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Abstract

We consider the problem of round-optimal unbounded MPC: in the �rst round, parties publish a
message that depends only on their input. In the second round, any subset of parties can jointly and
securely compute any function 5 over their inputs in a single round of broadcast. We do not impose
any a-priori bound on the number of parties nor on the size of the functions that can be computed.

Our main result is a semi-malicious two-round protocol for unbounded MPC in the plain model
from the hardness of the standard learning with errors (LWE) problem. Prior work in the same set-
ting assumes the hardness of problems over bilinear maps. �us, our protocol is the �rst example of
unbounded MPC that is post-quantum secure.

�e central ingredient of our protocol is a new scheme of a�ribute-based secure function evaluation
(AB-SFE) with public decryption. Our construction combines techniques from the realm of homomor-
phic commitments with delegation of la�ice basis. We believe that such a scheme may �nd further
applications in the future.

1 Introduction

A multi-party computation (MPC) protocol [20] allows a set of = mutually distrustful parties to evaluate
any circuit� over their inputs (G1, . . . , G=), while leaking nothing beyond the circuit output� (G1, . . . , G=).
MPC is one of the pillars of modern cryptography and the study of its round complexity (and the necessary
assumptions) has motivated a large body of research. A series of recent works has established that two
rounds are necessary and su�cient to securely compute any function, under a variety of cryptographic
assumptions [16, 24, 30, 18, 9, 19].

A recent line of work [3, 8, 10] focuses on constructing round-optimal MPC with reusable �rst message,
i.e. where the �rst message of the MPC can be reused an unbounded number of times for computing
di�erent functions over the commi�ed inputs. However, out of these works only [10] achieves the “dream
version” of two round MPC, i.e. an MPC that simultaneously satis�es all of the following properties:

• No trusted setup is required.

• In the �rst round, each party publishes a �rst message that depends only on their input and does not
depend on the number of parties nor on the size of the circuit being evaluated.

• In the second round, any subset of parties can evaluate a circuit � over their �rst messages. �e
output can be publicly reconstructed given all the second messages.
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• �e second round can be repeated arbitrarily many times (with di�erent circuits and di�erent sets
of parties), without the need to recompute a �rst message. Parties can join the system at any time
by posting a �rst message.

�roughout this work, we refer to such an MPC protocol as unbounded MPC.
Among all works on round-optimal protocols, only [10] achieves the notion of truly unbounded MPC

without the need for a trusted setup. In particular, the works of [3, 8] fall short in satisfying this notion
because they impose a bound on the number of participants that needs to be �xed once and for all in the
�rst round and needs to be shared across all parties. �e earlier work of [30] does not su�er from this
limitation, but requires a trusted setup.

�e work of [10] assumes the hardness of standard problems over bilinear maps. While the veracity
of such assumptions is well-established in the classical se�ings, the lurking threat of quantum comput-
ing renders such a solution immediately insecure in the presence of a scalable quantum machine. �is
motivates us to ask the following question:

Can we construct unbounded MPC from Learning with Errors (LWE)?

1.1 Our Results

We consider the problem of unbounded MPC with security against semi-malicious adversaries in the dis-
honest majority se�ing. In our communication model, parties publish their �rst message through a broad-
cast channel which is immediately delivered to all participants. At any point in time, any subset ( of
participants (with a dishonest majority) can gather together and evaluate a circuit � over their inputs
(G1, . . . , G |( |) in a single round of broadcast. �e output � (G1, . . . , G |( |) can then be publicly reconstructed
from the messages of all parties. �is phase can be repeated arbitrarily many times without having to
re-initialize the �rst message (i.e. the �rst message is reusable). We do not impose any a-priori bound on
the number of participants nor on the size of the circuits. We prove the following theorem:

�eorem 1.1 (Informal). If the learning with errors (LWE) problem is hard, then there exists a two-round
unbounded MPC in the plain model.

By additionally assuming the quantum hardness of LWE, we obtain the �rst post-quantum secure
protocol for (semi-malicious) unbounded MPC in two rounds. Our main technical ingredient is a new
construction of a�ribute-based secure function evaluation (AB-SFE) [28] where the output can be publicly
reconstructed at the end of the second round. On a technical level, our scheme combines the homomorphic
commitment scheme from [23] with techniques to delegate a la�ice basis. We believe that such a scheme
may �nd further applications in the future.

2 Technical Overview

In the following, we summarize the main technical innovations of our work. �is outline can be roughly
split in three components: First we introduce the notion of AB-SFE [28] with public decryption and we
recall the security properties that we want to guarantee. �en we show an instantiation of AB-SFE with
public decryption from LWE, building on the construction of homomorphic commitments from [23]. Fi-
nally, we show how AB-SFE functions as the main ingredient (alongside garbled circuits) for constructing
unbounded MPC.
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2.1 AB-SFE with Public Decryption

We begin by recalling the notion of AB-SFE [28]. AB-SFE was introduced in the context of designated-
veri�er non-interactive zero-knowledge proof to obtain constructions from new assumptions. However
the work of [28] focused on the notion where decrypting a message requires a secret state (that might leak
some information about the a�ribute). Here we augment the syntax of AB-SFE with a public decryption
procedure. For the purpose of our work, it is going to be useful to cast this primitive as a two-party protocol
between an “authority” and a “sender.” �e interaction proceeds as follows:

• Key Generation: On input an a�ribute G , the authority locally runs a setup algorithm crs ←
Setup(1_) and generates a secret/public key pair (msk, pk) ← KeyGen(crs, G).1

• Encryption: Given the public key pk (generated as above), a circuit � and a message `, the sender
computes a ciphertext ct← Enc(pk,�, `).

• Decryption Hint: To enable public decryption, the authority cra�s a circuit-speci�c decryption
hint sk� ← Hint(msk,�).

• Public Decryption: Anyone who possesses the ciphertext ct and the decryption hint sk� can re-
cover the message ` by running Dec(sk� , ct). �e procedure succeeds if and only if � (G) = 1.

One way to interpret this primitive is as a secure two-party computation protocol where the interaction
consists only of two rounds and where only one party speaks in the �rst round. Looking ahead, this la�er
property is going to be crucial to achieve unbounded secure MPC, since it will allow multiple (unbounded)
parties to simultaneously play the role of the sender.

Security of AB-SFE. As for the security of AB-SFE we de�ne two properties: (1) We require that nothing
beyond � (G) is revealed about the a�ribute G . �is requirement must hold even for polynomially many
circuits (�1, . . . ,�@) and in the presence of the corresponding decryption hints (sk�1, . . . , sk�@ ), for any
polynomial @. (2) We require that for all circuits � such that � (G) = 0 it holds that

Enc(pk,�, `0) ≈ Enc(pk,�, `1)

are computationally indistinguishable. �is is required to hold even if the distinguisher is given the random
coins used in the key generation procedure. In other words, if the circuit outputs 0, even the key authority
should not be able to learn the message of the sender. �is is in stark contrast with the standard a�ribute-
based encryption se�ings [33, 25] where typically semantic security does not hold against a corrupted
authority.

2.2 AB-SFE from Learning with Errors

�e problem of constructing AB-SFE was considered in [28] where they obtained schemes from a variety
of assumptions in the private decryption se�ings, based on 2-round oblivious transfer. However, none of
their schemes support public decryption (without adding an extra round of interaction).

In this work, we take a di�erent route. Our starting point is the fully homomorphic commitment
scheme from [23], which we brie�y recall in the following.

1Note that we could have merged the Setup and the KeyGen algorithms in a single subroutine, however we refrained to do so
in order to match the original syntax from [28].
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Homomorphic Commitments. �e commitment key is a uniform matrix A ← Z=×<@ and commi�ing
to a multi-bit string (G1, . . . , GD) corresponds to the computation of a set of

C8 = Com(A, G8 ;R8) = A · R8 + G8G

where R8 ← {0, 1}<×< and G is the gadget matrix from [29]. Here R8 is a low-norm vector and plays
the role of the decommitment. In [23] it is shown that one can homomorphically evaluate any (depth-
bounded) circuit� over commi�ed value and still obtain a well-formed commitment C� . �e exact details
of the algorithm are irrelevant for the purpose of this overview, except for the fact that one can de�ne a
(deterministic) homomorphic computation over the decommitments and obtain a low-norm vector R�,G ,
which is a valid decommiment for C� .

At this point it is instructive to take a step back and think how we could implement AB-SFE if we
had a general-purpose witness encryption [17] scheme. A witness encryption scheme, associated with a
NP language, consists of an encryption and a decryption algorithm: Anyone can encrypt their message `
under an NP instance and the decryption algorithm can obtain ` using the witness to this instance. We
use witness encryption as follows: �e sender encrypts ` under the instance A · R�,G + � (G)G which is
obtained by homomorphically evaluating upon the commitments using the circuit C. �e authority releases
the decomitment R�,G as witness which would then allow anyone to recover ` if and only if � (G) = 1.
Temporarily glossing over the fact that R�,G might leak some information about G , we are going to show
how to implement this idea without resorting to the power of general-purpose witness encryption.

