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Abstract

Anonymous routing is one of the most fundamental online privacy problems and has been
studied extensively for decades. Almost all known approaches for anonymous routing (e.g.,
mix-nets, DC-nets, and others) rely on multiple servers or routers to engage in some interac-
tive protocol; and anonymity is guaranteed in the threshold model, i.e., if one or more of the
servers/routers behave honestly.

Departing from all prior approaches, we propose a novel non-interactive abstraction called a
Non-Interactive Anonymous Router (NIAR), which works even with a single untrusted router.
In a NIAR scheme, suppose that n senders each want to talk to a distinct receiver. A one-time
trusted setup is performed such that each sender obtains a sending key, each receiver obtains
a receiving key, and the router receives a token that “encrypts” the permutation mapping the
senders to receivers. In every time step, each sender can encrypt its message using its sender
key, and the router can use its token to convert the n ciphertexts received from the senders
to n transformed ciphertexts. Each transformed ciphertext is delivered to the corresponding
receiver, and the receiver can decrypt the message using its receiver key. Imprecisely speaking,
security requires that the untrusted router, even when colluding with a subset of corrupt senders
and/or receivers, should not be able to compromise the privacy of honest parties, including who
is talking to who, and the message contents.

We show how to construct a communication-efficient NIAR scheme with provable security
guarantees based on the standard Decisional Linear assumption in suitable bilinear groups. We
show that a compelling application of NIAR is to realize a Non-Interactive Anonymous Shuffler
(NIAS), where an untrusted server or data analyst can only decrypt a permuted version of the
messages coming from n senders where the permutation is hidden. NIAS can be adopted to
construct privacy-preserving surveys, differentially private protocols in the shuffle model, and
pseudonymous bulletin boards.

Besides this main result, we also describe a variant that achieves fault tolerance when a
subset of the senders may crash. Finally, we further explore a paranoid notion of security
called full insider protection, and show that if we additionally assume sub-exponentially secure
Indistinguishability Obfuscation and as sub-exponentially secure one-way functions, one can
construct a NIAR scheme with paranoid security.
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1 Introduction

The Internet has become a platform that billions of users rely on in their daily lives, and protecting
users’ online privacy is a significant challenge we face. Anonymous communication systems provide
a way for users to communicate without leaking their identities or message contents. There has been
several decades of work dedicated to the design, implementation, and deployment of anonymous
communication systems [Cha81, Abe99, BG12, Cha88, CGF10, DMS04, GRS99, CBM15, ZZZR05,
vdHLZZ15,TGL+17,SBS02], and numerous abstractions and techniques have been explored, includ-
ing mix-nets [Cha81,Abe99,BG12], the Dining Cryptographers’ nets [Cha88,CGF10,APY20], onion
routing [DMS04,GRS99,DS18,CL05], multi-party-computation-based approaches [AKTZ17], multi-
server PIR-write [CBM15,OS97,GIKM00], as well as variants/improvements of the above [ZZZR05,
vdHLZZ15,TGL+17]. We refer the readers to several excellent surveys on this rich line of work [DD08,
EY09,SSA+18].

To the best of our knowledge, almost all known anonymous routing schemes rely on multiple
routers or servers to engage in an interactive protocol, and moreover, security is guaranteed in the
threshold model, i.e., assuming that one or more of the routers remain honest. For example, the
mix-net family of schemes typically require each router along the way to shuffle the input ciphertexts
and remove a layer of encryption; the DC-net family of schemes require multiple parties to engage
in a cryptographic protocol, and so on.

Departing from all prior approaches which are interactive and rely on some form of threshold
cryptography, we ask the following natural question:

Can we achieve anonymous routing non-interactively on a single untrusted router?

1.1 Defining Non-Interactive Anonymous Router (NIAR)

Our first contribution is a conceptual one: we formulate a new abstraction called a non-interactive
anonymous router (NIAR). The abstraction is in fact quite natural, and in hindsight, it may even
be a little surprising why it has not been considered before.

Non-interactive anonymous router. Imagine that there are n senders and n receivers, and
each sender wishes to speak with a distinct receiver. Henceforth let π denote the permutation that
maps each sender to its intended receiver, i.e., each sender i ∈ [n] wants to speak to receiver π(i).
A NIAR scheme has the following syntax:

• ({eki, rki}i∈[n], tk) ← Setup(1κ, n, π): First, we run a one-time trusted setup procedure that
takes the security parameter 1κ, the number of senders/receivers n, and the routing permutation
π, and produces a sender key eki for each sender i ∈ [n], and a receiver key rki for each receiver
i ∈ [n]. Moreover, the setup procedure also produces a token tk for the router which encodes
the secret permutation π. Note that the trusted setup can be decentralized using standard
multi-party computation techniques.

• cti,t ← Enc(eki, xi,t, t): With this one-time setup, we can allow the n senders to anonymously
send T number of packets to their intended receivers. In every time step t ∈ [T ], each sender
i ∈ [n] encrypts its message xi,t using its secret key eki by calling Enc(eki, xi,t, t), and sends the
resulting ciphertext cti,t to the router.

• {ct′i,t}i∈[n] ← Rte(tk, {cti,t}i∈[n]): The untrusted router uses its token to convert the n cipher-
texts collected from the senders into n transformed ciphertexts. This is accomplished by calling
Rte(tk, {cti,t}i∈[n]). The router then forwards each transformed ciphertext ct′i,t to the corre-
sponding recipient i.
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• xi ← Dec(rki, ct
′
i,t): Finally, the recipients use their respective secret keys to decrypt the plain-

texts by calling Dec(rki, ct
′
i,t).

At a very high level, we want that the untrusted router learns no information about the routing
permutation π as well as the messages exchanged. Moreover, the scheme should offer robustness
even when a (potentially majority) subset of the senders and/or receivers collude with the un-
trusted router. It turns out that defining robustness under collusion is non-trivial and the security
requirements can vary from application to application — we will discuss the security definitions in
more detail later.

Communication efficiency. The first näıve idea is to let each sender-receiver pair share a freshly
and randomly chosen secret key during the setup. During each time step, each sender encrypts its
messages using its secret key, and sends the ciphertext to the router. The router then forwards all
n ciphertexts to each of the n receivers; and each receiver’s secret key allows it to decrypt exactly
one among the n ciphertexts received. This scheme protects the plaintext messages as well as the
routing permutation π from the untrusted router; unfortunately, it incurs quadratic communication
overhead in each time step1.

Throughout the rest of the paper, we will require that the NIAR scheme preserve communication
efficiency, that is, the communication blowup relative to sending the messages in the clear must be
upper bounded by poly(κ) where κ is the security parameter. In other words, suppose, without loss
of generality, that in each time step, each sender has one bit to send, then the total communication
(among all senders and receivers) per time step must be upper bounded by O(n) · poly(κ).

Non-interactive anonymous shuffler. One important application and special case of NIAR is
to realize a non-interactive anonymous shuffler (NIAS). To understand what is a non-interactive
anonymous shuffler, it helps to think of the following application. Suppose that during a pandemic,
University X wants to implement a privacy-preserving daily check mechanism, where students and
faculty each send a short message to report their health conditions every day, and whether they
could have been exposed to the virus. To protect each individual’s privacy, we want to shuffle the
messages according to some randomly chosen permutation π, such that the history of an individual’s
reports is pseudonymous. In this scenario, we can employ a NIAR scheme, and give the data analyst
the token tk as well as all n receiver keys. This ensures that the data analyst can decrypt only a
shuffled list of the plaintexts, and moreover the permutation is hidden from the data analyst.

In other words, a Non-Interactive Anonymous Shuffler (NIAS) is a special case of NIAR where
the router and all the receivers are a single party. In Section 1.4, we will present numerous appli-
cations of NIAR and NIAS. We point out that the NIAS special case in fact imposes some extra
security requirements on top of our basic security notion for NIAR, in the sense that even a receiver
cannot know which sender it is paired up with — we will discuss how to define security next.

1.2 Defining Security Requirements

If all receivers were fully trusted, then another näıve idea would be to have every sender encrypt
its message along with its respective destination using a Fully Homomorphic Encryption (FHE)
scheme. In this way, the untrusted router can accomplish the routing through homomorphic evalua-
tion. However, all receivers must be given the FHE’s secret key to decrypt the messages. Therefore,
if even a single receiver colludes with the untrusted router, then all other honest players’ anonymity

1Furthermore, while this näıve scheme works for a private-messaging scenario, and does not work for the non-
interactive anonymous shuffler application to be described later, due to the fact that a receiver colluding with the
router can learn which sender it is paired with. We will elaborate on this point when we define security.
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would be broken. This is clearly unacceptable since in most applications of anonymous routing,
anyone can become a sender or a receiver, including the owner of the router. Approaches that
construct special-purpose homomorphic encryption schemes optimized for shuffling suffer from the
same drawback [AW07].

We therefore require a security notion that provides robustness even when a subset of the
senders and receivers can be corrupt, and potentially colluding with the untrusted router. It turns
out that how to define robustness against collusion requires some careful thinking, since the security
requirements can vary from application to application.

Basic notion. Our basic security notion is motivated by a private-messaging scenario, e.g., mem-
bers of a secret society wish to send private emails without revealing their identities and their
correspondence to the public. In this case, each player (i.e., either sender or receiver) knows who it
is talking to. Therefore, if the adversary who controls the router additionally corrupts a subset of
the senders and receivers, the adversary can learn who the corrupt senders and receivers are paired
up with, as well as the messages received by corrupt receivers (from honest senders) in every time
step. Our basic security notion requires that besides this natural leakage, the adversary should not
learn any additional information. Observe that our communication-inefficient näıve solution that
forwards all ciphertexts to every receiver would satisfy this basic notion.

Receiver-insider protection. The basic security notion, however, turns out to be insufficient
for the NIAS application. In the NIAS application, a single entity acts as the router and all n
receivers — for example, in our earlier “anonymous daily check-in” application, the data analyst
has all receiver keys {rki}i∈[n] as well as the token tk. To protect the users’ pseudonymity, it is
important that the data analyst does not learn which decrypted report corresponds to which user.
In Section 1.4, we present more applications for NIAS, and all of them have the same security
requirement.

We therefore propose a strengthened security notion, called receiver-insider protection, that is
suitable and sufficient for NIAS-type applications. Here, we require that even a receiver does not
learn which sender it is speaking with; however, a sender may learn which receiver it is speaking
with. Now, if the adversary who controls the router additionally corrupts a subset of the senders
and receivers, the adversary can learn the corrupt-to-∗ part2 of the permutation π as well as
the messages received by corrupt receivers in every time step. Besides this natural leakage, the
adversary should not learn anything else.

Full insider protection. While receiver-insider protection seems sufficient for most applications
including NIAS, we additionally explore a paranoid notion of security. Here, we want that every
player has no idea who it is speaking with, including both senders and receivers. Nonetheless, the
corrupt-to-corrupt part of the permutation is inherently leaked to the adversary and this leakage
cannot be avoided: since a corrupt sender can always try encrypting some message and check
whether any corrupt receiver received the corresponding message. Therefore, our most paranoid
notion, which we call full insider protection, requires that an adversary controlling the router and a
subset of corrupt senders and receivers learns only the corrupt-to-corrupt part of the permutation
π, as well as the messages received by corrupt receivers in every time step, but nothing else.

In Section 1.4, we describe more applications of NIAR and NIAS, and at that point, the reader
can see how different applications require different notions. Of course, one can always go for the
most paranoid notion; but the weaker notions suffice for a wide range of natural applications.

2Here, ∗ denotes a wildcard; thus the corrupt-to-∗ part of the permutation includes who every corrupt sender is
speaking with.
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Therefore, differentiating between these notions can lead to more efficient constructions.

Equivalence between simulation- and indistinguishability-based notions. Later in the
paper, we shall formalize the above security notions using two definitional approaches: simulation-
based notions and indistinguishability-based notions. We then prove that in fact, each simulation-
based notion (without insider protection, with receiver-insider protection, or with full insider pro-
tection) is equivalent to the corresponding indistinguishability-based notion. While the simulation-
based notion more naturally captures the security requirements we want to express, the indistinguishability-
based notions are often easier to work with in proofs.

Remark 1 (NIAR/NIAS requires no network-layer anonymity protection). We point out that
whenever a NIAR or NIAS scheme is deployed, one advantage is that we would no longer need
any network-layer anonymity protection (e.g., Tor [DMS04] or DC nets [Cha88]). This is in con-
trast to a vast line of works that leverage cryptographic techniques such as zero-knowledge proofs
for anonymity protection, e.g., E-Cash [CFN90, Cha82], e-voting [SK95, Adi08], anonymous cre-
dentials [BCKL08, BL13], ZCash [BCG+14], and others [HAB+17, HMPS14] — in these cases, an
Internet Service Provider controlling the network routers can completely break anonymity despite
the cryptographic techniques employed.

1.3 Our Results

1.3.1 Main Construction: NIAR with Receiver-Insider Protection and NIAS

To situate our results in context, it helps to first think of the following näıve construction based on
a virtual-blackbox (VBB) obfuscator. During setup, we publish the public key pk of a public-key
encryption (PKE) scheme, and moreover, we give each sender-receiver pair a symmetric encryption
key. During each routing step, each sender uses its symmetric key to encrypt its respective message,
resulting what we henceforth call an inner ciphertext. The sender then encrypts the inner ciphertext
with the public key encryption scheme, resulting in an outer ciphertext. During the setup, we give
the router a VBB obfuscation of the following program: use the PKE’s secret key to decrypt each
sender’s outer ciphertext, obtain a list of n inner ciphertexts, and then apply the permutation π to
the n inner ciphertexts and output the result. Now, during each routing step, the router can simply
apply its VBB obfuscated program to the list of n outer ciphertexts collected from the senders,
and the result would be n permuted inner ciphertexts. The i-th inner ciphertext is then forwarded
to the i-th receiver where i ∈ [n]. Note that in this VBB-based solution, the program obfuscation
hides the secret key of the PKE scheme as well as the secret permutation π. One can verify that
indeed, this VBB-based construction satisfies security with receiver-insider protection; but it does
not provide full insider protection. Specifically, a corrupt sender i∗ ∈ [n] colluding with the router
can simply plant a random inner ciphertext c, and see which of the receivers receives c at the end
— this must be the receiver i∗ is speaking with3.

The drawback with this näıve solution is obvious: it is well-known that VBB obfuscation is
impossible to attain for general functions if one-way functions exist [BGI+01]. We therefore ask,

Can we construct a NIAR scheme from standard cryptographic assumptions?

We construct a NIAR scheme that achieves security with receiver-insider protection, relying on
the Decisional Linear assumption in suitable bilinear groups. Our scheme satisfies communication
efficiency: in each time step, each player sends or receives only poly(κ) bits of data (assuming,

3In general, achieving full insider security appears much more challenging than our basic notion or receiver-only
insider protection. Indeed, we will discuss this in further detail later on.
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without loss of generality, that each sender wants to send one bit during each time step). Further-
more, the public and secret key sizes are poly(n, κ); and yet the scheme can support an unbounded
number of time steps.

At a high level, in our construction, each sender creates an inner encryption of its message
using a symmetric key shared with its receiver, and then encrypts the inner ciphertext again using
a special outer encryption scheme. With an appropriately constructed token, the router can output
a permuted list of inner ciphertexts. We state the aforementioned result in the following theorem:

Theorem 1.1 (NIAR with receiver-insider protection). Assume that the Decisional Linear as-
sumption holds in certain bilinear groups. Then, there exists a NIAR scheme with receiver-insider
protection, where the public key and secret key sizes are at most poly(n, κ) bits, and the per-player
communication cost in each routing step is only poly(κ) assuming that each sender has one bit to
send per time step. Further, the scheme supports an unbounded number of time steps.

The above theorem also implies a NIAS scheme with the same performance bounds. Although
our work should primarily be viewed as an initial exploration of NIAR, the constructions that led
to Theorem 1.1 is potentially implementable.

1.3.2 NIAR with Full Insider Protection

The receiver-insider protection achieved by Theorem 1.1 is sufficient for most application scenarios
including NIAS. Nonetheless, it is interesting to ask whether one can achieve full insider protection.
As mentioned, full insider protection is the strongest security notion one can hope for in the context
of NIAR, since here we leak only the inevitable. Achieving full insider security, however, appears
much more challenging. The reason is that we do not even want a corrupt sender to learn which
honest receiver it is talking to. However, in our schemes so far (even the aforementioned VBB-
based construction), a corrupt sender i∗ ∈ [n] colluding with the router can choose a random inner
ciphertext c and just check which receiver receives c. In this way, the adversary can learn the
corrupt-to-∗ part of the permutation π.

Again, it is instructive to first consider how to achieve full insider protection using VBB obfusca-
tion. To achieve such paranoid security, one way is to modify the previous VBB-based scheme such
that inside the VBB, we decrypt the n input ciphertexts, permute them, and then reencrypt them
under the receivers’ keys, respectively. To defeat the aforementioned attack, it is important that
the reencryption step produces random transformed ciphertexts. In fact, one useful insight we can
draw here is that for any scheme that provides full insider protection, if the adversary controlling a
corrupt sender ĩ ∈ [n] switches ĩ’s input ciphertext, the transformed ciphertexts corresponding to
all receivers output by the Rte procedure must all change.

We show how to achieve full insider protection by additionally relying on sub-exponentially
secure indistinguishability obfuscation and sub-exponentially secure one-way functions.

Theorem 1.2 (NIAR with full insider protection). Assume the existence of sub-exponentially secure
indistinguishability obfuscator, sub-exponentially secure one-way functions, and that the Decisional
Linear assumption (with standard polynomial security) holds in certain bilinear groups. Then, there
exists a NIAR scheme with full insider protection, and whose key sizes and communication cost
match those of Theorem 1.1.

Notably, a flurry of very recent works [JLS20,GP20,WW20,BDGM20] show that sub-exponentially
secure indistinguishability obfuscator can be constructed under a variety of assumptions some of
which are considered well-founded.
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1.3.3 Extension: Fault-Tolerant NIAR

Similar to the line of work on Multi-Client Functional Encryption (MCFE) [SCR+11, GGG+14,
CSG+18,ABG19,CSG+18], a drawback with the present formulation is that a single crashed sender
can hamper liveness. Basically, the router must collect ciphertexts from all senders in each time
step to successfully evaluate the Rte procedure. To the best of our knowledge, fault tolerance has
been little investigated in this line of work.

We therefore formulate a variation of our basic NIAR abstraction, called fault-tolerant NIAR.
In a fault-tolerant NIAR, if a subset of the senders have crashed, the remaining set of senders
can encrypt their messages in a way that is aware of the set of senders who are known to be still
online (henceforth denoted O). Similarly, the router will perform the Rte procedure in a way that
is aware of O, too. In this way, the router can continue to perform the routing, without being
stalled by the crashed senders. Similar to our basic notion, we define receiver-insider protection
and full-insider protection for our fault-tolerant NIAR abstraction, and show that the most natural
simulation-based and indistinguishability-based notions are equivalent.

We show that our previous NIAR constructions of Theorem 1.1 and Theorem 1.2 can be ex-
tended to the fault-tolerant setting, and the result is stated in the following theorem.

Theorem 1.3 (Informal: fault-tolerant NIAR). Suppose that the Decisional Linear assumption
holds in suitable bilinear groups. Then, there exists a fault-tolerant NIAR scheme that leaks only
the (corrupt+crashed)-to-∗ part of the permutation as well as messages received by corrupt receivers,
but nothing else (see Section 8 for formal security definitions).

Suppose that the Decisional Linear assumption (with standard polynomial security) holds in
suitable bilinear groups, and assume the existence of sub-exponentially secure indistinguishability
obfuscation and one-way functions. Then, there there exists a fault-tolerant NIAR scheme that
leaks only the inherent leakage, that is, the (corrupt+crashed)-to-corrupt part of the permutation as
well as messages received by corrupt receivers, but nothing else (see Section 8 for formal security
definitions).

Furthermore, both schemes achieve the same key sizes and communication efficiency as in The-
orem 1.1.

1.4 Applications of NIAR and NIAS

NIAR adds to the existing suite of primitives [Cha81,Abe99,BG12,Cha88,CGF10,DMS04,GRS99,
CBM15, ZZZR05, vdHLZZ15, TGL+17] that enable anonymous routing. In comparison with prior
works, NIAR adopts a different trust model since it does not rely on threshold cryptography.
Arguably it also has a somewhat simpler abstraction than most existing primitives, partly due to
the non-interactive nature.

We discuss two flavors of applications for NIAR, including 1) using NIAR in private messaging,
which is the more classical type of application; and 2) using NIAR as a non-interactive anonymous
shuffler (NIAS). We will use these applications to motivate the need for the different security notions,
without insider protection, with receiver-insider protection, or with full insider protection. We shall
begin with NIAS-type applications since some of these applications are of emerging interest.

1.4.1 Using NIAR as a Non-Interactive Anonymous Shuffler

NIAR can serve as a non-interactive anonymous shuffler (NIAS), which shuffles n senders’ messages
in a non-interactive manner, such that the messages become unlinkable to their senders. This allows
the senders to publish messages under a pseudonym, and the pseudonymity does not have to rely
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on the network layer being anonymous. In a non-interactive shuffler type of application, typically
a single entity acts as the router and all n receiver — therefore, typically these applications require
receiver-insider protection. To understand what is a non-interactive anonymous shuffler, it is most
instructive to look at some example applications.

Anonymous bulletin board or forum. Imagine that a group of users want to post messages
pseudonymously to a website every day, e.g., to discuss some sensitive issues. The users act as the
NIAR senders and encrypt their messages every day. The server, which acts as both the router and
all the receivers in NIAR, decrypts a permuted list of the messages and posts them on the website.
In this way, the untrusted server can mix the n senders’ messages, and the pseudonymity guarantee
need not rely on additional network-layer anonymity protection. In other words, even a powerful
attacker controlling all routers in the world as well as the server cannot break the pseudonymity
guarantees.

Since the server takes the role of the router and all n receivers, we would need a NIAR scheme
that provides receiver-insider protection. This way, even when all the receivers are in the control
of the adversary, the adversary cannot deanonymize honest senders.

Distributed differential privacy in the shuffle model. There has been a growing appetite for
large-scale, privacy-preserving federated learning, especially due to interest and investment from
big players such as Google and Facebook. Unlike the classical “central model” where we have
a trusted database curator [DMNS06], in a federated learning scenario, the data collector is not
trusted, and yet it wants to learn interesting statistics and patterns over data collected by multiple
users’ mobile phones, web browsers, and so on. This model is often referred to the “local model”.
It is understood that without any additional assumptions and without cryptographic hardness,
mechanisms in the local model incur a utility loss [CSS12, SCRS17, BNO08] that is significantly
worse than the central model (given a fixed privacy budget).

Recently, an elegant line of work [CSU+19, BBGN19b, GPV19, BBGN19a, EFM+19, BEM+17]
emerged, and showed that if there exists a shuffler that randomly shuffles the users’ input data,
then we can design (information-theoretic) distributed differential privacy mechanisms that are
often competitive to the central model. This is commonly referred to as the “shuffle model”.

NIAR can be potentially employed to implement a shuffler for the shuffle model. In particular, it
is suited for a setting like Google’s RAPPOR project [EPK14], where data was repeatedly collected
from the users’ Chrome browsers on a daily basis. In this scenario, the data collector acts as
the NIAR router and all the receivers too; therefore, we also need the NIAR scheme to satisfy
receiver-insider protection. Again, we do not need network-level anonymity protection.

Privacy-preserving “daily check” during a pandemic. This application was described ear-
lier in this section. We additionally point out an interesting variation of the same application: we
can create the inner layer of encryption using not symmetric-key encryption, but rather, a predicate
encryption scheme [SW05,SBC+07,BW07,BSW11,GVW15,AGW20]. In this way, a data analyst
can be granted special tokens that would permit her to decrypt the data, only if some predicate is
satisfied over the user’s encrypted daily report (e.g., the user has come in contact with an infected
person and needs to be quarantined).

Pseudonymous survey systems. Another application is to build a pseudonymous survey sys-
tem. For example, we can allow students to pseudonymously and regularly post course feedback to
an instructor throughout the semester, or ask questions that they would otherwise feel embarrassed
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to ask. We can also create periodic surveys and allow members of an underrepresented minority
group to pseudonymously report if they have been the victims of discrimination or harassment. Sim-
ilar applications have been considered and implemented in the past [HMPS14,Adi08]. However, in
such existing mechanisms [HMPS14,Adi08], the cryptographic protection alone is insufficient, and
one must additionally rely on the network layer to be anonymous too. By contrast, with NIAR, we
no longer need the network layer to provide anonymity protection.

Other applications. Besides these aforementioned applications, it is also known that a shuffler
can lend to the design of light-weight multi-party computation (MPC) protocols [IKOS06].

1.4.2 Private Messaging

NIAR can also be used to enable private messaging, which is the more traditional application of
anonymous routing. We give a few scenarios to motivate the different security requirements.

In the first scenario, we may imagine that members of a secret society wish to send private
messages or emails to one another without identified. To do so, pairs of members that wish to
communicate regularly can join a NIAR group. In this scenario, each pair of communicating
parties know each other’s identities, and therefore we only need the basic security notion, i.e.,
without insider protection.

Another application is to build an anonymous mentor-mentee system, or an anonymous buddy
or mutual-support system. For example, some scientists have relied on Slack to provide such
functionalities [sys], where members can anonymously post questions, and others can anonymously
provide advice. Currently, the anonymity guarantee is provided solely by the Slack server. However,
one can easily imagine scenarios where trusting a centralized party for anonymity is undesirable. In
these cases, we can rely on NIAR to build an anonymous buddy system. Each pair of buddies can
regularly engage in conversations to provide mutual support, and the untrusted router (e.g., Slack)
cannot learn the communication pattern or the messages being exchanged. Like the earlier mentor-
mentee scenario, the buddies themselves may not wish to reveal their identities to each other.
Therefore, in this scenario, we would need the NIAR scheme to provide full insider protection.

1.5 Open Questions

Partly, our work makes a conceptual contribution since we are the first to define the NIAR and NIAS
abstractions. Our work should be viewed as an initial exploration of these natural abstractions,
inspired by a fundamental and long-standing online privacy problem. Many open questions arise
given our new abstractions, and our work lays the groundwork for further exploring exciting future
directions. We present a list of open questions in Section 9.

1.6 Technical Highlight

Why existing approaches fail. A first strawman attempt is to rely on a Multi-Client Func-
tional Encryption (MCFE) scheme for inner products, also known as Multi-Client Inner-Product
Encryption (MCIPE) [GGG+14, ABG19, ABM+20, CSG+18]. Multi-Client Functional Encryption
(MCFE) was originally proposed by Shi et al. [SCR+11] where they considered the simple sum-
mation operation, and showed a construction based on Decisional Diffie-Hellman. Subsequently,
Goldwasser et al. [GGG+14] generalized the notion to arbitrary polynomially sized functions, and
showed a construction based on Indistinguishability Obfuscation [GGH+13] in the random oracle
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model. Several other works considered MCFE for inner products, also called Multi-Client Inner-
Product Encryption (MCIPE) [GGG+14,ABG19,ABM+20,CSG+18]

In a Multi-Client Inner-Product Encryption scheme, each of the n clients obtains a secret
encryption key during a setup phase. During every time step t, each client i uses its secret encryption
key to encrypt a message xi,t — henceforth the i-th ciphertext is denoted cti,t for i ∈ [n], and
moreover, let xt := (x1,t, . . . , xn,t). An authority with a master secret key can generate a functional
key sky for a vector y whose length is also n. Given the collection of ciphertexts {cti,t}i∈[n] and the
functional key sky, one can evaluate the function 〈xt,y〉 of the encrypted plaintexts but nothing
else is revealed.

