
Stacking Sigmas:
A Framework to Compose Σ-Protocols for Disjunctions

Aarushi Goel1, Matthew Green1, Mathias Hall-Andersen2, and Gabriel Kaptchuk3

1Johns Hopkins University, {aarushig,mgreen}@cs.jhu.edu
2Aarhus University, ma@cs.au.dk

3Boston University, kaptchuk@bu.edu

Abstract

Zero-Knowledge (ZK) Proofs for disjunctive statements have been a focus of a long line of research.
Classical results such as Cramer et al. [CRYPTO’94] and Abe et al. [AC’02] design generic compilers that
transform certain classes of ZK proofs into ZK proofs for disjunctive statements. However, communication
complexity of the resulting protocols in these results ends up being proportional to the complexity of
proving all clauses in the disjunction. More recently, Heath et al. [EC’20] exploited special properties of
garbled circuits to construct efficient ZK proofs for disjunctions, where the proof size is only proportional
to the length of the largest clause in the disjunction. However, these techniques do not appear to
generalize beyond garbled circuits.

In this work, we focus on achieving the best of both worlds. We design a general framework that
compiles a large class of unmodified Σ-protocols, each for an individual statement, into a new Σ-protocol
that proves a disjunction of these statements. Our framework can be used both when each clause is proved
with the same Σ-protocol and when different Σ-protocols are used for different clauses. The resulting
Σ-protocol is concretely efficient and has communication complexity proportional to the communication
required by the largest clause, with additive terms that are only logarithmic in the number of clauses.

We show that our compiler can be applied to many well-known Σ-protocols, including classical pro-
tocols (e.g. Schnorr [JC’91] and Guillou-Quisquater [CRYPTO’88]) and modern MPC-in-the-head pro-
tocols such as the recent work of Katz, Kolesnikov and Wang [CCS’18] and the Ligero protocol of Ames
et al. [CCS’17]. Finally, since all of the protocols in our class can be made non-interactive in the random
oracle model using the Fiat-Shamir transform, our result yields the first generic non-interactive zero-
knowledge protocol for disjunctions where the communication only depends on the size of the largest
clause.

1

Contents

1 Introduction 3
1.1 Our Contributions. 4

2 Related Work 5

3 Technical Overview 6

4 Preliminaries 11
4.1 Notation . 11
4.2 Σ-Protocols . 11
4.3 Secure Multiparty Computation . 12

5 Partially-Binding Vector Commitments 12
5.1 Relation To Similar Notions . 14
5.2 Partially-Binding Vector Commitments from Discrete Log . 14
5.3 Generic Construction of 1-of-2q Partially-Binding Vector Commitment. 16

6 Stackable Σ-Protocols 18
6.1 Properties of Stackable Σ-Protocols. 18

6.1.1 Cheat Property: “Extended” Honest Verifier Zero-Knowledge. 18
6.1.2 Re-use Property: Recyclable Third Round Messages. 20
6.1.3 Stackability . 21

6.2 Classical Examples of Stackable Σ-Protocols . 21
6.3 Examples of Stackable “MPC-in-the-Head” Σ-Protocols . 22
6.4 Well-Behaved Simulators . 26

7 Self-Stacking: Disjunctions With The Same Protocol 27
7.1 Self Stacking for Instances in Multiple Languages . 28

8 Cross-Stacking: Disjunctions with Different Protocols 30
8.1 Cross Simulatability . 30
8.2 Cross-Stacking from Cross Simulatability . 34

9 k-out-of-` Proofs of Partial Knowledge 34

10 Measuring Concrete Efficiency 35

A Blum87 is Stackable: Proof of Lemma 2 41

B Well-Behaved Simulators: Proof of Lemma 5 42

C Security Proof for Cross-Stacking Compiler (Theorem 6) 43

D Overview of [KKW18] and Proof of Lemma 3 44
D.1 [KKW18] is Stackable: Proof of Lemma 3 . 47

E Overview of Ligero and Proof of Lemma 4 47
E.1 Ligero is Stackable: Proof of Lemma 4 . 50

F k-out-of-` Proofs Of Partial Knowledge (Old Construction) 50

G Optimized Partially Binding Vector Commitments from RO 54

2

1 Introduction

Zero-knowledge proofs and arguments [GMR85] are cryptographic protocols that enable a prover to con-
vince the verifier of the validity of an NP statement without revealing the corresponding witness. These
protocols, along with proof of knowledge variants, have now become critical in the construction of larger
cryptographic protocols and systems. Since classical results established feasibility of such proofs for all
NP languages [GMW86], significant effort has gone into making zero-knowledge proofs more practically
efficient e.g. [JKO13, BCTV14, Gro16, KKW18, BBB+18, BCR+19, HK20b], resulting in concretely efficient
zero-knowledge protocols that are now being used in practice [BCG+14,Zav20, se19].

Zero-knowledge for Disjunctive Statements. There is a long history of developing zero-knowledge
techniques for disjunctive statements [CDS94, AOS02, GMY03]. Disjunctive statements comprise of several
clauses that are composed together with a logical “OR.” These statements also include conditional clauses,
i.e. clauses that would only be relevant if some condition on the statement is met. The witness for such
statements consists of a witness for one of the clauses (also called the active clause), along with the index
identifying the active clause. Disjunctive statements occur commonly in practice, making them an important
target for proof optimizations. For example, disjunctive proofs are often also used to give the prover some
degree of privacy, as a verifier cannot determine which clause is being satisfied. Use cases include member-
ship proofs (e.g. ring signatures [RST01]), proving the existence of bugs in a large codebase (as explored
in [HK20b]), and proving the correct execution of a processor, which is typically composed of many possible
instructions, only one of which is executed at a time [BCG+13].

An exciting line of recent work has emerged that reduces the communication complexity for proving
disjunctive statements to the size of the largest clause in the disjunction [Kol18, HK20b]. While succinct
proof techniques exist [Gro10, GGPR13, BCTV14, Gro16], known constructions are plagued by very slow
proving times and often require strong assumptions, sometimes including trusted setup. These recent works
accept larger proofs in order to get significantly faster proving times and more reasonable assumptions —
while still reducing the size of proofs significantly. Intuitively, the authors leverage the observation that a
prover only needs to honestly execute the parts of a disjunctive statement that pertain to their witness.
Using this observation, these protocols modify existing proof techniques, embedding communication-efficient
ways to “cheat” for the inactive clauses of the disjunctive statement. We refer to these techniques as stacking
techniques, borrowing the term from the work of Heath and Kolesnikov [HK20b].

Although these protocols achieve impressive results, designing stacking techniques requires significant
manual effort. Each existing protocol requires the development of a novel technique that reduces the com-
munication complexity of a specific base protocol. For instance, Heath and Kolesnikov [HK20b] observe that
garbled circuit tables can be additively stacked (thus the name), allowing the prover in [JKO13] to un-stack
efficiently, leveraging the topolgy hiding property of garbling. Techniques like these are tailored to optimize
the communication complexity of a particular underlying protocol, and do not appear to generalize well
to large families of protocols. In contrast, classical results [CDS94, AOS02] succeed in designing a generic
compiler that tranforms a large familily of zero-knowledge proof systems into proofs for disjunction, but fall
short of reducing the size of the resulting proof.

In this work, we take a more general approach towards reducing the communication complexity of zero-
knowledge protocols for disjunctive statements. Rather than reduce the communication complexity of a
specific zero-knowledge protocol, we investigate generic stacking techniques for an important family of zero-
knowledge protocols — three round public coin proofs of knowledge, popularly known as Σ-protocols. Specif-
ically, we ask the following question:

Can we design a generic compiler that stacks any Σ-protocol without modification?

We take significant steps towards answering this question in the affirmative. While we do not demonstrate
a technique for stacking all Σ-protocols, we present a compiler that stacks many natural Σ-protocols, in-
cluding many of practical importance. We focus our attention on Σ-protocols because of their widespread
use and because they can be made non-interactive in the random oracle model using the Fiat-Shamir trans-
form [FS87]. However we expect that the techniques can easily be generalized to public-coin protocols with
more rounds.

3

Benefits of a Generic Stacking Compiler. There are several significant benefits of developing generic
stacking compilers, rather than developing bespoke protocols that support stacking. First, automatically
compiling multiple Σ-protocols into ones supporting stacking removes the significant manual effort required
to modify existing techniques. Moreover, newly developed Σ-protocols can be used to produce stacked proofs
immediately, significantly streamlining the deployment process. A second, but perhaps even more practically
consequential, benefit of generic compilers is that protocol designers are empowered to tailor their choice
of Σ-protocol to their application — without considering if there are known stacking techniques for that
particular Σ-protocol. Specifically, the protocol designer can select a proof technique that fits with the
natural representation of the relevant statement (e.g. Boolean circuit, arithmetic circuit, linear forms or any
other algebraic structure). Without a generic stacking compiler, a protocol designer interested in reducing
the communication complexity of disjunctive proofs might be forced to apply some expensive NP reduction
to encode the statement in a stacking-friendly way. This is particularly relevant because modern Σ-protocols
often require that relations are phrased in a very specific manner, e.g. Ligero [AHIV17] requires arithmetic
circuits over a large, finite field, while known stacking techniques [HK20b] focus on Boolean circuits.

A common concern with applying protocol compilers is that they trade generality for efficiency (e.g. NP
reductions). However, we note that the compiler that we develop in this work is extremely concretely efficient,
overcoming this common limitation. For instance, näıvely applying our protocol to the classical Schnorr
identification protocol and applying the Fiat-Shamir [FS87] heurestic yields a ring signature construction
with signatures of length 2λ ·(2+2 log(`)) bits, where λ is the security parameter and ` is the ring size; this is
actually smaller than modern ring signatures from similar assumptions [BCC+15,ACF20] without requiring
significant optimization. 1

1.1 Our Contributions.

In this work, we give a generic treatment for minimizing the communication complexity of Σ-protocols for
disjunctive statements. In particular, we identify some “special properties” of Σ-protocol that make them
amenable to “stacking.” We refer to protocols that satisfy these properties as stackable protocols. Then
we present a framework for compiling any stackable Σ-protocols for independent statements into a new,
communication-efficient Σ-protocol for the disjunction of those statements. Our framework only requires
oracle access to the prover, verifier and simulator algorithms of the underlying Σ-protocols. We present our
results in two-steps:

Self-Stacking Compiler. First, we present our basic compiler, which we call a “self-stacking” compiler.
This compiler composes several instances of the same Σ-protocol, corresponding to a particular language into
a disjunctive proof. The resulting protocol has communication complexity proportional to the communication
complexity of a single instance of the underlying protocol. Specifically, we prove the following theorem:

Informal Theorem 1 (Self-Stacking). Let Π be a stackable Σ-protocol for an NP language L that has
communication complexity CC(Π). There exists is a Σ-protocol for the language (x1 ∈ L) ∨ . . . ∨ (x` ∈ L),
with communication complexity O(CC(Π) + λ log(`)), where λ is the computational security parameter.

Cross-stacking. We then extend the self-stacking compiler to support stacking different Σ-protocols for
different languages. The communication complexity of the resulting protocol is a function of the largest
clause in the disjunction and the similarity between the Σ-protocols being stacked. Let fCC be a function
that determines this dependence. For instance, if we compose the same Σ-protocol but corresponding to
different languages, then the output of fCC will likely be the same as that of a single instance of that protocol
for the language with the largest relation function. However, if we compose Σ-protocols that are very different
from each other, then the output of fCC will likely be larger. We prove the following theorem:

Informal Theorem 2 (Cross-Stacking). For each i ∈ [`], let Πi be a stackable Σ-protocol for an NP language
Li There exists is a Σ-protocol for the language (x1 ∈ L1) ∨ . . . ∨ (x` ∈ L`), with communication complexity
O(fCC({Πi}i∈[`]) + λ log(`)).

1Although concrete efficiency is a central element of our work, applying our compiler to applications is not our focus. The
details of this ring signature construction can be found in Section 10.

4

Examples of Stackable Σ-protocols. We show many concrete examples of Σ-protocols that are stackable.
Specifically, we look at classical protocols like Schnorr [Sch90], Guillio-Quisquater [GQ90] and Blum [Blu87],
and modern MPC-in-the-head protocols like KKW [KKW18] and Ligero [AHIV17]. Previously it was not
known how to prove disjunction over these Σ-protocols with sublinear communication in the number of
clauses. When applied to these Σ-protocols, our compiler yields a Σ-protocol which can can made non-
interactive in the random oracle model using the Fiat-Shamir heurestic. For example, when instantiated
with Ligero our compiler yields a concretely efficient Σ-protocol for disjunction over ` different circuits of
size |C| each, with communication O(

√
|C| + λ log `). Additionally, we explore how to apply our cross-

stacking compiler to stack different stackable Σ-protocols with one another (e.g. stacking a KKW proof for
one relation with a Ligero proof for another relation).

Partially-binding non-interactive vector commitments. Central to our compiler is a new variation
of commitments called partially-binding non-interactive vector commitment schemes. These schemes allow
a committer to commit to a vector of values and equivocate on a subset of the elements in that vector, the
positions of which are determined during commitment and are kept hidden. We show how such commitments
can be constructed from the discrete log assumption.

Extensions and Implementation Considerations. We finish by discussing extensions of our work and
concrete optimizations that improve the efficiency of our compiler when implemented in practice. Specifically,
we consider generalizing our work to k-out-of-` proofs of partial knowledge, i.e. the threshold analog of
disjunctions. We give a version of our compiler that works for these threshold statements. Additionally, we
demonstrate the efficiency of our compiler by presenting concrete proof sizes when our compiler is applied
to both a disjunction of KKW and Schnorr signatures.

Future Work. In this work we focus on Σ-protocols for ease of explication and to capture a wide class of
interesting protocols, however it should be possible to extend our techniques to zero-knowledge proofs with
more rounds using suitable generalizations.

2 Related Work

Proofs of partial knowledge. The classic work of Cramer et. al. [CDS94] shows how to compile a secret-
sharing scheme and Σ-protocols for the (possibly distinct) relations R1, . . . ,R` into a new Σ-protocols
(without additional assumptions) for the t-threshold “partial knowledge” relation Rt,(R1,...,R`)(x,w) :=
|{Ri(xi, wi) = 1}| ≥ t. The communication of the resulting Σ-protocol is |π| = O(`). Abe et. al. [AOS02]
suggested an alternative approach to creating 1-of-n proofs in the non-interactive context of ring signatures.
Specifically, the prover (starting with the active clause) hashes the first round message of the ith clause
to generate the challenge for the (i + 1)th clause; for each inactive clause, the prover uses a simulator to
complete the transcript with respect to the generated challenge. The resulting signature contains a third
round message for each clause, making it linear in `. Because their approach requires generating the third
round message of the active clause after simulating the inactive clauses, it is not clear how to generalize their
techniques to re-use messages. Groth and Kohlweiss [GK15] constructed a zero-knowledge proof of partial

knowledge for the “discrete log” relation i.e. R1 = . . . = R` = Rdlog := x
?
= gw with threshold t = 1 and

communication |π| = O(log `). Later work by Attema, Cramer and Fehr [ACF20] obtains proofs of partial
knowledge for Rdlog with any threshold t and |π| = O(log `) communication, by applying compressed Σ-
protocol theory [AC20]. Work by Jivanyan and Manikonyan [JM20] reduces the computational overhead of
similar proofs from O(` log `) to O(`) at the cost of communication. Unlike these earlier/concurrent ‘O(log n)
works’, we considers a much broader class of Σ-protocols and deploy fundamentally different techniques.

Online/offline OR composition of Σ-protocols. Ciampi et al. [CPS+16] extended the ‘proof of partial
knowledge’ work by Cramer et al. to enable specifying instances in the disjunction in the third round. This is
attained by constructing a (k, n)-equivocal commitment scheme from Σ-protocols and the original Cramer.
et. al compiler [CDS94]. Careful analysis shows that despite the prover being able to adaptively choose

5

instances the transformation is sound. The goal of Ciampi et al. is very different and does not consider
communication saving, but our work makes use of similar (k, n)-equivocal commitments (called ‘partially-
binding commitments’ here) to obtain communication savings rather than delayed instance specification.

Stacked Garbling. Work by Heath and Kolesnikov [HK20b], extends the works of Jawurek et. al. [JKO13]
and Frederiksen et. al. [FNO15] to obtain efficient interactive zero-knowledge proofs over disjunctive state-
ments (Boolean circuits) This is done by having the garbler garble each clause separately then “stacking”
the garbled circuits by XORing them together. The stacked result is sent to the verifier, who obliviously
retrieves the garbling randomness for all but one of the garbled circuits and reconstructs the remaining
garbling circuit. Subsequent work [HK20a] by the same authors, extended similar stacking techniques to
enable 2PC with communication saving for circuits with disjunctions, without the need for a separate output
selection protocol as in [Kol18].

Mac’n’Cheese. Concurrent work by Baum et. al [BMRS20] introduces an abstraction dubbed LOVe
(‘Interactive Protocols with Linear Oracle Verification’) and obtains ‘free nested disjunctions’ for this class
of interactive zero-knowledge proofs. They give a concretely efficient constant-round instantiation of a LOVe
for satisfiability of a arithmetic circuits over sufficiently large fields in the RO model. Since soundness relies
on the prover maintaining linear MACs (message authentication codes) established using VOLE (Vector
Oblivious Linear Evaluation) under a verifier’s secret key, it is not obvious how to make this protocol non-
interactive.

3 Technical Overview

In this section, we give a detailed overview of the techniques that we use to design a generic framework
to achieve communication-efficient disjunctions of Σ-protocols without requiring non-trivial2 changes to the
underlying Σ-protocols. Throughout this work, we consider a disjunction of ` clauses, one (or more) of which
are active, meaning that the prover holds a witness satisfying the relation encoded into those clauses. For
the majority of this technical overview, we focus on the simpler case where the same Σ-protocol is used for
each clause. We will then extend our ideas to cover heterogeneous Σ-protocols.

Recall that Σ-protocols are three-round, public-coin zero-knowledge protocols, where the prover sends
the first message. In the second round, the verifier sends a random “challenge” message to the prover, that
only depends on the random coins of the the verifier. Finally, in the third round, the prover responds with
a message based on this challenge. Based on this transcript the verifier then decides whether to accept or
reject the proof.

We start by considering the approaches taken by recent works focusing on privacy-preserving protocols
for disjunctive statements, e.g. [HK20b]. We observe that the “stacking” techniques used in all these works
can be broadly classified as taking a cheat and re-use approach. In particular, all of these works show how
some existing protocols can be modified to allow the parties to “cheat” on the inactive clauses — i.e. only
executing the active clause honestly — and “re-using” the single honestly-computed transcript to mimic
a fake computation of the inactive clauses. Critically, this is done while ensuring that the verifier cannot
distinguish the honest execution of the active clause from the fake executions of the inactive clauses.

Our Approach. In this work we extend the cheat and re-use approach to design a framework for compiling
Σ-protocols into a communication-efficient Σ-protocol for disjunctive statements without requiring modifi-
cation of the underlying protocols. Specifically, we are interested in reducing the number of third round
messages that a prover must send to the verifier, since the third round message is typically the longest
message in the protocol. Intuition extracted from prior work leads us to a natural high-level template for

2We assume that basic, practice-oriented optimizations have already been applied to the Σ-protocols in question. For
instance, we assume that only the minimum amount of information is sent during the third round of protocol. Hereafter, we
will ignore these trivial modifications and simply say “without requiring modification.” Note that these modifications truly
are trivial: the parties only need to repeat existing parts of the transcript in other rounds. We discuss this in the context of
MPC-in-the-head protocols in Section 6.

6

achieving this goal: Run individual instances of Σ-protocols (one-for each clause in the disjunction) in par-
allel, such that only one of these instances (the one corresponding to the active clause) is honestly executed,
and the remaining instances re-use parts of this honest instance.

There are two primary challenges we must overcome to turn this rough outline into a concrete protocol:
(1) how can the prover cheat on the inactive clauses? and (2) what parts of an honest Σ-protocol transcript
can be safely re-used (without revealing the active clause)? We now discuss these challenges, and the
techniques we use to overcome them, in more detail.

Challenge 1: How will the prover cheat on inactive clauses? Since the prover does not have a witness
for the inactive clauses, the prover can cheat by creating accepting transcripts for the inactive clauses using
the simulator(s) of the underlying Σ-protocols. The traditional method (e.g. [CDS94] for disjunctive Schnorr
proofs) requires the prover to start the protocol by randomly selecting a challenge for each inactive clause
and simulating a transcript with respect to that challenge. In the third round, the prover completes the
transcript for each clause and demonstrates that it could only have selected the challenges for all-but-one
of the clauses. This approach, however, inherently requires sending many third round messages, which will
make it difficult to re-use material across clauses (discussed in more detail below). Similarly, alternative
classical approaches for composing Σ-protocols for disjunctives, like that of Abe et al. [AOS02], also require
sending a distinct third round message for each clause. As such, we require a new approach for cheating on
the inactive clauses.

Our first idea is to defer the selection of first round messages for the inactive clauses until after the
verifier sends the challenge (i.e in the third round of the compiled protocol), while requiring that the prover
select a first round message honestly for the active clause (i.e in the first round of the compiled protocol).
To do this, we introduce a new notion called non-interactive, partially-binding vector commitments.3 These
commitments allow the committer to commit to a vector of values and equivocate on a hidden subset of the
entries in the vector later on. For instance, a 1-out-of-` binding commitment allows the committer to commit
a vector of ` values such that that one of the vector positions (chosen when the commitment is computed) is
binding, while allowing the committer to modify/equivocate the remaining positions at the time of opening.
For a disjunction with ` clauses, we can now use this primitive to ensure that the prover computes an honest
transcript for at least one of the Σ-protocol instances as follows:

• Round 1: The prover computes an honest first round message for the Σ-protocol corresponding to the
active clause. It commits to this message in the binding location of a 1-out-of-` binding commitment,
along with `− 1 garbage values, and sends the commitment to the verifier.

• Round 2: The verifier sends a challenge message for the ` instances.

• Round 3: The prover honestly computes a third round message for the active clause and then simulates
first and third round messages for the remaining ` − 1 clauses. It equivocates the commitment with
these updated first round messages, and sends an opening of this commitment along with all the `
third round messages to the verifier.

While this is sufficient for soundness, we need an additional property from these partially-binding vector
commitments to ensure zero-knowledge. In particular, in order to prevent the verifier from learning the
index of the active clause, we require these partially-binding commitments to not leak information about the
binding vector position. We formalize these properties in terms of a more general t-out-of-` binding vector
commitment scheme, which may be of independent interest, and we provide a practical construction based
on the discrete log assumption.4

Challenge 2: How will the prover re-use the active transcript? The above approach overcomes
the first challenge, but doesn’t achieve our goal of reducing the communication complexity of the compiled
Σ-protocol. Next, we need to find a way to somehow re-use the honest transcript of the active clause. Our
key insight is that for many natural Σ-protocols, it is possible to simulate with respect to a specific third

3A similar notion for interactive commitments was introduced in [CPS+16].
4We also explore a construction that is half the size and leverages random oracles in Appendix G.

