
Efficient Verification of Optimized Code

Correct High-speed X25519

Marc Schoolderman1,2, Jonathan Moerman1,
Sjaak Smetsers1, and Marko van Eekelen1,2

1 Radboud University, Nijmegen, The Netherlands
{m.schoolderman, jmoerman, s.smetsers, marko}@science.ru.nl

2 Open University of the Netherlands, Heerlen, The Netherlands
{marc.schoolderman, marko.vaneekelen}@ou.nl

Abstract. Code that is highly optimized poses a problem for program-
level verification: programmers can employ various clever tricks that are
non-trivial to reason about. For cryptography on low-power devices, it is
nonetheless crucial that implementations be functionally correct, secure,
and efficient. These are usually crafted in hand-optimized machine code
that eschew conventional control flow as much as possible.
We have formally verified such code: a library which implements elliptic
curve cryptography on 8-bit AVR microcontrollers. The chosen imple-
mentation is the most efficient currently known for this microarchitec-
ture. It consists of over 3000 lines of assembly instructions.
Building on earlier work, we use the Why3 platform to model the code
and prove verification conditions, using automated provers.
We expect the approach to be re-usable and adaptable, and it allows
for validation. Furthermore, an error in the original implementation was
found and corrected, at the same time reducing its memory footprint.
This shows that practical verification of cutting-edge code is not only
possible, but can in fact add to its efficiency—and is clearly necessary.

1 Introduction

Although formal verification is considered to give the highest level of assurance in
security-critical software [21], it is seldom applied. Even if a verification technique
is expressive enough to reason about a given problem domain, for its use to make
economic sense, it must be usable by programmers proficient in that domain, and
not require an excessive amount of time. These criteria are hard to meet.

Cryptographic implementations are always security-critical: subtle bugs can
have disastrous consequences [9], and the security of a system is only as strong
as its weakest link. As Chen et al. [10] note, the desire to avoid risk in crypto-
graphic implementations can hamper adoption of new and more efficient crypto
libraries, simply because the correctness of these implementations cannot be
properly demonstrated. As they also note, a full audit in addition to testing
can be extremely expensive, and impractical for high-performance implementa-
tions due to extensive use of clever optimizations. In this context the case of



2 M.R. Schoolderman et al.

applying formal verification looks very reasonable, and indeed this is actively
pursued [7, 10].

However, this poses many important challenges. First, at what level should
verification occur? Compilers have been known to be a source of concern, as
they can cause subtle problems [22]. Second, understanding the formal verifica-
tion process used can be a daunting task: powerful tools such as the Verification
Software Toolchain [1] have a substantial learning curve. If instead an ad-hoc
method is used, the correctness of the method itself needs to be clearly estab-
lished for it to be trustworthy. Lastly, cryptography by its nature involves the
exploitation of carefully engineered mathematics, which a formal method must
be able to state and work with, which adds to the effort required in showing
correctness of implementations.

To rely on the verification of any code—cryptographic or otherwise—its spec-
ification must be validated as well. This demands a formal specification that is
succinct, and comprehensible by a domain expert. Furthermore, we do not want
to decide between efficiency and correctness: both are important, and in fact ver-
ification ideally assists in making implementations more efficient. Finally, for a
verification technique to be practical, it should be re-usable for other verification
tasks in the future, and not simply a one-shot operation.

In this paper, we present such a technique, by applying the existing Why3
verification platform [17] to prove the functional correctness of a highly optimized
library used for X25519 elliptic curve cryptography on 8-bit microcontrollers [14].
We arrive at a succinct specification, and we expect our technique to be capable
of verifying similar code for more powerful processors with less effort.

1.1 Contributions

We provide a corrected version of an X25519 implementation optimized for the
8-bit AVR architecture. Our modifications, described in Section 6, improve upon
the fastest implementation currently known for this challenging architecture [14].

We demonstrate functional correctness and memory safety of this imple-
mentation by providing a machine-checked proof using the Why3 verification
platform [17]. Concretely, we prove that the code calculates a scalar multipli-
cation on Curve25519 by applying a double-and-add scheme—the Montgomery
ladder—using Montgomery’s x-coordinate-only formulas [27].

We also provide a formal Why3 model of a subset of the AVR instruction set,
that has been carefully constructed for easy validation with respect to the official
specification [2]. This model can be re-used for other purposes, or modified to
fit a different verification purpose without loss of its validity.

We describe our approach in using Why3 for this verification task; this is
an extension of earlier work [30], and has been demonstrated to have a low
barrier to understanding [31]. This approach should work similarly well for other
architectures such as ARM or RISC-V. The overall methodology is not specific
to the domain of cryptographic implementations.



Correct High-speed X25519 3

1.2 Availability of Results

The code belonging to this paper is available online in an open repository.3 To
check the proofs, Why3 version 0.88.3 is required.4 For discharging the verifica-
tion conditions the provers CVC3 (2.4.1), CVC4 (1.4 and 1.6), Z3 (4.6.0), and
E-prover (2.0) were used.

2 Elliptic Curve Cryptography on Small Devices

X25519 is a public key cryptography scheme built around a Diffie-Hellman key
exchange [5, 24]. ‘Original’ Diffie-Hellman obtains its security through the ob-
servation that, given a primitive root g for a prime p, it is (in general) hard
to compute gxy from gx and gy (mod p) without knowing the integers x or
y [12]. For proper security, a sufficiently large prime modulus p is needed—2048
bits is a recommended minimum [33]. Performing the required exponentiation
and modular reduction steps on such large integers is hard to do efficiently on
restricted devices [20]. Also, the viability of side-channel attacks prescribes var-
ious precautions on all code that computes using secret data, to ensure that an
implementation does not inadvertently leak information [18].