Our idea is to express the permutation π as n selection vectors, and each is used to select what
one receiver would receive from the vector of input messages. The router receives one functional
key for each selection vector. A selection vector y has exactly one coordinate that is set to 1,
whereas all other coordinates are set to 0. In this way, the inner product of xt and y selects exactly
one coordinate of xt. In our NIAR construction, the input messages xt to the MCFE-for-selection
scheme will be inner ciphertexts encrypted under keys shared between each pair of sender and
receiver, such that the router cannot see to the plaintext message.

At first sight, an MCFE scheme for inner products may seem like a good match for our problem,
but upon more careful examination, all known MCFE schemes, including those based on program
obfuscation, fail in our context. To the best of our knowledge, all existing MCFE schemes (for
evaluating any function, not just inner products) are NOT function-hiding. In our context, this
means that the functional key sky is allowed to reveal the selection vector y. This unfortunately
means that the token could leak the routing permutation π and thus violate anonymity. Not only
so, in fact, it appears that no prior work has attempted to define or construct function-hiding
MCFE [SCR+11,ABG19,ABM+20,CSG+18,LT19], likely because we currently lack techniques to
get function privacy for MCFE schemes, even allowing RO and program obfuscation [GGG+14].
The known techniques for upgrading Functional Encryption and Multi-Input Functional Encryption
to have function privacy [SSW09, ACF+18, BJK15, LV16, Lin17] do not apply to MCFE, because
they are fundamentally incompatible with the scenario where some clients can be corrupt.

Finally, we point out that a related line of work called Multi-Input Inner-Product Encryp-
tion [ACF+18, AGRW17, BKS18, GGG+14] also fails to solve our problem, because its security
definition is too permissive: specifically, mix-and-matching ciphertexts from multiple time steps is
allowed during evaluation, and this could be exploited by an adversary to break anonymity in our
context.

Key insights and roadmap. We are the first to define function-hiding MCFE4, and demonstrate
a construction for a meaningful functionality, i.e., selection. Selection is a special case of inner
product computation, and is structurally simpler than inner product. Leveraging this structural
simplicity, we develop new construction and proof techniques that allow us to prove function-hiding
security even when some of the clients can be corrupted. We use the resulting “function-hiding
MCFE for selection” as a core building block to realize NIAR.

At a very high level, the structural simplicity of selection helps us in the following way. First,
in a more general MCIPE scheme, even without function privacy, one must prevent mix-and-match
attacks — in other words, the adversary should not be able to take clients’ ciphertext from different
time steps and combine them in the same inner-product evaluation. When it comes to the special
case of selection, however, we can defer the handling of such mix-and-match attacks. Specifically, if

4The concurrent and independent work of Agrawal et al. [AGT20] also define function-hiding MCFE, and they
show a construction for inner-product queries. However, their construction relies on random oracles which we do not
need in this paper.
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we were not concerned about function privacy, then mix-and-match attacks turned out to be a non-
issue in an MCFE-for-selection scheme. With this observation, we first construct a conceptually
simple MCFE-for-selection scheme without function privacy. Essentially, the construction runs n
independent instances of semantically secure public-key encryption (PKE), one for each client. The
functional key for selecting one client’s plaintext is simply the corresponding PKE’s secret key.

Next, we perform a function-privacy upgrade — during this function-privacy upgrade, we
do need to take care and prevent the aforementioned mix-and-match attacks. The function-
privacy upgrade is technically much more involved, and we will give an informal overview in
Section 3. What lends to the function-privacy upgrade is the fact that the underlying MCFE
scheme (without function privacy) is essentially “decomposable” into n independent components.
This is an important reason why we can accomplish the function privacy upgrade even when
some of the clients can be corrupted. In comparison, prior MCFE schemes for general inner-
products [ABG19, CSG+18, ABM+20] need more structurally complicated techniques to prevent
mix-and-match, even without function privacy. For this reason, our techniques in the current form
are not capable of getting a function-private MCFE scheme for general inner-products — this
remains a challenging open question.

Once we construct a function-hiding MCFE-for-selection scheme, we then use it to construct
two NIAR schemes: one with receiver-insider protection, and one with full insider protection. The
scheme with receiver-insider protection can be constructed without introducing additional assump-
tions — and this notion of security suffices for most applications including NIAS. As explained
in Section 1.3.2, full insider protection seems much more challenging and a natural class of ap-
proaches fail. To get a paranoid construction with full insider protection, we additionally rely on
sub-exponentially secure indistinguishability obfuscation and sub-exponentially one-way functions.

2 New Definitions: Non-Interactive Anonymous Router

We now define the syntax and security requirements of NIAR. Since our approach relies on a single
untrusted router and is non-interactive, both the syntax and security definitions are incomparable
to the formal definitions of anonymous routing in prior works, all of which involve multiple routers
and interactive protocols [CL05,DS18,AKTZ17].

2.1 Syntax

Suppose that there are n senders and n receivers, and each sender wants to talk to a distinct
receiver. They would like to route their messages anonymously to hide who is talking to who. The
routing is performed by a single router non-interactively.

Let Perm([n]) denote the set of all permutations on the set [n]. Let π ∈ Perm([n]) be a permu-
tation that represents the mapping between the sender and the receivers. For example, π(1) = 3
means that sender 1 wants to talk to receiver 3.

A Non-Interactive Anonymous Router (NIAR) is a cryptographic scheme consisting of the
following, possibly randomized algorithms:

• ({eki}i∈[n], {rki}i∈[n], tk) ← Setup(1κ, n, π): the trusted Setup algorithm takes the security
parameter 1κ, the number of senders/receivers n, and a permuation π ∈ Perm([n]) that represents
the mapping between the senders and the receivers. The Setup algorithm outputs a sender key
for each sender denoted {eki}i∈[n], a receiver key for each receiver denoted {rki}i∈[n], and a token
for the router denoted tk.
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• cti,t ← Enc(eki, xi,t, t): sender i uses its sender key eki to encrypt the message xi,t where t ∈ N
denotes the current time step. The Enc algorithm produces a ciphertext cti,t.

• (ct′1,t, ct
′
2,t, . . . , ct

′
n,t) ← Rte(tk, ct1,t, ct2,t, . . . , ctn,t): the routing algorithm Rte takes its token

tk (which encodes some permutation π), and n ciphertexts received from the n senders de-
noted ct1,t, ct2,t, . . . , ctn,t, and produces transformed ciphertexts ct′1,t, ct

′
2,t, . . . , ct

′
n,t where ct′i,t is

destined for the receiver i ∈ [n].

• x ← Dec(rki, ct
′
i,t): the decryption algorithm Dec takes a receiver key rki, a transformed ci-

phertext ct′i,t, and outputs a decrypted message x.

In our formulation above, the permutation π is known a-priori at Setup time. Once Setup has
been run, the senders can communicate with the receivers over multiple time steps t.

Correctness. Without loss of generality, we may assume that each plaintext message is a single
bit — if the plaintext contains multiple bits, we can always split it bit by bit and encrypt it over
multiple time steps. Correctness requires that with probability 1, the following holds for any κ ∈ N,
any (x1, x2, . . ., xn) ∈ {0, 1}n and any t ∈ N: let ({eki}i∈[n], {rki}i∈[n], tk) ← Setup(1κ, n, π), let
cti,t ← Enc(eki, xi, t) for i ∈ [n], let (ct′1,t, ct

′
2,t, . . . , ct

′
n,t) ← Rte(tk, ct1,t, ct2,t, . . . , ctn,t), and let

x′i ← Dec(rki, ct
′
i,t) for i ∈ [n]; it must be that

x′π(i) = xi for every i ∈ [n].

Communication compactness. We require our NIAR scheme to have compact communication,
that is, the total communication cost per time step should be upper bounded by poly(κ) · O(n).
Furthermore, we would like that the token tk, and every sender and receiver’s secret key eki and
rki respectively, are all upper bounded by a fixed polynomial in n.

2.2 Simulation-Based Security

We consider static corruption where the set of corrupt players are chosen prior to the Setup
algorithm.

Real-world experiment RealA(1κ). The real-world experiment is described below where KS ⊆
[n] denotes the set of corrupt senders, and KR ⊆ [n] denotes the set of corrupt receivers. Let
HS = [n] \ KS be the set of honest senders and HR = [n] \ KR be the set of honest receivers. Let
A be a stateful adversary:

• n, π,KS ,KR ← A(1κ)

• ({eki}i∈[n], {rki}i∈[n], tk)← Setup(1κ, n, π)

• For t = 1, 2, . . .:

– if t = 1 then {xi,t}i∈HS
← A(tk, {eki}i∈KS

, {rki}i∈KR
); else {xi,t}i∈HS

← A({cti,t−1}i∈HS
);

– for i ∈ HS , cti,t ← Enc(eki, xi,t, t)

Ideal-world experiment IdealA,Sim(1κ). The ideal-world experiment involves not just A, but
also a p.p.t. (stateful) simulator denoted Sim, who is in charge of simulating A’s view knowing
essentially only what corrupt senders and receivers know. Further, the IdealA,Sim(1κ) experiment
is parametrized by a leakage function denoted Leak to be defined later. Henceforth for C ⊆ [n], we
use π(C) to denote the set {π(i) : i ∈ C}.
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• n, π,KS ,KR ← A(1κ)

• ({eki}i∈[n], {rki}i∈[n], tk)← Sim(1κ, n,KS ,KR, Leak(π,KS ,KR))

• For t = 1, 2, . . .:

– if t = 1 then {xi,t}i∈HS
← A(tk, {eki}i∈KS

, {rki}i∈KR
); else {xi,t}i∈HS

← A({cti,t−1}i∈HS
);

– {cti,t}i∈HS
← Sim

(
{∀i ∈ KR ∩ π(HS) : (i, xj,t) for j = π−1(i)}

)
. In other words, the simula-

tor Sim is allowed to see for each corrupt receiver talking to an honest sender, what message
it receives.

Defining the insider information Leak(π,KS ,KR) known to corrupt players. We require
that when no sender or receiver is corrupt, the adversary should not learn anything about the
routing permutation π. When some senders and receivers are corrupt, the adversary may learn the
insider information about π known to the corrupt players, but nothing else. We use the function
Leak(π,KS ,KR) to describe the insider information known to corrupt senders and receivers about
the routing permutation π. We define three natural notions of insider information:

1. Every player knows who it is talking to. The first natural notion is to assume that each sender
or receiver knows whom the player itself is talking to, but it is not aware who others are talking
to. By corrupting some senders and receivers, the adversary should not learn more about the
routing permutation π beyond what the corrupt senders and receivers know. In other words,
the part of the permutation π containing “corrupt → ∗” and “∗ → corrupt” is leaked. More
formally, we can define leakage as below:

LeakSR(π,KS ,KR) := {∀i ∈ KS : (i, π(i))} ∪ {∀i ∈ KR : (π−1(i), i)}

2. Every sender knows who it is talking to. Another natural notion is when a sender knows which
receiver it is talking to, but a receiver may not know who it is receiving from. By corrupting a
subset of the senders and receivers, the adversary should not learn more than what those corrupt
players know. In other words, the “corrupt → ∗” part of the permutation π is leaked. More
formally, we can formally define leakage as below:

LeakS(π,KS ,KR) := {∀i ∈ KS : (i, π(i))}

3. Inherent leakage. The least possible leakage is when only the “corrupt → corrupt” part of the
permutation π is leaked. Note that this leakage is inherent because a corrupt sender can always
encrypt multiple random messages in the same time slot, and observe whether any corrupt
receiver received this message. In the minimum, inherent leakage scenario, we require that only
this is leaked about the permutation π and nothing else. More formally, we can formally define
leakage as below:

Leakmin(π,KS ,KR) := {∀i ∈ KS ∩ π−1(KR) : (i, π(i))}

Remark 2. Note that even in the minimum, inherent leakage scenario, knowing the leaked infor-
mation Leakmin(π,KS ,KR) := {∀i ∈ KS ∩ π−1(KR) : (i, π(i))} as well as KR, one can efficiently
compute the setKR∩π(HS). Therefore, during the encryption phase, by learning {∀i ∈ KR∩π(HS) :
(i, xj) for j = π−1(i)}, i.e., the set of leaked messages received by corrupt receivers from honest
senders, the simulator Sim does not learn anything extra about the routing permutation π beyond
what it already learned earlier in the experiment, that is, Leakmin(π,KS ,KR).
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Definition 1 (NIAR simulation security). We define simulation security of a NIAR scheme as
below depending on which leakage function is used in the IdealA,Sim experiment:

1. We say that a Non-Interactive Anonymous Routing (NIAR) scheme is SIM-secure iff the following
holds when using Leak := LeakSR in the IdealA,Sim experiment: there exists a p.p.t. simulator
Sim such that for any non-uniform p.p.t. adversary A, A’s view in RealA(1κ) and IdealA,Sim(1κ)
are computationally indistinguishable.

2. We say that a NIAR scheme is SIM-secure with receiver-insider protection, iff the above holds
when using Leak := LeakS in the IdealA,Sim experiment.

3. We say that a NIAR scheme is SIM-secure with full insider protection, iff the above holds when
using Leak := Leakmin in the IdealA,Sim experiment.

2.3 Indistinguishability-Based Security

We give an alternative, indistinguishability-based security notion. Similar to our simulation security
notions, we consider three variants, basic IND-security, IND-security with receiver-insider protec-
tion, and IND-security with full insider protection. We will prove that each indistinguishability-
based notion is in fact equivalent to the corresponding simulation-based notion in Definition 1. The
indistinguishability-based notions are easier to work with in our security proofs so they can serve
as convenient operational notions.

Consider the following experiment NIAR-Exptb,A(1κ) parametrized by a bit b ∈ {0, 1}:

• n,KS ,KR, π(0), π(1) ← A(1κ)

• ({eki}i∈[n], {rki}i∈[n], tk)← Setup(1κ, n, π(b))

• For t = 1, 2, . . .:

– if t = 1 then {x(0)
i,t }i∈HS

, {x(1)
i,t }i∈HS

← A(tk, {eki}i∈KS
, {rki}i∈KR

);

else {x(0)
i,t }i∈HS

, {x(1)
i,t }i∈HS

← A({cti,t−1}i∈HS
);

– for i ∈ HS , cti,t ← Enc(eki, x
(b)
i,t , t)

We say that A is admissible iff with probability 1, it guarantees that

1. Leak(π(0),KS ,KR) = Leak(π(1),KS ,KR) where Leak can be LeakSR, LeakS, or Leakmin; and

2. for any i ∈ KR∩π(0)(HS) = KR∩π(1)(HS), x
(0)
j0,t

= x
(1)
j1,t

where for b ∈ {0, 1}, jb := (π(b))−1(i). In
other words, here we require that in the two alternate worlds b = 0 or 1, every corrupt receiver
receiving from an honest sender must receive the same message.

Definition 2 (NIAR indistinguishable security). We define indistinguishability-based security no-
tions for NIAR, depending on which leakage function is adopted:

1. We say that a NIAR scheme is IND-secure iff when Leak := LeakSR is used in the above experi-
ment, the following holds: for any non-uniform p.p.t. admissible A, its views in the experiments
NIAR-Expt0,A(1κ) and NIAR-Expt1,A(1κ) are computationally indistinguishable.

2. We say that a NIAR scheme is IND-secure with receiver-insider protection, iff the above holds
when Leak := LeakS is used in the above experiment.

3. We say that a NIAR scheme is IND-secure with full insider protection, iff the above holds when
Leak := Leakmin is used in the above experiment.
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2.4 Equivalence between Indistinguishability- and Simulation-Based Notions

We now prove the equivalence of each simulation-based notion and the corresponding indistinguishability-
based notion.

Lemma 2.1. A NIAR scheme is SIM-secure iff it is IND-secure. Similarly, a NIAR scheme is
SIM-secure with receiver-insider protection (or full insider protection, respectively) iff it is IND-
secure with receiver-insider protection (of full insider protection, respectively).

Proof. The proof is deferred to Section A in the appendices.

3 Informal Overview of Our Construction

We now give an informal overview of our constructions.

3.1 Notations and Building Block

We will concretely instantiate a scheme using a cyclic group G of prime order q. Therefore, we
introduce some notations for group elements and group operations.

Group notation and implicit notation for group exponentiation. Throughout the paper,
we use the notation JxK to denote a group element gx ∈ G where g ∈ G is the generator of an
appropriate cyclic group of prime order q where x ∈ Zq. Similarly, JxK denotes a vector of group

elements where x ∈ Z|x|q is the exponent vector. If we know JxK ∈ G and y ∈ Zp, we can compute
JxyK ∈ G. Therefore, whenever an algorithm needs to compute JxyK, it only needs to know one of
the exponents x or y. The same implicit notation is used for vectors too.

Correlated pseudorandom functions. We will need a building block which we call a correlated
pseudorandom function, denoted CPRF. A CPRF scheme has the following possibly randomized
algorithms:

• (K1,K2, . . . ,Kn) ← Gen(1κ, n, q): takes a security parameter 1κ and the number of users n,
some prime q, and outputs the user secret key Ki for each i ∈ [n].

• v ← Eval(Ki, x): given a user secret key Ki and an input x ∈ {0, 1}κ, output an evaluation
result v ∈ Zq.

For correctness, we require that the following always holds if {Ki}i∈[n] is in the support of
Gen(1κ, n, q): ∑

i∈[n]

CPRF.Eval(Ki, x) = 0 mod q (1)

For security, we require that even when a subset of the keys K ⊂ [n] can be corrupted by the adver-
sary, it must be that for every fresh x, all honest evaluations {CPRF.Eval(Ki, x)i/∈K} are computa-
tionally indistinguishable from random terms subject to the constraint

∑
i/∈K CPRF.Eval(Ki, x) =

−
∑

i∈K CPRF.Eval(Ki, x) mod q — note that the adversary can compute the right-hand-side of
the equation.

Intuitively, such a correlated PRF guarantees that even when some players’ keys can be corrupt,
honest players’ evaluations for any fresh input x must appear random, except that they are subject
to the constraint in Equation 1. A couple earlier works [ABG19,BIK+17] showed how to construct
such a CPRF from ordinary PRFs. We will present more formal definitions and construction in
Section 4.3.
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3.2 A Simple, Function-Revealing MCFE Scheme for Selection

We consider MCFE for “selection”, which can be viewed as a special case of inner-product compu-
tation. An MCFE-for-selection scheme has four possibly randomized algorithms (Setup, KGen,
Enc, Dec) — in our definition below, we allow each client to encrypt a vector xi,t ∈ {0, 1}m of
length m, and the selection vector y ∈ {0, 1}mn selects exactly one coordinate from one client’s
plaintext vector5:

• The Setup(1κ,m, n) algorithm6 outputs a secret key for each of the n clients where the i-th
client’s key is denoted eki, and a master public- and secret-key pair (mpk,msk).

• The KGen(mpk,msk,y) algorithm takes the master public-key mpk and the master secret-key
msk, and outputs a functional key sky for the selection vector y ∈ {0, 1}mn. It is promised that
the input y has only one coordinate set to 1, and the rest are set to 0.

• The Enc(mpk, eki,xi,t, t) algorithm lets client i ∈ [n] use its secret key eki to encrypt a plaintext
xi,t ∈ {0, 1}m for the time step t.

• Finally, given the n ciphertexts ct1, . . . , ctn collected from all clients pertaining to the same time
step, as well as the functional key sky, one can call Dec(mpk, sky, {cti}i∈[n]) to evaluate the
selection outcome 〈x,y〉 where x denotes the concatenation of the plaintexts encrypted under
ct1, . . . , ctn.

If we did not care about function privacy, it turns out that we can construct a very simple
MCFE-for-selection scheme as follows. Basically, for each of the n clients, there is a separate
symmetric-key encryption instance. During Setup, client i obtains the secret keys ski,1, . . . , ski,m
corresponding to m independent encryption instances. For client i to encrypt a message of m bits
during some time step t, it simply encrypts each bit j ∈ [m] using ski,j , and output the union of
the ciphertexts. To generate a functional key for selection vector y that selects the j-th coordinate
of the client i’s message, simply output (y, ski,j), and decryption can be completed, i.e., using ski,j
to decrypt the coordinate in the ciphertext that is being selected.

3.3 Preparing the MCFE Scheme for Function Privacy Upgrade

The next challenge is how to upgrade the above MCFE-for-selection scheme to have function privacy.
Function privacy in inner-product functional encryption (FE) was first studied by Shen, Shi, and
Waters [SSW09], who considered single-input FE and a weaker notion of function privacy than
what we will need. Subsequent works have generalized and improved the techniques of Shen, Shi,
and Waters [SSW09] to achieve stronger notions of function privacy [Lin17], and have extended the
techniques to a multi-input FE context [ACF+18].

Our function privacy upgrade techniques are inspired by these earlier works [SSW09, Lin17,
ACF+18], but we need non-trivial new techniques to make it work in our context. Specifically,
previous function privacy techniques assume the encryptor to be trusted, and thus they are not
directly applicable to the MCFE setting in which some of the clients may be corrupted, and their
secret keys become known to the adversary.

To enable the function-private upgrade, let us first understand where the above MCFE-for-
selection scheme in Section 3.2 leaks information about the selection vector y. First, the scheme

5Our scheme can support the case where each coordinate of the plaintext vector xi,t comes from a polynomially
sized space, but we simply assume each coordinate is a bit for simplicity.

6In our subsequent formal sections, for notational reasons needed to make our presentation formal, we shall
separate the Setup algorithm into a parameter generation algorithm Gen and a Setup algorithm, respectively.
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blantantly embeds the selection vector y in cleartext in the functional key sky. Second, the decryp-
tion process itself also reveals y because decryption works on only the coordinate being selected. To
fix the above problems, we would like to first modify the idea in Section 3.2 to satisfy the following
two requirements:

1. We change the decryption process such that decryption involves all coordinates, and not just
the coordinate being selected.

2. Further, we want to randomize the partial decryption outcome corresponding to every client
such that from the partial decryptions alone, one cannot tell which coordinate is being selected.

We can instantiate an MCFE-for-selection scheme satisfying the above requirements in a cyclic
group G of prime order q. The resulting scheme is still function-revealing — at this point, we have
merely “prepared” the scheme for the function privacy upgrade described later in Section 3.4. We
describe this scheme below where we use CPRF(Ki, t) as an abbreviation for CPRF.Eval(Ki, t):

MCFE: function-revealing MCFE for selection, w/ randomized partial decryptions

msk = {Si, ai}i∈[n], eki = (Ki,Si, ai) where each Si ∈ Zm×2
q

Ciphertext for t where each xi,t ∈ {0, 1}m:

∀i ∈ [n] :

(
Jxi,t + SiriK, JriK, JCPRF(Ki, t) + aiµiK, JµiK

)
where ri and µi are chosen at random

Functional key for y := (y1, . . . ,yn) where each yi ∈ {0, 1}m:

∀i ∈ [n] :

(
yi, −S>i yi, ρ, −ρai

)
where ρ is chosen at random

Henceforth, we will name Jci,1K := Jxi,t + SiriK, Jci,2K := JriK, and Jc̃K := JCPRF(Ki, t) + aiµi, µiK.
Additionally, let ki,1 := yi, ki,2 := S>i yi, and k̃i := (ρ,−ρai).

For the above scheme to be a correct function-revealing MCFE-for-selection, we only need the
first two terms of the ciphertext and functional keys, i.e., (Jci,1K, Jci,2K) and (ki,1, ki,2). Essentially,
these terms can be viewed as a concrete instantiation of the ideas mentioned in Section 3.2: the
j-th row of Si is used to encrypt the j-th coordinate of xi,t; further, to compute a functional key
for y which is selecting the j-th coordinate of the i-th client’s message, simply output y and the
j-th row of Si (which is equal to S>i yi). Security of the encryption follows from the Decisional

Linear assumption. The extra terms in the ciphertexts and functional keys, denoted c̃i and k̃i are
randomizing terms added to satisfy the aforementioned randomized partial decryption requirement
as we explain below.

We now explain how decryption works. Given a ciphertext vector for n all clients JcK :=(
(Jc1,1K, Jc1,2K, Jc̃1K), . . . , (Jcn,1K, Jcn,2K, Jc̃nK)

)
, and a key vector k :=

(
(k1,1, k1,2, k̃1), . . . ,

(kn,1,kn,2, k̃n)
)
, decryption computes the “inner-product-in-the-exponent” of the ciphertext vector

and the token vector, i.e.,

J〈c,k〉K =
∏
i∈[n]

(
J〈ci,1,ki,1〉K · J〈ci,2,ki,2〉K · J〈c̃i, k̃i〉K

)
.

Finally, we output the discrete logarithm of the above expression as the decrypted message7.

7Note that because decryption involves computing a discrete logarithm, we require the plaintext space to be small.
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The decryption can alternatively be viewed as computing the partial decryption of each client
and then multiplying the partial decryptions together. Henceforth, let MCFE.Deci denote the
function that computes the partial decryption corresponding to client i, and let pi,t denote the i-th
partial decryption:

pi,t := MCFE.Deci(ski, cti,t) =
(
J〈ci,1,ki,1〉K · J〈ci,2, ci,2〉K · J〈c̃i, k̃i〉K

)
,

and then multiplying all the randomized partially decrypted results. Note that the partial decryp-
tion function MCFE.Deci(ski, cti,t) also evaluates an inner-product in the exponent. One can verify
the following: let xi,t := (xi,1,t, . . . , xi,m,t) be the plaintext message encrypted under cti,t, we have
that

pi,t =

{
JCPRF(Ki, t) · ρK if client i’s vector is not being selected

Jxi,j,t + CPRF(Ki, t) · ρK if the j-th coordinate of the i-th client is being selected

Thus, the above decryption indeed involves all coordinates, and moreover, the partial decryption
results {pi,t}i∈[n] are randomized due to the use of the CPRF.

Remark 3 (Technical condition needed for the function privacy upgrade). Informally speaking, we
want the following (necessary but not sufficient) condition to hold for our function privacy upgrade
to work. Let H ⊆ [n] be the set of honest clients. Assume that the Decisional Linear assumption
holds. We want that even after having seen the public key, honest ciphertexts in all time steps
other than t, honest ciphertexts in time step t, i.e., {cti,t}i∈H, as well as JρK for a fresh random
ρ ∈ Zq, the terms {JCPRF(Ki, t) · ρK}i∈H must be computationally indistinguishable from random,
except that their product is equal to some fixed term known to the adversary. This condition is
needed in the proof of Lemma 5.6 which is arguably the most subtle lemma in the function privacy
upgrade proof.

3.4 Function Privacy Upgrade

Since we do not want the functional key to leak the selection vector y, we want to encrypt the
functional key sky; but how can we use the encrypted sky for correct decryption? Inspired by earlier
works [Lin17,ACF+18], our idea is to adopt n instances (single-input) functional encryption hence-
forth denoted FE, such that the i-th client obtains the master secret key of the i-th instance, hence-
forth denoted mski. During KGen, we encrypt the the i-th coordinate of sky using the i-th FE, and

let the result be ski. To encrypt its message xi,t, the i-th client first encrypts xi,t using the MCFE-
for-selection scheme and obtains the ciphertext cti,t; then it calls cti,t := FE.KGen(mski, f

cti,t)
to transform cti,t into an FE token for the function f cti,t(?) := MCFE.Deci(?, cti,t). Recall that
MCFE.Deci computes the MCFE’s partial decryption for the i-th coordinate. In this way, an
evaluator can invoke FE.Dec on the pair cti,t and ski to obtain the i-th partial decryption.

