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Abstract. As people become more and more privacy conscious, the need
for end-to-end encryption (E2EE) has become widely recognized. We
study the security of SFrame, an E2EE mechanism recently proposed to
IETF for video/audio group communications over the Internet. Although
a quite recent project, SFrame is going to be adopted by a number of
real-world applications. We inspected the original specification of SFrame.
We found a critical issue that will lead to an impersonation (forgery)
attack by a malicious group member with a practical complexity. We also
investigated the several publicly-available SFrame implementations, and
confirmed that this issue is present in these implementations.
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1 Introduction

End-to-end encryption (E2EE) is a technology that ensures the secrecy and
authenticity of communications from the intermediaries between the communi-
cating parties. When E2EE is deployed in a communication application over the
Internet, even the servers that facilitate communications cannot read or tamper
the messages between the users of this application.

Due to the numerous evidences of massive surveillance, most notably by the
case of Snowden, E2EE has received significant attentions and deemed as a key
feature to protect users’ privacy and integrity for a wide range of communication
applications. This also holds for the video calling/meeting applications, such as
Zoom5 or Webex6. The end-to-end security of video group meeting applications
has been actively studied, and various approaches to E2EE have been proposed.
Studying the security of E2EE systems in practice is also a hot topic, as shown
by [6,12,13,14,31].
5 https://zoom.us/
6 https://www.webex.com
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In this article, we study SFrame, which is one such approach aiming to
providing E2EE over the Internet. Technically, it is a mechanism to encrypt
RTC (Real-Time Communication) traffic in an end-to-end manner. RTC (or
WebRTC, an RTC protocol between web browsers) is a popular protocol used
by video/audio communication, and SFrame is carefully designed to suppress
communication overheads that would be introduced when E2EE is deployed. It
was proposed to IETF by a team of Google and CoSMo Software (Omara, Uberti,
Gouaillard and Murillo) at 2020 as a form of Internet draft [26]. Although a quite
recent proposal, it quickly gains lots of attentions. One can find a large variety
of ongoing plans to adopt SFrame as a crucial component for E2EE including
major proprietary software to open-source applications, such as Google Duo [25],
Cisco Webex [4, 5], and Jitsi Meet [15,32].

1.1 Our Contributions.
We looked into the original specification of SFrame [26], and made several ob-
servations. Most notably, we found an issue regarding the use of authenticated
encryption with associated data (AEAD) and signature algorithm. The spec-
ification [26] defines two AEAD algorithms, namely a generic composition of
AES-CTR and HMAC-SHA256, dubbed AES-CM-HMAC, and AES-GCM for
encryption of video/audio packets. We show an impersonation (forgery) attack
by a malicious group member who owns a shared group key for the specified
AEAD algorithm. The attack complexity depends on the AEAD algorithm. More
specifically for AES-CM-HMAC the complexity depends on the tag length, and
for AES-GCM the complexity is negligible for any tag length. We observe that
AES-CM-HMAC is specified with particularly short tags, such as 4 or 8 bytes,
making the attack complexity practical. The following shows the overview of our
security analysis.

AEAD security. In Section 4.1, we study the classical AEAD security (namely,
confidentiality and integrity) of SFrame encryption scheme. While SFrame adopts
existing, well-analyzed AEAD schemes, they are used in a way different from what
standard security analysis assumes, hence the existing AEAD security proofs
do not necessarily carry over to the entire protocol. Despite this discrepancy,
we show that encryption schemes defined by SFrame are provably secure in the
context of standard AEAD.

Impersonation against AES-CM-HMAC with Short Tags. In Section 4.2, we show
an impersonation attack on AES-CM-HMAC with short tags by a malicious group
member. This attack exploits a vulnerability of very short tag length. Since the
malicious group member owns a shared group key, she can precompute multiple
ciphertext/tag pairs from any input set, and store them into a precomputation
table. After that, she can forge by intercepting a target message frame and
replacing the ciphertext in that frame with a properly selected ciphertext from
the precomputation table. For example, when the tag length is 4 bytes, she can
practically perform an impersonation attack with a success probability of almost
one by preparing 232 precomputation tables in advance.
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Security of AES-CM-HMAC with Long Tags. In Section 4.3, we discuss the
security of AES-CM-HMAC with long tags. We show that AES-CM-HMAC with
long tags is secure against the impersonation attack proposed in Section 4.2. In
more detail, we prove that AES-CM-HMAC is second-ciphertext unforgeability
(SCU) security, which was defined by Dodis et al. [7], and SCU security covers the
class of impersonation attacks described above, i.e., forging a ciphertext using the
knowledge of the secret key so that the forged ciphertext has the same tag value
as a previously observed ciphertext. Concretely, we show that the SCU security
of AES-CM-HMAC depends on the security of SHA256, which is the underlying
hash function of SFrame. Since SHA256 has an everywhere second-preimage
resistance, which was defined by Rogaway and Shrimpton [30], AES-CM-HMAC
with long tags can be considered as the SCU-secure AEAD.