2.1 Curve25519

Using elliptic curves eases some of these issues [5]. Given a field F, and coefficients
A,B ∈ F, a Montgomery curve over F is defined as all the points x, y ∈ F that
satisfy the formula:

By2 = x3 + Ax2 + x

To this set of points is added a ‘point at infinity’ denoted O to form an additive
group. When P,Q are distinct points on the curve, P +Q is defined as the third
point on the curve that intersects the straight line passing through P and Q,
reflected around the x-axis. For P + P , the tangent of the curve at point P is
used to find this point. The point at infinity O acts as the neutral element.

The separate cases of point adding and doubling, can be used to compute
a scalar multiple n · P , or P added to itself n times, using a double-and-add
scheme. Again a Diffie-Hellman assumption [23] applies: if F is a finite field of
prime order, it is assumed to be hard to compute nm · P from n · P and m · P .

X25519 performs a scalar multiplication on Curve25519: a Montgomery curve
over the finite field Fp where p = 2255 − 19, and coefficients A = 486662, B = 1.
The choice of p facilitates efficient modular reductions. Furthermore, Mont-
gomery [27] gives efficient formulas for both doubling and differential addition
of points, which only requires the x-coordinates of points. These formulas de-
rive their efficiency by representing an x-coordinate by the ratio X : Z, with
x ≡ X · Z−1 mod p.

3 https://doi.org/10.5281/zenodo.4640377
4 Later versions do not yet support our approach—see Section 8



4 M.R. Schoolderman et al.

The scalar multiple n ·P , finally, is computed using the Montgomery ladder.
This can be mathematically described by the following formula:

ladder n P =


(O, P ) if n = 0

(2R0, R1 + R0) if n > 0 and even

(R1 + R0, 2R1) if n > 0 and odd

where in the last two cases (R0, R1) = ladder bn/2c P

It can be shown that for every n ≥ 0, ladder n P = (n · P, (n + 1)P ), but
instead of computing n · P using a naive double-and-add scheme, this definition
performs the same arithmetic operations in both recursive cases — the only
difference between the recursive cases is a swap of the arguments. This enables
a constant-time implementation [6].

2.2 X25519 on AVR

The AVR microarchitecture is an 8-bit RISC architecture [2], and so we can
only represent an element x ∈ Fp by splitting it into 32 bytes. Since the AVR
only has 32 registers (of which some are needed as index registers), no single
element x ∈ Fp can be loaded from memory entirely. Therefore, judicious register
allocation is of prime concern for an efficient implementation. Therefore, all of
the primitives operations in Fp are rendered in assembly code in [14]. These
comprise the following:

– A 256→ 256-bit routine subtracting 2255− 19 from its input (with borrow).
– A 256 × 256 → 512-bit multiplication routine, constructed by recursive ap-

plication of Karatsuba’s algorithm out of smaller 32× 32→ 64-bit multipli-
cation routines.

– A 256→ 512-bit dedicated squaring routine of similar construction
– A 512 → 256-bit modular reduction function, which given a m ∈ Fp com-

putes m̂ so that m̂ ≡ m (mod p) and m̂ < 2256, used to reduce the results
of the previous two functions.

– 256 × 256 → 256-bit modular addition/subtraction routines which perform
a multi-precision addition/subtraction with a built-in modular reduction.

– A specialized 256→ 256-bit routine for efficient modular multiplication with
the constant 121666.

Other operations are rendered in C code: these are either very simple, or consist
mostly of function calls to these primitive operations. Examples of such func-
tions would be a 256 × 256 → 256-bit modular multiplication, a function that
canonicalizes an element x ∈ Fp by repeated subtraction of p, and a function
that computes x−1 (mod p) using Fermat’s little theorem.

The Montgomery ladder is implemented in C iteratively as illustrated by
Algorithm 1. Essentially this computes the scalar multiple using the same double-
and-add scheme as the Ladder function defined above, starting at the least
significant bit of its input, and swapping the roles of (X1 :Z1) and (X2 :Z2) as



Correct High-speed X25519 5

needed. We will show in Section 5.1 that the informal specification given here
is not entirely correct. The Ladderstep procedure shown in Algorithm 1 is
an optimized implementation of Montgomery’s formulas [27] for doubling and
adding points. Note that the literature usually only presents the Montgomery
ladder in this iterated version, often—confusingly—with minor variations to the
Ladderstep procedure [5,24]. We find this optimized form of the Montgomery
ladder hard to understand, making its full formal verification desirable.

Algorithm 1 Montgomery ladder for scalar multiplication

Require: A 255-bit scalar n, and a x-coordinate xP of a point P
Ensure: Result (X :Z) satisfies xn·P ≡ X · Z−1

(X1 :Z1)← (1 :0); (X2 :Z2)← (xP :1); prev ← 0; j ← 6
for i← 31 downto 0 do

while j ≥ 0 do
bit← bit 8i + j of n
swap← bit⊕ prev; prev ← bit
if swap then (X1 :Z1, X2 :Z2)← (X2 :Z2, X1 :Z1) . by conditional moves
Ladderstep(xP , X1 : Z1, X2 :Z2)
j ← j − 1

end while
j ← 7

end for
return (X1 :Z1)

procedure Ladderstep
T1 ← X2 + Z2

X2 ← X2 − Z2

Z2 ← X1 + Z1

X1 ← X1 − Z1

T1 ← T1 ·X1

X2 ← X2 · Z2

Z2 ← (Z2)2

X1 ← (X1)2

T2 ← Z2 −X1

Z1 ← T2 · 121666
Z1 ← Z1 + X1

Z1 ← T2 · Z1

X1 ← Z2 ·X1

Z2 ← T1 −X2

Z2 ← (Z2)2

Z2 ← Z2 · xP

X2 ← T1 + X2

X2 ← (X2)2

end procedure

3 Why3 Verification Platform

Why3 [17] is a verification platform for deductive program verification. It com-
prises the typed programming language WhyML (which can be annotated with
functional contracts and assertions), as well as libraries for reasoning about spe-
cific types of objects (such as arrays, bit-vectors, bounded and unbounded in-
tegers), which the user can also extend. A weakest-precondition calculus gen-
erates the correctness condition for an annotated program, which Why3 then



6 M.R. Schoolderman et al.

transforms into the input language for various automated or interactive provers.
Besides assertions and contracts, WhyML also provides other means of instru-
menting programs to aid verification. We highlight two:

Ghost code is guaranteed by the type system to not have any effect on the
actual execution on the code, but can be used to compute witnesses for use
in verification goals.