To make this idea work, in fact, we do not even need FE for general circuits. Recall that
in our MCFE-for-selection scheme above, each partial decryption function MCFE.Deci computes
an inner-product in the exponent. We therefore only need an FE scheme capable of computing
an inner-product in the exponent. Several earlier works [ABCP16, ALS16, Wee16] showed how to
construct inner-product function encryption based on the DDH assumption. By slightly modifying
these constructions, one can construct an FE scheme for evaluating “inner-product-in-the-exponent”
as long as the Decisional Linear assumption holds in certain bilinear groups. For completeness, we
shall present this special FE scheme for computing “inner-product-in-the-exponent” in Section D
in the appendices.
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From weak to full function privacy. Although intuitively, the above idea seems like it should
work, it turns out for technical reasons, we can only prove that it satisfies a weak form of func-
tion privacy henceforth called weak function hiding. We defer its detailed technical definition to
Section 5.1. Fortunately, we can borrow a two-slot trick from various prior works on Functional
Encryption [SSW09,BJK15,ACF+18] and Indistinguishability Obfuscation [LV16,Lin17], and up-
grade a weakly function-hiding MCFE-for-selection scheme to a fully function-hiding one. At a very
high level, to achieve this, instead of having each client i ∈ [n] encrypt its plaintext xi ∈ {0, 1}m,
we have each client i encrypt the expanded vector (xi,0) instead where 0 is also of length m.
Similarly, the selection vector’s length will need to be doubled accordingly too, i.e., to compute a
functional key for y = (y1, . . . ,yn) where each yi ∈ {0, 1}m, we instead compute a functional key
for the expanded vector ((y1,0), . . . , (yn,0)).

By expanding the plaintext and selection vectors, we gain some spare slots which can serve as
“wiggle room” during our security proofs. This way, in our security proofs, we can make incremental
modifications in every step of the hybrid sequence and make progress with the proof.

Our exposition above is geared towards understandability and is sometimes informal. The
actual details and proofs are somewhat more involved and we refer the reader to Section 5 for a
formal exposition.

Summarizing the above, we can construct an MCFE-for-selection scheme with (full) function
privacy, henceforth denoted MCFEffh, presented more formally below. In the description below,
MCFE is the aforementioned function-revealing MCFE for selection, augmented to have randomized
partial decryptions; FE is a single-input functional encryption scheme for computing inner-products
in exponents, formally defined in Section 4.2.

MCFEffh: function-hiding MCFE for selection

• Gen(1κ): Sample a suitable prime q, and generate a suitable bilinear group of order q, with
the pairing function e : G1×G2 → GT . Let H : {0, 1}∗ → G1 be a random oracle. The public
parameter pp contains the prime q, and the description of the bilinear group; the parameters
pp′ contains a description of G1, its order q, and a description of H.

• Setup(pp,m, n): Call (mpk′,msk′, {ek′i}i∈[n]) ← MCFE.Setup(pp′, 2m,n). For i ∈ [n], call
(mpki, mski) ← FE.Setup(pp, 2m+ 2). Output:

mpk := (pp,mpk′, {mpki}i∈[n]), msk := (msk′, {mski, eki}i∈[n]),

∀i ∈ [n] : eki := (mski, ek
′
i)

• Enc(mpk, eki,x, t):

1. Let ct := MCFE.Enc(mpk′, ek′i, (x,0), t) ∈ G2m+2
1 .

2. Let ct := FE.KGen(mski, ct).

3. Output CT := (ct, ct).

• KGen(mpk,msk,y):

1. Parse y := (y1, . . . ,yn) where each yi ∈ {0, 1}m.

2. Let ỹ = ((y1,0), . . . , (yn,0)) ∈ {0, 1}2mn.

3. Call (k1, . . . ,kn) := MCFE.KGen(mpk′, msk′, ỹ) where each ki ∈ Z2m+2
q for i ∈ [n].
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4. For i ∈ [n], call ki := FE.Enc(mpki,ki).

5. Output sky := (k1, . . . ,kn).

• Dec(mpk, sky, {CTi}i∈[n]): Parse each CTi := (cti, cti). Parse sky := (k1, . . . ,kn). For i ∈ [n],

call vi := FE.Dec(cti, cti,ki). Output log(
∏n
i=1 vi).

Our MCFEffh scheme will be at the core of both our NIAR schemes, the one with receiver-insider
protection, and the one with full insider protection.

Proof roadmap for MCFEffh. To prove our MCFEffh scheme secure, a critical stepping stone is
to prove that it satisfies a weak notion of function privacy — afterwards we can rely on known
techniques [LV16,Lin17,BJK15,ACF+18] to prove full function privacy. Roughly speaking, we say
that an MCFE scheme for selection satisfies weak function privacy iff no p.p.t.admissible adversary
A can distinguish two worlds indexed by b ∈ {0, 1}. In world b:

• the adversary A first specifies a set of corrupt clients, and obtains the public parameters as well
as secret keys for corrupt clients;

• the adversary A now submits multiple KGen queries, each time specifying y(0) and y(1); and
the challenger computes and returns tokens for y(b);

• then A makes Enc queries for each time step t by specifying {x(0)
i,t }i∈H and {x(1)

i,t }i∈H where
H ⊆ [n] denotes the set of honest clients; and the challenger computes and returns encryptions

for {x(b)
i,t }i∈H.

Moreover, an admissible adversary A must respect the following constraints:

1. for i ∈ [n]\H, y
(0)
i = y

(1)
i .

2. for any {x(0)
i,t ,x

(1)
i,t }i∈H submitted in an Enc query,〈

(x
(0)
i,t )i∈H, (y

(0)
i )i∈H

〉
=
〈

(x
(1)
i,t )i∈H, (y

(0)
i )i∈H

〉
=
〈

(x
(1)
i,t )i∈H, (y

(1)
i )i∈H

〉
In our proof, we start from world 0, and through a sequence of hybrids, we switch to world

1; and every adjacent pair of hybrids are computationally indistinguishable. First, we use the
function-revealing privacy of the underlying MCFE scheme to switch the encrypted vectors from

{x(0)
i,t }i∈H to {x(1)

i,t }i∈H — this step is possible due to the aforementioned admissibility rule A must

respect. Next, we want to switch to using y(1) in each KGen query. To accomplish this, we rely
on a hybrid sequence over the multiple KGen queries one by one. Essentially, in the `-th hybrid,
the first ` KGen queries are answered with y(1), and the rest of the KGen queries are answered
using y(0). It suffices to argue that the (`− 1)-th hybrid and the `-th hybrid are computationally
indistinguishable, and this turns out to be the most subtle step in our proof. To achieve this, let
us consider the following modification of the (`− 1)-th hybrid. Henceforth the `-th KGen query is
also called the challenge KGen query, and the two vectors submitted during this query are denoted

y
(0)
∗ and y

(1)
∗ respectively:

1. During the `-th KGen quer, for computing components of the key corresponding to honest
players, the challenger switches the FE.Enc inside the challenge KGen query to a simulated
encryption which does not use the underlying MCFE’s functional key as input. Corrupt players’
key components are still computed honestly.
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Correspondingly, in every time step, the challenger answers Enc queries by calling the a simu-
lated FE.KGen for every honest client i’s ciphertext component: the i-th simulated FE.KGen

embeds the i-th partial decryption when paired with the challenge key for y
(0)
∗ of the underlying

MCFE scheme. This step relies on the 1-SEL-SIM security of the single-input FE scheme (defined
in Section 4.2).

2. At this moment, due to the randomizing terms, and the aforementioned admissibility rule, we
argue that during each Enc query, instead of encoding in the simulated FE.KGen the partial

decryptions when paired with the challenge key for y
(0)
∗ of the underlying MCFE scheme, we could

use y
(1)
∗ instead. This step is more involved and requires the technical condition in Remark 3.

From this point onwards, we can use a symmetric argument to switch all the way to the
aforementioned `-th hybrid, in which the first ` KGen queries are answered with y(1), and the
remaining answered with y(0). We defer the detailed proof to the subsequent formal sections.

3.5 Constructing NIAR with Receiver-Insider Protection

Construction. With a function-hiding MCFE-for-selection scheme henceforth denoted MCFEffh,
we can construct a NIAR scheme in a natural fashion informally described below:

• Setup: The idea is to use the MCFEffh scheme to generate functional keys for n selection
vectors, denoted tk1, . . . , tkn, where tki is for selecting the message received by receiver i ∈ [n].
The colletion {tki}i∈[n] is given to the router as the token. The MCFEffh also generates n secret
encryption keys denoted {eki}i∈[n], one for each sender. Finally, the setup procedure generates
n symmetric encryption keys, one for each sender-receiver pair.

• Enc: During each time step t, to encrypt a message xi,t, the i-th sender first encrypts xi,t
with its symmetric key shared with its receiver — let ci,t denote the resulting ciphertext. Now,
call cti,t := MCFEffh.Enc(mpk, eki, ci,t) to further encrypt ci,t and obtain a final ciphertext cti,t.
Here, we abuse notation slightly and use MCFEffh.Enc(mpk, eki, ci,t) to mean encrypting ci,t bit
by bit with the MCFEffh scheme.

• Rte: Using the n functional keys {tki}i∈[n], a router can call MCFEffh.Dec to obtain the n inner
ciphertexts encrypted under the symmetric keys, and send the corresponding inner ciphertext
to each receiver.

• Dec: Finally, each receiver uses its symmetric key to decrypt the final outcome.

Proof roadmap. In Section 6, we shall prove that as long as MCFEffh satisfies function-hiding
security and the symmetric-key encryption scheme employed is secure, then, the above NIAR
construction satisfies receiver-insider protection. To prove this, we use the indistinguishability
security notion for NIAR, which is shown to be equivalent to the simulation-based notion. Rouhgly
speaking, the indistinguishability game for NIAR, denoted NIAR-Exptb is indexed by a bit b ∈ {0, 1}:
imagine the adversary A chooses two permutations π(0) and π(1), and specifies two sets of messages

{x(0)
i,t }i∈HS

and {x(1)
i,t }i∈HS

to query in each time step t. The challenger gives A a token for π(b),

and ciphertexts for {x(b)
i,t }i∈HS

in each time step t. An admissible adversary must choose the
permutations and messages such that the leakage in the two worlds are the same, where the leakage
contains the corrupt-to-∗ part of the permutation and the messages received by corrupt receivers
in every time step. We want to prove that any efficient, admissible A cannot distinguish whether
it is playing NIAR-Expt0 or NIAR-Expt1.
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To prove this, we first modify NIAR-Exptb slightly to obtain a hybrid Hybb for b ∈ {0, 1}: in
Hybb, we replace the inner symmetric-key encryption from honest senders to honest receivers with
simulated ciphertexts. We can easily show that Hybb is computationally indistinguishable from
NIAR-Exptb by reducing to the security of the symmetric encryption scheme.

To complete the proof, the more challenging step is to show that Hyb0 is computationally
indistinguishable from Hyb1 for any efficient, admissible adversary A. Here, we want to leverage
A to create an efficient reduction B that breaks the function-hiding security of the underlying
MCFEffh scheme. The subtlety is to make sure that B indeed respects the MCFEffh’s admissibility
rules. In our formal proofs in Section 6, we fix the randomness ψ consumed by the SE instances
corresponding to each receiver in the set π(0)(HS) = π(1)(HS), and prove that the two experiments
are indistinguishability for every choice of fixed ψ. We then define the reduction B in a natural
manner, and make a careful argument that if A satisfies the NIAR game’s admissibility rule (for
the receiver-insider protection notion), then B will indeed respect the admissibility rules of the
underlying MCFEffh.

We defer the formal description and proofs to Section 6.

3.6 Achieving Full Insider Protection

To upgrade our NIAR scheme to have full insider protection turns out to be more involved. As
explained earlier in Section 1.3.2, for such a scheme to work, all the transformed ciphertexts output
by Rte must change when a single sender’s input ciphertext changes.

Construction (sketch). To accomplish this, we leverage a indistinguishability obfuscator for
probabilistic circuits (piO) whose existence is implied by sub-exponentially secure indistinguisha-
bility obfuscation and sub-exponentially secure one-way functions [CLTV15].

• Setup: during the trusted setup, each receiver i receives the secret key of a PKE scheme (with
special properties mentioned later); and each sender receives the encryption key generated by
an MCFEffh scheme.

The router’s token tk is a piO which encodes the MCFEffh scheme’s functional keys for all n
selection vectors. Inside the piO, the following probabilistic program is evaluated:

1. first, use the MCFEffh functional keys to decrypt the messages that each receiver should
receive;

2. next, encrypt the messages under each receiver’s respective public keys, and output the
encrypted ciphertexts — note that the encryption scheme is randomized.

• Enc: in every time step, senders encrypt their messages using MCFEffh.

• Rte: in each time step, the router applies its token tk, which is an obfuscated program, to the
n ciphertexts collected from senders. The outcome will be n transformed ciphertexts.

• Dec: When a receiver receives a transformed ciphertext, it simply uses its secret key to decrypt
it.

Observe that in this construction, indeed, if a single sender’s input ciphertext changes, all
transformed ciphertexts output by the Rte procedure will change.

Proof roadmap and subtleties. We encounter some more subtleties when we attempt to prove
the above construction secure. First, it turns out that for technical reasons, to prove the above
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scheme secure, we need the public-key encryption (PKE) scheme used by the piO to reencrypt
output messages to satisfy a special property: the PKE must be a special trapdoor mode in which
encryptions of 0 and 1 are identically distributed. Obviously, the trapdoor mode loses information
and cannot support correct decryption. In fact, in the real world, we will never use the trapdoor
mode — it is used only inside our security proofs. We henceforth call a PKE scheme with this special
property a perfectly hiding trapdoor encryption (tPKE). Such a tPKE scheme can be constructed
assuming DDH [CLTV15].

Informally, our proof strategy is the following: First, we modify the real-world experiment (in

which π(0) and x
(0)
i,t are used), and switch the tPKE instances corresponding to honest receivers’

to use a trapdoor setup. This step can be reduced to the tPKE’s security, since the adversary
does not have the tPKE instances’ secret keys corresponding to honest receivers. Next, we modify
the obfuscated program to no longer use the functional keys corresponding to the honest receivers;
instead, the obfuscated program will simply output encryptions of 0 under the trapdoor public
keys for honest receivers. For corrupt receivers, the obfuscated program still behaves like the real
world: use the MCFEffh scheme’s Dec procedure to decrypt the messages they ought to receive, and
output encryptions of these messages under each corrupt receiver’s public keys, respectively. This
step relies on the security of the piO and the fact that the modified program is “distributionally
equivalent” to the original program. At this moment, the obfuscated program no longer uses the
functional keys for honest receivers, and only at this point can we rely on the MCFEffh’s security and

switch from using π(0) in the setup and encrypting x
(0)
i,t to using π(1) in the setup and encrypting

x
(1)
i,t . The remaining hybrids are symmetric to the above, such that eventually we arrive at an

experiment that is the same as the real-world experiment in which π(1) and x
(1)
i,t are used by the

challenger.
Notice that in our construction, we use the piO to obfuscate the MCFEffh scheme’s Dec proce-

dure using all n functional keys. One natural question is why we did not directly use the piO to
obfuscate a program that calls the Rte procedure of our earlier NIAR scheme (with receiver-insider
protection) and then encrypts the n outcomes using n instances of tPKE. It turns out that our
proof strategy would not have worked for the latter, exactly because in our proofs, we needed an
intermediate hybrid to completely stop using functional keys for honest receivers — intuitively, this
is how we can prove the privacy of messages received by honest receivers. This explains why in
our construction and proofs, we need to open up the NIAR scheme and directly manipulate the
functional keys of the underlying MCFEffh.

3.7 Achieving Fault Tolerance

So far in our constructions, unless all senders send their encryption during a certain time step, the
router would fail to perform the Rte operation. Such a scheme relies all senders to be online all
the time, and thus is not fault-tolerant.

We modify our earlier NIAR abstraction to one that is fault-tolerant. The idea is to let Enc
and Rte take an extra parameter O ⊆ [n] which denotes the set of senders that remain online.
Additionally, Rte now takes in only ciphertexts from those in O. In fact, our fault-tolerant NIAR
abstraction can be viewed as a generalization of the non-fault-tolerant version.

To achieve fault tolerance, we observe that the underlying CPRF construction we use has a nice
fault-tolerance property. In fact, we can modify the CPRF’s evaluation function to take in O, such
that the following is satisfied:

∀t ∈ N :
∑
i∈O

CPRF.Eval(Ki, t,O) = 0
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This way, for every receiver whose corresponding sender is in the online set O, the router can
correctly perform the MCFEffh’s decryption procedure using only ciphertexts from those in O.
Note that the recent elegant work of Bonawitz et al. [BIK+17] also made a similar observation
of the fault-tolerance of the CPRF, and leveraged it to enable fault-tolerant, privacy-preserving
federated learning — this is not explicitly stated in their paper but implicit in their constructions.

If a receiver i’s corresponding sender is no longer online, however, then the MCFEffh’s decryption
procedure will output an inner ciphertext of 0 for receiver i. Since receiver i cannot decrypt
the 0 ciphertext using its symmetric key, it will simply output ⊥ — this is inevitable since the
corresponding sender is no longer around. However, the router can also observe that receiver i
received an inner-ciphertext 0. In this way, if the adversary is able to drop the senders one by
one and check which receiver starts to receive an inner ciphertext of 0, it can learn the receivers
paired up with crashed senders. In our subsequent formal sections, we shall prove that in this
fault-tolerant NIAR scheme, indeed the adversary can learn only the (corrupt+crashed)-to-∗ part
of the permutation π, as well as the messages received by corrupt receivers every time step, and
nothing else.

Finally, using techniques similar to those sketched in Section 3.6, we can upgrade the security
of the above fault-tolerant scheme to full insider protection, i.e., only the (corrupt + crashed)-to-
corrupt part of the permutation is leaked as well as the messages received by corrupt receivers, but
nothing else. As mentioned earlier, this leakage is inherent and unavoidable for any fault-tolerant
NIAR scheme, since the adversary can always make the senders crash one by one and check which
corrupt receiver now starts to receive ⊥.

Of course, the above description is a gross simplification omitting various subtleties both in
definitions and constructions. We refer the reader to Sections 8 and B for the detailed definitions,
constructions, and proofs.

4 Preliminaries

Throughout the paper, we will use κ to denote the security parameter. We will use boldface letters
such as x to denote vectors, and use normal-font letters such as x to denote scalars. Given two
vectors x ∈ Z`q and y ∈ Z`q of the same dimension `, we use the notation 〈x,y〉 ∈ Zq to denote their
inner-product where the operations are performed modulo q.

4.1 Group Notations and the Decisional Linear Assumption

Notation for group elements. Given a cyclic group G of prime order q, and a generator g ∈ G,
we use the notation JxK to denote gx ∈ G where x ∈ Zq. For a vector x := (x1, x2, . . . , x`) ∈ Z`q,
the notation JxK means the vector of group elements (gx1 , gx2 , . . . , gx`).

Sometimes we will employ a bilinear group (G,GT ) of prime order q with a pairing operator
e : G×G→ GT , and a random generator g ∈ G. In this case, the notation JxK means gx, and the
notation JxKT means e(g, g)x. The notations for vectors are similarly defined.

Implicit notation for group operations. If a party knows JxK ∈ G and y ∈ Zq, it is able to
compute JxyK := JxKy. Therefore, without risking ambiguity, often times when we write “compute
JxyK” when describing an algorithm, we actually mean compute the group exponentiation JxKy, or
conversely, JyKx if the party knows JyK ∈ G and x ∈ Zq. The same rule also extends to vectors as
well as bilinear groups.
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The Decisional Linear assumption. We say that the Decisional Linear assumption holds for
the group generator G, iff the following two experiments are computationally indistinguishable:

1. Sample pp := (q,G, g)
$←G(1κ) where G is a cyclic group of order q with a random generator

g = J1K. Sample random β, γ, u, v
$←Zq. Output the tuple (pp, J1K, JβK, JγK, JuK, JβvK, Jγ(u+ v)K).

2. Sample pp := (q,G, g)
$←G(1κ) where G is a cyclic group of order q with a random generator

g = J1K. Sample random β, γ, u, v, z
$←Zq. Output the tuple (pp, J1K, JβK, JγK, JuK, JβvK, JzK).

Without risk of ambiguity, we sometimes say that the Decisional Linear assumption holds for the
group G where G is the group sampled by the group generator G.

4.2 1-SEL-SIM-Secure, Single-Input Functional Encryption

Syntax. We now define the syntax of a single-input functional encryption (FE) scheme capable
of evaluating “inner-product in the exponent”; and if the evaluation outcome is promised to be
from a small space, one can then compute the discrete logarithm efficiently and output the inner
product that is encoded in the exponent. Such an FE scheme consists of the following, possibly
randomized algorithms:

• pp ← Gen(1κ): takes in a security parameter κ and samples public parameters pp. We will
assume that pp contains the description of a bilinear group (G,GT ) of prime order q, a random
generator g ∈ G, and the description of the pairing operator e : G×G→ GT .

• (mpk,msk) ← Setup(pp,m): takes in the public parameters pp and the dimension m of the
plaintext vector, outputs a public key mpk and a master secret key msk.

• sky ← KGen(msk, JyK): takes in the master secret key msk, and a vector of group elements
JyK ∈ Gm which represents the group encoding of the vector y ∈ Zmq , outputs a functional
(secret) key sky.

• ct ← Enc(mpk, JxK): takes in the master public key mpk, a plaintext vector JxK ∈ Gm repre-
sented in group encoding, and outputs a ciphertext ct.

• JvKT ← Dec(sky, JyK, ct): takes in the functional key sky, the group encoding JyK of y, and a
ciphertext ct, outputs a decrypted outcome JvKT .

Correctness. Correctness requires that for any κ,m ∈ N,x,y ∈ Zmq , the following holds with
probability 1: let pp ← Gen(1κ), (mpk,msk) ← Setup(pp,m), sky ← KGen(msk, JyK), ct ←
Enc(mpk, JxK), JvKT ← Dec(sky, JyK, ct), then, it must be that v := 〈x,y〉.

Security definitions. We now define one-selective, simulation (1-SEL-SIM) security for FE.

Definition 3 (1-SEL-SIM-secure FE). A single-input functional encryption scheme FE for comput-
ing inner product in the exponent is said to be 1-SEL-SIM-secure iff there exists a p.p.t. simulator

(S̃etup, Ẽnc, K̃Gen) such that for any non-uniform p.p.t. adversary A and every κ ∈ N, for every
m, the following two distributions are computationally indistinguishable:
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Experiment Real(1κ,m):

pp := (q, e,G,GT , g)
$←G(1κ)

(mpk,msk)← Setup(pp,m)

x← A(1κ,mpk) where x ∈ Zmq
ct← Enc(mpk, JxK)

b← AKGen(msk,·)(ct)

Output b

Experiment Ideal(1κ,m):

pp := (q, e,G,GT , g)
$←G(1κ)

(mpk,msk)← S̃etup(pp,m)

x← A(1κ,mpk) where x ∈ Zmq
ct← Ẽnc(msk)

b← AO(·)(ct)

Output b

The oracle O(·) in the Ideal experiment is defined as below: upon receiving a KGen query for

JyK ∈ Gm, return K̃Gen(msk, JyK, J〈x,y〉K) to A.

Theorem 4.1 (1-SEL-SIM-secure FE for evaluating “inner-product in the exponent”). Suppose
that the Decisional Linear assumption holds in appropriate cyclic groups of prime order. Then, there
exists a 1-SEL-SIM-secure, single-input FE scheme for evaluating “inner-product in the exponent”.
Furthermore, the master public key mpk and master secret key msk have size at most O(m)·poly(κ);
each functional key has size poly(κ); and each ciphertext has size O(m) · poly(κ).

Proof. We adopt a variantion of the construction suggested in several prior works [Wee16,ACF+18,
ABCP16, ALS16]. For completeness, in Section D in the appendices, we present the detailed
construction and proofs.

4.3 Correlated Pseudorandom Function

A correlated pseudorandom function family consists of the following randomized algorithms:

• (K1,K2, . . . ,Kn) ← Gen(1κ, n, q): takes a security parameter 1κ and the number of users n,
some prime q, and outputs the user secret key Ki for each i ∈ [n].

• v ← Eval(Ki, x): given a user secret key Ki and an input x ∈ {0, 1}κ, output an evaluation
result v ∈ Zq.

Correctness. For correctness, we require that for any κ ∈ N, any (K1, . . . ,Kn) in the support of
Gen(1κ), any input x ∈ {0, 1}κ, the following holds:∑

i∈[n]

CPRF.Eval(Ki, x) = 0 mod q

Correlated pseudorandomness. We require that for any non-uniform p.p.t. adversary A who
is allowed corrupt f ≤ n − 2 users and obtain their user secret keys, for any subset U of at most
n−f−1 honest users, for any input x, the evaluations {CPRF.Eval(Ki, x)}i∈U are computationally
indistinguishable from random values, as long as the adversary has not made a query on the input
x.

More formally, correlated pseudorandomness is defined as below. Consider a game denoted
CPRF-Exptb(1κ, n, q) between A and a challenger C, parametrized by a bit b ∈ {0, 1}.

• Setup. A submits a set of corrupt nodes K ⊂ [n] of size at most n − 2. Henceforth let
H := [n]\K. Now, C runs the honest (K1, . . . ,Kn) := CPRF.Gen(1κ, n, q) algorithm, and
gives {Ki}i∈K to A.
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• Queries. A can adaptively make queries: for each query, A submits an input x. If b = 0,

the challenger C chooses random {vi}i∈H
$←Z|H|q subject to the condition that

∑
i∈H vi +∑

j∈K CPRF.Eval(Kj , x) = 0, and returns {vi}i∈H to A. Else if b = 1, the challenger gives
{CPRF.Eval(Ki, x)}i∈H to A.

We say that a correlated pseudorandom function family CPRF satisfies correlated pseudoran-
domness, iff for any n and q, any non-uniform p.p.t. adversary A’s views in CPRF-Expt0(1κ, n, q)
and CPRF-Expt1(1κ, n, q) are computationally indistinguishable.

Construction. We can construct a correlated PRF scheme as follows — the idea was described
by Abadalla, Benhamouda, and Gay [ABG19].

• Gen(1κ, n, q): generate random secret keys {kij}i∈[n],j∈[n],i<j for some pseudorandom function
family that maps κ-bit strings to Zq. For i > j, let kij := kji.

Let Ki := (i, {kij}j 6=i) for i ∈ [n], and output K1, . . . ,Kn.

• Eval(Ki, x): Output
∑

j 6=i(−1)j<i · PRFkij (x) — here we use PRF to denote the evaluation
function of the pseudorandom function family.

Theorem 4.2 (Correlated pseudorandom function family). Suppose that the pseudorandom func-
tion family employed is secure. Then, the above construction is correct and satisfies correlated
pseudorandomness as defined above.

Proof. First, we need to verify correctness.
∑

i∈[n] CPRF.Eval(Ki, x) =
∑

i

∑
j 6=i(−1)j<i·PRFkij (x).

In the above summation, we can pair up the terms (−1)j<i · PRFkij (x) and (−1)i<j · PRFkij (x) for
every pair i and j where i < j; and the sum of the two terms is 0. Therefore, the entire sum is 0
too.

Next, we prove correlated pseudo-randomness. We can consider a hybrid experiment in which
every honest user’s PRF is replaced with a random function in the challenger’s answers to the
adversary. Specifically, we will use the random function ROij(·) to replace PRFkij (·). This hy-

brid experiment is computationally indistinguishable from the experiment CPRF-Expt1 due to the
security of the PRF.

Without loss of generality, we can number the honest users in H as i1 < i2, . . . , < ih where
h := |H|. We claim that the hybrid experiment is identically distributed as CPRF-Expt0. To show
this, it suffices to check that except for the last honest user ih, when answering queries for any other
honest user j ∈ {i1, . . . , ih−1}, there is some independent randomness contained in the answer. Fix
some query x, the answer for user i1 contains the fresh random term ROi1,i2(x), the answer for user
i2 contains the fresh random term ROi2,i3(x), and so on.

4.4 Indistinguishability Obfuscation for Probabilistic Circuits

We define the notion of indistinguishability obfuscation for probabilistic circuits, henceforth denoted
piO, first proposed by Canetti et al. [CLTV15]. In our paper, we only need piO for probabilistic
circuits that are functionally equivalent (i.e., result in the same distribution on any input) whereas
the original Canetti et al. work [CLTV15] defined piO for a broader class of samplers.

