, FC,x,y)

}
.

Output the function key as skC = (C, x, y, skF , π).
– Enc((pk, crs),m): Compute c ← FE.Enc(pk, (m,⊥)). Then consider the fol-

lowing program that takes as input a function key skC = (C, x, y, skF , π):

Pc,pk,crs(skC) =

{
FE.Dec(skF , c) if NIZK.V(crs, (pk, C, x, y, skF), π) = 1

⊥ otherwise
.

Obfuscate the above program to obtain a stream ct� ← Obf(P). The ci-
phertext is simply the stream ct�.

– Dec(skC , ct�) : Simply output Eval(ct�, skC).

It should be easy to verify that an honest execution yields

Pc,pk,crs(C, x, y, skF , π) = FE.Dec(skF , c) = FC,x,y(m,⊥) = C(m)

as desired.

25

7.3 Proof of Security

We prove the security of Construction 3 via a sequence of hybrid experiments.

Sequence of Hybrids

– H0: The adversary plays the functional encryption game DistFE-BSMA,Π (λ, n)
where b = 0, i.e. it always receives Enc(pk,m0).

– H1: The same as H0, except that when answering the challenge query by the
adversary, we sample a random key k ∈ {0, 1}w. Notice that we don’t change
anything in the response to the challenge query yet. For any function key
query that happens after the challenge query, instead of sampling x ∈ {0, 1}w
randomly, we set x = PRF(k, (C, y)), where C is the circuit being queried on
by the adversary.

– H2: The same as H1, except that when answering the challenge query, we
compute c′ ← FE.Enc(pk, (mb, k)) instead of c← FE.Enc(pk, (mb,⊥)).

– H3: The same as H2, except that now the crs and the proof π of the NIZK
system are generated by the NIZK simulator.

– H4: The same as H3, except that now we set b = 1 instead of 0.
– H5: Switch back to the original method of generating crs and the proof π for

the NIZK system.
– H6: Switch back to use c instead of c′.
– H7: Switch back to sampling random x for the function key queries that

happen after the challenge query.

Proof of Hybrid Arguments

Lemma 7. If PRF is a secure pseudorandom function, then no PPT adversary
can distinguish between H0 and H1 with non-negligible probability.

Proof. Notice that only difference between H0 and H1 is that instead of sam-
pling a random x, x is computed as PRF(k, (C, y)) where k is unknown to the
adversary. The indistinguishability between H0 and H1 comes directly from the
pseudorandomness of the underlying PRF.

Concretely, we show how on can use an adversary A that distinguishes H0

from H1 to construct an adversary A′ that distinguishes the underlying PRF
from a truly random function. When A′ is given a function f in question, A′
would simulate for A the functional encryption security game DistFE-BSMA,Π with
b = 0 . The only difference is that once after A has sent the challenge query, in
the following function key queries, A′ would sample a random y, and compute
the x’s as x = f(C, y). Notice that in the case where f is a PRF, we would have
x = PRF(k, (C, y)), whereas if f is a truly random function, we would end up
having a uniformly random x. Notice that these two cases exactly corresponds
to H1 and H0, respectively. If A determines that it is in H0, A′ outputs that the
function f is a truly random function. Otherwise, A′ claims that the function f
is a pseudorandom function. If A succeeds with a non-negligible probability, A′
succeeds with non-negligible probability as well. ut

26

Lemma 8. If the NIZK system is statistically sound, PRF is a secure pseudo-
random function against non-uniform attackers, and the online obfuscator oO
has 1-time VGB security under memory bound S(n), then no PPT adversary
with memory bound S(n) can distinguish between H1 and H2 with non-negligible
probability.

Proof. The difference between H1 and H2 is that we now use c′ instead of c.
However, notice that c and c′ are never used directly, but only hardcoded into
the program P . Therefore, the only way that an adversary can distinguish be-
tween H1 and H2 is by distinguishing the two obfuscated programs. Let P be
the program obfuscated in H1 that has c hardcoded and P ′ be the program
obfuscated in H2 with c′ hardcoded. Let us consider how P and P ′ differ in
functionality.

Notice that NIZK.V(crs, (pk, C, x, y, skF), π) does not depend on c or c′, so
P and P ′ will always fall into the same branch. Without loss of generality,
here we consider the non-trivial branch, where the NIZK proof verifies correctly
and the program outputs FE.Dec(skF , c). Since the NIZK proof checks out and
that the NIZK system has statistical soundness, we have that skF is a correctly
generated function key. Therefore, the program P outputs FE.Dec(skF , c) =
FC,x,y(m,⊥), and the program P ′ outputs FC,x,y(m, k). Notice that FC,x,y(m,⊥)
always yields C(m), and that FC,x,y(m, k) yields C(m) unless PRF(k, (C, y)) = x.
In other words, P and P ′ always have the same output except for on inputs where
PRF(k, (C, y)) = x.