7

round message. That is, it is often easy to simulate an accepting transcript for a given challenge and third
round message. This allows the prover to create a transcript for the inactive clauses that share the third
round message of the active clause. In order for this compilation approach to work, Σ-protocols must satisfy
the following properties (stated here informally):

– Simulation With Respect To A Specific Third Round Message: To re-use the active transcript, the prover
simulates with respect to the third round message of the active transcript. This allows the prover to send
a single third round message that can be re-used across all the clauses. More formally, we require that
the Σ-protocol have a simulator that can reverse-compute an appropriate first round message to com-
plete the accepting transcript for any given third round message and challenge. While not possible for
all Σ-protocols, simulating in this way—i.e., by first selecting a third round message and then “reverse
engineering” the appropriate first round message—is actually a common simulation strategy, and therefore
possible with most natural Σ-protocols. In order to get communication complexity that only has a loga-
rithmic dependence on the number of clauses, we additionally require this simulator to be deterministic.5

We formalize this property in Section 6.

– Recyclable Third Round Messages: To re-use third round messages in this way, the distribution of these
third round messages must be the same. Otherwise, simulating the inactive clauses would fail and the
verifier could detect the active clause used to produce the third round message. Thus, we require that the
distribution of third round messages in the Σ-protocol be the same across all statements of interest. We
formalize this property in Section 6.

An mentioned before, most natural Σ-protocols satisfy both these properties and we refer to such protocols
as stackable Σ-protocols. We can compile such Σ-protocols into a communication-efficient Σ-protocol for
disjunctions, where the communication only depends on the size of one of the clauses, as follows: Rounds
1 and 2 remain the same as in the protocol sketch above. In the third round, the prover first computes a
third round message for the active clause. It then simulates first round messages for the remaining clauses
based on the active clause’s third round message and the challenge messages. As before, it equivocates
the commitment with these updated first round messages.6 While this allows us to compress the third
round messages, we still need to send a vector commitment of the first round messages. In order to get
communication complexity that does not depend on the size of all first round messages, the size of this
vector commitment should be independent of the size of the values committed. Note that this is easy to
achieve using a hash function.

Summary of our Stacking Compiler. Having outlined our main techniques, we now present a detailed
description of our compiler for 2 clauses, as depicted in Figure 1 (similar ideas extend for more than 2
clauses). The right (unshaded) box represents the active clause and the left (shaded) box represents the
inactive clause. Each of the following numbered steps refer to a correspondingly numbered arrow in the
figure: (1) The prover runs the first round message algorithm of the active clause to produce a first round
message a2. (2) The prover uses the 1-of-2 binding commitment scheme to commit to the vector v = (0, a2).
(3) The resulting commitment constitutes the compiled first round message a′. (4) The challenge c′ is created
by the verifier. (5) The prover generates the third round message z for the active clause using the first round
message a2, the challenge c′, and the witness w. (6) The prover then uses the simulator for the inactive
clause on the challenge c′ and the honestly generated third round message z to generate a valid first round
message for the inactive clause a1. (7) The prover equivocates on the contents of the commitment a′ –
replacing 0 with the simulated first round message a1. The result is randomness r′ that can be used to
open commitment a′ to the vector v′ = (a1, a2). (8) The compiled third round message consists of honestly
generated third round message z, the randomness r′ of the equivocated commitment, and the two first round

5We elaborate on the importance of this additional property in the technical sections.
6If the simulator computes the first round messages deterministically, then the prover only needs to reveal the randomness

used in the commitment in the third round, along with the common third round message to the verifier. Given the third round
message, the verifier can compute the first round messages on its own and check if the commitment was valid and that the
transcripts verify.

8

Compiled Prover Compiled Verifier

A(x2, w; rp)

a2

Com(v = (0, a2), r) a′

c′
$←− {0, 1}κc′

Z(x2, a2, c
′, w)

z

Sim(x1, c
′, z)

a1

Equiv(a′,v′ = (a1, a2), r) r′ z′ = (z, a1, a2, r
′) z′

Σx2
(active)Σx1

(inactive)

Σx1∨x2

1

2 3

4

5

6

7

8

9

φ′(x1 ∨ x2, a
′, c′, z′) =

(a′ = Com(v′ = (a1, a2), r′)) ∧
φ(x1, a1, c

′, z) ∧ φ(x2, a2, c
′, z)

Figure 1: High level overview of our compiler applied to a Σ-protocol Σ = (A,C,Z, φ) over statements x1 and x2.
Several details have been omitted or changed to illustrate the core ideas more simply. The red circle contains a

value used in the first round, while purple circles contain values used in the third round. We include a1 and a2 in
the third round message for clarity; in the real protocol, the verifier will be able to deterministically recompute

these values on their own.

messages a1, a2.7 (9) The verifier then verifies the proof by ensuring that each transcript is accepting and
that the first round messages constitute a valid opening to the commitment a′.

Complexity Analysis: Communication in the first round only consists of the commitment, which we show
can be realized in O(`λ) bits, where λ is the security parameter. In the last round, the prover sends one
third round message of the underlying Σ-protocol that depends on the size of one of the clauses8 and ` first
round messages of the underlying Σ-protocol. Thus, näıvely applying our compiler results in a protocol with
communication complexity O(CC(Σ)+ ` ·λ), where CC(Σ) is the communication complexity of the underlying
stackable Σ-protocol, when executed for the largest clause. In the technical sections, we show that the
resulting protocol is itself “stackable”, it can be recursively compiled. This reduces the communication
complexity to O(CC(Σ) + log(`) · λ).

Stackable Σ-Protocols. While not all Σ-protocols are able to satisfy the first two properties that
we require, we show that many natural Σ-protocols like Schnorr [Sch90], and Guillio-Quisquater [GQ90]
satisfy these properties. We also show that more recent state-of-the-art protocols in MPC-in-the-head
paradigm [IKOS07] like KKW [KKW18] and Ligero [AHIV17] have these properties. We formalize the
notion of “F-universally simulatable MPC protocols”, which produce stackable Σ-protocols when compiled
using MPC-in-the-head [IKOS07]. This formalization is highly non-trivial and requires paying careful atten-
tion to the distribution of MPC-in-the-head transcripts. Our key observation is that transcripts generated
when executing one circuit can often be seamlessly reinterpreted as though they were generated for another
circuit (usually of similar size). We refer the reader to Section 6 for more details on stackable Σ-protocols.

Stacking Different Σ-Protocols. The compiler presented above allows stacking transcripts for a single Σ-
protocol, with a single associated NP language, evaluated over different statements e.g., (x1 ∈ L)∨ . . .∨(x` ∈
L). This is quite limiting and does not allow a protocol designer to select the optimal Σ-protocol for each
clause in a disjunction. As such, we explore extending our compiler to support stacking different Σ-protocols
with different associated NP languages, i.e. (x1 ∈ L1) ∨ (x2 ∈ L2) ∨ . . . ∨ (x` ∈ L`).

We start by noting that it is possible to create a “meta-language” to cover multiple languages of interest,
and thereby generalize our previous compiler in a straightforward way. For instance, one could create a

7In the compiler presented in the main body, a1 and a2 are omitted from the third round message and the verifier recomputes
them from z and c′ directly. We make this simplification in the exposition to avoid introducing more notation.

8We can assume w.l.o.g. that all clauses have the same size. This can be done by appropriately padding the smaller clauses.

9

language L with an associated relation function that embeds the relation functions for L1, . . . ,L`, making
L some form of circuit satisfiability language. A single Σ-protocol could then be used to cover all these
languages. Unfortunately, this approach — intuitively equivalent to creating zero-knowledge protocols for
all NP complete problems by reducing to a single problem — will often result in high concrete overheads.
In rare cases, however, it may be practically efficient; if the languages L1, . . . ,L` are all circuit satisfiability
for circuits with the same multiplicative complexity, finding an efficient representation might be easy.

This “meta-language” approach still requires the use of a single Σ-protocol. It would be preferable to
allow “cross-stacking,” or using different Σ-protocols for each clause in the disjunction.9 The key impediment
to applying our self-stacking compiler to different Σ-protocols is that the distribution of third round messages
between two different Σ-protocols may be very different. For example, a statement with three clauses may
be composed of one Σ-protocol defined over a large, finite field, another operating over a boolean circuit,
and a third that is constructed from elements of a discrete logarithm group. Thus, attempting to use the
simulator for one Σ-protocol with respect to the third round message of another might result in a domain
error; there may be no set of accepting transcripts for the Σ-protocols that share a third round message.
As re-using third round messages is the way we reduce communication complexity, this dissimilarity might
appear to be insurmountable.

To accommodate these differences, we observe that the extent to which a set of Σ-protocols can be stacked
is a function of the similarity of their third round messages. In the self-stacking compiler, these distributions
were exactly the same, resulting in a “perfect stacking.” With different Σ-protocols, the prover may only
be able to re-use a part of the third round message when simulating for another Σ-protocol, leading to a
“partial stacking.” We note, however, that the distributions of common Σ-protocols tend to be quite similar
— particularly when seen as an unstructured string of bits. For instance, transcript containing points on
Curve25519 encoded using Elligator [BHKL13], elements of Z216 , and field elements in F264 will all appear
to be random bitstrings when viewed without structure, and will be indistinguishable (assuming correct
padding). These random bitstrings can then be partitioned and interpreted, as needed, by each simulator.

More formally, stacking different Σ-protocols requires an efficient, invertible mapping from each third
round message space into some shared distribution D (e.g. random bitstrings in the example above). Intu-
itively, D represents the union of the sub-distributions of third round message for each Σ-protocol — enough
of each kind of element that the simulators for each Σ-protocol can assemble a well-formed third round
message from any element of D. Any third round message for one of the Σ-protocols can be mapped into
D by appending randomly sampled elements from the right sub-distributions to the message; inverting the
mapping involves deterministically selecting the appropriate bits and dropping the rest.

Our cross-stacking compiler works as follows: the prover begins as in the self-stacking compiler, executing
the first round message function of the active clause and computing a commitment using a partially-binding
commitment scheme. After receiving the challenge, the prover honestly computes a third round message
for the active clause. Next, the prover maps this message to some element d in the shared distribution
D. Finally, the prover extracts a third round message for each inactive clause from d, and simulates a
transcript from this extracted message. The third round message then contains first round messages for
each transcript, equivocating randomness, and d. The verifier uses the invertible mapping to extract a third
round message for each clause, and verify these transcripts. The communication complexity of the compiler
protocol is determined by the size of d. In Section 8, we show that this compiler can be efficiently applied
to stack many Σ-protocols with each other, including MPC-in-the-head protocols like KKW [KKW18] and
Ligero [AHIV17].

In Section 9, we briefly explore extended the ideas above to produce zero-knowledge proofs for proofs of
partial knowledge, i.e. statements where the prover wishes to prove that it has witnesses to at least k out
of the ` clauses. We note that solving this problem requires additional structure not present in the purely
disjunctive setting. The communication complexity introduced by the compiler we present has an additive
overhead that is linear in `, making it less efficient than the other compilers we present in this work. We

9While it might be possible to define a Σ-protocol that uses different techniques for different parts of the relation, this would
require the creation of a new, purpose built protocol — something we hope to avoid in this work. Thus, the difference between
self-stacking in this work is primarily conceptual, rather than technical.

10

belive improving on this result is interesting future work.

Paper Organization. The paper is organized as follows: we present required preliminaries Section 4 and
the interface for partially-binding commitment schemes in Section 5. In Section 6 we cover the properties
of Σ-protocols that our compiler requires and give examples of conforming Σ-protocols. We present our
self-stacking compiler in Section 7and our cross-stacking compiler in Section 8.Finally, in Section 9, we give
an overview of extending our work to proofs of partial knowledge and in Section 10 we discuss the concrete
efficiency of instantiating our compilers.

4 Preliminaries

4.1 Notation

Throughout this paper we use λ to denote the computational security parameter and κ to denote the

statistical security parameter. We denote by x
$←− D the sampling of ‘x’ from the distribution ‘D’. We use

[n] as a short hand for a list containing the first n natrual numbers in order: i.e. [n] = 1, 2 . . . , n. We

denote by x
$←−s D the process of sampling ‘x’ from the distribution ‘D’ using pseudorandom coins derived

from a PRG applied to the seed ‘s’, when the expression occurs multiple times we mean that the element
is sampled using random coins from disjoint parts of the PRG output. We denote by H a collision-resistant
hash function (CRH). We write group operations using multiplicative notation.

4.2 Σ-Protocols

In this section, we recall the definition of a Σ-protocol.

Definition 1 (Σ-Protocol). Let R be an NP relation. A Σ-Protocol Π for R is a 3 move protocol between a
prover P and a verifier V consisting of a tuple of PPT algorithms Π = (A,Z, φ) with the following interfaces:

– a ← A(x,w; rp): On input the statement x, corresponding witness w, such that R(x,w) = 1, and
prover randomness rp, output the first message a that P sends to V in the first round.

– c
$←− {0, 1}κ: Sample a random challenge c that V sends to P in the second round.

– z ← Z(x,w, c; rp): On input the statement x, the witness w, the challenge c, and prover randomness
rp, output the message z that P sends to V in the third round.

– b← φ(x, a, c, z): On input the statement x, prover’s messages a, z and the challenge c, this algorithm
run by V, outputs a bit b ∈ {0, 1}.

A Σ-protocol has the following properties:

– Completeness: A Σ-Protocol Π = (A,Z, φ) is said to be complete if for any x,w such that R(x,w) =

1, and any prover randomness rp
$←− {0, 1}λ, it holds that,

Pr
[
φ(x, a, c, z) = 1

∣∣∣ a← A(x,w; rp); c
$←− {0, 1}κ; z ← Z(x,w, c; rp)

]
= 1

– Special Soundness. A Σ-Protocol Π = (A,Z, φ) is said to have special soundness if there exists a
PPT extractor E, such that given any two transcripts (x, a, c, z) and (x, a, c′, z′), where c 6= c′ and
φ(x, a, c, z) = φ(x, a, c′, z′) = 1, it holds that

Pr
[
R(x,w) = 1| w ← E(1λ, x, a, c, z, c′, z′)

]
= 1

11

– Special Honest Verifier Zero-Knowledge. A Σ-Protocol Π = (A,Z, φ) is said to be special honest
verifier zero-knowledge, if there exists a PPT simulator S, such that for any x,w such that R(x,w) = 1,
it holds that

{(a, z) | c $←− {0, 1}κ; (a, z)← S(1λ, x, c)} ≈c

{(a, z) | rp $←− {0, 1}λ; a← A(x,w; rp); c
$←− {0, 1}κ; z ← Z(x,w, c; rp)}

4.3 Secure Multiparty Computation

For completeness, we recall the definitions of t-privacy and t-robustness from [IKOS07] that will be used in
MPC-in-the-head protocols.

Definition 2 (t-Privacy [IKOS07]). Let 1 ≤ t < n. We say that Π realizes f with computational t-privacy if
there is a PPT simulator S such that for any inputs x,w1, . . . , wn and every set of corrupt players I ⊆ [n] such
that |I| ≤ t, the joint view ViewI(x,w1, . . . , wn) of the players in I and S(I, x, {wi}i∈I , f(x,w1, . . . , wn))
are (identically distributed, statistically close, computationally close).

Definition 3 (Statistical t-Robustness [IKOS07]). Let 1 ≤ t < n. We say that Π realizes f with statistical
t-robustness if (1) it correct evaluates f in the presence of a semi-honest adversary (with an most negligible
error) and (2) if for any computationally unbounded malicious adversary corrupting a set I of at most t
players, and for any inputs (x,w1, . . . , wn), if there is no (w′1, . . . , w

′
n) such that f(x,w1, . . . , wn) = 1, then

the probability that some uncorrupted player outputs 1 in an execution of Π in which the inputs of the honest
player are consistent with (x,w1, . . . , wn) is negligible in the security parameter.

5 Partially-Binding Vector Commitments

In this section, we introduce non-interactive partially-binding vector commitments.10 These commitments
allow a committer to commit to a vector of ` elements such that exactly t positions are binding (i.e. cannot
be opened to another value) and the remaining ` − t positions can be equivocated. The committer must
decide the binding positions of the vector before committing and the binding positions are hidden.

Definition 4 (t-out-of-` Binding Vector Commitment). A t-out-of-` binding non-interactive vec-
tor commitment scheme with message space M, is defined by a tuple of the PPT algorithms
(Setup,Gen,EquivCom,Equiv,BindCom) defined as follows:

• pp← Setup(1λ) On input the security parameter λ, the setup algorithm outputs public parameters pp.

• (ck, ek) ← Gen(pp, B): Takes public parameters pp and a t-subset of indices B ∈
(

[`]
t

)
. Returns a

commitment key ck and equivocation key ek.

• (com, aux) ← EquivCom(pp, ek,v; r): Takes public parameter pp, equivocation key ek, `-tuple v and
randomness r. Returns a partially-binding commitment com as well as some auxiliary equivocation
information aux.

• r ← Equiv(pp, ek,v,v′, aux): Takes public parameters pp, equivocation key ek, original commitment
value v and updated commitment values v′ with ∀i ∈ B : vi = v′i, and auxiliary equivocation informa-
tion aux. Returns equivocation randomness r.

• com← BindCom(pp, ck,v; r): Takes public parameters pp, commitment key ck, `-tuple v and random-
ness r and outputs a commitment com. Note that this algorithm does not use the equivocation key ek.
This algorithm plays a similar role to that of Open in a typical commitment scheme.

10As pointed out in [ABFV22], there was a subtle issue in our definition, in the previous version of this paper. In their
paper, Avitabile et al. [ABFV22] proposed a slight modification to our previous definition to help resolve the issue. In this
updated version, we propose a slightly different modification than theirs to our previous definition that also helps resolve the
issue observed in [ABFV22].

12

The properties satisfied by the above algorithms are as follows:

(Perfect) Hiding: The commitment key ck and commitment com (perfectly) hides the binding positions B
and the equivocated values, even when opening the commitment. Formally, for all v(1),v(2) ∈ M`,

B(1), B(2) ∈
(

[`]
t

)
and a ‘valid equivocation’ for both vectors v′ ∈ M` i.e. ∀i ∈ B(1) : v

(1)
i = v′i and

∀i ∈ B(2) : v
(2)
i = v′i) and pp← Setup(1λ), the two distributions are equal:(ck, com, r′)

∣∣∣∣∣∣∣∣
(ck, ek)← Gen(pp, B(1)); r

$←− {0, 1}λ;

(com, aux)← EquivCom(pp, ek,v(1); r);

r′ ← Equiv(pp, ek,v(1),v′, aux)

p=(ck, com, r′)

∣∣∣∣∣∣∣∣
(ck, ek)← Gen(pp, B(2)); r

$←− {0, 1}λ;

(com, aux)← EquivCom(pp, ek,v(2); r);

r′ ← Equiv(pp, ek,v(2),v′, aux)

The definition essentially states that any two sets of binding positions and originally vectors, which
could ‘explain’ the provided opening of v′, are indistinguishable.

(Computational) Partial Binding: An adversary (that generates ck itself) cannot equivocate on more
than `− t positions, even across multiple different commitments. Define the function ∆ :M`×M` 7→
P([`]) taking two vectors and returning the set of indexes on which the vectors differ:

∆(v,v′) = {j ∈ [`] : vj 6= v′j} .

Consider an adversary A that outputs ck and a set S of pairs of openings S ⊆ M` ×M` × R × R
such that each pair of openings share the same commitment under ck, then the set of index on which
the openings differ across all pairs has cardinality at most t− `, formally, we require that the following
probability is negligible in λ for any PPT A:

Pr

[∣∣∣⋃(v,v′,r,r′)∈S ∆(v,v′)
∣∣∣ > `− t ∧

∀(v,v′, r, r′) ∈ S. BindCom(pp, ck,v; r) = BindCom(pp, ck,v′; r′)

∣∣∣∣∣ pp← Setup(1λ)
(ck, S)← A(1λ, pp)

]
.

Partial Equivocation: Given a commitment to v under a commitment key ck← Gen(pp, B), it is possible

to equivocate to any v′ as long as ∀i ∈ B : vi = v′i. More formally, for all B ∈
(

[`]
t

)
, and all

v,v′ ∈M` st. ∀i ∈ B : vi = v′i then:

Pr

BindCom(pp, ck,v′; r′) = com

∣∣∣∣∣∣∣∣∣∣
pp← Setup(1λ); r

$←− {0, 1}λ;

(ck, ek)← Gen(pp, B);

(com, aux)← EquivCom(pp, ek,v; r);

r′ ← Equiv(ek,v,v′, aux)

 = 1

Throughout this work we will impose the efficiency requirement that the size of the commitment is indepen-
dent of the size of the elements. We note that this is easy to achieve using a collision resistant hash function,
when targeting computational binding.

13

5.1 Relation To Similar Notions

The definition of partially binding vector commitments is similar to other definitions found in the literature,
let us therefore briefly describe the distionguishing features of the definition above from these prior/concur-
rent definitions.

Somewhere Statistically Binding Hash Functions. A SSB (Somewhere Statistically Binding) hash
function is a collision resistant hash function over vectors, it differs from partially binding commitments on
many points: 1) a SSB hash function provide a short opening proof for any index. 2) the digest does not
hide the vector, in particular does not provide equivocation for i 6= i∗. 3) the notion only considers a single
binding index i∗. 4) the value at statistically binding index vi∗ can be extracted from the digest (extraction),
which is not required for partially binding commitments.

Somewhere Statistically Binding Commitments. In concurrent work Fauzi, Lipmaa and Pin-
dado [FLPS21] defines a very similar notion of a somewhere statistically binding commitment scheme, which
provide hiding commitment to vectors and is binding in a subset of the indexes, however their definition/-
motivation differs in a few important ways: 1) we do not require extraction, as a result partially binding
commitments do not imply oblivious transfer unlike SSB commitments, indeed we know of constructions of
partially binding commitments from non-blackbox commitments in the random oracle model. 2) we also do
not require statistical binding for our compiler: there is a trade-off between statistical/computational binding
of the partially binding vector commitment and computational/statistical zero-knowledge respectively of the
compiled protocol; the instansiations we provide in this paper choose perfect hiding. 3) for our applications,
the party sampling the commitment key generator cannot be trusted. 4) for efficiency we require |ck| to be
small.