Computing Hints via Basis Delegation. Our �rst observation is that, when � (G) = 1, the matrix[
A C�

]
=

[
A AR�,G + G

]
matches the construction of la�ice trapdoor in [29]. Hence, R�,G allows us

to compute a short basis (a trapdoor) for the dual la�ice spanned by
[
A C�

]
. Following [29], such a

trapdoor T can be e�ciently computed in the following way

T =

[
I −R�,G
0 I

]
·
[

I 0
−G−1 [A] TG

]
where TG is a short basis for the la�ice Λ⊥@ (G), which is publicly computable. At this point it is tempting
to view

[
A C�

]
as the public-key of the witness encryption and T as the witness. A�er all, T has low

norm if and only if R�,G does, which implies that R�,G is a valid decommitment for C� .
However we are not yet done. �e adversary receives R�,G , for multiple circuits, where each decommit-

ment is a deterministic function of the decomitments (R1, . . . ,RD) and enough number of such decommit-
ments will leak some information about G . Recall that we are interested in the public decryption se�ing,
which would require us to publicly release T, which is again a deterministic function of R�,G .

Our next idea is to randomize the trapdoor T using the basis delegation procedure of [13]. In the
literature, this process is also referred to as SampleRight. First we add a uniformly sampled matrix Â ←
Z=×2<
@ to the public paramenters. Given the trapdoor T for

[
A C�

]
, the inverse sampling algorithm allows

us to probabilistically sample a short basis H for the la�ice

Λ⊥@

( [
Â A C�

] )
and H carries no information about T. At this point we have all ingredients to instantiate our witness
encryption: A�er recomputing C� homomorphically, the encryptor parses

A′′ =
[
Â A C�

]
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as a public matrix for LWE and encodes ` as (s · A′′ + noise, Ext(s, r) ⊕ `, r), where s is a secret vector
sampled from discrete Gaussian and Ext is an extractor. �e decryption hint H can be computed from
R�,G as described above and allows anyone to recover s and hence decrypts `, since H is a short basis for
Λ⊥@ (A′′). To prove the sementic security, we observe that sA′′ + noise =

[
s ·

[
Â A

]
s · AR�,G

]
+ noise.

�en, by noise �ooding, the term s · AR�,G + noise can be simulated by only using s ·
[
Â A

]
+ noise.

While the later computationally hides s by LWE assumption. Hence, the sender’s security follows from
the randomness extraction of Ext.

To see why we achieve security against a corrupted sender, we �rst switch from using a trapdoor
for

[
A C�

]
to generate the matrix R�,G to instead use a trapdoor for Â (using a process referred to as

SampleLe�)2; this switch is statistically indistinguishable and follows from the standard la�ice trapdoor
lemmas. We do this switch for every circuit. Once we do this, we then invoke le�over hash lemma to
instead generate the commitment as Ui + G8G, where Ui is generated uniformly at random. At this point,
the input of the receiver is information-theoretically hidden from the sender.

Achieving Security Against Semi-Malicious Receivers. One downside of the above construction is
that it ony achieves semi-honst security and in particular is not semi-malicious secure. For example, a semi-
malicious receiver can generate the matrix A with a trapdoor, and then learn the message ` regardless
of whether � (G) = 1 or not. To further achieve the semi-malcious security, our idea is to leverage the
following observation in [11]: if the la�ice Λ@

( [
Â A

] )
has a basis with =/2 short vectors, then the

encoding s ↦→ s ·
[
Â A

]
+ noise is lossy for s. Based on this observation, we sample the matrices Â and

A in a structured way such that they always have a basis with =/2 short vectors. Now, when� (G) = 0, the
public matrix A′′ becomes

A′′ =
[
Â A A · R�,G

]
.

�en the la�ice Λ⊥@ (A′′) also has a basis with =/2 short vectors. �en we can use the aforementioned
observation in [11] to prove (statistical) semantic security.

We sample
[
Â A

]
with =/2 short basis as[

Â A
]
=

[
B̂ B

S · B̂ + Ê S · B + E

]
where Â,A are two matrices consisting of LWE instance, and hence are pseudorandom. On the other

hand, the la�ice Λ@
( [
Â A

] )
has a basis

[
B̂ B
Ê E

]
, where the last =/2 rows are short vectors. �en the

above argument follows, and we achieve (statistical) sender’s security against semi-malicious receiver.

2.3 From AB-SFE with Public Decryption to Unbounded MPC

We are now ready to show how AB-SFE with public decryption readily gives us a construction of un-
bounded MPC.

Building Blocks. In addition to AB-SFE with public decryption, we are going to assume the existence
of any semi-malicious secure two-round MPC, denoted by mpc, such as the protocols proposed in [9, 19].
We note that we do not place any additional restrictions on mpc: For instance, it need not guarantee any
reusability property and moreover, the total number of parties in the MPC protocol can be �xed before the

2In the technical sections, instead of using the terms SampleLe� and SampleRight, we use the algorithm GenSamplePre that
captures the functionality of both these algorithms.
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�rst round message. Furthermore we are going to make use of garbled circuits [34]. For the reader unfa-
miliar with the notion, a garbling scheme allows one to compute a garbled version of a circuit � together
with set of label pairs (lab8,0, lab8,1). Given an input I, its encoding consists of the labels corresponding to
its bit representation (lab1,I1, . . . , lab |I |,I |I | ) and security requires that nothing is revealed about I, besides
the output of the computation � (I).

It is also going to be convenient to consider an augmented notion of AB-SFE, that we denote by 2AB-
SFE, following the convention from [22]. A 2AB-SFE with public decryption is identical to AB-SFE with
public decryption except that the encryption algorithm takes as input two messages (`0, `1) and the public
decryption returns `0 if � (G) = 0 and `1 if � (G) = 1. Given an AB-SFE, it is easy to construct a 2AB-SFE
by just encrypting `0 under the complement of � .

�e Unbounded MPC Protocol. We provide a simpli�ed desciption of our unbounded MPC in the
following.

• First Message: Given an input G8 , the �rst message of each party simply consists of the generation
of a public key pk8 for the 2AB-SFE scheme, where the a�ribute is set to the input G8 .

• Second Message: Each party %8 is given as input set of parties ( and a circuit � . First, it computes
a garbled version of the circuit that takes as input ( (specifying the subset of parties participating in
the protocol), any �rst round messages (<1, . . . ,< |( |) of mpc and computes the 8Cℎ party’s second
round messages of mpc (the input G8 is hardwired in the computation). A�er it computes the garbled
circuit, it then takes each pair of labels (lab8,0, lab8,1) and computes a 2AB-SFE encryption for the
corresponding participant % 9 under the circuit Γ8, 9 , de�ned as follows.

Γ8, 9 : Compute the 8-th bit of< 9 .

Finally, for all 9 = 1 . . . |( | compute the decryption hints for the 2AB-SFE encryption corresponding
to the circuit Γ9,8 .

• Reconstruction: �e public reconstruction algorithm works by using all the decryption hints to
recover all the labels, which in turn are used to evaluate the garbled circuits. �is results in a set of
second round messages (?1, . . . , ? |( |) for the underlying two-round MPC. �e reconstruction algo-
rithm then returns the result of the reconstruction procedure of the one-time MPC.

Since the �rst message consists only of the key of the 2AB-SFE scheme, it is clear that the resulting MPC
does not impose a bound on the parties. Also note that the underlying two-round secure MPC, namely
mpc, is freshly re-initialized for each second message and therefore the security of the reusable protocol is
not a�ected. One subtlety that we ignored in the above description is that the computation of the messages
for the one-time MPC is randomized and we need to ensure that the same randomness is used consistently
in the �rst and second message for each party. �is can be done routinely by adding a PRF key alongside
the input and drawing all necessary random coins by evaluating the PRF on some public input.

Circuit-Size-Independent Communication. As described above, our scheme does not achieve circuit-
size-independent communication. However, by using a slight variation of a compiler from [32], we can
apply a generic transformation to achieve this property. In [32] it was observed that any non-compact 2-
round MPC can be generically transformed into a compact one via laconic function evaluation (LFE).3 �e
CRS for LFE is chosen by one of the parties and sent in the �rst round. In our se�ing, this does not work

3A similar transformation was also used in [2] to compress the communication complexity.
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as-is since the length of CRS grows linearly in the input length of the function being computed, which is
unbounded. A simple solution is to have each party send a (uniformly random) CRS whose length is only
proportional to their own input length. Later, when a subset of parties want to evaluate some function,
they �rst concatenate their CRSes to obtain a long enough CRS, then the 2-round MPC protocol to compute
the LFE ciphertext, as done in [32, 2] for achieving circuit-independent communication.

In summary, by using the above observation, we can achieve both unbounded-party property and
circuit-independent communication (except for a factor that depends on the depth of the circuit, due to
the known construction of LFE).

2.4 Related Work

Ishai et al. [27] introduced the notion of reusable non-interactive secure computation (rNISC), where a
receiver can publish a reusable encoding of its input ~ and any sender can enable computation of 5 (G,~)
by computing a message using input G and sending it to the receiver. �is notion has subsequently been
studied in many follow-up works; see, e.g., [1, 12, 6, 7, 14].

�e recent work of Benhamouda and Lin [10] extends this notion to the multiparty se�ing, and refers
to it as multiparty reusable NISC (mrNISC). Unlike rNISC which is primarily challenging in the malicious
adversary model (from the viewpoint of black-box constructions), mrNISC is non-trivial even in the semi-
honest adversary model. Unbounded MPC seeks the same goals as mrNISC; we use the former terminology
to emphasize the key property that the �rst round messages do not depend on the number of parties or
the size of the circuit or the size of the subset of parties involved in the actual computation.

3 Preliminaries

3.1 Notations

For any integer =, we use [=] to denote the set {1, 2, . . . , =}. We use Z to denote the sets of integers, and
use Z@ to denote Z/@Z.