Now recall that as the obfuscated program is being streamed, k has just been
freshly sampled and not used anywhere else. Therefore, k is information theoret-
ically hidden from the adversary. Since PRF is a pseudorandom function against
non-uniform attackers, the value of PRF(k, (C, y)) should also be information
theoretically hidden from the adversary. Now that we have P and P ′ differing
only on inputs that are information theoretically hidden, by a similar argument
as in Lemma 3, by the 1-time VGB security of the online obfuscator, any PPT
adversary under memory bound S(n) should not be able to distinguish between
the obfuscations of P and P ′ with non-negligible probability. Consequently, no
PPT adversary with memory bound S(n) can distinguish between H1 and H2

with non-negligible probability. ut

Lemma 9. If the NIZK system is zero-knowledge, then no PPT adversary can
distinguish between H2 and H3 with non-negligible probability.

This lemma follows directly from the definition of zero-knowledgeness for
NIZK.

Lemma 10. If the underlying functional encryption scheme FE is secure, then
no PPT adversary can distinguish between H3 and H4 with non-negligible prob-
ability.

Proof. The only difference between H3 and H4 is that a different value of c is
computed. In H3, c← FE.Enc(pk, (m0, k)), while in H4, c← FE.Enc(pk, (m1, k)).

27

We show that if an adversary A can distinguish between H3 and H4, then there
is an adversary A′ for the DistFEA′,Π game that uses A as a subroutine:

– When A′ receives the public key pk from the challenger, use the NIZK sim-
ulator to sample the crs, and send (pk, crs) to A.

– Whenever A submits a function key query for circuit C before the challenge
query, A′ samples random x, y, and sends FC,x,y to the challenger. In re-
sponse, A′ receives skF . A′ then runs the NIZK simulator to produce the
proof π. A′ sends (C, x, y, skF , π) back to A.

– When A submits a challenge query with m0 and m1, A′ samples k and sends
(m0, k) and (m1, k) as its own challenge query to the challenger. When A′
receives the ciphertext c, A′ constructs Pc,pk,crs and sends the obfuscation of
P back to A.

– For function key queries received after the challenge query, follow the same
procedure as above, except that now use x = PRF(k, (C, y)).

– If A says that it is in H3, output 0. Otherwise, output 1.

We verify that the DistFEA′,Π game that A′ plays is valid: (1) For all the func-
tion key queries F that are sent before the challenge query, either FC,x,y(m0, k) =
C(m0) = C(m1) = FC,x,y(m1, k), or FC,x,y(m0, k) = FC,x,y(m1, k) = ⊥. (2) For
all function key queries F that are sent after the challenge query, FC,x,y(m0, k) =
FC,x,y(m1, k) = ⊥.

Notice that A′ simulates the exact game for A where it needs to distinguish
between H3 and H4. So if A succeeds with non-negligible probability, A′ also
succeeds with non-negligible probability, which contradicts with the security of
the underlying FE scheme.

Thus, by the security of the underlying FE scheme, no PPT adversary can
distinguish between H3 and H4 with non-negligible probability. ut

Lemma 11. If the NIZK system is zero-knowledge, then no PPT adversary can
distinguish between H4 and H5 with non-negligible probability.

This lemma follows directly from the definition of zero-knowledgeness for
NIZK.

Lemma 12. If the NIZK system is statistically sound, PRF is a secure pseudo-
random function against non-uniform attackers, and the online obfuscator oO
has 1-time VGB security under memory bound S(n), then no PPT adversary
with memory bound S(n) can distinguish between H5 and H6 with non-negligible
probability.

The proof of this lemma follows analogously from the one of lemma 8.

Lemma 13. If PRF is a secure pseudorandom function, then no PPT adversary
can distinguish between H6 and H7 with non-negligible probability.

The proof of this lemma follows analogously from the one of lemma 7.

28

Theorem 4. If NIZK is zero-knowledge and statistically sound, PRF is a secure
pseudorandom function against non-uniform attackers, FE is a secure functional
encryption scheme, and the online obfuscator oO has 1-time VGB security under
S(n) memory bound, then Construction 3 is secure under S(n) memory bound.

Proof. The lemmas above show a sequence of a polynomial number of hybrid
experiments where no PPT adversary with S(n) memory bound can distinguish
one from the next with non-negligible probability. Notice that the first hybrid
H0 corresponds to the functional encryption security game where b = 0, and the
last hybrid H7 corresponds to one where b = 1. The security of the construction
follows. ut

8 Candidate Construction 1

8.1 Matrix Branching Programs

A matrix branching program BP of length h, width w, and input length `
consists of an input selection function inp : [h] → [`], 2h matrices {Mi,b ∈
{0, 1}w×w}i∈[h];b∈{0,1}, a left bookend that is a row matrix s ∈ {0, 1}1×w, and a
right bookend that is a column matrix t ∈ {0, 1}w×1. BP is evaluated on input

x ∈ {0, 1}` by computing BP(x) = s
(∏

i∈[h] Mi,xinp(i)

)
t.

