
Intel HEXL: Accelerating Homomorphic
Encryption with Intel AVX512-IFMA52

Fabian Boemer1, Sejun Kim1, Gelila Seifu1, Fillipe D. M. de Souza1, and
Vinodh Gopal1

Intel Corporation
{fabian.boemer, sejun.kim, gelila.seifu, fillipe.souza,

vinodh.gopal}@intel.com

Abstract. Modern implementations of homomorphic encryption (HE)
rely heavily on polynomial arithmetic over a finite field. This is par-
ticularly true of the CKKS, BFV, and BGV HE schemes. Two of the
biggest performance bottlenecks in HE primitives and applications are
polynomial modular multiplication and the forward and inverse number-
theoretic transform (NTT). Here, we introduce Intel® Homomorphic
Encryption Acceleration Library (Intel® HEXL), a C++ library which
provides optimized implementations of polynomial arithmetic for Intel®
processors. Intel HEXL takes advantage of the recent Intel® Advanced
Vector Extensions 512 (Intel® AVX512) instruction set to provide state-
of-the-art implementations of the NTT and modular multiplication. On
the forward and inverse NTT, Intel HEXL provides up to 7.2x and
6.7x speedup, respectively, over a native C++ implementation. Intel
HEXL also provides up to 6.0x speedup on the element-wise vector-vector
modular multiplication, and 1.7x speedup on the element-wise vector-
scalar modular multiplication. Intel HEXL is available open-source at
https://github.com/intel/hexl under the Apache 2.0 license.

Keywords: privacy-preserving machine learning; Intel AVX512; homomorphic
encryption

1 Introduction

Homomorphic encryption (HE) is a form of encryption which enables computation
in the encrypted domain. Homomorphic encryption is useful in applications with
sensitive data, particularly medical and financial settings [2, 3, 15]. However,
HE currently suffers from enormous memory and runtime overheads of up to
30,000x [14].

Ciphertexts in many HE schemes are polynomials in finite fields, whose
coefficients can be hundreds of bits and whose degree is typically a power in
the range [210, 217]. Performing HE computations requires operating on these
large polynomials. While recent years have seen tremendous improvement in HE
performance due to algorithmic changes and optimized implementations, the
performance overhead remains perhaps the biggest bottleneck to adoption of HE.

https://github.com/intel/hexl

Here, we introduce Intel® HEXL, an open-source library which provides
efficient implementations of integer arithmetic on finite fields. Intel HEXL targets
polynomial operations with word-sized primes on 64-bit processors. For efficient
implementation, Intel HEXL uses the Intel Advanced Vector Extensions 512
(Intel AVX512) instruction set to provide optimized implementations on Intel
processors. In particular, the Intel® Advanced Vector Extensions 512 Integer
Fused Multiply Add (Intel® AVX512-IFMA52) instructions introduced in the
3rd Gen Intel® Xeon® Scalable Processors provide significant speedup on
primes below 50–52 bits.

We begin with a brief introduction of the mathematical concepts implemented
in Intel HEXL (Section 2) and the Intel AVX512 instruction set (Section 2.3).
Section 3 compares Intel HEXL to existing work, explaining Intel HEXL’s unique
contribution lies in the application of the Intel AVX512-IFMA52 instruction
set to word-size finite field arithmetic, such as the number-theoretic transform
(NTT). Next, we introduce the design (Section 4) and implementation (Sec-
tion 4) of Intel HEXL. In particular, we provide detailed descriptions of the
forward (Section 4.1) and inverse (Section 4.1) NTT and polynomial kernels
(Section 4.2), including vector-vector modular multiplication (Section 4.2) and
vector-scalar modular multiplication (Section 4.2). We demonstrate the perfor-
mance of Intel HEXL in Section 5, showcasing up to 7.2x and 6.7x speedup over
a native C++ implementation of the forward and inverse NTT, respectively, up
to 6.0x on element-wise vector-vector modular multiplication and 1.7x speedup
on the element-wise vector-scalar modular multiplication. Finally, we conclude in
Section 6.

2 Background

We provide a brief background of the algorithms optimized used in Intel HEXL,
which are common building blocks of lattice cryptography. LetRq = Zq[X]/(XN+
1) be the polynomial quotient ring consisting of polynomials with degree at most
N − 1 and integer coefficients in the finite field Zq = {0, 1, . . . , q − 1}, where q is
a word-sized prime satisfying q ≡ 1 mod 2N . One way to represent a polynomial
a =

∑N−1
i=0 aix

i ∈ Rq is via the coefficient embedding, i.e.

a = (a0, a1, a2, . . . , aN−1)

with ai ∈ Zq.
Typical HE operations compute on polynomials in Rq as follows:

– Element-wise addition. Given a, b ∈ Rq, compute c = a + b such that
ci = (ai + bi) mod q.

– Element-wise negation. Given a ∈ Rq, compute b = −a such that bi = q − ai.
– Element-wise multiplication. Given a, b ∈ Rq, compute c = a� b such that
ci = (ai · bi) mod q.

– Element-wise vector-scalar multiplication. Given a ∈ Rq, b ∈ Zq, compute
c = a · b such that ci = (ai · b) mod q.

2

– Vector-vector multiplication. Given a, b ∈ Rq, compute c = a ∗ b such that

ci =

i∑
j=0

aj · bi−j −
N−1∑
j=i+1

aj · bN+i−j .

Note,
XN ≡ −1 mod (XN + 1),

which yields the negative coefficients.

In practice, element-wise addition and element-wise negation are typically much
faster to compute than the types of multiplication. As such, we focus on the
various multiplication functions in Rq.

2.1 Barrett reduction

Scalar modular multiplication is a primary bottleneck in lattice cryptography. A
simple implementation of scalar modular multiplication uses the 128-bit integer
extension, supported by many modern compilers including gcc and clang. The
modulus operator % is used for modular reduction. Listing 1.1 shows C/C++
source code for a simple implementation of scalar modular multiplication.

1 // Returns (a * b) mod q
2 uint64_t naive_modmul(uint64_t a, uint64_t b, uint64_t q) {
3 return uint64_t(uint128_t(a) * b) % q;
4 }

Listing 1.1: Native modular multiplication

Performance of this naive implementation is poor due to the modulus operator,
which will perform integer division via, e.g., the extended Euclidean algorithm.

In typical HE applications, the modulus q is re-used for many modular multi-
plications. In this setting, Barrett reduction can be used to improve performance.
Barrett reduction takes advantage of the fact that

x mod q = x− bx/qcq

when x/q is computed exactly. If x/q is computed with sufficient accuracy, the
result remains correct. Barrett reduction uses a pre-computed integer, k, based on
the modulus q, to replace division with bit shifting. This approximation requires
an extra conditional subtraction to guarantee correctness. Nevertheless, replacing
integer division with bit shifting results in a speedup. Algorithm 1 shows Barrett’s
algorithm, as presented in [10].