For any sets (1, (2, . . . , (= of integers, and any tuple (8∗1, 8∗2, . . . , 8∗=) ∈ (1×(2×· · ·×(= , we use the notation
(8∗1, 8∗2, . . . , 8∗=) + 1 (resp. (8∗1, 8∗2, . . . , 8∗=) − 1) to denote the lexicographical smallest (resp. biggest) element in
(1 × (2 × · · · × (= that is lexicographical greater (resp. less) than (8∗1, 8∗2, . . . , 8∗=).

Statistical Distance. For any two discrete distributions %,& , the statistical distance between % and & is
de�ned as SD(%,&) = ∑

8

�� Pr [% = 8] −Pr [& = 8]
��/2 where 8 takes all the values in the support of % and& .

Matrix Norms. For any matrix A, let ‖A‖ be the maximum ℓ2 norm of its columns, and ‖A‖2 be the ℓ2
norm of A.

Extractors. An algorithm Ext : {0, 1}= ×{0, 1}A → {0, 1}ℓ is a seeded strong average-case (:, n)-extractor,
if for any random variables - over {0, 1}= and / with H̃∞(- |/ ) ≥ : , then SD((Ext(-, r), r, / ), (u, r, / )) <
n , where u← {0, 1}ℓ and r← {0, 1}A are sampled uniformly at random.

�eorem 3.1 (Seeded Extractor [26]). For every constant U > 0, and all positive integers =, : and n > 0,
there exists an explicit construction of a strong (:, n)-extractor Ext : {0, 1}= × {0, 1}A → {0, 1}< with A =

$ (log= + log(1/n)) and< ≥ (1 − U): .
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3.2 Lattices and LWE Assumption

Let < be an integer, a la�ice is a discrete additive group in R< . We say that a set of linear independent
vectors B = b1, b2, . . . , b: } is a basis of a la�ice Λ, if Λ = {Bz | z ∈ Z: }. Let B̃ = (b̃1, b̃2, . . . , b̃: ) be the
Gram-Schmidt basis derived from B.

For any integer =,<,@ ≥ 2 and Z=×<@ , we de�ne the @-ary la�ice

Λ@ (A) = {z ∈ Z<@ | ∃s ∈ Z=, z = A) s (mod@)}
Λ⊥@ (A) = {z ∈ Z<@ | Az = 0 (mod@)}

Similarly, for any y ∈ Z=@ , we de�ne the coset Λy
@ (A) = {z ∈ Z<@ | Az = y (mod@)}.

Discrete Gaussian. For any integer = and real B > 0, de�ne the Gaussian function dB : R → R+ of
parameter B as dB (x) = exp(−c ‖x‖2/B2). For any la�ice Λ, any vector c ∈ R< , and real B > 0, we denote
dB (Λ + c) =

∑
x∈Λ dB (x + c). �e discrete Gaussian probabilistic distribution �Λ+c,B is a distribution over Λ

with density function dB (x)/dB (Λ + c), for any x ∈ Λ.

�eorem 3.2 (Noise Flooding [5, 21, 15, 31]). For any 2 ∈ Z, and real B > 0, SD(�Z,B , �2+Z,B) < $ (2/B).

De�nition 3.3 (LWE Assumption). Let = = =(_),< = <(_), ℓ = ℓ (_) be polynomials in _, and let the
modulus @ = 2_$ (1) be a function of _, and j = j (_) be a noise distribution. �e Learning with Error (LWE)
assumption states that for any PPT distinguisher D, there exists a negligible function a (_) such that���� Pr

[
D(1_, (A, S · A + E)) = 1

]
− Pr

[
D(1_, (A,U)) = 1

] ���� ≤ a (_),
where A← Z=×<@ , S← Zℓ×=@ ,U← Zℓ×<@ , E← j ℓ×< .

Lattice Trapdoor and Preimage Sampling. For any integer =, @,< = = log@, let G ∈ Z=×< be the gadget
matrix in [29], and let G−1 [·] : Z=×<@ → {0, 1}<×< be the bit-decomposition function. Let TG ∈ Z<×< be
the small basis of Λ⊥@ (G).

�eorem 3.4 ([29], �eorem 5.1). �ere is an e�cient randomized algorithm TrapGen(1=, 1<, @), that given
any integer = ≥ 1, @ ≥ 2, and su�ciently large< = $ (= log@), outputs a (partity-check) matrix A ∈ Z=×<@ ,
and a short basis T for Λ⊥@ (A), such that A is statistically close to uniform.

�eorem 3.5 ([13], �eorem 3.3). Let =,<,@, : be positive integers such that @ ≥ 2,< ≥ 2= log2 @. �ere
exists a PPT algorithm SampleBasis, that on input of A ∈ Z=×:<@ , a set ( ⊆ [=] and B( is a basis for Λ⊥@ (A( ),
and an integer ! ≥ ‖B̃( ‖ ·

√
:< · l (

√
log:<), outputs B ← SampleBasis(A,B( , (, !) such that for an

overwhleming fraction ofA, B is a basis forΛ⊥@ (A) with ‖B̃‖ ≤ ! (with overhelming probability). Furthermore,
the distribution of B only depends on A and !.

3.3 Garbling Scheme

A garbling scheme is a pair of algorithms (Garble, Eval), which works as follows.

• Garble(1_,�): �e garbling algorithm takes as input a security parametere _, and a circuit � with
input length ℓin and output length ℓout. �en it outputs a garbled circuit �̃ and some labels lab =

{lab1,8}1∈{0,1},8∈[ℓin ] .
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• Eval(�̃, labG ): For any G ∈ ℓin, let labG denote {labG8 ,8}8∈[ℓin ] . On input �̃ and labG , it outputs a ~.

We require a garbling scheme to satisfy the following properties.

• Correctness: For any circuit � : {0, 1}ℓin → {0, 1}ℓout , and any input G ∈ {0, 1}ℓin , we have

Pr
[
(�̃, lab) ← Garble(1_,�), ~ ← Eval(�̃, labG ) : ~ = � (G)

]
= 1

• Simulation Security: �ere exists a simulator Sim such that for any n.u. PPT distinguisher D,
there exists a negligible function a (_) such that���� Pr

[
(�̃, lab) ← Garble(1_,�) : D(1_, �̃, labG ) = 1

]
−

Pr
[
(�, lab) ← Sim(1_,� (G)) : D(1_,�, lab) = 1

] ���� < a (_)
3.4 Semi-Malicious 2-round MPC in Plain Model

A (one-time useable, selective secure) semi-malicious 2-round MPC in the plain model is a tuple of algo-
rithms (Round1,Round2,Rec), which work as follows.

�ere are # parties who want to jointly compute 5 (G1, G2, . . . , G# ), where G8 is the input of 8-th party.

• Round 1: For each 8 ∈ [# ], the 8-th party sets fresh random coins A8 , and executes msg8 ←
Round1(1_, G8 , 5 ; A8).

• Round 2: For each 8 ∈ [# ], the 8-th party executes ?8 ← Round2(G8 , A8 , {msg9 }9 ∈[# ]).

• Output Recovery: Any one with {?8}8∈[# ] executes ~ ← Rec({?8}8∈[# ]).

We require the protocol to satisfy the following property.

• Semi-Malicious Simulation Security: �ere exists a simulator Sim such that, for any input {G8}8∈[# ] ,
for any subset of honest parties � ⊆ [# ], and any dishonest parties’ random coins {A8}8∈[# ]\� , any
PPT distinguisher D, there exists a negligible function a (_) such that for any su�ciently large _,���� Pr

[
∀8∈�,A8←{0,1}∗,∀8∈[# ],msg8=Round1 (1_,G8 ;A8 ),

?8=Round2 (G8 ,A8 ,{msg9 }9∈[# ] )
: D(1_, {msg8 , ?8}8∈[# ]) = 1

]
−

Pr
[
D(1_, Sim(1_, �, {G8 , A8}8∉� , 5 , 5 ({G8}8∈[# ]))) = 1

] ���� ≤ a (_)
Here, without loss of generality, we assume the Round1 and Round2 use the same random coins.

3.5 Homomorphic Commitment

A homomorphic commitment scheme is a tuple of algorithms (Setup,Com, Eval), with the following syn-
tax.

• Gen(1_) : A CRS generation algorithm that takes as input a security parameter _, and it outputs a
common random string crs.

9



• Com(crs, `; A ) : A commitment algorithm that takes as input the CRS crs, a message ` ∈ {0, 1}, and
randomness A , it outputs a commmiment 2 .

• Eval(�, (21, 22, . . . , 2D)) : �e (fully) homomorphic evaluation algorithm Eval takes as input a circuit
� , and some commitments 21, 22, . . . , 2D , and it outputs an evaluated commitment Com(� (G); A�,G ),
where G = (G1, G2, . . . , GD) is the message that 21, 22, . . . , 2D commi�ed. Furthermore, the randomness
A�,G can be e�ciently computed from the randomenss used to compute 21, 22, . . . 2D and G .

We require it to satisfy the following properties.

Statistical Hiding. �ere exists a negligible function a (_) such that,

SD((crs,Com(crs, 0)), (crs,Com(crs, 1))) ≤ a (_),

where the randomness is over the CRS crs← Gen(1_) and the randomness used to compute the commit-
ment.

Construction. Let = = =(_) be a polynomial in _, @ = @(_) be a function of _, and< = = log@.

• Gen(1_) : It samples A← Z=×<@ uniformly at random, and output crs = A.

• Com(crs = A, ` ∈ {0, 1};R) : It outputs a commitment C = AR + `G.

