# On The Dihedral Coset Problem 

Javad Doliskani*


#### Abstract

We propose an efficient quantum algorithm for a specific quantum state discrimination problem. An immediate corollary of our result is a polynomial time quantum algorithm for the Dihedral Coset Problem with a smooth modulus. This, in particular, implies that poly $(n)$-unique-SVP is in BQP.


## 1 Introduction

Let $\Sigma=\{0,1\}^{n}$ and let $\mathcal{X}=\mathbb{C}^{\Sigma}$ be the complex Euclidean space with basis $\Sigma$. Define two probability distributions $\mu_{1}, \mu_{2}: \mathcal{S}(\mathcal{X}) \rightarrow[0,1]$ on the unit sphere $\mathcal{S}(\mathcal{X})$ as follows. The distribution $\mu_{1}$ is defined by choosing (not necessarily independent) random $x, y \in \Sigma$ and outputting the state

$$
\begin{equation*}
\frac{1}{\sqrt{2}}(|0\rangle|x\rangle+|1\rangle|y\rangle) . \tag{1}
\end{equation*}
$$

The distribution $\mu_{2}$ is defined by choosing random $(b, x) \in\{0,1\} \times \Sigma$ and outputting the state $|b\rangle|x\rangle$. In this note, we prove the following:

Theorem 1. There is a quantum algorithm that distinguishes, with high probability, between the distributions $\mu_{1}$ and $\mu_{2}$ and runs in poly $(n)$ operations.

## 2 A Quantum Walk Algorithm

Our algorithm is based on a quantum walk algorithm introduced in [1]. Let $p$ be an odd prime and $d$ be a positive integer such that $2^{n} \leq p^{d}$. Let $f:\{0,1\}^{n} \hookrightarrow \mathbb{F}_{p}^{d}$ be any efficiently invertible injection of sets. Using $f$, we can assume that the outputs of the distributions $\mu_{1}$ and $\mu_{2}$ are in the space $\mathbb{C}^{\Gamma}$ where $\Gamma=\mathbb{F}_{2} \times \mathbb{F}_{p}^{d}$.
For the sake of consistency, we follow the notations of [1]. Define $\Delta(x)=x_{1}^{2}+\cdots+x_{d}^{2}$ for $x \in \mathbb{F}_{p}^{d}$. Let $\mathcal{S}_{r}$ be the sphere of radius $r$ around zero in $\mathbb{F}_{p}^{d}$, that is, the points of $\mathbb{F}_{p}^{d}$ on the hypersurface $\Delta(x)-r=0$. Note that we have $\left|\mathcal{S}_{r}\right|=\Theta\left(p^{d-1}\right)$ [3, Section 6.2]. Assume for a moment that we could efficiently perform the (non-unitary) operation

$$
\begin{align*}
U: & \mathbb{C}^{\mathbb{F}_{p}^{d}} \\
|x\rangle & \longrightarrow \mathbb{C}^{\mathbb{F}_{p}^{d}}  \tag{2}\\
|x\rangle & \left.\mathcal{S}_{1}+x\right\rangle,
\end{align*}
$$

where

$$
\left|\mathcal{S}_{1}+x\right\rangle=\frac{1}{\sqrt{\left|\mathcal{S}_{1}\right|}} \sum_{s \in \mathcal{S}_{1}}|s+x\rangle .
$$

[^0]Then we can distinguish between $\mu_{1}$ and $\mu_{2}$ as follows. Given an unknown distribution $\rho$ that is one of the $\mu_{1}$ or $\mu_{2}$, obtain a sample state $|\psi\rangle$ from $\rho$. Then compute $(\mathbb{1} \otimes U)|\psi\rangle$ and measure the second register. Let us analyze the post-measurement state.

Case 1: $|\psi\rangle \in \mu_{2}$. The state $|\psi\rangle$ is of the form $|b\rangle|x\rangle$ for a random $(b, x) \in \mathbb{F}_{2} \times \mathbb{F}_{p}^{d}$, so the postmeasurement state is a random bit $|b\rangle$.