We say that a family of matrix branching programs are input-oblivious if
all programs in the family share the same parameters h, w, `, and the input
selection function inp.

Lemma 14 (Barrington’s Theorem [Bar86]). For a circuit C of depth d
where each gate takes at most 2 inputs, we can construct a corresponding matrix
branching program BP with width 5 and h = 4d.

8.2 The Basic Framework

Here we present the basic framework of an online obfuscator based on matrix
branching programs. Our framework will be parameterized by a randomized
procedure Convert, which takes as input a log-depth circuit C and width w, and
produces a branching program of length h = poly(λ) and width w. w will be
chosen so that the honest parties only need O(w) space to evaluate the program
as it is streamed, while security is maintained even if the adversary has up to
Cw2 space, for some small constant C.

Since the branching program BP will be too large for a space bounded ob-
fuscator to write down, we will assume that there is a local, space-efficient way
to compute each entry of the branching program, given the circuit C and the
random coins of Convert.

Note that Barrington’s theorem implies, for log-depth circuits, that h =
poly(λ) and that w can be taken as small as 5. Convert can be thought of as
some procedure to expand the width to match the desired space requirements,

29

and also enforce other security properties, as discussed in Section 8.3, where we
discuss our particular instantiation of the framework.

Our basic framework actually consists of three schemes. As we will demon-
strate, the three schemes have equivalent security, under the assumed existence
of a pseudorandom function. The first scheme is much simpler, highlights the
main idea of our construction, and allows us to more easily explore security. The
downside of the first scheme is that the obfuscator requires significant space,
namely more than the adversary. We therefore present two additional schemes
with equivalent security, where the final scheme allows the obfuscator to run in
space O(w), while having equivalent security to the original scheme.

Construction with Kilian Randomization. We start with the first and
simpler scheme, denoted OKil, that uses randomization due to Kilian [Kil88] to
construct a matrix branching program BP′ as follows.

Sample random invertible matrices Ri ∈ {0, 1}w×w for i = 0, 1, . . . , h. Com-
pute M′

i,b = R−1i−1Mi,bRi for i ∈ [h] and b ∈ {0, 1}. Additionally, compute new

bookends s′ = s ·R0, and t′ = R−1h · t. The new randomized matrix branching
program is now BP′ = (inp, {M′

i,b}i∈[h];b∈{0,1}, s′, t′). Notice that when we com-

pute BP′(x), these random matrices will cancel each other out and hence the
output of the program should be unchanged.

Now to turn BP′ into an online obfuscator, all we need to do is to properly
stream the branching program. Here we specify the order that the matrices will
be streamed:

s′,M′
1,0,M

′
1,1,M

′
2,0,M

′
2,1, . . . ,M

′
h,0,M

′
h,1, t

′.

When streaming a matrix M, we require that the matrix M is streamed
column by column, i.e. we start by sending the first column of M, followed by
the second column, then the third, so on and so forth.

Now let’s take a look at how to evaluate the obfuscated program, i.e. the
matrix branching program sent over the stream. Notice that we would need to
do this using only space linear to w.

To evaluate the program, we will keep a row matrix v ∈ {0, 1}1×w as our
partial result. When the streaming begins, we will set v = s′ received over the
stream.

For i ∈ [h], we will compute b = xinp(i) and listen to the stream of M′
i,b. Let

the columns of M′
i,b be c1, c2, . . . , cw. Since M′

i,b is streamed column by column,
we will receive on the stream c1, c2, . . . , cw. As the columns are being streamed,
we will compute an updated partial result v′ = (v1, v2, . . . , vw) on the fly. As we
receive cj for j ∈ [w], we would compute vj = v · cj . After all the columns of
M′

i,b have been streamed and that v′ has been fully computed, we set v = v′.

In the end after we receive t′, we output BP′(x) = v · t′.
Notice that throughout the evaluation process, we use at most 2w memory

bits, which is linear to w.

30

However, one issue with this construction is that running the obfuscator re-
quires computing products of matrices of size w×w, and this inherently requires
O(w2) space. Next up, we will show how we can use pseudorandom functions
(PRFs) to help us carry out the randomization process using only space linear
to w.

Construction with Elementary Random Row and Column Operations.
We will now give an alternate construction based on elementary row operations
OER, which will improve on the space requirements of the obfuscator. Namely,
the obfuscator will still have a large source of randomness, which we will as-
sume can be queried many times. However, other than the randomness, the only
additional space that is required will be O(w).