2.2 Number-theoretic transform (NTT)

The number-theoretic transform (NTT) is another performance bottleneck in
typical lattice cryptography computations. The NTT is equivalent to the fast
Fourier transform (FFT) in a finite field, i.e. all addition and multiplications

3

Algorithm 1 Barrett Reduction

Require: q < 2Q, d < 2D, k =
⌊
2L

q

⌋
, with Q ≤ D ≤ L

Ensure: Returns d mod q
1: function Barrett Reduction(d, q, k,Q, L)
2: c1 ← d� (Q− 1)
3: c2 ← c1k
4: c3 ← c2 � (L−Q+ 1)
5: c4 ← d− qc3
6: if c4 ≥ q then
7: c4 ← c4 − q
8: end if
9: return c4
10: end function

are performed with respect to the modulus q. Let ω be a primitive N ’th root
of unity in Zq and a = (a0, . . . , aN−1) ∈ ZN

q . Then, the forward cyclic NTT is
defined as ã = NTT(a), where ãi =

∑N−1
j=0 ajω

ij mod q for i = 0, 1, . . . , N − 1.
The inverse cyclic NTT is given by b = InvNTT (ã), where bi = 1

n

∑N−1
j=0 ãjω

−ij

mod q for i = 0, 1, . . . , N − 1. Note, InvNTT (NTT (a)) = a.
The NTT can be used to speed up polynomial-polynomial multiplication in

Rq. However, using � to indicate element-wise multiplication, the straightforward
usage

InvNTT (NTT (a)�NTT (b))
corresponds to polynomial-polynomial multiplication in ZN

q /(X
N − 1), whereas

HE operates in Rq = ZN
q /(X

N + 1). As described in [16], a modification of
the cyclic NTT, known as the negacyclic NTT, or negative wrapped convolution,
can be used to perform polynomial multiplication in Rq. Let ψ be a primitive
2N ’th root of unity in Zq. Let a, b ∈ ZN

q and â = (a0, ψa1, ψ
2a2, . . . , ψ

N−1aN−1),
b̂ = (b0, ψb1, ψ

2b2, . . . , ψ
N−1bn−1). Then, the negacyclic NTT is defined as

c = (1, ψ−1, . . . , ψ−(N−1))� InvNTT (NTT (â)�NTT (b̂))),

which satisfies c = a ∗ b in Rq. The NTT-based formulation reduces the runtime
of polynomial-polynomial modular multiplication from O(N2) to O(N logN).

Optimized implementation. The NTT inherits a rich history of optimiza-
tions from the FFT, in addition to several NTT-specific optimizations. Similar to
the FFT, the NTT has a recursive formulation attributed to Cooley and Tukey [4].
Cooley-Tukey NTTs decompose an NTT of size N = N1N2 as N1 NTTs of size
N2 followed by N2 NTTs of size N1. This recursive formulation reduces the
runtime of the NTT to O(N logN), improving upon the O(N2) runtime of a
naive implementation. The choice of min(N1, N2) determines the radix of the
implementation. One byproduct of the Cooley-Tukey forward NTT is that the
output is in bit-reversed order. That is, given an index i in binary representation

i = 0bi0i1 . . . ilog2(N) ∈ {0, 1}log2(N),

4

the output of the Cooley-Tukey NTT at index i is

NTT (a)[0bilog2(N)ilog2(N)−1 . . . i1i0].

The inverse transform restores the standard bit ordering. Typically, any operations
performed in the bit-reversed domain are performed element-wise, so the bit-
reversal usually does not pose a problem. Furthermore, the Cooley-Tukey NTT
may operate in-place, i.e. the output overwrites the input. Algorithm 2 shows a
simple radix-2 in-place Cooley-Tukey NTT algorithm, taken from [16]. Algorithm 3
shows the analogous radix-2 in-place Gentleman-Sande inverse NTT algorithm.

Algorithm 2 Cooley-Tukey Radix-2 NTT

Require: a = (a0, a1, . . . , aN−1) ∈ ZN
q in standard ordering. N is a power of 2. q is a

prime satisfying q ≡ 1 mod 2N . ψrev ∈ ZN
q stores the powers of ψ in bit-reversed

order.
Ensure: a← NTT (a) in bit-reversed order.
1: function Cooley-Tukey Radix-2 NTT(a,N, q, ψrev)
2: t← n
3: for (m = 1;m < n;m = 2n) do
4: t← t/2
5: for (i = 0; i < m; i++) do
6: j1 ← 2 · i · t
7: j2 ← j1 + t− 1
8: W ← ψrev[m+ i]
9: for (j = j1; j ≤ j2; j++) do
10: X0 ← aj
11: X1 ← aj+t

12: aj ← X0 +W ·X1 mod q
13: aj+t ← X0 −W ·X1 mod q
14: end for
15: end for
16: end for
17: return a
18: end function

The butterfly refers to the radix-r = min(N1, N2) NTT. For instance, the
butterfly for the radix-2 NTT in Algorithm 2 is given in lines 10–13, which
compute

(X0, X1) 7→ (X0 +WX1 mod q,X0 −WX1 mod q).

Harvey [12] provides an optimization to the butterfly using a redundant repre-
sentation X0, X1 ∈ Z4q. Algorithm 4 shows the Harvey forward NTT butterfly1.
Using the Harvey butterfly in the Cooley-Tukey NTT yields outputs in ZN

4q, so
1 Note, [12] presents Algorithm 2 as the inverse butterfly, whereas Intel HEXL uses it
for the forward NTT. This difference stems from the choice of ‘decimation-in-time’
vs. ‘decimation-in-frequency.’ The same applies for the inverse butterfly.

5

Algorithm 3 Gentleman-Sande (GS) Radix-2 InvNTT

Require: a = (a0, a1, . . . , aN−1) ∈ ZN
q in bit-reversed ordering. N is a power of 2.q is a

prime satisfying q ≡ 1 mod 2N . ψ−1
rev ∈ ZN

q stores the powers of ψ−1 in bit-reversed
order.

Ensure: a← InvNTT (a) in standard ordering.
1: function Gentleman-Sande Radix-2 InvNTT(a,N, q, ψrev)
2: t← 1
3: for (m = n;m > 1;m = m/2) do
4: j1 ← 0
5: h← m/2
6: for (i = 0; i < h; i++) do
7: j2 ← j1 + t− 1
8: W ← ψ−1

rev[h+ i]
9: for (j = j1; j ≤ j2; j++) do
10: X0 ← aj
11: X1 ← aj+t

12: aj ← X0 +X1 mod q
13: aj+t ← (X0 −X1) ·W mod q
14: end for
15: j1 ← j1 + 2t
16: end for
17: t← 2t
18: end for
19: for (j = 0; j < n; j++) do
20: a[j]← a[j] · n−1 mod q
21: end for
22: return a
23: end function

Algorithm 4 Harvey NTT butterfly. β is the word size, e.g. β = 264 on typical
modern CPU platforms.
Require: q < β/4; 0 < W < q
Require: W ′ = bWβ/qc, 0 < W ′ < β
Require: 0 ≤ X0, X1 < 4q
Ensure: Y0 ← X0 +WX1 mod q; 0 ≤ Y0 < 4q
Ensure: Y1 ← X0 −WX1 mod q; 0 ≤ Y1 < 4q
1: function HarveyNTTButterfly(X0, X1,W,W

′, q, β)
2: if X0 ≥ 2q then
3: X0 ← X0 − 2q
4: end if
5: Q← bW ′X1/βc
6: T ← (WX1 −Qq) mod β
7: Y0 ← X0 + T
8: Y1 ← X0 − T + 2q
9: return Y0, Y1

10: end function

6

an additional correction step is required to reduce the output to ZN
q . Similar to

the forward transform, Harvey [12] also provides an efficient butterfly for the
inverse NTT, using a redundant representation in [0, 2q). Algorithm 5 shows the
Harvey inverse NTT butterfly.