5.2 Partially-Binding Vector Commitments from Discrete Log

We now present a simple and concretely efficient construction of t-out-of-` partially-binding vector commit-
ments from the discrete log assumption. The idea is to have the committer use a Pedersen commitment
for each element in the vector. Recall that a Pedersen commitment to the message m ∈ Z|G| with public
parameters g, h ∈ G is computed as gmhr for a random value r. The binding property of Pedersen commit-
ments relies on the committer not knowing the discrete log of g with respect to h. For our partially-binding
vector commitment scheme, the commitment key is a set of public parameters for the Pedersen commit-
ments, constructed such a way that the committer knows discrete logs for exactly ` − t parameters. This
is done by having the committer pick ` − t of the parameters and computing the remaining t parameters
by interpolating in the exponent. More formally, let use begin by fixing some notation. Let Z|G| be a
prime field. In our construction, we implicitly treat indexes i ∈ [0, |G| − 1] as field elements, i.e. there
is an implicit bijective map between [0, |G| − 1] and Z|G| (e.g. i mod |G| ∈ Z/(|G|)). Let X ⊆ Z|G| and

j ∈ X , define L(X ,j)(X) :=
∏
m∈X ,m 6=j

X−m
j−m ∈ Z|G|[X] i.e. the unique degree |X | − 1 polynomial for which

∀x ∈ X \ {j} : L(X ,j)(x) = 0 and L(X ,j)(j) = 1. The formal description of the commitment scheme can be
found in Figure 2. While our construction does require a CRS, we note that the CRS is just two randomly
selected group elements11, which in practice can be generated by hashing a ‘nothing-up-by-sleeve’ constant
to the curve by using a cryptographic hash function.

Theorem 1. Under the discrete log assumption (Definition 5), for any (t, `) with t < `: the scheme shown
in Figure 2 is a family of (perfectly hiding, computationally binding) t-of-` partially binding commitment
schemes.

The security reduction is straightforward and tight: for each position i in which the adversary A manages
to equivocate we can extract the discrete log of gi (as for regular Pedersen commitments), if we extract the
discrete log in `−t+1 positions, we have sufficient points on the degree `−t polynomial to recover f[`]∪{0}(X)
explicitly and simply evaluate it at 0 to recover the discrete log of g0 from pp. We present a formal description
of this reduction to the discrete log assumption below.

11Like regular Pedersen commitments

14

pp← Setup(1λ)

1 : G← GenGroup(1λ); g0, h
$←− G

2 : return (G, g0, h)

(com, aux)← EquivCom(pp, ek,v):

1 : r
$←− Z`|G|

2 : com← BindCom(pp, ck,v, r)

3 : return (com, r)

(ck, ek)← Gen(pp, B)

1 : Let E = [`] \B (set of equivocal indexes)

2 : Generate trapdoors for `− t indexes: for i ∈ E : yi
$←− Z|G|, gi ← hyi

3 : Interpolate the first [`−t] elements: for j ∈ [`− t] : gj ←
∏
i∈E∪{0} gi

L(E∪{0},i)(j)

4 : ck = (g1, . . . , g`−t)

5 : ek = (g1, . . . , g`−t, {yi}i∈E , E,B)

6 : return (ck, ek)

r ← Equiv(pp, ek,v,v′, aux):

1 : Let E = [`] \B (set of equivocal indexes)

2 : Parse aux = (r1, . . . , r`) ∈ Z`|G|

3 : Interpolate the remaining elements: for j ∈ [`− t, `] : gj ←
∏
i∈[`−t]∪{0} g

L([`−t]∪{0},i)(j)
i

4 : for j ∈ B : r′j ← rj

5 : for j ∈ E : r′j ← rj − yj · (v′j − vj)

6 : return r′

com← BindCom(pp, ck,v, r):

1 : Interpolate the remaining elements: for j ∈ [`− t, `] : gj ←
∏
i∈[`−t]∪{0} g

L([`−t]∪{0},i)(j)
i ∈ G

2 : Commit individually: for j ∈ [`] : comj ← hrj · gvjj ∈ G

3 : return (com1, . . . , com`)

Figure 2: t-of-` binding commitment from discrete log in the CRS model.

Remark 1. To commit to longer strings a collision resistant hash H : {0, 1}∗ → Z|G| is used to
compress each coordinate before committing using BindCom/EquivCom as a black-box: by committing to
v′ = (H(v1), . . . ,H(v`)) instead. Note that the discrete log assumption (Definition 5), used above, also im-
plies the existance of collision resistant hash functions.

Definition 5 (Discrete Log Assumption). There exists a PPT algorithm GenGroup(1λ) which returns a
description of a prime-order cyclic group G (written multiplicatively) which admits efficient sampling, st.

for all PPT algorithms A: Pr
[
A(1λ,G, g, h) = y | G← GenGroup(1λ);h

$←− G; y
$←− Z|G|; g ← hy

]
= negl(λ).

For some negligible function negl(λ).

Theorem 1. Completeness of partial equivocation for the scheme in Figure 2 is easily seen (follows from
equivocation of Pedersen commitments), so we focus on computational binding and perfect hiding.

Computational Binding Let Ak be a PPT algorithm winning the binding game with probability ε i.e.

ε = Pr

[
@S ⊂ [`], |S| ≥ t, s.t. i ∈ S, v1,i = . . . = vk,i ∧

BindCom(pp, ck,v1; r1) = . . . = BindCom(pp, ck,vk; rk)

∣∣∣∣∣ pp← Setup(1λ);

(ck,v1, . . . ,vk, r1, . . . , rk)← Ak(1λ, pp)

]

15

Then the PPT algorithm A′ shown in Figure 3 wins the discrete log game (computing y0 st. g0 = hy0)
with probability ≥ ε. To see this observe that, when Ak wins the binding game: it follows that
there exists a set S such that its complement S has size |S| ≥ ` − t + 1 and since ∀α, β ∈ [k] :
(com1, . . . , com`) = BindCom(pp, ck,v(α)) = BindCom(pp, ck,v(β)) ∈ G`, we can extract yi ∈ Z|G| st.

gi = hyi whenever v
(α)
i 6= v

(β)
i by observing:

g
v
(α)
i
i hr

(α)
i = comi = g

v
(β)
i
i hr

(β)
i

g
v
(β)
i − v

(α)
i

i = hr
(α)
i − r

(β)
i

gi = hyi = h(r
(α)
i − r

(β)
i)/(v

(β)
i − v

(α)
i)

Consider X ⊆`−t+1 S defined as in A′, let fX (X) :=
∑
i∈X yi · L(X ,i)(X) ∈ Z|G|[X]. Consider

f[`−t]∪{0}(X) :=
∑
i∈[`−t]∪{0} yi · L([`−t]∪{0},i)(X) defined by the unique y0, y1, . . . , y`−t ∈ Z|G| with

g0 = hy0 , . . . , g1 = hy1 , . . . , g`−t = hy`−t where ck = (g1, . . . , g`−t). Observe that ∀j ∈ X : fX (j) =
f[`]∪{0}(j) hence fX = f[`−t]∪{0} since both are degree `−t < |X | polynomials. Therefore the algorithm
recovers fX (0) = f[`]∪{0}(0) =

∑
i∈X yi · L(X ,i)(0) = y0, with g0 = hy0 , by definition of f[`]∪{0}.

y0 ← A′Ak(1λ,G, g0, h): computes the discrete log of g0 in h given oracle access to Ak.

1 : Let pp = (G, g0, h)

2 : (ck,v(1), . . .v(k), r(1), . . . , r(k))← Ak(1λ, pp)

3 : S = {i | ∃ (α, β) : v
(α)
i 6= v

(β)
i } ⊆ [`], if |S| ≤ `− t : return ⊥

4 : for i ∈ S compute the discrete log in h: yi ← (r
(α)
i − r

(β)
i)/(v

(β)
i − v

(α)
i)

5 : Pick X ⊆`−t+1 S, compute y0 ←
∑
i∈X yi · L(X ,i)(0)

6 : return y0

Figure 3: Reduction for partially binding commitment scheme to discrete log.

Note that the security reduction is tight.

Perfect Hiding Recall that we denote the set of binding indexes as B, and its complement (the set of
indexes that support equivocation) as E. Observe that for any E the distribution of ck = (g1, . . . , g[`]−t)

is uniform in G`−t: since the distribution of {gj}j∈E is uniform and {gj}j∈[`−t] is computed as a
bijection of {gj}j∈E . Hence the distribution of ck is independent of E (and B), and the binding
indexes are perfectly hidden. The perfect hiding of the commitment (com1, . . . , com`) follows directly
from perfect hiding of Pedersen commitments: each comi is sampled i.i.d. uniform from G.

5.3 Generic Construction of 1-of-2q Partially-Binding Vector Commitment.

From a 1-of-2 partial-binding vector commitment scheme, it is easy to obtain a 1-of-2q binding scheme in
which the communication complexity grows linearly in q (i.e. logarithmically in the dimension of the vector),
this is achieved by computing a tree of commitments in which the leafs are the entries of the vector being
committed to and each internal node is formed by committing to its children: other commitments. There is
one commitment key per level and the final commitment is the root of the tree. This means that the binding
indexes in the commitment keys encode a path though the tree, leading to a single binding leaf, where as
every other path though the tree can be equivocated at some layer. To formalize this, we describe the case
of a tree with just two layers, as described below, then apply the transformation iteratively:

16

pp← Setup(1λ)

1 : ppA ← PBCommA.Setup(1λ)

2 : ppB ← PBCommB .Setup(1λ)

3 : return (ppA, ppB)

(ck, ek)← Gen(pp = (ppA, ppB), B = {i})
1 : Compute iA = i mod `A, iB = bi/`Ac
2 : (ckA, ekA)← PBCommA.Gen(ppA, {iA})
3 : (ckB , ekB)← PBCommB .Gen(ppA, {iB})
4 : return (ckA, ckB), (ekA, ekB , i)

(com, aux)← EquivCom(pp = (ppA, ppB), ek = (ekA, ekB , i),v):

1 : Compute iA = i mod `A, iB = bi/`Ac
// Form a length `A vector vA, which is zero everywhere except at iA where it is vi

2 : v(A) ← 0; v
(A)
iA
← vi

3 : (comA, auxA)← PBCommA.EquivCom(ppA, ekA,v
(A))

// Form a length `B vector vB , which is zero everywhere except at iB where it is comA

4 : v(B) ← 0; v
(B)
iB
← comA

5 : (comB , auxB)← PBCommB .EquivCom(ppB , ekB ,v
(B))

// Return the root/outer commitment

6 : return (comB , (auxA, auxB))

r ← Equiv(pp = (ppA, ppB), ek = (ekA, ekB , i),v,v
′, aux = (auxA, auxB)):

1 : Compute iA = i mod `A, iB = bi/`Ac
// Equivocate the inner commitment

2 : v(A) ← 0; v
(A)
iA
← vi

3 : v(A)′ ← (v′iB`B+1, . . . , v
′
(iB+1)`B

) // Note v
(A)
iA

′
= v

(A)
iA

4 : rA ← PBCommA.Equiv(ppA, ekA,v
(A),v(A)′)

// Recompute v
(B)

5 : v(B) ← 0; v
(B)
iB
← PBCommA.BindCom(pp, ckA,v

(A), rA)

// Commit to every chunk using the same randomness rA to obtain v
(B)′

6 : v(B)′ ← 0; for j ∈ 1, . . . , `B :

7 : v̂′j ← (v′j`B+1, . . . , v
′
(j+1)`B

) // Next ”chunk” of v
′

8 : v
(B)
j

′
← PBCommA.BindCom(ppA, ckA, v̂

′
j , rA)

// Note v
(B)
iB

′
= v

(B)
iB

. Equivocate the outer commitment

9 : rB ← PBCommB .Equiv(ppB , ekB ,v
(B),v(B)′)

10 : return (rA, rB)

com← BindCom(pp = (ppA, ppB), ck = (ckA, ckB),v, r = (rA, rB)):

// Commit to every chunk using the same randomness rA to obtain v
(B)

1 : v(B) ← 0; for j ∈ 1, . . . , `B :

2 : v̂j ← (vj`B+1, . . . , v(j+1)`B) // Next ”chunk” of v

3 : v
(B)
j ← PBCommA.BindCom(ppA, ckA, v̂j , rA)

// Commit to the vector of commitments v
(B)

to obtain the final commitment

4 : return PBCommB .BindCom(ppB , ckB ,v
(B), rB)

Figure 4: Generic construction of 1-of-`A`B binding commitment from a 1-of-`A binding commitment
scheme and a 1-of-`B binding commitment scheme.

17

Theorem 2 (1-of-(`A`B) partial-binding from 1-of-`A and 1-of-`B partial-binding.). Given compressing 1-
of-`A and 1-of-`B partial-binding vector commitment schemes PBCommA, PBCommB with communication
complexity CC(PBCommA) and CC(PBCommB) respectively, there exists a 1-of-(`A ·`B) partial-binding vector
commitment with communication complexity CC(PBCommA) + CC(PBCommB) making black-box use of the
underlying PBCommA and PBCommB.

Proof. The construction works by forming partially binding commitments to partially binding commitments
as follows: 1) split the vector v into `B chunks v̂1, . . . , v̂`B of size `A each, 2) commit to each chunk individ-
ually using PBCommA with the same commitment key ckA, obtain commitment v(B) = (com1, . . . , com`B),
3) commit to the commitments v(B) using PBCommB and corresponding commitment key ckB . This scheme
is formally described in Figure 4. Binding and hiding follows easily from binding and hiding respectively of
PBCommA and PBCommB .

By applying this transformation iteratively q times to a 1-of-2 binding scheme, we obtain a 1-of-2q binding
scheme with communication linear in q.

Corollary 1. There exists a (concretely efficient) 1-of-2q binding commitment scheme with O(λ · q)-
communication (for committing and opening) from the discrete log assumption.

Proof. Apply the transformation from Figure 4 q times iteratively to the scheme from Theorem 1 with ` = 2
and t = 1. i.e. let the original scheme from Theorem 1 be PBComm1, compose PBComm1 with itself to
obtain a new 1-of-22 binding scheme PBComm2, then compose PBComm2 with PBComm1 to obtain a 1-of-23

binding scheme PBComm3, then compose PBComm3 with PBComm1 to obtain a 1-of-24 binding scheme
PBComm4, etc. At every step the communication grows by CC(PBComm1), hence the communication of
PBCommq is q · CC(PBComm1).

6 Stackable Σ-Protocols

In this section, we present the properties of Σ-protocols that our stacking framework requires and show that
many Σ-protocols satisfy these properties.

6.1 Properties of Stackable Σ-Protocols.

We start by formalizing the definition of a “stackable” Σ-protocol. As discussed in Section 3, a Σ-protocol
is stackable (meaning, it can be used by our stacking framework), if it satisfies two main properties: (1)
simulation with respect to a specific third round message, and (2) recyclable third round messages.

6.1.1 Cheat Property: “Extended” Honest Verifier Zero-Knowledge.

We view “simulation with respect to a specific third round message” as a natural strengthening of the typical
special honest verifier zero-knowledge property of Σ-protocols. At a high level, this property requires that
it is possible to design a simulator for the Σ-protocol by first sampling a random third round message from
the space of admissible third round messages, and then constructing the unique appropriate first round
message. We refer to such a simulator as an extended simulator. A similar notion is considered by Abe et.
al [AOS02] in their definition of type-T signature schemes: a type-T signature scheme is essentially the
Fiat-Shamir [FS87] heuristic applied to an EHVZK Σ-protocol.

Definition 6 (EHVZK Σ-Protocol). Let Π = (A,Z, φ) be a Σ-protocol for the NP relation R, with a well-
behaved simulator. We say that Π is “extended honest-verifier zero-knowledge (EHVZK)” if there exists a
polynomial time computable deterministic “extended simulator” Sehvzk such that for any (x,w) ∈ R and

c ∈ {0, 1}κ, there exists an efficiently samplable distribution D(z)
x,c such that:{

(a, c, z) | rp $←− {0, 1}λ; a← A(x,w; rp); z ← Z(x,w, c; rp)
}
≈
{

(a, c, z) | z $←− D(z)
x,c; a← Sehvzk(1λ, x, c, z)

}
18

The natural variants (perfect/statistical/computational) of EHVZK are defined depending on which class of
distinguishers for which ≈ is defined.

At first glace, the EHVZK definition can appear contrived, however in practice this is often how simulators
for Σ-protocols are constructed: picking a third message z for a given challenge c, then finding the first round
message a which ‘matches’ without relying on the random coins needed to sample z. For instance, every
‘commit-and-open’ Σ-protocol is EHVZK; this notably includes every protocol derived via IKOS [IKOS07].
Despite this, we note that there exist Σ-protocols which are not EHVZK in their natural form: consider
a contrived Σ-protocol where z contains the output of a one-way function evaluated on a; an extended
simulator for such a protocol would need to invert the one-way function. While clearly such protocols exist,
to our knowledge, none are of practical importance. Nevertheless, we observe that it is possible to trivially
compile any Σ-protocol into one for the same relation which is EHVZK.

Observation 1 (All Σ-protocols can be made EHVZK.). Any Σ-protocol Π = (A,Z, φ) can be transformed
into an EHVZK Σ-protocol Π′ = (A′, Z ′, φ′) for the same relation. We present one such transformation
below:

A′(x,w; rP) 7→ a′

1 : Run a← A(x,w, rP)

2 : return a

Z ′(x,w, c′; rP) 7→ z′

1 : Run z ← Z(x,w, c′; rP)

2 : Run a← A(x,w; rP)

3 : return (a, z)

φ′(x, a′, c′, z′) 7→ {0, 1}
1 : Parse z′ = (a, z)

2 : return (a
?
= a′) ∧ φ(x, a, c′, z)

Sehvzk′(x, c′, z′) 7→ a′

1 : Parse z′ = (a, z)

2 : return a

The transformation above simply uses the prover’s randomness to re-generate the first round message a and
appends it to the third round message, so the resulting third round message is (a, z). The verifier additionally
checks that the a’s contained in the first round message and third round message match. Defining the extended
simulator for this transformed protocol is trivial: because the third round message contains a copy of the first

round message, the extended simulator need only parse it out and return it. In this case, D(z)
x,c is simply

the output distribution of the Special Honest-Verifier Zero-Knowledge simulator of Π. By construction, it is
clear that the protocol above is EHVZK for any Σ-protocol Π.

The challenge dependence on the distribution D(z)
x,c might at first glance seem inherent, as it is possible for

Σ-protocols to have very different third round message distributions depending on the challenge. Consider,
for example, the Blum’s three round graph Hamiltonicity Σ-protocol [Blu87]. The third round message is
either a Hamiltonian path or a graph isomorphism, depending on the challenge, which can be represented
with very different distributions. However, it would be convenient, both notationally and conceptually, to
remove this dependence from the definition of EHVZK. We note that another simple transformation can be
applied to any EHVZK Σ-protocol such that it satisfies a challenge-independent version of Definition 6. This
observation is similar to that of Cramer et. al [CDS94] in relation to SHVZK from HVZK.

Definition 7 (Challenge-independent EHVZK Σ-Protocol). Let Π = (A,Z, φ) be a Σ-protocol for the NP
relation R. We say that Π is “challenge-independent extended honest-verifier zero-knowledge ” if there exists
a polynomial time computable deterministic “challenge-independent extended simulator” Sciehvzk such that

for any (x,w) ∈ R there exists an efficiently samplable distribution D(z)
x such that:{

(a, c, z) | rp $←− {0, 1}λ; a← A(x,w; rp); z ← Z(x,w, c; rp)
}
≈
{

(a, c, z) | z $←− D(z)
x ; a← Sciehvzk(1λ, x, c, z)

}
Observation 2 (EHVZK Σ-protocol to challenge-independent EHVZK). We note that any EHVZK Σ-
protocol can be transformed to be challenge-independent EHVZK. Let Π = (A,Z, φ) be an EHVZK Σ-protocol

19

with a ‘challenge-dependent’ distribution D(z)
x,c over last-round messages and define Π′ = (A′, Z ′, φ′) as shown

below:

A′(x,w; rP) 7→ a′

1 : Sample ∆
$←− {0, 1}κ

2 : Run a← A(x,w; rP)

3 : return (a,∆)

Z ′(x,w, c′; rP) 7→ z′

1 : Define c = c′ ⊕∆

2 : Run z ← Z(x,w, c; rP)

3 : return (z, c)

φ′(x, a′, c′, z′) 7→ {0, 1}
1 : Parse a′ = (a,∆), z′ = (z,)

2 : Define c = c′ ⊕∆

3 : return φ(x,w, c, z)

Sciehvzk′(x, c′, z′) 7→ a′

1 : Parse z′ = (z, c)

2 : Define ∆ = c⊕ c′

3 : Run a← Sehvzk(x, c, z)

4 : return (a,∆)

In this transformation, we append a random string ∆ to the first round message. The third round message
algorithm then xor’s ∆ with the challenge provided by the verifier before computing the third round message
z. Additionally, it appends the resulting challenge c to the third round message. The verifier recomputes c

and verifies the transcript using c. The resulting protocol Π′ satisfies Definition 7, i.e. the family D(z)
x,c

′

has the same distribution across all c. To sample from the distribution D(z)
x , simply sample c

$←− {0, 1}κ

randomly, then sample from D(z)
x,c i.e.

D(z)
x :=

{
(z, c) | c $←− {0, 1}κ; z

$←− D(z)
x,c

}
The challenge-independent extended simulator Sciehvzk′ of Π′ picks ∆ such that the difference between c′ and
∆ is c and runs the extended simulator of Π on z with challenge c = c′ ⊕∆.

It is straightforward to move from one definition to the other (by applying the compiler in Observation 2),
however many existing Σ-protocol are naturally EHVZK for Definition 6 and therefore it is more convenient
to use this more relaxed definition when showing that particular Σ-protocols are EHVZK. As such, for the
remainder of the main body of this work, we will use Definition 6.

6.1.2 Re-use Property: Recyclable Third Round Messages.

The next property that our stacking compilers require is that the distribution of third round messages does
not significantly rely on the statement. In more detail, given a fixed challenge, the distribution of possible
third round messages for any pair of statements in the language are indistinguishable from each other. We

formalize this property by using D(z)
c to denote a single distribution with respect to a fixed challenge c.

We say that a Σ-protocol has recyclable third round messages, if for any statement x in the language the

distribution of all possible third round messages corresponding to challenge c is indistinguishable from D(z)
c .

We now formally define this property:

Definition 8 (Σ-Protocol with Recyclable Third Messages). Let R be an NP relation and Π = (A,Z, φ) be
a Σ-protocol for R, with a well-behaved simulator. We say that Π has recyclable third messages if for each

c ∈ {0, 1}κ, there exists an efficiently sampleable distribution D(z)
c , such that for all instance-witness pairs

(x,w) st. R(x,w) = 1, it holds that

D(z)
c ≈

{
z | rp $←− {0, 1}λ; a← A(x,w; rp); z ← Z(x,w, c; rp)

}
.

This property is fundamental to stacking, as it means that the contents of the third round message do not
‘leak information’ about the statement used to generate the message. This means that the message can be

20

safely re-used to generate transcripts for the non-active clauses and an adversary cannot detect which clause
is active.12 Although this property might seem strange, we will later show that many natural Σ-protocols
have this property.

6.1.3 Stackability

With our two-properties formally defined, we are now ready to present the definition of stackable Σ-protocols:

Definition 9 (Stackable Σ-Protocol). We say that a Σ-protocol Σ = (A,Z, φ) is stackable, if it is EHVZK
(see Definition 6) and has recyclable third messages (see Definition 8).