Since we are working mod 2, there is no scaling, so the only elementary row
operations are (1) Bi,j which adds row j to row i, and (2) Ci,j which swaps
rows i, j. Bi,j ,Ci,j are also represented as matrices, obtained by performing the
relevant row operation to the identity matrix. Notice that Ci,j = Bi,j ·Bj,i ·Bi,j .
Therefore, we consider just the Bi,j . Also notice that B−1i,j = Bi,j since we are
working mod 2. Finally, note that Bi,j corresponds to the column operation
which adds column i into column j. It will be convenient to let Bi,i to denote
the identity matrix.
OER will sample the Kilian randomizing matrices R from OKil by sampling

a sequence B(1), . . . ,B(τ) of row operations, and setting R =
∏τ
t=1 B(t) and

R−1 =
∏1
t=τ B(t). Note that each B matrix is specified by a pair (i, j) ∈ [w], i 6=

j. For each matrix Ri, we generate such a sequence. We will explain how to
sample the row operations shortly. First, we explain, given query access to the
B’s (or really, the (i, j) pairs), how to compute the obfuscated program stream.

We need to explain how to construct and stream BP′. To generate the book-
end vector s′ = s ·R0, start with s′ = s, write R0 as

∏τ
t=1 B(0,t), interpret each

of the B(0,t) as a column operation, and apply the appropriate column operation
to s′ in order from t = 1, . . . , τ . To generate the other bookend vector t′ = Rh ·t,
we start with t′ = t, write R−1h as

∏1
t=τ B(h,t), interpret each of the B(h,t) as a

row operation, and apply the appropriate row operation to t′. Both operations
clearly take only space O(w), in addition to the storage requirements for the B
matrices.

For the M′
i,b = R−1i−1Mi,bRi, more care is needed. First, we need a sub-

routine which, for input α, computes rα, the α-th row of Mi,b · Ri. This sub-
routine works almost exactly the same as our computation of s′ above. The β-th
entry of rα gives the entry (α, β) of Mi,b ·Ri. We can thus compute cβ , the β-th
column of Mi,b ·Ri, element by element.

To compute an entry (α, β) of M′
i,b, we first compute the corresponding

column cβ . We then compute c′β = R−1i−1 · cβ , analogous to how we computed t′.
Then we output entry α of c′β .

Now we explain how to sample the sequence B(1), . . . ,B(τ). We will use the
following lemma:

31

Lemma 15. There exist constants C0, C1 such that the following is true. For ev-
ery w, there exists a sequence of integers d1, . . . , dτ and distributions D1, . . . , Dτ ,
τ ≤ C0w, dt ≤ C1w, where each Dt is a distribution over a sequence of dt of the
B matrices. The guarantee is that if the sequences B(t,1), · · · ,B(t,dt) are sampled
from Dt (each sequence independently), then R =

∏τ
t=1

∏dt
i=1 B(t,i) is distributed

identically to a uniform random R mod 2, conditioned on R being invertible.

Proof. The proof follows ideas from Randall [Ran93].

The base case w = 1 is trivial: the only invertible matrix mod 2 is 1. So we
set τ = 0 in this case.

We now assume the lemma holds true for w− 1. Thus, there is a sequence of
C0(w − 1) distributions over sequences of C1(w − 1) row operations generating
a random (w− 1)× (w− 1) matrix R′. We will construct R from R′ as follows.

– First let

R0 =

(
1 0
0 R′

)
.

– Next, construct R1, which fills in the zeros of the first row with uniform
random bits:

R1 =

(
1 x
0 R′

)
=

(
1 x
0 I

)
·R0

for a random row vector x. Note that the matrix

(
1 x
0 I

)
can be constructed

from a sequence of w − 1 row operations. Also note that R1 is a uniformly
random matrix, conditioned on the first column being 10w−1 and the matrix
being invertible. This follows from the fact that, for matrices with the given
first column, having determinant 1 (the only invertible possibility mod 2) is
equivalent to having det(R0) = 1. Thus, a random invertible matrix with
the given first column is identical to choosing a random x, and then choosing
a random invertible R0.

– Next, sample a random non-zero column vector y ∈ {0, 1}w \ 0w. Let C be
any invertible matrix such that y = C · 10w−1. As explained by [Ran93],
C is actually a bijection between the set of invertible matrices whose first
column is y and the set of invertible matrices whose first column is 10w−1.

Thus, setting R2 = C ·R1 will result in a uniformly random matrix R2.

Note that C can be taken to be constructed from a sequence of w+ 2 of the
B matrices: 3 to swap the first column with some non-zero position of y,
and then w − 1 additional ones to fill in the remaining positions of y.

Thus, we can take dt ≤ w + 2, and we have that C0w = τ ≤ 2 + C0(w − 1). We
can take τ = 2w to solve the recurrence. This completes the proof. ut

Thus, we will use Lemma 15 to construct the distributions Dt, and then sample
the matrices B(t,i) from Dt. Lemma 15 shows that the R matrices, and hence
the view of the adversary, are indistinguishable.