Impersonation against AES-GCM with Any Long Tags. In Section 4.4, we show
an impersonation attack on AES-GCM with any long tags by a malicious group
member. This attack exploits a vulnerability of the linearity of GHASH function
in the known key setting. The malicious group member who owns the GCM key
and observes a legitimate GCM input/output set including a tag is able to create
another distinct set with the same tag. The remaining value in this set, excluding
the tag, can be chosen almost freely from the linearity of GHASH function and
the knowledge of the GCM key; thus, this attack works with negligible complexity
irrespective of the tag length unlike the case of AES-CM-HMAC.

Authentication Key Recovery against AES-GCM with Short Tags. In Section 4.5,
we consider an authentication key recovery attack on AES-GCM with short tags.
This attack exploits the fact that there is no restriction regarding the NIST
requirements on the usage of GCM with short tags. Actually, available implemen-
tations of the original [33], Cisco Webex [4], and Jitsi Meet [15] have no restriction
regarding such requirements. When these available implementations employ the
4-byte tag, the authentication key is recovered with the data complexity of 232,
which is practically available in by the adversary.

Our results are based solely on the Internet draft [26] and publicly available
source code [4,15,33], and we have not implemented the proposed attacks to verify
their feasibility. It is difficult to implement the proposed attacks because the
SFrame specification is still a draft version and no product that implements the
current version of SFrame [26] has actually been deployed. Accordingly, instead
of implementing the proposed attacks, we discussed with the designers to confirm
the feasibility of the proposed attacks.

Since the specification remains abstract at some points and may be subject to
change, besides the real-world implementation often do not strictly follow what
was specified in [26], this issue does not immediately mean the practical attacks
against the existing E2EE video communication applications that adopt SFrame.
Nevertheless, considering the practicality of our attacks, we think there is a need
to improvement of the current SFrame specification.
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Responsible Disclosure. In March 2021, we reported our results in this article
to the SFrame designers via email and video conference. They acknowledged that
our attacks are feasible under the existence of a malicious group member, quickly
decided to remove the signature mechanism [10] and extend tag calculation to
cover nonces [9], and updated the specification in the Internet draft on March
29, 2021 [27]. They have a plan to review the SFrame specification and support
signature mechanism again in the future.

Organization of the Paper. The paper is organized as follows. Section 2
provides the specification of SFrame including the underlying AEAD, and also
a brief survey on the publicly available implementations of SFrame. Section 3
describes the security goals of E2EE recently proposed. We present our analysis
in Section 4 which shows impersonation attacks against SFrame. Several other
observations are also made, followed by our recommendations. Section 5 concludes
the article.

2 SFrame

2.1 Specification

Overview. SFrame is a group communication protocol for end-to-end encryption
(E2EE) used by video/audio meeting systems. It involves multiple users and a
(media) server which mediates communication between users. They are connected
via the server, and communication between a user and the server is protected
by a standard Internet client-server encryption protocol, specifically Datagram
Transport Layer Security-Secure Real-time Transport Protocol (DTLS-SRTP).

SFrame is specified in the Internet draft [26]. However, it does not specify
the key exchange protocol between the parties and the choice is left to the
implementors. In practice Signal protocol [28], Olm protocol [20], or Message Layer
Security (MLS) protocol [2] could be used. With SFrame, users encrypt/decrypt
video and audio frames prior to RTP packetization. A generic RTP packetizer
splits the encrypted frame into one or more RTP packets and adds an original
SFrame header to the beginning of the first packet and an authentication tag to
the end of the last packet. The SFrame header contains a signature flag S, a key ID
number KID, and a counter value CTR for a nonce used for encryption/decryption.

Cryptographic Protocol. Suppose there is a group of users, G. All users in
G first perform a predetermined key exchange protocol as suggested above, and
share multiple group keys KKID

base associated with the key ID number KID, which is
called base key in the original specification [26]. In addition, each user establishes
a digital signature key pair, (Ksig,Kverf).

An E2EE session for SFrame uses a single ciphersuite that consists of the
following primitives:

– A hash function used for key derivation, tag generation, and hashing signature
inputs, e.g., SHA256 and SHA512.
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Fig. 1: Media frame encryption flow.

– An authenticated encryption with associated data (AEAD) [22,29] used for
frame encryption, e.g., AES-GCM and AES-CM-HMAC. The authentication
tag may be truncated.

– An optional signature algorithm, e.g., EdDSA over Ed25519 and ECDSA
over P-521.

Specifically, the original specification [26] defines the following symmetric-key
primitives for the ciphersuite:

– AES-GCM with a 128- or 256-bit key and no specified tag length.
– AES-CM-HMAC, which is a combination of AES-CTR with a 128-bit key

and HMAC-SHA256 with a 4- or 8-byte truncated authentication tag.

