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Abstract. As people become more and more privacy conscious, the need
for end-to-end encryption (E2EE) has become widely recognized. We
study the security of SFrame, an E2EE mechanism recently proposed to
IETF for video/audio group communications over the Internet. Although
a quite recent project, SFrame is going to be adopted by a number of
real-world applications. We inspected the original specification of SFrame.
We found a critical issue that will lead to an impersonation (forgery)
attack by a malicious group member with a practical complexity. We also
investigated the several publicly-available SFrame implementations, and
confirmed that this issue is present in these implementations.
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1 Introduction

1.1 Background

End-to-end encryption (E2EE) is a technology that ensures the secrecy and au-
thenticity of communications from the intermediaries between the communicating
parties. When E2EE is applied to an application for communication over the
Internet, even the servers that facilitate communications cannot read or tamper
the messages between the users of this application.

Due to the numerous evidences of massive surveillance, most notably by the
case of Snowden, E2EE has received a significant attention and deemed as a key
feature to protect users’ privacy and integrity for a wide range of communication
applications. This also holds for the video calling/meeting applications, such as
Zoom or Webex. The end-to-end security of video group meeting applications
has been actively studied, and various approaches to E2EE have been proposed.
Studying the security of E2EE systems in practice is also a hot topic, as shown
by [GGK+16, IM18,RMS18,CGCD+20].

In this article, we study SFrame, which is one such approach aiming to
providing E2EE over the Internet. Technically, it is a mechanism to encrypt



RTC (Real-Time Communication) traffic in an end-to-end manner. RTC (or
WebRTC, an RTC protocol between web browsers) is a popular protocol used
by video/audio communication, and SFrame is carefully designed to suppress
communication overheads that would be introduced when E2EE is deployed.
It was proposed to IETF by a team of Google and CoSMo Software (Omara,
Uberti, Gouaillard and Murillo) at 2020 as a form of Internet Draft [OUGM20].
Although a quite recent proposal, it quickly gains lots of attentions. One can
find a large variety of ongoing plans to adopt SFrame as a crucial component for
E2EE including a major proprietary software to an open-source application.

1.2 Our Contribution

We looked into the original specification [OUGM20], and found an issue regard-
ing the use of authenticated encryption and signature algorithm. The specifica-
tion [OUGM20] defines two AEAD algorithms, a generic composition of AES-CTR
and HMAC-SHA256, dubbed AES-CM-HMAC, and AES-GCM for encryption of
video/audio packets. We show an impersonation (forgery) attack by a malicious
group user who owns a shared group key for the specified AEAD algorithm.
The attack complexity depends on the AEAD algorithm. More specifically for
AES-CM-HMAC the complexity depends on the tag length, and for AES-GCM
the complexity is negligible for any tag length. We observe that AES-CM-HMAC
is specified with particularly short tags, such as 4 or 8 bytes, making the attack
complexity practical.

Since the specification remains abstract at some points and may be subject to
change, besides the real-world implementation often do not strictly follow what
was specified in [OUGM20], this issue does not immediately mean the practical
attacks against the existing E2EE video communication applications that adopt
SFrame. Nevertheless, considering the practicality of our attacks, we think there
is a need to improvement of the current SFrame specification.

1.3 Responsible Disclosure

In March 2021, we reported our results in this paper to the SFrame designers
via email and video conference. They acknowledged that our attacks are feasible
under the existence of a malicious user, quickly decided to remove the signature
mechanism [Ema21b] and extend tag calculation to cover nonces [Ema21a], and
updated the specification in the Internet draft on March 29, 2021 [OUGM21].
They have a plan to review the SFrame specification and support signature
mechanism again in the future.

1.4 Organization of the Paper

The paper is organized as follows. Section 2 provides the specification of SFrame
including the underlying AEAD, and also a brief survey on the publicly available
implementations of SFrame. Section 3 describes the security goals of E2EE
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recently proposed. We present our analysis in Section 4 which shows impersonation
attacks against SFrame. Several other observations are also made, followed by
our recommendations. Section 5 concludes the article.