• Eval(�, (C1,C2, . . . ,CD)): For each gate in the circuit� , the homomorphic evaluation algorithm per-
forms the following:

– For each addition gate, let the commitment of the input wires to be C; ,CA , it computes the
commitment for the output wire as follows.

C> = C; + CA

– For each multiplication gate, let the commitment of the input wires to be C; ,CA , it computes
the commitment for the output wire as follows.

C> = C;G−1 [CA ]

Lemma 3.6 (Bound on Homomorphic Evaluation). Let A ∈ Z=×<@ be a matrix, G = (G1, G2, . . . , GD) be a
binary string, and � be a boolean circuit of depth 3 . Let

C = Eval(�, (Com(A, G1;R1),Com(A, G2;R1), . . . ,Com(A, GD ;RD))),

where G1, G2, . . . , GD ∈ {0, 1}, and R1,R2, . . . ,RD ∈ {0, 1}<×< . �en there exists a R�,G that can be e�ciently
computed from G1, G2, . . . , GD and R1,R2, . . . ,RD such that C = Com(A,� (G1, G2, . . . , GD);R�,G ) and ‖R�,G ‖2 ≤
2$ (3 log<) .

Proof. We analysis for each gate. For each addition gate, if C; = AR; + `;G, and CA = ARA + `AG, then
C> = A(R; + RA ) + (`A + `; )G. Hence, if we let R> = R; + RA , then ‖R> ‖2 ≤ ‖R; ‖2 + ‖RA ‖2.

For each multiplication gate, C> = C;G−1 [CA ] = A(R;G−1 [CA ] + `ARA ) + `;`AG. Let R> = R;G−1 [CA ] +
`AGA . Hence, ‖R> ‖2 ≤ <‖R; ‖2 + ‖RA ‖2.

Hence, by induction on the depth of the circuit, we have that ‖R�,G ‖∞ ≤ <$ (3) .
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4 Secure Function Evaluation with Public Decryption

4.1 De�nition

An AB-SFE with public decryption is a tuple of algorithms (Setup,KeyGen, Enc,Hint,Dec), with the fol-
lowing syntax.

• Setup(1_): On input the security parameter _, it outputs a common random string crs.

• KeyGen(crs, G): On input the crs, and a binary string G , it outputs a public key pk and a master secret
key msk.

• Enc(pk,�, `): On input the public key pk, a boolean circuit � : {0, 1} |G | → {0, 1}, and a message
` ∈ {0, 1}, it outputs a ciphertext ct.

• Hint(msk,�): On input the master secret key, and the circuit � , output a hint sk� .

• Dec(sk� , ct): On input a hint sk� , and a ciphertext ct, it outputs a message ` ′.

We require the AB-SFE to satisfy the following properties.

• Correctness. For any binary string G , any circuit � : {0, 1} |G | → {0, 1} with � (G) = 1, and any
message ` ∈ {0, 1}, there exists a negligible function a (_) such that for any su�ciently large _,

Pr
[
crs←Setup(1_),(pk,msk)←KeyGen(crs,G),ct←Enc(pk,�,`)

sk�←Hint(msk,�),`′←Dec(sk� ,ct)
: ` = ` ′

]
≥ 1 − a (_)

• Statistical Indistinguishability of Public Keys. �ere exists a negligible function a (_) such that,
with 1−negl (_ ) probability over the randomness of crs← Setup(1_), for any G0, G1 with |G0 | = |G1 |,
and

SD
(
pk0, pk1

)
≤ a (_)

where pk1 is generated by KeyGen(crs, G1) for 1 ∈ {0, 1}.

• Simulation ofHints. �ere exists a negligible functiona (_), a PPT crs generating function Setup(1_)
such that, for any n.u. PPT adversary A,���Pr

[
crs← Setup(1_) : A(1_, crs) = 1

]
− Pr

[
(crs, tr) ← Setup(1_) : A(1_, crs) = 1

] ��� ≤ a (_) .
Furthermore, there exists a PPT simulator Sim such that, for any input string G , any circuit � , let
(crs, tr) ← Setup(1_), (pk,msk) ← KeyGen(crs, G),then

SD
(
Hint(msk,�), Sim(1_, pk, tr,�,� (G))

)
≤ a (_),

where the randomness is only over the randomness of Hint, and all other random values are �xed.

• Sender’s Statistical Indistinguishable Security Against Semi-Malicious Receiver. For any
input string G , any circuit � : {0, 1} |G | → {0, 1} with � (G) = 1, any unbounded adversary A, there
exists a negligible function a (_) such that���� Pr

[
(A, A ′) ← A(1_), crs←Setup(1_ ;A )

(pk,msk)=KeyGen(crs,G ;A ′) : A(Enc(pk,�, 0)) = 1
]
−

Pr
[
(A, A ′) ← A(1_), crs←Setup(1_ ;A ),

(pk,msk)=KeyGen(crs,G ;A ′) : A(Enc(pk,�, 1)) = 1
] ���� ≤ a (_)
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2AB-SFE. A 2AB-SFE scheme with public decryption has the same syntax as AB-SFE with public decryp-
tion, except that Enc and Dec are replaced by the following two algorithms:

• 2Enc(pk,�, {`8,0, `8,1}8∈[ℓout ]): On input the public key pk, a multi-bit output circuit � : {0, 1} |G | →
{0, 1}ℓout , and ℓout pair of labels, it output a ciphertext ct.

• 2Dec(sk� , ct): On input a hint sk� , and a ciphertext ct, output {` ′8 }8∈[ℓout ] .

We also extend the correctness and sender’s security to the following.

• Correctness: For any binary stringG , circuit� : {0, 1} |G | → {0, 1}ℓout , and any messages (`8,0, `8,1)8∈[ℓout ] ,
there exists a negligible function a (_) such that

Pr
[
crs←Setup(1_),(pk,msk)←KeyGen(crs,G),ct←2Enc(pk,�,(`8,0,`8,1)8∈[ℓout ] )

sk�←Hint(msk,�),(`′8 )8∈[ℓout ]←2Dec(sk� ,ct)
: ∀8 ∈ [ℓout], ` ′8 = `8,�8 (G)

]
≥ 1 − a (_) .

where �8 (G) is the 8-th output bit of � (G).

• Sender’s Statistical Indistinguishable Security Against Semi-Malicious Receiver: For any
unbounded adversary A, any binary string G , any circuit � : {0, 1} |G | → {0, 1}ℓout , and any two sets
of labels {`8,0}8∈[ℓout ], {`8,1}8∈[ℓout ] , there exists a negligible function a (_) such that���� Pr

[
(A, A ′) ← A(1_), crs←Setup(1_ ;A )

(pk,msk)=KeyGen(crs,G ;A ′),A(2Enc(pk,�, (`8,0, `8,1)8∈[ℓout ])) = 1
]
−

Pr
[
(A, A ′) ← A(1_), crs←Setup(1_ ;A )

(pk,msk)=KeyGen(crs,G ;A ′) : A(2Enc(pk,�, (`8,�8 (G) , `8,�8 (G) )8∈[ℓout ])) = 1
] ���� ≤ a (_)

From AB-SFE to 2AB-SFE with Public Decryption. Given an AB-SFE scheme with public decryption,
it is straightforward to construct a 2AB-SFE scheme with public decryption, following the methodology
in [22] (where it was described in the context of a�ribute-based encryption). Roughly speaking, the idea
is to encrypt one of the messages under the complement of � . We refer the reader to [22] for details.

4.2 Construction

Our construction uses the following parameters and algorithms.

• _, the security parameter.

• =, the dimension of LWE.

• @ = 2Θ(3 log3 _) , the LWE modulus, where 3 is the bound for the depth of the circuit. We choose @ to
be a prime.

• �f , the discrete Gaussian of deviation f = poly (_ ). We assume that when the randomness are
chosen maliciously, we have |G | < _ · f for any G ← �f .

• f2 = poly (_ ) , f1 = f2 · f · 2log2 _, f3 = f2 · f · 2Θ(3 log2 _) are the deviations for discrete Gaussians.

• �f′ , the discrete Gaussian of deviation f ′ = 2Θ(3 log2 _) . We also assume that when the randomness
are chosen maliciously, we have |G | < _ · f ′, for any G ← �f′ .
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• < = Ω(= log@), the number of columns in the commitment.

• A homomorphic commitment scheme (Gen,Com, Eval). See Section 3.5.

• Basis sampling algorithm SampleBasis, with deviation f ′ = 2Θ(3 log2<) . See �eorem 3.5.

• Ext(-, r): a seeded strong extractor in �eorem 3.1, where - is a random variable with su�cient
min-entropy, and the seed r← {0, 1}_ is uniformly at random.

�e construction is described below.

• Setup(1_):

– Sample B← Z=/2×<@ , S← �
=/2×=/2
f , E← �

=/2×<
f , and let A =

[
B

S · B + E

]
.

– Sample B̂← Z=/2×2<
@ , Ê← �

=/2×2<
f , let Â =

[
B̂

S · B̂ + Ê

]
.

– Output crs = (A, Â).

• KeyGen(crs, G = (G1, . . . , GD) ∈ {0, 1}D):

– Parse crs = (A, Â).

– For all 8 ∈ [D], sample R8 ← {0, 1}<×< , and let C8 = Com(A, G8 ;R8) = A · R8 + G8G.

– Let pk = (crs, {C8}8∈[D ]), and msk = (pk, {R8}8∈[D ]).

– Output (pk,msk).

• Enc(pk,�, ` ∈ {0, 1}):

– Parse pk = (crs, {C8}8∈[D ]) and crs = (A, Â).