32

Eliminating Space with PRFs. We now turn to the final construction, which
eliminates all but O(w) from the obfuscator’s space requirements.
OPRF will work exactly as OER, except that instead of sampling truly ran-

dom samples from Dt, it will do the following. For each R matrix, it will sample
a uniformly random key k for a pseudorandom function PRF. Then matrix se-
quence B(t,i) will be computed as Dt(·;PRF(k, t)). That is, it will use PRF(k, t)
as the random coins needed by Dt. In this way, it can generate the B(t,i) matrices
on the fly, without having to store them. Since each sequence of B matrices has
size at most O(w), it can generate the matrices space efficiently. By the security
of the PRF, the following is immediate:

Lemma 16. For any choice of Convert, assuming PRF is a secure PRF and
OKil is k-time VGB secure when using Convert, then OPRF is k-time VGB secure
when using Convert.

Thus, it suffices to analyze OKil for a given choice of algorithm Convert; then
we can instantiate OPRF with Convert, and be guaranteed that security will carry
over.

8.3 Instantiating Convert

Now we will discuss how we specifically instantiate Convert, constructing the
branching program BP for a circuit C that we plug into our framework.

To motivate our construction, we recall that Barrington’s theorem [Bar86]
plus Kilian randomization [Kil88] already provides some very mild security: given
the matrices corresponding to an evaluation on any chosen input x (which selects
one matrix from each matrix pair), the set of matrices information-theoretically
hides the entire program, save for the output of the program on x.

This one-time security, however, is clearly not sufficient for full security. For
starters, the adversary can perform mixed-input attacks, where it selects a single
matrix from each pair, but for multiple reads of the same input, it chooses
different matrices. This allows the attacker to treat the branching program as a
read-once branching program. It may be that, by evaluating on such inputs, the
adversary learns useful information about the program.

Another problem is linear-algebraic attacks. The rank of each matrix is pre-
served under Kilian randomization. Assuming all matrices are full-rank (which
is true of Barrington’s construction), the eigenvalues of Mi,0 ·M−1

i,1 are preserved
under Kilian randomization.

In branching program obfuscation starting from [GGH+13a], multilinear maps
are used to block these attacks. In our setting, we will instead use the storage
bounds on the attacker. First, we observe that Raz [Raz16] essentially shows
that linear-algebraic attacks are impossible if the attacker cannot even record
the matrices being streamed. While we do not know how to apply Raz’s result
to analyze our scheme, we conjecture that for appropriately chosen matrices, it
will be impossible to do linear-algebraic attacks.

The next main problem is input consistency. To accomplish this, we will do
the following. We will first run Barrington’s theorem to get a branching program

33

consisting of 5×5 matrices. We will then construct an “input consistency check”
branching program, and glue the two programs together.

As a starting point, we will construct a read-once matrix branching program
BP1 (one that reads each input bit exactly once) that outputs 0 on an all-zero
or all-one input string, and outputs 1 on all other inputs. Looking forward, we
will insert this program into the various reads of a single input bit: any honest
evaluation will cause the branching program to output 0, whereas an evaluation
that mixes different reads of this bit will cause the program to output 1.

Matrix Branching Program BP1:

– The width, the length, and the input length of the branching program
are all L.

– inp is the identity function, i.e. Mi,b reads xi as input.
– For i ∈ [L], Mi,0 = IL where IL is the L × L identity matrix. Mi,1 is

the L× L permutation matrix representing shifting by 1. Specifically,

Mi,1 =

(
0(L−1)×1 IL−1

1 01×(L−1)

)
.

– The left bookend is s =
(
1 0 0 · · · 0

)
and the right bookend is t =(

0 1 1 · · · 1
)T

.

We now briefly justify why BP1 works as desired. Let 0 ≤ w ≤ L be the
Hamming weight of the input x. Notice that when evaluating BP1(x), the num-
ber of Mi,1 matrices chosen is exactly w, and the rest of the chosen matrices
are all Mi,0, the identity matrix. Therefore, the product of all the M matrices
is equivalent to a permutation matrix representing shifting by w. When this
product is left-multiplied by s =

(
1 0 0 · · · 0

)
, we get a resulting row matrix s′

that is equivalent to s right-shifted by w. Notice that s′ has a single 1 at posi-
tion (w mod L) + 1. When multiplying s′ by the right bookend t , the result
will always be 1, unless (w mod L) + 1 = 1. The only w values that satisfy (w
mod L) + 1 = 1 are w = 0 and w = L, which correspond to x = 0L and x = 1L

respectively. Hence BP1 gives us the desired functionality.