Abstract blocks can be used to summarize multiple operations with a single
functional contract.

An advantage of Why3’s reliance on automatic provers is that verification
does not need to be the last step in a waterfall-like process. When a program (or
specification) is changed, most of the verification conditions that held previously
can usually be solved again at the press of a button, even when the change affects
them. Similarly, if a prover can solve one instance of a problem, it can usually—
given enough time—handle similar or larger instances, allowing for proofs to be
transplanted. For instance, we recycled parts of the proofs of [30]. Since Why3
uses multiple provers in concert, we are not restricted by the limitations of one
particular (version of) a prover. In this sense, proofs seem robust.

On the other hand, too much irrelevant information can hinder automatic
provers. Sometimes an assertion frustrates a proof that is completely unrelated
to it. In this sense, proofs can also be brittle. Thus, for large verification tasks
keeping the proof context small is vitally important. We used Why3’s module
system, ghost code and abstract blocks to keep the proof context manageable.

4 Correctness of Low-level Code

In the implementation we are considering, all primitives for implementing the
field arithmetic needed for computing in Fp are implemented in assembly code.
With the exception of the multiplication routine, this code is free of conditional
branches. In the multiplication routine, branches are used, but in every case,
both branches take the same amount of clock cycles and perform the same se-
quence of memory accesses. This should prevent a side-channel attack such as
described by Genkin et al. [18], which exploits observed timing differences. Our
formal verification effort therefore only focuses on the functional correctness and
memory-safety of these routines.

Since 256-bit operations are not natively supported on any CPU, an X25519
implementation usually chooses a representation where an element x ∈ Fp is
represented in n limbs in radix 2w; that is, x =

∑n
i=0 2iwx[i] for the limbs

x[0], x[1], . . . x[n−1]. If these limbs can contain more than w bits of information,
this representation is called unpacked, and any carry that occurs during com-
putation does not need to be propagated to the next limb immediately. An
unpacked representation with few limbs is more efficient, and is thought to be
more convenient for verification [10, 35]. On the implementation for the AVR a
packed representation of 32 limbs in radix 28 is used, and every part of the code
is forced to handle carry-propagation.



Correct High-speed X25519 7

Globally, our approach follows that of [30]; we specify the representation of a
256-bit multi-precision integer in terms of an 8-bit memory model, model every
AVR mnemonic that is needed as a WhyML function, and mechanically translate
the assembly code to this model for verification with Why3.

4.1 A Re-usable Validated AVR Machine Model

For modeling the processor state, we use the concept of an 8-bit address space,
which is a Why3 map of addresses to integers, suitably restricted:

type address_space = { mutable data: map int int }

invariant { forall i. 0 <= self.data[i] < 256 }

The AVR register file, data segment, and stack are all modeled as separate ad-
dress spaces. This of course means that our model is an underspecification, but
most assembly code conforms to this simplified model. Memory size restrictions
are not part of the definition of an address space, as it is more convenient to ex-
press them as pre-conditions for the AVR instructions that manipulate memory.
To model the carry and ‘bit transfer’ CPU flags, we use the equivalent of a ref

bool; the value of all other flags are unspecified. We also use ghost registers [30]
to track register updates inside abstract blocks using Why3’s type system.

Since we needed to model many AVR instructions, we first implemented (in
WhyML) a primitive instruction set of common operations on these address
spaces, such as reading and writing 8-bit and 16-bit values represented either by
their integer value, or as bit-vectors. These operations are verified for consistency
with the 8-bit address space. This instruction set is then used to implement all
required AVR instructions following the official specification [2].

For example, for the SUBI instruction, the AVR specification tells us that a
constant K will be subtracted from its destination register, and the carry flag
will be set to r7 ·K7+K7 ·r′7+r′7 ·r7 (in boolean arithmetic), where x7 denotes the
most significant bit of an 8-bit value x, and r, r′ are the previous and updated
values of the destination register, respectively. In terms of our primitives, we can
state this as:

let subi (rd: register) (k: int)

requires { 0 <= k <= 255 }

= let rdv = read_byte reg rd in

let res = clip (rdv - k) in

set_byte reg rd res;

cf.value <- (not ar_nth rdv 7 && ar_nth k 7 ||

ar_nth k 7 && ar_nth res 7 ||

ar_nth res 7 && not ar_nth rdv 7)

While this follows the official specification closely, it is not very useful for verify-
ing programs. Capturing the common notion that the carry flag gets set if and
only if r < K can be done by adding a Why3 contract for subi:



8 M.R. Schoolderman et al.

ensures { reg = old reg[rd <- mod (old (reg[rd] - k)) 256] }

ensures { ?cf = -div (old (reg[rd] - k)) 256 }

That is, the register file gets updated with the destination register receiving
(r −K) mod 256, and the numeric value of the carry flag will be −b r−K256 c.

Why3 allows us to verify that this contract is satisfied by the AVR specifi-
cation.5 Also, if a different contract were discovered to be more useful, it could
easily be replaced while maintaining validity of the model.