– Deterministically homomorphically evaluate C� = Eval(�, {C8}8∈[D ]).

– Sample z1 ← �
1×=/2
f1 , z2 ← �

1×=/2
f2 and e← �1×4<

f3 , A ← {0, 1}_ .

– Let A′ =
[
A C�

]
, and A′′ =

[
Â A′

]
.

– Output ct =
( [
z1 z2

]
· A′′ + e, Ext(z, r) ⊕ `, r

)
.

• Hint(msk,�):

– Parse msk = (pk, {R8}8∈[D ]), pk = (crs, {C8}8∈[D ]), and crs = (A, Â).

– Deterministically homomorphically evaluate C� = Eval(�, {C8}8∈[D ]).

– If� (G) = 0, Let sk� = ⊥. Otherwise, parse C� = A ·R�,G +G, where R�,G can be computed from
{R8}8∈[D ] and � in polynomial time.

– Let A′ =
[
A C�

]
, and A′′ =

[
Â A′

]
.
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– Let TA′ =

[
I −R�,G
0 I

]
·
[

I 0
−G−1 [A] TG

]
, where TG is the short basis for Λ⊥@ (G).

– Sample H← SampleBasis (A′′,TA′, 2, f ′).

– Output sk� = (H,A′′).

• Dec(sk� , ct):

– If sk� = ⊥, output ⊥.

– Otherwise, parse sk� = (H,A′′), and ct = (C, 2, r).

– Compute C′ = C · H (mod @). Represent each element of C′ in [−@/2, @/2), and solve over Z
the linear equation x · H = C′ about x.

– Solve over Z@ the linear equation z′ · Â′′ = C − x about z′.

– Output<′ = 2 ⊕ Ext(z, r).

Now we proceed to prove the properties.

Lemma 4.1 (Correctness). �e above construction satis�es correctness.

Proof. For any binary string G , any circuit� with� (G) = 1 and depth at most3 , and any message ` ∈ {0, 1},
by Lemma 3.6, R�,G is bounded by 2$ (3 log<) . Hence, ‖TA′ ‖2 ≤ (2 + ‖R�,G ‖2) · $ (<) = 2$ (3 log<) , and
thus ‖T̃A′ ‖ ≤ ‖TA′ ‖2 = 2$ (3 log<) . Since the matrix TA′ is basis for Λ⊥@ (A′) and we set the parameter
f ′ = 2Θ(3 log2<) > ‖T̃A′ ‖ ·

√
2< · l (

√
log 2<). From �eorem 3.5, H is a basis for Λ⊥@ (A′′), where A′′ =[

Â A′
]
. Hence, we have C′ = C · H (mod @) = e · H (mod @). Since e and H are both small matrices,

and ‖eH‖∞ ≤ ‖e‖∞ · ‖H‖∞ · $ (<) < @, we know that e · H = C′. From the fact that H is a basis, we
know H is full rank over R4< . Hence, the (unique) solution x to the linear equation x · H = C′ is e. Since
A′′ =

[
Â A′

]
is full rank over Z@ with overwhleming probability, the (unique) solution z′ of the linear

equation z′ · A′′ = C − x is z. Hence,<′ = 2 ⊕ Ext(z, r) = `, and we prove the correctness.

Lemma 4.2 (Statistical Indistinguishability of Public Keys). �e construction satis�es statistical public key
indistinguishability security.

Proof. For any G0, G1 with |G0 | = |G1 |, and 1 ∈ {0, 1}, we have pk1 = (crs,Com(A, G1)). From the statistical
hiding property of the commitment scheme, we have that SD(pk0, pk1) is negligible.

Lemma 4.3 (Simulation of Hints). �e construction satis�es hint simulation security.

Proof. We construct the following simulator (Setup, Sim).

We now prove the two properties. For anyG ∈ {0, 1}= , let crs← Setup(1_), (pk,msk) ← KeyGen(crs, G),
and (crs, tr) ← Setup(1_).

• crs and crs are Computationally Indistinguishable. �is follows from the property that Â sam-
pled by TrapGen is statistically close to uniform random, and hence crs is statistically close to the
uniform distribution. On the other hand, crs← Setup(1_) is also computationally indistinguishable
from uniform random matrices by LWE assumption.
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Simulator (Setup, Sim)

• Setup(1_):

– Sample A← Z=×<@ .

– Let (Â,T) ← TrapGen(1=, 12<).

– Output crs = (A, Â), and trapdoor tr = T.

• Sim(1_, pk, tr,�,� (G)):

– Parse pk = (crs, (C8)8∈[D ]), crs = (y,A, Â), and tr = T.

– Deterministically homomorphically compute C� = Eval(�, (C8)8∈[D ]).

– Denote A′ =
[
A C�

]
, and A′′ =

[
Â A′

]
.

– If � (G) = 0, Let sk� = ⊥.

– Otherwise, Sample H← SampleBasis(A′′,T, 1, f ′).

– Output sk� = (H,A′′).

Figure 1: Description of the simulator.

• SD
(
Hint(msk,�), Sim(1_, pk, tr,�,� (G))

)
≤ negl (_ ): Note that the matrices A′′ =

[
Â A′

]
in Sim

and Hint are the same. Follow the same argument in Lemma 4.1, the parameters f ′ is large enough
for the condition in �eorem 3.5. Hence, from �eorem 3.5, the distribution of the basis H only
depends on A′′ and f ′. �us we have

SD (SampleBasis(A′′,TA′, 2, f ′), SampleBasis(A′′,T, 1, f ′)) ≤ negl (_ ) .

Hence, SD(sk� , sk� ) ≤ negl (_ ).

Lemma 4.4 (Sender’s Statistical Indistinguishability Security Against Semi-Malicious Receiver). �e above
construction achieves sender’s statistical indistinguishability security against semi-malicious receiver.

Proof. For any input G = (G1, . . . , GD) and circuit � with � (G) = 0, and any unbounded adversary A, we
build the following hybrids. Note that since the adversary is semi-malicious, in the following hyrbids, the

matrix A =

[
B∗

S∗ · B∗ + E∗
]
, and Â =

[
B̂∗

S∗ · B̂∗ + Ê∗
]
, where S∗, E∗, Ê∗ are sampled with maliciously chosen

randomness, but their ‖ · ‖ norms are still bounded by ‖S∗‖ ≤ _ · f1 ·$ (
√
<).

• Hybrid0: In this hybrid, the adversary is given a ciphertext of Enc(pk,�, 0).

• Hybrid1: Let R�,G be the small matrix such that C� = A · R�,G . �en the �rst coordinate of ct in

15



Hybrid0 is[
z1 z2

]
·
[
Â A AR�,G

]
+ e =

[
z1 z2

]
·
[

B̂∗ B∗ B∗R�,G
S∗B̂∗ + Ê S∗B∗ + E∗ S∗B∗R�,G + E∗R�,G

]
+ e (1)

=
[
z1 z2

]
·
[
I 0
S∗ I

]
·
[
B̂∗ B∗ B∗R�,G
Ê E∗ E∗R�,G

]
+ e (2)

=
[
z1 + z2S∗ z2

]
·
[
B̂∗ B∗ B∗R�,G
Ê E∗ E∗R�,G

]
+ e (3)

�is hybrid is almost the same as Hybrid0, except that we replace the �rst coordinate of ct as Equa-
tion (3). From the above argument, Hybrid0 and Hybrid1 are identical.

• Hybrid2: �is hybrid is the same as Hybrid1, except that we further replace the �rst coordinate of ct
as follows. [

z1 z2
]
·
[
B̂∗ B∗ B∗R�,G
Ê E∗ E∗R�,G

]
+ e

Hybrid1 andHybrid2 are statistically indisitnguishable, because we set the parameterf1 = f ·f2·2log2 _

large enough such that ‖z1 + z2S∗‖/f1 = negl (_ ). By noise �ooding (�eorem 3.2), z1 + z2S∗ is
statistically close to z1.

• Hybrid3: �is hyrbid is almost the same as Hybrid2, except that we replace the �rst coordinate of ct
as follows. [

z1 · B̂∗ + e1, z1 · B∗ + e2, z1 · B∗R�,G + e3
]

where (e1, e2, e3) = e.
We will argue that Hybrid2 and Hybrid3 are statistically indistinguishable. Since the term z2 · Ê, z2 ·
E∗, z2 ·E∗R�,G in Hybrid2 are small matrices, and we set the deviation f3 for e large enough. Hence, by
noise �ooding (�eorem 3.2),

[
z2 · Ê z2 · E∗ z2 · E∗R�,G

]
+e and e are statistically close. �erefore,

Hybrid2 and Hybrid3 are statistically indistinguishable.

• Hybrid4: �is hyrbid is almost the same asHybrid3, except that the second coordinate of ct is replaced
with a uniformly random bit.
Hybrid2 and Hybrid4 are also statistically indistinguishable, since the entropy of z conditioned on
the �rst term of ct is at least H∞(z2) ≥ =/2. Since Ext is a strong extractor, by extraction, the second
and the third term (Ext(z, r) ⊕ `, r) is statistically close to (1, r), where 1 ← {0, 1} is uniformly
random.

• Hybrid5: �is hybrid is almost the same as Hybrid0, except that the adversary is given a ciphertext
of Enc(pk,�, 1).
Hybrid4 and Hybrid5 are also statistically indistinguishable, since Hybrid4 does not depends on `,
then the same argument from Hybrid0 to Hybrid4 can be applied from Hybrid4 to Hybrid5.