We now note a useful property of stackable Σ-protocols that follow directly from Definition 9:

Remark 2. Let Σ = (A,Z, φ) be a stackable Σ-protocol for the NP relation R, with a well-behaved simulator.
Then for each c ∈ {0, 1}λ and any instance-witness pair (x,w) with R(x,w) = 1, an honestly computed
transcript is computationally indistinguishable from a transcript generated by sampling a random third round

message from D(z)
c and then simulating the remaining transcript using the extended simulator. More formally,{

(a, z) | rp $←− {0, 1}λ; a← A(x,w; rp); z ← Z(x,w, c; rp)
}
≈
{

(a, z) | z $←− D(z)
c ; a← Sehvzk(1λ, x, c, z)

}
Looking ahead, these observations will be critical in proving security of our compilers in Sections 7 and 8.

6.2 Classical Examples of Stackable Σ-Protocols

In this section, we show some examples of classical Σ-protocols which are stackable. Rather than considering
multiple classical Σ-protocols like Schnorr and Guillou-Quisquater separately, we consider the generalization
of these protocols as explored in [CD98]. Once we show that this generalization is stackable, it is simple to
see that specific instantiations are also stackable.

Lemma 1 (Σ-protocol for ψ-preimages [CD98] is stackable). Let G∗1 and G∗2 be groups with group operations
∗1, ∗2 respectively (multiplicative notation) and let ψ : G∗1 → G∗2 be a one-way group-homomorphism. Recall

the simple Σ-protocol (Πψ) of Cramer and Damg̊ard [CD98] for the relation of preimages Rψ(x,w) := x
?
=

ψ(w), where x ∈ G∗2, w ∈ G∗1. The protocol is a generalization of Schnorr [Sch90] and works as follows:

• A(x,w; rp), the prover samples r
$←− G∗1 and sends the image a = ψ(r) ∈ G∗2 to the verifier.

• Z(x,w, c; rp), the prover intreprets c as an integer from a subset C ⊆ Z and replies with z = wc ∗1 r

• φ(x, a, c, z), the verifier checks ψ(z) = xc ∗2 a.

Completeness follows since ψ is a homomorphism: ψ(z) = ψ(wc∗1r) = ψ(w)c∗2ψ(r) = xc∗2a. The knowledge
soundness error is 1/|C| (see [CD98] for more details). For any homomorphism ψ, Πψ is stackable:

Proof. To see that Πψ is stackable, define an extended simulator and check for recyclable third messages:

1. Πψ is EHVZK: Let D(z)
x,c := {z | z $←− G∗1}, let Sehvzk(1λ, x, c, z) := ψ(z) ∗2 x−c

2. Πψ has recyclable third messages: Observe that ∀x1, x2 : D(z)
x1,c = D(z)

x2,c = U(G∗1)13.

Remark 3. The following variants of Πψ (with different choices of G∗1,G
∗
2, ψ) are captured in this general-

ization (along with other similar Σ-protocols):

12We further elaborate on this in Remark 2.
13Uniform distribution over G∗1.

21

(1) Guillou-Quisquater [GQ90] (e-roots in an RSA group) for which G∗1 = G∗2 = Z∗n for a semi-prime
n = pq, C = [0, e) and ψ(w) := we for some prime e ∈ N.

(2) Schnorr [Sch90] (knowledge of discrete log): for which G∗1 = Z+
|G|,G

∗
2 = G where G is a cyclic group of

prime order |G|, C = [0, |G|) and ψ(w) := gw for some g ∈ G.

(3) Chaum-Pedersen [CP93] (equality of discrete log): for which G∗1 = Z+
|G|,G

∗
2 = G × G where G is a

cyclic group of prime order |G|, C = [0, |G|) and ψ : Z|G| → G×G, ψ(w) := (gw1 , g
w
2) for g1, g2 ∈ G.

(4) Attema-Cramer [AC20] (opening of linear forms): for which G∗1 = Z`|G| × Z|G|, G∗2 = (Z|G|,G), C =

[0, |G|) and ψ((x, γ)) := (L(x),gxhγ) for some linear form L(x) = 〈x, s〉, s ∈ Z`|G|

We also show that a variant of Blum’s classic 3 move protocol [Blu87] for graph Hamiltonicity is stackable in
Appendix A. This is not surprising, since in the third round the prover either: (1) opens a Hamiltonian path
in a permutation of the graph. (2) provides the randomness for the commitment to the permuted adjacency
matrix. In either case the distribution of third round messages only depends on the number of vertices in
the Hamiltonian graph: either a cycle of n vertices or n2 openings of commitments (random strings).

Lemma 2. Blum’s Σ-protocol [Blu87] is stackable.

The proof of Lemma 2 can be found in Appendix A

6.3 Examples of Stackable “MPC-in-the-Head” Σ-Protocols

We now proceed to show that many natural “MPC-in-the-head” style [IKOS07] Σ-protocols (with minor
modifications) are stackable. MPC-in-the-head (henceforth refereed to as IKOS) is a technique used for
designing three-round, public-coin, zero-knowledge proofs using MPC protocols. At a high level, the prover
emulates execution of an n-party MPC protocol Π virtually, on the relation function R(x, ·) using the witness
w as input of the parties, and commits to the views of each party. An honest verifier then selects a random
subset of the views to be opened and verifies that those views are consistent with each other and with an
honest execution, where the output of Π is 1.

Achieving EHVZK. Since the first round messages in such protocols only consist of commitments to the
views of all virtual partials, a subset of which are opened in the third round, a natural simulation strategy
when proving zero-knowledge of such protocols is the following: (1) based on the challenge message, determine
the subset of parties whose views will need be opened later, (2) imagining these as the “corrupt” parties,
use the simulator of the MPC protocol to simulate their views, and, finally, (3) compute commitments to
these simulated views for this subset of the parties and commitments to garbage values for the remaining
virtual parties. Clearly, since the first round messages in this simulation strategy are computed after the
third round messages, these protocols are naturally EHVZK.

Achieving recyclable third messages. To show that these Σ-protocols have recyclable third messages,
we observe that in many MPC protocols, an adversary’s view can often be condensed and decoupled from the
structure of the functionality/circuit being evaluated. We elaborate this point with the help of an example
protocol — semi-honest BGW [BGW88].

Recall that in the BGW protocol, parties evaluate the circuit in a gate-by-gate fashion on secret shared
inputs14 as follows: (1) for addition gates, the parties locally add their own shares for the incoming wire
values to obtain shares of the outgoing wire values. (2) For multiplication gates, the parties first locally
multiply their own shares for the incoming wire values and then secret share these multiplied share amongst
the other parties. Each party then locally reconstructs these “shares of shares” to obtain shares of the
outgoing wire values. (3) Finally, the parties reveal their shares for all the output wires in the circuit to all
other parties and reconstruct the output.

14These shares are computed using some threshold secret sharing scheme, e.g., Shamir’s polynomial based secret shar-
ing [Sha79].

22

By definition, the view of an adversary in any semi-honest MPC protocol is indistinguishable from a view
simulated by the simulator with access to the corrupt party’s inputs and the protocol output. Therefore, to
understand the view of an adversary in this protocol, we recall the simulation strategy used in this protocol:

1. For each multiplication gate in the circuit, the simulator sends random values on behalf of the honest
parties to each of the corrupt parties.

2. For the output wires, based on the messages sent to the adversary in the previous step and the circuit
that the parties are evaluating, the simulator first computes the messages that the corrupt parties
are expected to send to the honest parties. It then uses these messages and the output of protocol
to simulate the messages sent by the honest parties to the adversary. Recall that this can be done
because these messages correspond to the shares of these parties for the output wire values, and in a
threshold secret sharing scheme, the shares of an adversary and the secret, uniquely define the shares
of the remaining parties.

Observe that the computation done by the simulator in the first part is independent of the actual circuit or
function being computed (it only depends on the number of multiplication gates in the circuit). We refer to
the messages computed in (1) and the inputs of the corrupt parties as the condensed view of the adversary.
Additionally, given these simulated views, the output of the protocol, and the circuit/functionality, the
simulated messages of the honest parties in (2) can be computed deterministically. Looking ahead, because
the output of relation circuits — the circuits we are interested in simulating — should always be 1 to
convince the verifier, this deterministic computation will be straight forward. Since the condensed view is
not dependent on the function being computed, it can be used with “any” functionality in the second step
to compute the remaining view of the adversary. In other words, given two arithmetic circuits with the same
number of multiplication gates, the condensed views of the adversary in an execution of the BGW protocol
for one of the circuits can be re-interpreted as their views in an execution for the other one. We note that
circuits can always be “padded” to be the same size, so this property holds more generally.

As a result, for IKOS-style protocols based on such MPC protocols, while some strict structure must be
imposed upon third round messages (which are views of a subset of virtual parties) when verifying that they
have been generated correctly, the third round messages themselves can simply consist of these condensed
views (and not correspond to any particular functionality) and hence can be re-used. To make this work, we
must make a slight modification to the IKOS compiler. As before, in the first round, the prover will commit
to the views (where they are associated with a given function f) of all parties in the first round. However, in
the third round, the prover can simply send the condensed views of the opened parties to the verifier. The
verifier can deterministically compute the remaining view of these parties w.r.t. the appropriate relation
function f and check if they are consistent amongst each other and with the commitments sent in the first
round. Since the third round messages in this protocol are not associated with any function, it is now easy
to see that they can be the distribution of these messages is independent of the instance.

Building on this intuition, we show that many natural MPC protocols produce stackable Σ-protocols
for circuits of the same size when used with the IKOS compiler. Before giving a formal description of the
required MPC property, we recall the IKOS compiler in more detail, assuming that the underlying MPC
protocol has the following three-functions associated with it: ExecuteMPC emulates execution of the protocol
on a given function with virtual parties and outputs the actual views of the parties, CondenseViews takes
the views of a subset of the parties as input and outputs their condensed views, and ExpandViews takes the
condensed views of a subset of the parties and returns their actual view w.r.t. a particular function.

IKOS Compiler. Let f = R(x, ·). In the first round, the prover runs ExecuteMPC on f and the witness w
to obtain views of the parties and commits to each of these views. In the second round, the verifier samples
a random subset of parties as its challenge message. Size of this subset is equal to the maximal corruption
threshold of the MPC protocol. In the third round, the prover uses CondenseViews to obtain condensed
views for this subset of parties and sends them to the verifier along with the randomness used to commit to
the original views of these parties in the first round. The verifier runs ExpandViews on f and the condensed
views received in the third round to obtain the corresponding original views. It checks if these are consistent

23

with each other and are valid openings to commitments sent in the first round. Depending on the corruption
threshold and the security achieved by the underlying MPC protocol, the above steps might be repeated a
number of times to reduce the soundness error. Below we restate the main theorem from [IKOS07], which
also trivially holds for our modified variant.

Theorem 3 (IKOS [IKOS07]). Let L be an NP language, R be its associated NP-relation and F be the
function set {R(x, ·) : ∀x ∈ L}. Assuming the existence of non-interactive commitments, the above compiler
transforms any MPC protocol for functions in F into a Σ-protocol for the relation R.

Next, we formalize the main property of MPC protocols that facilitates in achieving recyclable third
messages when compiled with the above IKOS compiler. We characterize this property w.r.t. a function set
F , and require the MPC protocol to be such that the condensed views can be expanded for any f ∈ F . For
our purposes, it would suffice, even if the condensed view of the adversary is dependent on the final output
of the protocol, as long as it is independent of the functionality. This is because, in our context, the circuit
being evaluated will be a relation circuit with the statement hard-coded and should always output 1 in order
to convince the verifier.

Definition 10 (F-universally simulatable MPC). Let Π be an n-party MPC protocol that is capable of se-
curely computing any function f ∈ F (where F : Xn → O) against any semi-honest adversary A who corrupts
a set I ⊂ [n] of parties, such that I ∈ C, where C is the set of admissible corruption sets. We say that Π is F-
universally simulatable if there exists a 3-tuple of PPT functions (ExecuteMPC,ExpandViews,CondenseViews)
and a non-uniform PPT simulator Sf-mpc : F × C ×O → V ∗, defined as follows

• ({viewi}i∈[n], o) ← ExecuteMPC(f, {xi}i∈[n]): This function takes inputs of the parties {xi}i∈[n] ∈ Xn
and a function f ∈ F as input and returns the views {viewi}i∈[n] of all parties and their output o ∈ O
in protocol Π.

• {con.viewi}i∈I ← CondenseViews(f, I, {viewi}i∈I , o): This function takes as input the set of corrupt
parties I ∈ C, views of the corrupt parties {viewi}i∈I and the output of the protocol o ∈ O and returns
their condensed views {con.viewi}i∈I .

• {viewi}i∈I ← ExpandViews(f, I, {con.viewi}i∈I , o): This function takes as input the functionality f ∈
F , set of corrupt parties I ∈ C, condensed views {con.viewi}i∈I of the corrupt parties and the output
of the protocol o ∈ O and returns their views {viewi}i∈I .

• {con.viewi}i∈I ← Sf-mpc(f, I, {xi}i∈I , o): The simulator takes as input the functionality f ∈ F , set of
corrupt parties I ∈ C, inputs of the corrupt parties {xi}i∈I ∈ X |I| and the output of the protocol o ∈ O
and returns simulated condensed views {con.viewi}i∈I of the corrupt parties.

And these functions satisfy the following properties:

1. Condensing-Expanding Views is Deterministic: For all {xi}i∈[n] ∈ Xn and ∀f ∈ F , let
({viewi}i∈[n], o)← ExecuteMPC(f, {xi}i∈[n]). For all I ∈ C it holds that:

Pr [ExpandViews(f, I,CondenseViews(f, I, {viewi}i∈I , o), o) = {viewi}i∈I] = 1

2. Indistinguishability of Simulated Views from real execution: For all {xi}i∈[n] ∈ Xn and
∀f ∈ F , let ({viewi}i∈[n], o)← ExecuteMPC(f, {xi}i∈[n]). For all I ∈ C it holds that:

CondenseViews(f, I, {viewi}i∈I , o) ≈ Sf-mpc(f, I, {xi}i∈I , o)

3. Indistinguishability of Simulated Views for all functions: For any I ∈ C, all inputs {xi}i∈I ∈
X |I| of the corrupt parties, and all outputs o ∈ O, there exists a function-independent distribution
D{xi}i∈I ,o, such that ∀f ∈ F , if ∃{xi}i∈[n]\I for which f({xi}i∈[n]\I , {xi}i∈I) = o, then it holds that:

D{xi}i∈I ,o ≈ S
f-mpc(f, I, {xi}i∈I , o)

24

We note that a central notion used in the “stacked-garbling literature” (for communication efficient
disjunction for garbled circuit based zero-knowledge proofs) is a special case of F-universally simulatable:

Remark 4 (Topology Decoupled Garbled Circuits and F-universally simulatable MPC.). The notion of
topology decoupled garbled circuits introduced by Kolesnikov [Kol18] is a special case of F-universally simu-
latable MPC: a topology decoupled garbled circuit (E, T) separates the cryptographic material (E, e.g. garbling
tables) and topology (T , i.e. wiring) of a garbled circuit and (informally stated) requires that generating E for
different topologies introduces indistinguishable distributions. Letting X be the garbled input labels15 held by
the evaluator, in F-universally simulatable terminology (E,X) would constitute the “condensed view”, while
(E,X, T)16 would constitute the “expanded views” , indistinguishablilty of simulated views for functions with
the same number of gates and inputs follows easily from the “topology decoupling“ of the garbled circuits and
the uniform distribution of the input labels.

We now proceed to show that when instantiated with an F-universally simulatable MPC protocol, The-
orem 3 yields a stackable Σ-protocol for languages with relation circuits in F .

Theorem 4 (F-universally simulatable implies stackable). The IKOS compiler (see Theorem 3) yields
an stackable Σ-protocol for languages with relation circuit in F when instantiated with an F-universally
simulatable MPC protocol (see Definition 10) with privacy and robustness (See Definitions 2,3) against a
subset of the parties.

Proof. We define the distribution D(z)
x,c, where c ∈ {0, 1}κ describes a set of players I ∈ C as follows:

D(z)
x,c =

{
{con.viewi, ri}i∈I | {con.viewi}i∈I

$←− D{xi}i∈I ,1, {ri}i∈I
$←− {0, 1}I·λ

}
.

The EHVZK simulator (derived from the standard IKOS simulator) Sehvzk(1λ, f, c, z) takes a descrip-
tion f ∈ F and challenge c ∈ {0, 1}κ describing a set of players I ∈ C, and third round message

z = {con.viewi, ri}i∈I
$←− D(z)

x,c and computes the first round message as follows:
It runs ExpandViews(f, I, {con.viewi}i∈I , 1) to obtain original views {viewi}i∈I . It then commits to these

original views of the opened parties {comi = Com(viewi; ri)}i∈I , and generates dummy commitments {comi =
Com(0; ri)}i∈[n]\I for the views of the remaining parties, using some additional randomness {ri}i∈[n]\I . It
returns first round message a = {comi}i∈[n].

We now argue indistinguishability between a real transcript and the above simulated transcript. Let H0

be the distribution over a real transcript and H3 be the above simulated transcript. We define the following
intermediate hybrids:

• H1: Compute dummy commitments instead of honest ones for the unopened players in the first round.
Indistinguishability between H0 and H1 follows from the hiding property of commitments.

• H2: Instead of honestly computing {con.viewi}i∈I , sample these condensed views from
Sf-mpc(f, I, {xi}i∈I , 1) and use ExpandViews(f, I, {con.viewi}i∈I , 1) to obtain original views {viewi}i∈I .
Indistinguishability between H2 and H3 follows from indistinguishability of simulated views from real
execution (See Definition 10) of the MPC protocol.

• H3: Instead of sampling {con.viewi}i∈I from D{xi}i∈I ,1, sample these condensed views from
Sf-mpc(f, I, {xi}i∈I , 1). Indistinguishability between H2 and H3 follows from indistinguishability of
simulated views for all functions (See Definition 10) of the MPC protocol and from the fact that
condensing-expanding views is a deterministic process.

From transitivity of computational indistinguishability, it follows that H0 ≈ H3. Hence, this Σ-protocol

achieves EHVZK. For recyclable third messages, we observe that since D(z)
x,c as defined above does not

15Obtained using an oblivious transfer.
16Where T can be computed from f .

25

depend of the functionality of the MPC protocol, it is also independent of the statement, which in the IKOS

compiler is hard-wired in the functionality. Therefore, D(z)
c is the same as D(z)

x,c and this protocol is indeed
stackable.

We now use Theorem 4 to show that two popular IKOS-based Σ-protocols are stackable, namely
KKW [KKW18] and Ligero [AHIV17]. The intuition is very similar to that presented for semi-honest
BGW above — condensed views (which correspond to the third round messages sent in these protocols) can
be used to simulate transcripts with respect to multiple functionalities. We formally state this with respect
to functions of the same “size”, but note circuits can always be padded to have the same size.

We prove the following Lemmas (and give a description of the underlying MPC protocol in KKW and
Ligero) in Appendix D.1 and Appendix E respectively.

Lemma 3 (KKW [KKW18] is stackable). For any m ∈ N, the underlaying MPC in KWW is F-universally
simulatable for F consisting of circuits with m multiplications.

Lemma 4 (Ligero [AHIV17] is stackable). For any m ∈ N, the underlaying MPC in Ligero is F-universally
simulatable for F consisting of circuits with m gates.

6.4 Well-Behaved Simulators

As outlined in Section 3, a critical step of our compilation framework is applying the simulator of the
underlying Σ-protocols to the inactive clauses. Note that these inactive clauses might not be true (if the
language is non-trivial), even though the disjunction is satisfied, as such our framework should be applicable
to the case where some of the instances are false.

We note, however, that the behavior of a simulator is only defined with respect to statements that are
in the NP language — that is, true instances. As such, if the disjunction contains false clauses, there is
no guarantee that the simulator will produce an accepting transcript. This would cause problems with
verification — the verifier will know that one of the transcripts is not accepting, but will not know if this
is due to a simulation failure or malicious prover. As such, we must carefully consider what simulators will
produce when executed on a false instance.

As noted in [GO94], the simulators that are commonly constructed in most proofs of zero-knowledge will
usually output accepting transcripts when executed on these false instances. If the simulator were able to
consistently output non-accepting transcripts for false instances, it could be used to decide the NP language
in polynomial time. However, it is possible to define a valid simulator that produces an output that is not
an accepting transcript with non-negligible probability e.g. (1) the input instance is trivially false (e.g. a
connected graph with 4 nodes is not 3-colorable), or (2) the simulator has a hard-coded set of false instances
on which it deviates from its normal behavior. Indeed, a probabilistic simulator may also output a non-
accepting transcript in each of these cases only occasionally, possibly depending on the challenge. Note that
in both cases, a verifier will also be able to detect that the input instance is false simply by running the
simulator themselves.

Looking ahead, if one of the underlying Σ-protocols has a simulator with this kind of logic, our compiled
protocol could have a non-negligible soundness error proportional to the probability (over the random coins
of the challenge) that the simulator outputs a non-accepting transcript. Producing of a non-accepting
transcript in this way does not undermine zero-knowledge: simulation is only required for statements in the
language. However the verifier would reject the proof of the disjunction by an honest prover, on the flip side,
if the verification algorithm allows some transcript to be non-accepting, a malicious prover could trivially
exploit this property to violate soundness. Therefore it is important for completeness that the simulator
always produces accepting transcripts.

We emphasize that this is a corner case: commonly constructed simulators will produce accepting tran-
scripts even on false instances. Nevertheless, We observe that any Σ-protocol can be generically transformed
into one that has a simulator that outputs accepting transcripts for all statements. We refer to such simu-
lators as well-behaved simulators.

26

Definition 11 (Well-Behaved Simulator). We say that a Σ-protocol Σ = (A,Z, φ) for a NP language L
and associated relation R(x,w) has a well-behaved simulator if the simulator S defined for Special Honest
Zero-Knowledge has the following property: For any statement x (for both x ∈ L and x 6∈ L),

Pr
[
φ(x, a, c, z) = 1 | c $←− {0, 1}λ; a← S(x, c)

]
= 1

We say that an EHVZK Σ-protocol has a well-behaved simulator if its extended simulator Sehvzk has the
natural extension of this property.

We formally prove the following theorem in Appendix B.

Lemma 5 (Simulators are well-behaved without loss of generality). Every Σ-protocol Π can be converted to
a Σ-protocol Π′ for the same relation with a well-behaved simulator. Furthermore, if Π′ is EHVZK then Π′

is also EHVZK and if Π has recyclable third messages then Π′ has recyclable third messages.

In all subsequent sections, we assume w.l.o.g. that all Σ-protocols, have a well-behaved simulator and
that is what we use in our compilers.