Fig. 1 and Alg. 1 show the media frame encryption flow in an E2EE session
for SFrame using the above ciphersuites. When AES-GCM is adopted as the
ciphersuite, AEAD.Encryption in Alg. 1 is executed according to NIST SP
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Algorithm 1 Media frame encryption scheme
Input: S: signature flag, KID: key ID, CTR: counter value, frame_metadata: frame

metadata, M : frame
Output: C: encrypted frame, T : authentication tag
1: procedure Encryption(S, KID, CTR, frame_metadata, M)
2: if An AEAD encryption algorithm is AES-GCM then
3: KKID

e , saltKID = KeyStore[KID]
4: else
5: KKID

e , KKID
a , saltKID = KeyStore[KID]

6: end if
7: ctr = encode(CTR,NonceLen) . encode CTR as a big-endian of NonceLen.
8: N = saltKID ⊕ ctr . N is a Nonce.
9: header = encode(S, KID, CTR)
10: aad = header + frame_metadata . aad is an additional associated data.
11: if an AEAD encryption algorithm is AES-GCM then
12: C, T = AEAD.Encryption(KKID

e , N, aad, M)
13: else
14: C, T = AEAD.Encryption(KKID

e , KKID
a , N, aad, M)

15: end if
16: end procedure

800-38D [8]. Before performing by the AEAD encryption procedure by AES-GCM,
HKDF [19] is used to generate the encryption key KKID

e and the salt saltKID for
encrypting/decrypting media frames as follows:

SFrameSecret = HKDF(KKID
base, ’SFrame10’),

KKID
e = HKDF(SFrameSecret, ’key’,KeyLen),

saltKID = HKDF(SFrameSecret, ’salt’,NonceLen),

where KeyLen and NonceLen are the length (byte) of an encryption key and a
nonce for the encryption algorithm, respectively. Then, each user stores KKID

e

and saltKID, such as KeyStore[KID] = (KKID
e , saltKID). When AES-CM-HMAC is

adopted as the ciphersuite, AEAD.Encryption in Alg. 1 is executed according
to Alg. 2. Before performing AES-CM-HMAC, HKDF [19] is used as well as the
case of AES-GCM, however in a slightly different manner:

AEADSecret = HKDF(KKID
base, ’SFrame10 AES CM AEAD’),

KKID
e = HKDF(AEADSecret, ’key’,KeyLen),

KKID
a = HKDF(AEADSecret, ’auth’,HashLen),

saltKID = HKDF(AEADSecret, ’salt’,NonceLen),

where HashLen is the output length (byte) of the hash function. Also, each user
stores the encryption key KKID

e , the authentication key KKID
a , and the salt saltKID,

such as KeyStore[KID] = (KKID
e ,KKID

a , saltKID).
While an AEAD enables to detect forgeries by an entity who does not own

KKID
base, it does not prevent from an impersonation by a malicious group member
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Algorithm 2 AEAD encryption by AES-CM-HMAC
Input: KKID

a : authentication key, aad: additional associated data, C: encrypted frame
Output: T : truncated authentication tag
1: procedure Tag.Generation(KKID

a , aad, C)
2: aadLen = encode(len(aad), 8) . encode aad length as a big-endian of 8 bytes
3: D = aadLen + aad + C
4: tag = HMAC(KKID

a , D)
5: T = trancate(tag,TagLen)
6: end procedure

Input: KKID
e , KKID

a , N : Nonce, aad, M : frame
Output: C, T
1: procedure AEAD.Encryption(KKID

e , KKID
a , N , aad, M)

2: C = AES-CTR.Encryption(KKID
e , N, M)

3: T = Tag.Generation(KKID
a , aad, C)

4: end procedure

who owns a shared group key. To detect such an impersonation, a common
countermeasure is to attach a signature for each encrypted packet. This can
incur a significant overhead both in time and bandwidth. SFrame addresses this
problem by reducing the frequency and input length of signature computations.
Namely a signature Sig is computed over a list of authentication tags with a fixed
size, (Ti, Ti−1, . . . , Ti−x), as follows:

Sig = Sign(Ksig, Ti ‖ Ti−1, ‖ · · · ‖ Ti−x),

where Sign denotes the signature function. This signature is appended to the
end of the data which consists of SFrame header, the current encrypted payload,
its corresponding authentication tag Ti, and the list of authentication tags
(Ti−1, . . . , Ti−x) which correspond to the previously encrypted payload so that
any group user can verify the authenticity of the entire payload.

2.2 Available Implementations

We list some implementations of SFrame that are publicly available. Some of them
do not strictly follow the original specification [26] and exhibit some varieties. In
this article, we particularly focus on the specified AEAD schemes and the allowed
tag length in each of the implementation since this determines the complexity of
our attack.

The original. There is a Javascript implementation by one of the designers of
SFrame (Sergio Garcia Murillo) [33]. It is based on webcrypt. In his implementa-
tion, it supports

– AES-CM-HMAC with 4 or 10-byte tag, where 4 (10) byte tag is used for
audio (video) packets.
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Google Duo. Duo7 is a video calling application developed by Google. For
group calling, it adopts Signal protocol as a key exchange mechanism and SFrame
as a E2EE mechanism. There is a technical paper [25] written by one of the
coauthors (Emad Omera) of the original specification [26]. The source code is
not available, however, according to the technical paper, it supports

– AES-CM-HMAC.

The technical paper does not describe the tag length. Note that we confirmed
that Google Duo does not currently use the signature feature.