By the hyrbid argument, we �nish the proof.
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Removing the Depth Dependence. In the above construction, the parameters depends on the depth of
the circuit. However, one can use the randomized encoding [4] to remove the depth dependence. Speci�-
cally, instead of evaluating the circuit� on input G directly, we evaluate the randomized encoding of� and
G . Since the randomized encoding can be computed in NC1, we can set the parameters to be large enough
to work for any circuit in NC1, and thus remove the depth dependence.

5 Unbounded MPC

5.1 De�nition

A (semi-malicious) unbounded MPC protocol is a 2-round MPC protocol (Round1,Round2,Rec) satisfying
the following syntax.

• First Round: �e 8-th party’s input is G8 . It sets the random coins A8 , and executes msg8 ←
Round1(1_, G8 ; A8). �en the 8-th party broadcasts msg8 .

• Second Round: A�er receiving the �rst round messages, a subset of parties ( ⊆ [# ] decide to
jointly compute a ℓout-bit output circuit 5 :

∏
8∈( {0, 1} |G8 | → {0, 1}ℓout .

For each 8 ∈ ( , the 8-th party executes ?8 ← Round2(G8 , A8 , {msg9 }9 ∈( , (, 5 ), and broadcasts ?8 .

• Public Recovery: Anyone with {?8}8∈( can execute ~ ← Rec({?8}8∈( , ().

E�ciency. �e running time of Round1 is polynomial in _ and |G8 |, and is independent of # or the size
of the circuit they want to compute later. �e running time of Round2 is polynomial in _, |( | and |� |.

Unbounded-Party Semi-Malicious Security. For any PPT adversaryA, there exists a simulator (Sim1, Sim2)
such that ���Pr

[
ARegstr( ·, ·),Eval( ·, ·) (1_) = 1

]
− Pr

[
ARegstr( ·, ·),Eval( ·, ·) (1_) = 1]

] ��� ≤ negl (_ )

where the oracles Regstr(·, ·) and Eval(·, ·) are de�ned as follows.

• Regstr(flag ∈ {Honest,Dishonest}, (G, A ∗)): �is oracle allows the adversary to register a new party.
It returns the �rst round message msg# of the new party (indexed by # ). When a new party is
registered, we allow the adversary to choose the input G and whether the new party is corrupted
or not (speci�ed by flag). If the adversary decides to corrupt it, then we also allow the adversary to
choose the random coins A ∗. A more speci�c description is as follows. We use a set � to maintain
the set of honest parties.

– If flag is Honest, then
∗ Let � = � ∪ {8}
∗ Set random coins A# , and let msg8 = Round1(1_, G ; A# ).
∗ Output msg# .

– Otherwise, if flag is Dishonest, then let msg# = Round1(1_, G ; A ∗).

– Let G# = G and # = # + 1.
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• Eval((, 5 ): �is oracle allows the adversary to query a function 5 , which only acts on a subset of
parties ( ⊆ [# ]. It returns the second round messages of the honest parties.

– If ( * [# ], then abort.

– For each 8 ∈ ( ∩ � , let ?8 ← Round2(G8 , A8 , {msg9 }9 ∈( , (, 5 ).

– Output {?8}8∈(∩� .

• Regstr(flag ∈ {Honest,Dishonest}, (G, A ∗)): �is oracle simulates the oracle Regstr using the sim-
ulator Sim1. When the adversary registers an honest party, then it invokes the simulator Sim1 to
generate the �rst round message. Otherwise, it runs the honest protocol Round1 to generate �rst
round messages for the corrupted parties.

– If flag is Honest, then
∗ Let � = � ∪ {# }.
∗ Let (msg# , st# ) ← Sim1(1_, 1 |G |).
∗ Output msg# .

– Otherwise, Round1(1_, G ; A# ).

– Let G# = G , and # = # + 1.

• Eval((, 5 ): �is oracle simulates the oracle Eval using the simulator Sim2. It returns the simulated
second round messages for all the honest parties in ( .

– If ( * [# ], then abort.

– Output {?8}8∈(∩� ← Sim2({st8}8∈(∩� , (, �, 5 , 5 ({G8}8∈(∩� )).

5.2 Construction

We present our unbounded MPC protocol Π = (Round1,Round2,Rec) in Figure 2. For an overview of the
construction, see Section 2.3. Our construction uses the following ingredients:

• An AB-SFE scheme ABSFE = (ABSFE.Setup,ABSFE.KGen,ABSFE.2Enc,ABSFE.Hint,ABSFE.2Dec)
with public decryption.

• A one-time use two-round semi-malicious MPC protocolOne = (One.Round1,One.Round2,One.Rec)
in the plain model.

• A pseudorandom function PRF = (PRF.Gen, PRF.Eval).

• A garbling scheme GC = (GC.Garble,GC.Eval).

5.3 Security

Lemma5.1 (Unbounded-Party Semi-Malicious Simulation Security). �e construction in Section 5.2 satis�es
semi-malicious unbounded-party simulation security.
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Round1(1_, G8): Party 8 performs the following steps:

• Sample a CRS crs8 ← ABSFE.Setup(1_) and a PRF key :8 ← PRF.Gen(1_).

• Compute (pk8 ,msk8) ← ABSFE.KGen(crs8 , (G8 , :8))

• Output msg8 = pk8 .

Round2(G8 , A8 , {msg9 }9 ∈( , (, 5 ): Party 8 performs the following steps:

• Compute crs8 , :8 and msk8 from A8 , and parse msg9 = pk9 .

• Compute (�̃8 , l̃ab) ← GC.Garble(� [G8 ,:8 ]), where the circuit � [G8 ,:8 ] on input a tuple {m̃sg9 }9 ∈(
does the following:

– A8 = PRF.Eval(:8 , (( | | 5 )).

– Output ?̃8 = One.Round2(G8 , A8 , {m̃sg9 }9 ∈( , 5 ).

• Parse l̃ab = {l̃ab9,:,1}9 ∈(,:∈[ |m̃sg9 | ],1∈{0,1}.

• For 9 ∈ ( \ {8}, compute 28, 9 ← ABSFE.2Enc
(
pk9 ,�(,5 , {l̃ab9,:,0, l̃ab9,:,1}:∈[ |m̃sg9 | ]

)
, where the

circuit �(,5 on input (G8 , :8) does the following:

– A8 = PRF.Eval(:8 , (( | | 5 )).

– �msg8 = One.Round1(1_, G8 , 5 ; A8).

– Output �msg8 .

• ℎ8 ← ABSFE.Hint(msk8 ,�(,5 ), �msg8 = �(,5 (G8 , :8).

• Output ?8 =
(
{28, 9 }9 ∈(\{8 }, ℎ8 , �̃8 , { ˜lab8,:,�msg8 [: ]}:∈[ |�msg8 | ]

)
.

Rec({? 9 }9 ∈( , (): Party 8 performs the following steps:

• For each 8 ∈ ( , parse ?8 =
(
{28, 9 }9 ∈(\{8 }, ℎ8 , �̃8 , { ˜lab8,:,�msg8 [: ]}:∈[ |�msg8 | ]

)
.

• For each 8 ∈ ( and 9 ∈ ( \ {8}, compute l̃ab8, 9 ← ABSFE.2Dec(ℎ8 , 28, 9 ). Set l̃ab8,8 =

{ ˜lab8,:,�msg8 [: ]}:∈[ |�msg8 | ] . Compute ?̃8 = GC.Eval(�̃8 , {l̃ab9 }9 ∈( ).

• Output ~ = One.Rec({?̃8}8∈( ).

Figure 2: Description of Unbounded-Party Reusable MPC Π.

Proof. For any n.u. PPT adversary A, let # (_) be the upper bound for the number of parties # that
A registers, and & (_) be the upper bound for the number of queries that A makes to Eval. For any
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8∗ ∈ [# (_)], and @∗ ∈ [& (_)], we build the following hybrids.

• Hybrid0: �is hybrid is the same as ARegstr( ·, ·),Eval( ·, ·) .

• Hybrid(8
∗, 9∗,@∗)

1 : �is hybrid is almost the same as the Hybrid0, except that we replace the labels used
by ABSFE.2Enc to the same labels. Speci�cally, we replace the ABSFE.2Enc encryption in Eval(·, ·)
as follows.

– For 9 ∈ ( \ {8}, if (8, 9, @) < (8∗, 9∗, @∗), m̃sg9 = �(,5 (G 9 , : 9 ),

28, 9 ← ABSFE.2Enc(pk9 ,�(,5 , { ˜lab9,:,m̃sg9 [: ],
˜lab9,:,m̃sg9 [: ]}:∈[ |m̃sg9 | ]).

If (8, 9, @) ≥ (8∗, 9∗, @∗), 28, 9 ← ABSFE.2Enc(pk9 ,�(,5 , {l̃ab9,:,0, l̃ab9,:,1}:∈[ |m̃sg9 | ]).

• Hybrid(8
∗,@∗)

2 : �is hybrid is almost the same as the Hybrid(#,#,&)+11 , except that we generate the
labels of the garbled circuits by the simulator. Speci�cally, we replace the garbled circuits generation
in Eval(·, ·) as follows.

– If (8, @) < (8∗, @∗), then (�8 , lab) ← GC.Sim(1_,� [G8 ,:8 ] ({m̃sg9 }9 ∈( )),

let �̃8 = �8 , and parse lab = { ˜lab9,:,m̃sg9 [: ]}9 ∈(,:∈[ |m̃sg9 | ] .

If (8, @) ≥ (8∗, @∗), then (�̃8 , l̃ab) ← Garble(� [G8 ,:8 ]).