Let C := {Cκ}κ∈N be an ensemble of possibly randomized circuit families. Let D(1κ) : ∅ →
Cκ × Cκ × {0, 1}∗ be a randomized algorithm that samples a circuit from Cκ. We say that D
is a perfectly indistinguishable sampler over C, iff for any κ ∈ N, with probability 1 over the

choice of (C0, C1, z)
$←D(1κ), it must be that for any input x, the tuples (C0(x), C0, C1, z) and

(C1(x), C0, C1, z) are identically distributed.
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Definition 4 (piO for perfectly indistinguishable circuit samplers). A uniform p.p.t. machine piO
is an indistinguishability obfuscator for perfectly indistinguishable samplers over the possibly ran-
domized circuit ensemble C = {Cκ}κ∈N, iff the following two conditions hold:

• Correctness. For any non-uniform p.p.t.admissible adversary A, there exists a negligible func-
tion negl(·), such that for any κ ∈ N, for every probabilistic circuit C ∈ Cκ,∣∣∣Pr

[
AC(·)(1κ) = 1

]
− Pr

[
C ← piO(1κ, C) : AC(·)(1κ) = 1

]∣∣∣ ≤ negl(κ)

In the above, we say that A is admissible if it never asks the same query to its oracle more than
once. We stress while the circuit C samples fresh random coins for answering each query, the
output of the (randomized) obfuscator piO, namely C, is a deterministic circuit.

• Security. For any perfectly indistinguishable sampler D over C, for every non-uniform p.p.t.
adversary A, there exists a negligible function negl(·) such that∣∣∣Pr

[
(C0, C1, z)

$←D(1κ) : A(1κ, C0, C1, z, piO(1κ, C0)) = 1
]

−Pr
[
(C0, C1, z)

$←D(1κ) : A(1κ, C0, C1, z, piO(1κ, C1)) = 1
]∣∣∣ ≤ negl(κ)

Theorem 4.3 (piO for perfectly indistinguishable samplers). Suppose that sub-exponentially se-
cure indistinguishability obfuscator for deterministic circuits and sub-exponentially secure one-way
functions exist. Then, there exists an indistinguishability obfuscator for perfectly indistinguishable
samplers over general circuit families.

4.5 Perfectly Hiding Trapdoor Encryption

A perfectly hiding trapdoor encryption scheme is a public-key encryption system with an additional
trapdoor mode. In the normal mode, we run the normal key generation, and the encrypted cipher-
texts encode actual information and can be correctly decrypted using an appropriate secret key.
In the trapdoor mode, we run a trapdoor key generation procedure, and the encrypted ciphertexts
lose all information about the plaintext message, and there is no secret key for decryption. More
formally, a perfectly hiding trapdoor encryption scheme is defined as follows.

Definition 5 (Perfectly hiding trapdoor encryption scheme). We say that tPKE := (Gen, Enc,

Dec, G̃en) is a perfectly hiding trapdoor encryption scheme, iff (Gen,Enc,Dec) is a semantically

secure public-key encryption scheme, and the trapdoor key generation procedure G̃en satisfies the
following additional properties:

1. Indistinguishability of the modes: the following ensembles are computationally indistinguishable:{
(pk, sk)

$←Gen(1κ) : pk
}
κ

c≡
{
p̃k

$←G̃en(1κ) : p̃k
}
κ

2. Perfectly hiding encryption under trapdoor mode: the following ensembles are identically dis-
tributed: {

p̃k
$←G̃en(1κ) : Enc(p̃k, 0)

}
κ

=
{
p̃k

$←G̃en(1κ) : Enc(p̃k, 1)
}
κ

Henceforth whenever we write Enc(pk, x) for a string x ∈ {0, 1}∗ that is multiple bits, we mean
encrypt the plaintext x bit by bit.
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Theorem 4.4 (Perfectly hiding trapdoor encryption). Assume that the Decisional Linear assump-
tion holds in appropriate groups, then there exists a perfectly hiding trapdoor encryption scheme.

Proof. The idea is similar to Canetti et al. [CLTV15] but we can replace their DDH assumption with
Decisional Linear easily. Recall that Boneh, Boyen, and Shacham [BBS04] described the Linear
Encryption system using the Decisional Linear assumption. It is not hard to see that the Linear
Encryption system is randomizable. Therefore, we can build an encryption scheme by publishing
an encryption of 0 and an encryption of 1 in the public key using the Linear Enryption scheme, and
encrypting either 0 or 1 could be accomplished by rerandomizing the corresponding ciphertext in the
public key. In the trapdoor mode, we could publish a fake public key that contain two encryptions
of 0. Therefore, in the trapdoor mode, encryptions of 0 and 1 are identically distributed.

5 Multi-Client Functional Encryption for Selection

5.1 Definition

Henceforth, we use m to denote the number of coorindates encrypted by each client, and use n
to denote the number of clients. In a Multi-Client Functional Encryption (MCFE) scheme for
selection, in every time step, each client i ∈ [n] encrypts a vector xi ∈ Zmq using its private
key eki. An authority holding a master secret key msk can generate a functional key sky for a
vector y ∈ {0, 1}mn = (y1,y2, . . . ,yn) where each yi ∈ {0, 1}m. It is promised that at most one
coordinate in y is set to 1 and all other coordinates are set to 0 — henceforth such vectors are
called selection vectors. One can now apply the functional key sky to the collection of all n clients’
ciphertexts belonging to the same time step, and an evaluation procedure gives the result 〈x,y〉
where x := (x1, . . . ,xn). In other words, the functional key allows one to select one coordinate in
one client’s plaintext vector.

A multi-client functional encryption (MCFE) scheme for selection consists of the following al-
gorithms:

• pp ← Gen(1κ): the parameter generation algorithm Gen takes in a security parameter κ and
chooses parameters pp — we will assume that pp contains a prime number q ∈ N and the
description of a suitable cyclic group G of prime order q.

• (mpk,msk, {eki}i∈[n])← Setup(pp,m, n): takes in the parameters q, G, m, and n, and outputs
a public key mpk, a master secret key msk, and n user secret keys needed for encryption,
denoted ek1, . . . , ekn, respectively. Without loss of generality, henceforth we may assume that
mpk encodes pp so we need not write the parameters pp explicitly below.

• sky ← KGen(mpk,msk,y): takes in the public key mpk, the master secret key msk, and a vector
y ∈ {0, 1}mn which is promised to be a selection vector, and outputs a functional secret key sky.

• cti,t ← Enc(mpk, eki,xi, t): takes in the public key mpk, a user secret key eki, a plaintext
xi ∈ Zmq , and a time step label t ∈ N, outputs a ciphertext cti,t.

• v ← Dec(mpk, sky, {cti,t}i∈[n]): takes in the public key mpk, the functional secret key sky, and
a collection of ciphertexts {cti,t}i∈[n], outputs a decrypted outcome v ∈ Zq.

Correctness. For correctness, we require that the following holds with probability 1 for any
κ,m, n ∈ N, any y ∈ {0, 1}mn in which only one coordinate is 1 and all other coordinates are
0, and any x := (x1, . . . ,xn) from an appropriate domain determined by pp, and any t ∈ N: let
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pp ← Gen(1κ), let (mpk,msk, {eki}i∈[n]) ← Setup(pp,m, n), let sky ← KGen(mpk,msk,y), let
cti,t ← Enc(mpk, eki,xi, t) for i ∈ [n], and let v ← Dec(mpk, sky, {cti,t}i∈[n]}), it must be that
v = 〈x,y〉.

IND-security for MCFE. Consider the following experiment Exptb(1κ) between an adversary A
and a challenger C.

Experiment Exptb(1κ):

• Setup. A(1κ) outputs a set of corrupted parties K ⊂ [n], as well as the parameters m and
n to the challenger C. The challenger C runs pp ← Gen(1κ), and (mpk,msk, {eki}i∈[n]) ←
Setup(pp,m, n); it gives mpk and {eki}i∈K to A. Initially, t = 1.

• Query. The adversary can make the following types of queries; moreover, all KGen queries
must be made before any Enc query:

– KGen queries. Whenever the adversary Amakes a KGen query with a selection vector
y ∈ {0, 1}mn, the challenger C calls sky := KGen(mpk,msk,y) and returns sky to A;

– Enc queries. WheneverAmakes an Enc query with the plaintext vectors {x(0)
i,t ,x

(1)
i,t }i∈H

whereH := [n]\K, the challenger C calls cti := Enc(mpk, eki,x
(b)
i , t) for i ∈ H and returns

{cti}i∈H to A; moreover it sets t := t+ 1.

An adversary A is said to be admissible iff the following holds with probability 1: for any

y := (y1, . . . ,yn) submitted in a KGen query where each yi ∈ {0, 1}m, for any {x(0)
i,t ,x

(1)
i,t }i∈H

submitted in an Enc query,〈
(x

(0)
i,t )i∈H, (yi)i∈H

〉
=
〈

(x
(1)
i,t )i∈H, (yi)i∈H

〉
Definition 6 (IND-security of MCFE). We say that an MCFE scheme for selection is IND-secure
iff for any non-uniform p.p.t. admissible adversary A, its views in Expt0(1κ) and Expt1(1κ) are
computationally indistinguishable.

Function-hiding IND-security for MCFE. We now define a function-hiding notion of security,
that is, MCFE scheme should not only hide the messages encrypted by honest clients, but also hide
the selection vector y embedded in the functional key, as long as the selection vector y is selecting
a coordinate in an honest client’s plaintext vector. On the other hand, if y is selecting a coordinate
in a corrupt client’s plaintext vector, we need not hide which coordinate is being selected. We
can formalize the intuition by considering the following experiment between an adversary A and a
challenger C.

Experiment FH-Exptb(1κ):

• Setup. Same as the eariler Exptb(1κ).

• Query. The adversary can make the following types of queries; moreover, all KGen queries
must be made before any Enc query:

– KGen queries. Whenever the adversary A makes a KGen query with two selection
vectors y(0) ∈ {0, 1}mn and y(1) ∈ {0, 1}mn: C calls sky(b) := KGen(mpk,msk,y(b))
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and returns sky(b) to A;

– Enc queries. Same as the eariler Exptb(1κ).

An adversary A is said to be admissible iff the following hold with probability 1: for any pair

(y(0),y(1)) submitted in a KGen query where for b ∈ {0, 1}, y(b) := (y
(b)
1 , . . ., y

(b)
n ) ∈ {0, 1}mn, it

must be that

1. for i ∈ K, y
(0)
i = y

(1)
i .

2. for any {x(0)
i,t ,x

(1)
i,t }i∈H submitted in an Enc query,〈

(x
(0)
i,t )i∈H, (y

(0)
i )i∈H

〉
=
〈

(x
(1)
i,t )i∈H, (y

(1)
i )i∈H

〉
(2)

Definition 7 (Function-hiding IND-security of MCFE). We say that an MCFE scheme is function-
hiding IND-secure iff for any non-uniform p.p.t. admissible adversary A, its views in FH-Expt0(1κ)
and FH-Expt1(1κ) are computationally indistinguishable.

Weak-function-hiding IND-security for MCFE. Weak-function-hiding IND-security is de-
fined in almost the same manner as (full) function-hiding IND-security, except that we modify the
admissibility rule to the following. An adversary A is now said to be admissible iff the following
holds with probability 1: for any pair (y(0),y(1)) submitted in a KGen query where for b ∈ {0, 1},
y(b) := (y

(b)
1 , . . ., y

(b)
n ) ∈ {0, 1}mn, it must be that

1. for i ∈ K, y
(0)
i = y

(1)
i .

2. for any {x(0)
i,t ,x

(1)
i,t }i∈H submitted in an Enc query,〈

(x
(0)
i,t )i∈H, (y

(0)
i )i∈H

〉
=
〈

(x
(1)
i,t )i∈H, (y

(0)
i )i∈H

〉
=
〈

(x
(1)
i,t )i∈H, (y

(1)
i )i∈H

〉
(3)

5.2 Special Function-Revealing MCFE for Selection

We now describe a special, function-revealing MCFE scheme for selection. The scheme essentially
instantiates n independent instances of secret-key vector linear encryption (see Appendix C), and
each vector linear encryption encrypts the m coordinates belonging to the same client. Each coor-
dinate has a corresponding secret key. KGen essentially gives away the secret key corresponding
to the coordinate being selected. We also add randomizing terms to each client’s ciphertext to
rerandomize the n partial decryptions corresponding to the n clients. The rerandomizing terms do
not contribute to the function-revealing security of the scheme, but will become useful later during
the function privacy upgrade.

Our MCFE scheme has a couple nice structural properties:

1. Inner-product-in-the-exponent decryption. The decryption procedure performs an inner-production
computation in the exponent. Specifically, we compute the inner product (in the exponent) of
each client i’s ciphertext vector and a corresponding piece in the functional key; this gives the
i-th partial decryption. Finally, all partial decryptions are multiplied together, and taking the
discrete logarithm of the product gives the decrypted result. Note that since decryption needs
to take a discrete logarithm in the end, we will apply this scheme to small plaintext spaces.
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2. Randomized partial decryptions. Each partial decryption is randomized in a correlated manner.
During an honest decryption, the decryptor uses clients’ ciphertexts pertaining to the same time
step. In this case, when multiplying all partial decryptions together, the randomizing terms all
cancel out. On the other hand, if the decryptor mixes and matches ciphertexts from multiple
time steps, the randomizing terms will not cancel out, and decryption just gives random-looking
garbage.

In our scheme, the Gen(1κ) algorithm chooses an appropriate group G of order q, and sets the
parameters pp := (q,G), and the remaining algorithms are described below.

MCFE: special function-revealing MCFE for selection

Setup(pp,m, n) :

∀i ∈ [n] : Si
$←Zm×2

q , ai
$←Zq

(K1, . . . ,Kn) := CPRF.Gen(1κ, n, q)

mpk := pp

msk := {Si, ai}i∈[n], eki := (Ki, ai,Si)

return (mpk,msk, {eki}i∈[n])

Enc(mpk, eki,xi, t) :

r
$←Z2

q , µ
$←Zq

Jc1K := Jxi + Si · rK ∈ Gm

Jc2K := JrK ∈ G2

Jc̃K := JCPRF.Eval(Ki, t) + aiµ, µK
return cti := (Jc1K, Jc2K, Jc̃K)

KGen(mpk,msk,y) :

parse y := (y1, . . . ,yn) where each yi ∈ Zmq

ρ
$←Zq
∀i ∈ [n] : ki,1 := yi ∈ Zmq

ki,2 := −S>i yi ∈ Z2
q

k̃i := (ρ,−ρai) ∈ Z2
q

return sky := {ki,1,ki,2, k̃i}i∈[n]

Dec(mpk, sky, {cti}i∈[n])

∀i ∈ [n] : parse cti := Jci,1, ci,2, c̃iK

parse sky := {ki,1,ki,2, k̃i}i∈[n]

JvK :=
∏
i∈[n]

J〈ci,1,ki,1〉+ 〈ci,2,ki,2〉+ 〈c̃i, k̃i〉K

return v ∈ Zq by computing log(JvK)

Fact 5.1. The above MCFE scheme satisfies correctness.

Proof. We can check correctness mechanically. Decryption computes the following where we use ri
and µi to differentiate between the different r and µ terms chosen by each client:∏

i∈[n]

J〈ci,1,ki,1〉+ 〈ci,2,ki,2〉+ 〈c̃i, k̃i〉K

=
∏
i∈[n]

Jy>i (xi + Si · ri)− y>i · Si · ri + (CPRF.Eval(Ki, t) + aiµi) · ρ− ρai · µiK

=
∏
i∈[n]

J〈xi,yi〉+ CPRF.Eval(Ki, t) · ρK

=J〈x,y〉K · J
∑
i∈[n]

CPRF.Eval(Ki, t) · ρK = J〈x,y〉K

Theorem 5.2 (Special MCFE for selection, no function privacy). Assume that the Decisional Linear
assumption holds in the group G. The above MCFE scheme is IND-secure by Definition 6.
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Proof. In the above MCFE scheme, in each time step t, let cti := (Jci,1K, Jci,2K, Jc̃iK) be the ciphertext
corresponding to the i-th client. Observe that the part (Jci,1K, Jci,2K) corresponds to a vector linear
encryption (see Appendix C) of its input xi ∈ Zmq . Moreover, the Si term in the msk corresponds
to the secret key of this vector linear encryption instance.

Now, consider a sequence of hybrid games. Hyb0 is the same as Expt0. In Hyb` for ` ∈ [n]:

during any Enc query, for any i ∈ H, let x
(0)
i and x

(1)
i be the components corresponding to the i-th

client in the plaintext vectors submitted by A. For i ≤ `, the challenger computes i’s ciphertext

components using x
(1)
i ; and for all other i, the challenger computes i’s ciphertext components using

x
(0)
i .

We now argue that A’s views in any adjacent pair Hyb`−1 and Hyb` are computationally in-
distinguishable for ` ∈ [n]. To show this we argue that if A can distinguish any adjacent pairs of
hybrids with non-negligible probability, we can build a reduction B that leverages A to distinguish
between LE-Expt0(1κ) and LE-Expt1(1κ) as defined in Lemma C.4 of Appendix C.

The reduction B interacts with a vector linear encryption challenger C and tries to distinguish
whether it is in LE-Expt0 or LE-Expt1; further, it acts as an MCFE challenger with A.

• Setup.

– A outputs a set of corrupt clients K ⊆ [n].

– B interacts with a vector linear encryption challenger C, and obtains the public parameters
pp that contains the description of a suitable bilinear group. C has internally choose some
secret key S∗ ∈ Zm×2

q but B does not know it. B now runs MCFE.Setup(pp,m, n), but it will
implicitly replace Si := S∗.

– If the adversary A has corrupted the client `, B asks C to reveal the secret keys of all
coordinates in the challenge vector linear encryption instance, i.e., the entire secret key S∗,
and returns S∗ to A. B gives mpk and {eki}i∈K to A.

• KGen queries. If A makes a KGen query for selecting the i-th coordinate of the `-th client’s
plaintext vector, B asks C to reveal the secret key for the corresponding coordinate, i.e., the i-th
row of S∗, and it can answer the KGen query using the i-th row of S∗.

• Enc queries. Suppose that during some time step, A submits the two plaintext vectors

{x(0)
i ,x

(1)
i }i∈H.

– B computes {cti}i∈H,i 6=` just like in Hyb`. It can compute all these terms since it knows all
these clients’ secret keys.

– If client ` is not corrupted: during any Enc query, let x
(0)
` and x

(1)
` be the components

corresponding to the `-th client in the two plaintext vectors submitted by A. B simply

forwards x
(0)
` and x

(1)
` to C, and embeds its response in the Jc`,1K and Jc`,2K components of

the `-th client’s ciphertext ct` := (Jc`,1K, Jc`,2K, Jc̃`K). B can compute Jc̃`K on its own.

Notice that by the admissibility rule for A, if client ` is not corrupt but A has made KGen
queries for selecting some coordinates U ⊆ [m] in client `’s plaintext vector, then for any

coordinate j ∈ U , it must be that x
(0)
`,j = x

(1)
`,j .

Notice that if B is playing LE-Expt0 then A’s view is identically distributed as Hyb`−1; else A’s
view is identically distributed as Hyb`.
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5.3 Upgrade to Weak Function Privacy

We now describe how to upgrade the function-revealing MCFE scheme in Section 5.2 to have weak
function privacy.

5.3.1 Construction

Let FE := (Setup,KGen,Enc,Dec) denote a 1-SEL-SIM-secure single-input functional encryp-
tion scheme for computing inner-products in the exponent (see Section 4.2). Let MCFE := (Gen,
Setup, KGen, Enc, Dec) denote the special multi-client inner-product encryption scheme for
selection presented in Section 5.2 — recall that the ciphertext length of MCFE for each client is
m + 4. Henceforth, we will assume that MCFE’s parameter generation algorithm Gen chooses a
suitable asymmetric bilinear group of prime order q with a pairing function e : G×G → GT , and
we shall assume that the Decisional Linear assumption holds in G.

We now construct a new MCFE scheme for selection, henceforth denoted MCFEwfh, which
satisfies weak-function-hiding IND-security.

MCFEwfh: weakly function-hiding MCFE for selection

• Gen(1κ): Sample a suitable prime q, and generate a suitable bilinear group of order q, with
the pairing function e : G × G → GT . The public parameter pp contains the prime q, and
the description of the bilinear group.

• Setup(pp,m, n): Call (mpk′,msk′, {ek′i}i∈[n]) ← MCFE.Setup(pp,m, n). For i ∈ [n], call
(mpki, mski) ← FE.Setup(pp,m+ 4). Output the following:

mpk := (pp,mpk′, {mpki}i∈[n]), msk := (msk′, {mski, eki}i∈[n]),

∀i ∈ [n] : eki := (mski, ek
′
i)

• Enc(mpk, eki,x, t): Let ct := MCFE.Enc(mpk′, ek′i,x, t) ∈ Gm+4
1 , and ct := FE.KGen(mski,

ct). Output CT := (ct, ct).

• KGen(mpk,msk,y): Call (k1, . . . ,kn) := MCFE.KGen(mpk′,msk′,y) where each ki ∈ Zm+4
q

for i ∈ [n]. For i ∈ [n], call ki := FE.Enc(mpki, JkiK). Output sky := (k1, . . . ,kn).

• Dec(mpk, sky, {CTi}i∈[n]): Parse each CTi := (cti, cti). Parse sky := (k1, . . . ,kn). For i ∈ [n],

call vi := FE.Dec(cti, cti,ki). Output log(
∏n
i=1 vi).

Theorem 5.3 (Weakly function-hiding MCFE for selection). Assume that the Decisional Linear
assumption holds in G, and suppose that in the construction in Section 5.3.1, we employ the FE
scheme in Section 4.2 and the MCFE scheme in Section 5.2. Also, suppose that the CPRF func-
tion satisfies correlated pseudorandomness as defined in Section 4.3. Then, the construction in
Section 5.3.1 is weakly-function-hiding IND-secure.

Proof. The proof is presented in Section 5.3.2.

5.3.2 Proof of Theorem 5.3

Experiment FH-Expt0(1κ). We start with the FH-Expt0(1κ) experiment described in Section 5.2.
In this experiment, whenever answering either Enc queries or KGen queries from A, the vectors
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{x(0)
i,t }i∈H and y(0) are used. Recall also that A must satisfy the weak-function-hiding admissibility

rules defined in Equation (3).

Experiment Hyb0. In Hyb0, when answering the t-th Enc query, the challenger C uses the vector

{x(1)
i,t }i∈H , i.e., it calls CTi := MCFEwfh.Enc(mpk, eki,x

(1)
i , t) for each i ∈ H and returns {CTi}i∈H

to A.

Claim 5.4. Suppose that the underlying MCFE scheme satisfies IND-security as defined in Def-
inition 6, then, any non-uniform p.p.t. A’s views in FH-Expt0(1κ) and Hyb0 are computationally
indistinguishable.

Proof. Follows from a straightforward reduction to the IND-security of the underlying MCFE
scheme. Note that the reduction relies on the fact that A must respect the admissibility rules
specified in Equation (3).

Let QKGen be the maximum number of KGen queries made by A and let QEnc be the maximum
number of Enc queries made by A. Without loss of generality, we may assume that A always makes
exactly QKGen number of KGen queries — if not, we can consider an adversary A′ that acts as
an intermediary between A and the challenger, and if A does not make QKGen queries, A′ will pad
the number of queries to QKGen. Similarly, we may assume that A makes exactly QEnc number of
Enc queries.

Experiment Hyb`. For ` ∈ [QKGen], Hyb` is defined as below: for the first ` number of KGen
queries made by A, generate the functional key by calling the honest MCFEwfh.KGen algorithm
using y(1) as the input vector; for all other KGen queries, generate the functional key by calling
the honest MCFEwfh.KGen algorithm using y(0) as the input vector. Otherwise, Hyb` is defined in
the same way as Hyb0.

Experiment H̃yb`. Let QKGen be the maximum number of KGen queries made by A. For

` ∈ [QKGen], H̃yb` is defined as below:

• Setup. For i ∈ H: instead of calling (mpki,mski) ← FE.Setup(pp,m), the challenger C

calls (mpki,mski)← FE.S̃etup(pp,m+ 4). The challenger C performs the remainder of the

Setup following the honest algorithm, and gives the resulting mpk and {eki}i∈K to A.

• KGen queries. The first (` − 1) KGen queries will be answered with the honest KGen

algorithm using y(1) as the input, any KGen query after the first ` queries will be answered

with the honest KGen algorithm using y(0) as input. For the `-th KGen query:

– let y(0) and y(1) be the two vectors submitted by A during the `-th KGen query, let y∗ :=

y(0) ∈ Zmnq ;

– let (k∗1, . . . ,k
∗
n) := MCFE.KGen(mpk′,msk′,y∗); where each k∗i ∈ Zm+4

q for i ∈ [n];

– for i ∈ H, the challenger C calls k
∗
i := FE.Ẽnc(mski);

– for i ∈ K, the challenger C calls k
∗
i := FE.Enc(mski, Jk∗i K);

– the challenger C returns the functional key sky∗ := (k
∗
1, . . . ,k

∗
n) to A.
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• Enc queries. For any Enc query with the submitted vectors {x(0)
i }i∈H and {x(1)

i }i∈H, do
the following. For i ∈ H:

– let cti = JciK := MCFE.Enc(mpk′, ek′i,x
(1)
i , t) ∈ Gm+4, and

– let cti = JciK := FE.K̃Gen(mski, cti, J〈ci,k∗i 〉K);

Return {(cti, cti)}i∈H to A.

Lemma 5.5. Suppose that the FE scheme is 1-SEL-SIM-secure by Definition 3. Then, any non-
uniform p.p.t. A’s views in Hyb` and H̃yb`+1 are computationally indistinguishable for ` ∈ [QKGen−
1] ∪ {0}.

Proof. In Appendix D.3, we described a concurrent variant of the 1-SEL-SIM security notion that
says that no non-uniform p.p.t. adversary can distinguish FE-Real[d] and FE-Ideal[d], where in
FE-Real[d] and FE-Ideal[d], the 1-SEL-SIM adversary is allowed to invoke and interact with L =
poly(κ) instances of the (real or simulated) FE scheme. We also prove Appendix D.3 through a
standard hybrid argument that if the FE scheme is 1-SEL-SIM secure, than no non-uniform p.p.t.
adversary can distinguish between FE-Real[d] and FE-Ideal[d].

We can prove the claim through a reduction to the computational indistinguishability of FE-Real[d](
1κ, m+ 4) and FE-Ideal[d](1κ,m+ 4) for d := |H|. Essentially, we can create a non-uniform p.p.t.
reduction B that interacts with FE-Expt[d] where FE-Expt[d] is either FE-Real[d](1κ,m + 4) or
FE-Ideal[d](1κ,m+ 4). B wants to distinguish which experiment it is interacting with by leveraging

the adversary A which tries to distinguish between Hyb` and H̃yb`+1.

• Setup. B embeds the terms from FE parameters obtained from FE-Expt[d] into the honest
clients’ FE public keys, that is, {mpki}i∈H.

• KGen queries. During the (`+1)-th KGen query from A, let y(0) and y(1) be the two vectors
submitted by A: B computes (k∗1, . . . ,k

∗
n) := MCFE.KGen(mpk′, msk′, y(0)). Now, B forwards

{k∗i }i∈H to FE-Expt[d] as the challenge plaintext; B receives from FE-Expt[d] a ciphertext and
uses the returned ciphertext as {k∗i }i∈H in its interaction with A.

During all other KGen queries from A except the (` + 1)-th KGen query, B computes ki :=
FE.Enc(mpki,ki) for i ∈ H by itself, and uses the results {ki}i∈H in its interaction with A.