Cisco Webex. Webex is a major video meeting application developed by Cisco.
There is a recent whitepaper entitled “Zero-Trust Security for Webex White
Paper” [5]. The whitepaper describes the path to their goal called Zero-Trust
Security, and suggests to use MLS protocol as a key exchange mechanism and
SFrame as a media encryption to enhance the end-to-end security of Webex. The
corresponding SFrame implementation is available at Github [4]. The repository
maintainer warns that the specification is in progress. As of March 2021, it
supports

– AES-GCM with 128 or 256-bit key, with 16-byte tag,
– AES-CM-HMAC with 4 or 8-byte tag.

Jitsi Meet. An open-source video communication application called Jitsi Meet8

was presented at FOSDEM 2021, a major conference for open source projects9.
Although a quite recent project, it is getting popularity as an open-source
alternative to other major systems. It adopts SFrame with Olm protocol as the
underlying key exchange protocol. The source code is available [15]. It supports

– AES-CM-HMAC with 4 or 10-byte tag, where 4 (10) byte tag is used for
audio (video) packets.

3 Adversary Models and Security Goals

3.1 Adversary Models

The designers did not define adversary models in the original specification [26].
Then, we define the adversary models for our security analysis with reference to
them defined by Isobe and Minematsu [14].

Definition 1. (Malicious User) A malicious user, who is a legitimate user
but does not possess a shared group key, tries to break one of the subsequently
defined security goals of the other E2EE session by maliciously manipulating the
protocol.
7 https://duo.google.com/about/
8 https://meet.jit.si/
9 https://fosdem.org/2021/schedule/
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Definition 2. (Malicious Group Member) A malicious group member, who
is a legitimate group member and possesses a shared group key, tries to break the
subsequently defined security goals by deviating from the protocol.

In addition, E2E adversary is defined in [14], however, we do not explain this
definition because this adversary is out of scope for our security analysis.

3.2 Security Goals of E2EE

In February 2021, the Internet draft entitled “Definition of End-to-end Encryption”
was released [17]. According to this draft, the fundamental features for E2EE
require authenticity, confidentiality, and integrity, which are defined as follows:

Definition 3. (Authenticity) A system provides message authenticity if the
recipient is certain who sent the message and the sender is certain who received
it.

Definition 4. (Confidentiality) A system provides message confidentiality if
only the sender and intended recipient(s) can read the message plaintext, i.e.,
messages are encrypted by the sender such that only the intended recipient(s) can
decrypt them.

Definition 5. (Integrity) A system provides message integrity when it guar-
antees that messages has not been modified in transit, i.e. a recipient is assured
that the message they have received is exactly what the sender intented to sent.

In addition, availability, deniability, forward secrecy, and post-compromise security
are defined in this draft as the optional/desirable features to enhance the E2EE
systems, however, we do not explain these definitions because these features are
out of scope for our security analysis.

3.3 Security Goals of AEAD for E2EE

Dodis et al. [7] proposed a new primitive called encryptment for the message
franking scheme, which enables cryptographically verifiable reporting of malicious
content in end-to-end encrypted messaging. In addition, they defined confiden-
tiality and second-ciphertext unforgeability (SCU) as security goals to ensure the
securily level of the encryptment scheme.

Definition 6. (Second-Ciphertext Unforgeability (SCU)) An adversary
A is given K $← K, which means a randomly chosen key K form the key space K,
and is allowed to perform AEAD encryption/decryption in the local environment.
Then, we define the second-ciphertext unforgeability (SCU) advantage of A against
AEAD for E2EE as

AdvSCU
AEAD(A) = Pr

[
K

$← K : A(K)→ (N,A,C,N∗, A∗, C∗, T ),
Dec(K,N,A,C, T ) = M,

Dec(K,N∗, A∗, C∗, T ) = M∗ for some M,M∗ 6= ⊥
]
,
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where Dec denotes the decryption algorithm of AEAD, N and N∗ denote nonces,
A and A∗ denote associated data, C and C∗ denote ciphertexts, M and M∗

denote plaintexts, T denotes a tag, and ⊥ denotes a symbol that represents a
decryption failure.

The adversary in SCU game is given with key, hence this is not captured by
the standard AEAD security notions of confidentiality and integrity [3,29]. When
there exists a malicious group member in an E2EE application, she can actually
work as a SCU adversary A by intercepting the target frame (N,A,C, T ) since
she knows the shared group key K.

3.4 Security Goals of Hash Functions

A secure hash function H typically has three fundamental properties: preimage
resistance, second-preimage resistance, and collision resistance. Here, we focus
on two types of second-preimage resistance, and define them with references
to [23,30] as follows:

Definition 7. (Second-Preimage Resistance) Let A be an adversary at-
tempting to find any second input which has the same output as any specified
input, i.e., for any given message M $← M, which means a randomly chosen
message M form the message space M, to find a second-preimage M∗ 6= M
such that H(M) = H(M∗). Then, we define the second-preimage (Sec) resistance
advantage of A against H as

AdvSec
H (A) = Pr

[
M

$←M;M∗ ← A : (M 6= M∗) ∧
(
H(M) = H(M∗)

)]
.