• Hybrid8
∗

3 : �is hybrid is almost the same as Hybrid(#,&)+12 , except that we generate the replace the
CRS generation of Round1(1_, G8) in Regstr(·, ·) as follows.

– If 8 < 8∗ and 8 ∈ � , generate (crs8 , tr8) ← ABSFE.Setup(1_).

– If 8 ≥ 8∗ or 8 ∉ � , generate crs8 ← ABSFE.Setup(1_).

• Hybrid(8
∗,@∗)

4 : �is hybrid is almost the same asHybrid#+13 , except that we replace the hint generation
in Eval(·, ·) by the simulator. Speci�cally, let @ be the number of queries to Eval(·, ·), we replace the
generation of ℎ8 as follows.

– If (8, @) < (8∗, @∗) and 8 ∈ � , ℎ8 ← ABSFE.Sim(1_, pk8 , tr8 ,�(,5 , m̃sg8).

– If (8, @) ≥ (8∗, @∗) or 8 ∈ �̄ , ℎ8 ← ABSFE.Hint(msk8 ,�(,5 ).

• Hybrid8
∗

5 : �is hybrid is almost the same with Hybrid(#,&)+14 , except that we replace the PRF with a
random function. Speci�cally, we replace the randomness A8 generation in Eval(·, ·) with the follow-
ing. Let ((, 5 ) be the @-th query,

– For each 8 ∈ ( , if 8 < 8∗ and 8 ∈ � , let A8 = PRF8 .F(( | | 5 ).

– If 8 ≥ 8∗ or 8 ∉ � , let A8 = PRF.Eval(:8 , (( | | 5 )).

– Let �msg8 = One.Round1
(
1_, G8 , 5 ; A8

)
, ?̃8 = One.Round2(G8 , A8 , {m̃sg9 }9 ∈( , 5 ).
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where PRF8 .F is a random function for each 8 < 8∗, 8 ∈ � .

• Hybrid@
∗

6 : �is hybrid is almost the same with Hybrid#+15 , except that we replace the {�msg8 , ?̃8}8∈(∩�
using One.Sim. Speci�cally, we replace the generation of {�msg8 , ?̃8}8∈(∩� in Eval(·, ·) as follows.
At the begining of Eval(·, ·), we initialize an empty map Map : q → q .
Let ((, 5 ) be the @-th query to Eval(·, ·).

– If Map((, 5 ) is de�ned before, let {�msg8 , ?̃8}8∈(∩� = Map((, 5 ).

– Otherwise, if @ < @∗, let A8 = PRF.Eval(:8 , (( | |5 )) for each 8 ∈ ( \ � ,

– {�msg8 , ?̃8}8∈(∩� ← One.Sim(1_, ( ∩ �, {G8 , A8}8∈(\� , 5 , 5 ({G8}8∈( )),

– and if @ ≥ @∗, for each 8 ∈ ( ∩ � , set fresh randomness A8 ,
let �msg8 = One.Round1

(
1_, G8 , 5 ; A8

)
, ?̃8 = One.Round2(G8 , A8 , {m̃sg9 }9 ∈( , 5 ),

and de�ne Map((, 5 ) = {�msg8 , ?̃8}8∈(∩� .

• Ideal: �is hybrid is the same as Hybrid&+16 , except that we replace each KGen of real input (G8 , :8)
with the dummy (0 |G8 |, 0 |:8 |), for each 8 ∈ � . �is hybrid is the same as ARegstr( ·, ·),Eval( ·, ·) (1_). See
the simulator in Figure 3.

Lemma 5.2. Hybrid0 is identical to Hybrid
(1,1,1)
1 . Moreover, there exists a negligible function a (_) such that���� Pr

Hybrid(8
∗, 9∗,@∗)

1

[
ARegstr( ·, ·),Eval( ·, ·) (1_) = 1

]
− Pr

Hybrid(8
∗, 9∗,@∗)+1

1

[
ARegstr( ·, ·),Eval( ·, ·) (1_) = 1

] ���� ≤ a (_).
Proof. We build the following adversary A ′ trying to break the sender’s indistinguishability security. A ′
sets the randomness and runs the adversary ARegstr( ·, ·),Eval( ·, ·) , where the oracles Regstr(·, ·) and Eval(·, ·)
are implemented as follows.

• Regstr(·, ·): For each query, the adversaryA ′ does the same thing as the Hybrid0, except that when
the adversaryA registers the 9∗-th party, ifA decides to corrupt it, then we have the adversaryA ′
output the random coins (A, A ′) = A ∗ chosen by A.

• Eval(·, ·): Let @ the @-th query be ((, 5 ). �e adversary does the following. For each 8 ∈ � ∩ ( , it
generates the garbled circuit and labels (�̃8 , l̃ab) for � [G8 ,:8 ] . �en for each 9 ∈ ( \ {8}, it considers
three cases.

– If (8, 9, @) < (8∗, 9∗, @∗), A ′ uses ABSFE.2Enc to encrypt the same labels.

– If (8, 9, @) = (8∗, 9∗, @∗), it queries the challenger with the circuit �(,5 , and obtains a challenge
ciphertext ct. Let 28, 9 = ct.

– If (8, 9, @) > (8∗, 9∗, @∗), A ′ uses ABSFE.2Enc to encrypt di�erent labels.

Finally, A ′ computes and outputs {?8}8∈(∩� by the same way as Hybrid0.
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Sim1(1_, 1 |G |):

– Let (crs# , tr# ) ← Setup(1_), and (pk# ,msk# ) ← KGen(crs# , (0 |G |, 0_)).

– Output msg# = pk# , and st# = tr# .

Sim2 initialization: an empty map Map : q → q .

Sim2({st8}8∈(∩� , (, �, 5 , 5 ({G8}8∈(∩� )):

– For the @-the query ((, 5 ), if Map((, 5 ) is de�ned before, then let

{�msg8 , ?̃8}8∈(∩� = Map((, 5 ) .

– Otherwise, let A8 = PRF.Eval(:8 , (( | |5 )) for each 8 ∈ ( \ � , and

{�msg8 , ?̃8}8∈(∩� ← One.Sim(1_, ( ∩ �, {G8 , A8}8∈(\� , 5 , 5 ({G8}8∈( )),

de�ne Map((, 5 ) = {�msg8 , ?̃8}8∈(∩� .

– For each 8 ∈ ( ∩ �
∗ Let (�̃8 , l̃ab) ← GC.Sim(1_, ?̃8), parse l̃ab = { ˜lab9,:,m̃sg9 [: ]}9 ∈(,:∈[ |m̃sg9 | ] .
∗ For each 9 ∈ ( \ {8}, compute

28, 9 ← ABSFE.2Enc(pk9 ,�(,5 , { ˜lab9,:,m̃sg9 [: ],
˜lab9,:,m̃sg9 [: ]}:∈[ |m̃sg9 | ]).

∗ ℎ8 ← ABSFE.Sim(1_, pk8 , tr8 = st8 ,�(,5 , m̃sg8).

– Output ?8 =
(
(28, 9 )9 ∈( , ℎ8 , �̃8 , { ˜lab8,:,m̃sg8 [: ]}:∈[ |m̃sg8 | ]

)
.

Figure 3: Description of the simulator (Sim1, Sim2).

Now for the challenge ciphertext ct, we consider two cases. When ct is obtained by ABSFE.2Enc of
di�erent labels, then the adversary A ′ simulates the environment of Hybrid(8

∗, 9∗,@∗)
1 . Hence,

Pr
[
ct← ABSFE.2Enc(pk,�(,5 , ( l̃ab9,:,0, l̃ab9,:,1):∈[ |m̃sg9 | ]) : A ′(1_, crs, A ) = 1

]
= Pr

Hybrid(8
∗, 9∗,@∗)

1

[
ARegstr( ·, ·),Eval( ·, ·) (1_) = 1

]
When ct is generated with the same labels, then the adversary A ′ simulates the environment of

Hybrid(8
∗, 9∗,@∗)+1

1 . Hence,

Pr
[
ct← ABSFE.2Enc(pk,�(,5 , ( ˜lab9,:,m̃sg9 [: ],

˜lab9,:,m̃sg9 [: ]):∈[ |m̃sg9 | ]) : A ′(1_, crs, A ) = 1
]

= Pr
Hybrid(8

∗, 9∗,@∗)+1
1

[
ARegstr( ·, ·),Eval( ·, ·) (1_) = 1

]
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From the sender’s statistical indistinguishable security of AB-SFE against a semi-malicious receiver,
we derive that Hybrid(8

∗, 9∗,@∗)
1 and Hybrid(8

∗, 9∗,@∗)+1
1 are indistinguishable.

Lemma 5.3. Hybrid(#,#,&)+11 is identical to Hybrid(1,1)2 . Moreover, there exists a negligible function a (_)
such that����� Pr

Hybrid(8
∗,@∗)

2

[
ARegstr( ·, ·),Eval( ·, ·) (1_) = 1

]
− Pr

Hybrid(8
∗,@∗)+1

2

[
ARegstr( ·, ·),Eval( ·, ·) (1_) = 1

] ����� ≤ a (_) .
Proof. We build the following distinguisher D for the garbled scheme GC. D takes as input (1_, �̃, lab),
sets the randomness and runs the adversary ARegstr( ·, ·),Eval( ·, ·) , where the oracles Regstr(·, ·) and Eval(·, ·)
are implemented as follows.

• Regstr(·, ·): For each query, the adversary A ′ does the same thing as the Hybrid0.

• Eval(·, ·): Let @ the @-th query be ((, 5 ). �e adversary does the following. For each 8 ∈ � ∩ ( , it
considers three cases.