2 SFrame

2.1 Specification

Overview. SFrame is a group communication protocol for end-to-end encryption
(E2EE) used by video/audio meeting systems. It involves multiple users and a
(media) server which mediates communication between users. They are connected
via the server, and communication between a user and the server is protected
by a standard Internet client-server encryption protocol, specifically Datagram
Transport Layer Security-Secure Real-time Transport Protocol (DTLS-SRTP).

SFrame is specified in Internet draft [OUGM20]. However, it does not specify
the key exchange protocol between the parties and the choice is left to the
implementors. In practice Signal protocol [Ope17], Olm protocol [Mat16], or
Message Layer Security (MLS) protocol [BBM+20] could be used. With SFrame,
users encrypt/decrypt video and audio frames prior to RTP packetization. A
generic RTP packetizer splits the encrypted frame into one or more RTP packets
and adds an original SFrame header to the beginning of the first packet and an
authentication tag to the end of the last packet. The SFrame header contains
a signature flag S, a key ID number KID, and a counter value CTR for a nonce
used for encryption/decryption.

Cryptographic Protocol. Suppose there is a group of users, G. All users in G first
perform a predetermined key exchange protocol, such as Signal protocol, Olm
protocol, or MLS protocol, and share multiple group keys KKID

base associated with
the key ID, which is called base key in the original draft [OUGM20]. In addition,
each user establishes a digital signature key pair, (Ksig,Kverf).

An E2EE session for SFrame uses a single ciphersuite that consists of the
following primitives:

– A hash function used for key derivation, tag generation, and hashing signature
inputs, e.g., SHA256 and SHA512.

– An authenticated encryption with associated data (AEAD) [McG08,Rog02]
used for frame encryption, e.g., AES-GCM and AES-CTR in combination
with HMAC-SHA256. The authentication tag may be truncated.

– An optional signature algorithm, e.g., EdDSA over Ed25519 and ECDSA
over P-521.

Specifically, [OUGM20] defines the following symmetric-key primitives for the
ciphersuite:

– AES-GCM with a 128- or 256-bit key and no specified tag length.
– AES-CM-HMAC, which is a combination of AES-CTR with a 128-bit key

and HMAC-SHA256 with a 4- or 8-byte truncated authentication tag.
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Fig. 1: Media frame encryption flow.

Fig. 1 and Alg. 1 show the media frame encryption flow in an E2EE ses-
sion for SFrame using the above ciphersuite. When AES-GCM is adopted,
AEAD.Encryption in Alg. 1 is executed according to NIST SP 800-38D
[Dwo07]. Before performing by the AEAD encryption procedure by AES-GCM,
HKDF [KE10] is used to generate the secret key KKID

e and the salt saltKID for
encrypting/decrypting media frames as follows:

SFrameSecret = HKDF(KKID
base, ’SFrame10’),

KKID
e = HKDF(SFrameSecret, ’key’,KeyLen),

saltKID = HKDF(SFrameSecret, ’salt’,NonceLen),

where KeyLen and NonceLen are the length (byte) of a secret key and a nonce for
the encryption algorithm, respectively. Then, each user stores KKID

e and saltKID,
such as KeyStore[KID] = (KKID

e , saltKID). When AES-CM-HMAC is adopted,
AEAD.Encryption in Alg. 1 is executed according to Alg. 2. Before performing
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Algorithm 1 Media frame encryption scheme
Require: S, KID, CTR, frame_metadata, M : frame
Ensure: C: encrypted frame, T : authentication tag
1: procedure Encryption(S, KID, CTR, frame_metadata, M)
2: if An AEAD encryption algorithm is AES-GCM then
3: KKID

e , saltKID = KeyStore[KID]
4: else
5: KKID

e , KKID
a , saltKID = KeyStore[KID]