Algorithm 5 Harvey inverse NTT butterfly. β is the word size, e.g. β = 264 on
typical modern CPU platforms.
Require: q < β/4; 0 < W < q
Require: W ′ = bWβ/qc; 0 < W ′ < β
Require: 0 ≤ X0, X1 < 2q
Ensure: Y0 ← X0 +X1 mod q; 0 ≤ Y0 < 2q.
Ensure: Y1 ←W (X0 −X1) mod q; 0 ≤ Y1 < 2q.
1: function HarveyInvNTTButterfly(X0, X1,W,W

′, q, β)
2: Y0 ← X0 +X1

3: if Y0 ≥ 2q then
4: Y0 ← Y0 − 2q
5: end if
6: T ← X0 −X1 + 2q
7: Q← bW ′T/βc
8: Y1 ← (WT −Qq) mod β
9: return Y0, Y1

10: end function

2.3 Intel Advanced Vector Extensions

The Intel® Advanced Vector Extensions (Intel® AVX) is a set of single-
instruction multiple data (SIMD) instructions for the x86 architecture. Intel
AVX instructions enable simultaneous computation on chunks of data larger
than typical word-sized chunks. For instance, the legacy Intel® Streaming SIMD
Extensions (Intel® SSE) operates on 128-bit data chunks. The AVX2 instruction
set expanded the SIMD capability to 256-bit data chunks. In recent years, the
Intel AVX512 instruction set further expanded the SIMD capability to 512-bit
data chunks. Each SIMD instruction set can use the data chunks to represent
multiple smaller-width inputs. For instance, Intel AVX512 intrinsics use the __-
m512i datatype, which represents a packed 512-bit integer, which may represent
eight 64-bit integers.

To employ these SIMD instructions, users may call the desired assembly
function. Additionally, for easier use, Intel provides a set of C/C++-compatible
intrinsics, which compile to the relevant assembly instruction. To understand the
naming of Intel intrinsics, ‘epi’ refers to extended packed integer and ‘epu’ refers
to extended packed unsigned integer and the last number indicates the number of
bits.

For instance, the Intel® AVX512 Doubleword and Quadword (Intel® AVX512-
DQ) extension contains the following intrinsic:

7

– __m512i _mm512_mullo_epi64 (__m512i a, __m512i b). Given packed 64-
bit integers in a and b, return the low 64 bits of the 128-bit product a · b.

However, there is no matching _mm512_mulhi_epi64 instruction. Instead, it may
be emulated with, e.g. four Intel AVX512 32-bit multiplies, five Intel AVX512
64-bit adds and five Intel AVX512 64-bit shift instructions [14].

The Intel AVX512-IFMA52 extension to Intel AVX512 [5] consists of several
operations useful in lattice cryptography. In particular, Intel AVX512-IFMA52
introduces the following intrinsics:

– __m512i _mm512_madd52lo_epu64 (__m512i a, __m512i b, __m512i c).
Given packed unsigned 52-bit integers in each 64-bit element of b and c, com-
pute the 104-bit product b · c. Add the low 52 bits of the product to the
packed unsigned 64-bit integers in a and return the result.

– __m512i _mm512_madd52hi_epu64 (__m512i a, __m512i b, __m512i c).
Given packed unsigned 52-bit integers in each 64-bit element of b and c, com-
pute the 104-bit product b · c. Add the high 52 bits of the product to the
packed unsigned 64-bit integers in a and return the result.

Intel HEXL also utilizes one intrinsic from the Intel AVX512 Vector Bit Manipu-
lation Version 2 (Intel AVX512-VBMI2) instruction set:

– __m512i _mm512_shrdi_epi64 (__m512i a, __m512i b, int imm8). Given
packed 64-bit integers in b and c, concatenate them to a 128-bit intermediate
result. Shift the result right by imm8 bits and return the lower 64 bits of the
result.

3 Previous Work

The key differentiating factor between Intel HEXL and previous work is the use
of the Intel AVX512-IFMA52 instruction set to accelerate finite field arithmetic,
in particular the number-theoretic transform. Apart from this contribution, Intel
HEXL utilizes several existing algorithms from previous work.

The Mathemagix library [13] provides Intel AVX-accelerated implementations
of modular integer arithmetic using a SIMD programming model. NFLlib [1]
provides similar acceleration of primitives common to the ring Zq/(X

N + 1)
using Intel SSE and Intel AVX2 instructions. However, neither Mathemagix nor
NFLlib consider Intel AVX512 implementations using the Intel AVX512-IFMA52
instruction set.

Previous work [7,11] using Intel AVX512-IFMA52 focuses on accelerating big
integer multiplication without modular multiplication. Drucker and Gueron [6]
use Intel AVX512-IFMA52 to accelerate large integer modular squaring via
Montgomery multiplication. In contrast, our work uses Barrett reduction and
focuses on word-sized modular multiplication. Furthermore, to our knowledge,
Intel HEXL is the first work to accelerate the NTT using Intel AVX512-IFMA52.

8

4 Intel HEXL

Design Intel HEXL is an open-source C++11 library available under the Apache
2.0 license. Intel HEXL focuses on the case where q < β = 264, as implemented
on a 64-bit word-sized CPU platform. This restriction of is typical of HE imple-
mentations on CPU. SEAL [18] for instance, bounds all coefficient moduli to 61
bits. GPUs implementations of HE, (e.g. [14, 17]) however, often restrict q < 232

since 64-bit support for integers is often restricted or emulated, yielding lower
performance. As such, the Intel HEXL API uses unsigned 64-bit integers input
vector types. Unlike other libraries, however, Intel HEXL does not currently pro-
vide a BigNum type for multi-precision arithmetic, such as is found in NTL [19]
or NFLlib [1].

Intel HEXL consists of a class for the NTT functionality in addition to several
free functions implementing element-wise modular arithmetic on word-sized
primes. The NTT class performs pre-computation for the roots of unity and their
pre-computed factors during initialization. The element-wise functions perform
any pre-computations outside the critical loop, rendering it unnecessary for the
end user to perform any pre-computation. Intel HEXL is single-threaded and
thread safe. Listing 1.2 shows the application programming interface (API) for
the NTT.

1 c l a s s NTT {
2 pub l i c :
3 /// I n i t i a l i z e s an empty NTT objec t
4 NTT() ;
5
6 /// Destructs the NTT objec t
7 ~NTT() ;
8
9 /// I n i t i a l i z e s an NTT objec t with degree degree and modulus q .