• Enc queries. During any Enc query from A, whenever B needs to call FE.K̃Gen on some
vector cti = JciK, it forwards cti to FE-Expt[d] as a KGen query for the corresponding FE
instance. The returned result will be used as cti in B’s interaction with A. Since any Enc query
must be made after all KGen queries are made, at the time A makes an Enc query, B must
have submitted a challenge plaintext to FE-Expt[d].

Besides the above, B interacts with A just like in H̃yb`+1, and it outputs the same guess that is
output by A.

Observe that if FE-Expt[d] = FE-Real[d], then A’s view is identically distributed as in Hyb`; else

A’s view is identically distributed as H̃yb`+1.

Next, we would like to show that no non-uniform p.p.t. adversary can distinguish H̃yb` and
Hyb` for ` ∈ [QKGen] (Lemma 5.6). To show this, we will rely on a sequence of hybrid experiments.
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Lemma 5.6. Suppose that the Decisional Linear assumption holds in G, and that the CPRF scheme
satisfies correlated pseudorandomness. Further, suppose that we employ the MCFE scheme described
in Section 5.2. Then, any non-uniform p.p.t. adversary’s views in H̃yb` and Hyb` are computation-
ally indistinguishable for ` ∈ [QKGen].

Proof. We will prove the lemma with a sequence of hybrid experiments.

Experiment HybH
` . Recall that in H̃yb`,

• During the `-th KGen query, the challenger computes the following terms (among other
things):

(k∗1, . . . ,k
∗
n) := MCFE.KGen(mpk′,msk′,y∗)

Henceforth we will parse each k∗i as k∗i := (k∗i,1,k
∗
i,2, k̃

∗
i ). Recall that using our MCFE con-

struction in Section 5.2, k̃∗i is of the form (ρ∗,−ρ∗ · ai) for some random choice of ρ∗ sampled
in the `-th KGen query.

• During each Enc query, the challenger computes for each honest i ∈ H:

cti = JciK := FE.K̃Gen(mski, cti, J〈ci,k∗i 〉K)

The experiment HybH
` is almost the same as H̃yb`, except with the following modification. During

the t-th Enc query for t = 1, 2, . . .:

1. Choose random {T̃i}i∈H from G subject to the constraint that∏
i∈H

T̃i ·
∏
j∈K

JCPRF.Eval(Kj , t) · ρ∗K = 1 (4)

where Kj is j’s CPRF key in the underlying MCFE scheme.

2. When J〈ci,k∗i 〉K := J〈ci,1,k∗i,1〉+ 〈ci,2,k∗i,2〉+ 〈c̃i, k̃∗i 〉K is computed and passed as input to FE.K̃Gen,

replace the term J〈c̃i, k̃∗i 〉K with T̃i where i ∈ H.

Henceforth, let {i1, i2, . . . , id} denote the set of honest clients where i1 < i2 < . . . < id and
d = |H|. We can equivalently view HybH

` as follows — for each time step t:

• For all but the last honest client i ∈ {i1, . . . , id−1}, generate T̃i at random from G;

• For the last honest client i = id, compute T̃i using Equation (4).

• Instead of computing FE.K̃Gen(mski, cti, J〈ci,1,k∗i,1〉+ 〈ci,2,k∗i,2〉+ 〈c̃i, k̃∗i 〉K) where i ∈ H,

call FE.K̃Gen(mski, cti, J〈ci,1,k∗i,1〉+ 〈ci,2,k∗i,2〉+ T̃iK). Observe that the second parameter

cti depends on CPRF.Eval(Ki, t), but the third parameter J〈ci,1,k∗i,1〉+ 〈ci,2,k∗i,2〉+ T̃iK does
not depend on CPRF.Eval(Ki, t) any more.

Lemma 5.7. Suppose that the Decisional Linear assumption holds in G, and that CPRF satisfies
correlated pseudorandomness. Then, any non-uniform p.p.t. adversary’s views in H̃yb` and HybH

`

are computationally indistinguishable.

Proof. We consider a sequence of hybrid experiments, where in the j-th hybrid Hj where j ∈
[d− 1] ∪ {0},
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1. Regardless of j, we make the following modification. For all but one honest client i ∈
{i1, . . . , id−1}, whenever the experiment queries CPRF.Eval(Ki, ·), we replace the answer with
a call to a random function ROi(·). For the last honest client, a call to CPRF.Eval(Kid , t) is
computed using the constraint∑

i∈H
ROi(t) +

∑
j∈K

CPRF.Eval(Kj , t) = 0

2. If i is among the first j honest clients, choose T̃i
$←G at random.

3. If i is honest but not among the first j honest clients and also not the last honest client, then
the experiment chooses the T̃i value in each time step t as follows: T̃i := JROi(t) · ρ∗K.

4. For the last honest client id, its T̃id value is computed using the constraint in Equation (4).

Besides the above modifications, every Hj would otherwise behave just like HybH
` .

Observe that H0 is computationally indistinguishable from H̃yb` through a straightforward re-
duction to the correlated pseudorandomness of CPRF. Further, Hd−1 the same as HybH

` . Therefore,
it suffices to show that no non-uniform p.p.t. adversary can distinguish between any two adjacent
hybrids Hj

∗
and Hj

∗+1 except with negligible probability, for j∗ ∈ {0, 1, . . . , d− 2}. Suppose there
is an efficient adversary A that can distinguish Hj

∗
and Hj

∗+1 with non-negligible probability, we
show how to construct an efficient reduction B that can break the Decisional Linear assumption.

Suppose that B obtains an instance (J1K, JβK, JγK, JuK, JβvK, JzK) from a Vector Decisional Linear
challenger (see Section C.2), where u,v, z ∈ ZQenc

q and β, γ ∈ Zq. B’s task is to distinguish whether
JzK = Jγ(u + v)K or random. B will now interact with A and embed this Decisional Linear instance
in its answers.

Let i∗ be the index of the (j∗ + 1)-th honest client. Recall that id denotes the index of the last
honest client.

• Setup. When running (mpk′,msk′, {ek′i}i∈[n]) ← MCFE.Setup(pp,m, n), B chooses ξ ∈ Zq at
random, and implicitly sets the terms ai∗ := β−1 and aid = ξ · β−1 without actually computing
them — note that β 6= 0 with all but negligible probability, so we can ignore the event that β = 0.
B runs the rest of the MCFE.Setup honestly. Note that all B can compute all terms of mpk′ and
{ek′i}i∈K.

• KGen queries.

1. The first (`− 1) KGen queries will be answered with the honest KGen algorithm using y(1)

as the input. However, we need to explain how to still compute the correct KGen algorithm
without knowing ai∗ and aid . Recall that MCFE.KGen(mpk′,msk′,y(1)) gives a key of the

form {ki := (ki,1,ki,2, k̃i)}i∈[n].

– For all indices i 6= i∗ and i 6= id, B knows all necessary terms to compute ki := (ki,1,ki,2, k̃i)
normally.

– For i∗, the terms ki∗,1,ki∗,2 need not use ai∗ and can be computed normally. We thus

focus on the term k̃i∗ which is supposed to be of the form (ρ,−ρ · ai∗) where ρ is chosen
at random for each KGen. B implicitly use the terms Jβρ′,−ρ′K in place of Jρ,−ρ · ai∗K.
Note that B does not know the exponents but it can nonetheless complete the remainder
of the computation, since it will next compute FE.Enc(mpki, JkiK) and this step only needs
the group encoding of these elements.
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– For id, B computes the response in a similar fashion as for i∗ since it knows ξ.

2. Any KGen query after the first ` queries will be answered with the honest KGen algorithm
using y(0) as input. Using the same argument as above, although B does not know ai∗ and
aid , it can still compute these keys.

3. We now focus on the `-th KGen query. For the `-th KGen query:

– Let y(0) and y(1) be the two vectors submitted by A during the `-th KGen query, let y∗ :=
y(0) ∈ Zmnq ;

– For i ∈ H, B calls k
∗
i := FE.Ẽnc(mski);

– We now focus on how to compute the corrupt components k
∗
i where i ∈ K. B wants to

implicitly embed the γ term from the Decisional Linear challenge into the ρ term in the
`-th KGen query. However, B knows only JγK but not the exponent γ. However, this is
not a problem because A knows the ai terms for i ∈ K, and thus it can compute the term
Jk̃iK := Jρ,−ρaiK = Jγ,−γaiK. Moreover, the following step FE.Enc(mpki, JkiK) only needs
knowledge of the group encoding of ki.

• Enc queries. For any Enc query with the submitted vectors {x(0)
i }i∈H and {x(1)

i }i∈H, do the
following.

– For every honest client that is neither the last honest client nor i∗, compute cti = JciK :=

Jci,1, ci,2, c̃iK := MCFE.Enc(mpk′, ek′i,x
(1)
i , t) ∈ Gm+4 honestly except that the CPRF.Eval(Ki, t)

term is replaced with ROi(t). Let cti := FE.K̃Gen(mski, cti, J〈ci,1,k∗i,1〉+ 〈ci,2,k∗i,2〉+ T̃iK)

where T̃i is chosen like Hj
∗
, that is, if i is among the first j∗ clients, T̃i

$←G; else, T̃i :=
JROi(t) · γK which can be computed knowing ROi(t) and JγK.

– For the honest client i∗, recall that B does not know ai∗ . B will compute the terms Jci∗,1K, Jci∗,2K
honestly. The term Jc̃i∗K is generated as follows: let ut, vt, zt be the t-th coordinate of u, v,
and z, respectively. We will let

Jc̃i∗K := Jut,−βvtK,

Now, let cti∗ := FE.K̃Gen(mski∗ , cti∗ , J〈ci∗,1,k∗i∗,1〉+ 〈ci∗,2,k∗i∗,2〉+ ztK).
In other words, we are implicitly letting

ROi∗(t) + ai∗µi∗,t = ut, µi∗,t = −βvt

where µi∗,t is the µ term chosen by i∗ in the t-th Enc query. Thus ROi∗(t)·γ = (ut−ai∗µi∗,t)γ =
(ut − β−1µi∗,t)γ = (ut + β−1βvt)γ = (ut + vt)γ.

– For the last honest client henceforth denoted id, B will compute the terms Jcid,1K, Jcid,2K hon-
estly. We now focus on how to compute Jc̃idK. B samples a random φ ∈ Zq and implicitly
chooses

µid,t = −µi∗,t · ξ−1 + a−1
i∗ · φ, ROid(t) := −

 ∑
j∈H,j 6=id

ROj(t) +
∑
j∈K

CPRF.Eval(Kj , t)


We may write ROid(t) as ROid(t) := ν − ROi∗(t) where

ν := −

 ∑
j∈H,j 6=id,j 6=i∗

ROj(t) +
∑
j∈K

CPRF.Eval(Kj , t)

 ∈ Zq is known to B.
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Now, B will compute Jc̃idK := JROid(t) + aidµid,t, µid,tK as follows:

JROid(t) + aidµid,tK = Jν − ROi∗(t) + ξai∗ · (−µi∗,t · ξ−1 + a−1
i∗ · φ)K

= Jν − ROi∗(t)− ai∗µi∗,t + ξφK
= Jν − ut + ξφK

which can be computed knowing ν, JutK, and ξφ. Further,

Jµid,tK = J−µi∗,t · ξ−1 + a−1
i∗ · φK = Jβvt · ξ−1 + φ · a−1

i∗ K = Jβvt · ξ−1 + φ · βK

which can be computed knowing JβvtK, JβK and the exponents ξ and φ.

Next, let ctid := (Jcid , 1K, Jcid , 2K, Jc̃idK). B calls FE.K̃Gen(mskid , ctid , T̃id) where T̃id is chosen

such that
∏
i∈H T̃i ·

∏
j∈K JCPRF.Eval(Kj , t) · γK = 1 — we let T̃i∗ := JztK; and for i ∈ H, i 6=

id, i 6= i∗, let T̃i be chosen like in Hj
∗
.

– Finally, and return {(cti, cti)}i∈H to A.

If the Vector Decisional Linear tuple (J1K, JβK, JγK, JuK, JβvK, JzK) satisfies JzK = Jγ(u + v)K, then
A’s view in the above experiment is identical to Hj

∗
. Else, if JzK is randomly chosen, then A’s view

in the above experiment is identical to Hj
∗+1.

Experiment HybO
` . The hybrid HybO

` is defined almost identically as HybH
` , except that in the

`-th KGen query, the challenger switches to using y(1) instead of y(0).

Claim 5.8. HybH
` and HybO

` are identically distributed.

Proof. Observe that in HybH
` , there are only two places that depend on the two vectors y(0) :=

(y
(0)
1 , . . . ,y

(0)
n ) and y(1) := (y

(1)
1 , . . . ,y

(1)
n ) submitted during the `-th KGen query:

1. During the `-th KGen query, when k
∗
i := FE.Enc(mpki,k

∗
i ) is called for i ∈ K. Here the

term k∗i depends on y
(0)
i , but we know that y

(0)
i = y

(1)
i for i ∈ K by the admissibility rule of

weakly function-hiding IND-security notion. Therefore, here, switching to y
(1)
i does not alter

the distribution.

2. During each Enc query, the last input parameter in the call to FE.K̃Gen depends on y
(0)
i

where i ∈ H in HybH
` . By the construction of our MCFE scheme in Section 5.2, for every

honest client i, the last parameter is equal to

J〈x(1)
i ,y

(0)
i 〉K · T̃i

where T̃i is defined as in HybH
` . As long as the admissibility rule for weak function hiding

holds (see Equation 3), switching {y(0)
i }i∈H to {y(1)

i }i∈H does not alter the joint distribution.

Completing the proof of Lemma 5.6. At this moment, using a symmetric argument, we can
show through a sequence of hybrids that HybO

` is computationally indistinguishable from Hyb`.
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Proof of Theorem 5.3. Suppose that the Decisional Linear assumption holds in G. Then, by
Theorem 4.1 and Theorem 5.2, FE is 1-SEL-SIM-secure and MCFE is IND-secure. Given this, the
theorem follows directly from Claim 5.4, Lemma 5.5, and Lemma 5.6 — notice also that HybQKGen

is the same as FH-Expt1.

5.4 Upgrade to Full Function Privacy

We now describe how to upgrade the MCFEwfh construction in Section 5.3 to have full function
privacy. Here we use a two-slot trick used in prior works on Functional Encryption and Indis-
tinguishability Obfuscation [SSW09, BJK15, GGG+14, LV16, Lin17, ACF+18]. Let MCFEwfh be a
weakly function-hiding MCFE scheme for selection such as the one described in Section 5.3.1. We
will now construct a fully function-hiding MCFE scheme for selection, henceforth denoted employ-
ing MCFEffh.

MCFEffh: fully function-hiding MCFE for selection

• Gen(1κ): call pp := MCFEwfh.Gen(1κ) and output the resulting parameters pp.

• Setup(pp,m, n): call (mpk,msk, {eki}i∈[n]) := MCFEwfh.Setup(pp, 2m,n). and output the
resulting terms mpk,msk, and {eki}i∈[n].

• Enc(mpk, eki,x, t): call CT := MCFEwfh.Enc(mpk, eki,x||0, t) where 0 ∈ Zmq , and output
CT.

• KGen(mpk,msk,y): parse y := (y1, . . . ,yn) where each yi ∈ {0, 1}m. Let ỹ = ((y1,0), . . .,
(yn, 0)) ∈ {0, 1}2mn. Call sky := MCFEwfh.KGen(mpk, msk, ỹ) where 0 ∈ Zmq .

• Dec(mpk, sky, {CTi}i∈[n]): call x := MCFEwfh.Dec(mpk, sky, {CTi}i∈[n]) and output x.

Theorem 5.9 (Fully function-hiding MCFE for selection). Assume that MCFEwfh is weakly-function-
hiding IND-secure. Then, the above construction is function-hiding IND-secure.

Proof. We can prove the theorem with a sequence of hybrid experiments as described by the
following table.

Experiment
Enc query KGen query
for i ∈ H for i ∈ H for i ∈ K

FH-Expt0 x
(0)
i ||0 y

(0)
i ||0

y
(0)
i ||0 = y

(1)
i ||0

Hyb1 x
(0)
i ||x

(1)
i 0||y(1)

i

Hyb2 x
(1)
i ||x

(1)
i y

(1)
i ||0

FH-Expt1 x
(1)
i ||0 y

(1)
i ||0

Essentially, the table shows:

1. whenever A submits an Enc query with two vectors x(0) := {x(0)
i }i∈H and x(1) := {x(1)

i }i∈H
what is the plaintext the challenger C encrypts by calling the underlying MCFEwfh.Enc for every
i ∈ H;

2. whenever A submits an KGen query with two vectors y(0) and y(1), what is the key vector the
challenger C passes to the underlying MCFEwfh.KGen call.
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Any non-uniform p.p.t. adversary A’s views in any pair of adjacent hybrids are computationally
indistinguishable due to the fact that MCFEwfh is weakly-function-hiding IND-secure. Therefore,
the theorem follows.

6 NIAR Construction

Let SE := (Gen,Enc,Dec) denote a symmetric-key encryption scheme. Let MCFEffh denote a
fully function-hiding MCFE scheme for selection. We can construct a NIAR scheme as below.

NIAR with receiver-insider protection

• Setup(1κ, n, π):

– For i ∈ [n], let ski := SE.Gen(1κ). Let pp := MCFEffh.Gen(1κ), and (mpk,msk,
{ek′i}i∈[n]) := MCFEffh.Setup(pp, 1, n).

– For i ∈ [n], let j := π−1(i), and let ej be the j-th selection vector, i.e., except the j-th co-
ordinate which is 1, all other coordinates are 0; call tki := MCFEffh.KGen(mpk,msk, ej).

– Output

tk := {tki}i∈[n],
{
∀i ∈ [n] : eki := (mpk, ski, ek

′
i), rki := skπ(i)

}
• Enc(eki, xi, t): Let c := SE.Enc(ski, xi), and henceforth let (c)j denote the j-th bit of c.

For j ∈ [L] where L := |c|, let (cti,t)j := MCFEffh.Enc(mpk, ek′i, (c)j , (t− 1)L+ j). Output
cti,t := {(cti,t)j}j∈[L].

• Rte(tk, ct1,t, . . . , ctn,t): For i ∈ [n], for j ∈ [L] where L is the length of an SE ciphertext, let
(ct′i,t)j := MCFEffh.Dec(mpk, tki, (ct1,t)j , . . . , (ctn,t)j), and let ct′i,t := {(ct′i,t)j}j∈[L]. Output
{ct′i,t}i∈[n].

• Dec(rki, ct
′
i,t): Output x := SE.Dec(rki, ct

′
i,t).

Theorem 6.1 (NIAR with receiver-insider protection). Suppose that the SE scheme satisfies se-
mantic security as defined in Appendix C.1, and that MCFEffh is function-hiding IND-secure by
Definition 2. Then, the NIAR scheme above is SIM-secure with receiver-insider protection by Def-
inition 1.

If the above theorem holds, and observing that the building blocks SE, and MCFEffh (including
the underlying CPRF) can all be instantiated with the Decisional Linear assumption in bilinear
groups, we immediately have the following corollary.

Corollary 6.2 (NIAR with receiver-insider protection). Assume that the Decisional Linear as-
sumption holds in suitable bilinear groups. Then, there exists an NIAR scheme that is SIM-secure
with receiver-insider protection by Definition 1. Furthermore, the scheme has poly(n, κ) key size;
moreover, in every time step, each sender and receiver’s communication complexity is poly(κ) as-
suming each sender sends one bit per step.

Proof of Theorem 6.1: Due to Lemma 2.1, it suffices to prove that the NIAR scheme above
is IND-secure with receiver-insider protection by Definition 2. Recall that NIAR-Exptb(1κ) for
b ∈ {0, 1} were defined in Section 2.3. We will consider a following sequence of hybrid exper-
iments to show that any non-uniform p.p.t.admissible adversary’s views in NIAR-Expt0(1κ) and
NIAR-Expt1(1κ) are computationally indistinguishable.
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Experiment Hybb for b ∈ {0, 1}. For b ∈ {0, 1}, we define Hybb just like NIAR-Exptb(1κ) except
with the following modification: Henceforth let HHb ⊆ HS denote the set of senders who commu-
nicate with honest receivers as defined by π(b), and let HKb = HS\HHb denote the set of honest
senders who talk to corrupt receivers as defined by π(b). Now, during the t-th Enc query made
by the adversary A for t = 1, 2, . . ., the query is answered as follows — below let SE.Sim be the

simulator for the SE scheme, and let {x(0)
i,t }i∈H and {x(1)

i,t }i∈H be the two plaintext vectors submitted
by A during time step t:

• For i ∈ HHb: let ci := SE.Sim(1κ), and for j ∈ [L], let (cti,t)j := MCFEffh.Enc(mpk, ek′i, (ci)j ,

(t− 1)L+ j).

• For i ∈ HKb: compute the ciphertext cti,t honestly using x
(b)
i,t as input.

Claim 6.3. Suppose that SE satisfies semantic security (and let SE.Sim be the corresponding sim-
ulator for semantic security), then for b ∈ {0, 1}, any non-uniform p.p.t. adversary’s views in Hybb

and NIAR-Exptb are computationally indistinguishable.

Proof. Follows from a straightforward reduction.

Lemma 6.4. Suppose that the MCFEffh scheme satisfies function-hiding IND-security, then no
non-uniform p.p.t. adversary A that respects the admissibility rules of the NIAR IND security game
(with receiver-insider protection) can distinguish Hyb0 and Hyb1 except with negligible probability.

Proof. In experiment Hybb, let ψ := {ψi}i∈π(b)(HS) where ψi is defined as the following:

• if i ∈ KR, ψi is the random coins consumed by the SE.Gen and SE.Enc algorithms pertaining
to the j-th sender where j := (π(b))−1(i).

• if i ∈ HR, then ψi is the random coins consumed by the SE.Sim algorithms pertaining to the
j-th sender where j := (π(b))−1(i).

Due to the admissibility rule A must abide by, π(0)(HS) = π(1)(HS), therefore, ψ has the same
format regardless of b. Let Hybb(ψ) be the experiment Hybb but when the aforementioned random
coins are fixed to ψ. It suffices to show that for any fixed ψ, Hyb0(ψ) and Hyb1(ψ) are computation-
ally indistinguishable as long as the non-uniform p.p.t.A respects the NIAR game’s admissibility
rules. We show that if a non-uniform p.p.t.A that respects the NIAR game’s admissibility rules
can distinguish Hyb0(ψ) and Hyb1(ψ) with non-negligible probability, we can build a reduction B
that breaks the fully function-hiding IND-security of the MCFEffh scheme.

• First, A outputs n,KS ,KR, π(0), π(1).

• Next, B needs to simulate the NIAR scheme’s Setup phase for A. B obtains mpk and {ek′i}i∈KS

from its own challenger, and embeds these parameters into the Setup.

Next, for every i ∈ [n], B makes KGen queries to its own challenger to generate functional
secret keys for the pair of vectors ej0 and ej1 where for b ∈ {0, 1}, jb := (π(b))−1(i); let the result
be tk := {tki}i∈[n]. B uses these tokens in the setup.

For a corrupt receiver j ∈ π(0)(HS) = π(1)(HS), B uses the appropriate part of ψj as the random
coins to run SE.Gen, and let the outcome be rkj .

For all corrupt senders i ∈ HS , run the honest SE.Gen and let the outcome be ski. If j :=
π(0)(i) = π(1)(i) is corrupt, then let rkj := ski.

Now, return (tk, {eki := (mpk, ski, ek
′
i)}i∈KS

, {rki}i∈KR
) to A.
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• During each time step t ∈ N, A submits two plaintext vectors {x(0)
i,t }i∈HS

and {x(1)
i,t }i∈HS

.

– For i ∈ HHb, and for b ∈ {0, 1}, it computes cbi := SE.Sim(1κ) using the appropriate random
coins contained in ψπb(i).

– For i ∈ HKb and for b ∈ {0, 1}, it computes cbi := SE.Enc(skjb , xi) where jb := π(b)(i) using
the appropriate random coins contained in ψπ(b)(i).

– Now, B forwards the two vectors {cbi}i∈HS
for b ∈ {0, 1} to its own challenger bit by bit in a

total of L queries. It returns the concatenated result to A.

We verify that B indeed respects the admissibility rules of MCFEffh.

1. First, since A respects the admissiblity rules of the NIAR security game (with receiver-insider
protection), the “corrupt → ∗” part of the permutation must match for π(0) and π(1). Thus,
for every pair of selection vector denoted (ej0 , ej1) that B submits in a KGen query to its own
challenger, if the coordinate j0 being selected by ej0 is corrupt, then the other selection vector
must be selecting j1 = j0.

2. Checking the second admissibility rule for MCFEffh boils down to checking that in the two
alternate worlds, every receiver, no matter honest or corrupt, that receives from an honest
sender must receive the same SE ciphertext. Recall that by the admissibility rule imposed on
A, if i ∈ KR ∩ HS denotes a corrupt receiver receiving from some honest sender, then i must
receive the same message in the two alternate worlds. Given this, the second admissibility rule
for B is guaranteed by construction due to our definition of ψ.

If the MCFEffh challenger used the internal bit b = 0, then A’s view is identically distributed as
in Hyb0(ψ); else its view is identically distributed as in Hyb1(ψ).

The proof of Theorem 6.1 now follows due to Claim 6.3 and Lemma 6.4 and the hybrid argument.

7 Achieving Full Insider Protection

In this section, we describe how to construct a NIAR scheme with full insider protection. As
mentioned earlier, to achieve full insider protection, it must be that all transformed ciphertexts
output by Rte must change, even when only a single input ciphertext changes. This also means
that a natural class of schemes like the techniques we used so far do not work.

Our idea is to rely on an indistinguishability obfuscator for probabilistic circuits (piO), whose
existence is implied by sub-exponentially secure indistinguishability obfuscation [CLTV15] and sub-
exponentially secure one-way functions. We will use the piO to obfuscate the following probabilistic
program:

1. first, use the MCFEffh’s n functional keys to evaluate the Dec procedure, resulting in n messages
to be received by the n receivers respectively;

2. next, encrypt the n messages under the n receivers’ public keys, using a special public-key
encryption scheme denoted tPKE that satisfies a “perfect trapdoor hiding” property.

Note that due to technical reasons needed in our proofs, it would not have worked had we used
piO to directly obfuscate a program that calls the Rte procedure of our earlier NIAR scheme (with
receiver-insider protection) and then encrypts the outcome messages using n instances of tPKE,
respectively. Specifically, during our sequence of hybrids, we will need to at some point, remove
the MCFEffh functional keys corresponding to honest receivers from the piO.
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7.1 Construction

Let tPKE := (Gen,Enc,Dec, G̃en) denote a perfectly hiding trapdoor encryption scheme. Let
piO be an indistinguishability obfuscator for perfectly indistinguishable samplers over general cir-
cuit families. Let MCFEffh := (Gen, Setup, KGen, Enc, Dec) denote a multi-client functional
encryption scheme for selection. Specifically, we can instantiate the MCFEffh scheme by using the
the MCFE scheme in Section 5.2, and then applying the function privacy upgrade in Sections 5.3
and 5.4 respectively. We can construct a NIAR scheme as below.

NIAR scheme with full insider security

• Setup(1κ, n, π):

– Let pp := MCFEffh.Gen(1κ), and (mpk, msk, {ek′i}i∈[n]) := MCFEffh.Setup(pp, 1, n).

– For i ∈ [n], let (epki, eski)← tPKE.Gen(1κ).

– For i ∈ [n], let j := π−1(i), and let ej be the j-th selection vector, i.e., except the j-th
coordinate which is 1, all other coordinates are 0; call tki := MCFEffh.KGen(mpk,msk, ej).

– Output

tk := piO(1κ, Pmpk,{epki,tki}i∈[n]), {∀i ∈ [n] : eki := (mpk, ek′i), rki := eski}

where the program P is defined below.

• Enc(eki, xi, t): output cti,t := MCFEffh.Enc(mpk, ek′i, xi, t).