6: end if
7: ctr = encode(CTR,NonceLen) . encode CTR as a big-endian of NonceLen.
8: N = saltKID ⊕ ctr . N is a Nonce.
9: header = encode(S, KID, CTR)
10: aad = header + frame_metadata . aad is an additional associated data.
11: if an AEAD encryption algorithm is AES-GCM then
12: C, T = AEAD.Encryption(KKID

e , N, aad, M)
13: else
14: C, T = AEAD.Encryption(KKID

e , KKID
a , N, aad, M)

15: end if
16: end procedure

AES-CM-HMAC, HKDF [KE10] is used as well as the case of AES-GCM, however
in a slightly different manner:

AEADSecret = HKDF(KKID
base, ’SFrame10 AES CM AEAD’),

KKID
e = HKDF(AEADSecret, ’key’,KeyLen),

KKID
a = HKDF(AEADSecret, ’auth’,HashLen),

saltKID = HKDF(AEADSecret, ’salt’,NonceLen),

where HashLen is the output length (byte) of the hash function. Also, each user
stores KKID

e , KKID
a , and saltKID, such as KeyStore[KID] = (KKID

e ,KKID
a , saltKID).

While an AEAD enables to detect forgeries by an entity who does not own
KKID

base, it does not prevent from an impersonation by a malicious group user. To
detect such an impersonation, a common countermeasure is to attach a signature
for each encrypted packet. This can incur a significant overhead both in time
and bandwidth. SFrame addresses this problem by reducing the frequency and
input length of signature computations. Namely a signature is computed over a
list of authentication tags with a fixed size, (Ti, Ti−1, . . . , Ti−x), as follows:

Sig = Sign(Ksig, Ti||Ti−1, || . . . ||Ti−x).

This signature is appended to the end of the data which consists of SFrame header,
the current encrypted payload, its corresponding authentication tag Ti, and the
list of authentication tags (Ti−1, . . . , Ti−x) which correspond to the previously
encrypted payload so that any group user can verify the authenticity of the entire
payload.
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Algorithm 2 AEAD encryption by AES-CM-HMAC
Require: KKID

a , aad: additional associated data, C: encrypted frame
Ensure: T : truncated authentication tag
1: procedure Tag.Generation(KKID

a , aad, C)
2: aadLen = encode(len(aad), 8) . encode aad length as a big-endian of 8 bytes
3: D = aadLen + aad + C
4: tag = HMAC(KKID

a , D)
5: T = trancate(tag,TagLen)
6: end procedure

Require: KKID
e , KKID

a , N : Nonce, aad, M : frame
Ensure: C, T
1: procedure AEAD.Encryption(KKID

e , KKID
a , N , aad, M)

2: C = AES-CTR.Encryption(KKID
e , N, M)

3: T = Tag.Generation(KKID
a , aad, C)

4: end procedure

2.2 Available Implementations

We list some implementations of SFrame that are publicly available. Some of
them do not strictly follow the original specification [OUGM20] and exhibit some
varieties. In this article, we particularly focus on the specified AEAD schemes
and the allowed tag length in each of the implementation since this determines
the complexity of our attack.

The original. There is a Javascript implementation by one of the coauthors
(Sergio Garcia Murillo) of the Internet draft publicly available [Ser20]. It is based
on webcrypt. In his implementation, it supports

– AES-CM-HMAC with 4 or 10-byte tag, where 4 (10) byte tag is used for
audio (video) packets.

Google Duo. Duo5 is a video calling application developed by Google. For
group calling, it adopts Signal protocol as a key exchange mechanism and SFrame
as a E2EE mechanism. There is a technical paper [Oma20] written by one of the
coauthors (Emad Omera) of the original specification [OUGM20]. The source
code is not available, however, according to the technical paper, it supports

– AES-CM-HMAC.

The technical paper does not describe the tag length. Note that we confirmed
that Google Duo does not currently use the signature feature.