10 /// @param [in] degree a . k . a . N. S i z e o f the NTT transform . Must be a power o f
2

11 /// @param [in] q Prime modulus . Must s a t i s f y q == 1 mod 2N
12 /// @br ie f Performs pre−computation neces sary f o r forward and inve r s e
13 /// trans forms
14 NTT(uint64_t degree , uint64_t q) ;
15
16 /// @br ie f I n i t i a l i z e s an NTT objec t with degree degree and modulus q
17 /// @param [in] degree a . k . a . N. S i z e o f the NTT transform . Must be a power o f

2
18 /// @param [in] q Prime modulus . Must s a t i s f y q == 1 mod 2N
19 /// @param [in] root_of_unity 2N ’ th root o f unity in Z_q
20 /// @deta i l s Performs pre−computation neces sary f o r forward and inve r s e
21 /// trans forms
22 NTT(uint64_t degree , uint64_t q , uint64_t root_of_unity) ;
23
24 /// @br ie f Compute forward NTT. Resu l t s are bit−r eve r s ed .
25 /// @param [out] r e s u l t Store s the r e s u l t
26 /// @param [in] operand Data on which to compute the NTT
27 /// @param [in] input_mod_factor Assume input operand are in [0 ,
28 /// input_mod_factor ∗ q) . Must be 1 , 2 or 4 .
29 /// @param [in] output_mod_factor Returns output operand in [0 ,
30 /// output_mod_factor ∗ q) . Must be 1 or 4 .
31 void ComputeForward (uint64_t∗ r e su l t , const uint64_t∗ operand ,
32 uint64_t input_mod_factor , uint64_t output_mod_factor) ;
33
34 /// Compute i nve r s e NTT. Resu l t s are bit−r eve r s ed .
35 /// @param [out] r e s u l t Store s the r e s u l t
36 /// @param [in] operand Data on which to compute the NTT
37 /// @param [in] input_mod_factor Assume input operand are in [0 ,
38 /// input_mod_factor ∗ q) . Must be 1 or 2 .
39 /// @param [in] output_mod_factor Returns output operand in [0 ,
40 /// output_mod_factor ∗ q) . Must be 1 or 2 .
41 void ComputeInverse (uint64_t∗ r e su l t , const uint64_t∗ operand ,
42 uint64_t input_mod_factor , uint64_t output_mod_factor) ;
43 }

Listing 1.2: Intel HEXL NTT class API

Listing 1.3 shows the API for the element-wise operations.

9

1 /// @brie f Adds two vec to r s element−wise with modular reduct ion
2 /// @param [out] r e s u l t Store s r e s u l t
3 /// @param [in] operand1 Vector o f e lements to add . Each element must be l e s s
4 /// than the modulus
5 /// @param [in] operand2 Vector o f e lements to add . Each element must be l e s s
6 /// than the modulus
7 /// @param [in] n Number o f e lements in each vector
8 /// @param [in] modulus Modulus with which to perform modular reduct ion . Must be
9 /// in the range [2 , 2^{63} − 1] .

10 /// @deta i l s Computes operand1 [i] = (operand1 [i] + operand2 [i]) mod modulus
11 /// f o r i =0, . . . , n−1.
12 void EltwiseAddMod (uint64_t∗ r e su l t , const uint64_t∗ operand1 ,
13 const uint64_t∗ operand2 , uint64_t n , uint64_t modulus) ;
14
15 /// @br ie f Computes fused mult iply−add (arg1 ∗ arg2 + arg3) mod modulus element−wise ,

broadcast ing s c a l a r s to vec to r s .
16 /// @param [out] r e s u l t Store s the r e s u l t
17 /// @param [in] arg1 Vector to mult ip ly
18 /// @param [in] arg2 Sca la r to mult ip ly
19 /// @param [in] arg3 Vector to add . Wil l not add i f arg3 == nu l l p t r
20 /// @param [in] n Number o f e lements in each vector
21 /// @param [in] modulus Modulus with which to perform modular reduct ion . Must be
22 /// in the range [2 , 2^{61} − 1]
23 /// @param [in] input_mod_factor Assumes input elements are in [0 ,
24 /// input_mod_factor ∗ q) . Must be 1 , 2 , 4 , or 8 .
25 void EltwiseFMAMod(uint64_t∗ r e su l t , const uint64_t∗ arg1 , uint64_t arg2 ,
26 const uint64_t∗ arg3 , uint64_t n , uint64_t modulus ,
27 uint64_t input_mod_factor) ;
28
29 /// @br ie f Mu l t i p l i e s two vec to r s element−wise with modular reduct ion
30 /// @param [in] r e s u l t Result o f element−wise mu l t i p l i c a t i o n
31 /// @param [in] operand1 Vector o f e lements to mult ip ly . Each element must be
32 /// l e s s than the modulus .
33 /// @param [in] operand2 Vector o f e lements to mult ip ly . Each element must be
34 /// l e s s than the modulus .
35 /// @param [in] n Number o f e lements in each vector
36 /// @param [in] modulus Modulus with which to perform modular reduct ion
37 /// @param [in] input_mod_factor Assumes input elements are in [0 ,
38 /// input_mod_factor ∗ q) Must be 1 , 2 or 4 .
39 /// @deta i l s Computes r e s u l t [i] = (operand1 [i] ∗ operand2 [i]) mod modulus f o r i =0,

. . . , n − 1
40 void EltwiseMultMod (uint64_t∗ r e su l t , const uint64_t∗ operand1 ,
41 const uint64_t∗ operand2 , uint64_t n , uint64_t modulus ,
42 uint64_t input_mod_factor) ;

Listing 1.3: Intel HEXL free function API

Several of the functions have input arguments input_mod_factor or output_-
mod_factor. These allows for optimized implementations via lazy reduction. For
instance, given two polynomials f(x), g(x) ∈ Rq represented using the coefficient
embedding, we can compute f ∗ g by leaving the outputs of the forward NTT
in the range [0, 4q). This improves performance over the simplest choice of
input_mod_factor = 1, output_mod_factor = 1.

1 /// Compute f (x) ∗ g (x)
2 /// @param [in] N S ize o f input vec to r s
3 /// @param [in] q Modulus
4 VectorVectorMultMod (uint64_t∗ out , uint64_t∗ f , uint64_t∗ g , uint64_t N, uint64_t q)

{
5 NTT(N, p) . ComputeForward (f , f , 1 , 4) ;
6 NTT(N, p) . ComputeForward (g , g , 1 , 4) ;
7 EltwiseMultMod (out , f , g , N, q , 4) ;
8 NTT(N, p) . ComputeInverse (out , out , 1 , 1) ;
9 }

Listing 1.4: Use of input_mod_factor to optimize vector-vector modular
multiplication

Implementation The primary functionality of Intel HEXL is to provide opti-
mized Intel AVX512-DQ and Intel AVX512-IFMA52 implementations for the
forward and inverse NTT, element-wise vector-vector multiplication and element-
wise vector-scalar multiplication. The Intel AVX512-IFMA52 implementations

10

are valid on prime numbers less than 50–52 bits, while the Intel AVX512-DQ
implementations allow moduli up to ∼62 bits, where the exact conditions de-
pend also on the input_mod_factor. The choice of which implementation is
used is determined at runtime based on the CPU feature availability. While the
current implementation always prefers Intel AVX512-IFMA52 implementations
over Intel AVX512-DQ implementations (where the input conditions are met)
over native implementation, a future optimization may be to determine the best
implementation dynamically via a small number of trials upon initializing the
library.

The implementation uses several Intel AVX512 helper functions, which are
inlined for best performance. Several functions take a template argument, either
52 or 64, which is evaluated at compile time. These template parameters enable
a unified implementation between primes less than 50–52 bits and primes larger
than 52 bits, with no performance degradation. The following Intel AVX512
kernels are used in Intel HEXL, where we use m512i to refer to the __m512i
datatype:

– m512i _mm512_hexl_mullo_epi<k>(m512i x, m512i y).
Multiplies packed unsigned k-bit integers in each 64-bit element of x and
y to perform a 2k-bit intermediate result. Returns the low k-bit unsigned
integer from the intermediate result. The implementation with k = 64 calls
to _mm512_mullo_epi64. The implementation with k = 52 calls _mm512_-
madd52lo_epu64 with the accumulator set to zero.