7 Self-Stacking: Disjunctions With The Same Protocol

We now present a self-stacking compiler for Σ-protocols, presented in Figure 5. By self-stacking, we mean a
compiler that takes a stackable Σ-protocol Π for a language L and produces a Σ-protocol for language with
disjunctive statements of the form (x1 ∈ L) ∨ (x2 ∈ L) ∨ . . . ∨ (x` ∈ L) with communication complexity
proportional to the size of a single run of the underlying Σ-protocol (along with an additive factor that is
linear in ` and λ). The key ingredient in our compiler is the partially-binding vector commitments (See
Definition 4), which will allow the prover to efficiently compute verifying transcripts for the inactive clauses.

The compiler generates an accepting transcript (aα, c, z
∗) to the active clause α ∈ [`] using the witness,

and then simulates accepting transcripts for each non-active clause, using the extended simulator. Recall
that this extended simulator takes in a third round message z and a challenge c and produces a first round
message a such that φ(x, a, c, z) = 1. Thus, the prover can re-use the third round message z∗, for each
simulated transcript, thereby reducing communication to the size of a single third round message. For a
more detailed overview, we refer the reader to Section 3.

We now present a formal description of the self-stacking compiler:

Theorem 5 (Self-Stacking). Let Π = (A,Z, φ) be a stackable (See Definition 9) Σ-protocol for the NP
relation R : X ×W → {0, 1} and let (Setup,Gen,EquivCom,Equiv,BindCom) be a 1-out-of-` binding vector
commitment scheme (See Definition 4). For any pp ← Setup(1λ), the compiled protocol Π′ = (A′, Z ′, φ′)
described in Figure 5 is a stackable Σ-protocol for the relation R′ : X ` × ([`] × W) → {0, 1}, where
R′((x1, . . . , x`), (α,w)) := R(xα, w).

Proof. We now prove that the protocol Π′ = (A′, Z ′, φ′) described in Figure 5 is a stackable Σ-protocol for
the relation R′((x1, . . . , x`), (α,w)) := R(xα, w).

Completeness. Completeness follows directly from the completeness of the underlying Σ-protocol and the
commitment scheme. Note that because the underlying Σ-protocol has a well-behaved simulator, the prover
will not produce non-accepting transcripts on any clauses embedding false instances.

Special Soundness. We create an extractor E ′ for the protocol Π′ using the extractor E for the underlying
Σ-protocol Π. The extractor E ′ is given two accepting transcripts for the protocol Π′ that share a first round
message, i.e. a, c, z, c′, z′. The extractor uses this input to recover 2` total transcripts (2 for each clause),
(ai, c, z

∗), (a′i, c
′, z′∗) for i ∈ [`]. By the partial binding property of the partially-binding vector commitment

scheme, with all but negligible probability there exists an α ∈ [`] such that aα = a′α. E ′ then invokes the
extractor of Π on these transcripts to recover w ← E(1λ, xα, aα, cα, z

∗, c′α, z
′∗) and returns (α,w). Because

27

the underlying extractor E cannot fail with non-negligable probability, the E ′ succeeds with overwhelming
probability.

Extended Honest-Verifier Zero-Knowledge (and Recyclable Third Messages). For pp ←
Setup(1λ), let D(z)

c

′
:= {(ck, r, z) | (ck, ek) ← Gen(pp, B = {1}); r $←− {0, 1}λ; z

$←− D(z)
c } be the simulated

distribution over third round messages for Π′. We construct the extended simulator for Π′ by running the
underlying extended simulating Sehvzk for every clause and committing to the tuple of first round message
(a1, . . . , a`) using commitment key ck and randomness r:

a′ ← Sehvzk′((x1, . . . , x`), c, z
′ = (ck, r, z))

1 : for i ∈ [`] : Compute ai ← Sehvzk
i (xi, c, zi)

2 : com← BindCom(pp, ck,v = (a1, . . . , a`); r)

3 : return (ck, com)

Let D(α,w) denote the distribution of transcripts resulting from an honest prover possessing witness (α,w)
running Π′ with an honest verifier on the statement (x1, . . . , x`), where D(α,w) is over the randomness of the
prover and the verifier. We now proceed using a hybrid argument. Let H(α) be the same as D(α,w), except let
the first round message of clause α be generated by simulation, i.e. aα ← Sehvzk(xα, c, z). By the EHVZK
of Π, H(α) ≈ D(α,w). Next, let H(α,ck) be the same as H(α) except let the commitment key ck be generated
with the binding position as B = {1}, i.e. (ck, ek)← Gen(pp, B = {1}). Observe that H(α,ck) p= H(α) by the
(perfect) hiding of the partially-binding commitment scheme. Lastly note that H(α,ck) matches the output

distribution of Sehvzk′((x1, . . . , x`), c,D(z)
c

′
).

Therefore Π′ is a stackable Σ-protocol.

We now proceed to analyze the complexity of our resulting protocol.

Communication Complexity. Let CC(Π) be the communication complexity of Π. Then, the communica-
tion complexity of the Π′ obtained from Theorem 5 is (CC(Π) + |ck|+ |com|+ |r′|), where the sizes of ck, com
and r′ depends on the choice of partially-binding vector commitment scheme and are independent of CC(Π).
With our instantiation of partially binding vector commitments, the size of |ck|, |r′| will depend linearly on
`. However since our resulting protocol Π′ is also stackable, the communication complexity can be reduced
further to CC(Π) + 2 log(`)(|ck|+ |com|+ |r′|) by recursive application of the compiler as follows: let Π1 = Π
and for n > 1 let Π2n be the outcome of applying the compiler from Theorem 5 with ` = 2 to Πn. Note
that Π` only applies the stacking compiler dlog(`)e times and that CC(Π2n) = CC(Πn) + |ck| + |com| + |r′|.
Therefore CC(Π`) = CC(Π) + 2 log(`)(|ck|+ |com|+ |r′|).

Computational Complexity. In general, the computation complexity of this protocol is ` times that of
Π. However, in many protocols, the simulator is much faster than computing an honest transcript. We note
that for such protocols, our compiler is expected to also get savings in the computation complexity.

7.1 Self Stacking for Instances in Multiple Languages

Many known constructions of Σ-protocols work for more than one language. For instance, most MPC-in-the-
head style Σ-protocols (e.g. KKW [KKW18] , Ligero [AHIV17]) can support all languages with a polynomial
sized relation circuit, as long as the underlying MPC protocol works for any polynomial sized function.
However, because Σ-protocols are defined w.r.t. a particular NP language/relation, instantiating [KKW18]
for two different NP languages L1 and L2 will (by definition) result in two distinct Σ-protocols. Therefore,
applied näıvely, our compiler could only be used to stack Σ-protocols from [KKW18] for the exact same
relation circuit.

We note that this seemingly artificial restriction can be relaxed and in many cases, allowing our compiler to
stack Σ-protocols based on a particular technique for clauses of the form (x1 ∈ L1)∨(x2 ∈ L2)∨. . .∨(x` ∈ L`).

28

Self-Stacking Compiler

Statement: x = x1, . . . , xn
Witness: w = (α,wα)

– First Round: Prover computes A′(x,w; rp)→ a as follows:

– Parse rp = (rpα‖r).
– Compute aα ← A(xα, wα; rpα).

– Set v = (v1, . . . , v`), where vα = aα and ∀i ∈ [`] \ α, vi = 0.

– Compute (ck, ek)← Gen(pp, B = {α}).
– Compute (com, aux)← EquivCom(pp, ek,v; r).

– Send a = (ck, com) to the verifier.

– Second Round: Verifier samples c← {0, 1}λ and sends it to the prover.

– Third Round: Prover computes Z ′(x,w, c; rp)→ z as follows:

– Parse rp = (rpα‖r).
– Compute z∗ ← Z(xα, wα, c; r

p
α).

– For i ∈ [`]/α, compute ai ← Sehvzk(xi, c, z
∗).

– Set v′ = (a1, . . . , a`)

– Compute r′ ← Equiv(pp, ek,v,v′, aux) (where aux can be regenerated with r).

– Send z = (ck, z∗, r′) to the verifier.

– Verification: Verifier computes φ′(x, a, c, z)→ b as follows:

– Parse a = (ck, com) and z = (ck′, z∗, r′)

– Set ai ← Sehvzk(xi, c, z
∗)

– Set v′ = (a1, . . . , a`)

– Compute and return:

b = (ck
?
= ck′) ∧

(
com

?
= BindCom(pp, ck,v′; r′)

)
∧

∧
i∈[`]

φ(xi, ai, c, z
∗)

Figure 5: A compiler for stacking multiple instances of a Σ-protocol.

By “Σ-protocols based on a particular technique”, we mean (for instance) protocols based on [KKW18]. This
can be done by working with a “meta-language” that covers all languages of interest and is supported by that
technique. This could for example be an NP complete language, which would allow us to use our self-stacking
compiler by first reducing each xi to an instance of the NP-complete language. However, reducing to NP
complete languages without care will often add the significant cost of performing an NP-reduction to the
complexity of our compiler, which may no longer be efficient. In many cases, it is often possible to find the
“most suitable” meta-language without compromising on the efficiency. For instance, for any MPC-in-the-
head style Σ-protocol, this meta-language is as simple as circuit satisfiability for circuits of a given size (where
this size is determined based on the language with the largest relation circuit). This can be easily achieved

29

with the help of padding, without incurring any additional overhead. This observation combined with the
fact that simulation is deterministic in both KKW and Ligero, we get a protocol for general disjunctions,
where the communication is the same as the communication for a single instance for the clause with the
largest relation circuit and additive factor that depends on log(`) and the security parameter.

8 Cross-Stacking: Disjunctions with Different Protocols

In the previous section, we presented a compiler that facilitated stacking of the same Σ-protocol. We now
extend these ideas to allow stacking of different Σ-protocols, i.e. statements of the form (x1 ∈ L1) ∨ (x2 ∈
L2) ∨ . . . ∨ (x` ∈ L`). This allows picking the “best” Σ-protocol for each clause and getting stacking as an
afterthought. Note that we saw a limited version of achieving this in Section 7.1, where the Σ-protocols all
shared the same techniques, using the meta-language approach. However, that idea crucially relied on the
fact that there exists such a meta-language that is also supported by the Σ-protocol technique that we want
to stack. To avoid this requirement, we now consider the more complex case where the Σ-protocols rely
on different techniques.17 For instance, we explore how to stack Ligero-based [AHIV17] Σ-protocols with
KKW-based [KKW18] Σ-protocols despite their dissimilarity. We build intuition while exploring barriers in
an incremental manner below before finally making precise the notion of cross-stacking.

8.1 Cross Simulatability

As discussed above, the simplest intuitive example of cross-stacking is one where for each challenge c,

multiple Σ-protocols share the same distribution over last round messages D(z)
c . This is most clear when the

Σ-protocols are derived from the same techniques. In this case, the techniques from the self-stacking compiler
can be used directly. In Section 7.1 we used the “meta-language” approach for KKW-based [KKW18] Σ-
protocols. We now consider another example using Schnorr-like protocols that does not require us to work
with a meta-language:

Example 1 (Preimages of homomorphisms with the same domain [CD98]). Recall the protocol Πψ of Cramer
and Damg̊ard described earlier. Any two instances of Πψ1

and Πψ2
for one-way homomorphisms ψ1 : G∗1 →

G∗2 and ψ2 : G∗1 → G∗3 with the same domain G∗1 can be stacked as through they were the same protocol

using the self-stacking compiler: recall that for both Πψ1
and Πψ2

, D(z)
c is the uniform distribution over G∗1.

Concrete examples include generalizations of the Chaum-Pedersen [CP93] Σ-protocol ΠDlogEq,` (shown in
Figure 6), for showing equality of discrete log: for any (`, g1, . . . , g`) the homomorphism ψg1,...,g` : Z|G| → G`
defined as ψg1,...,g`(w) := (gw1 , . . . , g

w
`), has the same domain Z|G| (different ranges).

It is easy to see that the self-stacking compiler can be extended to different Σ-protocols that are essentially
the same and explicitly share third round message distributions. However, there are many protocols that
may appear to have different third round distributions that can still be directly stacked. This is possible
when structured distributions have their structure removed, leaving behind a “bunch of bits” that can be
re-interpreted in different ways. For example:

Example 2 (KKW over different commutative rings). Consider two KKW-based Σ-protocols. Π1 is for a
language with a relation circuit defined over the ring F2k , while Π2 is for a language with relation circuit over
Z2k . If elements of both F2k and Z2k are encoded as k-bit strings and the multiplicative complexity of the

relation circuits are the same, the the bit-wise distribution of D(z)
c for Π1 and Π2 is the same (see Figure 13).

Therefore, Π1 and Π2 can be stacked as though they were the same protocol using the self-stacking compiler
and their extended simulators will re-use the bit-wise encodings of elements of one ring as though they were
bit-wise encodings of the other ring. This approach can be generalized to any pair of finite commutative rings

17We note that this distinction between self-stacking and cross-stacking is not a firm, technical one, but rather a conceptual
difference. Taking the meta-language approach described in Section 7.1 to stacking Σ-protocols based on differing techniques
naturally leads to the question of how well transcripts with differing structures and distributions can be re-used. We highlight
these questions in this section under the name cross-stacking.

30

ΠDlogEq,`: RG,g1,...,g`(x,w) :=
∧
i∈[`] xi

?
= gwi where (g1, . . . , g`) ∈ G`

P V

r
$←− Z|G|

a← (gr1 , . . . , g
r
`) a

c c
$←− Z|G|

z ← cw + r z

Check ∀i ∈ [`] : gzi
?
= aix

c
i

Figure 6: Generalized Chaum-Pedersen

R1, R2 st. the size of the rings differs by a constant multiplicative factor and the circuits are of the correct
size. Specifically, if there exist a constant k such that |R1| = k|R2| and the relation circuits are arithmetic
circuits over R1 and R2 with multiplicative complexity m and k ·m respectively.

Finally, we extend our ideas to stacking Σ-protocols with truly distinct D(z)
c . As re-use of third round

messages is fundamental to our approach, the question becomes–to what extent can the prover safely re-
use the third round messages of different Σ-protocols? In general, there are two considerations; some Σ-
protocols may have uniquely long third round messages, letting the verifier identify which Σ-protocol was
run honestly, and in some Σ-protocols, the third round messages may “not be long enough” to facilitate
re-use. Conceptually, these two problems have the same fix: add bits to the third round messages of each
Σ-protocol until their third-round message distributions are the same. The hope is that the number of bits
shared by the third round message distributions of these protocols is large, so only a few bits need to be
added.

We formalize this notion by considering a common “super distribution” D into which the third round
messages of each Σ-protocol can be embedded and from which third round message for each Σ-protocol
can be extracted. D represent the composite of the distributions of the third round messages of the Σ-
protocols — parts of the distributions that can be re-used need not be duplicated, but elements unique
to any given Σ-protocol are also included. We formalize the mapping between the distribution of third
round messages and the super distribution D using a (possibly randomized) embedding function FΣ→D
and a deterministic extraction function TExtD→Π. For example, FΠ→D may add randomly sampled bits or
cryptographic material to a third round message z in order to create an element d ∈ D. TExtD→Π might
simply “select” the appropriate bits from d to construct z. We note that D is independent of c and therefore

needs to cover all possible values of c. Thus, if D(z)
c varies wildly across c for one of the Σ-protocols, D will

need to be large. This, however, is not common in practice; for example, D(z)
c is the same across all values

of c for both KKW and Ligero. We now present the property that we will require for cross-stacking:

Definition 12 (Cross Simulatability). A stackable Σ-protocol Π = (A,Z, φ) is ‘cross simulatable’ w.r.t.

a distribution D if there exists a PPT algorithm FΠ→D : D(z)
c → D and a deterministic polynomial time

algorithm TExtD→Π : {0, 1}κ ×D → D(z)
c satisfying the following properties:

Indistinguishable Embedding: For all c ∈ {0, 1}κ:

D ≈
{
d | r $←− {0, 1}λ; z

$←− D(z)
c ; d← FΠ→D(z; r)

}

31

Invertability: For all c ∈ {0, 1}κ, z ∈ D(z)
c and r ∈ {0, 1}λ:

TExtD→Π(c, FΠ→D(z; r)) = z

We note that these two properties also directly imply that for all c ∈ {0, 1}κ,

D(z)
c ≈

{
z | d $←− D; z ← TExtD→Π(c, d)

}

This property guarantees that third round messages in a Σ-protocol can be embedded into the (possibly
larger) distribution D, a generalization of Definition 8. Note that every stackable Σ-protocol is cross sim-
ulatable with its own third round message distribution. To make this property useful, we will require that
a set of Σ-protocols are all cross simulatable with the same distribution D. This property can be trivially
satisfied by simply appending the distributions of the underlying stackable Σ-protocols, making D a tuple
of elements of the underlying distributions; the challenge is to find small D for which this property holds.

With this definition in hand, we now show how Σ-protocols with very distinct features can be made cross
simulatable with a distribution D that is very similar in size to the distributions over third round messages of
these protocols using the example of KKW [KKW18] and Ligero [AHIV17]. This is despite the very distinct
features of the two techniques: Ligero has negligible soundness error, players equal to the square-root of the
multiplicative complexity of the circuit, and requires a sufficiently large field. KKW, on the other hand, has
constant soundness that must be amplified, a constant number of players (independent of the circuit size),
and operates over any commutative ring.

Example 3. Consider a Ligero-based Σ-protocol Π1 for a language with a relation circuit of size C1 defined
over the field F2k . Additionally, consider a KKW-based Σ-protocol Π2 for a language with relation circuit
with multiplicative complexity C2 defined over the ring Z2k .

Recall that third round message in Ligero contain (1) commitments ci to the unopened players, and (2)
a
√
C1 sized set of field elements for each opened party (that are used for consistency checks). In KKW,

third round messages contain (1) a punctured PRF seed that allows the verifier to check the preprocessing
for correctness, (2) for each of the online phases that are opened, (a) a seed for each opened player, (b) a
O(C2) set of bits to “correct” the preprocessing for one of the players, and (c) the broadcast messages of the
unopened player (also of size O(C2)). Let D be of the form

D = {(c1, . . . , cN , B) | ∀i ∈ [N] : ci ← com(ε; ri), r
$←− {0, 1}λ, B $←− {0, 1}L}

for some arbitrary values ε and values N and L constants that depend on C1 and C2 and the choice of
concrete parameters for the instantiated Σ-protocols.

Both third round messages contain a large number of commitments that are never opened for the unopened
parties. These can simply be re-used in D; Additionally, both protocols contain large sets of pseudorandom-
looking bits: in Ligero, these take the form of field elements and in KKW these take the form of correction bits,
broadcast messages, and a punctured PRF seed. Because these elements come from the same underlying bit-
wise distribution, they can similarly be reused. However, the number of commitments and pseudorandom bits
in each protocol may differ. As such, D contains the maximum number of commitments and pseudorandom
bits from between the two protocols.

Mapping into D involves determining the size of the padding: if more commitments must be added, the
mapping function samples arbitrary values ε and commits to them honestly. Note that these commitments will
never be opened, so the contents do not matter. If more pseudorandom bits are required, the mapping function
samples the required number of bits. Extracting a third round function involves selecting the appropriate
number of commitments and pseudorandom bits and parsing these bits as needed. Note that if the sizes of
C1 and C2 are appropriate (

√
C1 ≈ C2×(number of repetitions)), very little padding will be needed.

32

Cross-Stacking Compiler

Statement: x = x1, . . . , xn
Witness: w = (α,wα)

– First Round: Prover computes A′(x,w; rp)→ a as follows:

– Parse rp = (rpα‖r‖rmap).

– Compute aα ← Aα(xα, wα; rpα).

– Set v = (v1, . . . , v`), where vα = aα and ∀i ∈ [`] \ α, vi = 0.

– Compute (ck, ek)← Gen(pp, B = {α}).
– Compute (com, aux)← EquivCom(pp, ek,v; r).

– Send a = (ck, com) to Verifier.

– Second Round: Verifier samples c
$←− {0, 1}κ and sends it to Prover.

– Third Round: Prover computes Z ′(x,wα, c; r
p)→ z as follows:

– Parse rp = (rpα‖r‖rmap).

– Compute zα ← Z(xα, wα, c; r
p
α).

– d← FΠα→D(zα; rmap)

– For i ∈ [`]/α, compute

∗ zi ← TExti(c, d)

∗ ai ← Sehvzki (xi, c, zi)

– Set v′ = (a1, . . . , a`).

– Compute r′ ← Equiv(pp, ek,v,v′, aux) (where aux can be regenerated with r)

– Send z = (ck, d, r′) to the verifier.

– Verification: Verifier computes φ′(x, a, c, z)→ b as follows:

– Parse a = (ck, com) and z = (ck′, d, r′).

– For i ∈ [`], compute

∗ zi ← TExti(c, d)

∗ ai ← Sehvzki (xi, c, zi)

– Set v′ = (a1, . . . , a`)

– Compute and return

b = (ck
?
= ck′) ∧

(
com

?
= BindCom(pp, ck,v′; r′)

)
∧

∧
i∈[`]

φ(xi, ai, c, zi)

.

Figure 7: A compiler for stacking instances of multiple Σ-protocols.

33

8.2 Cross-Stacking from Cross Simulatability

With the definition of cross simulatability now in hand, we present our cross-stacking compiler. The approach
is the same as the self-stacking compiler, but for a set of Σ-protocols cross simulatable with respect to the
same D.

Theorem 6 (Cross-Stacking). Let D be a distribution. For each i ∈ [`], let Πi = (Ai, Zi, φi) be a stackable
(See Definition 9) Σ-protocol for the NP relation Ri : Xi×Wi → {0, 1}, that is cross simulatable w.r.t. to a
distribution D, and let (Setup,Gen,EquivCom,Equiv) be a 1-out-of-` binding vector commitment scheme (See
Definition 4). For any pp ← Setup(1λ), the protocol Π′ = (A′, Z ′, φ′) described in Figure 7 is a stackable
Σ-protocol for the relation R′((x1, . . . , x`), (α,w)) := Rα(xα, w).

We give a proof of this theorem in Appendix C.

Complexity Analysis. Complexity of this protocol can be calculated in a similar manner as in the
self-stacking compiler, except that here the distribution will depend on size of elements in D (let this be
|xD|). Thus, the communication complexity of Π′ is (|xD|+`O(λ)+ |com|+ |r′|). The impact of choosing any
particular partially-binding vector commitment scheme remains the same. As before, the above compiler can
be optimized further, to yield a protocol with communication complexity (|xD|+ 2 log(`)O(λ) + |com|+ |r′|),
where O(λ) can be minimized by using efficient constructions of partially-binding vector commitments, as
shown in the complexity analysis of self-stacking.

9 k-out-of-` Proofs of Partial Knowledge

We now briefly sketch how to efficiently (and generically) generalize the 1-of-` technique in this paper to k-of-`
threshold proofs with communication complexity linear in k and logarithmic in `. We note that the previous
version of our paper had a different version of this construction where the communication complexity was
linear in both k and `, which is not optimal. In a follow-up work, Avitabile et al. [ABFV22] proposed an
optimized construction for proofs of partial knowledge where the communication is linear in k and logarithmic
in `. Their work inspired us to observe a much simpler variant of our previous construction that also has
a similar efficiency, which we discuss in this section. For reference, we include our old construction (with
non-optimal communication) from the previous version of this paper in Appendix F.