• Rte(tk, ct1,t, ct2,t, . . . , ctn,t): output (ct′1,t, ct
′
2,t, . . . , ct

′
n,t) := tk(ct1,t, ct2,t, . . ., ctn,t).

• Dec(rki, ct
′
i,t): output tPKE.Dec(eski, ct

′
i,t).

Probabilistic program Pmpk,{epki,tki}i∈[n](ct1, . . . , ctn)

Hardwired: mpk, {epki, tki}i∈[n]

• For i ∈ [n], let xi := MCFEffh.Dec(mpk, tki, ct1, . . . , ctn).

• For i ∈ [n], let ĉti := tPKE.Enc(epki, xi).

• Output {ĉti}i∈[n].

Theorem 7.1 (NIAR scheme with full insider security). Suppose that tPKE is a perfectly hiding
trapdoor encryption scheme, piO is an indistinguishability obfuscator for perfectly indistinguishable
samplers over general circuit families, and moreover, MCFEffh is fully function-hiding IND-secure.
Then, the above construction is SIM-secure with full insider protection.

Proof. The proof is presented in Section 7.2.

Corollary 7.2 (NIAR scheme with full insider security). Assume the existence of sub-exponentially
secure indistinguishability obfuscator for general circuit families, sub-exponentially secure one-way
functions, and that the Decisional Linear assumption (with standard polynomial security) holds in
suitable bilinear groups. Then, there exists a SIM-secure NIAR scheme with full insider protection,
in which the sizes of all keys are upper bounded by poly(n, κ), and moreover, in each time step,
every sender or receiver’s communication overhead is only poly(κ).
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Proof. We can instantiate the MCFEffh scheme employed by the NIAR construction earlier in this
section as follows: use the the MCFE scheme in Section 5.2, and then applying the function privacy
upgrade in Sections 5.3 and 5.4 respectively. Note that the existence of tPKE is implied by the
Decisional Linear assumption as mentioned in Theorem 4.4. Now, the corollary follows directly
from Theorem 7.1, and the efficiency claims can be easily verified.

7.2 Proof of Theorem 7.1

Due to Lemma 2.1, it suffices to prove that the construction in Section 7.1 is IND-secure with full
insider protection. We will prove this through a sequence of hybrid experiments.

Experiment Hyb1. Hyb1(1κ) is almost the same as NIAR-Expt0(1κ) except that during Setup,
for every i ∈ HR, we run the trapdoor key generation of the tPKE scheme to generate its public

key. In other words, for i ∈ HR, let epki ← tPKE.G̃en(1κ).

Claim 7.3. Suppose that tPKE is a perfectly hiding trapdoor encryption scheme. Then, any non-
uniform p.p.t. adversary A’s views in NIAR-Expt0 and Hyb1 are computationally indistinguishable.

Proof. Through a straightforward reduction to the tPKE’s security, and specifically, the indistin-
guishability of the normal and the trapdoor modes.

Experiment Hyb2. Hyb2 is almost the same as Hyb1 except with the following modification:
during Setup, instead of calling tk := piO(1κ, Pmpk,{epki,tki}i∈[n]), we call

tk := piO
(

1κ, P̃mpk,{epki}i∈[n],{tki}i∈KR

)
where the program P̃mpk,{epki}i∈[n],{tki}i∈KR is defined below.

Probabilistic program P̃mpk,{epki}i∈[n],{tki}i∈KR (ct1, . . . , ctn)

Hardwired: mpk, {epki}i∈[n], {tki}i∈KR

• For i ∈ KR, let xi := MCFEffh.Dec(mpk, tki, ct1, . . . , ctn); and let ĉti := tPKE.Enc(epki, xi).

• For i ∈ HR: let ĉti := tPKE.Enc(epki, 0).

• Output {ĉti}i∈[n].

Observe that in Hyb2, during Setup, in fact, for any i ∈ HR, there is in fact no need to call
tki := MCFEffh.KGen(mpk,msk, ej) where j := π−1(i), since {tki}i∈HR

will never be used later.

Claim 7.4. Suppose that tPKE is a perfectly hiding trapdoor encryption scheme, and that piO
is an indistinguishability obfuscator for perfectly indistinguishable samplers over general circuit
families. Then, any non-uniform p.p.t. adversary A’s views in Hyb1 and Hyb2 are computationally
indistinguishable.

Proof. Due to the security of the tPKE scheme, specifically, due to the perfectly hiding property of
the trapdoor mode, for any i ∈ HR, a ciphertext generated by creating a fresh encryption of 0 is
identically distributed as a ciphertext generated by encrypting xi. The indistinguishability of Hyb1

and Hyb2 therefore follows from the security of piO.
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Experiment Hyb3. Hyb3 is defined almost identically as Hyb2 except that now, the NIAR chal-

lenger switches to using π(1) during Setup and to using {x(1)
i,t }i∈HS

for answering the online rout-

ing queries.

Claim 7.5. Suppose that MCFEffh is fully function-hiding IND-secure. Then, no non-uniform p.p.t.
adversary A that respects the admissibility rules of the NIAR IND-security game can distinguish
Hyb2 and Hyb3 except with negligible probability.

Proof. If there is a non-uniform p.p.t. adversary A that respects the admissibility rules of the NIAR
IND-security game who can distinguish Hyb2 and Hyb3 with more than negligible probability, we
can build a reduction B that breaks the fully function-hiding IND-security of the MCFEffh scheme.

• First, the adversary A outputs n,KS ,KR, π(0), and π(1).

• Now, B needs to run Setup: to do so, it obtains mpk and {ek′i}i ∈ KS from its own challenger,
and embeds these parameters into the Setup. B runs the tPKE key generation honestly for
i ∈ KR but calls the trapdoor key generation for i ∈ HR, just like in Hyb2.

Next, for every i ∈ KR, B makes KGen queries to its own challenger to generate functional
secret keys for the pair of vectors ej0 and ej1 where for b ∈ {0, 1}, jb := (π(b))−1; let the result
be {tki}i∈KR

.

The rest of Setup is performed just like in Hyb2.

• Next, for each time step t = 1, 2, . . ., A submits two plaintext vectors {x(0)
i,t }i∈HS

and {x(1)
i,t }i∈HS

.
B forwards the two vectors to its own challenger, and forwards the answer to A.

Below, we verify that B indeed respects the admissibility rules of the MCFEffh’s security game:

1. First, since A respects the admissibility rules of the NIAR game, it must be that π(0) and π(1)

are consistent when restricting to the “corrupt→ corrupt” part of the permutation. This means
that for every i ∈ KR — consider the corresponding pair of selection vectors ej0 and ej1 where
for b ∈ {0, 1}, jb := (π(b))−1 — it must be that either 1) ej0 and ej1 both do not select from any
coordinate belonging to KS ; or 2) they both select the same coordinate belonging to KS .

2. By the NIAR game’s admissibility rule imposed on A, during any time step t ∈ N, for any

i ∈ KR ∩ π(0)(HS) = KR ∩ π(1)(HS), x
(0)
j0,t

= x
(1)
j1,t

where for b ∈ {0, 1}, jb := (π(b))−1(i). In other
words, in the two alternate worlds b = 0 or 1, every corrupt receiver receiving from an honest
sender must receive the same message. This means that for every selection vector B submitted
as a KGen query that selects one of the corrupt receiver’s output, it must produce the same
output in the two alternate worlds.

Now, if the MCFEffh challenger used b = 0, then A’s view is identically distributed as in Hyb2;
else A’s view is identically distributed as in Hyb3.

Completing the proof of Theorem 7.1. Finally, using a symmetric argument as the above,
we can prove that no non-uniform p.p.t. adversary that respects the admissibility rules of the NIAR
game can distinguish Hyb3 and NIAR-Expt1 except with negligible probability.
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8 Fault-Tolerant NIAR

In real-world applications, if some senders fail to show up, we would like the router to nonetheless
be able to make a best effort at routing the remaining messages. We therefore propose a fault-
tolerant variant of our earlier NIAR abstraction, which is in fact also a generalization of our earlier
NIAR abstraction.

8.1 Definitions

Suppose that at some point, some senders crash and fail to show up henceforth. Let O denote
the set of senders that remain online. Henceforth we assume that there is a mechanism in place
for the senders to discover the set O. For example, in the anonymous bulletin board application
(see Section 1.4), everyone can easily observe which senders are still online. In a “distributed
differential privacy in the shuffle-model” scenario such as RAPPOR [EPK14] (see Section 1.4), the
data collector is voluntarily implementing the privacy mechanism due to compliance, regulation,
or to waive liability; and therefore the data collector can be entrusted to distribute the online list
O. Note also that if a sender that crashed comes back online, it can also be added back to set O
again.

Once the set O of online senders is known, the online senders will encrypt messages in every time
step to the set O. In this way, the router can perform successful decryption using only ciphertexts
from those in O.

Before jumping into formal definitions and constructions, we point out that our fault-tolerant
NIAR abstraction can also be combined with other external mechanisms to provide resilience against
potential faults. For example, if the scheme is deployed on a blockchain (e.g., imagine a pseudony-
mous bulletin board on a blockchain), then a promising approach is to use reward/penalty mech-
anisms to incentivize every sender to speak in every time step.

8.1.1 Syntax

We can formally define a fault-tolerant NIAR by modifying our original definition slightly, where
the Setup and Dec algorithms are still as before, but the Enc and Rte algorithms now additionally
take a set O ⊆ [n]; and moreover, the Rte algorithm now takes in ciphertexts created by only those
in O.

Correctness. In the new formulation, obviously receivers paired with senders not in O do not
have any messages to receive. We therefore modify our correctness notion to require that receivers
speaking with those in O receive the correct messages, whereas receivers paired with those not in
O receive a canonical message, e.g., either ⊥ or 0.

Our new correctness requirement stipulates that with probability 1, the following holds: for any
κ ∈ N, any (x1, x2, . . ., xn) ∈ {0, 1}n, any t ∈ N, and any O ⊆ [n]: let ({eki}i∈[n], {rki}i∈[n], tk) ←
Setup(1κ, n, π), let cti,t ← Enc(eki, xi, t,O) for i ∈ O, let (ct′1,t, ct

′
2,t, . . . , ct

′
n,t)← Rte(tk,O, {cti,t}i∈O),

and let x′i ← Dec(rki, ct
′
i,t), it must be that

x′π(i) =

{
xi if i ∈ O
⊥ o.w.
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8.1.2 Security Definitions

It is interesting to consider how to define the security of a fault-tolerant NIAR. If an honest sender
i ∈ [n] is speaking with a corrupt receiver, then the adversary can make i go offline in some round,
and observe if any corrupt receiver j starts to receive the canonical value ⊥ henceforth. In this way,
the adversary can discover that i is speaking with j. Therefore, in a fault-tolerant NIAR scheme,
if an honest sender i speaking with a corrupt receiver ever goes offline, leaking π(i) is inherent and
cannot be avoided.

We now modify our earlier security notion to the fault tolerant setting. Henceforth, let CS ⊆ HS
denote the set of senders who are honest but can potentially crash at some point. To allow fault
tolerance, the strongest possible notion is the following, which reveals only the inherent leakage to
an adversary controlling the router and a subset of senders and receivers: such an adversary learns
only the “KS ∪ CS → KR” part of the permutation and the messages received by corrupt receivers
in every time step, but nothing else. In our definitions below, we will also consider a couple relaxed
notions.

More formally, we can consider the following experiments:

Real-world experiment RealA(1κ). Recall that KS ⊆ [n] denotes the set of corrupt senders,
and let HS = [n] \ KS be the honest senders. The set CS ⊆ HS denotes the set of honest but
occasionally offline senders.

• n, π, CS ,KS ,KR ← A(1κ)

• ({eki}i∈[n], {rki}i∈[n], tk)← Setup(1κ, n, π)

• For t = 1, 2, . . .:

– if t = 1 then (Ot, {xi,t}i∈Ot∩HS
)← A(tk, {eki}i∈KS

, {rki}i∈KR
);

else (Ot, {xi,t}i∈Ot∩HS) ← A({cti,t−1}i∈Ot−1∩HS
);

– for i ∈ Ot ∩HS , cti,t ← Enc(eki, xi,t, t,Ot)

Ideal-world experiment IdealA,Sim(1κ). The ideal-world experiment involves not just A, but
also a p.p.t. (stateful) simulator denoted Sim, who is in charge of simulation A’s view knowing
essentially only what corrupt senders and receivers know.

• n, π, CS ,KS ,KR ← A(1κ)

• ({eki}i∈[n], {rki}i∈[n], tk)← Sim(1κ, n,KS ,KR, Leak(π, CS ,KS ,KR))

• For t = 1, 2, . . .:

– if t = 1 then (Ot, {xi,t}i∈Ot∩HS
)← A(tk, {eki}i∈KS

, {rki}i∈KR
);

else (Ot, {xi,t}i∈Ot∩HS) ← A({cti,t−1}i∈Ot−1∩HS
);

– {cti,t}i∈Ot ← Sim
(
Ot, {∀i ∈ KR ∩ π(Ot ∩HS) : (i, xj,t) for j = π−1(i)}

)
.

We say that A is admissible iff with probability 1, it holds that CS ∩ KS = ∅, and moreover, for
every t ∈ N, HS\Ot ⊆ CS . In other words, the adversary must promise ahead of time which subset
of honest senders CS may crash, and in each round, only those in CS (but not necessarily all of
them) can crash.

We present a few natural ways to define the leakage function:
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1. As mentioned, the inherent, unavoidable leakage is the following:

Leakmin(π, CS ,KS ,KR) := {∀i ∈ KS ∪ CS and π(i) ∈ KR : (i, π(i))}

This notion protects against both sender- and receiver-insiders.

2. We consider a relaxation that provides only receiver-insider protection, i.e., each sender knows
who it is speaking with, and the sender becomes corrupt, the adversary learns what the sender
knows:

LeakS(π, CS ,KS ,KR) := {∀i ∈ KS : (i, π(i))} ∪ {∀i ∈ CS and π(i) ∈ KR : (i, π(i))}

3. We give another natural relaxation that essentially provides receiver-insider protection, but
additionally leaking who each crashed sender is speaking to, i.e.,

LeakS∗(π, CS ,KS ,KR) := {∀i ∈ KS ∪ CS : (i, π(i))}

Definition 8 (Fault-tolerant NIAR). We say that a fault-tolerant NIAR scheme is SIM-secure
w.r.t. the leakage Leak iff, assuming that Leak is the leakage function used in the experiments,
there exists a p.p.t. simulator Sim such that for any non-uniform p.p.t. admissible adversary A, A’s
view in RealA(1κ) and IdealA,Sim(1κ) are computationally indistinguishable.

Just like before, we can alternatively define security using an indistinguishability-based ap-
proach. In this case, we consider the following experiment NIAR-Exptb,A(1κ) parametrized by a bit
b ∈ {0, 1}:

• n, CS ,KS ,KR, π(0), π(1) ← A(1κ)

• ({eki}i∈[n], {rki}i∈[n], tk)← Setup(1κ, n, π(b))

• For t = 1, 2, . . .:

– if t = 1 then (Ot, {x(0)
i,t }i∈Ot∩HS

, {x(1)
i,t }i∈Ot∩HS

)← A(tk, {eki}i∈KS
, {rki}i∈KR

);

else (Ot, {x(0)
i,t }i∈Ot∩HS

, {x(1)
i,t }i∈Ot∩HS

)← A({cti,t−1}i∈Ot−1∩HS
);

– for i ∈ Ot ∩HS , cti,t ← Enc(eki, x
(b)
i,t , t,Ot)

In the above, Leak can be Leakmin, LeakS, or LeakS∗ as explained earlier. We say that A is
admissible iff with probability 1, it guarantees that

1. CS ∩ KS = ∅, and moreover, for every t ∈ N, HS\Ot ⊆ CS ;

2. Leak(π(0), CS ,KS ,KR) = Leak(π(1), CS ,KS ,KR);

3. for any i ∈ KR ∩ π(0)(Ot ∩ HS) = KR ∩ π(1)(Ot ∩ HS), it holds that x
(0)
j0,t

= x
(1)
j1,t

where for

b ∈ {0, 1}, jb := (π(b))−1(i).

Definition 9 (Alternative definition of fault-tolerant security with receiver-insider protection).
We say that a fault-tolerant NIAR scheme is IND-secure w.r.t. the leakage Leak, iff, assuming
that Leak is used in the experiments, the following holds: for any non-uniform p.p.t. admissible
A, its views in the above experiments NIAR-Expt0,A(1κ) and NIAR-Expt1,A(1κ) are computationally
indistinguishable.

Lemma 8.1 (Equivalence of the two notions). For a ∈ {S, S∗,min}, A fault-tolerant NIAR scheme
is SIM-secure w.r.t. Leaka iff it is IND-secure w.r.t. Leaka.

Proof.
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8.2 Fault-Tolerant NIAR with Receiver-Insider Protection

We modify the scheme in Section 6 to one that is fault tolerant. Below we sketch the scheme, and
defer a formal description and proofs to Appendix B. In our fault-tolerant scheme, Setup and Dec
work in the same manner as in Section 6, except that we now additionally assume that decrypting
an SE ciphertext of 0 gives ⊥. The only modification needed is to the Enc and Rte algorithms to
account for the online set O:

• Enc(eki, xi, t,O): the encryption algorithm is the same as in Section 6, except that we replace
the randomizing term CPRF.Eval(Ki, t) :=

∑
j 6=i(−1)j<i · PRFkij (t) with the following:

CPRF.Eval(Ki, t,O) :=
∑

j 6=i,j∈O
(−1)j<i · PRFkij (t)

• Rte(tk,O, {cti,t}i∈O): When evaluating the Rte function, for each of the n tokens: the router
now uses only the components corresponding to those inO to perform the decryption. Recall that
to decrypt the transformed ciphertext for each receiver, the router previously had to compute
n partial decryptions by calling FE.Dec, and then multiply all the partial decryptions together.
Now, the router computes the partial decryptions only for the set O, and multiplies the partial
decryptions together.

One can verify that the above scheme still preserves correctness: if a receiver is speaking with a
sender who is still online, then it will decrypt the correct message; however, if a receiver is speaking
with a sender no longer in O, it will receive an SE ciphertext 0, and decrypting this ciphertext will
give ⊥. For this reason, this scheme also leaks the receivers that are paired with crashed senders,
because those receivers would hear an SE ciphertext of 0.

Theorem 8.2 (Fault-tolerant NIAR with receiver-insider protection). Assume that the Decisional
Linear assumption holds in suitable bilinear groups. Then, there exists a fault-tolerant NIAR scheme
that is SIM-secure w.r.t. the leakage function LeakS∗. Furthermore, the scheme has poly(n, κ) key
size; moreover, in every time step, each sender and receiver’s communication complexity is poly(κ)
assuming each sender sends one bit per step.

Proof. In the above, we sketched our fault-tolerant NIAR scheme slightly informally. The detailed
constructions and proofs of this theorem are deferred to Section B in the appendices.

8.3 Fault-Tolerant NIAR with Full Insider Protection

The fault-tolerant construction in Section 8.2 provides only receiver-insider protection, and it ad-
ditionally leaks the receivers corresponding to crashed senders. We now discuss how to upgrade
the protocol’s security to full insider protection. In other words, we want to prove security with
respect to the minimum, inherent leakage Leakmin defined in Section 8.1.2.

Our idea is to leverage an indistinguishable obfuscator for probabilistic circuits (piO) in a similar

fashion as in Section 7. Let tPKE := (Gen,Enc,Dec, G̃en) denote a perfectly hiding trapdoor
encryption scheme. Let piO be an indistinguishability obfuscator for perfectly indistinguishable
samplers over general circuit families. Let MCFEffh := (Gen,Setup,KGen,Enc,Dec) denote the
MCFE-for-selection scheme with full function privacy described in Section B.1.2. We can construct
a fault-tolerant NIAR scheme as below.
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Fault-tolerant NIAR scheme with full insider security

• Setup(1κ, n, π):

– Let pp := MCFEffh.Gen(1κ), and (mpk, msk, {ek′i}i∈[n]) := MCFEffh.Setup(pp, 1, n).

– For i ∈ [n], let (epki, eski)← tPKE.Gen(1κ).

– For i ∈ [n], let j := π−1(i), and let ej be the j-th selection vector, i.e., except the j-th
coordinate which is 1, all other coordinates are 0; call tki := MCFEffh.KGen(mpk,msk, ej).

– Output

tk := piO(1κ, Pmpk,{epki,tki}i∈[n]), {∀i ∈ [n] : eki := (mpk, ek′i), rki := eski}

where the program P is defined below.

• Enc(eki, xi, t,O): output cti,t := MCFEffh.Enc(mpk, ek′i, xi, t,O).

• Rte(tk,O, {cti,t}i∈O): for i /∈ O, let cti,t = ⊥, and output

(ct′1,t, ct
′
2,t, . . . , ct

′
n,t) := tk(ct1,t, ct2,t, . . . , ctn,t,O)

• Dec(rki, ct
′
i,t): output tPKE.Dec(eski, ct

′
i,t).

Probabilistic program Pmpk,{epki,tki}i∈[n](ct1, . . . , ctn,O)

Hardwired: mpk, {epki, tki}i∈[n]

• For i ∈ [n], let xi := MCFEffh.Dec(mpk, tki,O, {cti}i∈O).

• For i ∈ [n], let ĉti := tPKE.Enc(epki, xi).

• Output {ĉti}i∈[n].

Theorem 8.3 (Fault-tolerant NIAR scheme with full insider security). Suppose that tPKE is a
perfectly hiding trapdoor encryption scheme, piO is an indistinguishability obfuscator for perfectly
indistinguishable samplers over general circuit families, and moreover, MCFEffh is fully function-
hiding IND-secure. Then, the above fault-tolerant NIAR construction is SIM-secure with full
insider protection, i.e., it is SIM-secure w.r.t. the leakage Leakmin defined in Section 8.1.2.

Proof. The proof ideas are similar to those of Section 7 but become more involved now due to the
need to reason about the online set O. We defer the full proofs to Section B.3 in the appendices.

9 Conclusion and Open Questions

Our paper is an initial exploration of the NIAR abstraction, and we reveal various subtleties in
terms of definitions as well as construction. Many open questions arise given our new abstractions,
for example:

1. Can we construct NIAR with full insider protection from standard assumptions? Is full insider
protection inherently more challenging than receiver-insider protection?
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2. Can we improve or get rid of the poly(κ) blowup in communication, and construct a constant-
rate or rate-1 NIAR scheme, similar to the notion of rate-1 in the context of fully homomorphic
encryption [BDGM19,GH19]?

3. Can we design a concretely efficient multi-party computation protocol to realize the one-time
trusted setup? Can we make this decentralized setup procedure less interactive?

4. As mentioned, our schemes with receiver-insider protection are potentially implementable; so
another interesting question is whether we can further improve the concrete performance of
NIAR and make it practical in real-world applications.
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A Equivalence between Simulation- and Indistinguishability-Based
Notions

We now prove Lemma 2.1. We restate the lemma for the reader’s convenience.

Lemma A.1 (Restatement of Lemma 2.1). A NIAR scheme is SIM-secure iff it is IND-secure.
Similarly, a NIAR scheme is SIM-secure with receiver-insider protection (or full insider protec-
tion, respectively) iff it is IND-secure with receiver-insider protection (of full insider protection,
respectively).

Proof. Let SIMa-secure, for a ∈ {SR, S, min}, denote SIM-security with Leak = Leaka. Sim-
ilarly let INDa-secure denote IND-security with Leak = Leaka. The corresponding experiment
NIAR-Exptb,A(1κ) with Leak = Leaka in the admissibility rule is denoted as NIAR-Exptb,Aa (1κ). Now
we show that for any a ∈ {SR, S, min}, a NIAR scheme is SIMa-secure iff INDa-secure.

SIMa-secure ⇒ INDa-secure If a NIAR scheme is SIMa-secure, then according to Definition
1, there exists a simulator Sima such that for any non-uniform p.p.t. adversary A, A’s views in
RealA(1κ) and IdealA,Sim

a
(1κ) are computationally indistinguishable. Now consider the following

experiment Hybba(1
κ) for b ∈ {0, 1}:

n,KS ,KR, π(0), π(1) ← A(1κ)

({eki}i∈[n], {rki}i∈[n], tk)← Sima(1κ, n,KS ,KR, Leaka(π(b),KS ,KR))

For t = 1, 2, . . . :

If t = 1, then {x(0)
i,t }i∈HS

, {x(1)
i,t }i∈HS

← A(tk, {eki}i∈KS
, {rki}i∈KR

);

else {x(0)
i,t }i∈HS

, {x(1)
i,t }i∈HS

← A({cti,t−1}i∈HS
);

{cti,t}i∈HS
← Sima

({
∀i ∈ KR ∩ π(b)(HS) : (i, xj,t) for j = (π(b))−1(i)

})
According to the definition of SIMa-secure, for b ∈ {0, 1}, any non-uniform p.p.t. adversary’s
views in NIAR-Exptb,Aa (1κ) and Hybba(1

κ) are computationally indistinguishable. Moreover, any
admissible A’s views in Hyb0

a(1
κ) and Hyb1

a(1
κ) are identical due to the admissibility conditions:

1) Leaka(π(0),KS ,KR) = Leaka(π(1),KS ,KR); 2) for any i ∈ KR ∩ π(b)(HS), x
(0)
j0,t

= x
(1)
j1,t

where
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for b ∈ {0, 1}, jb := (π(b))−1(i). Further, NIAR-Expt1,Aa (1κ) and Hyb1
a(1

κ) are also computationally
indistinguishable due to the SIMa-security.

To summarize, any admissible, non-uniform p.p.t. adversary A’s views in NIAR-Expt0,Aa (1κ) and
NIAR-Expt1,Aa (1κ) are computationally indistinguishable, i.e., the NIAR scheme is INDa-secure.

INDa-secure ⇒ SIMa-secure A NIAR scheme is INDa-secure iff any admissible, non-uniform
p.p.t. adversary A’s views in NIAR-Expt0,Aa (1κ) and NIAR-Expt1,Aa (1κ) are computationally indis-
tinguishable. Construct a p.p.t. simulator Sima as follows:

Description of Sima

• Upon receiving 1κ, n,KS ,KR, Leak∗, Choose the lexicographically smallest π̃ such that
Leaka(π̃,KS ,KR) = Leak∗. Note that for any a ∈ {S,SR,min}, all π’s satisfying
Leaka(π̃,KS ,KR) = Leak∗ result in the same KR ∩π(HS) set — henceforth let Γ be this set.

Output ({eki}i∈[n], {rki}i∈[n], tk)← Setup(1κ, n, π̃).

• For t = 1, 2, . . .: receive {(i, x̃i,t)}i∈Γ, and let

xj,t :=

{
x̃i,t if j = π̃−1(i) for some i ∈ Γ

0 otherwise

For i ∈ HS , let cti,t ← Enc (eki, {xi,t}i∈HS
, t), and output {cti,t}i∈HS

.

If a non-uniform p.p.t. adversary A can distinguish RealA(1κ) from IdealA,Sim
a
(1κ), then we can

construct a non-uniform p.p.t. admissible adversary Ba that can distinguish NIAR-Expt0,Aa (1κ) and
NIAR-Expt1,Aa (1κ). B is interacting with a challenger C who is either running NIAR-Expt0,Aa (1κ) or
NIAR-Expt1,Aa (1κ).

Description of Ba(1κ)

• (n, π,KS ,KR)← A(1κ);

• Choose the smallest π̃ in lexicographic order such that Leaka(π̃,KS ,KR) = Leaka(π,KS ,KR);
and send (n,KS ,KR, π, π̃) to C;

• For t = 1, 2, · · · :

– If t = 1, pass (tk, {eki}i∈KS
, {rki}i∈KR

) received from C to A; else, pass {cti,t−1}i∈HS
re-

ceived from C to A;

– receive {x(0)
i,t }i∈HS

from A;

– ∀j ∈ HS , let x
(1)
j,t =

{
x

(0)
j′,t where j′ = π−1(π̃(j)) if π̃(j) ∈ KR

0 otherwise
(∗)

– send {x(0)
i,t }i∈HS

, {x(1)
i,t }i∈HS

to C;

• b′ ← A, output b′.