– If (8, @) < (8∗, @∗), then it generates �̃8 , l̃ab by the simulator GC.Sim.

– If (8, @) = (8∗, @∗), then it sets �̃8 , l̃ab to be the input �̃ , lab.

– If (8, @) > (8∗, @∗), then it generates �̃8 , l̃ab by honestly garbling � [G8 ,:8 ] .

Finally, it computes and outputs {?8}8∈(∩� in the same way as Hybrid(#,#,&)+11 .

When (�̃, lab) ← GC.Garble(1_,� [sk8∗ ,:8∗ ]), then the distinguisher D simulates the environment of
Hybrid(8

∗,@∗)
2 for A. Hence, we have

Pr
[
(�̃, lab) ← GC.Garble(1_,� [sk8∗ ,:8∗ ]) : D(1_, �̃, lab) = 1

]
= Pr

Hybrid(8
∗,@∗)

2

[
ARegstr( ·, ·),Eval( ·, ·) (1_) = 1

]
.

When (�̃, lab) ← GC.Sim(1_,� [sk8∗ ,:8∗ ] ({m̃sg9 }9 ∈( )), the distinguisher simulates the environment of
Hybrid(8

∗,@∗)+1
2 for A. Hence,

Pr
[
(�̃, lab) ← GC.Sim(1_,� [sk8∗ ,:8∗ ] ({msg9 }9 ∈( )) : D(1_, �̃, lab) = 1

]
= Pr

Hybrid(8
∗,@∗)+1

2

[
ARegstr( ·, ·),Eval( ·, ·) (1_) = 1

]
.

From the security of the garbling scheme, we derive that Hybrid(8
∗,@∗)

2 and Hybrid(8
∗,@∗)+1

2 are indistin-
guishable.

Lemma 5.4. Hybrid(#,&)+12 is identical to Hybrid1
3. Moreover, there exists a negligible function a (_) such

that for any n.u. PPT adversary A,����� Pr
Hybrid8

∗
3

[
ARegstr( ·, ·),Eval( ·, ·) (1_) = 1

]
− Pr

Hybrid8
∗+1

3

[
ARegstr( ·, ·),Eval( ·, ·) (1_) = 1

] ����� ≤ a (_) .
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Proof. We build the following adversary A ′ to break the hint simulation property. �e adversary A ′
takes as input the crs, and for each 8 < 8∗, A ′ generates the crs8 using ABSFE.Setup. For each 8 > 8∗,
A ′ generates crs8 using ABSFE.Setup. For 8∗, if 8∗ ∈ � , then sets crs8∗ as crs. Otherwise, it generates
crs8∗ using ABSFE.Setup. �en A ′ invokes A and simulates Regstr(·, ·) and Eval(·, ·) in the same way as
Hybrid(#,&)+12 .

When crs ← ABSFE.Setup(1_), then A ′(1_, crs) simulates Hybrid8
∗

3 for A. When crs is generated
by ABSFE.Setup(1_), then A ′(1_, crs) simulates Hybrid8∗+13 for A. From the hint simulation security, we
�nish the proof.

Lemma 5.5. Hybrid#+13 is identical toHybrid(1,1)4 . Moreover, there exists a negligible function a (_) such that
SD(Hybrid(8

∗,@∗)
4 ,Hybrid(8

∗,@∗)+1
4 ) ≤ a (_).

Proof. Since the only di�erence between Hybrid(8
∗,@∗)

4 and Hybrid(8
∗,@∗)+1

4 is the way that ℎ8 is generated in
@-th query of O, from the hint simulation security of AB-SFE, we have SD(Hybrid(8

∗,@∗)
4 ,Hybrid(8

∗,@∗)+1
4 ) ≤

negl (_ ).

Lemma 5.6. Hybrid(#,&)+14 and Hybrid1
5 are identical. �ere exists a negligible function a (_) such that����� Pr

Hybrid8
∗

5

[
ARegstr( ·, ·),Eval( ·, ·) (1_) = 1

]
− Pr

Hybrid8
∗+1

5

[
ARegstr( ·, ·),Eval( ·, ·) (1_) = 1

] ����� ≤ a (_) .
Proof. We construct the following adversary A ′ for the PRF. A ′O (1_) is given access to a PRF oracle,
and it invokes the adversary ARegstr( ·, ·),Eval( ·, ·) (1_) by implementing the oracles Regstr(·, ·) and Eval(·, ·)
as follows.

• Regstr(·, ·): For the 8-th query, only sample :8 ← PRF.Gen(1_) when 8 ≥ 8∗ or 8 ∉ � .

• Eval(·, ·): For each query ((, 5 ), do the same thing as Eval in Hybrid(#,&)+14 , except the generation of
A8 . We generate A8 as follows. For each 8 ∈ ( ,

– if 8 < 8∗ and 8 ∈ � , let A8 = PRF8 .F(( | |5 ).

– If 8 = 8∗ and 8∗ ∈ � , let A8 ← O(( | |5 ).

– If 8 > 8∗ or 8 ∉ � , A8 = PRF.Eval(:8 , (( | |5 )).

When O ′ is PRF.Eval(:, ·) for a uniform random PRF key : , the adversary A ′ simulates the environ-
ment of Hybrid8∗5 for A. Hence,

Pr
[
: ← {0, 1}_ : A ′PRF.Eval(:, ·) (1_) = 1

]
= Pr

Hybrid8
∗

5

[
ARegstr( ·, ·),Eval( ·, ·) (1_) = 1

]
.

When O ′ is a random function F(·), the adversary A ′ simulates the environment of Hybrid8∗5 for A.
Hence,

Pr
[
A ′F( ·) (1_) = 1

]
= Pr

Hybrid8
∗+1

5

[
ARegstr( ·, ·),Eval( ·, ·) (1_) = 1

]
.

From the security of PRF, we derive that Hybrid8∗5 and Hybrid8
∗+1

5 are indistinguishable.
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Lemma 5.7. Hybrid#+15 is identical to Hybrid1
6. Moreover, there exists a negligible function a (_) such that����� Pr

Hybrid@
∗

6

[
ARegstr( ·, ·),Eval( ·, ·) (1_) = 1

]
− Pr

Hybrid@
∗+1

6

[
ARegstr( ·, ·),Eval( ·, ·) (1_) = 1

] ����� ≤ a (_) .
Proof. We build the following distinguisher D for the semi-malicous MPC security. �e adversary D
invokes the adversaryARegstr( ·, ·),Eval( ·, ·) (1_), where the oracle Regstr(·, ·) is the same as in Hybrid#+15 , and
the oracle Eval(·, ·) is implemented as follows.

Let the @-th query be ((, 5 ), the oracle Eval(·, ·) performs the same executions as in Hybrid#+15 , except
the generation of (�msg8 , ?̃8) is replaced as follows.

• If Map((, 5 ) is de�ned before, then let {�msg8 , ?̃8}8∈(∩� ← Map((, 5 ). Othwerwise,

– If @ < @∗, let {�msg8 , ?̃8}8∈(∩� ← One.Sim(1_, ( ∩ �, {G8 , A8}8∈(\� , 5 , 5 ({G8}8∈( )).

– If @ = @∗, query the challenger with the number of parties |( |, the inputs {G8}8∈( , the honest
party subset � ∩ ( , the randomness for dishonest parties {A8}8∈(\� , and obtains the challenge
{msg8 , ?8}8∈(∩� . Let {�msg8 , ?̃8}8∈(∩� = {msg8 , ?8}8∈(∩� , and de�neMap((, 5 ) = {msg8 , ?8}8∈(∩� .

– If @ > @∗, for each 8 ∈ ( ∩ � , set fresh randomness A8 . Let �msg8 = One.Round1
(
1_, G8 , 5 ; A8

)
,

?̃8 = One.Round2(G8 , A8 , {m̃sg9 }9 ∈( , 5 ), and de�ne Map((, 5 ) = {�msg8 , ?̃8}8∈(∩� .

When {msg8 , ?8}8∈(∩� is obtained from real world execution, with dishonest parties’ random coins
{A8}8∈(\� , the distinguisher D simulates the environment of Hybrid@

∗

6 for A. Hence,

Pr
[ ∀8∈(∩�,A8←{0,1}∗
∀8∈(,msg8=One.Round1 (1_,G8 ;A8 ),
?8=One.Round2 (G8 ,A8 ,{msg9 }9∈( )

: D(1_, {msg8 , ?8}8∈( ) = 1
]
= Pr

[
D(1_,Hybrid@

∗

6 ) = 1
]

When {msg8 , ?8}8∈(∩� is obtained from the ideal simulation, then the distinguisher D simulates the
environment of Hybrid@∗+16 for A. Hence,

Pr
[
{msg8 , ?8}8∈(∩� ← Sim(1_, ( ∩ �, {G8 , A8}8∈(\� , 5 , 5 ({G8}8∈( )) :

D(1_, {msg8 , ?8}8∈( ) = 1
]
= Pr

[
D(1_,Hybrid@

∗+1
6 ) = 1

]
.

Hence, from the semi-malicious security of the MPC protocol, we derive that Hybrid@
∗

6 and Hybrid@
∗+1

6
are indistinguishable.

Lemma 5.8. �ere exists a negligible function a (_) such that SD(Hybrid&+16 , Ideal) ≤ a (_).

Proof. Similar to Lemma 5.5, this Lemma follows from the statistical public key indistinguishability.

Combining Lemma 5.2 to Lemma 5.8, we �nish the proof.
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