A näıve attempt at turning a 1-of-` proof into a threshold k-of-` proof is to simply execute the 1-of-`
proof k times in parallel, this however is not sound: a cheating prover knowing just a single witness can
simply prove satisfiability of the same clause in every execution. This can be avoided by forcing the prover
to use a unique ”tag” for every clause. Let H be a family of k universal hash functions H : [`] → D with
|D| ≥ k, at a high-level the construction proceeds as follows:

1. Prover samples a k-universal hash function H
$←− H subject to |{H(α)}α∈A | = k.

2. Prover commits to the function: com← Commit(H; r).

3. The prover sends com, t1 = H(α1), . . . , tk = H(αk) to the verifier and for every i ∈ [k] proves:

(com = Commit(H; r) ∧ ti = H(1) ∧ (x1, w) ∈ R1)

∨ (com = Commit(H; r) ∧ ti = H(2) ∧ (x2, w) ∈ R2)

∨ (com = Commit(H; r) ∧ ti = H(3) ∧ (x3, w) ∈ R3)

∨ . . .
∨ (com = Commit(H; r) ∧ ti = H(`) ∧ (x`, w) ∈ R`)

Using the disjunction technique (e.g. the technique covered in this paper). In addition to checking the
validity of each proof the verifier now additionally checks that every ti is distinct.

34

Note that the compiler does not increase round-complexity as com, t1, . . . , tk can be send in parallel with
the disjunction proof. Soundness follows from the soundness of the 1-of-` proof and the binding of the
commitment scheme: intuitively if a malicious prover attempts to prove the same clause αi multiple times
then H(αi) must be appear multiple times, otherwise the malicious prover would be able to open com
to a commitment to H and H ′ where H(αi) 6= H ′(αi) and hence H 6= H ′ which violates binding of the
commitment. The precise soundness definition perfect/statistical/computational is inherited directly from
the commitment scheme and proof system. Intuitively the proof above is zero-knowledge since for any set of
t1, . . . , tk ∈ D : Pr

H
$←−H[t1 = H(α1), . . . , tk = H(αk)] is independent of α by the definition of k universality

by combining this with hiding of the commitment scheme and zero-knowledge the disjunction proof: the
simulator works by setting ∀i ∈ [k] : αi = i, sampling H like the honest prover, then running the simulator
of the disjunction proof for every i.

The primary challenge in the compiler above is to instantiate Commit and H such that com =
Commit(H; r) ∧ ti = H(i) can be efficiently proven using a Sigma protocol. We instantiate Commit using a
scheme which enables commitment to polynomials of degree k − 1 (a family of k-universal hash functions),
note that we do not require a ‘polynomial commitment scheme’ as commonly defined: in particular we do not
require that |com| is succinct or the opening proofs have poly-logarithmic time/communication in the degree
of the polynomial. The scheme is a natural one based on a linearly homomorphic commitment scheme:

1. The prover commits to H(X) =
∑k
i=1 ci · Xi−1 by committing to each coefficient individually, for

all i ∈ 1, . . . , k commit to ci using a homomorphic commitment [ci] ← CommitHomo(ci; ri) and form
com = ([c1], . . . , [ck]).

2. To open H at x, both parties homomorphically compute [H(x)] =
∑k
i=1 x

i · [ck]

3. The prover applies a zero-knowledge proof to show that [H(x)] opens to y, without revealing the
randomness of the commitment.

For completeness, the linearly homomorphic commitment scheme can be instanced with Pedersen com-
mitments and the (honest-verifier) zero-knowledge proof with a generalization of a Schnorr proof to prove
the opening of the Pedersen commitment; as shown earlier such a proof is stackable.

10 Measuring Concrete Efficiency

Although the efficiency of our compiler is self evident from the construction of the commitment scheme,
we also include two measurements to demonstrate the efficiency more clearly. Specifically, we compare the
impact of applying our self-stacking compiler to instance instances of the KKW Σ-protocol and constructing
ring signatures by applying our self-stacking compiler to Schnorr signatures.

Self-Stacking KKW [KKW18]. Our first measurement that demonstrates the concrete efficiency of our
compiler is self-stacking KKW [KKW18]. We compare the results of this protocol to the näıve approach of
simply applying CDS [CDS94] to the equivalent disjunctive statement. Specifically, we compare our compiler
and CDS applied applied to circuits containing 1000 and 100,000 multiplication gates and sweep between 1
and 1000 clauses. The results of this comparison can be found in Figure 8.

To compute this table, we compute the communication complexity of KKW for 128-bits (λ = 128) of
classical (non-quantum) security. The communication complexity for ` clauses for our work and CDS are
computed as follows:

Size-KKW = 2λ+ τ · log
M

τ
· 3λ+ τ(λ log n+ 2m+ |w|+ 3λ),

Size-Stacked = Size-KKW + 4λ · dlog `e,
Size-CDS = ` · (Size-KKW + λ),

35

Multiplications (m) #Clauses (`) Comm. (CDS [CDS94]) Comm. (Stacked Σ, ours)
1000 1 14.6 KB
1000 10 146.1 KB 14.9 KB
1000 100 1,461.4 KB 15.1 KB
1000 1000 1,461.4 KB 15.3 KB

100 000 1 583.9 KB
100 000 10 5,838.6 KB 584.1 KB
100 000 100 58,386.4 KB 584.3 KB
100 000 1000 583,864.0 KB 584.5 KB

Figure 8: Concrete communications complexity for disjunctions over Boolean circuits (R = F2) with
different multiplicative complexity, targeting 128-bits of security: n = 64,M = 631, τ = 23. The

communication complexity of our work is computed when recursive stacking is applied using the optimized
commitment scheme described in Appendix G.

Ring Size (n) Time (t) Signature Size (|σ|)
21 4 ms 128 B
22 8 ms 192 B
23 12 ms 256 B
24 18 ms 320 B
25 24 ms 384 B
26 34 ms 448 B
27 50 ms 512 B
28 76 ms 576 B
29 127 ms 640 B
210 224 ms 704 B
211 414 ms 768 B
212 813 ms 832 B

Figure 9: Performance of ring signatures for rings of different sizes.
All benchmarks run on a single core of AMD EPYC 7601 @ 2.2 GHz.

where Size-KKW and parameters (M, τ) are derived in KKW [KKW18].

Ring-signatures From Schnorr Signatures [Sch90]. Our second efficiency measurment is constructing
ring-signatures [RST01] by applying our compiler to classical Schnorr Signatures. Specifically, we recursively
apply the compiler from Theorem 5 (with the partially binding vector commitments from Figure 17), to the
Schnorr [Sch90] identification protocol over the Ristretto group of Curve25519 [Ber06]. Then, we apply the
Fiat-Shamir [FS87] heuristic to obtain a signature of knowledge in the random oracle model. We implement
the compiled protocol in the Rust programming language; our implementation is open source and is available
at https://github.com/rot256/research-stacksig .

The concrete size of these ring signatures with 128 bits of security and n parties is |σ| = 64 ·dlog2(n)e+64
bytes. We present running times and signatures sizes for these ring signatures in Figure 9.18

Acknowledgments

We would like to thank the anonymous reviewers of CRYPTO 2021 for their helpful comments on our initial
construction of the partially-binding commitments. Additionally, we would like to thank Nicholas Spooner

18The benchmarks can be reproduced by running cargo bench using a nightly Rust.

36

https://github.com/rot256/research-stacksig

for his helpful comments on the definition of these commitments. Finally, we would like to thank Gennaro
Avitabile, Vincenzo Botta, Daniele Friolo and Ivan Visconti, who in their follow-up work “Efficient Proofs
of Knowledge for Threshold Relations” [ABFV22] pointed out some subtle definitional issues in the previous
version of this paper and constructed an optimized threshold version of our compiler. This motivated us to
observe a slightly different (and improved) variant of our threshold construction, which we describe in this
updated version.

The first and second authors are supported in part by NSF under awards CNS-1653110, and CNS-1801479,
and the Office of Naval Research under contract N00014-19-1-2292. The first author is also supported in
part by NSF CNS grant 1814919, NSF CAREER award 1942789 and the Johns Hopkins University Catalyst
award. The second author is also funded by DARPA under Contract No. HR001120C0084, as well as a
Security and Privacy research award from Google. The third author is funded by Concordium Blockhain
Research Center, Aarhus University, Denmark. The forth author is supported by the National Science
Foundation under Grant #2030859 to the Computing Research Association for the CIFellows Project and is
supported by DARPA under Agreements No. HR00112020021 and Agreements No. HR001120C0084. Any
opinions, findings and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the United States Government or DARPA.

References

[ABFV22] Gennaro Avitabile, Vincenzo Botta, Daniele Friolo, and Ivan Visconti. Efficient proofs of
knowledge for threshold relations. Cryptology ePrint Archive, Report 2022/746, 2022. https:

//eprint.iacr.org/2022/746.

[AC20] Thomas Attema and Ronald Cramer. Compressed Σ-protocol theory and practical application
to plug & play secure algorithmics. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 513–543. Springer, Heidelberg, August
2020.

[ACF20] Thomas Attema, Ronald Cramer, and Serge Fehr. Compressing proofs of k-out-of-n partial
knowledge. 2020. https://eprint.iacr.org/2020/753.

[ACK21] Thomas Attema, Ronald Cramer, and Lisa Kohl. A compressed Σ-protocol theory for lattices.
In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages
549–579, Virtual Event, August 2021. Springer, Heidelberg.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 2087–2104. ACM Press,
October / November 2017.

[AOS02] Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. 1-out-of-n signatures from a variety
of keys. In Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 415–432.
Springer, Heidelberg, December 2002.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on
Security and Privacy, pages 315–334. IEEE Computer Society Press, May 2018.

[BCC+15] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth, and Christophe
Petit. Short accountable ring signatures based on DDH. In Günther Pernul, Peter Y. A. Ryan,
and Edgar R. Weippl, editors, ESORICS 2015, Part I, volume 9326 of LNCS, pages 243–265.
Springer, Heidelberg, September 2015.

37

https://eprint.iacr.org/2022/746
https://eprint.iacr.org/2022/746
https://eprint.iacr.org/2020/753

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs
for C: Verifying program executions succinctly and in zero knowledge. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108. Springer,
Heidelberg, August 2013.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE
Symposium on Security and Privacy, pages 459–474. IEEE Computer Society Press, May 2014.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128.
Springer, Heidelberg, May 2019.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive
zero knowledge for a von neumann architecture. In Kevin Fu and Jaeyeon Jung, editors, USENIX
Security 2014, pages 781–796. USENIX Association, August 2014.

[Ber06] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Moti Yung, Yevgeniy
Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006, volume 3958 of LNCS, pages 207–
228. Springer, Heidelberg, April 2006.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM STOC,
pages 1–10. ACM Press, May 1988.

[BHKL13] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator: elliptic-curve
points indistinguishable from uniform random strings. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, ACM CCS 2013, pages 967–980. ACM Press, November 2013.

[Blu87] Manuel Blum. How to prove a theorem so no one else can claim it. pages 1444–1451, 1987.

[BMRS20] Carsten Baum, Alex J. Malozemoff, Marc Rosen, and Peter Scholl. Mac’n’cheese: Zero-knowledge
proofs for arithmetic circuits with nested disjunctions. Cryptology ePrint Archive, Report
2020/1410, 2020. https://eprint.iacr.org/2020/1410.

[CD98] Ronald Cramer and Ivan Damg̊ard. Zero-knowledge proofs for finite field arithmetic; or: Can
zero-knowledge be for free? In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS,
pages 424–441. Springer, Heidelberg, August 1998.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In Yvo Desmedt, editor, CRYPTO’94, volume 839 of
LNCS, pages 174–187. Springer, Heidelberg, August 1994.

[CP93] David Chaum and Torben P. Pedersen. Transferred cash grows in size. In Rainer A. Rueppel,
editor, EUROCRYPT’92, volume 658 of LNCS, pages 390–407. Springer, Heidelberg, May 1993.

[CPS+16] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti.
Online/offline OR composition of sigma protocols. In Marc Fischlin and Jean-Sébastien Coron,
editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 63–92. Springer, Heidelberg,
May 2016.

[FLPS21] Prastudy Fauzi, Helger Lipmaa, Zaira Pindado, and Janno Siim. Somewhere statistically binding
commitment schemes with applications. In Nikita Borisov and Claudia Diaz, editors, Finan-
cial Cryptography and Data Security, pages 436–456, Berlin, Heidelberg, 2021. Springer Berlin
Heidelberg.

38

https://eprint.iacr.org/2020/1410

[FNO15] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi. Privacy-free garbled circuits
with applications to efficient zero-knowledge. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 191–219. Springer, Heidelberg, April
2015.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194. Springer, Heidelberg, August 1987.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors, EU-
ROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013.

[GK15] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak a secret and spend
a coin. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume
9057 of LNCS, pages 253–280. Springer, Heidelberg, April 2015.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In 17th ACM STOC, pages 291–304. ACM Press, May 1985.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design (extended abstract). In 27th FOCS, pages
174–187. IEEE Computer Society Press, October 1986.

[GMY03] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-knowledge protocols
using signatures. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 177–
194. Springer, Heidelberg, May 2003.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems.
Journal of Cryptology, 7(1):1–32, December 1994.

[GQ90] Louis C. Guillou and Jean-Jacques Quisquater. A “paradoxical” indentity-based signature scheme
resulting from zero-knowledge. In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS,
pages 216–231. Springer, Heidelberg, August 1990.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki Abe,
editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340. Springer, Heidelberg, December
2010.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326.
Springer, Heidelberg, May 2016.

[HK20a] David Heath and Vladimir Kolesnikov. Stacked garbling - garbled circuit proportional to longest
execution path. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II,
volume 12171 of LNCS, pages 763–792. Springer, Heidelberg, August 2020.

[HK20b] David Heath and Vladimir Kolesnikov. Stacked garbling for disjunctive zero-knowledge proofs. In
Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume 12107 of LNCS,
pages 569–598. Springer, Heidelberg, May 2020.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure
multiparty computation. In David S. Johnson and Uriel Feige, editors, 39th ACM STOC, pages
21–30. ACM Press, June 2007.

39

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using garbled cir-
cuits: how to prove non-algebraic statements efficiently. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, ACM CCS 2013, pages 955–966. ACM Press, November 2013.

[JM20] Aram Jivanyan and Tigran Mamikonyan. Hierarchical one-out-of-many proofs with applications
to blockchain privacy and ring signatures. 2020 15th Asia Joint Conference on Information
Security (AsiaJCIS), pages 74–81, 2020.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero knowl-
edge with applications to post-quantum signatures. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 525–537. ACM Press, October 2018.

[Kol18] Vladimir Kolesnikov. Free IF: How to omit inactive branches and implement S-universal garbled
circuit (almost) for free. In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018,
Part III, volume 11274 of LNCS, pages 34–58. Springer, Heidelberg, December 2018.

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin Boyd, editor,
ASIACRYPT 2001, volume 2248 of LNCS, pages 552–565. Springer, Heidelberg, December 2001.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, Heidelberg, August 1990.

[se19] swisspost evoting. E-voting system 2019. https://gitlab.com/swisspost-evoting/

e-voting-system-2019, 2019.

[Sha79] Adi Shamir. How to share a secret. Communications of the Association for Computing Machinery,
22(11):612–613, November 1979.

[Zav20] Greg Zaverucha. The picnic signature algorithm. Technical report, 2020. https://github.com/
microsoft/Picnic/raw/master/spec/spec-v3.0.pdf.

40

https://gitlab.com/swisspost-evoting/e-voting-system-2019
https://gitlab.com/swisspost-evoting/e-voting-system-2019
https://github.com/microsoft/Picnic/raw/master/spec/spec-v3.0.pdf
https://github.com/microsoft/Picnic/raw/master/spec/spec-v3.0.pdf

A Blum87 is Stackable: Proof of Lemma 2

Let LHam
n ⊆ {0, 1}n×n be the language of n vertex graphs with a Hamiltonian cycle (represented by adjacency

matrices). For any n Blum’s classical Σ-protocol for LHam
n is stackable, recall the protocol (Shown in Figure

10):

Blum: Rn(x,w) := w ∈ Sn is a Hamiltonian cycle in the graph x ∈ {0, 1}n×n

P V

κ times in parallel

π
$←− Sn

r1,1, . . . , rn,n
$←− {0, 1}λ

∀i, j ∈ [n] :

Ci,j ← Commit(xπ(i),π(j); rπ(i),π(j))

a = (C1,1, . . . , Cn,n)

c c
$←− {0, 1}

τ ← π ◦ w
R0 ← (π, r1,1, . . . , rn,n)

R1 ← (τ, r1,τ(1), . . . , rn,τ(n),C1,1,...,Cn,n)

Rc

if c = 0 compute ∀i, j ∈ [n] :

Ci,j ← Commit(xπ(i),π(j); rπ(i),π(j))

if c = 1 compute ∀i ∈ [n] :

Ci,τ(i) ← Commit(1; ri,τ(i))

Check: a
?
= (C1,1, . . . , Cn,n)

Figure 10: Blum’s protocol for Hamiltonian cycles. Sn denotes the permutation group on [n] and ◦ is the
group operation. {0, 1}n×n denotes the set of adjacency matrices for n vertex graphs.

On challenge c = 0: P sends the randomness for the commitment to the permuted graph. The verifier
then recomputes the commitments and checks them against the first round message. Hence for c = 0
the last round message consists of a uniformly random permutation π ∈ Sn and ({0, 1}λ)n

2

random
bits, independent of the graph (statement).

On challenge c = 1: P sends the opening of the permuted Hamiltonian cycle (witness) to V. Hence for
c = 1 the last round message z is a uniformly random permutation τ ∈ Sn and ({0, 1}λ)n random bits,
independent of the graph (statement).

Therefore the protocol has recyclable third messages. To be more precise:

Proof. (Lemma 2) For c ∈ {0, 1}, define D(z)
c as follows:

D(z)
0 := {(π, r1,1, . . . , rn,n) | π $←− Sn;∀i, j ∈ [n] : ri,j

$←− {0, 1}λ}

41

D(z)
1 := {(τ, r1,τ(1), . . . , rn,τ(n), C1,1, . . . , Cn,n) | τ $←− Sn;∀i, j ∈ [n] : ri,j

$←− {0, 1}λ, Ci,j ← Commit(1; ri,j)}

Construct the extended simulator Sehvzk as follows:

Sehvzk(x, c = 0, (π, r1,1, . . . , rn,n)) = (C1,1, . . . , Cn,n) where ∀i, j ∈ [n] : Ci,j ← Commit(xi,j ; ri,j)

Sehvzk(x, c = 1, (τ, r1,τ(1), . . . , rn,τ(n), C1,1, . . . , Cn,n)) = (C1,1, . . . , Cn,n)

Observe that the distribution for c = 0 is the same as honest execution. For c = 1 the distributions are
indistinguishable by hiding of the bit-commitment, see [Blu87] for details. The protocol is clearly EHVZK –
since it is a special case of a commit-and-reveal protocol.

B Well-Behaved Simulators: Proof of Lemma 5

Proof. Given Π = (A,Z, φ), construct the new Π′ = (A′, Z ′, φ′) with well-behaved a simulator as follows:

• A′(x,w; r) := (a,⊥) where a← A(x,w; r)

• Z ′(x,w, c; r) := z where z ← Z(x,w, c; r)

• φ′(x, a′, c, z) :=

1. if a′ = (⊥, c) output 1.

2. if a′ = (a,⊥) for some a, output φ(x, a, c, z).

3. Otherwise output 0

Intuitively: in Π′ the prover can either choose to attempt guessing the challenge c (sending a′ = (⊥, c)), or,
he can run the original protocol (sending a′ = (a,⊥)). The (well-behaved) simulator S ′ of Π′ first runs the
simulator S of Π, if the simulated transcript (a, c, z) is accepting then output the transcript, otherwise S ′
‘guesses’ the challenge:

• S(1λ, x, c) :=

1. (a, z)← S(1λ, x, c)

2. if φ(a, c, z) = 1 output (a′, z′) where a′ = (a,⊥), z′ = z.

3. if φ(a, c, z) = 0 output (a′, z′) where a′ = (⊥, c), z′ = ⊥

Π′ is a Σ-protocol: Formally verify the defining qualities of a Σ-protocol:

• Completeness: follows from completeness of Π. In particular in the real executions a′ = (a,⊥) always.

• Special Honest Verifier Zero-Knowledge: For every x ∈ L and c ∈ {0, 1}λ, the output of the original
simulator (a, z) ← S(1λ, x, c) must always be accepting φ(a, c, z) = 1 by SHVZK of Π. Hence the
distribution of S ′ on statements x ∈ L is Since the distribution in the real execution will always have
a′ = (a,⊥)

• Special Soundness: Suppose we get two transcripts with a shared first-round message: (a′, c1, z1, c2, z2)
st. φ′(a′, c1, z1) = 1, φ(a′, c2, z2) = 1 and c′1 = c′2. Consider the two distinct forms that a′ can take:

1. When a′ = (⊥, c) then clearly there does not exists two accepting transcripts with different
challenges c1 and c2 since c = c1 = c2. Hence the assumption that a′ = (⊥, c) is a contradiction.

2. When a′ = (a,⊥) then z1, z2 must satisy φ(a, c1, z1) = 1 and φ(a, c2, z2) = 1. Therefore, we can
extract a witness w ← E(a, c1, z1, c2, z2) using the extractor of Π.

42

Π is EHVZK =⇒ Π′ is EHVZK: Let Sehvzk be the extended simulator of Π, for every x define

D(z)
c,x

′
= D(z)

c,x and the new extended simulator Sehvzk′ of Π′ as:

• Sehvzk′(1λ, x, c, z) :=

1. a← Sehvzk(1λ, x, c, z)

2. if φ(x, a, c, z) = 1 : output (a,⊥)

3. if φ(x, a, c, z) = 0 : output (⊥, c)

Π has recyclable third messages =⇒ Π′ has recyclable third messages: Let D(z)
c

′
= D(z)

c , since

D(z)
c,x

′
= D(z)

c,x for every x, it follows immediately.

C Security Proof for Cross-Stacking Compiler (Theorem 6)

We now prove that the protocol Π′ = (A′, Z ′, φ′) described in Figure 7 is a stackable Σ-protocol for the
relation R′((x1, . . . , x`), (α,w)) := Ri(xα, w).

Completeness. Completeness follows directly from the completeness of the underlying Σ-protocols, com-
pleteness of the commitment scheme. Note that because the underlying Σ-protocol has a well-behaved
simulator, the prover will not produce non-accepting transcripts on any clauses embedding false instances.