Note that for any a ∈ {S, SR,min}, π̃(HS) ∩ KR = π(HS) ∩ KR. Therefore, Ba is able to compute

{x(1)
i,t }i∈HS

in the expression (∗). Further, Ba is an admissible adversary since one can check that
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the following conditions hold by construction: 1) Leaka(π̃,KS ,KR) = Leaka(π,KS ,KR); 2) for any

i ∈ KR ∩ π(HS) = KR ∩ π̃(HS), x
(0)
j0,t

= x
(1)
j1,t

where j0 = π−1(i) and j1 = π̃−1(i).

If C runs NIAR-Expt0,Aa (1κ), then A’s view is identically distributed as RealA(1κ); otherwise,
A’s view is identically distributed as IdealA,Sim

a
(1κ) according to the construction. Hence, Ba is

an admissible adversary that can distinguish NIAR-Expt0,Aa (1κ) and NIAR-Expt1,Aa (1κ) with same
advantage as A can distinguish RealA(1κ) from IdealA,Sim

a
(1κ).

Summarizing, if a NIAR scheme is INDa-secure, then it is SIMa-secure.

B Details of Our Fault-Tolerant Scheme

Earlier in Section 8, we sketched our fault-tolerant NIAR constructions. In this section, we shall
provide the full details of the constructions and prove them secure. Specifically, we will first present
the details our fault-tolerant NIAR scheme with receiver-insider protection. Then, in Section B.3,
we shall present the proofs for our construction with full insider protection.

B.1 Fault-Tolerant, Multi-Client Functional Encryption for Selection

First, we modify the underlying MCFE-for-selection scheme to be fault-tolerant. In terms of
abstraction, the Gen, Setup, and KGen algorithms have the same syntax as before; but the

Enc(mpk, eki,x
(b)
i , t,O) and Dec(mpk, sky,O, {cti}i∈O) algorithms now take an additional param-

eter O ⊆ [n] as input where O denotes the currently online set of clients. For correctness, given a
correctly constructed functional secret key sky for the vector y := (y1, . . . ,yn) and a collection of
correctly computed ciphertexts {cti}i∈O for the plaintext messages xO := {xi}i∈O respectively, we
require that Dec(mpk, sky,O, {cti}i∈O) results in 〈xO,yO〉 where yO = {yi}i∈O. In other words,
if y is selecting a coordinate for a client not in O, then the Dec should output 0.

B.1.1 Function-Revealing MCFE for Selection

Security definition. We modify the previous IND-secure notion (Definition 6) slightly to account
for the online set O.

Experiment Exptb(1κ):

• Setup. Same as before.

• Query. The adversary can make the following types of queries; moreover, all KGen queries
must be made before any Enc query:

– KGen queries. Same as before.

– Enc queries. Whenever A makes an Enc query by specifying (O, {x(0)
i,t ,x

(1)
i,t }i∈H∩O)

where H := [n]\K, the challenger C calls cti := Enc(mpk, eki,x
(b)
i , t,O) for i ∈ H ∩ O

and returns {cti}i∈H∩O to A; moreover it sets t := t+ 1.

An adversary A is said to be admissible iff the following holds with probability 1: for any y :=

(y1, . . . ,yn) submitted in a KGen query where each yi ∈ {0, 1}m, for any tuple (O, {x(0)
i,t ,x

(1)
i,t }i∈H)

submitted in an Enc query,〈
(x

(0)
i,t )i∈H∩O, (yi)i∈H∩O

〉
=
〈

(x
(1)
i,t )i∈H∩O, (yi)i∈H∩O

〉
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We say that a fault-tolerant MCFE-for-selection scheme is IND-secure iff for any non-uniform
p.p.t. admissible adversary A, its views in the above Expt0(1κ) and Expt1(1κ) are computationally
indistinguishable.

Construction. We now modify our previous MCFE construction in Section 5.2 as below.

• Setup and KGen: same as in Section 5.2.

• Enc(mpk, eki,xi, t,O): same as Section 5.2 except that CPRF.Eval(Ki, t) is replaced with
the following which takes into account the online clients O:

CPRF.Eval(Ki, t,O) :=
∑

j 6=i,j∈O
(−1)j<i · PRFkij (t)

• Dec(mpk, sky,O, {cti}i∈O): same as Section 5.2 except that only the clients in O are involved

in the decryption, i.e., the equation JvK :=
∏
i∈[n] J〈ci,1,ki,1〉+ 〈ci,2,ki,2〉+ 〈c̃i, k̃i〉K is replaced

with JvK :=
∏
i∈O J〈ci,1,ki,1〉+ 〈ci,2,ki,2〉+ 〈c̃i, k̃i〉K.

Theorem B.1 (Fault-tolerant, function-revealing MCFE for selection). Assume that the Decisional
Linear assumption holds in the group G. The above fault-tolerant MCFE scheme is IND-secure.

Proof. The proof can be carried out in almost an identical manner as that of Theorem 5.2. Partic-
ularly, note that the term Jc̃K in the ciphertext does not affect the security of the scheme at this
point.

B.1.2 Upgrade for Function Privacy

Security definitions. The new function-hiding security experiment FH-Exptb(1κ) is defined just
like in Section 5.1, except that Enc queries are defined like in Section B.1.1, where A additionally

specifies an online set O, and the challenger encrypts {x(b)
i }i∈H∩O.

An adversary A is said to be admissible iff the following hold with probability 1: for any pair

(y(0),y(1)) submitted in a KGen query where for b ∈ {0, 1}, y(b) := (y
(b)
1 , . . ., y

(b)
n ) ∈ {0, 1}mn, it

must be that

1. for i ∈ K, y
(0)
i = y

(1)
i .

2. for any (O, {x(0)
i,t ,x

(1)
i,t }i∈H∩O) submitted in an Enc query,〈

(x
(0)
i,t )i∈H∩O, (y

(0)
i )i∈H∩O

〉
=
〈

(x
(1)
i,t )i∈H∩O, (y

(1)
i )i∈H∩O

〉
(5)

We say that a fault-tolerant MCFE scheme is function-hiding IND-secure iff for any non-uniform
p.p.t. admissible adversary A, its views in the above FH-Expt0(1κ) and FH-Expt1(1κ) are computa-
tionally indistinguishable.

We can also define a relaxed notion called weakly-function-hiding IND-security. The only mod-
ification is in the admissibility rule: an adversary A is now said to be admissible iff the following
holds with probability 1: for any pair (y(0),y(1)) submitted in a KGen query where for b ∈ {0, 1},
y(b) := (y

(b)
1 , . . ., y

(b)
n ) ∈ {0, 1}mn, it must be that

1. for i ∈ K, y
(0)
i = y

(1)
i .

2. for any (O, {x(0)
i,t ,x

(1)
i,t }i∈H∩O) submitted in an Enc query,〈

(x
(0)
i,t )i∈H∩O, (y

(0)
i )i∈H∩O

〉
=
〈

(x
(1)
i,t )i∈H∩O, (y

(0)
i )i∈H∩O

〉
=
〈

(x
(1)
i,t )i∈H∩O, (y

(1)
i )i∈H∩O

〉
(6)
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Weakly function-hiding construction MCFEwfh. We can upgrade our MCFE scheme earlier
in Section B.1.1 to have weak function privacy like below. The idea is the same as in Section 5.3,
and the only change is that the new Enc and Dec are aware of the online set O.

MCFEwfh: fault-tolerant, weakly function-hiding MCFE for selection

• Gen(1κ), Setup(pp,m, n), and KGen(mpk,msk,y): Same as in Section 5.3.

• Enc(mpk, eki,x, t,O): Let ct := MCFE.Enc(mpk′, ek′i,x, t,O) ∈ Gm+4
1 , and ct := FE.KGen(

mski, ct). Output CT := (ct, ct).

• Dec(mpk, sky,O, {CTi}i∈O): Parse each CTi := (cti, cti) for i ∈ O. Parse sky := (k1, . . . ,kn).

For i ∈ O, call vi := FE.Dec(cti, cti,ki). Output
∏
i∈O vi.

Theorem B.2 (Fault-tolerant, weakly function-hiding MCFE for selection). Assume that the De-
cisional assumption holds in G, and suppose that in the MCFEwfh construction above, we employ the
FE scheme in Section 4.2 and the fault-tolerant MCFE scheme in Section B.1.1. Also, suppose that
the PRF used in the construction of CPRF satisfies pseudorandomness. Then, the fault-tolerant
MCFEwfh construction above is weakly-function-hiding IND-secure.

Proof. The proof is very similar to that of Theorem 5.3. Nonetheless, we present a modified proof
below for completeness.

Experiment FH-Expt0(1κ). We start with the FH-Expt0(1κ) experiment. In this experiment,

whenever answering either Enc queries or KGen queries from A, the vectors {x(0)
i,t }i∈H∩O and y(0)

are used. Recall also that A must satisfy the weak-function-hiding admissibility rules defined in
Equation (6).

Experiment Hyb0. In Hyb0, when answering the t-th Enc query, the challenger C uses the vector

{x(1)
i,t }i∈H∩O , i.e., it calls CTi := MCFEwfh.Enc(mpk, eki,x

(1)
i , t,O) for each i ∈ H∩O and returns

{CTi}i∈H∩O to A.
Any non-uniform p.p.t. adversary’s views in FH-Expt0(1κ) and Hyb0 are computationally indis-

tinguishable as long as the faul-tolerant MCFE employed is IND-secure as defined in Section B.1.1.

Experiment Hyb`. For ` ∈ [QKGen], Hyb` is defined as below: for the first ` number of KGen
queries made by A, generate the functional key by calling the honest MCFEwfh.KGen algorithm
using y(1) as the input vector; for all other KGen queries, generate the functional key by calling
the honest MCFEwfh.KGen algorithm using y(0) as the input vector. Otherwise, Hyb` is defined in
the same way as Hyb0.

Experiment H̃yb`. Let QKGen be the maximum number of KGen queries made by A. For

` ∈ [QKGen], H̃yb` is defined as below:

• Setup. For i ∈ H: instead of calling (mpki,mski) ← FE.Setup(pp,m), the challenger C

calls (mpki,mski)← FE.S̃etup(pp,m+ 4). The challenger C performs the remainder of the

Setup following the honest algorithm, and gives the resulting mpk and {eki}i∈K to A.
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• KGen queries. The first (` − 1) KGen queries will be answered with the honest KGen

algorithm using y(1) as the input, any KGen query after the first ` queries will be answered

with the honest KGen algorithm using y(0) as input. For the `-th KGen query:

– let y(0) and y(1) be the two vectors submitted by A during the `-th KGen query, let y∗ :=

y(0) ∈ Znq ;

– let (k∗1, . . . ,k
∗
n) := MCFE.KGen(mpk′,msk′,y∗); where each k∗i ∈ Zm+4

q for i ∈ [n].

– for i ∈ H, the challenger C calls k
∗
i := FE.Ẽnc(mski);

– for i ∈ K, the challenger C calls k
∗
i := FE.Enc(mpki,k

∗
i );

– the challenger C returns the functional key sky∗ := (k
∗
1, . . . ,k

∗
n) to A.

• Enc queries. For any Enc query with the submitted tuple (O, {x(0)
i }i∈H∩O, {x

(1)
i }i∈H∩O),

do the following. For i ∈ H ∩O:

– let cti = JciK1 := MCFE.Enc(mpk′, ek′i,x
(1)
i , t) ∈ Gm+4

1 , and

– let cti = JciK1 := FE.K̃Gen(mski, cti, J〈ci,k∗i 〉K1);

Return {(cti, cti)}i∈H∩O to A.

Using a proof that is essentially identical to that of Lemma 5.5, we can prove that as long as
the FE scheme is 1-SEL-SIM-secure, then, any non-uniform p.p.t. A’s views in Hyb` and H̃yb`+1

are computationally indistinguishable for ` ∈ [QKGen] ∪ {0}.
Below we state and prove the counterpart of Lemma 5.6.

Lemma B.3. Suppose that the Decisional Linear assumption holds in G, and that the PRF em-
ployed by the CPRF scheme satisfies pseudorandomness. Further, suppose that we employ the
fault-tolerant MCFE scheme described in Section B.1. Then, any non-uniform p.p.t. adversary’s
views in H̃yb` and Hyb` are computationally indistinguishable for ` ∈ [QKGen].

Proof. We will prove the theorem with a sequence of hybrid experiments.

Experiment HybH
` . The experiment HybH

` is almost the same as H̃yb`, except with the following
modification. During the t-th Enc query for t = 1, 2, . . ., let Ot be the online set specified by A
during time step t:

1. Choose random {T̃i}i∈H from G subject to the constraint that∏
i∈H∩Ot

T̃i ·
∏

j∈K∩Ot

JCPRF.Eval(Kj , t,Ot) · ρ∗K = 1 (7)

2. When J〈ci,k∗i 〉K := J〈ci,1,k∗i,1〉+ 〈ci,2,k∗i,2〉+ 〈c̃i, k̃∗i 〉K is computed and passed as input to FE.K̃Gen,

replace the term J〈c̃i, k̃∗i 〉K with T̃i where i ∈ H ∩Ot.

Lemma B.4. Suppose that the Decisional Linear assumption holds in G, and that the PRF em-
ployed by the CPRF satisfies pseudorandomness. Then, any non-uniform p.p.t. adversary’s views
in H̃yb` and HybH

` are computationally indistinguishable.
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Proof. Henceforth, let {i1, i2, . . . , id} denote the set of honest clients where i1 < i2 < . . . < id
and d = |H|. We consider a sequence of hybrid experiments, where in the j-th hybrid Hj where
j ∈ [d− 1] ∪ {0},

1. Regardless of j, we make the following modification. In every time step t, for every i ∈ H∩Ot,
replace the call to CPRF.Eval(Ki, t,Ot) with a group element Ri,t chosen at random subject
to the following constraint:∑

i∈H∩Ot

Ri,t +
∑

j∈K∩Ot

CPRF.Eval(Kj , t,Ot) = 0

2. If i is among the first j clients in H ∩ Ot and is not the last client in H ∩ Ot (assuming

lexicographically ordering), choose T̃i
$←G at random.

3. If i ∈ H∩Ot, but is not among the first j clients in H∩Ot and is not the last client in H∩Ot,
then the experiment chooses the T̃i value in each time step t as follows: T̃i := JRi,t · ρ∗K.

4. If i is the last client in H ∩Ot, then choose T̃i such that the following constraint is satisfied:∏
i∈H∩Ot

T̃i ·
∏
i∈K

JCPRF.Eval(Ki, t,Ot) · ρ∗K = 1

Observe that H0 is computationally indistinguishable from H̃yb`, and the argument is similar to
to the proof of Theorem 4.2. Further, Hd−1 the same as HybH

` . Therefore, it suffices to show that
no non-uniform p.p.t. adversary can distinguish between any two adjacent hybrids Hj

∗
and Hj

∗+1

except with negligible probability, for j∗ ∈ {0, 1, . . . , d− 2}. Suppose there is an efficient adversary
A that can distinguish Hj

∗
and Hj

∗+1 with non-negligible probability, we show how to construct
an efficient reduction B that can break the Decisional Linear assumption.

Suppose that B obtains an instance (J1K, JβK, JγK, JuK, JβvK, JzK) from a Vector Decisional Linear
challenger, where u,v, z ∈ ZQenc

q and β, γ ∈ Zq. B’s task is to distinguish whether JzK = Jγ(u + v)K
or random. B will now interact with A and embed this Decisional Linear instance in its answers.

• Setup. When running (mpk′,msk′, {ek′i}i∈[n]) ← MCFE.Setup(pp,m, n), for every i ∈ H, B
chooses ξi ∈ Zq at random, and implicitly sets the term ai := ξi ·β−1 without actually computing
them — note that β 6= 0 with all but negligible probability, so we can ignore the event that β = 0.
B runs the rest of the MCFE.Setup honestly. Note that all B can compute all terms of mpk′ and
{ek′i}i∈K.

• KGen queries.

1. The first (`− 1) KGen queries will be answered with the honest KGen algorithm using y(1)

as the input. However, we need to explain how to still compute the correct KGen algorithm
without knowing ai for i ∈ H. Recall that MCFE.KGen(mpk′,msk′,y(1)) gives a key of the
form {ki := (ki,1,ki,2, k̃i)}i∈[n].

– For all indices i ∈ K, B knows all necessary terms to compute ki := (ki,1,ki,2, k̃i) normally.

– For every i ∈ H, the terms ki,1,ki,2 need not use ai and can be computed normally. We

thus focus on the term k̃i which is supposed to be of the form (ρ,−ρ · ai) where ρ is chosen
at random for each KGen. B implicitly use the terms Jβρ′,−ξiρ′K in place of Jρ,−ρ · aiK.
Note that B does not know the exponents but it can nonetheless complete the remainder
of the computation, since it will next compute FE.Enc(mpki, JkiK) and this step only needs
the group encoding of these elements.
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2. Any KGen query after the first ` queries will be answered with the honest KGen algorithm
using y(0) as input. Using the same argument as above, although B does not know {ai}i∈H, it
can still compute these keys.

3. We now focus on the `-th KGen query. For the `-th KGen query:

– Let y(0) and y(1) be the two vectors submitted by A during the `-th KGen query, let y∗ :=
y(0) ∈ Zmnq ;

– For i ∈ H, B calls k
∗
i := FE.Ẽnc(mski);

– We now focus on how to compute the corrupt components k
∗
i where i ∈ K. B wants to

implicitly embed the γ term from the Decisional Linear challenge into the ρ term in the
`-th KGen query. However, B knows only JγK but not the exponent γ. However, this is
not a problem because A knows the ai terms for i ∈ K, and thus it can compute the term
Jk̃iK := Jρ,−ρaiK = Jγ,−γaiK. Moreover, the following step FE.Enc(mpki, JkiK) only needs
knowledge of the group encoding of ki.

• Enc queries. For the t-th Enc query with the submitted tuple (O, {x(0)
i }i∈H∩O, {x

(1)
i }i∈H∩O),

do the following. Let i∗ be the (j∗ + 1)-th client in H ∩ O. Note that i∗ may change between
different time steps t.

– If |H ∩ O| > i∗, then B will compute cti∗ := (Jci∗,1K, Jci∗,2K, Jc̃i∗K) as follows. The terms
Jci∗,1K, Jci∗,2K are computed honestly. The term Jc̃i∗K is generated as follows: let ut, vt, zt be
the t-th coordinate of u, v, and z, respectively. We will let

Jc̃i∗K := Jut,−ξ−1
i∗ βvtK,

Now, let cti∗ := FE.K̃Gen(mski∗ , cti∗ , J〈ci∗,1,k∗i∗,1〉+ 〈ci∗,2,k∗i∗,2〉+ ztK).
In other words, we are implicitly letting

Ri∗,t + ai∗µi∗,t = ut, µi∗,t = −ξ−1
i∗ βvt

where µi∗,t is the µ term chosen by i∗ in the t-th Enc query. Thus Ri∗,t ·γ = (ut−ai∗µi∗,t)γ =
(ut − ξi∗β−1 · µi∗,t)γ = (ut + ξi∗β

−1 · ξ−1
i∗ βvt)γ = (ut + vt)γ.

– For every honest client i ∈ (H∩O)\{i∗} and i is not the last client in H∩O, B will compute
cti := (Jci,1K, Jci,2K, Jc̃iK) as follows. The terms Jci,1K, Jci,2K are computed honestly. We now

focus on the term Jc̃iK. We implicitly choose µi,t := a−1
i φi,t where φi,t

$←Zq is chosen at random.
Now, we compute Jc̃iK := JRi,t + aiµi,t, µi,tK as follows:

JRi,t + aiµi,tK = JRi,t + aia
−1
i φi,tK = JRi,t + φi,tK

Jµi,tK = Ja−1
i φi,tK = Jξiφi,t · βK

Notice that both terms can be computed since the exponents Ri,t, w, φi,t, ξi are known, and
JβK is known.

Next, let cti := (Jci,1K, Jci,2K, Jc̃iK). B calls FE.K̃Gen(mski, cti, T̃i) where T̃i is chosen like in

Hj
∗
. Note that B does not know ρ∗ = γ, but since it knows Ri,t, it will be able to compute T̃i

whether it is chosen at random or chosen as JRi,t · γK.
– For the last honest client inH∩O henceforth denoted i′, B will compute the terms Jci′,1K, Jci′,2K

honestly. We now focus on how to compute Jc̃i′K. There are two cases. First, if |H ∩ O| ≤ i∗,
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in this case, B can compute Ri′,t because it knows all other {Ri,t}i∈H∩O,i 6=i′ . Therefore, it can
compute Jc̃i′K just like it did for i ∈ (H ∩O)\{i∗} earlier.

Second, if |H ∩ O| > i∗, in this case, B does not know Ri∗,t. B computes Jc̃i′K as below. B
samples a random φ ∈ Zq and implicitly chooses

µi′,t = −ξ−1
i′ · ξi∗ · µi∗,t + a−1

i∗ · φ, Ri′,t := −

 ∑
j∈H∩O,j 6=i′

Rj,t +
∑
j∈K

CPRF.Eval(Kj , t,O)


We may write Ri′,t as Ri′,t := ν −Ri∗,t where

ν := −

 ∑
j∈H∩O,j 6=i′,j 6=i∗

Rj,t +
∑
j∈K

CPRF.Eval(Kj , t,O)

 ∈ Zq is known to B.

Now, B will compute Jc̃idK as follows:

JRi′,t + ai′µi′,tK = Jν −Ri∗,t + ξi′ · ξ−1
i∗ · ai∗ · (−ξ

−1
i′ · ξi∗µi∗,t + a−1

i∗ · φ)K

= Jν −Ri∗,t − ai∗µi∗,t + ξi′ · ξ−1
i∗ · φK

= Jν − ut + ξi′ξ
−1
i∗ · φK

which can be computed knowing ν, JutK, and ξi′ξ
−1
i∗ φ.

Further,

Jµi′,tK = J·(−µi∗,t · ξ−1
i′ · ξi∗ + a−1

i∗ · φ)K

= Jξ−1
i∗ · βvt · ξ

−1
i′ · ξi∗ + φ · a−1

i∗ K

= Jβvt · ξ−1
i′ + φ · (ξi∗)−1βK

which can be computed knowing JβvtK, JβK and the exponents ξi′ , ξi∗ , and φ.

Next, let cti′ := (Jci′,1K, Jci′,2K, Jc̃i′K). B calls FE.K̃Gen(mski′ , cti′ , T̃i′) where T̃i′ is chosen

such that
∏
i∈H∩O T̃i ·

∏
j∈K JCPRF.Eval(Kj , t,O) · γK = 1 — we let T̃i∗ := JztK; and for

i ∈ H ∩O, i 6= i′, i 6= i∗, let T̃i be chosen like in Hj
∗
.

• Finally, and return {(cti, cti)}i∈H∩O to A.

If the Vector Decisional Linear tuple (J1K, JβK, JγK, JuK, JβvK, JzK) satisfies JzK = Jγ(u + v)K, then
A’s view in the above experiment is identical to Hj

∗
. Else, if JzK is randomly chosen, then A’s view

in the above experiment is identical to Hj
∗+1.

Experiment HybO
` . The hybrid HybO

` is defined almost identically as HybH
` , except that in the

`-th KGen query, the challenger switches to using y(1) instead of y(0).
Using the same idea as the proof of Claim 5.8, we can show that HybO

` and and HybH
` are

identically distributed.
Now, using a symmetric argument, we can complete the proof of Lemma B.3.

At this moment, it is not hard to see that Theorem B.2 follows in the same way as the proof of
Theorem 5.3.
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Fully function-hiding construction MCFEffh. We can now upgrade from weak function privacy
to full function privacy just like in Section 5.4. For completeness, we present the construction below,
and the only difference here is that Enc and Dec are now aware of O:

MCFEffh: fault-tolerant, fully function-hiding MCFE for selection

• Gen(1κ) and Setup(pp,m, n): Same as in Section 5.4.

• Enc(mpk, eki,x, t,O): call CT := MCFEwfh.Enc(mpk, eki,x||0, t,O) where 0 ∈ Zmq , and
output CT.

• KGen(mpk,msk,y): Same as in Section 5.4.

• Dec(mpk, sky,O, {CTi}i∈O): call x := MCFEwfh.Dec(mpk, sky,O, {CTi}i∈O) and output x.

Theorem B.5 (Fault-tolerant, fully function-hiding MCFE for selection). Assume that MCFEwfh

is weakly-function-hiding IND-secure. Then, the above construction is function-hiding IND-secure.

Proof. We can prove the theorem with a sequence of hybrid experiments as described by the
following table.

Experiment
Enc query KGen query

for i ∈ H ∩Ot for i ∈ H for i ∈ K

FH-Expt0 x
(0)
i ||0 y

(0)
i ||0

y
(0)
i ||0 = y

(1)
i ||0

Hyb1 x
(0)
i ||x

(1)
i 0||y(1)

i

Hyb2 x
(1)
i ||x

(1)
i y

(1)
i ||0

FH-Expt1 x
(1)
i ||0 y

(1)
i ||0

Any non-uniform p.p.t. adversary A’s views in any pair of adjacent hybrids are computationally
indistinguishable due to the fact that MCFEwfh is weakly-function-hiding IND-secure. Therefore,
the theorem follows.

B.2 Fault-Tolerant NIAR with Receiver-Insider Protection

We can construct a fault-tolerant NIAR scheme from a fault-tolerant, function-hiding MCFE-
for-selection scheme denoted MCFEffh. We sketched the construction earlier in Section 8.2. For
completeness, we present the full construction below.

Fault-tolerant NIAR with receiver-insider protection

• Setup(1κ, n, π): Same as in Section 6.

• Enc(eki, xi, t,O): Let c := SE.Enc(ski, xi), and henceforth let (c)j denote the j-th bit of
c. For j ∈ [L] where L := |c|, let (cti,t)j := MCFEffh.Enc(mpk, ek′i, (c)j , (t − 1)L + j,O).
Output cti,t := {(cti,t)j}j∈[L].

• Rte(tk,O, {cti,t}i∈O): For i ∈ [n], for j ∈ [L] where L is the length of an SE ciphertext,
let (ct′i,t)j := MCFEffh.Dec(mpk, tki,O, {(ct1,t)j}i∈O) and let ct′i,t := {(ct′i,t)j}j∈[L]. Output
{ct′i,t}i∈[n].
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• Dec(rki, ct
′
i,t): Output x := SE.Dec(rki, ct

′
i,t). We may assume that SE.Dec always outputs

⊥ upon receiving the ciphertext ct′i,t = 0.

Theorem B.6 (Fault-tolerant NIAR with receiver-insider protection). Suppose that the SE scheme
satisfies semantic security as defined in Appendix C.1, and that MCFEffh is function-hiding IND-
secure. Then, the above fault-tolerant NIAR scheme above is SIM-secure w.r.t. the leakage function
LeakS∗.

Proof. Due to Lemma 8.1, it suffices to prove that the NIAR scheme above is IND-secure w.r.t.
the leakage function LeakS∗ . Henceforth we use the security experiments NIAR-Exptb(1κ) defined
in Section 8.1. We will consider a following sequence of hybrid experiments to show that any
non-uniform p.p.t.admissible adversary’s views in NIAR-Expt0(1κ) and NIAR-Expt1(1κ) are compu-
tationally indistinguishable.