Next up, we will expand BP1 to a read-once matrix branching program BP2

with the following functionality: for a set S of input bits, BP2 outputs 0 if and
only if all the input bits within S are identical (the input bits outside of S can
be arbitrary). This is accomplished by simply setting the matrices for the inputs
in S to be from BP1, while the matrices for all other inputs are just identity
matrices.

Next, we describe a simple method of taking the “AND” of two matrix
branching programs with the same length, input length and input function.
Given matrix branching programs BPA = (inp, {MA

i,b}i∈[h];b∈{0,1}, sA, tA) and

BPB = (inp, {MB
i,b}i∈[h];b∈{0,1}, sB , tB) with length h and input length `, we

34

construct a new brancing program BPC such that BPC = BPA(x) · BPB(x) for
all inputs x:

Constructing BPC = AND(BPA,BPB):

– The length, the input length, and the input function of BPC are also h,
` and inp, respectively. The width of BPC is wC = wA · wB , where wA
and wB are the widths of BPA and BPB , respectively.

– For all i ∈ [h] and b ∈ {0, 1}, compute MC
i,b = MA

i,b ⊗MB
i,b where ⊗

denotes the matrix tensor product (Kronecker product). Notice that the
widths of MA

i,b,M
B
i,b, and MC

i,b are wA, wB , and wAwB as desired.

– The left bookend is sC = sA⊗sB , and the right bookend is tC = tA⊗tB .

Using the mixed-product property of matrix tensor products, it should be
easy to verify that BPC(x) = BPA(x) · BPB(x) as desired.

Next, let BP∗ be a random read-once matrix branching program with input
length L and width m = poly(λ). We can sample such a branching program by
uniformly sampling each of its matrices and bookends.6

We will assume that the program computed by BP∗ gives a pseudorandom
function. This is, unfortunately not strictly possible: write x = (x1, x2) for two
contiguous chunks of input bits x1, x2. Then the matrix

(
BP∗(x1, x2)

)
x1∈X1,x2∈X2

for any sets X1, X2 will have rank at most m. By setting X1, X2 to be larger than
m, one can distinguish this matrix consisting of outputs of BP∗ from a uniformly
random one. The good news is that this attack requires a large amount of space,
namely m2. If the attacker’s space is limited to be somewhat less than m2, this
plausibly leads to a pseudorandom function. We leave justifying this conjecture
as an interesting open question.

Now consider the branching program BP3 = AND(BP2,BP∗). Notice that
BP3 has width nm and is equal to 0 on inputs x where ∀i, j ∈ S, xi = xj , and is
equal to BP∗(x) on all other x.

With these tools in hand, we are now ready to show how to enforce input
consistency on an existing matrix branching program.

Given a matrix branching program BP = (inp, {Mi,b}i∈[h];b∈{0,1}, s, t) with
length h, width w and input length `, we construct the branching program BP′

as follow:

Input Consistent Branching Program BP′:

– BP′ has the same length h, input length `, and input function inp. The
width is now w +mh where m = poly(λ).

6 When this is later put through the basic framework, we would need to generate these
random matrices using a PRF. This would allow us to reconstruct it at a later point.

35

– For all j ∈ [`], let Sj be the set of all reads of xj , i.e. Sj = {i|i ∈
[h], inp(i) = j}. Construct the branching program BP

(j)
2 using the BP2

construction with input length h and S = Sj . Overwrite the input func-

tion of BP
(j)
2 with inp so that it now takes x ∈ {0, 1}` as input. Notice

that BP
(j)
2 (x) = 0 if and only if all reads of the j-th bit of x are identical.

Sample a fresh random matrix branching program BP(j)
∗ with length

h, width m, input length ` and input function inp. Compute BP
(j)
3 =

AND(BP
(j)
2 ,BP(j)

∗). Denote the matrices in BP
(j)
3 as {M(j)

i,b }i∈[h];b∈{0,1},
and the bookends as s(j), t(j).

– For all i ∈ [h], and b ∈ {0, 1}, construct the matrix M′
i,b by adding all

the M
(j)
i,b ’s to the diagonal as M′

i,b = diag(Mi,b,M
(1)
i,b , . . . ,M

(`)
i,b). Notice

that the width of M′
i,b is w +

∑
j∈[`]m|Sj | = w +mh.

– The left bookend is now s′ =
(
s s(1) s(2) · · · s(`)

)
and the right bookend

is now t′ =
(
tT
(
t(1)
)T (

t(2)
)T · · · (t(`))T)T .

Notice that we have

BP′(x) = BP(x) +
∑
j∈[`]

BP
(j)
3 (x) = BP(x) +

∑
j∈[`]

BP
(j)
2 (x)BP(j)

∗ (x).

If all reads of the input x are consistent, then we have BP
(j)
2 (x) = 0 for all

j, and the program outputs the original output BP′(x) = BP(x).