– m512i _mm512_hexl_mullo_add_epi<k>(m512i x, m512i y, m512i z).
Multiplies packed unsigned k-bit integers in each 64-bit element of y and z to
perform a 2k-bit intermediate result. Returns the low k-bit unsigned integer
from the intermediate result added to the low k bits of x. The implementation
with k = 64 requires one call to _mm512_mullo_epi64 and one call to _-
mm512_add_epi64. The implementation with k = 52 requires a single call to
_mm512_madd52lo_epu64.

– m512i _mm512_hexl_mulhi_epi<k>(m512i x, m512i y).
Multiplies packed unsigned k-bit integers in each 64-bit element of x and y to
perform a 2k-bit intermediate result. Returns the high k-bit unsigned integer
from the intermediate result. The implementation with k = 64 requires two
32-bit shuffles, four 32-bit multiplies, three right shift, four 64-bit additions
and one packed logical and operation. The implementation with k = 52 calls
_mm512_madd52hi_epu64 with the accumulator set to zero.

– m512i _mm512_hexl_small_mod_epi64<k>(m512i x, m512i q, m512i* q_-
times_2, mm512i* q_times_4).
Given packed unsigned 64-bit integers in x and q, with each integer 0 ≤ xi <
k · qi, where k ∈ {1, 2, 4, 8}, returns x mod q. The implementation for k = 2
uses the fact that for unsigned integers x < 2q,

x mod q =

{
x− q x ≥ q
x

= min(x− q, x),

11

which calls _mm512_sub_epi64 once and _mm512_min_epu64 once. For k = 4
and k = 8, log2 k repeated calls are made to both _mm512_sub_epi64 and
_mm512_min_epu64 which utilize the q_times_2 (k = 4, 8) and q_times_4
(k = 8)inputs, which are required not to be nullptr in these cases. For instance,
Listing 1.5 shows the implementation when k = 8. The three statements map
the input from the range [0, 8q) to [0, 4q), then to [0, 2q), and finally to [0, q).

1 // Fast computation of x mod q for x < 8q
2 __m512i _mm512_hexl_small_mod_epu64 <8>(__m512i x, __m512i q, __m512i*

q_times_2 , __m512i* q_times_4) {
3 x = _mm512_min_epu64(x, _mm512_sub_epi64(x, *q_times_4));
4 x = _mm512_min_epu64(x, _mm512_sub_epi64(x, *q_times_2));
5 return _mm512_min_epu64(x, _mm512_sub_epi64(x, q));
6 }

Listing 1.5: Small-input modular reduction

– m512i _mm512_hexl_cmpge_epu64(m512i x,m512i y, uint64_t v).
Given packed unsigned 64-bit integers in x, y, returns a packed 64-bit integer
with value v in each element for which x > y and 0 otherwise. The imple-
mentation makes one call to _mm512_maskz_broadcastq_epi64 and one call
to _mm512_cmpge_epu64_mask.

4.1 NTT

Intel HEXL provides optimized Intel AVX512 implementations of the negacyclic
number-theoretic transform (NTT) with bit-reversed outputs. At a high level,
the implementation follows the radix-2 implementation from Cooley-Tukey and
Gentleman-Sande, using the Harvey butterflies (see Section 2.2). In each case,
the butterfly is implemented across all 8 lanes of an Intel AVX512 input vector
of 64-bit integers.

Forward NTT The forward NTT is implemented using the Cooley-Tukey
radix-2 transform in Algorithm 2. The key acceleration using Intel AVX512 is
the loop in lines 9 to 14. Algorithm 6 shows the Harvey forward NTT butterfly
implemented in Intel AVX512.

Inverse NTT The inverse NTT is implemented using the Gentleman-Sande
radix-2 implementation from Algorithm 3. The key acceleration using Intel
AVX512 is the loop in lines 9 to 14. Algorithm 7 shows the inverse Harvey
NTT butterfly implemented in Intel AVX512. We make a few remarks on the
implementations:

– The template argument InputLessThanMod enables a compile-time optimiza-
tion in when the inputs X,Y are known to be less than q. For instance, when
the input polynomial to the forward or inverse NTT has all coefficients less
than q, InputLessThanMod is true during the first pass through the data.

12

Algorithm 6 Intel AVX512 Harvey NTT butterfly. β is the word size, with
either β = 252 or β = 264.
Require: q < β/4; 0 < W < q
Require: W ′ = bWβ/qc, 0 < W ′ < β
Require: 0 ≤ X,Y < 4q
Require: twice_modulus contains 2q in all 8 lanes
Require: neg_modulus contains −q in all 8 lanes
Ensure: X ← X +WY mod q; 0 ≤ Y < 4q
Ensure: Y ← X −WY mod q; 0 ≤ Y < 4q
1: function HarveyNTTButterfly<int BitShift, bool InputLessThan-

Mod>(__m512i* X, __m512i* Y, __m512i W_op, __m512i W_precon, __-
m512i neg_modulus, __m512i twice_modulus)

2: if !InputLessThanMod then
3: *X = _mm512_hexl_small_mod_epu64(*X, twice_modulus);
4: end if
5: __m512i Q = _mm512_hexl_mulhi_epi<BitShift>(W_precon, *Y);
6: __m512i W_Y = _mm512_hexl_mullo_epi<BitShift>(W_op, *Y);
7: __m512i T = _mm512_hexl_mullo_add_epi<BitShift>(W_Y, Q,

neg_modulus);
8: if BitShift == 52 then
9: T = _mm512_and_epi64(T, _mm512_set1_epi64((1UL « 52) - 1));
10: end if
11: __m512i twice_mod_minus_T = _mm512_sub_epi64(twice_modulus, T);
12: *Y = _mm512_add_epi64(*X, twice_mod_minus_T);
13: *X = _mm512_add_epi64(*X, T);
14: end function

13

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x(11)

x(12)

x(13)

x(14)

x(15)

X(0)

X(8)

X(4)

X(12)

X(2)

X(10)

X(6)

X(14)

X(1)

X(9)

X(5)

X(13)

X(3)

X(11)

X(7)

X(15)

× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×

FwdT8 FwdT4 FwdT2 FwdT1

InvT8 InvT4 InvT2 InvT1

Fig. 1: NTT dataflow with root of unity factors omitted for clarity. The forward
transform dataflow is from left to right. FwdT8 refers to a case when the for
loop in Lines 9–14 of Algorithm 2 runs for more than 8 iterations. Similarly, the
FwdT4 corresponds to a loop with 4 iterations, FwdT2 corresponds to a loop
with 2 iterations and FwdT1 corresponds to a loop with 1 iteration. The inverse
forward transform dataflow is from right to left, with InvT8, InvT4, InvT2, InvT1
named analogously. Modified from [8].