Extensions to the model Some of the code verified featured a limited form of
branching. We modeled this using a WhyML function that throws an exception
if the branch is taken; this exception is then handled at the appropriate location.

In two locations, data on the stack was allocated for use with memory oper-
ations, which our simplified model did not support. We resolved this by adding
the requirement that the stack pointer does not alias with any of the ordinary
data inputs, and checking manually whether the code conforms to the conven-
tions for accessing memory on the stack. As we will explain in Section 6.2, this
turned out not to be the case, necessitating modifications.

4.2 Proving the correctness of AVR assembly code

For all of the assembly routines, we of course want to show functional correct-
ness. However, since these routines must interface with C code, we also have to
verify that they are well-behaved. This means proving that they only modify
the memory that they are allowed to (i.e. temporary data on the stack or that
passed by the caller as a pointer), that they leave the stack in a consistent state,
and that they adhere to the C calling convention for the AVR [19].

Note that there are two versions of the 256-bit multiplication routines in [14]:
one which uses function calls to the respective 128-bit operation, and one which
inlines everything for a very minor increase in speed. We consider the former to
be the more relevant one, and so have chosen that as our verification target.

Quantitative verification results are shown in Table 1. The vast majority
of the goals were discharged by CVC3 and CVC4. The number of annotations
required gives a rough measure of the manual effort. This is a subjective number
since not every annotation represents the same amount of effort. As a point of
reference, verifying fe25519 mul121666 was measured to take 16 hours of work.

Verification by partitioning into blocks The 256 × 256-bit multiplication
is constructed by using calls to a 128 × 128-bit multiplication routine using
Karatsuba’s method. The 128×128-bit multiplication routine itself, is comprised
of three in-line applications of a 64× 64-bit Karatsuba multiplication, the basic
version of which was verified earlier in [30]. Some parts of this earlier proof could
in fact simply be re-used.

5 For SUBI, this also revealed a mistake in online documentation.



Correct High-speed X25519 9

function instructions user annotations generated goals CPU time

bigint mul256:mul128 1078 122 300 1504.6s
bigint mul256 693 85 506 2000.1s
bigint square256:sqr128 672 26 135 363.8s
bigint square256 493 38 359 1796.6s
bigint subp 103 12 84 184.0s
fe25519 red 305 41 182 155.3s
fe25519 add 242 52 209 156.4s
fe25519 sub 242 53 212 119.6s
fe25519 mul121666 138 56 149 393.0s

Table 1. Results of verifying the X25519 field arithmetic in AVR assembly

For the 128-bit and 256-bit larger versions, the proofs followed a similar ap-
proach, with one notable change. For the smaller Karatsuba routines, it sufficed
to identify 7 ‘blocks’ of code, and state their operations in contextual terms—i.e.,
specifying which part of Karatsuba’s algorithm each block performed. For more
than one level of Karatsuba, this becomes unwieldy. While we kept the identi-
fied blocks the same, we found it much more useful—even for routines verified
in [30]—to specify their effects in purely local terms—i.e, only specifying what
its effect is in terms of its immediately preceding state. For some blocks, this
simplifies the specification, and actually makes the work for automatic provers
slightly easier. In cases where this contextual information is required, it can al-
ways be re-asserted later. The only drawback we have found to this method was
that on assembly code of this size, it is easy to lose sight of what one is trying
to achieve without reliable contextual information.

The 256-bit squaring routine is similarly constructed out of calls to a 128-
bit squaring routine; both compute the square of A = 2wAh + Al as A2 =
(2w + 1)(2wA2

h +A2
l )−2w(Al−Ah)2, which we are able to verify by partitioning

these routines into 5 blocks.

Instrumenting programs with ghost code The routines that perform mod-
ular arithmetic are very different in style from the multiplication routines. In
the latter, we can apply a decomposition into a small number of large blocks,
which allows SMT solvers to do most of the work. The reduction, addition and
subtraction routines, by contrast, are highly repetitive—essentially the same
read-modify-write sequence repeated several times.

In this case, it was more logical to use a bottom-up approach, summarizing
the effects of these short sequences using a WhyML function (essentially the
same idea as using an assembly macro), which is then iterated. We discovered,
however, that after a few macro applications, SMT solvers were unable to prove
memory safety or absence of aliasing. The culprit here seemed to be that the
macros accessed memory via LD+/ST+ instructions (which perform a load/store,
followed by a pointer increment). Perhaps unsurprisingly, it becomes increasingly
hard for SMT solvers to reason about out what address an index register is
referring to after many modifications have been applied to it.



10 M.R. Schoolderman et al.

In our routines (and we suspect, commonly in similar cases) such addresses
are however perfectly obvious, and can be statically deduced. We therefore in-
strumented the code with ghost arguments, which supply this missing informa-
tion. As a simple example of this technique (which was also used in the 256×256-
bit multiplication routine), we can make the AVR LD+ instruction (modeled as
the WhyML function AVRint.ld inc) more amenable to verification by instru-
menting it with ghost arguments:

let ld_inc’ (dst src: register) (ghost addr: int)

... (* the specification of AVRint.ld_inc *)

requires { uint 2 reg src = addr }

= AVRint.ld_inc dst src

On the surface, this just appears to add a needless pre-condition; however,
once this correlation between addr and uint 2 reg src is established, SMT
solvers can use this information to easily deduce what address the index register
used is referring to.

5 Correctness of the C Code

The X25519 implementation we verify also consists of around 300 lines of C code,
which interfaces directly with the assembly routines verified in Section 4. Many
routines are short and simple, and verification for them is a straight-forward
application of Why3.