Definition 8. (Everywhere Second-Preimage Resistance) For a positive
integer n, let {0, 1}≤n be a set of bit strings not longer than n. LetM = {0, 1}∗
and Y = {0, 1}n. Suppose H : K×M→ Y be a keyed hash function. Let A be an
adversary against H to find a second preimage for the target input M ∈M that
is fixed with |M | ≤ `. Then, we define the everywhere second-preimage (eSec)
resistance advantage of A against H as

AdveSec[≤`]
H (A)

= max
M∈{0,1}≤`

{
Pr
[
K

$← K;M∗ ← A(K) : (M 6= M∗) ∧
(
HK(M) = HK(M∗)

)]}
.

The everywhere second-preimage or eSec resistance, introduced by Rogaway and
Shrimpton [30], is called (a slight extension of) a strong form of second-preimage
resistance. In this article, we assume the standard hash function (SHA2) as an
instantiation of keyed function, say by using IV as a key, since otherwise standard
security reduction is not possible (see [30]). For simplicity, we assume this key is
implicit and do not describe it in the proofs.
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4 Security Analysis

4.1 Security of AEAD under SFrame

We first discuss on the security of AEAD used by SFrame. Here we view Alg. 1
as an encryption of AEAD for the reason that viewing Alg. 2 as a full-fledged
AEAD does not make sense (see below). Then, effectively, the keys are con-
tained by KeyStore[KID] and the nonce is CTR, the associated data is a tuple
(S,KID, frame_metadata), and the plaintext is M .

In Alg. 1, the variable N is a sum of saltKID and ctr (Line 8), where the
former is essentially a part of key (via HKDF), the latter is an encoded form of
CTR. This N serves as nonce for the internal AEAD algorithm at Line 12/14.
The data aad serves as AD for the internal AEAD and consists of header and
frame_metadata, where the former contains an encoded form of (S,KID,CTR).
Since aad contains CTR as well as N , if the internal AEAD is AES-CM-HMAC
of Alg. 2, HMAC takes the nonce (CTR) in addition to AD (frame_metadata)
and the ciphertext C. Hence the lack of N = saltKID ⊕ ctr is not a problem.
Moreover, adding a pseudorandom value to the nonce of AES-CTR does not
degrade security as long as that value is computationally independent of the key
of AES-CTR.

A slightly more formal analysis is given below. Alg. 1 combined with AES-CM-
HMAC can be interpreted as an encryption routine the encryption-then-MAC
AEAD construction. More specifically, it takes nonce Ñ = CTR, associated data
Ã = (S,KID, frame_metadata), and plaintext M to produce the ciphertext C and
the tag T :

C = ẼncK(Ñ ,M)

T = M̃ACK′(Ñ , Ã, C),

where K and K ′ are derived via a master key with a key derivation function
(HKDF), and ẼncK denotes the plain counter mode encryption with a pseudo-
random offset to nonce (i.e., saltKID, which is derived via HKDF), and M̃ACK′
denotes the HMAC with a certain bijective input encoding. This means that Alg. 1
is exactly reduced to the encryption-then-MAC generic composition (assuming
HKDF as a PRF) whose security is proved when Ẽnc is IND-CPA secure and
M̃AC is a PRF [18,24]. Proving the latter claim is trivial. Hence Alg. 1 is secure
under the standard assumptions that AES is a pseudorandom permutation and
HMAC is a PRF. We remark that Alg. 2 itself is not a generically secure (i.e.,
when nonce N and AD aad are independently chosen) AEAD as it ignores N in
the computation of tag. This issue was raised at the discussion in CFRG10 and
our analysis provides an answer.

10 https://mailarchive.ietf.org/arch/browse/cfrg/?q=SFrame
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4.2 Impersonation against AES-CM-HMAC with Short Tags

While the AEAD security of Alg. 1 is sound, it does not necessarily mean the full
E2EE security. In this section we point out that there is a risk of impersonation
by a malicious group member who owns the group key. The impersonation attack
implies that the scheme does not achieve the security goal of integrity in E2EE.

Hereafter, we simplify the model and stick to the standard AEAD notation,
namely the input is (N,A,M) for nonce N , associated data A, plaintext M and
the output is (C, T ) for ciphertext C and tag T . Also we consider the case that
the signature is computed for each tag for simplicity. The notational discrepancies
from Alg. 1 and Alg. 2 do not change the essential procedure of our attacks.
With this simplified model, each group member sends an encrypted frame to
all other members, and this frame consists of an AEAD output (N,A,C, T )
and a signature Sig = Sign(Ksig, T ) signed by the user’s signing key Ksig. The
encryption input is (N,A,M) and the frame encryption by AES-CM-HMAC is
abstracted as follows:

C ← AES-CTR(KKID
e , N,M)

T ← truncate(HMAC-SHA256(KKID
a , (N,A,C)), τ), (8)

where τ denotes the tag length in bits. Note that N is included as a part of
HMAC’s input, for the reason described at Section 4.1.

Suppose there is a communication group G containing a malicious group
member UM and another member UT which we call a target user. This UM is
able to mount a forgery attack (impersonation) by manipulating a frame sent by
UT . The forgery attack by UM consists of offline and online phases.

In the offline phase, UM determines (N,A,M), and precomputes a set of
(ciphertext,tag) tuples (C, T ) by using KKID

e and KKID
a , which are known to all

group members, and stores these into a table tb. Here, N and A are determined
so that it is likely to be used by UT (these information are public and N is a
counter so this is practical).

