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Abstract

We propose an efficient quantum algorithm for a specific quantum state discrimination problem.
An immediate corollary of our result is a polynomial time quantum algorithm for the Dihedral
Coset Problem with a smooth modulus. This, in particular, implies that poly(n)-unique-SVP
is in BQP.

1 Introduction

Let Σ = {0, 1}n and let X = CΣ be the complex Euclidean space with basis Σ. Define two
probability distributions µ1, µ2 : S(X )→ [0, 1] on the unit sphere S(X ) as follows. The distribution
µ1 is defined by choosing (not necessarily independent) random x, y ∈ Σ and outputting the state

1√
2

(|0〉|x〉+ |1〉|y〉). (1)

The distribution µ2 is defined by choosing random (b, x) ∈ {0, 1} × Σ and outputting the state
|b〉|x〉. In this note, we prove the following:

Theorem 1. There is a quantum algorithm that distinguishes, with high probability, between the
distributions µ1 and µ2 and runs in poly(n) operations.

2 A Quantum Walk Algorithm

Our algorithm is based on a quantum walk algorithm introduced in [1]. Let p be an odd prime
and d be a positive integer such that 2n ≤ pd. Let f : {0, 1}n ↪→ Fdp be any efficiently invertible
injection of sets. Using f , we can assume that the outputs of the distributions µ1 and µ2 are in the
space CΓ where Γ = F2 × Fdp.
For the sake of consistency, we follow the notations of [1]. Define ∆(x) = x2

1 + · · ·+ x2
d for x ∈ Fdp.

Let Sr be the sphere of radius r around zero in Fdp, that is, the points of Fdp on the hypersurface

∆(x) − r = 0. Note that we have |Sr| = Θ(pd−1) [3, Section 6.2]. Assume for a moment that we
could efficiently perform the (non-unitary) operation

U : CFd
p −→ CFd

p

|x〉 7−→ |S1 + x〉,
(2)

where

|S1 + x〉 =
1√
|S1|

∑
s∈S1

|s+ x〉.
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Then we can distinguish between µ1 and µ2 as follows. Given an unknown distribution ρ that is
one of the µ1 or µ2, obtain a sample state |ψ〉 from ρ. Then compute (1⊗ U)|ψ〉 and measure the
second register. Let us analyze the post-measurement state.

Case 1: |ψ〉 ∈ µ2. The state |ψ〉 is of the form |b〉|x〉 for a random (b, x) ∈ F2 × Fdp, so the post-
measurement state is a random bit |b〉.

Case 2: |ψ〉 ∈ µ1. The state |ψ〉 is of the form (1), so the outcome of the measurement is an
element in (S1 + x) ∩ (S1 + y) with probability Θ(1/p). This is because for any x, y ∈ Fdp
we have |(S1 + x) ∩ (S1 + y)| ≥ Θ(pd−2) [3, Remark 6.28]. So the post-measurement state is

1√
2
(|0〉+ |1〉) with probability at least Θ(1/p).

Next, we measure the remaining qubit in the Hadamard basis. If we observe |+〉 we return µ1,
otherwise we return µ2. Therefore, given a poly(p) number of the states |ψ〉, we can distinguish,
with overwhelming probability, between the two cases. The problem is that we do not know how
to perform U efficiently. However, we show that we can replace U by a quantum walk unitary and
still be able to perform the above steps and obtain a correct result! The following is adapted from
Section 3 of [1].
Define the Cayley graph G with vertices the points in Fdp and generating set the points in S1. The
adjacency matrix of G is

A =
∑
x∈Fd

p

∑
s∈S1

|s+ x〉〈x|.

The eigenvectors of A, which are independent of the generating set S1, are |x̃〉 := Fpd |x〉 where

x ∈ Fdp and Fpd is the quantum Fourier transform over Fdp. Let ωp = exp(2πi/p). Then the
eigenvalues of A corresponding to the eigenvectors |x̃〉 are

λx =
∑
y∈S1

ω〈x,y〉p =

{
|S1| x = 0,
Gd

1
p Kχd

(
1, ∆(x)

4

)
otherwise,

where G1 =
√
p when p = 1 mod 4 and G1 = i

√
p when p = 3 mod 4, and where Kχd is the

χd-twisted Kloosterman sum defined by

Kχd(a, b) =
∑
c∈Fp

χd(c)ωac+bc
−1

p .

The eigenvalues λx can be computed in time poly(p). Define Ā = A − λ0|0̃〉〈0̃| so that ‖Ā‖ ≤
2
√
pd−1. Let t = 1/

√
pd−1 log p, and let x ∈ Fdp. Define the operator U to be the continuous

quantum walk with the Hamiltonian given by Ā for time t, i.e., U = eiĀt. Then U leaves the
subspace span{|x〉, |S0 + x〉, |S1 + x〉, . . . , |Sp−1 + x〉} invariant, so we can write

U |x〉 = α|x〉+ α0|S0 + x〉+ α1|S1 + x〉+ · · ·+ αp−1|Sp−1 + x〉.

Using the Taylor expansion of U we obtain

α1 = 〈S1 + x|U |x〉 = it
√
|S1|(1−O(p−1)) +O(‖Ā2‖t2).

Note that α1 is independent of the starting vertex x. If we measure U |x〉 in the vertex basis, we
obtain an element of S1 + x with probability

|α1|2 =
1

log p
+O(log−3/2 p).
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If we apply 1⊗ U to the state
1√
2

(|0〉|x〉+ |1〉|y〉)

and measure the second register, the post-measurement state will be (|0〉+ |1〉)/
√

2 with probability
Θ(1/(p log p)). Therefore, replacing the non-unitary U in (2) with the unitary U = eiĀt in the above
algorithm will only incur a Θ(1/ log p) loss in the distinguishing advantage.
Setting p = O(n) in the above algorithm results in a poly(d log p) = poly(n) running time com-
plexity, which is enough to prove Theorem 1. However, it is important to note that the number of
samples required by the algorithm depends only on p, so the algorithm can be made sample-efficient
by choosing small p. In any case, the running time complexity will remain poly(n).

3 The Dihedral Coset Problem

Let N be a positive integer. A dihedral coset over the group ZN is a state of the form

1√
2

(|0〉|x〉+ |1〉|x+ s〉), (3)

where x ∈ ZN is uniformly random and s ∈ ZN is fixed. Let Σ = Z2×ZN and X = CΣ. Define the
distribution µs : S(X )→ [0, 1] by choosing x ∈ ZN unifromly at random and outputting the state
(3). The search Dihedral Coset Problem over ZN , denoted by DCPN , is the problem of recovering
s given outputs from µs. The decision-DCPN is the problem of distinguishing between µs and the
distribution µ : S(X ) → [0, 1] defined by choosing (b, x) ∈ Σ uniformly at random and outputting
the state |b〉|x〉.

Corollary 2. There is a quantum algorithm for decision-DCPN that tuns in poly(logN) operations.

Proof. Set µ1 = µs and µ2 = µ in Theorem 1.

When the modulus N has poly(logN)-bounded prime factors, the search-DCPN can be reduced to
the decision-DCPN in time poly(logN) [2]. Therefore, we have

Corollary 3. For a modulus N with poly(logN)-bounded prime factors, there is a quantum algo-
rithm for search-DCPN that runs in poly(logN) operations.

It was shown in [4] that a polynomial time quantum algorithm for DCPN with N = 2Θ(n2) implies
a polynomial time quantum algorithm for poly(n)-unique-SVP. Therefore, we have

Corollary 4. There is a polynomial time quantum algorithm for poly(n)-unique-SVP.
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