If the reads of the input x are not consistent, then BP
(j)
2 (x) = 1 for some

j, and consequently BP(j)
∗ (x) will be added to the program output. By our con-

jecture that BP(j)
∗ (x) acts as a PRF to space-bounded attackers, we thus add

a pseudorandom value to BP(x), hiding its value. Thus, we presumably force
input consistency. BP′ will be the output of Convert, which we then plug into
our framework.

9 Candidate Construction 2

Now we present the second candidate construction from digital time-stamping
and standard-model obfuscation. The concept of a digital time-stamp was first
introduced by Haber and Stornetta [HS91], and since then we have seen various
instantiations of digital time-stamping systems. One construction of particular
interest is by Moran, Shaltiel and Ta-Shma [MST04], where they construct a
non-interactive time-stamping scheme in the bounded storage model. This will
be what we base our construction on.

Definition 14 (Non-Interactive Digital Time-stamp in the Bounded
Storage Model). Let λ, n be the security parameters. A non-interactive digital

36

time-stamp scheme in the bounded storage model with stamp length ` = O(n)
consists of a tuple of PPT algorithms Π = (Stream,Stamp,Ver) that each uses
up to O(n) memory bits:

– Stream(1λ, 1n)→ (s�, k) takes as input security parameters λ, n and outputs
a stream s� and a short sketch k of the stream.

– Stamp(s�, x) → σ takes as input the stream s� and an input x ∈ {0, 1}∗,
and outputs a stamp σ ∈ {0, 1}`.

– Ver(k, x, σ) → 0/1 takes as input the sketch k, an input x ∈ {0, 1}∗ and a
stamp σ and outputs a single bit 0 or 1.

We require correctness and security of the digital time-stamp scheme.

Definition 15 (Correctness). We require that for all x ∈ {0, 1}∗, we have

Pr
[
Ver(k, x, σ) = 1 : (s�, k)← Stream(1λ, 1n), σ ← Stamp(s�, x)

]
= 1.

For security, we ideally want that an adversary cannot produce a valid time-
stamp on an input x that the adversary did not run Stamp on. Instead, [MST04]
notice that an adversary with S(n) memory bits can store at most S(n)/` time-
stamps, and therefore define security as upper bounding the number of time-
stamps an adversary can produce. While not the same as the ideal goal, it at
least implies the adversary cannot produce arbitrary time-stamped messages.

Definition 16 (Security). We require that for all adversary A that uses up to
S(n) memory bits, we have

Pr

∀(x, σ) ∈M,Ver(k, x, σ) = 1

∣∣∣∣∣∣∣∣
(s�, k)← Stream(1λ)
M ← AStamp(·)(s�)

|M | > S(n)
`

∀(x1, σ1), (x2, σ2) ∈M,x1 6= x2

 ≤ negl(λ).

Now we show how we can use such a digital time-stamping scheme to con-
struct an online obfuscator.

Construction 4. Let λ, n be the security parameters. Let TSP be a digital
time-stamping scheme in the bounded storage model. Let VGB = (Obf,Eval) be
a classical VGB obfuscator for all circuits. We construct our online obfuscator
for the circuit class {Cλ} as follows:

– Obf(C): Run TSP.Stream(1λ, 1n) to stream s� and obtain the sketch k.
Consider the following program PC,k:

PC,k(x, σ) =

{
C(x) if TSP.Ver(k, x, σ) = 1

⊥ otherwise
.

Let P ← VGB.Obf(PC,k) be the standard-model VGB obfuscation of PC,k.
The obfuscated program is simply the stream s� followed by P.

37

– Eval((s�,P), x): To evaluate the obfuscated program, first compute σ ←
TSP.Stamp(s�, x) when s� is being streamed. Then the output is simply
VGB.Eval(P, (x, σ)).

Correctness is straightforward. One detail is that, using the time-stamping pro-
tocol of [MST04], the sketch k, and thus PC,k will be of size O(n) bits. Thus,
we need to use an obfuscator such that VGB.Obf only expands the program
by a constant factor. We conjecture that the constant-overhead construction
of [AJS17] will work here. Alternatively, one can use branching-program based
obfuscation directly from multilinear maps, for example [GGH+13a] and follow-
ups. [BCKP14] even gives evidence that these constructions may be VGB secure.
The difficulty is that the constructions blow up the input program by a polyno-
mial factor, and therefore cannot be written down. However, as they have the
form of a branching program, they can be streamed much the same way as we
stream Candidate Construction 1. We therefore conjecture that some instanti-
ation of VGB.Obf will lead to a secure online VGB obfuscator that can also be
streamed in low space. We leave proving or disproving this conjecture as an open
question.

References

[AJS17] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishabil-
ity obfuscation for turing machines: Constant overhead and amortization.
In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part II,
volume 10402 of LNCS, pages 252–279. Springer, Heidelberg, August 2017.

[AP20] Prabhanjan Ananth and Rolando L. La Placa. Secure software leasing,
2020.