In the online phase, the malicious group member observes the frames sent
by UT . If she finds the frame (N,A,C ′, T ′,Sig) such that (C∗, T ∗) is included
in tb and T ∗ = T ′, C∗ 6= C ′, then she replaces C ′ in that frame with C∗. Since
the signature Sig is computed over the tag T ′ which is not changed after the
replacement, this manipulated frame will pass the verification. Fig. 2 shows the
overview of the attack. The details of attack procedures are given as follows.

Offline Phase.

1. UM chooses the encryption input tuple (N,A,M).
2. UM computes a ciphertext C and a τ -bit tag T for (N,A,M) following

Eq. (8), where KID is set to point the target user.
3. UM stores a set of (M , C, T ) into the table tb.
4. UM repeats Step 1-3 2t times with different messages.

Online Phase.
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Fig. 2: Impersonation against AES-CM-HMAC with short tags. In the offline
phase, a malicious group member UM stores a set of (M , C, T ) into the table
tb. In the online phase, UM intercepts a target frame (N ′, A′, C ′, T ′,Sig) sent by
the target user UT , searches a tuple (M∗, C∗, T ∗) in tb such that T ∗ = T ′ and
C∗ 6= C ′, replaces C ′ with C∗ in the target frame, and sends (N ′, A′, C∗, T ′,Sig)
to other group members.

1. UM intercepts a target frame (N ′, A′, C ′, T ′,Sig) sent by the target user,
where N ′ = N and A′ = A.

2. UM searches a tuple (M∗, C∗, T ∗) in tb such that T ∗ = T ′ and C∗ 6= C ′.
3. If UM finds such a tuple, replaces C ′ with C∗ in the target frame, and sends

(N ′, A′, C∗, T ′,Sig) to other group members.

The manipulated frame including (C∗, T ′) successfully pass the signature veri-
fication by other group members due to a tag collision, i.e., no one can detect
that the frame is manipulated by UM , and the group members will accept M∗
as a valid message from UT . The above is for the case where x = 1, i.e., each
tag is independently signed by the signature key. It is naturally extend to the
case where x is more than one, namely the case where a list of tags is signed
altogether for efficiency.

To mount the attack described above, the adversary needs to intercept a
legitimate message. It implies the adversary may collude with an intermediate
server, or E2EE adversary, which is the central operating server. The practicality
of this is beyond the scope of this article, however we remark that preventing
colluding attack with E2EE adversary is one of the fundamental goals of E2EE.

We note that the attack without intercept is also possible by creating a
forged tuple (N ′, A′, C ′, T ′,Sig) such that T ′ = T and (N ′, A′, C ′) 6= (N,A,C)
by observing some legitimate tuple (N,A,C, T,Sig) that was previously sent
without corruption; here (N ′, A′) is chosen so that it is likely to be used by UT
in the next frame which is yet sent. This is essentially a reply of signature and
we guess whether it is detected as replay depends on the actual system, so we
keep it open. The cost of detecting a reply of randomized algorithm is generally
high since the receiver must keep the all random IVs used.
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Complexity Evaluation. The computational cost to make the precomputation
table tb in the offline phase is estimated as 2t, and the success probability of
Step 2 in the online phase is estimated as 2−τ+t.

Practical effects on SFrame. In case τ = 32 (i.e. 4-byte tags) if UM prepares 232

precomutation tables in the offline, the success probability is almost one. Thus,
this forgery attack is practically feasible with a high success probability for the
4-byte tag. Besides, in this attack, the adversary fully controls the decryption
result (M∗) of the manipulated frame except 32 bits which are used for generating
232 different tags in the offline phase.

To perform an actual attack on SFrame, since each SFrame header includes
the frame counter to avoid replay attacks, the adversary has to decide the target
frame and set the target frame counter to the SFrame header file in M when
generating tags in the offline phase.

Even in the case of 8- and 10-byte tag, if UM prepares 256 tables, which is
feasible by the nation-level adversary, the success probability is non-negligible,
2−8 and 2−24, respectively.

4.3 Security of AES-CM-HMAC with Long Tags

We first discuss the security of AES-CM-HMAC with long tags, e.g., 16-byte tags,
against impersonation attack as described in Section 4.2. Even if a malicious
group member prepares 256 precomputation tables, it is infeasible because the
success probability of the attack is 2−72; therefore, AES-CM-HMAC with long
tags can be secure against the impersonation attack proposed in Section 4.2.

We justify the above observation by showing SCU security of AES-CM-HMAC
with long tags. According to Alg. 2, let D and D∗ be (N,A,C) and (N∗, A∗, C∗),
respectively (see Line 3 in Tag.Generation procedure). Note that N is included
in A (aad) as partial information (see Lines 7-10 in Alg. 1). For simplicity, the
tag generation by HMAC is abstracted as follows:

HMAC(KKID
a , D) = H

(
(K ⊕ opad) ‖ H

(
(K ⊕ ipad) ‖ D

))
,

where H denotes a hash function, e.g., SHA256 used in SFrame, ipad and opad
denote fixed padding values, and K is generated from KKID

a according to the
padding rule in HMAC algorithm (see [34] for details). The following theorem is
simple to prove.