14

Algorithm 7 Intel AVX512 Harvey Inverse NTT butterfly. β is the word size,
with either β = 252 or β = 264.
Require: q < β/4; 0 < W < q
Require: W ′ = bWβ/qc, 0 < W ′ < β
Require: 0 ≤ X,Y < 2q
Require: twice_modulus contains 2q in all 8 lanes
Require: neg_modulus contains −q in all 8 lanes
Ensure: X ← X + Y mod q; 0 ≤ Y < 2q
Ensure: Y ←W (X − Y) mod q; 0 ≤ Y < 2q.
1: function HarveyInvNTTButterfly<int BitShift, bool InputLessThan-

Mod>(__m512i* X, __m512i* Y, __m512i W_op, __m512i W_precon, __-
m512i neg_modulus, __m512i twice_modulus)

2: __m512i Y_minus_2q = _mm512_sub_epi64(*Y, twice_modulus);
3: __m512i T = _mm512_sub_epi64(*X, Y_minus_2q);
4: if InputLessThanMod then
5: *X = _mm512_add_epi64(*X, *Y);
6: else
7: *X = _mm512_add_epi64(*X, Y_minus_2q);
8: __mmask8 sign_bits = _mm512_movepi64_mask(*X);
9: *X = _mm512_mask_add_epi64(*X, sign_bits, *X, twice_modulus);
10: end if
11: __m512i Q = _mm512_hexl_mulhi_epi<BitShift>(W_precon, T);
12: __m512i Q_p = _mm512_hexl_mullo_epi<BitShift>(Q, neg_modulus);
13: *Y = _mm512_hexl_mullo_add_epi<BitShift>(Q_p, W_op, T);
14: if BitShift == 52 then
15: T = _mm512_and_epi64(T, _mm512_set1_epi64((1UL « 52) - 1));
16: end if
17: end function

15

– The negated modulus −q is passed to the input of the forward and inverse
butterflies. This enables the use of _mm512_hexl_mullo_add_epi, which is
a single instruction when BitShift is 52. Note, the Intel AVX512-IFMA52
instruction set does not contain an _mm512_msub52lo_epu64 instruction,
which would enable using q instead of −q.

– Lines 8–10 in the forward butterfly and Lines 14–16 in the inverse butterfly
clear the high 12 bits from T. This is required because the _mm512_madd52lo_-
epu64 instruction uses a 64-bit accumulator, whereas our algorithm requires
a 52-bit accumulator.

– In the inverse butterfly, rather than computing Y0 = X0+X1;T = X0−X1+2q
(as presented in Algorithm 5 and [12]), we compute Y_minus_2q = Y - 2q;
T = X - Y_minus_2q. This saves two scalar additions at the cost of one extra
scalar subtraction.

The Intel AVX512 NTT butterflies are used in every stage of the NTT. The
forward NTT for loop in Lines 9 - 14 of Algorithm 2 begins with N/2 iterations
in the first stage, then N/4 iterations in the next stage, followed by successive
divisions by 2 until the final loop runs for a single iteration in the final stage.
As such, when the loop runs for 8 or more iterations, the use of Algorithm 6
is simple to apply (particularly since the number of loop iterations is divisible
by 8). However, special consideration must be taken in the final three stages,
denoted FwdT4, FwdT2, FwdT1 in Figure 1 when the loop runs for 4 iterations,
2 iterations, and 1 iteration, respectively. In these cases, we permute the data
within each Intel AVX512 unit such that the butterfly is still applied across all
lanes.

Similarly, the inverse NTT for loop in Lines 9–14 of Algorithm 3 begins with
1 iteration in the first stage, 2 iterations in the next stage, followed by successive
multiplications by 2 until the final loop runs for N/2 iterations in the final stage.
Analogous to the forward NTT, for the first three stages, denoted InvT1, InvT2,
InvT4 in Figure 1, we permute the data within each Intel AVX512 unit such
that the butterfly is still applied across all lanes. We note the primary benefit of
Intel AVX512-IFMA52 is in the NTT on primes less than 50 bits, in which case
_mm512_hexl_mulhi<52> via a single assembly call, whereas large primes require
_mm512_hexl_mulhi<64>, which is much more expensive (see Section 2.3).

4.2 Polynomial kernels

For simplicity, in our presentation, we assume the degree of the input polynomials
is divisible by 8. This is typically the case for our HE applications, in which the
polynomials are of degree N = 2k ≥ 1024 a power of two. Nevertheless, the Intel
HEXL implementation includes logic that processes the N mod 8 remaining
loop iterations.

Element-wise vector-vector multiplication Intel HEXL provides two AVX512
implementations of element-wise vector-vector multiplication: 1) an Intel AVX512-
DQ implementation using integer logic; 2) an Intel AVX512-DQ implementation

16

using floating-point logic. For each implementation, we use a pre-processor direc-
tive to tune the loop unrolling factor for best performance. Each Intel AVX512
kernel implements SIMD modular multiplication across all 8 lanes of the Intel
AVX512 data and is sequentially applied to each 512-bit chunk of the input data.

Intel AVX512-DQ integer implementation
The Intel AVX512-DQ integer implementation uses Algorithm 1. We choose
Q = blog2 qc + 1 and L = 63 + Q. This choice has a few benefits. Firstly, this
ensures q > 2Q−1, which implies the Barrett factor k = b2L/qc < 2L/2Q−1 = 264,
i.e. it fits in a single 64-bit integer. Secondly, this choice ensures L−Q+ 1 = 64,
which implies c3 is simply the high 64 bits of c2 (see lines 3–4), i.e. the low 64
bits of c2 do not need to be computed.

Note, since the input may be larger than q (when the
input_mod_factor is larger than 1), the shifted product d � (Q − 1) may be
larger than 264. To prevent overflow in this case (which may happen when q
exceeds 59 bits), the inputs are first reduced to the range [0, q) via a sequence of
fixed-time conditional subtractions. Algorithm 8 shows the pseudocode for the
Intel AVX512-DQ integer modular multiplication implementation.

Algorithm 8 VectorVectorModMulAVX512Int

Require: q < 262 stores the modulus in all 8 lanes
Require: 0 < X,Y < InputModFactor · q
Require: InputModFactor · q < 263

Require: twice_q stores 2q across all 8 lanes
Require: barr_lo stores b2L/qc across all 8 lanes
Ensure: Returns X · Y mod q
1: function EltwiseMultModAVX512Int<int BitShift, int InputModFac-

tor>(__m512i X, __m512i Y, __m512i barr_lo, __m512i q, __m512i twice_q)
2: X = _mm512_hexl_small_mod_epu64<InputModFactor>(X, q, twice_q);
3: Y = _mm512_hexl_small_mod_epu64<InputModFactor>(Y, q, twice_q);
4: __m512i prod_hi = _mm512_hexl_mulhi_epi<64>(X, Y);
5: __m512i prod_lo = _mm512_hexl_mullo_epi<64>(X, Y);
6: __m512i c1 = _mm512_hexl_shrdi_epi64<BitShift - 1>(prod_lo, prod_hi);
7: __m512i c3 = _mm512_hexl_mulhi_epi<64>(c1, barr_lo);
8: __m512i c4 = _mm512_hexl_mullo_epi<64>(c3, q);
9: c4 = _mm512_sub_epi64(prod_lo, c4);
10: __m512i result = _mm512_hexl_small_mod_epu64(c4, q);
11: return result;
12: end function

Intel AVX512-DQ Floating-point implementation
For q < 250, Intel HEXL uses a floating-point Intel AVX512-DQ implementation.
This implementation adapts Function 3.10 from Mathemagix [13] to Intel AVX512,
in a similar manner as Fortin et al. [9]. Algorithm 9 shows the implementation
for the Intel AVX512 floating-point kernel.