5 https://duo.google.com/about/
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Cisco Webex. Webex6 is a major video meeting application developed by
Cisco. There is a recent whitepaper entitled “Zero-Trust Security for Webex
White Paper”. The whitepaper describes the path to their goal called Zero-Trust
Security, and suggests to use MLS protocol as a key exchange mechanism and
SFrame as a media encryption to enhance the end-to-end security of Webex.
The corresponding SFrame implementation is available at Github [Cis20]. The
repository maintainer warns that the specification is in progress. As of March
2021, it supports
– AES-GCM with 128 or 256-bit key, with 16-byte tag,
– AES-CM-HMAC with 4 or 8-byte tag.

Jitsi Meet. Recently, an open-source video communication application called
Jitsi Meet7 was presented at FOSDEM 2021, a major conference for open source
projects8. Although a quite recent project, it is getting popularity as an open-
source alternative to other major systems. It adopts SFrame with Olm protocol
as the underlying key exchange protocol. The source code is available [Jit20]. It
supports
– AES-CM-HMAC with 4 or 10-byte tag, where 4 (10) byte tag is used for

audio (video) packets.

3 Security Goals

In February 2021, the Internet draft entitled “Definition of End-to-end Encryption”
was released [KBK+21]. According to this draft, the fundamental features for
E2EE require authenticity, confidentiality, and integrity, which are defined as
follows:

Definition 1. (Authenticity) A system provides message authenticity if the
recipient is certain who sent the message and the sender is certain who received
it.

Definition 2. (Confidentiality) A system provides message confidentiality if
only the sender and intended recipient(s) can read the message plaintext, i.e.,
messages are encrypted by the sender such that only the intended recipient(s) can
decrypt them.

Definition 3. (Integrity) A system provides message integrity when it guar-
antees that messages has not been modified in transit, i.e. a recipient is assured
that the message they have received is exactly what the sender intented to sent.

In addition, availability, deniability, forward secrecy, and post-compromise
security are defined in this draft as the optional/desirable features to enhance
the E2EE systems, however, we do not explain these definitions because these
features are out of scope for our analysis.
6 https://www.webex.com
7 https://meet.jit.si/
8 https://fosdem.org/2021/schedule/
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4 Security Analysis

4.1 Security of AEAD under SFrame

We first discuss on the security of AEAD used by SFrame. Here we view Alg. 1
as an encryption of AEAD for the reason that viewing Alg. 2 as a full-fledged
AEAD does not make sense (see below). Then, effectively, the keys are con-
tained by KeyStore[KID] and the nonce is CTR, the associated data is a tuple
(S,KID, frame_metadata), and the plaintext is M .

In Alg. 1, the variable N is a sum of saltKID and ctr (Line 8), where the
former is essentially a part of key (via HKDF), the latter is an encoded form of
CTR. This N serves as Nonce for the internal AEAD algorithm at Line 12/14.
The data aad serves as AD for the internal AEAD and consists of header and
frame_metadata, where the former contains an encoded form of (S,KID,CTR).
Since aad contains CTR as well as N , if the internal AEAD is AES-CM-HMAC
of Alg. 2, HMAC takes the nonce (CTR) in addition to AD (frame_metadata)
and the ciphertext C. Hence the lack of N = saltKID ⊕ ctr is not a problem.
Moreover, adding a pseudorandom value to the nonce of AES-CTR does not
degrade security as long as that value is computationally independent of the
key of AES-CTR. Therefore we think Alg. 1 combined with AES-CM-HMAC
is provably secure. In other words Alg. 2 itself is not a generically secure (i.e.,
nonce N and AD aad are independently chosen) AEAD as it ignores N in the
computation of tag.

When combined with AES-GCM, as it uses CTR for encryption, it is secure
as well.

4.2 Impersonation against AES-CM-HMAC with Short Tags

While the AEAD security of Alg. 1 is sound, it does not necessarily mean the full
E2EE security. In this section we point out that there is a risk of impersonation
by a malicious user who owns the group key. The impersonation attack implies
that the scheme does not achieve the security goal of integrity in E2EE.