Case 2: $|\psi\rangle \in \mu_{1}$. The state $|\psi\rangle$ is of the form (1), so the outcome of the measurement is an element in $\left(\mathcal{S}_{1}+x\right) \cap\left(\mathcal{S}_{1}+y\right)$ with probability $\Theta(1 / p)$. This is because for any $x, y \in \mathbb{F}_{p}^{d}$ we have $\left|\left(\mathcal{S}_{1}+x\right) \cap\left(\mathcal{S}_{1}+y\right)\right| \geq \Theta\left(p^{d-2}\right)$ [3, Remark 6.28]. So the post-measurement state is $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ with probability at least $\Theta(1 / p)$.

Next, we measure the remaining qubit in the Hadamard basis. If we observe $|+\rangle$ we return $\mu_{1}$, otherwise we return $\mu_{2}$. Therefore, given a poly $(p)$ number of the states $|\psi\rangle$, we can distinguish, with overwhelming probability, between the two cases. The problem is that we do not know how to perform $U$ efficiently. However, we show that we can replace $U$ by a quantum walk unitary and still be able to perform the above steps and obtain a correct result! The following is adapted from Section 3 of [1].
Define the Cayley graph $G$ with vertices the points in $\mathbb{F}_{p}^{d}$ and generating set the points in $\mathcal{S}_{1}$. The adjacency matrix of $G$ is

$$
A=\sum_{x \in \mathbb{F}_{p}^{d}} \sum_{s \in \mathcal{S}_{1}}|s+x\rangle\langle x| .
$$

The eigenvectors of $A$, which are independent of the generating set $\mathcal{S}_{1}$, are $|\tilde{x}\rangle:=\mathrm{F}_{p^{d}}|x\rangle$ where $x \in \mathbb{F}_{p}^{d}$ and $\mathrm{F}_{p^{d}}$ is the quantum Fourier transform over $\mathbb{F}_{p}^{d}$. Let $\omega_{p}=\exp (2 \pi i / p)$. Then the eigenvalues of $A$ corresponding to the eigenvectors $|\tilde{x}\rangle$ are

$$
\lambda_{x}=\sum_{y \in \mathcal{S}_{1}} \omega_{p}^{\langle x, y\rangle}= \begin{cases}\left|\mathcal{S}_{1}\right| & x=0, \\ \frac{G_{1}^{d}}{p} K_{\chi^{d}}\left(1, \frac{\Delta(x)}{4}\right) & \text { otherwise },\end{cases}
$$

where $G_{1}=\sqrt{p}$ when $p=1 \bmod 4$ and $G_{1}=i \sqrt{p}$ when $p=3 \bmod 4$, and where $K_{\chi^{d}}$ is the $\chi^{d}$-twisted Kloosterman sum defined by

$$
K_{\chi^{d}}(a, b)=\sum_{c \in \mathbb{F}_{p}} \chi^{d}(c) \omega_{p}^{a c+b c^{-1}}
$$

The eigenvalues $\lambda_{x}$ can be computed in time $\operatorname{poly}(p)$. Define $\bar{A}=A-\lambda_{0}|\tilde{0}\rangle\langle\tilde{0}|$ so that $\|\bar{A}\| \leq$ $2 \sqrt{p^{d-1}}$. Let $t=1 / \sqrt{p^{d-1} \log p}$, and let $x \in \mathbb{F}_{p}^{d}$. Define the operator $U$ to be the continuous quantum walk with the Hamiltonian given by $\bar{A}$ for time $t$, i.e., $U=e^{i \bar{A} t}$. Then $U$ leaves the subspace span $\left\{|x\rangle,\left|\mathcal{S}_{0}+x\right\rangle,\left|\mathcal{S}_{1}+x\right\rangle, \ldots,\left|\mathcal{S}_{p-1}+x\right\rangle\right\}$ invariant, so we can write

$$
U|x\rangle=\alpha|x\rangle+\alpha_{0}\left|\mathcal{S}_{0}+x\right\rangle+\alpha_{1}\left|\mathcal{S}_{1}+x\right\rangle+\cdots+\alpha_{p-1}\left|\mathcal{S}_{p-1}+x\right\rangle .
$$

Using the Taylor expansion of $U$ we obtain

$$
\alpha_{1}=\left\langle\mathcal{S}_{1}+x\right| U|x\rangle=i t \sqrt{\left|\mathcal{S}_{1}\right|}\left(1-O\left(p^{-1}\right)\right)+O\left(\left\|\bar{A}^{2}\right\| t^{2}\right) .
$$