Special Soundness. We create an extractor E ′ for the protocol Π′ using the extractors Ei for the underlying
Σ-protocols Πi. The extractor E ′ is given two accepting transcripts for the protocol Π′ that share a first round
message, i.e. a, c, z, c′, z′. The extractor uses this input to recover 2` total transcripts (2 for each branch),
(ai, c, zi), (a

′
i, c
′, z′i) for i ∈ [`]. By the binding and verification properties of the equivocal vector commitment

scheme, with all but negligible probability there exists an α ∈ [`] such that aα = a′α. E ′ then invokes the
extractor of Πα on these transcripts to recover w ← Eα(1λ, xα, aα, cα, zα, c

′
α, z
′
α) and returns (α,w). Because

the underlying extractor Eα cannot fail with non-negligible probability, the E ′ succeeds with overwhelming
probability.

Extended Honest-Verifier Zero-Knowledge (and Recyclable Third Messages). We denote the

distribution of third round message for Π′ as D(z)
c

′
. Note that D(z)

c

′
is constructed from a commitment

key ck, a randomness for the commitment scheme r, and a single element d ∈ D. Note that by the hiding
property of the commitment scheme, the distribution of ck is independent of the binding index B. More
formally, for pp← Setup(1λ),

D(z)
c

′
:= {(ck, r, d) | (ck, ek)← Gen(pp, B = {1}); r $←− {0, 1}λ; d

$←− D}

Note that this distribution is independent of the statements, as D itself is independent of the statements.
We construct the extended simulator by running the underlying extended simulating Sehvzk for every

clause and committing to the tuple of first round message (a1, . . . , a`) using a freshly generated commitment
key ck and randomness r:

a′ ← Sehvzk′((x1, . . . , x`), c, z
′ = (ck, r, d))

1 : for i ∈ [`]

2 : Compute zi ← TExti(c, d)

3 : Compute ai ← Sehvzk
i (xi, c, zi)

4 : return (ck,BindCom(ck,v = (a1, . . . , a`); r))

Let D(α,w) denote the distribution of transcripts resulting from an honest prover possessing witness (α,w)
running Π′ with an honest verifier on the statement (x1, . . . , x`), where D(α,w) is over the randomness of the

43

prover and the verifier. We now proceed using a hybrid argument. Let H(α) be the same as D(α,w), except let
the first round message of clause α be generated by simulation, i.e. zα ← TExtα(c, d); aα ← Sehvzk(xα, c, zα).
By the EHVZK of Σα, H(α) ≈ D(α,w). Next, let H(α,ck) be the same as H(α) except let the commitment
key ck be generated with the binding position as B = {1}, i.e. (ck, ek) ← Gen(pp, B = {1}). Observe that
H(α,ck) p= H(α) by the (perfect) hiding of the partially-binding commitment scheme. Lastly note that H(α,ck)

matches the output distribution of Sehvzk′((x1, . . . , x`), c,D(z)
c

′
).

Therefore Σ′ is a stackable Σ-protocol.

D Overview of [KKW18] and Proof of Lemma 3

In this section we describe the MPC-in-the-head protocol by Katz, Kolesnikov and Wang (KKW) [KKW18].
Let R be a finite commutative ring and m ∈ N+, KKW [KKW18] (parameterized by R and m) is a Σ-protocol
for the NP relation R(C,w) := C(w) = 1 of circuits C over R and satifying assignments of input wires w. The
protocol is obtain by compiling a passively secure BGW-style [BGW88] MPC protocol in the preprocessing
model using the IKOS [IKOS07] compiler.

Notation. We denote by v
$←−s D (notice s), the process of sampling v from the distribution D using random

coins r ← PRG(s) derived by applying a pseudo-random generator on the seed s. The operation is stateful i.e.

v1
$←−s D; v2

$←−s D samples two (possibly distinct) values from D using disjoint slices of the pseudo-random

stream. We denote by [v]
(i)

the additive share of v held by player Pi, the shares of all players sum to v:

v =
∑n
i=1 [v]

(i)
. The function f to be computed by the MPC protocol is implemented as an arithmetic circuit

over R and the function is interpreted as a sequence of gates f = (f1, . . . , f|f |) ∈ {Input, Add, Mul, Output}|f |
(in-order traversal of the circuit) where:

• Input(γ): assigns to the next R-element from the witness to the wire wγ .

• Add(γ, α, β): assigns to the wire wγ the sum of the values of the wires wα and wβ .

• Mul(γ, α, β): assigns to the wire wγ the product of the values of the wires wα and wβ .

• Output(α): outputs/reveals the value of the wire wα.

Underlying MPC. It is most clearly seen how preprocessing as used in KKW fits into our frame-
work by simply viewing the MPC as an n + 1 player protocol, where a ‘preprocessing player’ P0 acts
as a dealer (shown in Figure 11) and sends the ‘online players’ P1, . . . , Pn correlated randomness via

point-to-point channels. The MPC is passively secure against the corruption patterns C = {{0} ∪
(

[n]
n−1

)
}

i.e. the ‘preprocessing player’ or any n − 1 subset of the ‘online players’. During the online phase of

KKW (shown in Figure 12) the n players hold additive shares [λγ]
(i)

of masks λγ =
∑n
i=1 [λγ]

(i)
and

public maskings zγ = vγ−λγ of the value vγ assigned to the wγ , i.e. the value of wγ is vγ = zγ+
∑n
i=1 [λγ]

(i)
.

The n online players share a single broadcast channel (no point-to-point channels). The initial state of the
online players consists of the masked values zγ for the input gates sent to the players on the broadcast
channel. The initial state of the preprocessing player P0 consists only of random coins. Player 0 can be
opened by providing her random coins, any subset of the n online players can be opened by providing the
messages from player 0 to these players in addition to the messages broadcast during the online execution
by the unopened players.

When applying the IKOS [IKOS07] compiler to this n+ 1 player MPC protocol, it results in the 3-round (Σ-
protocol) variant of the KKW proof system described in the original paper. The communication-complexity
optimizations applied in [KKW18] are compatible with this n+ 1 player interpretation, but are omitted here
for the sake of simplicity and because they are orthogonal to our goal of ‘stacking’ KKW.

44

Player 0 computes correlated Beaver triples:

• Sample a PRG seed for every player for i ∈ [n] : si
$←−s0 {0, 1}λ.

• Create an empty list of ‘corrected’ multiplication shares: ∆← ∅

• Process the circuit gate-by-gate for j ∈ [|f |] do:

– if fj = Input(γ):

1. Sample a random sharing: for i ∈ [n] : [λγ]
(i) $←−si R

– if fj = Add(γ, α, β):

1. Locally add shares: [λγ]← [λα] + [λβ]

– if fj = Mul(γ, α, β):

1. Compute the product of the masks: λα,β ← λα · λβ
2. Sample random output mask: for i ∈ [n] : [λγ]

(i) $←−si R

3. Sample random shares of the product: for i ∈ [n] : [λα,β]
(i) $←−si R

4. Compute the correction ∆α,β ← λα,β −
∑n
i=1 [λα,β]

(i)

5. Append ∆α,β to ∆.

• Send correlated randomness to each player: for i ∈ [n] send (∆, si) to Pi

Figure 11: KKW Preprocessing Player. R is any finite commutative ring.

Condensed Views

Condensed view of P0: The condensed view of P0 is its random coins s0 from which the individual player
seeds s1, . . . , sn are derived. Given s0 the entire view of P0 can be recomputed. Total of λ bits.

Condensed view of {Pi}i∈I , 0 /∈ I : The condensed views of any subset of online players consists of a tuple
(T ,∆, {si}i∈I), consisting of:

1. All broadcast messages not sent by players in {Pi}i∈I :

(a) The masked input wires zγ for gates Input(γ).

(b) The [sγ]
(p)

shares sent by player Pp, p /∈ I during multiplication.

2. The corrections ∆ sent by player 0.

3. The n− 1 individual per-player PRG seeds {si}i∈I ,

Total of 2m+ |w| elements of R and λ · (n− 1) bits. Crucially, there is no need to include the shares of the
honest player for the output reconstructions:

Remark 5. We do not need to include in T the shares of Pp during the reconstruction in the execution of
Output gates: any accepting transcript will reconstruct the constant o (‘circuit satisfied’), hence the share

[λα]
(p)

can be inferred from the masked wire zα and the shares {[λα]
(i)}i∈I as: [λα]

(p)
= o−zα−

∑
i∈I [λα]

(i)
.

Soundness Amplification. In KKW, communication complexity of the soundness amplification is im-
proved by opening the preprocessing player with significantly higher probability. In practice this is done by
picking parameters M, τ with τ �M then opening P0 in M − τ randomly chosen repetitions and a random
subset of ‘online players’ in the remaining τ repetitions.

45

For every wire (with secret-shared value vγ) the players hold a public masked value zγ = vγ − λγ . For
the input gates the masked values zγ = wγ − λγ are provided to n online players on the broadcast
channel before execution begins.

Player Pi with i ∈ [n]:

• Receive corrections and PRG seed (∆, si) from P0

• Process the circuit f in-order gate-by-gate for j ∈ [|f |] do:

– if fj = Input(γ):

1. Receive the masked input zγ on the broadcast channel.

2. Regenerate the random sharing [λγ]
(i) $←−si R

(players obtain a sharing of the witness wγ = zγ +
∑
i∈[n] [λγ]

(i)
)

– if fj = Add(γ, α, β):

1. Locally compute [λγ]
(i) ← [λα]

(i)
+ [λβ]

(i)

2. Locally compute zγ ← zα + zβ

– if fj = Mul(γ, α, β):

1. Regenerate next output mask: [λγ]
(i) $←−si R

2. Regenerate next Beaver share: [λα,β]
(i) $←−si R

3. Correct share: if i = 1 update [λα,β]
(i) ← [λα,β]

(i)
+ ∆α,β

4. Locally compute [sγ]
(i) ← zα[λβ]

(i)
+ zβ [λα]

(i)
+ [λα,β]

(i) − [λγ]
(i)

5. Reconstruct sγ (broadcast [sγ]
(i)

)

6. Locally compute zγ ← sγ + zαzβ

– if fj = Output(α):

1. Reconstruct λα (broadcast [λα]
(i)

)

Figure 12: KKW Online Players. R is any finite commutative ring.

46

D.1 [KKW18] is Stackable: Proof of Lemma 3

We now prove that this MPC is F-universally simulatable (and therefore stackable).

Proof. (Lemma 3) Let D(real) be the real distribution over condensed views for a particular I. The simulator
is given in Figure 13. Consider the two cases:

• Preprocessing: I = {0}.
The distribution S(f, {0}) over condensed views is exactly D(real).

• Online Execution: I 6= {0}, |I| = n− 1.
Follows in a straighforward way from the pseudorandomness of the PRG. Consider the following three
hybrids:

1. Define the hybrid H(∆):

H(∆) = {(T ,∆′, I, {si}i∈I),∆′
$←− Rm, (T ,∆, I, {si}i∈I)

$←− D(real)(I)}

Let p ∈ [n] \ I be the honest (unopened) player. Note that in D(real): ∆α,β = λαjλβj −∑
i∈[i] [λαj ,βj]

(i)
= Cαj ,βj − [λαj ,βj]

(p)
where Cαj ,βj and [λαj ,βj]

(p) $←−sp R is known to the ver-

ifier. In H(∆): ∆′α,β = λαjλβj −
∑
i∈[i] [λαj ,βj]

(i)
= Cαj ,βj − [λαj ,βj]

(p)
where [λαj ,βj]

(p) $←− R.

Hence by pseudorandomness of the PRG the distribution of ∆α,β and ∆′α,β are computationally

indistinguishable and by extension D(real) c≈ H(∆).

2. Define the hybrid H(T):

H(T) = {(T ′,∆, I, {si}i∈I), T ′ $←− Rm+|w|, (T ,∆, I, {si}i∈I)
$←− H(T)}

Note that in D(real): [sγ]
(p)

= zα[λβ]
(p)

+ zβ [λα]
(p)

+ [λα,β]
(p) − [λγ]

(p)
= S

(p)
α,β − [λγ]

(p)
with

[λγ]
(p) $←−sp R and the verifier may know S

(p)
α,β . While inH(T): [sγ]

(p)′ $←− R. By pseudorandomness

of the PRG the distribution of [sγ]
(p)

and [sγ]
(p)

are computationally indistinguishable and by
extension D(real) c≈ H(T).

Finally observe H(∆,T) = S(f, I)
c≈ D(real).

E Overview of Ligero and Proof of Lemma 4

In this section, we discuss the MPC model used in Ligero, give an overview about why their underlying MPC
is F-universally simulatable , recall the construction of their MPC protocol and finally give a formal proof
for why their protocol is F-universally simulatable .

MPC Model. The protocol in Ligero [AHIV17] makes use of a special MPC protocol that is described
in the following model between a sender, reciever and n servers (the following text is taken verbatim from
Ligero):

• Two-phase: The protocol they consider proceeds in two-phases: In phase 1, the servers receive inputs
from the sender and only perform local computation. After Phase 1, the servers obtain a public random
string r sampled via a coin flipping oracle and broadcast to all servers. The servers use this in Phase
2 for their local computation at the end of which each server sends a single output message to the
receiver R.

47

KKW S(f, I = {0}), preprocessing is opened.

Sample PRG seed: s0
$←− {0, 1}λ

return s0

KKW S(f, I 6= {0}), online-phase is partially opened.

Sample condensed broadcast transcript: T $←− Rm+|w|

Sample per-player PRG seeds: ∀i ∈ I : si
$←− {0, 1}λ

Sample corrections: ∆
$←− Rm

return (T ,∆, {si}i∈I)

Figure 13: Simulating the condensed views in KKW. R is the commutative ring over which the arithmetic
circuits are computed.

• No Broadcast: The servers never communicate with each other. Each server simply receives inputs
from the sender at the beginning of Phase 1, then receives a public random string in Phase 2, and
finally delivers a message to R.

Overview. Originally, Ligero is presented as a 5 round public coin proof that can be flattened using Fiat-
Shamir. In order to use a protocol in the above model with our modified IKOS compiler (see Theorem 3), we
assume that the random string r is obtained by the sender using a random oracle by providing the list of all
the messages that it computes in the first phase as input. Given this slight modification, we observe that the
underlying MPC protocol in Ligero is F-universally simulatable . At a high level, the messages sent by the
sender to the servers at the end of the first phase in their protocol correspond to packed secret sharings (or
more generally Reed-Solomon encodings) of the intermediate wire values obtained upon evaluating the circuit
on a given input. The messages sent by the servers to the receiver in the second phase correspond to packed
secret sharings of vectors of 0s. Since the messages sent in the first phase are never reconstructed, our F-
universal simulator, can simply simulate these messages by sending random values to the adversarial servers
on behalf of an honest sender. These messages correspond to the condensed view of the adversary. Messages
sent by the honest servers to a corrupt receiver in the second round can be deterministically computed
using the above condensed view and the description of the function. Hence, this protocol is F-universally
simulatable .

We now describe their protocol in detail and then present a formal description of the F-universal simulator
and the functions ExpandViews and CondenseViews. But befor that, we borrow the following definitions
from [AHIV17], which will aid in the description of the protocol.

Definition 13 (Reed-Solomon Code). For positive integers n, k, finite field F, and a vecotr η = (η1, . . . , ηn) ∈
Fn of distinct field elements, the code RSF,n,k,η is the [n, k, n− k + 1] linear code over F that consists of all
n-tuples (p(η1), . . . , p(ηn)), where p is a polynomial of degree < k over F.

Definition 14 (Interleaved code). Let L ⊂ Fn be an [n, k, d] linear code over F. We let Lm denote the
[n,mk, d] (interleaved) code over Fm whose codewords are all m × n matrices U such that every Ui of U
satisfies Ui ∈ L. For U ∈ Lm and j ∈ [n], we denote by U [j] the jth symbol (column) of U .

Definition 15 (Encoded Message). Let L = RSF,n,k,η be an RS code and ζ = (ζ1, . . . , ζ`) be a sequence
of distinct elements of F for ` ≤ k. For u ∈ L, we define the message Decζ(u) to be (pu(ζ1), . . . , pu(ζ`)),
where pu is the polynomial (of degree < k) corresponding to u. For U ∈ Lm with rows u1, . . . , um ∈ L, we
let Decζ(U) be the length-m` vector x = (x11, . . . , x1`, . . . , xm1, . . . , xm`) such that (xi1,...,xi`) = Decζ(u

i) for
i ∈ [m]. Finally, when ζ is clear from the context, we say that U encodes x if x = Decζ(U).

48

Ligero MPC protocol. Let C : Fn → F be the circuit that the parties wish to compute. Let α =
(α1, . . . , αn) be the input vector held by the the sender S. Let m, ` be integers such that m · ` > n · |C|,
where |C| is the number of gates in the circuit C.

In the first phase of the protocol, the sender S proceeds as follows (the following text is taken verbatim
from Ligero):

• It computes w ∈ Fm`, where the first n + s entries of w are (α1, . . . , αn, β1, . . . , β|C|) where βi is the

output of the ith gate when evaluating C(α).

• It then constructs vectors x, y and z in Fm` where the jth entry of x, y and z contains the values βa,
βb and βc corresponding to the jth multiplication gate in w.

• It constructs matrices Px, Py and Pz in Fm`×m` such that

x = Pxw, y = Pyw, z = Pzw.

• It then constructs matrix Padd ∈ Fm`×m` such that the jth row of Paddw equals βa + βb − βc where βa,
βb and βc correspond to the jth addition gate in w.

• It then samples random codewords Uw, Ux, Uy, Uz ∈ Lm where L = RSF,n,k,η subject to w =
Decζ(U

w), x = Decζ(U
x), y = Decζ(U

y), z = Decζ(U
z) where ζ = (ζ1, . . . , ζ`) is a sequence of dis-

tinct elements disjoint from (η1, . . . , ηn).

• Let u′, ux, uy, uz, u0, uadd be auxiliary rows sampled randomly from L where each of ux, uy, uz, uadd

encodes an independently samples random ` messages (γ1, . . . , γ`) subject to Σc∈[`]γc = 0 and u0

encodes 0`.

• It sets U ∈ L4m as a juxtaposition of the matrices Uw, Ux, Uy, Uz ∈ Lm. It also computes r∗ ←
HRO(U), where r∗ = (r, radd, rx, ry, rz, rq), such that r ∈ F4m, radd, rx, ry, rz ∈ Fm`, rq ∈ Fm.

• It sends U [j], u′[j], ux[j], uy[j], uz[j], u0[j], uadd[j] to server j (for j ∈ [n]), where U [j] represents the jth

column in U . It also sends r∗ to each server.

In the second phase, each server j ∈ [n] computes and broadcast the following to the receiver party R:

• Compute and send v[j] = rTU [j] + u′[j].

• – Compute constructs matrix Padd ∈ Fm`×m` such that the jth row of Paddw equals βa + βb − βc
where βa, βb and βc correspond to the jth addition gate in w.19

– Let raddi be the unique polynomial of degree < ` such that raddi (ζc) = ((radd)TPadd)ic for every
c ∈ [`].

– Let Uw[i, j] be the (i, j)th entry in Uw.

– Compute and send qadd[j] = uadd[j] + Σi∈[m]r
add
i (j) · Uw[i, j].

• It constructs matrices Px, Py and Pz in Fm`×m` such that x = Pxw, y = Pyw, z = Pzw.. For each
a ∈ {x, y, z}, let rai be the unique polynomial of degree < ` such that rai (ζc) = ((ra)T [Im`| − Pa])ic for
every c ∈ [`]. It then computes and sends the following:

– qx[j] = ux[j] + Σi∈[m]r
x
i (j) · Ux[i, j] + Σ2m

i=m+1r
x
i (j) · Uw[i−m, j].

– qy[j] = uy[j] + Σi∈[m]r
y
i (j) · Uy[i, j] + Σ2m

i=m+1r
y
i (j) · Uw[i−m, j].

– qz[j] = uz[j] + Σi∈[m]r
z
i (j) · Uz[i, j] + Σ2m

i=m+1r
z
i (j) · Uw[i−m, j].

– p0[j] = u0[j] + Σi∈[m]r
q[i] · (Ux[i, j] · Uy[i, j]− Uz[i, j]).

19Note that Padd can be constructed without knowledge of w.

49

E.1 Ligero is Stackable: Proof of Lemma 4

We now prove that the Liegor MPC is F-universally simulatable (and therefore stackable). Based on Ligero’s
MPC model, privacy only holds when the adversary is only allowed to corrupt the receiver R and at most t
servers. The view of an adversary corrupting the reciever R and t servers consists of the messages received
by the corrupt servers from the sender S in the first phase and in the second phase it consists of the
messages sent by all the servers to the receiver R. F-universal simulatability of this protocol follows from
the zero-knowledge property of Ligero. The F-universal simulator would proceed as follows:

• Sample a random vector v ∈ F.

• For each j ∈ I, sample random elements from F for Ux[j], Uy[j], Uz[j], Uw[j].

• For each j ∈ I, sample random elements from F for u′[j], ux[j], uy[j], uz[j], u0[j], uadd[j].

Since the messages computed by the simulator are independent of the functionality (or even the output
of the protocol), it is easy to see that this is an F-universal simulator.
ExpandViews : We now describe the expand views function for this protocol

• For each j ∈ I, compute the following:

– qadd[j] = uadd[j] + Σi∈[m]r
add
i (j) · Uw[i, j].

– qx[j] = ux[j] + Σi∈[m]r
x
i (j) · Ux[i, j] + Σ2m

i=m+1r
x
i (j) · Uw[i−m, j].

– qy[j] = uy[j] + Σi∈[m]r
y
i (j) · Uy[i, j] + Σ2m

i=m+1r
y
i (j) · Uw[i−m, j].

– qz[j] = uz[j] + Σi∈[m]r
z
i (j) · Uz[i, j] + Σ2m

i=m+1r
z
i (j) · Uw[i−m, j].

– p0[j] = u0[j] + Σi∈[m]r
q[i] · (Ux[i, j] · Uy[i, j]− Uz[i, j]).

• Use {qadd[j]}j∈I to extrapolate a polynomial qadd of degree < k + ` − 1 such that Σc∈[`]q
add(ζc) = 0,

and output {qadd[j]}j∈[n]\I

• For each a ∈ {x, y, z}, use {qa[j]}j∈I to extrapolate a polynomial qa of degree < k + ` − 1 such that
Σc∈[`]q

a(ζc) = 0 and output {qa[j]}j∈[n]\I .

• Use {q0[j]}j∈I to extrapolate a polynomial q0 of degree < 2k− 1 such that p0(ζc) = 0 for every c ∈ [`]
and output {q0[j]}j∈[n]\I .

CondenseViews: We now describe the condense views function for this protocol. This function simply removes
{qadd[j]}j∈[n]\I , {q0[j]}j∈[n]\I and {qa[j]}j∈[n]\I for each a ∈ {x, y, z} from the views and outputs the
remaining transcript as the condensed views.

F k-out-of-` Proofs Of Partial Knowledge (Old Construction)

In this section, we show how our cross stacking compiler can be extended to obtain efficient k-out-of-` proofs
of partial knowledge. The communication complexity in the protocol is linear in both k and `. We start by
formally defining k-out-of-` binding vector-of-vector commitments.