Hereafter, we simplify the model and stick to the standard AEAD notation,
namely the input is (N,A,M) for nonce N , associated data A, plaintext M and
the output is (C, T ) for ciphertext C and tag T . Also we consider the case that
the signature is computed for each tag for simplicity. The notational discrepancies
from Alg. 1 and Alg. 2 do not change the essential procedure of our attacks.
With this simplified model, each group member sends an encrypted frame to
all other members, and this frame consists of an AEAD output (N,A,C, T )
and a signature Sig = Sign(Ksig, T ) signed by the user’s signing key Ksig. The
encryption input is (N,A,M) and the frame encryption by AES-CM-HMAC is
abstracted as follows:

C ← AES-CTR(KKID
e , N,M)

T ← truncate(HMAC-SHA256(KKID
a , (N,A,C)), τ),

8



Fig. 2: Impersonation against AES-CM-HMAC with Short Tags.

where τ denotes the tag length in bits. Note that N is included as a part of
HMAC’s input, for the reason described at Section 4.1.

Suppose there is a communication group G containing a malicious group
member UM and another member UT which we call a target user. This malicious
member UM is able to mount a forgery attack (impersonation) by manipulating
a frame sent by UT . Specifically, this forgery attack consists of offline and online
phases. In the online phase, UM determines (N,A,M), and precomputes a set of
(ciphertext,tag) tuples (C, T ) by using KKID

e and KKID
a , which are known to all

group members, and store these into a table tb. Here N and A are determined
so that it is likely to be used by UT (these information are public and N is a
counter so this is practical).

In the online phase, the malicious member observes the frames sent by UT .
If she finds the frame (N,A,C ′, T ′,Sig) such that (C∗, T ∗) is included in tb and
T ∗ = T ′, C ′ 6= C∗, then she replaces C ′ in that frame with C∗. Since the signature
Sig is computed over the tag T ′ which is not changed after the replacement, this
manipulated frame will pass the verification. Figure 2 shows the overview of the
attack. The details of attack procedures are given as follows.

Offline Phase.

1. UM chooses the encryption input tuple (N,A,M).
2. UM computes a ciphertext C = AES-CTR(KKID

e , N,M) and then obtains
a tag T = HMAC-SHA256(KKID

a , (N,A,C)), where KID is set to point the
target user.

3. UM stores a set of (M , C, T ) into the table tb.
4. UM repeats Step 1-3 2t times with different messages.

Online Phase.

1. UM intercepts a target frame (N ′, A′, C ′, T ′,Sig) sent by the target user,
where N ′ = N and A′ = A.

2. UM searches a tuple (M∗, C∗, T ∗) in tb such that T ∗ = T ′ and C ′ 6= C∗.
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3. If UM finds such a tuple, replaces C ′ with C∗ in the target frame, and sends
(N ′, A′, C∗, T ′,Sig) to other group members.

The manipulated frame including (C∗, T ′) successfully pass the signature veri-
fication by other group members due to a tag collision, i.e., no one can detect
that the frame is manipulated by UM , and the group members will accept M∗
as a valid message from UT . The above is for the case where x = 1, i.e. each
tag is independently signed by the signature key. It is naturally extend to the
case where x is more than one, namely the case where a list of tags is signed
altogether for efficiency.

To mount the attack described above, the adversary needs to intercept a
legitimate message. It implies the adversary may collude with an intermediate
server, or E2EE adversary, which is the central operating server. The practicality
of this is beyond the scope of this article, however preventing colluding attack
with E2EE adversary is one of the fundamental goals of E2EE.