Note that $\alpha_{1}$ is independent of the starting vertex $x$. If we measure $U|x\rangle$ in the vertex basis, we obtain an element of $\mathcal{S}_{1}+x$ with probability

$$
\left|\alpha_{1}\right|^{2}=\frac{1}{\log p}+O\left(\log ^{-3 / 2} p\right)
$$

If we apply $\mathbb{1} \otimes U$ to the state

$$
\frac{1}{\sqrt{2}}(|0\rangle|x\rangle+|1\rangle|y\rangle)
$$

and measure the second register, the post-measurement state will be $(|0\rangle+|1\rangle) / \sqrt{2}$ with probability $\Theta(1 /(p \log p))$. Therefore, replacing the non-unitary $U$ in (2) with the unitary $U=e^{i A t}$ in the above algorithm will only incur a $\Theta(1 / \log p)$ loss in the distinguishing advantage.
Setting $p=O(n)$ in the above algorithm results in a $\operatorname{poly}(d \log p)=\operatorname{poly}(n)$ running time complexity, which is enough to prove Theorem 1. However, it is important to note that the number of samples required by the algorithm depends only on $p$, so the algorithm can be made sample-efficient by choosing small $p$. In any case, the running time complexity will remain $\operatorname{poly}(n)$.

## 3 The Dihedral Coset Problem

Let $N$ be a positive integer. A dihedral coset over the group $\mathbb{Z}_{N}$ is a state of the form

$$
\begin{equation*}
\frac{1}{\sqrt{2}}(|0\rangle|x\rangle+|1\rangle|x+s\rangle) \tag{3}
\end{equation*}
$$

where $x \in \mathbb{Z}_{N}$ is uniformly random and $s \in \mathbb{Z}_{N}$ is fixed. Let $\Sigma=\mathbb{Z}_{2} \times \mathbb{Z}_{N}$ and $\mathcal{X}=\mathbb{C}^{\Sigma}$. Define the distribution $\mu_{s}: \mathcal{S}(\mathcal{X}) \rightarrow[0,1]$ by choosing $x \in \mathbb{Z}_{N}$ unifromly at random and outputting the state (3). The search Dihedral Coset Problem over $\mathbb{Z}_{N}$, denoted by DCP $N_{N}$, is the problem of recovering $s$ given outputs from $\mu_{s}$. The decision- $\mathrm{DCP}_{N}$ is the problem of distinguishing between $\mu_{s}$ and the distribution $\mu: \mathcal{S}(\mathcal{X}) \rightarrow[0,1]$ defined by choosing $(b, x) \in \Sigma$ uniformly at random and outputting the state $|b\rangle|x\rangle$.

Corollary 2. There is a quantum algorithm for decision- $\mathrm{DCP}_{N}$ that tuns in poly $(\log N)$ operations.
Proof. Set $\mu_{1}=\mu_{s}$ and $\mu_{2}=\mu$ in Theorem 1.
When the modulus $N$ has poly $(\log N)$-bounded prime factors, the search- $\mathrm{DCP}_{N}$ can be reduced to the decision- $\mathrm{DCP}_{N}$ in time poly $(\log N)$ [2]. Therefore, we have

Corollary 3. For a modulus $N$ with poly $(\log N)$-bounded prime factors, there is a quantum algorithm for search- $\mathrm{DCP}_{N}$ that runs in poly $(\log N)$ operations.
It was shown in [4] that a polynomial time quantum algorithm for $\mathrm{DCP}_{N}$ with $N=2^{\Theta\left(n^{2}\right)}$ implies a polynomial time quantum algorithm for poly $(n)$-unique-SVP. Therefore, we have

Corollary 4. There is a polynomial time quantum algorithm for $\operatorname{poly}(n)$-unique-SVP.

## References

[1] Andrew M Childs, Leonard J Schulman, and Umesh V Vazirani. Quantum algorithms for hidden nonlinear structures. In 48 th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07), pages 395-404. IEEE, 2007.
[2] Javad Doliskani. Efficient quantum public-key encryption from learning with errors. 2020. https://eprint.iacr.org/2020/1557.
[3] Rudolf Lidl and Harald Niederreiter. Finite fields. Number 20. Cambridge university press, 1997.
[4] Oded Regev. Quantum computation and lattice problems. SIAM Journal on Computing, 33(3):738-760, 2004.


[^0]:    *Department of Computer Science, Ryerson University, (javad.doliskani@ryerson.ca).