To ensure that the C code and the assembly code are both verified with re-
spect to the same logical foundations, we translate C by hand into the WhyML
primitives from Section 4.1, that underpin the AVR instruction set model. How-
ever, since a C compiler handles allocation of global and local variables, using
one address space to model memory would be impractical and incorrect, as
it would force the model to make assumptions about the memory layout. So
instead, every array object is modeled as residing in its own address space. An
added benefit of this is that Why3’s type system will enforce that arguments
do not alias. The minor drawback is that some functions can be called to per-
form in-place updates, which does requires aliasing. These functions have to be
modeled and verified for both cases separately.

For the assembly routines that interface with the C code, abstract specifica-
tions are added by duplicating the contracts of the verified assembly routines,
and removing the pre- and post-conditions related to the C calling conventions.

The verification results are listed in Table 2. Among the field operations,
it is notable that fe25519 unpack and fe25519 invert generate more goals.
The former is due to its (RFC-required) bit-masking of its input, which we
specify as a reduction mod 2255. We suspect our proof of this function can be
further optimized, but decided against spending time on this. Note that the
field arithmetic code actually operates on a packed representation, so unpack

and pack functions are otherwise simply copy-operations.



Correct High-speed X25519 11

The fe25519 invert function computes x2255−21 (mod p) using sequences
of modular square-and-multiply steps. This makes it very similar to repetitive
assembly code, and it is treated the same way: we instrument the code with
ghost arguments in a highly regular fashion which specify the actual value of
intermediate results—which interestingly was more or less a formalization of the
inline comments provided by the original authors. Also, abstract blocks helped
keep the number of verification conditions small.

For the verification of the last three routines in Table 2, verification was
‘simply’ an effort of finding the correct invariants and assertions that guided
the automatic provers to the desired conclusion within an acceptable amount
of CPU time. To achieve the final conclusion presented in Section 5.2, it is
required to know that 2255−19 is a prime number; we took the pragmatic route
and stated this as an axiom in Why3. To see that x2255−21 is the multiplicative
inverse of x also requires Fermat’s little theorem, which we instead proved inside
Why3 using ghost code that traces a direct proof using modular arithmetic—
showing that for any integer a not divisible by a prime p, it is the case that
ap−1

∏p−1
i=1 i ≡

∏p−1
i=1 a · i ≡

∏p−1
i=1 i, and therefore ap−1 ≡ 1.

function lines user annotations generated goals CPU time

fe25519 setzero 3 2 7 0.4s
fe25519 setone 4 2 7 0.4s
fe25519 neg 3 0 3 0.2s
fe25519 cmov 5 3 10 36.5s
fe25519 freeze 4 2 9 4.7s
fe25519 unpack 4 8 30 41.0s
fe25519 pack 5 2 11 1.6s
fe25519 mul 3 0 1 0.2s
fe25519 square 3 0 1 0.1s
fe25519 invert 51 49 306 557.3s
work cswap 8 0 13 3.8s
ladderstep 26 22 80 202.8s
mladder 26 22 140 345.1s
crypto scalar mult curve25519 13 27 57 74.2s

Table 2. Results of verifying the X25519 C routines

5.1 Verifying the Montgomery Ladder

Montgomery [27] provides formulas for doubling and differential addition of
points on an elliptic curve, where only the x-coordinates of these points on the
curve are used. As mentioned in Section 2.1, these x-coordinates are represented
as ratios (X :Z), where x ≡ X · Z−1 mod p. The point at infinity O, which is
not on the curve, is represented by (X :Z) with X 6= 0, Z = 0. The degenerate
case (0 :0) does not represent anything.



12 M.R. Schoolderman et al.

For Curve25519, Montgomery’s formulas are proven correct for all cases by
Bernstein [5], and look as follows:

X2n = (X2
n − Z2

n)2 Xm+n = 4Zm−n(XmXn − ZmZn)2

Z2n = 4XnZn(X2
n + 486662XnZn + Z2

n) Zm+n = 4Xm−n(XmZn − ZmXn)2

If the x-coordinate of the point nP is the ratio (Xn : Zn), then (X2n : Z2n) is
the ratio for the point (2n)P . Likewise, from xnP and xmP , we can compute
x(m+n)P provided we also know x(m−n)P .

We have proven that the ladderstep procedure (see Algorithm 1), given
values (x,Xn :Zn, Xm :Zm), computes (X2n :Z2n, Xm+n :Zm+n) as specified by
these point doubling and addition formulas, with Xm−n = x, and Zm−n = 1.

To verify the function mladder (Algorithm 1), we define a formal specification
in Why3 of the Montgomery ladder as presented in Section 2.1, but using the
above formulas for doubling and addition. We verify that mladder adheres to this
specification: if for some 255-bit integer s and x-coordinate xP , ladder s (xP :1)
returns (X :Z) as the first component of its result, mladder computes (X̃ : Z̃)
such that X̃ ≡ X and Z̃ ≡ Z (mod p).

Importantly, for this result to hold, we found it necessary to require that s
is even, and has its most significant bit set. The former is necessary, as an odd
s would leave the results of Algorithm 1 in a state where a final swap is still
needed. Having bit 254 in s set is necessary, as it prevents Algorithm 1 from
performing the doubling formula on the ‘point at infinity’, which would make it
impossible to demonstrate the strict correspondence.

These requirements on s are however taken care of by the existence of the
‘clamping’ operation in X25519, which requires s ∈ {2254 + 8k : 0 ≤ k < 2251}.
Having s a multiple of 8 is crucial for the mathematical security of X25519 [24].
Setting the high bit is done for entirely different reasons: to prevent programmers
from applying a non-constant-time optimization that reveals information about
the scalar s [23]. Our formal proof was greatly helped by this choice, perhaps
providing more justification for it.