We note that the attack without intercept is also possible by creating a
forged tuple (N ′, A′, C ′, T ′,Sig) such that T ′ = T and (N ′, A′, C ′) 6= (N,A,C)
by observing some legitimate tuple (N,A,C, T,Sig) that was previously sent
without corruption; here (N ′, A′) is chosen so that it is likely to be used by UT
in the next frame which is yet sent. This is essentially a reply of signature and
we guess whether it is detected as replay depends on the actual system, so we
keep it open. The cost of detecting a reply of randomized algorithm is generally
high since the receiver must keep the all random IVs used.

The security requirement discussed here is equivalent to the property called
Second-ciphertext unforgeability (SCU) introduced by Dodis et al. at CRYPTO
2018 [DGRW18]. For a randomly chosen K and a transcript of encryption query
(N,A,M,C, T ) derived on K, SCU represents the hardness of finding a suc-
cessful forgery (N ′, A′, C ′, T ) (on K) such that (N ′, A′, C ′) 6= (N,A,C) with
the knowledge of K and (N,A,M,C, T ). An extension of AE called Encrypt-
ment [DGRW18] is SCU-secure.

Complexity Evaluation. The computational cost to make the precomputation
table tb in the offline phase is estimated as 2t, and the success probability of
Step 2 in the online phase is estimated as 2−τ+t.

Practical effects on SFrame. In case τ = 32 (the tag is 4 bytes), if UM prepares
232 precomutation tables in the offline, the success probability is almost one.
Thus, this forgery attack is practically feasible with high success probability for
the 4-byte tag. Besides, in this attack, the adversary fully controls the decryption
result (M∗) of the manipulated frame except 32 bits which are used for generating
232 different tags in the offline phrase.

To perform an actual attack on SFrame, since each SFrame header includes
the frame counter to avoid replay attacks, the adversary has to decide the target
frame and set the target frame counter to the SFrame header file in M when
generating tags in the offline phase.
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Even in the case of 8- and 10-byte tag, if UM prepares 256 tables, which is
feasible by the nation-level adversary, the success probability is non-negligible,
2−8 and 2−24, respectively.

4.3 Impersonation against AES-GCM with Any Long Tags

The impersonation attacks described above is a generic attack and the offline
attack complexity depends on the tag length. In contrast, if we use AES-GCM,
it is easy to mount a similar attack without the offline phase. This is because,
the adversary who owns the GCM key and observes a legitimate GCM output
of (N,A,C, T ) is able to create another distinct tuple of (N ′, A′, C ′, T ′) with
T ′ = T . The remaining (N ′, A′, C ′) 6= (N,A,C) can be chosen almost freely from
the linearity of GHASH and the knowledge of the key. In particular, the attack
works with negligible complexity irrespective of the tag length unlike the case of
AES-CM-HMAC.

Once the adversary intercepts a legitimate tuple (N,A,C, T ) created by GCM,
it is trivial to compute (N ′, A′, C ′, T ′) such that T ′ = T and (N ′, A′, C ′) 6=
(N,A,C), for almost any choice of (N ′, A′, C ′).

For example, suppose GCM with 96-bit nonce and 128-bit tag, which is one of
the most typical settings. Given any GCM encryption output tuple (N,A,C, T )
with 2-block C = (C1, C2) and 1-block A = A1, we have

T = GHASH(L,A ‖C ‖ len(A,C))⊕ EK(N ‖ 132)
= A · L4 ⊕ C1 · L3 ⊕ C2 · L2 ⊕ len(A,C) · L⊕ EK(N ‖ 132),

C1 = EK(N ‖ 232)⊕M1,

C2 = EK(N ‖ 332)⊕M2,

where M = (M1,M2) is the plaintext. Here, len(A,C) is a 128-bit encoding of
lengths of A and C, and multiplications are over GF(2128). EK(∗) denotes the
encryption by AES with key K and L = EK(0128), and i32 for a non-negative
integer i denotes the 32-bit encoding of i. It is straightforward to create a valid
tuple (N ′, A′, C ′, T ′) such that T ′ = T and (N ′, A′, C ′) 6= (N,A,C) as we know
K. Say, we first arbitrary choose N ′ and A′, and the fake plaintext block M ′1 to
compute C ′1, and finally set C ′2 so that