[Bar86] David A. Mix Barrington. Bounded-width polynomial-size branching pro-
grams recognize exactly those languages in NC1. In 18th ACM STOC,
pages 1–5. ACM Press, May 1986.

[BCKP14] Nir Bitansky, Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On
virtual grey box obfuscation for general circuits. In Juan A. Garay and
Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS,
pages 108–125. Springer, Heidelberg, August 2014.

[BF14] Mihir Bellare and Georg Fuchsbauer. Policy-based signatures. In Hugo
Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 520–537.
Springer, Heidelberg, March 2014.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 1–18. Springer, Heidelberg, August 2001.

[BNNO11] Rikke Bendlin, Jesper Buus Nielsen, Peter Sebastian Nordholt, and Clau-
dio Orlandi. Lower and upper bounds for deniable public-key encryption.
In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume
7073 of LNCS, pages 125–142. Springer, Heidelberg, December 2011.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Defi-
nitions and challenges. In Yuval Ishai, editor, TCC 2011, volume 6597 of
LNCS, pages 253–273. Springer, Heidelberg, March 2011.

38

[CDNO97] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable
encryption. In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of
LNCS, pages 90–104. Springer, Heidelberg, August 1997.

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-
key encryption scheme. In Eli Biham, editor, EUROCRYPT 2003, volume
2656 of LNCS, pages 255–271. Springer, Heidelberg, May 2003.

[CPP20] Ran Canetti, Sunoo Park, and Oxana Poburinnaya. Fully deniable inter-
active encryption. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part I, volume 12170 of LNCS, pages 807–835. Springer,
Heidelberg, August 2020.

[DvW92] Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener. Authentica-
tion and authenticated key exchanges. Designs, Codes and Cryptography,
2(2):107–125, June 1992.

[Dzi06] Stefan Dziembowski. On forward-secure storage (extended abstract). In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 251–
270. Springer, Heidelberg, August 2006.

[GGH+13a] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sa-
hai, and Brent Waters. Candidate indistinguishability obfuscation and
functional encryption for all circuits. In 54th FOCS, pages 40–49. IEEE
Computer Society Press, October 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters.
Attribute-based encryption for circuits from multilinear maps. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043
of LNCS, pages 479–499. Springer, Heidelberg, August 2013.

[GGHW14] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the im-
plausibility of differing-inputs obfuscation and extractable witness encryp-
tion with auxiliary input. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 518–535. Springer,
Heidelberg, August 2014.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness en-
cryption and its applications. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, 45th ACM STOC, pages 467–476. ACM Press, June
2013.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfusca-
tion. In Chris Umans, editor, 58th FOCS, pages 612–621. IEEE Computer
Society Press, October 2017.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryp-
tion from learning with errors: Conceptually-simpler, asymptotically-
faster, attribute-based. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75–92. Springer,
Heidelberg, August 2013.

[GZ19] Jiaxin Guan and Mark Zhandary. Simple schemes in the bounded storage
model. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,
Part III, volume 11478 of LNCS, pages 500–524. Springer, Heidelberg, May
2019.

[HS91] Stuart Haber and W. Scott Stornetta. How to time-stamp a digital docu-
ment. In Alfred J. Menezes and Scott A. Vanstone, editors, CRYPTO’90,
volume 537 of LNCS, pages 437–455. Springer, Heidelberg, August 1991.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM
STOC, pages 20–31. ACM Press, May 1988.

39

[LSS19] Esteban Landerreche, Marc Stevens, and Christian Schaffner. Non-
interactive cryptographic timestamping based on verifiable delay
functions. Cryptology ePrint Archive, Report 2019/197, 2019.
https://eprint.iacr.org/2019/197.

[Mau92] Ueli M. Maurer. Conditionally-perfect secrecy and a provably-secure ran-
domized cipher. Journal of Cryptology, 5(1):53–66, January 1992.

[MST04] Tal Moran, Ronen Shaltiel, and Amnon Ta-Shma. Non-interactive times-
tamping in the bounded storage model. In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 460–476. Springer, Heidel-
berg, August 2004.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology
ePrint Archive, Report 2010/556, 2010. http://eprint.iacr.org/2010/556.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their ap-
plications. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM
STOC, pages 187–196. ACM Press, May 2008.

[Ran93] Dana Randall. Efficient generation of random nonsingular matrices. Ran-
dom Structures & Algorithms, 4, 01 1993.

[Raz16] Ran Raz. Fast learning requires good memory: A time-space lower bound
for parity learning. In Irit Dinur, editor, 57th FOCS, pages 266–275. IEEE
Computer Society Press, October 2016.

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In
Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages
457–473. Springer, Heidelberg, May 2005.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare
programs under LWE. In Chris Umans, editor, 58th FOCS, pages 600–
611. IEEE Computer Society Press, October 2017.

40