5.2 A Succinct Specification of X25519

The function crypto scalar mult is our ultimate verification goal. We show the
most important part of the specification proven in Why3 here:

val crypto_scalarmult_curve25519 (r s p: address_space)

ensures { uint 32 r = mod (uint 32 r) p25519 }

ensures { let xp = mod (uint 32 p) (pow2 255) in

let mult = scale (clamp (uint 32 s)) xp in

if mult ~ infty then

uint 32 r === 0

else

uint 32 r ==~ mult }



Correct High-speed X25519 13

Informally, the first post-condition states that the result is in canonical form, i.e.
fully reduced. The second post-condition states that, after the high bit of the x-
coordinate of P is masked (as per RFC7748 [24]), a ratio (X :Z) representing the
x-coordinate of [s] · P is computed using repeated application of Montgomery’s
formulas (where [s] is the clamped value of s). If [s] · P happens to be O, the
function writes a zero result; otherwise the result will be equivalent to x[s]·P .

Note that is not possible to distinguish the result [s] · P = O and x[s]P = 0.
However, for every point P whose y-coordinate is not-zero, X25519 also does not
distinguish P and −P ; this specification elucidates that O and the point at the
origin (x = 0, y = 0) are similarly unified.

6 Improved X25519 for AVR

Several small improvements were observed, which we confirmed by a formal
proof. Two instructions in the 128 × 128-bit multiplication assembly routine
could be removed with no impact on the formal proof, confirming they were
unnecessary. In fe25519 freeze, the routine bigint subp is called twice to fully
reduce an integer mod 2255 − 19. We were able to verify that one call suffices,
since in the current implementation it is always applied to a result that is already
partially reduced.

6.1 Memory Safety

In [30], several version of the Karatsuba implementations could compute in-
correct results if the memory locations used for storing input and output were
aliased, so we were naturally curious about aliasing in the X25519 implementa-
tion. We found that the prohibition on aliasing also applies to the 128-bit and
256-bit multiplication/squaring routines,6 and the fe25519 red modular reduc-
tion function. The modular addition/subtraction routines and fe25519 mul121666

were verified to be safe when used for in-place update operations.
The C code calls all these functions accordingly, so aliasing never becomes

an issue. We did add a restrict keyword to the function prototypes for which
argument aliasing results in undefined behavior.

6.2 Interrupt Safety

The 256-bit multiplication and squaring routines use function calls to the 128-bit
versions to compute their results, which expect their arguments to be in memory.
One of these calls multiplies an intermediate result and so has to write this back
to memory using the stack.

However, the original code did this by writing the data below the stack
pointer. This means that if the microcontroller is interrupted importunely (e.g.

6 As a peculiar exception: the 128-bit squaring routine will function properly when
reading from address i and writing to address i + 8



14 M.R. Schoolderman et al.

due to a timer or I/O event), and an associated interrupt service routine needs
this stack space for local variables, this data is clobbered. The problem can be
demonstrated by forcing an interrupt.

This problem was discovered during the modeling phase of verification, as
our initial AVR model needed an extension to support direct access to the stack
pointer, forcing us to consider the conditions under which this is allowed. We
replaced the faulty code with code that moves the stack pointer using an id-
iomatic sequence [3], which we added to our model. Due to our formal proof, we
were also able to see that in the 256×256-bit multiplication some of the memory
reserved for the final output was available for use as a temporary, reducing the
amount of total stack space required by 32 bytes.

7 Related Work

Verified cryptography has gained much interest. In [35], a verified library of
elliptic curves written in F* is presented. These provide the foundation for the
C implementation of X25519 in the HACL* library [34]: an implementation is
created in a intermediate language Low*, verified against the F* specifications,
and then mechanically translated into C. EverCrypt [29] includes a similar C
implementation, as well as an efficient implementation in x86-64 assembly code,
which is similarly generated, but using the Vale [8] tool. Vale is essentially a high-
level assembly language with support for deductive reasoning, with a focus on
cryptographic applications. A similar X25519 implementation, now included in
BoringSSL [15], uses Coq [11] to generate efficient C code. All these approaches
involve generation of new implementations.

Efforts to verify existing full implementations also exist. In [13], an ECDSA
implementation in Java is proven equivalent with a Cryptol [16] specification.
This is also a partially automated proof, requiring 1500 lines of annotation guid-
ing the proof (in the form of SAWScript). Compared to our approach, the Cryptol
specification is less succinct—it actually is a complete, low-level implementation
in its own right, written in a functional language.

Recently, the X25519 implementation in TweetNaCl has been verified [32]
using Coq and VST [1]. This implementation was, however, designed with veri-
fication in mind. The proof states that TweetNaCl (when compiled with Com-
pCert [25]) correctly implements a scalar multiplication. Like [35], the authors
show this with respect to a formal mathematical specification of elliptic curves.

Two efficient X25519 implementations written in 64-bit qhasm were par-
tially verified by Chen et al [10]. Their approach is comparable to ours, in that
they generate verification conditions which they solve using Boolector. However,
where we use Why3 for this, they uses a custom approach, and report lengthier
verification times. Their verification is partial, in the sense that they show that
their Montgomery ladderstep implementation matches that of Algorithm 1, but
don’t verify the ladder itself. Similarly, Liu et al. [26] have verified several C rou-
tines of OpenSSL by compiling them to the LLVM intermediate representation,
and translating that to the dedicated verification language CryptoLine.



Correct High-speed X25519 15

8 Conclusion

To our knowledge, our result is the first to fully verify an existing high-speed im-
plementation of X25519 scalar multiplication, and the first to present a verified
implementation optimized for low-power devices. We show correctness with re-
spect to short formulas that are themselves proven correct in the literature [5,27].

Like [32], only general purpose, well-understood verification methods were
used. Why3 in particular has an easy learning curve [31]. Our method for trans-
lating C and assembly code into WhyML is straight-forward, and the AVR model
of Section 4.1 can be validated, so trust in our results mainly resides with trusting
the verification condition generation of Why3, the soundness of the automated
provers, and the compilation-toolchain (C compiler, assembler and linker) used
for producing AVR binaries. The weakest link in this chain is definitely the use
of automated provers: during our work we discovered a soundness error in Alt-
Ergo 2.0, forcing us to preclude its use. We eagerly await the ability to perform
proof reconstruction in Why3 using verified SMT solvers [4, 28].