C ′2 · L2 = T ′ ⊕A′ · L4 ⊕ C ′1 · L3 ⊕ len(A′, C ′) · L⊕ EK(N ′ ‖ 132)

holds. This will make the last decrypted plaintext block M ′2 random. It works
even if the tag is truncated. That is, the malicious group member can impersonate
other member and the forged plaintext is almost arbitrary except the last block.
We note that the plaintext is video or audio hence a tiny random block will not
be recognized. This attack severely harms the integrity of group communication.

This difference from the case of AES-CM-HMAC is rooted in the authenti-
cation mechanism – while HMAC maintains a collision resistance once the key
is known, GHASH with a known key is a simple function without any sort of
known-key security.
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4.4 Considerations on Authentication Key Recovery

The specification [OUGM20] appears to implicitly allow 4 and 8-byte tags with
AES-GCM. In addition to the attacks described above, it is known that the use
of short tags in GCM will lead to a complete recovery of the authentication key
(i.e., the key of GHASH) by a class of attacks called reforging. This leads to a
universal forgery.

Ferguson [Fer05] first pointed out this attack, and Mattsson and Wester-
lund [MW16] further refined the attack and provided a concrete complexity
estimation. According to [MW16], they point out that the security levels are
only 62–67 bits and 70-75 bits for 32-bit and 64-bit tags, respectively, even if
it following NIST requirements on the usage of GCM with short tags as shown
in Table 1 where L is the maximum combined length of A and C, and q is
the maximum number of invocations of the authenticated decryption function.
Table 1 also shows the required data complexity c for the authentication key
recovery under each restriction of L and q. For example, for L = 23 and q = 218,
the required data to recover the key of GHASH is 261.

If there is no restriction regarding L and q, the authenticated key is recovered
with data complexity of 2taglen as the complexity of the first forgery is dominated.
Thus, for 4-byte (= 32-bit) tag length, the authenticated key recovery is feasible
with 232 data complexity. It seems that the specification [OUGM20] does not
explicitly mention the restrictions of q and L.

Table 1: NIST requirements on the usage of GCM with short tags.
t 32 64
L 21 22 23 24 25 26 211 213 215 217 219 221

q 222 220 218 215 213 211 232 229 226 223 220 217

c 262 262 261 265 266 267 275 274 273 272 271 270

Practical effects on SFrame. As far as we checked available implementations of
the original [Ser20] and Cisco [Cis20], Jitsi Meet [Jit20], there is no restriction
regarding L and q. In this case, for the 4-byte tag, the authenticated key is
recovered with data complexity of 232, which is practically available in by the
adversary.

4.5 Recommendations

From these vulnerabilities, our recommendations are as follows.

– For AES-CM-HMAC, short tags, especially 4-byte tag, should not be used.
– For AES-GCM, a signature should be computed over a whole frame, not only

tags.
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– For AES-GCM, the specification should clearly forbid short tags, or refer to
NIST requirements on the usage of GCM with short tags.

– As discussed at Section 4.2, switch to other ciphersuite that works as a secure
encryptment scheme, such as HFC [DGRW18], with a sufficiently long tag is
another option.

5 Conclusions

This article studies SFrame, a recently proposed end-to-end encryption mechanism
built on RTC. It is developed for video/audio group communication applications,
and received significant attentions. With investigation on the original specification,
we pointed out that there is a risk of impersonation by a malicious group member.
This problem is caused by the digital signature computed only on (a list of)
AEAD tags, and the attack becomes practical when tags are short or the used
AEAD algorithm allows to create a collision on tags with the knowledge of the
key.

Acknowledgments. We are grateful to the SFrame designers (Emad Omara,
Justin Uberti, Alex Gouaillard, and Sergio Garcia Murillo) for the fruitful discus-
sion and feedback about our findings.
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