We make a few notes about the floating-point implementation:

17

Algorithm 9 VectorVectorModMulAVX512Float
Require: 0 < X,Y < InputModFactor · q
Require: InputModFactor · q < 252

Require: u stores 1/(double)q in each lane, rounding toward infinity, so that u ≥ 1/q
Ensure: Returns X · Y mod q
1: function EltwiseMultModAVX512Float<int BitShift, int InputModFac-

tor>(__m512i X, __m512i Y, __m512d u)
2: const int rounding = _MM_FROUND_TO_POS_INF|_MM_FROUND_NO_EXC;
3: __m512d xi = _mm512_cvt_roundepu64_pd(X, rounding);
4: __m512d yi = _mm512_cvt_roundepu64_pd(Y, rounding);
5: __m512d h = _mm512_mul_pd(xi, yi);
6: __m512d l = _mm512_fmsub_pd(xi, yi, h); . rounding error; h + l == x *

y
7: __m512d b = _mm512_mul_pd(h, u); . ∼(x * y) / q
8: __m512d c = _mm512_floor_pd(b); . ∼floor(x * y / q)
9: __m512d d = _mm512_fnmadd_pd(c, q, h);
10: __m512d g = _mm512_add_pd(d, l);
11: __mmask8 m = _mm512_cmp_pd_mask(g, _mm512_setzero_pd(),

_CMP_LT_OQ);
12: g = _mm512_mask_add_pd(g, m, g, p);
13: __m512i result = _mm512_cvt_roundpd_epu64(g, rounding);
14: return result
15: end function

– The implementation is valid as long as InputModFactor · q < 252. As such,
there is no explicit modulus reduction step required for InputModFactor ∈
{1, 2, 4}.

– We experimented with several Intel AVX512-IFMA52 implementations. How-
ever, we found this Intel AVX512 floating-point implementation yields best
performance.

Element-wise vector-scalar multiplication The EltwiseFMAMod function
implements vector-scalar modular multiplication, with an additional optional
scalar modular addition. The Intel AVX512-DQ and Intel AVX512-IFMA52
implementations use the same underlying kernel, with the Intel AX512-DQ kernel
using BitShift = 64 and the Intel AVX512-IFMA52 kernel using BitShift =
52. The Intel AVX512-IFMA52 kernel is valid for InputModFactor · q < 252,
while the Intel AVX512-DQ kernel is valid for InputModFactor · q < 262. Algo-
rithm 10 shows the Algorithm for vector-scalar multiplication. Compared to the
vector-vector multiplication algorithm, the vector-scalar multiplication algorithm
performs additional pre-computation using the scalar factor. Where required,
Lines 2 and 3 perform conditional subtractions to reduce the input to the range
[0, q).

18

Algorithm 10 EltwiseFMAModAVX512
Require: 0 < X,Z < InputModFactor · q
Require: 0 < Y < q
Require: Ybarr = by � BitShift/qc
Require: InputModFactor · q < 2BitShift

Require: q stores the modulus across all 8 lanes
Ensure: Returns X · Y + Z mod q
1: function EltwiseFMAModAVX512<int BitShift, int InputModFac-

tor>(__m512i X, __m512i Y, __m512i Y_barr, __m512i Z, __m512i q)
2: X = _mm512_hexl_small_mod_epu64<InputModFactor>(X, q);
3: Z = _mm512_hexl_small_mod_epu64<InputModFactor>(Z, q);
4: __m512i XY = _mm512_hexl_mullo_epi<64>(X, Y);
5: __m512i R = _mm512_hexl_mulhi_epi<BitShift>(X, Y_barr);
6: __m512i Rq = _mm512_mullo_epi64(R, q);
7: R = _mm512_sub_epi64(XY, Rq);
8: R = _mm512_hexl_small_mod_epu64(R, q); . Conditional Barrett

subtraction
9: R = _mm512_add_epi64(vq, Z);
10: R = _mm512_hexl_small_mod_epu64(R, q);
11: return R
12: end function

5 Results

We benchmark each kernel on a 3rd Gen Intel Xeon® Scalable Processors
Platinum 8360Y 2.4GHz processor with 64GB of RAM and 72 cores, running
the Ubuntu 20.04 operating system. The code is compiled using clang-10 with
the ‘-march=native -O3’ optimization flags. We run each kernel for 10 seconds
and report the average execution time.

NTT We benchmark the performance of the forward and inverse NTT in
three settings: 1) the native C++ implementation; 2) the Intel AVX512-DQ
implementation; 3) the Intel AVX512-IFMA52 implementation. The default
implementation uses the radix-2 Cooley-Tukey (forward NTT) and Gentleman-
Sande (inverse NTT) formulations, using the Harvey butterfly (see Section 2.2).
Additionally, we compare against NTL v11.4.3 [19], an open-source number
theory library. NTL is compiled with clang-10 using the NTL_ENABLE_AVX_-
FFT flag, which enables an experimental Intel AVX512 implementation using
floating-point arithmetic.

We measure the performance on three different input sizes:N = 1024, 4096, 16384.
Table 1 shows the runtimes for the forward transform. The Intel AVX512-DQ
implementation provides a significant 2.7x–2.8x speedup over the native imple-
mentation, with the Intel AVX512-IFMA52 increasing this speedup to 7.2x for the
smallest size. The AVX512-IFMA52 implementation speedup decreases to 5.3x
for the larger N = 16384 case as L1 cache misses bottleneck the memory access.
NTL’s implementation uses floating-point arithmetic for integer computation,

19

and is therefore correct only for primes up to 50 bits. As such, while NTL may
provide best performance on systems without Intel AVX512-IFMA52, no addi-
tional speedup is expected on NTL on systems with the Intel AVX512-IFMA52
instruction set.

Table 1: Single-threaded, single-core runtime in microseconds of the forward NTT
with input_mod_factor = output_mod_factor = 1.

Implementation N / Speedup

1024 4096 16384

Native C++ 9.08 1.0x 38.8 1.0x 177 1.0x
Intel AVX512-DQ 3.26 2.7x 13.4 2.8x 62.3 2.8x
NTL 2.44 3.7x 8.48 4.5x 40.2 4.3x
Intel AVX512-IFMA52 1.25 7.2x 5.81 6.6x 33.1 5.3x

Table 2 shows the runtimes for the inverse NTT. We see the Intel AVX512-DQ
implementation provides a similar speedup of 2.5x–2.6x over the native imple-
mentation. The Intel AVX512-IFMA52 implementation improves this speedup to
6.7x on the smaller transforms, which diminishes to 5.3x on the largest transform.
As with the forward NTT, the speedup on the larger transforms is diminished due
to L1 cache misses. As with the forward transform, while NTL may provide best
performance on systems without Intel AVX512-IFMA52, no additional speedup
is expected on NTL on systems with the Intel AVX512-IFMA52 instruction set.

Table 2: Single-threaded, single-core runtime in microseconds of the inverse NTT
with input_mod_factor = output_mod_factor = 1.

Implementation N / Speedup

1024 4096 16384

Native C++ 8.25 1.0x 37.8 1.0x 174 1.0x
Intel AVX512-DQ 3.16 2.6x 14.6 2.5x 68.2 2.5x
NTL 2.12 3.8x 9.05 4.1x 42.4 4.1x
Intel AVX512-IFMA52 1.23 6.7x 5.72 6.6x 32.4 5.3x

Polynomial We benchmark the performance of the element-wise vector-vector
and vector-scalar modular multiplication kernels. For element-wise vector-vector
modular multiplication, we compare three implementations: 1) the native C++
implementation; 2) the Intel AVX512-DQ integer implementation; 3) the Intel

20

AVX512-DQ floating-point implementation. As with the NTT, we consider three
input sizes: N = 1024, 4096, 16384.