We used a version of Why3 compatible with [30]. Newer versions are available,
which in principle allow for an improved AVR model and specification. However,
due to a change in the meaning of type invariants, the versions available to us
generated inefficient SMT output for the verified multiplication routines of [30].
Since our use of type invariants can be avoided, we explored several alternatives,
but in the end chose to use the older version for time-efficiency reasons.

Our verification was performed in an amount of time that seems commensu-
rate with the time it took the original implementers to engineer the code. Most
time was spent on the multiplication routines in assembly code. For the C code,
the most time-consuming part was, in fact, finding the right abstraction level
for a simple specification of the Montgomery ladder.

Due to our general purpose approach, our findings are encouraging for other
low-level language applications. In particular, due to the limitations of AVR, the
code we encountered was quite long, and performed arithmetic on many limbs
(32 instead of the more usual four or five). We expect our approach to work well
for verifying the 32-bit ARM code in [14], requiring less time and with the pos-
sibility of some proof re-use. We would also like to verify the compiler-generated
assembly code of routines verified at a higher level (such as in Section 5), by
translating high-level specifications to the assembly level. This would strengthen
our result by removing the C compiler from the trusted code base.

Acknowledgments The authors thank Benôıt Viguier and Peter Schwabe for
their advice, as well as the anonymous reviewers for their comments. This mate-
rial is based upon work supported by the Defense Advanced Research Projects
Agency (DARPA) under Agreement No. HR.00112090028. This work is part of
the research programme ‘Sovereign’ with project number 14319 which is (partly)
financed by the Netherlands Organisation for Scientific Research (NWO).



16 M.R. Schoolderman et al.

References

1. Appel, A.W.: Verified Software Toolchain. In: Barthe, G. (ed.) Programming Lan-
guages and Systems. pp. 1–17. Springer Berlin Heidelberg, Berlin, Heidelberg
(2011)

2. Atmel Corporation: AVR Instruction Set Manual, revision 0856L (2016)
3. AVR Libc Project: avr-libc User Manual, https://www.nongnu.org/avr-libc/user-

manual/FAQ.html
4. Barbosa, H., Blanchette, J.C., Fleury, M., Fontaine, P., Schurr, H.J.: Better SMT

Proofs for Easier Reconstruction. In: AITP 2019 - 4th Conference on Artificial
Intelligence and Theorem Proving. Obergurgl, Austria (Apr 2019)

5. Bernstein, D.J.: Curve25519: New Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) Public Key Cryptography - PKC 2006.
pp. 207–228. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

6. Bernstein, D., Lange, T.: Montgomery curves and the Montgomery ladder. Cryp-
tology ePrint Archive, IACR (2017)

7. Bhargavan, K., et al.: Everest: Towards a Verified, Drop-in Replacement of HTTPS.
In: Lerner, B.S., Bod́ık, R., Krishnamurthi, S. (eds.) 2nd Summit on Advances
in Programming Languages (SNAPL 2017). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 71, pp. 1:1–1:12. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany (2017)

8. Bond, B., Hawblitzel, C., Kapritsos, M., Leino, K.R.M., Lorch, J.R., Parno, B.,
Rane, A., Setty, S., Thompson, L.: Vale: Verifying high-performance cryptographic
assembly code. In: Proceedings of the 26th USENIX Conference on Security Sym-
posium. pp. 917–934 (2017)

9. Brumley, B.B., Barbosa, M., Page, D., Vercauteren, F.: Practical realisation and
elimination of an ECC-related software bug attack. In: Dunkelman, O. (ed.) Topics
in Cryptology – CT-RSA 2012. pp. 171–186. Springer Berlin Heidelberg, Berlin,
Heidelberg (2012)

10. Chen, Y.F., Hsu, C.H., Lin, H.H., Schwabe, P., Tsai, M.H., Wang, B.Y., Yang,
B.Y., Yang, S.Y.: Verifying Curve25519 software. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. p. 299–309. CCS
’14, Association for Computing Machinery, New York, NY, USA (2014)

11. The Coq proof assistant reference manual (2015),
https://coq.inria.fr/documentation

12. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (Nov 1976)

13. Dockins, R., Foltzer, A., Hendrix, J., Huffman, B., McNamee, D., Tomb, A.: Con-
structing semantic models of programs with the Software Analysis Workbench. In:
Blazy, S., Chechik, M. (eds.) Verified Software. Theories, Tools, and Experiments.
pp. 56–72. Springer International Publishing, Cham (2016)

14. Düll, M., Haase, B., Hinterwälder, G., Hutter, M., Paar, C., Sánchez, A.H.,
Schwabe, P.: High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers.
Des. Codes Cryptography 77(2–3), 493–514 (Dec 2015)

15. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level code
for cryptographic arithmetic - with proofs, without compromises. In: 2019 IEEE
Symposium on Security and Privacy (SP). pp. 1202–1219 (2019)

16. Erkök, L., Carlsson, M., Wick, A.: Hardware/software co-verification of crypto-
graphic algorithms using Cryptol. In: 2009 Formal Methods in Computer-Aided
Design. pp. 188–191 (2009). https://doi.org/10.1109/FMCAD.2009.5351121



Correct High-speed X25519 17

17. Filliâtre, J.C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) Proceedings of the 22nd European Symposium on Program-
ming. Lecture Notes in Computer Science, vol. 7792, pp. 125–128. Springer (2013)