Theorem 1. Let A be a SCU adversary against AES-CM-HMAC with the target
encryption output being at most ` bits. Then, SCU advantage of A against
AES-CM-HMAC is bounded as

AdvSCU
AES-CM-HMAC(A) < 2AdveSec[≤(`′)]

H (A′)

for some eSec adversary A′ against H, which denotes the underlying SHA256
hash function, where `′ = `+ 512 (i.e., one block larger).
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Fig. 3: SCU scenario against AES-CM-HMAC with long tags for E2EE. In this
scenario, given a transcript of encryption query (N,A,M,C, T ) derived on K,
the adversary A is required to find a successful forgery (N∗, A∗, C∗, T ∗) on K
such that T ∗ = T and D∗ 6= D, i.e., (N∗, A∗, C∗) 6= (N,A,C).

Proof. Let K be the key of HMAC. Thanks to the generic composition, we can
assume that the adversary is given the key for the counter mode. The resulting
game is that, given a transcript of encryption query (N,A,M,C, T ) derived on K,
the adversary is required to find a successful forgery (N∗, A∗, C∗, T ) on K such
that D∗ 6= D, i.e., (N∗, A∗, C∗) 6= (N,A,C). Note that the tag T is the output
of HMAC taking K and D = (N,A,C) and thus the plaintext M is not needed
in the attack. Fig. 3 illustrates this scenario, where IV denotes the initial hash
value, D = D0 ‖ . . . ‖Dl−1, D∗ = D∗0 ‖ . . . ‖D∗l−1, S = H

(
(K ⊕ ipad) ‖D

)
, and

S∗ = H
(
(K ⊕ ipad) ‖D∗

)
. Each Di and D∗i denotes an input block to HMAC.

The last block may need padding but we simply ignore this (the analysis is pretty
much the same). In this scenario, we consider the following two cases: A finds
S∗ = S (Case 1) which implies T = T ∗ or S∗ 6= S and T = T ∗ (Case 2).

For Case 1, observe that S = S∗ means H(K⊕ ipad ‖D) = H(K⊕ ipad ‖D∗),
hence a second preimage against the target input K ⊕ ipad ‖D is obtained. For
Case 2, when S 6= S∗ and T = T ∗, it means the adversary finds a second preimage
against the target (2-block, thus 1024-bit) input K ⊕ opad ‖S. Both cases are
covered by the eSec security of H, hence we have

AdvSCU
AES-CM-HMAC(A) ≤ AdveSec[≤(`′)]

H (A′) + AdveSec[≤1024]
H (A′)

< 2AdveSec[≤(`′)]
H (A′),

which concludes the proof. ut
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Theorem 1 tells that the SCU security of AES-CM-HMAC with long tags depends
on the security of underlying hash function. According to the Internet draft [26],
SFrame adopts SHA256 as the hash function used in AES-CM-HMAC.

Second-Preimage Security of SHA256. Ideally, a n-bit hash function provides
a n-bit security level against second-preimage attacks. That is, we can find a
second-preimage on SHA256 with a time complexity of 2256. Khovratovich et
al. [16] proposed a new concept of biclique as a technique for preimage attacks,
and applied it to the reduced-round SHA2 family. Their second-preimage attack
on the reduced-round SHA256 performs up to 45 rounds (out of 64) with a time
complexity of 2255.5 and a memory complexity of 26 words. After that, Andreeva
et al. [1] presented new generic second-preimage attacks on the basic Merkle-
Damgård hash functions. Their best attack allow us to find a second-preimage on
the full SHA256 with a time complexity of 2173 and a memory complexity of 283,
but this attack is required too long message blocks, e.g., a 2118-block message.

To the best of our knowledge, no study has been reported on a second-
preimage attack that is more efficient than the above described attacks; therefore,
AES-CM-HMAC with long tags can be considered as the SCU-secure AEAD.

4.4 Impersonation against AES-GCM with Any Long Tags

The impersonation attacks described above is a generic attack and the offline
attack complexity depends on the tag length. In contrast, if we use AES-GCM,
it is easy to mount a similar attack without the offline phase. This is because,
the adversary who owns the GCM key and observes a legitimate GCM output
of (N,A,C, T ) is able to create another distinct tuple of (N ′, A′, C ′, T ′) with
T ′ = T . The remaining (N ′, A′, C ′) 6= (N,A,C) can be chosen almost freely from
the linearity of GHASH and the knowledge of the key. In particular, the attack
works with negligible complexity irrespective of the tag length unlike the case of
AES-CM-HMAC.

Once the adversary intercepts a legitimate tuple (N,A,C, T ) created by GCM,
it is trivial to compute (N ′, A′, C ′, T ′) such that T ′ = T and (N ′, A′, C ′) 6=
(N,A,C), for almost any choice of (N ′, A′, C ′).