Definition 16 (k-out-of-` Binding Vector-of-Vector Commitment). A k-out-of-` binding non-interactive
vector commitment scheme with message space M, is defined by a tuple of the PPT algorithms
(Setup,Gen,EquivCom,Equiv,Open) defined as follows:

• pp← Setup(1λ) On input the security parameter λ, the setup algorithm outputs public parameters pp.

• (ck, ek) ← Gen(pp, B): Takes public parameters pp and a k-subset of indices B ∈
(

[`]
k

)
. Returns a

commitment key ck and equivocation key ek.

50

• (com, op, aux) ← EquivCom(pp, ek, {v(i)}i∈[k]; r): Takes public parameter pp, equivocation key ek, t

`-tuples {v(i)}i∈[t] and randomness r. Returns a partially-binding commitment com as well as some
auxiliary equivocation information aux.

• op ← Equiv(pp, ek, {v(i)}i∈[t], {v′(i)}i∈[k], aux): Takes public parameters pp, equivocation key ek, orig-

inal commitment vectors {v(i)}i∈[k] and updated commitment vectors {v′(i)}i∈[k] such that if bi is the

ith element in B : v
(i)
bi

= v
′(i)
bi

, and auxiliary equivocation information aux. Returns equivocation ran-
domness r. (Note the difference in notation from Section 5).

• {0, 1} ← Open(pp, ck, com, {v(i)}i∈[k], op): Takes public parameter pp, commitment key ck, commit-
ment com, k `-tuples {vi}i∈[k] and randomness r and {0, 1}.

The properties satisfied by the above algorithms are as follows:

(Perfect) Hiding: The commitment key ck (perfectly) hides the binding positions B and commitments
com (perfectly) hides the k × ` committed values in the vectors. Formally, for all sets of vectors

{v(i)}i∈[k], {w(i)}i∈[k] ∈Mk×`, B,B′ ∈
(

[`]
k

)
, and pp← Setup(1λ):[

(ck, com)

∣∣∣∣∣ (ck, ek)← Gen(pp, B); r
$←− {0, 1}λ;

(com, op, aux)← EquivCom(pp, ek, {v(i)}i∈[k]; r)

]
p=[

(ck′, com′)

∣∣∣∣∣ (ck′, ek′)← Gen(pp, B′); r′
$←− {0, 1}λ

(com′, op′, aux′)← EquivCom(pp, ek′, {w(i)}i∈[k]; r
′);

]

(Computational) Partial Binding with Structure: It is intractable for an adversary that generates
the commitment key ck to equivocate on more than ` − 1 positions for any given vector in the
commitment. To formalize this property, we consider the class of adversaries Ak that produces a
single commitment key ck and t equivocations to a commitment under that key. We denote the
jth opening to the commitment as the set {v(i),(j)}i∈[k] and the mth element of a vector v(i),(j)

vector as v
(i),(j)
m . For all t ∈ poly(λ) and all PPT algorithms Ak, if pp ← Setup(1λ) and

(ck, com, {v(i),(1)}i∈[k], . . . , {v(i),(t)}i∈[k], op1, . . . , opt)← At(1λ, pp), then

Pr
[
@S ⊂ [`], |S| ≥ k, and a bijection f : S ↔ [t] s.t. ∀si ∈ S, v(si),(1)

f(si)
= . . . = v

(si),(t)
f(si)

∣∣∣
Open(pp, ck, com, {v(i),(1)}i∈[k], op1) = . . . = Open(pp, ck, com, {v(i),(t)}i∈[k], opt) = 1

]
≤ negl(λ)

Partial Equivocation: We denote the ith element of B (in order) as bi. Given a commitment to {v(i)}i∈[k]

under a commitment key ck← Gen(pp, B), it is possible to equivocate to any {w(i)}i∈[k] as long as for

i ∈ [t], v
(i)
bi

= w
(i)
bi

. More formally, for all B ∈
(

[`]
k

)
, and all {v(i)}i∈[k], {w(i)}i∈[k] ∈Mk×` st. ∀i ∈ [k] :

v
(i)
bi

= w
(i)
bi

then:

Pr

Open(pp, ck, com, {w(i)}i∈[t], op
′) = 1

∣∣∣∣∣∣∣∣∣∣
pp← Setup(1λ); r

$←− {0, 1}λ;

(ck, ek)← Gen(pp, B);

(com, op, aux)← EquivCom(pp, ek, {v(i)}i∈[k]; r);

op′ ← Equiv(ek, {v(i)}i∈[k], {w(i)}i∈[k], aux)

 = 1

Construction in the Random Oracle Model. Let NICom be a non-interactive commitment scheme,
NISetCom, and (P,V) be a non-interactive zero-knowledge proof system in the random oracle model. We
now present a construction of a k-out-of-` binding vector-of-vectors commitment in Figure 14.

51

k-out-of-` Binding Vector-of-Vectors Commitment

• pp← Setup(1λ): Output pp = ⊥.

• (ck, ek)← Gen(pp, B): Output (ck, ek) = ⊥

• (com, op, aux)← EquivCom(pp, ek, {v(i)}i∈[t]; r):

– Parse a random value rB from r and compute comB = NISetCom(B; rB)

– For each i ∈ [k], j ∈ [`], parse a random value ri,j from r and compute comi,j = NICom(v
(i)
j ; ri,j).

– Use the non-interactive zero-knowledge proof to compute a proof π using statement
comB , {comi,j}i∈[k],j∈[`], {v(i)}i∈[t] and witness B, rB , {ri,bi}i∈[k]:

π = NIZKPoK

{(
{v(i)}i∈[t], B, rB , {ri,bi}i∈[k]

)
: B ∈

(
[`]

k

)
∧ comB = NISetCom(B; rb) ∧

comi,bi = NICom(v
(i)
j ; ri,bi)

}
– Set com = (comB , {comi,j}i∈[k],j∈[`]), op = π, and aux = r.

• op ← Equiv(pp, ek, {v(i)}i∈[t], {v′(i)}i∈[t], aux): Use the non-interactive zero-knowledge proof to com-

pute a proof π using statement comB , {comi,j}i∈[k],j∈[`], {v′(i)}i∈[t] and witness B, rB , {ri,bi}i∈[k], for
the above language L and output op = π.

• {0, 1} ← Open(pp, ck, com, {v(i)}i∈[t], op) : If op verifies with respect to com and {v(i)}i∈[t], return 1.
Otherwise return 0.

Figure 14: A k-out-of-` Binding Vector-of-Vectors Commitment

Theorem 7. Let NICom be a non-interactive t-out-` binding vector commitment scheme and (P,V) be a non-
interactive zero-knowledge proof system in the random oracle model, then the scheme presented in Figure 14
is a non-interactive k-out-of-` binding vector-of-vectors commitment in the random oracle model.

Proof. Hiding follows from the hiding of the underlying commitment scheme. Binding and equivocation
follow from the soundness and completeness of the zero-knowledge protocol.

We now present our compiler for proofs of partial knowledge.

Theorem 8 (Stacking for Proofs of Partial Knowledge). Let D be a distribution. For each i ∈ [`], let
Πi = (Ai, Ci, Zi, φi) be a stackable (See Definition 9) Σ-protocol for the NP relation Ri : Xi ×Wi → {0, 1},
that is cross simulatable w.r.t. to a distribution D, and let (Setup,Gen,EquivCom,Equiv,Open) be a k-
out-of-` binding vector-of-vectors commitment scheme (See Definition 16). For any pp ← Setup(1λ), the
protocol Π′ = (A′, C ′, Z ′, φ′) described in Figure 15 is a Σ-protocol for the relation R′((x1, . . . , x`), (K =
{k1, . . . , kk}, {wj}j∈K)) := ∧j∈KRj(xj , wj).

Completeness: Completeness follows directly from the completeness of the Σ-protocols, k-out-of-` binding
vector of vectors commitment scheme and the EHVZK simulators.

Special Soundness: Special soundness follows from the the binding property and the verification property
of the commitment scheme in a similar way as in the proof of the cross stacking compiler.

Special Honest-Verifier Zero Knowledge: Special Honest Verifier Zero-Knowledge property also follows
exactly like in the proof of the cross stacking compiler.

52

Stacking Compiler for k-out-of-` Proofs of Partial Knowledge
Statement: x = x1, . . . , xn
Witness: w = (K = {k1, . . . , kk}, {wj}j∈K)

– First Round: Prover computes A′(x,w; rp)→ a as follows:

– Parse rp = ({rpj }j∈K‖r‖{rmap,j}j∈[k]).

– For each j ∈ K, compute aj ← Aj(xj , wj ; r
p
j).

– For each j ∈ [k], set vj,kj = akj .

– For each j ∈ [k], i ∈ [`] \ kj , set vj,i = 0.

– Compute (ck, ek)← Gen(pp, B = K).

– For each j ∈ [k], set vj = (vj,1, . . . , vj,`)

– Compute (com, op, aux)← EquivCom(pp, ck, {vj}j∈[k]; r).

– Send a = com to the verifier.

– Second Round: Verifier samples c← {0, 1}λ and sends it to the prover.

– Third Round: Prover computes Z ′(x,wα, c; r
p)→ z as follows:

– Parse rp = ({rpj }j∈K‖r‖{rmap,j}j∈[k]).

– For each j ∈ [k]:

∗ Compute zj ← Zkj (xkj , wkj , c; r
p
kj

)

∗ Compute dj ← FΠkj→D(zj ; rmap,j)

∗ For i ∈ [`] \ kj ,
· Set zj,i ← TExti(c, dj)

· Set aj,i ← Sehvzki (xi, c, zj,i)

∗ Set aj,kj ← akj

– For each j ∈ [k], set v′j = (aj,1, . . . , aj,`)

– Compute op′ ← Equiv(pp, ek, com, {vj}j∈[k], {v′j}j∈[k], aux)

– Compute and send z =
(
ck, {dj}j∈[k], op

′) to the verifier.

– Verification: Verifier computes φ′(x, a, c, z)→ b as follows:

– Parse a = com and z =
(
ck, {dj}j∈[k], op

′)
– For each j ∈ [k]:

∗ For i ∈ [`], set zj,i ← TExti(c, dj)

∗ For i ∈ [`], set aj,i ← Sehvzki (xi, c, zj,i)

– For each j ∈ [k], set v′j = (aj,1, . . . , aj,`)

– Compute and return b as

b =
(
Open(pp, ck, com, {v′j}j∈[k], op

′)
)
∧

 ∧
j∈[k],i∈[`]

φi(xi, aj,i, c, zj,i)

Figure 15: A compiler for k-out-of-` proofs of partial knowledge.

53

Game AdaptiveDlog.

A Game

1 : h h
$←− G

2 : g∗

3 : g g
$←− G

4 : x, y, z

Wins iff. x, y, z 6= 0 ∧ hxgy∗gz = 1

Figure 16: AdaptiveDlog Game. Messages are label (in red) for easy referencing.

Complexity Analysis. Note that we cannot recursively apply this compiler, and so the resulting complexity

will be worse than the self-stacking and cross-stacking compilers presented above. In this case, let |xD| be
the size of elements of D. The communication complexity of the protocol produced by applying the compiler
in Figure 15 will be (k|xD|+ |ck|+ |com|+ |op|). Note that the computational complexity of this protocol is
O(k`), as the prover must simulate or honestly execute all ` clauses k times each.

G Optimized Partially Binding Vector Commitments from RO

In this section, we present our optimized construction of partially binding vector commitments. We show
that this construction is secure if the discrete log assumption holds. However, showing a direct reduction is
cumbersome. Instead, we first formalize a variant of the discrete log assumption, called AdaptiveDlog that
is more convenient for our purposes. We will use this variant, presented in Definition 5, as a stepping-stone
in our analysis. Intuitively, there are 3 elements in play when an adversary wants to break the construction:
an element in the CRS h, the element it gets to choose g∗, and the element corresponding to the index at
which it would like to cheat, say g. In order to break the construction, the adversary would somehow need
to uncover a relationship in the discreet logs between these values. Note the order in which these are chosen:
first the CRS value is sampled, then the adversary selects the value g∗ which is not binding. Finally, the
random oracle “samples” the remaining group element. AdaptiveDlog captures this game directly; we begin
by showing that it is equivalent to the discreet log assumption.

Lemma 6 (Discrete Log reduces to AdaptiveDlog.). Let A be an adversary winning the AdaptiveDlog game
(Figure 16) with probability ε, then there exists an expected polynomial-time adversary A′ computing discrete
logs (Definition 5) in G with probability ≥ ε− negl(λ).

Proof. Consider the following PPT algorithm A′:

54

y ← A′A(1λ,G, g, h): computes the discrete log y st. g = hy.

1 : Send h to A;A returns g∗ ∈ G
// Initial query in the h row

2 : r1
$←− Z|G|; g′1 ← gr1

3 : Send g′1 to A (as ’g’);A returns (x1, y1, z1) ∈ Z3
|G|

4 : if hx1gy1∗ g
r1z1 6= 1 ∨ x1 = 0 ∨ y1 = 0 ∨ z1 = 0, return ⊥

// Probe the h row without replacement.

5 : R← {r1}; c← >
6 : while c = > ∧R 6= Z|G|
7 : Rewind A to before message 3 (just before sending g)

8 : r2
$←− Z|G| \R; g′2 ← gr2

9 : Send g′2 to A (as ’g’);A returns (x2, y2, z2) ∈ Z3
|G|

10 : if hx2gy2∗ g
r2z2 = 1 ∧ x2, y2, z2 6= 0 : c← ⊥

11 : R← R ∪ {r2}
// Extract the discrete log.

12 : Solve the affine system (for free variables α, β):

13 : x1 + y1α+ z1r1β = 0

14 : x2 + y2α+ z2r2β = 0

15 : return β

Note that the algorithm recovers (x1, y1, r1z1) 6= (x2, y2, r2z2) st. hx1gy1∗ g
r1z1 = hx2gy2∗ g

r2z2 = 1 with
probability ε − 1/|G| and with 2 queries to A in expectation; See Section 3.1 (analysis of the Collision
Game) in Attema, et. al [ACK21] for more details. Furthermore since r1, r2 are sampled randomly and
∀i ∈ [2] : xi, yi, zi 6= 0, the linear system has full rank except with probability at most 1/|Z|G|| – which is
negligible. Hence A′ recovers the discrete log of g (and g∗) with probability ε− negl(λ).

pp← Setup(1λ)

1 : G← GenGroup(1λ);h
$←− G

2 : return (G, h)

(com, aux)← EquivCom(pp, ek,v):

1 : aux
$←− Z|G|

2 : com← BindCom(pp, ck,v, aux)

3 : return (com, aux)

com← BindCom(pp, ck,v, r):

1 : g1 = ck

2 : for i ∈ [2, `] : gi ← P|G|(gi−1)

3 : return hrgv1
1 gv2

2 · · · g
v`
`

r ← Equiv(pp, ek,v,v′, aux):

1 : g1 = ck

2 : for i ∈ [2, `] : gi ← P|G|(gi−1)

3 : r ← aux−
∑
i∈[`] ek · (v

′
i − vi) ∈ Z|G|

4 : return r

(ck, ek)← Gen(pp, B)

1 : E = [`] \B = {i∗}

2 : ek
$←− Z|G|; gi∗ ← hek

// Apply the inverse permutation i∗ − 1 times to gi∗ .

3 : for i ∈ [i∗ − 1, 1] : gi ← P−1
|G|(gi+1)

4 : ck = g1

5 : return (ck, ek)

Figure 17: Optimized partially binding vector commitments from discrete log and RO.

55

Lemma 7. For a cyclic group G wherein discrete log is intractable (Definition 5), let P|G| : G → G be

a cryptographic permutation (modelled as a invertible random oracle) with inverse P−1
|G| : G → G. The

construction shown in Figure 17 is a (computationally binding and perfectly hiding) (` − 1)-of-` partially
binding vector commitment scheme.

Proof. The completeness of partial equivocation is easily seen (follows from equivocation of vector Pedersen
commitments), so we focus on computational binding and perfect hiding.

Computational Binding Let AP|G|
k be a PPT algorithm winning the binding game with probability ε i.e.

ε = Pr

[
@S ⊂ [`], |S| ≥ t, s.t. i ∈ S, v1,i = . . . = vk,i ∧

BindCom(pp, ck,v1; r1) = . . . = BindCom(pp, ck,vk; rk)

∣∣∣∣∣ pp← Setup(1λ);

(ck,v1, . . . ,vk, r1, . . . , rk)← AP|G|
k (1λ, pp)

]

Then A′ (Figure 18) wins the AdaptiveDlog game with probability ε′ = ε/poly(λ)− negl(λ). We lower

bound the probability that hx̂gŷ∗g
ẑ = 1 and x̂, ŷ, ẑ 6= 0. Start by observing that in the chain: ∀i ∈ [2, `] :

gi+1 = P|G|(gi−1), there can be at most one group element g′∗ on which the oracle is queried, but which
has not been output by P|G|: there are `− 1 outputs and ` group elements. If all elements in the chain
has been output by P|G|, then define g′∗ = g1. Suppose the reduction guesses correctly and g∗ = g′∗, this
occurs with noticeable probability 1/poly(λ). Suppose furthermore that A wins the binding game, in this
case we know: Prδ [HW(w) ≥ 3] = 1− 1/|G|, because HW(w(1)) ≥ 2,HW(w(2)) ≥ 2 and w(1),w(2) have

at least one distinct non-zero position each. Note additionally that gw = gw(1) · (gw(2)

)δ = 1 · 1δ = 1,
furthermore:

gw =
∏

i∈[`]∪{0}

gwi
i =

∏
i∈[`]∪{0},(x,y,z)=Wi

(hxgy∗ , g
z)

wi = gx̂gŷ∗g
ẑ = 1

To bound the probability that x̂, ŷ, ẑ 6= 0, observe that ∃j ∈ [`]\{i∗} where wj 6= 0 (since HW(w) ≥ 3).
Hence x̂, ŷ, ẑ can be expressed as: x̂ = x̂′+ wjx, ŷ = ŷ′+ wjy, ẑ = ẑ′+ wjz, where x, y, z are sampled
i.i.d. uniform (since j /∈ {0, i∗}). Hence the probability that either of x̂, ŷ, ẑ are zero, is at most 3/|G|
by a union bound.

Perfect Hiding Simply observe that for any permutation P : G → G, the distribution {P (g) | g $←− G}
is uniform. Therefore the distribution of ck is the same for any B = {i∗} (by letting P = P

−(i∗−1)
|G| ;

repeated applications of P−1
|G| (i∗ − 1) times).

56

A′A
P|G|
k (1λ,G) plays the AdaptiveDlog game.

1 : Receive h from the AdaptiveDlog game.

2 : Sample q̂
$←− [poly(λ)] where poly(λ) is a bound on the number of RO queries made by A

3 : Run (ck,v(1), . . .v(k), r1, . . . , rk)← AP|G|
k (1λ, pp = (G, h))

Whenever AP|G|
k makes the q’th query to P|G| (or P−1

|G|) on (previously unprogrammed) Qq ∈ G :

a : if q < q̂ : Rq
$←− G; return Rq

b : if q = q̂ :

A : Let g∗ = Qq

B : Send g∗ to AdaptiveDlog; Receive g from AdaptiveDlog.

c : if q ≥ q̂ :

A : xq, yq, zq
$←− Z|G|

B : Rq ← hxqg
yq
∗ g

zq ∈ G
C : return Rq

4 : Compute g1 = ck; for i ∈ [2, `] : gi ← P|G|(gi−1)

5 : if @i∗ ∈ [`] : gi = g∗ : return ⊥ (reduction “guessed q̂ wrong”)

6 : for i ∈ [`] \ {i∗} : Wi = (xq, yq, zq) st. ∃q : Rq = gi

7 : Let W0 = (1, 0, 0),Wi∗ = (0, 1, 0)

8 : Pick p1, p2 ∈ [`], with p1 6= p2 st.

∃i1, i′1 : com1 = BindCom(p, ck,v(i1), ri1) = BindCom(p, ck,v(i′1), ri1′) ∧ v(i1)
p1 6= v

(i′1)
p1

∃i2, i′2 : com2 = BindCom(p, ck,v(i2), ri2)) = BindCom(p, ck,v(i′2), ri2′)) ∧ v(i2)
p2 6= v

(i′2)
p2

If no such p1, p2 exists: return ⊥ (note AP|G|
k loses the game)

9 : Define:

w(1) := (rip1 ‖v
(ip1))− (ri′p1

‖v(i′p1
)) ∈ Z`+1

|G|

w(2) := (rip2 ‖v
(ip2))− (ri′p2

‖v(ip2)′) ∈ Z`+1
|G|

g := (h, g1, . . . , g`) ∈ G`+1. Note: gw(1)

= 1 ∈ G,gw(2)

= 1 ∈ G

10 : Pick δ
$←− Z|G|, define: w = w(1) + δ ·w(2)

11 : Let:

x̂ =
∑
i∈[`]∪{0},(x,y,z)=Wi wi · x

ŷ =
∑
i∈[`]∪{0},(x,y,z)=Wi wi · y

ẑ =
∑
i∈[`]∪{0},(x,y,z)=Wi wi · z

12 : Send (x̂, ŷ, ẑ) to the AdaptiveDlog game.

Figure 18: Reduction for partially binding commitment scheme to discrete log in the programmable,
invertible random oracle model.

57

	Introduction
	Our Contributions.

	Related Work
	Technical Overview
	Preliminaries
	Notation
	-Protocols
	Secure Multiparty Computation

	Partially-Binding Vector Commitments
	Relation To Similar Notions
	Partially-Binding Vector Commitments from Discrete Log
	Generic Construction of 1-of-2q Partially-Binding Vector Commitment.

	Stackable -Protocols
	Properties of Stackable -Protocols.
	Cheat Property: ``Extended'' Honest Verifier Zero-Knowledge.
	Re-use Property: Recyclable Third Round Messages.
	Stackability

	Classical Examples of Stackable -Protocols
	Examples of Stackable ``MPC-in-the-Head'' -Protocols
	Well-Behaved Simulators

	Self-Stacking: Disjunctions With The Same Protocol
	Self Stacking for Instances in Multiple Languages

	Cross-Stacking: Disjunctions with Different Protocols
	Cross Simulatability
	Cross-Stacking from Cross Simulatability

	k-out-of- Proofs of Partial Knowledge
	Measuring Concrete Efficiency
	Blum87 is Stackable: Proof of lem:blum
	Well-Behaved Simulators: Proof of Lemma 5
	Security Proof for Cross-Stacking Compiler (Theorem 6)
	Overview of CCS:KatKolWan18 and Proof of thm:kkwstackable
	CCS:KatKolWan18 is Stackable: Proof of thm:kkwstackable

	Overview of Ligero and Proof of thm:ligerostackable
	Ligero is Stackable: Proof of thm:ligerostackable

	k-out-of- Proofs Of Partial Knowledge (Old Construction)
	Optimized Partially Binding Vector Commitments from RO