18. Genkin, D., Valenta, L., Yarom, Y.: May the fourth be with you: A microarchi-
tectural side channel attack on several real-world applications of Curve25519. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security. p. 845–858. CCS ’17, Association for Computing Machinery, New
York, NY, USA (2017)

19. GNU Project: avr-gcc ABI, https://gcc.gnu.org/wiki/avr-gcc
20. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve

cryptography and RSA on 8-bit CPUs. In: International workshop on cryptographic
hardware and embedded systems. pp. 119–132. Springer (2004)

21. ISO: ISO/IEC 15408-1:2009 Information technology—Security tech-
niques—Evaluation criteria for IT security—Part 1: Introduction and general
model (2009)

22. Kaufmann, T., Pelletier, H., Vaudenay, S., Villegas, K.: When constant-time source
yields variable-time binary: Exploiting Curve25519-donna built with MSVC 2015.
In: Foresti, S., Persiano, G. (eds.) Cryptology and Network Security. pp. 573–582.
Springer International Publishing, Cham (2016)

23. Kleppmann, M.: Implementing Curve25519/X25519: A tutorial on elliptic curve
cryptography. Tech. rep., University of Cambridge, Department of Computer Sci-
ence and Technology (2020)

24. Langley, A., Hamburg, M., Turner, S.: Elliptic Curves for Security. RFC 7748 (Jan
2016), https://rfc-editor.org/rfc/rfc7748.txt

25. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In: 33rd ACM symposium on Principles of Programming
Languages. pp. 42–54. ACM Press (2006)

26. Liu, J., Shi, X., Tsai, M.H., Wang, B.Y., Yang, B.Y.: Verifying arithmetic in cryp-
tographic c programs. In: 2019 34th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE). pp. 552–564. IEEE (2019)

27. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48, 243–264 (1987)

28. de Moura, L.M., Bjørner, N.: Proofs and refutations, and Z3. In: LPAR Workshops.
vol. 418, pp. 123–132. Doha, Qatar (2008)

29. Protzenko, J., Parno, B., Fromherz, A., Hawblitzel, C., Polubelova, M., Bhargavan,
K., Beurdouche, B., Choi, J., Delignat-Lavaud, A., Fournet, C., et al.: Evercrypt:
A fast, verified, cross-platform cryptographic provider. In: 2020 IEEE Symposium
on Security and Privacy (SP). pp. 983–1002. IEEE (2020)

30. Schoolderman, M.: Verifying branch-free assembly code in Why3. In: Paskevich,
A., Wies, T. (eds.) Verified Software. Theories, Tools, and Experiments. pp. 66–83.
Springer International Publishing, Cham (2017)

31. Schoolderman, M., Smetsers, S., van Eekelen, M.: Is deductive program verification
mature enough to be taught to software engineers? In: Proceedings of the 8th Com-
puter Science Education Research Conference. p. 50–57. CSERC ’19, Association
for Computing Machinery, New York, NY, USA (2019)

32. Schwabe, P., Viguer, B., Weerweg, T., Wiedijk, F.: A Coq proof of the correctness
of x25519 in TweetNaCl. In: 2021 IEEE 31th Computer Security Foundations
Symposium (CSF). p. (to appear) (2021)

33. Velvindron, L., Baushke, M.D.: Increase the Secure Shell Minimum Recommended
Diffie-Hellman Modulus Size to 2048 Bits. RFC 8270 (Dec 2017), https://rfc-
editor.org/rfc/rfc8270.txt



18 M.R. Schoolderman et al.

34. Zinzindohoué, J.K., Bhargavan, K., Protzenko, J., Beurdouche, B.: HACL*: A
Verified Modern Cryptographic Library. In: ACM Conference on Computer and
Communications Security (CCS). Dallas, United States (Oct 2017)

35. Zinzindohoué, J.K., Bartzia, E., Bhargavan, K.: A verified extensible library of
elliptic curves. In: 2016 IEEE 29th Computer Security Foundations Symposium
(CSF). pp. 296–309 (2016)



Correct High-speed X25519 19

A Formal specification of X25519 Scalar Multiplication

type ratio = { x: int; z: int }

constant infty: ratio = {x=1;z=0}

constant p25519: int = pow2 255 - 19

predicate (===) (x y: int) = mod x p25519 = mod y p25519

predicate (~) (p q: ratio) = x p*z q === x q*z p

predicate (==~) (x:int) (xz: ratio) = xz ~ {x=x; z=1}

function add (m n mn: ratio): ratio

= { x = 4*z mn*sqr(x m*x n - z m*z n);

z = 4*x mn*sqr(x m*z n - z m*x n) }

function double (n: ratio): ratio

= { x = sqr(sqr(x n) - sqr(z n));

z = 4*x n*z n * (sqr(x n) + 486662*x n*z n + sqr(z n)) }

function ladder (n: int) (p: ratio): (ratio, ratio)

axiom ladder_0: (*these axiomatic definitions are proven consistent*)

forall p.ladder 0 p = ({x=1; z=0}, p)

axiom ladder_even:

forall p, n. n > 0 -> let (r0,r1) = ladder n p in

ladder (2*n) p = (double r0, add r1 r0 p)

axiom ladder_odd:

forall p, n. n >= 0 -> let (r0,r1) = ladder n p in

ladder (2*n+1) p = (add r1 r0 p, double r1)

function scale (n: int) (m: int): ratio

= let (r,_) = ladder n {x=m; z=1} in r

function clamp (x: int): int

= mod x (pow2 254) + pow2 254 - mod x 8

val crypto_scalarmult_curve25519 (r s p: address_space)

ensures { uint 32 r = mod (uint 32 r) p25519 }

ensures { let xp = mod (uint 32 p) (pow2 255) in

let mult = scale (clamp (uint 32 s)) xp in

if mult ~ infty then

uint 32 r === 0

else

uint 32 r ==~ mult }