For example, suppose GCM with 96-bit nonce and 128-bit tag, which is one of
the most typical settings. Given any GCM encryption output tuple (N,A,C, T )
with 2-block C = (C1, C2) and 1-block A = A1, we have

T = GHASH(L,A ‖C ‖ len(A,C))⊕ EK(N ‖ 132)
= A · L4 ⊕ C1 · L3 ⊕ C2 · L2 ⊕ len(A,C) · L⊕ EK(N ‖ 132),

C1 = EK(N ‖ 232)⊕M1,

C2 = EK(N ‖ 332)⊕M2,

where M = (M1,M2) is the plaintext. Here, len(A,C) is a 128-bit encoding of
lengths of A and C, and multiplications are over GF(2128). EK(∗) denotes the
encryption by AES with key K and L = EK(0128), and i32 for a non-negative
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Table 1: NIST requirements on the usage of GCM with short tags.
t 32 64
L 21 22 23 24 25 26 211 213 215 217 219 221

q 222 220 218 215 213 211 232 229 226 223 220 217

c 262 262 261 265 266 267 275 274 273 272 271 270

integer i denotes the 32-bit encoding of i. It is straightforward to create a valid
tuple (N ′, A′, C ′, T ′) such that T ′ = T and (N ′, A′, C ′) 6= (N,A,C) as we know
K. Say, we first arbitrary choose N ′ and A′, and the fake plaintext block M ′1 to
compute C ′1, and finally set C ′2 so that

C ′2 · L2 = T ′ ⊕A′ · L4 ⊕ C ′1 · L3 ⊕ len(A′, C ′) · L⊕ EK(N ′ ‖ 132)

holds. This will make the last decrypted plaintext block M ′2 random. It works
even if the tag is truncated. That is, the malicious group member can impersonate
other member and the forged plaintext is almost arbitrary except the last block.
We note that the plaintext is video or audio hence a tiny random block will not
be recognized. This attack severely harms the integrity of group communication.

This difference from the case of AES-CM-HMAC is rooted in the authenti-
cation mechanism – while HMAC maintains a collision resistance once the key
is known, GHASH with a known key is a simple function without any sort of
known-key security.

4.5 Considerations on Authentication Key Recovery

The specification [26] appears to implicitly allow 4 and 8-byte tags with AES-
GCM. In addition to the attacks described above, it is known that the use of
short tags in GCM will lead to a complete recovery of the authentication key
(i.e., the key of GHASH) by a class of attacks called reforging. This leads to a
universal forgery.

Ferguson [11] first pointed out this attack, and Mattsson and Westerlund [21]
further refined the attack and provided a concrete complexity estimation. Accord-
ing to [21], they point out that the security levels are only 62–67 bits and 70-75
bits for 32-bit and 64-bit tags, respectively, even if we follow NIST requirements
on the usage of GCM with short tags, which is shown in Table 1. In Table 1, L
is the maximum combined length of A and C, and q is the maximum number
of invocations of the authenticated decryption function. Table 1 also shows the
required data complexity c for the authentication key recovery under each re-
striction of L and q. For example, for L = 23 and q = 218, the required data to
recover the key of GHASH is 261.

If there is no restriction regarding L and q, the authenticated key is recovered
with data complexity of 2t as the complexity of the first forgery is dominated.
Thus, for 4-byte (= 32-bit) tag length, the authenticated key recovery is feasible
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with 232 data complexity. It seems that the specification [26] does not explicitly
mention the restrictions of q and L.

Practical effects on SFrame. As far as we checked available implementations of the
original [33], Cisco Webex [4], and Jitsi Meet [15], there is no restriction regarding
L and q. In this case, for the 4-byte tag, the authenticated key is recovered with
data complexity of 232, which is practically available by a malicious user.

4.6 Recommendations

From the vulnerabilities shown in Sections 4.2 to 4.5, we recommend the follow-
ings.

– For AES-CM-HMAC, short tags, especially 4-byte tag, should not be used.
– For AES-GCM, a signature should be computed over a whole frame, not only

tags.
– For AES-GCM, the specification should clearly forbid short tags, or refer to

NIST requirements on the usage of GCM with short tags.
– As discussed at Section 3, switch to other ciphersuite that works as a secure

encryptment scheme, such as HFC [7], with a sufficiently long tag is another
option.

5 Conclusions

We have shown our security analysis on SFrame, a recently proposed end-to-end
encryption mechanism built on RTC, developed by Google and CoSMo Software
and proposed to IETF. SFrame is a young project but going to be adopted by a
number of real-world products. Our results show that there is a practical risk
of impersonation by a malicious group member. This problem is caused by the
digital signature computed only on (a list of) AEAD tags, and the attack becomes
practical when tags are short or the used AEAD algorithm allows to create a
collision on tags with the knowledge of the key. The former applies to the case
of AES-CM-HMAC, and the latter applies to the case of AES-GCM. We also
showed that AES-CM-HMAC with a long tag avoids this problem as it fulfills a
“committing” property introduced by Dodis et al. [7]. Moreover, AES-CM-HMAC
is, if it is correctly used by the upper layer, a provably secure AEAD because it
can be interpreted as a standard encryption-then-MAC generic composition. We
notify our findings to the designers, and they acknowledged them and revised the
specification including the removal of the signature feature and a patch for the
AEAD algorithm. Considering its quick deployment, we think SFrame should be
studied more actively and hope our work help its improvement.
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