Table 3 shows the runtimes for the element-wise vector-vector modular multi-
plication. The Intel AVX512-DQ integer implementation provides a 1.5x–1.9x
speedup over the native implementation, which increases to 5.1x–6.0x with the
Intel AVX512-DQ floating-point implementation.

Table 3: Single-threaded, single-core runtime in microseconds of element-wise
vector-vector modular multiplication with input_mod_factor = 1.

Implementation N / Speedup

1024 4096 16384

Native C++ 1.51 1.0x 5.71 1.0x 23.6 1.0x
Intel AVX512-DQ Int 0.982 1.5x 3.43 1.6x 12.3 1.9x
Intel AVX512-DQ Float 0.251 6.0x 1.08 5.2x 4.58 5.1x

For the element-wise vector-scalar modular multiplication kernel, we compare
three implementations: 1) the native C++ implementation; 2) the Intel AVX512-
DQ implementation; 3) the Intel AVX512-IFMA52 implementation.

Table 4 shows the runtimes for the element-wise vector-scalar modular multipli-
cation with scalar addition. The Intel AVX512-DQ implementation no significant
speedup over the native implementation, as the compiler’s auto-vectorizer does a
sufficient job using Intel AVX instructions. The Intel AVX512-IFMA52 imple-
mentation provides a moderate 1.7x speedup over the native implementation.

Table 4: Single-threaded, single-core runtime in microseconds of element-wise
vector-scalar modular multiplication with scalar addition and input_mod_factor
= 1.

Implementation N / Speedup

1024 4096 16384

Native C++ 0.53 1.0x 2.11 1.0x 9.01 1.0x
Intel AVX512-DQ 0.53 1.0x 2.11 1.0x 9.01 1.0x
Intel AVX512-IFMA52 0.302 1.7x 1.20 1.7x 5.08 1.7x

21

6 Conclusion

Here, we introduced Intel HEXL, a C++ library using the Intel AVX512 instruc-
tion set to accelerate key primitives in lattice cryptography. Intel HEXL provides
optimized implementations of the number-theoretic transform (NTT) and poly-
nomial operations, including element-wise vector-vector modular multiplication
and element-wise vector-scalar modular multiplication. The Intel AVX512-DQ
instruction set is used to accelerate the operations for a wide range of word-sized
primes, up to 62 bits. The recent Intel AVX512-IFMA52 extension to the In-
tel AVX512 instruction set further improves performance for primes less than
50–52 bits. In particular, the Intel AVX512-IFMA52 instructions yield up to
7.2x and 6.7x speedup over a native C++ implementation of the forward and
inverse NTT, respectively. The Intel AVX512-DQ floating-point implementation
of element-wise modular multiplication yields up to 6.0x speedup over the na-
tive C++ implementation, while the Intel AVX512-IFMA52 implementation of
element-wise vector-scalar modular multiplication yields 1.7x speedup over the
native C++ implementation. The Intel HEXL library is available open-source at
https://github.com/intel/hexl under the Apache 2.0 license.

Future work improving Intel HEXL includes exploring additional NTT im-
plementations, such as higher-radix implementations. In particular, higher-radix
NTT implementations may reduce the memory pressure, which currently bot-
tlenecks the larger-size NTT performance, as observed in [14]. We also plan
to integrate Intel HEXL with open-source homomorphic encryption libraries,
as well as expand the API to encompass a larger variety of applications. In
particular, adding a programming model which enables compiling several Intel
HEXL kernels may enable compiler optimizations such as loop fusion, which may
improve performance and usability.

Acknowledgement

We would like to thank Ilya Albrekht for guidance on the AVX512 implementa-
tion.

22

https://github.com/intel/hexl

References

1. Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.O., Lepoint,
T.: Nfllib: Ntt-based fast lattice library. In: Cryptographers’ Track at the RSA
Conference. pp. 341–356. Springer (2016)

2. Bergamaschi, F., Halevi, S., Halevi, T.T., Hunt, H.: Homomorphic training of 30,000
logistic regression models. In: International Conference on Applied Cryptography
and Network Security. pp. 592–611. Springer (2019)

3. Blatt, M., Gusev, A., Polyakov, Y., Goldwasser, S.: Secure large-scale genome-wide
association studies using homomorphic encryption. Proceedings of the National
Academy of Sciences 117(21), 11608–11613 (2020)

4. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
fourier series. Mathematics of computation 19(90), 297–301 (1965)

5. Corporation, I.: Intel intrinsics guide, https://software.intel.com/sites/landingpage/
IntrinsicsGuide/#avx512techs=AVX512IFMA52

6. Drucker, N., Gueron, S.: Fast modular squaring with avx512ifma. In: 16th Inter-
national Conference on Information Technology-New Generations (ITNG 2019).
pp. 3–8. Springer (2019)

7. Edamatsu, T., Takahashi, D.: Accelerating large integer multiplication using intel
avx-512ifma. In: International Conference on Algorithms and Architectures for
Parallel Processing. pp. 60–74. Springer (2019)

8. Fauske, K.M.: Texample.net, https://texample.net/tikz/examples/radix2fft/
9. Fortin, P., Fleury, A., Lemaire, F., Monagan, M.: High performance simd modular

arithmetic for polynomial evaluation. arXiv preprint arXiv:2004.11571 (2020)
10. Géraud, R., Maimuţ, D., Naccache, D.: Double-speed barrett moduli. In: The New

Codebreakers, pp. 148–158. Springer (2016)
11. Gueron, S., Krasnov, V.: Accelerating big integer arithmetic using intel ifma

extensions. In: 2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH).
pp. 32–38. IEEE (2016)

12. Harvey, D.: Faster arithmetic for number-theoretic transforms. Journal of Symbolic
Computation 60, 113–119 (2014)

13. Hoeven, J.V.D., Lecerf, G., Quintin, G.: Modular simd arithmetic in mathemagix.
ACM Transactions on Mathematical Software (TOMS) 43(1), 1–37 (2016)

14. Jung, W., Lee, E., Kim, S., Lee, K., Kim, N., Min, C., Cheon, J.H., Ahn, J.H.: Heaan
demystified: Accelerating fully homomorphic encryption through architecture-centric
analysis and optimization. arXiv preprint arXiv:2003.04510 (2020)

15. Kocabas, O., Soyata, T.: Towards privacy-preserving medical cloud computing
using homomorphic encryption. In: Virtual and Mobile Healthcare: Breakthroughs
in Research and Practice, pp. 93–125. IGI Global (2020)

16. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In: International Conference on Cryptology and
Network Security. pp. 124–139. Springer (2016)

17. Morshed, T., Al Aziz, M.M., Mohammed, N.: Cpu and gpu accelerated fully
homomorphic encryption. In: 2020 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST). pp. 142–153. IEEE (2020)

18. Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL (Nov 2020),
microsoft Research, Redmond, WA.

19. Shoup, V., et al.: Ntl: A library for doing number theory (2001)

23

https://software.intel.com/sites/landingpage/IntrinsicsGuide/#avx512techs=AVX512IFMA52
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#avx512techs=AVX512IFMA52
https://texample.net/tikz/examples/radix2fft/
https://github.com/Microsoft/SEAL

	Intel HEXL: Accelerating Homomorphic Encryption with Intel AVX512-IFMA52