Experiment Hybb for b ∈ {0, 1}. For b ∈ {0, 1}, we define Hybb just like NIAR-Exptb(1κ) except
with the following modification: Henceforth let HHb ⊆ HS denote the set of senders who commu-
nicate with honest receivers as defined by π(b), and let HKb = HS\HHb denote the set of honest
senders who talk to corrupt receivers as defined by π(b). Now, during the t-th Enc query made
by the adversary A for t = 1, 2, . . ., the query is answered as follows — below let SE.Sim be the

simulator for the SE scheme, and let (Ot, {x(0)
i,t }i∈H, {x

(1)
i,t }i∈H) be the tuple submitted by A during

time step t:

• For i ∈ HHb∩Ot: let ci := SE.Sim(1κ), and for j ∈ [L], let (cti,t)j := MCFEffh.Enc(mpk, ek′i, (ci)j , (t−
1)L+ j,Ot).

• For i ∈ HKb ∩ Ot: compute the ciphertext cti,t honestly using x
(b)
i,t as input.

Claim B.7. Suppose that SE satisfies semantic security (and let SE.Sim be the corresponding sim-
ulator for semantic security), then for b ∈ {0, 1}, any non-uniform p.p.t. adversary’s views in Hybb

and NIAR-Exptb are computationally indistinguishable.

Proof. Follows from a straightforward reduction.

Fact B.8. Due to the admissibility rules imposed on A (and recall that we are using LeakS∗), we
have the following: π(0)(HS) = π(1)(HS), and π(0)(HS ∩ Ot) = π(1)(HS ∩ Ot).

Lemma B.9. Suppose that the MCFEffh scheme is function-hiding IND-secure, then no non-
uniform p.p.t. adversary A that respects the admissibility rules of the NIAR IND-security game
can distinguish Hyb0 and Hyb1 except with negligible probability.

Proof. In experiment Hybb, let ψ := {ψi}i∈π(b)(HS) where ψi is defined as the following:

• if i ∈ KR, ψi is the random coins consumed by the SE.Gen and SE.Enc algorithms pertaining
to the j-th sender where j := (π(b))−1(i).

• if i ∈ HR, then ψi is the random coins consumed by the SE.Sim algorithms pertaining to the
j-th sender where j := (π(b))−1(i).

Due to Fact B.8, π(0)(HS) = π(1)(HS), therefore, ψ has the same format regardless of b. Let
Hybb(ψ) be the experiment Hybb but when the aforementioned random coins are fixed to ψ. It
suffices to show that for any fixed ψ, Hyb0(ψ) and Hyb1(ψ) are computationally indistinguishable
as long as the non-uniform p.p.t.A respects the NIAR game’s admissibility rules. We show that if
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a non-uniform p.p.t.A that respects the NIAR game’s admissibility rules can distinguish Hyb0(ψ)
and Hyb1(ψ) with non-negligible probability, we can build a reduction B that breaks the fully
function-hiding IND-security of the MCFEffh scheme.

• First, A outputs n,KS ,KR, π(0), π(1).

• Next, B needs to simulate the NIAR scheme’s Setup phase forA. B obtains mpk and {ek′i}i ∈ KS
from its own challenger, and embeds these parameters into the Setup.

Next, for every i ∈ [n], B makes KGen queries to its own challenger to generate functional
secret keys for the pair of vectors ej0 and ej1 where for b ∈ {0, 1}, jb := (π(b))−1(i); let the result
be {tki}i∈[n]. B uses these tokens in the setup.

Due to Fact B.8, KR ∩ π(0)(HS) = KR ∩ π(1)(HS). For an honest sender communicating with a
corrupt receiver, B uses the appropriate coins inside ψ to run their SE.Gen.

• During each time step t ∈ N, A submits the tuple (Ot, {x(0)
i,t }i∈HS

, {x(1)
i,t }i∈HS

).

– For i ∈ HHb ∩ Ot, and for b ∈ {0, 1}, it computes cbi := SE.Sim(1κ) using the random coins
inside ψ for both choices of b.

– For i ∈ HKb ∩ Ot and for b ∈ {0, 1}, it computes cbi := SE.Enc(skjb , xi) where jb := π(b)(i)
using the random coins inside ψ for both choices of b.

– Now, B forwards the two vectors {cbi}i∈HS∩Ot for b ∈ {0, 1} to its own challenger bit by bit
in a total of L queries. It returns the concatenated result to A.

We verify that B indeed respects the admissibility rules of MCFEffh.

1. First, since A respects the admissiblity rules of the NIAR security game (with receiver-insider
protection), the “corrupt → ∗” part of the permutation must match for π(0) and π(1). Thus, for
every pair of selection vector B submits to its own challenger, if one selection vector is selecting
a corrupt sender’s message, the other must be consistent.

2. By Fact B.8, we have that π(0)(HS∩Ot) = π(1)(HS∩Ot). Checking the second admissibility rule
for MCFEffh boils down to checking that in the two alternate worlds, every receiver in π(0)(HS ∩
Ot) = π(1)(HS ∩Ot) must receive the same SE ciphertext. Recall that by the admissibility rule
imposed on A, the corrupt receivers receiving from HS ∩ Ot must receive the same message
in the two alternate worlds. Given this, the second admissibility rule for B is guaranteed by
construction due to our definition of ψ.

If the MCFEffh challenger used the bit b = 0, then A’s view is identically distributed as in
Hyb0(ψ); else its view is identically distributed as in Hyb1(ψ).

The proof of Theorem B.6 now follows due to Claim B.7 and Lemma B.9 and the hybrid
argument.

B.3 Fault-Tolerant NIAR with Full Insider Protection

We presented our full insider protection scheme with fault tolerance in Section 8.3. In this section,
we prove the security of this construction, that is, Theorem 8.3. We restate the theorem below for
the reader’s convenience.
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Theorem B.10 (Fault-tolerant NIAR scheme with full insider security). Suppose that tPKE is a
perfectly hiding trapdoor encryption scheme, piO is an indistinguishability obfuscator for perfectly
indistinguishable samplers over general circuit families, and moreover, MCFEffh is fully function-
hiding IND-secure. Then, the fault-tolerant NIAR construction in Section 8.3 is SIM-secure with
full insider protection, i.e., it is SIM-secure w.r.t. the leakage Leakmin defined in Section 8.1.2.

Proof. Due to Lemma 8.1, it suffices to prove that the construction is IND-secure with full insider
protection. We will prove this through a sequence of hybrid experiments.

Experiment Hyb1. Hyb1(1κ) is almost the same as NIAR-Expt0(1κ) except that during Setup,
for every i ∈ HR, we run the trapdoor key generation of the tPKE scheme to generate its public

key. In other words, for i ∈ HR, let epki ← tPKE.G̃en(1κ).
With a straightforward reduction to tPKE’s security, and specifically, the indistinguishability of

the normal and the trapdoor modes, we can show that any non-uniform p.p.t. adversary A’s views
in NIAR-Expt0 and Hyb1 are computationally indistinguishable.

Experiment Hyb2. Hyb2 is almost the same as Hyb1 except with the following modification:
during Setup, instead of calling tk := piO(1κ, Pmpk,{epki,tki}i∈[n]), we call

tk := piO
(

1κ, P̃mpk,{epki}i∈[n],{tki}i∈KR

)
where the program P̃mpk,{epki}i∈[n],{tki}i∈KR is defined below.

Probabilistic program P̃mpk,{epki}i∈[n],{tki}i∈KR (ct1, . . . , ctn,O)

Hardwired: mpk, {epki}i∈[n], {tki}i∈KR

• For i ∈ KR, let xi := MCFEffh.Dec(mpk, tki,O, {cti}i∈O); and let ĉti := tPKE.Enc(epki, xi).

• For i ∈ HR: let ĉti := tPKE.Enc(epki, 0).

• Output {ĉti}i∈[n].

Observe that in Hyb2, during Setup, in fact, for any i ∈ HR, there is in fact no need to call
tki := MCFEffh.KGen(mpk,msk, ej) where j := π−1(i), since {tki}i∈HR

will never be used later.
In the same fashion as in Claim 7.4, we can show the following: suppose that tPKE is a perfectly

hiding trapdoor encryption scheme, and that piO is an indistinguishability obfuscator for perfectly
indistinguishable samplers over general circuit families, then any non-uniform p.p.t. adversary A’s
views in Hyb1 and Hyb2 are computationally indistinguishable.

Experiment Hyb3. Hyb3 is defined almost identically as Hyb2 except that now, the NIAR chal-

lenger switches to using π(1) during Setup and to using {x(1)
i,t }i∈HS∩Ot for answering the online

routing queries.

Claim B.11. Suppose that MCFEffh is fully function-hiding IND-secure. Then, no non-uniform
p.p.t. adversary A that respects the admissibility rules of the NIAR IND-security game can distin-
guish Hyb2 and Hyb3 except with negligible probability.
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Proof. If there is a non-uniform p.p.t. adversary A that respects the admissibility rules of the NIAR
IND-security game who can distinguish Hyb2 and Hyb3 with more than negligible probability, we
can build a reduction B that breaks the fully function-hiding IND-security of the MCFEffh scheme.

• First, the adversary A outputs n, CS ,KS ,KR, π(0), and π(1).

• Now, B needs to run Setup: to do so, it obtains mpk and {ek′i}i ∈ KS from its own challenger,
and embeds these parameters into the Setup. B runs the tPKE key generation honestly for
i ∈ KR but calls the trapdoor key generation for i ∈ HR, just like in Hyb2.

Next, for every i ∈ KR, B makes KGen queries to its own challenger to generate functional
secret keys for the pair of vectors ej0 and ej1 where for b ∈ {0, 1}, jb := (π(b))−1; let the result
be {tki}i∈KR

.

The rest of Setup is performed just like in Hyb2.

• Next, for each time step t = 1, 2, . . ., A submits a tuple (O, {x(0)
i,t }i∈HS∩O) and {x(1)

i,t }i∈HS∩O. B
forwards the two vectors to its own challenger, and forwards the answer to A.

Below, we verify that B indeed respects the admissibility rules of the MCFEffh’s security game:

1. First, since A respects the admissibility rules of the NIAR game, it must be that π(0) and π(1)

are consistent when restricting to the “corrupt→ corrupt” part of the permutation. This means
that for every i ∈ KR — consider the corresponding pair of selection vectors ej0 and ej1 where
for b ∈ {0, 1}, jb := (π(b))−1 — it must be that either 1) ej0 and ej1 both do not select from any
coordinate belonging to KS ; or 2) they both select the same coordinate belonging to KS .

2. By the NIAR game’s admissibility rule imposed on A, we have that for any t ∈ N, it must be
that HS ∩ Ot ∩ (π(0))−1(KR) = HS ∩ Ot ∩ (π(1))−1(KR), and moreover, KR ∩ π(0)(HS ∩ Ot) =
KR ∩ π(1)(HS ∩ Ot). Due to the admissibility rule A must abide by, we have that during any

time step t ∈ N, for any i ∈ KR ∩ π(0)(HS ∩ Ot) = KR ∩ π(1)(HS ∩ Ot), x(0)
j0,t

= x
(1)
j1,t

where for

b ∈ {0, 1}, jb := (π(b))−1(i). In other words, in the two alternate worlds b = 0 or 1, every corrupt
receiver receiving from an honest and online sender must receive the same message. This means
that for every selection vector B submitted as a KGen query that selects one of the corrupt
receiver’s output, it must produce the same output in the two alternate worlds.

Now, if the MCFEffh challenger used b = 0, then A’s view is identically distributed as in Hyb2;
else A’s view is identically distributed as in Hyb3.

Completing the proof of Theorem 8.3. Finally, using a symmetric argument as the above,
we can prove that no non-uniform p.p.t. adversary that respects the admissibility rules of the NIAR
game can distinguish Hyb3 and NIAR-Expt1 except with negligible probability.

C Additional Background

C.1 Symmetric-Key Encryption

A symmetric-key encryption scheme SE := (Gen,Enc,Dec) has three possibly randomized algo-
rithms: sk ← Gen(1κ) generates a secret key sk; c ← Enc(sk, x) encrypts a plaintext message
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x ∈ {0, 1}` where `(·) is a fixed polynomial function in κ. x ← Dec(sk, c) decrypts the ciphertext
and returns a plaintext message x.

Correctness is defined in the most obvious manner: for any κ, the following holds with proba-
bility 1 for any x ∈ {0, 1}`: let sk← Gen(1κ) and c← Enc(sk, x), then, it must be that Dec(sk, c)
gives x.

Semantic security requires that as long as the non-uniform p.p.t. adversary does know the
honestly generated secret key, it cannot distinguish an honestly generated ciphertext of an arbitrary
message x from a simulated ciphertext generated by a simulator that does not know either sk or
the plaintext message x. More precisely, there exists a p.p.t. simulator Sim, such that the following
two experiments are computationally indistinguishable for any x ∈ {0, 1}`:

• Real: sk← Gen(1κ) and c← Enc(sk, x), output c.

• Ideal: output Sim(1κ).

C.2 Decisional Linear and Vector Linear Encryption

Recall that the Decisional Linear assumption was defined earlier in Section 4.1. We now describe
some straightforward applications of the Decisional Linear assumption, and these are the opera-
tional versions we use to prove our scheme.

Vector Decisional Linear assumption. For convenience, we use the Vector Decisional Linear
assumption as an operational assumption, which posits that the following two distributions are
computationally indistinguishable:

1. Sample pp := (q,G, g)
$←G(1κ) where G is a cyclic group of order q with a random generator

g = J1K. Sample random β, γ
$←Zq, and random u,v

$←Znq . Output the tuple (pp, J1K, JβK, JγK,
JuK, JβvK, Jγ(u + v)K).

2. Sample pp := (q,G, g)
$←G(1κ) where G is a cyclic group of order q with a random generator

g = J1K. Sample random β, γ
$←Zq, and random u,v, z

$←Znq . Output the tuple (pp, J1K, JβK, JγK,
JuK, JβvK, JzK).

Fact C.1. Assume that the Decisional Linear assumption holds in G, then the above Vector Deci-
sional Linear assumption holds in G as well.

Proof. The proof can be achieved through a straightforward hybrid argument. Consider a sequence
of hybrid experiment indexed by {0, 1, . . . , n}. In the i-th hybrid where i ∈ [n] ∪ {0}, the adver-
sary is given the tuple (J1K, JβK, JγK, Ju := (u1, . . . , un)K, Jβv := (βv1, . . . , βvn)K, Jr := (r1, . . . , rn)K)
where the first i coordinates of r are generated at random, and for any j > i, rj = γ(uj + vj).
It suffices to show that any two adjacent hybrids i∗ − 1 and i∗ are computationally distinguish-
able. Consider a reduction B that receives a Decisional Linear instance J1K, JβK, JγK, Ju∗K, Jβv∗K,
Jz∗K) and it wants to distinguish whether Jz∗K is random or Jz∗K = Jγ(u∗ + v∗)K. It will in-
teract with the adversary A who is trying to break the Vector Decisional Linear assumption.
B implicitly chooses ui∗ := u∗ and vi∗ := v∗, and all other coordinates of u and v are cho-
sen at random. B also chooses r1, . . . , ri∗−1 at random. Observe that B can compute the tu-
ple (J1K, JβK, JγK,u, βv, Jr1, r2, . . . , ri∗−1, z

∗, γ(ui∗+1 + vi∗+1), . . . , γ(ui∗+2 + vi∗+2), . . . , γ(un + vn)K)
and it gives A this tuple. If z = γ(u∗ + v∗), A’s view is identical as the (i∗ − 1)-th hybrid; else A’s
view is identical as in the i∗-th hybrid.
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Matrix-DDH assumption (MDDH). Suppose that a group generator pp
$←G(1κ) samples a

cyclic group G of prime order q, and a generator J1K ∈ G — henceforth let pp denote the description
of the group, including its order q and the sampled generator.

Let ` > d. We say that the (`, d)-MDDH assumption holds for G, iff any non-uniform p.p.t.
adversary’s views in the following experiments are computationally indistinguishable:

• Sample pp
$←G(1κ). Next, sample a random matrix A

$←Z`×dq and a random vector w
$←Zdq , and

output (JAK, JAwK).

• Sample pp
$←G(1κ). Next, sample a random matrix A

$←Z`×dq , and a random vector u
$←Z`q, and

(JAK, JuK).

Henceforth, we also call the (d+ 1, d)-MDDH assumption d-MDDH for short.

Fact C.2 (Escala et al. [EHK+13]). Suppose that the Decisional Linear assumption holds in G,
then the d-MDDH assumption holds in G for d = 2.

Fact C.3. Suppose that 2-MDDH holds in G, then for any ` > d such that ` is polynomially bounded
in the security parameter, the (`, d)-MDDH assumption holds in G.

Proof. Suppose that an adversary A is given JAK, JuK, and it wants to distinguish whether JuK =
JAwK for some w or if u is random. We consider a sequence of hybrid experiments indexed by
{2, 3, . . . , `}. In the i-th hybrid, we compute u′ := (u′1, u

′
2, . . . , u

′
`) = Aw, and we give the tuple

Ju′1, u
′
2, r3, . . . , ri, u

′
i+1, u

′
i+2, u

′
`K

to A, where r3, . . . , ri are independent random exponents. Therefore, it suffices to prove that any
two adjacent hybrids i∗ − 1 and i∗ are computationally indistinguishable.

Suppose that a reduction B receives a 2-MDDH instance JAK := (a1,a2,a
∗)> ∈ G3×2, Ju := (u1, u2, u

∗)K ∈
G3. For j ≥ i∗ + 1, pick aj := φja1 + φ′ja2 where φj , φ

′
j

$←Zq, and let uj := φju1 + φ′ju2.

For i∗, let ui∗ := u∗, and let ai∗ := a∗. For j ∈ [3, i∗ − 1], let uj
$←Zq, and let aj

$←Z2
q . Let

A′ := (a1,a2, . . . ,a`)
>, let u′ := (u1, u2, . . . , u`)

>. Give A the tuple (A′,u′).
Observe that if u = Aw, then A’s view is identical to the (i∗ − 1)-th hybrid; else A’s view is

identical to the i∗-th hybrid.

Secret-key vector linear encryption. Suppose that a group generator G(1κ) takes in a security
parameter 1κ and outputs a suitable cyclic group G of prime order q, and a random generator of
the group g := J1K ∈ G. Henceforth, let pp be the description of the group as well as the chosen
generator g. A secret-key vector linear encryption scheme for a polynomially bounded message
space works as follows:

• Setup(pp,m): pick S
$←Zm×2

q , let the secret key sk := (pp,S).

• Enc(sk,x): given the public key pk and the plaintext x ∈ Zmq , choose a random r
$←Z2

q , and then
compute and output the following ciphertext: ct := (JrK, Jx + SrK).

• Dec(sk, ct): parse sk := S ∈ Zm×2
q , and parse ct := (JrK, JcK) where c := (c1, c2, . . . , cm) ∈ Zmq .

To decrypt the i-th coordinate for i ∈ [m], let si ∈ Z1×2
q be the i-th row of S, compute Jci − si · rK

and output its discrete logarithm.
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Correctness of decryption can be verified mechanically.

Lemma C.4 (Security of vector linear encryption). Assume that the Decisional Linear assumption
holds in the group G, then given the above vector linear encryption scheme, any non-uniform p.p.t.
adversary A’s views in the following experiments LE-Expt0(1κ) and LE-Expt1(1κ) are computation-
ally indistinguishable.

LE-Exptb(1κ):

• Setup. First, run the honest group generation algorithm G(1κ) to generate a suitable group
G of prime order q; let pp be the description of the group and its generator. Next, a challenger
C calls sk := Setup(pp,m).

C gives pp to A, and A chooses a subset of coordinates K ⊆ [m] to corrupt, and C gives A
the secret keys {si}i∈K where si denotes the i-th row of the secret key S.

• Queries. In each encryption query, it submits two plaintexts x(0) = (x
(0)
1 , . . . , x

(0)
m ) ∈ Zmq

and x(1) = (x
(1)
1 , . . . , x

(1)
m ) ∈ Zmq . It is required that for any i ∈ K, x

(0)
i = x

(1)
i . Now, C

computes ct := Enc(sk,x(b)) and returns ct to A.

Proof. Let Q be the maximum number of encryption queries made by A. Without loss of generality,
we may assume that Q > 2. We may consider a sequence of hybrids indexed by i ∈ [Q+ 1]. In the
i-th hybrid, let H := [n]\K be the uncorrupted coordinates. For the j-th coordinate in H where

j < i, the challenger uses x
(0)
j in answering encryption queries. For the j-th coordinate in H where

j ≥ i, the challenger uses x
(1)
j in answering encryption queries. We now show that if there exists a

pair of adjacent hybrids i∗ and i∗ + 1 such that a non-uniform p.p.t.A can distinguish between the
two with non-negligible probability, we can construct a non-uniform p.p.t. reduction B that breaks
(Q, 2)-MDDH assumption — recall that in Facts C.2 and C.3, we showed that the Decisional Linear
assumption implies the (Q, 2)-MDDH assumption.

The reduction B obtains the tuple (JAK, JuK) from the (Q, 2)-MDDH challenger, and it wants
to tell whether u = Aw or u is random. Henceforth we write A := (a1,a2, . . . ,aQ)>, and u :=
(u1, u2, . . . , uQ)>.
B guesses at random which coordinate is going to be the i∗-th coordinate, and implicitly lets

s>i∗ := w without actually computing it — here we use si∗ ∈ Z1×2
p to denote the i∗-th row of the

secret key S. For all i 6= i∗, it chooses si (i.e., the i-th row of the secret key S) at random such
that it knows the exponent. After the adversary chooses K, if it turns out that B’s guess of i∗ is
wrong, B simply aborts. Otherwise, it gives the secret keys {si}i∈K to A.

During the j-th encryption query, B will implicitly let the random coins r := aj . Now, B
computes all terms in the ciphertext (JrK, Jc1, c2, . . . , cmK) just like in hybrid i∗, except that it
replaces Jci∗K with the term JujK from the (Q, 2)-MDDH instance. Note that B can compute all
other terms ci in the ciphertext for i 6= i∗ since it knows si.

Conditioned on B not aborting which happens with 1/Q probability, A’s view is either identically
distributed as the i∗-th hybrid or identically distributed as the (i∗+1)-th hybrid depending on what
choice the (Q, 2)-MDDH challenger made.
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D Additional Preliminaries for 1-SEL-SIM-Secure FE

D.1 Construction: Single-Input FE for Computing Inner-Product in the Expo-
nent

We present a single-input FE scheme for computing inner-product in the exponent. Our construc-
tion is essentially the same as in earlier works [ACF+18, ALS16, Wee16, ABCP16], except that 1)
we use a bilinear group; 2) in our construction, KGen takes in a vector encoded in the group G1

rather than in Zq; and 3) decryption performs pairing operations to compute multiplications in the
exponent.

In our construction, the Gen(1κ) algorithm calls the group generator G(1κ) and samples a
bilinear group8 (G1,G2,GT ) of prime order q, along with generators g1 ∈ G1, g2 ∈ G2, and the
description of a pairing operation e : G1 × G2 → GT . Henceforth, we will use JvK1, JvK2, JvKT
to denote gv1 , g

v
2 , and e(g1, g2)v, respectively. Henceforth, we assume that the public parameters

pp contains a description of the bilinear group including its order q, the generators g1, g2, and
a description of the pairing operation e. The remaining algorithms, including Setup, KGen,
Enc, and Dec are described below where d is a parameter — later we will show that the scheme
satisfies our strengthened notion of 1-SEL-SIM security, i.e., Definition 3 assuming that the d-
MDDH assumption (see Section C.2) holds in G2. In the special case when d = 1, the d-MDDH
assumption degenerates to the DDH assumption; therefore the reader can also assume that d = 1.

Single-input FE for computing inner product in the exponent

Setup(pp,m) :

A
$←Z(d+1)×d

q , W
$←Zm×(d+1)

q

mpk := (JAK2, JWAK2),msk := (W,A)

return (mpk,msk)

KGen(msk, JyK1) :

return JskyK
1

:= JW>yK1 ∈ Gd+1
1

Enc(mpk, JxK2 ∈ Gm
2 ) :

r
$←Zdq

return (JcK2, Jc
′K2) := (JArK2, Jx + WArK2)

Dec(JskyK
1
, JyK1, (JcK2, Jc

′K2)) :

return J〈y1, c
′〉 − 〈sky, c〉KT

Note that the Dec algorithm is actually computed as e(JyK1, Jc
′K2)/e(JskyK1, JcK2).

D.2 Proof of Theorem 4.1

To prove Theorem 4.1, it suffices to show that the above FE construction is 1-SEL-SIM-secure by
Definition 3, assuming that the d-MDDH assumption holds in the group G2. For completeness, we
present almost the same proof as Abdalla et al. [ACF+18], but now encoding the elements in the
appropriate groups.

Consider the following simulator construction; note that this also specifies the Ideal experi-
ment.

8In our NIAR construction, we use the symmetric case where G1 = G2 = G; however, in this section, we present
the more general version without assuming G1 = G2.
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S̃etup(pp,m) :

A
$←Z(d+1)×d

q ,W̃
$←Zm×(d+1)

q ,u
$←Zd+1

q \ span(A), compute 0 6= a ∈ Zd+1
q s.t. A>a = 0

mpk = (JAK2, JW̃AK2),msk = (W̃,A,a,u)

return (mpk,msk)

K̃Gen(msk, JyK1, J〈x,y〉)K1 :

return JskyK
1

:= JW̃>y − 〈x,y〉
〈u,a〉

aK
1

∈ Gd+1
1

Ẽnc(msk) :

return (JcK2, Jc
′K2) := (JuK2, JW̃uK2)

Note that the input JyK1, J〈x,y〉K1 to K̃Gen are in G1; but because the K̃Gen algorithm knows

W̃ ∈ Zm×(d+1)
q and 1

〈u,a〉a ∈ Zd+1
q , it can compute sky.

We now show that any non-uniform p.p.t. A’s views in Real and Ideal are computationally
indistinguishable. Define a hybrid experiment HybA(1κ,m) to be the following:

• pp := (q, e,G1,G2,GT , g1, g2)
$←G(1κ),

• Sample the following parameters A
$←Z(d+1)×d

q , W
$←Zm×(d+1)

q , u
$←Zd+1

q \ span(A) , mpk :=

(JAK2, JWAK2), msk := (W,A,u), and give mpk to A, who outputs x ∈ Zmq .

• Compute ct := (JcK2, Jc
′K2) = (JuK2, Jx + WuK2) and return ct to A.

• A is allowed to make queries to KGen(msk, ·), and it finally outputs a bit b.

HybA(1κ,m) is the same as Real(1κ,m) except that Ar in the ciphertext is replaced with u
$←Zd+1

q \
span(A).

Lemma D.1. Suppose that the d-MDDH assumption holds in G2. Then, any non-uniform p.p.t.
adversary A’s views in Real(1κ,m) and Hyb(1κ,m) are computationally indistinguishable.

Proof. First, imagine an experiment Hyb′ which is the same as Hyb except that u is chosen at
random from Zd+1

q instead. In this case, due to the d-MDDH assumption, no non-uniform p.p.t. ad-
versary can distinguish (JAK2, JArK2) from (JAK2, JuK2) with non-negligible probability. Therefore,
the computational indistinguishability of Real and Hyb′ follows from a straightforward reduction to
the d-MDDH assumption.

Finally, observe that the uniform distribution over Zd+1
q and Zd+1

q \ span(A) have statistical
distance at most 1/q which is a negligible function in κ. Therefore, A’s views in Hyb and Hyb′ have
negligible statistical distance. The lemma now follows through a hybrid argument.

To complete the proof of the 1-SEL-SIM security of the FE scheme, it suffices to prove the
following lemma.

Lemma D.2. For any adversary A, its views in Ideal(1κ,m) and Hyb(1κ,m) are identically dis-
tributed.
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Proof. The lemma can be observed by performing a variable substitution by letting

W := W̃ − 1

〈u,a〉
xa>

where u
$←Zd+1

q \ span(A),0 6= a ∈ Zd+1
q s.t. A>a = 0. W can be computed because u is not in

the span of A, indicating that 〈u,a〉 6= 0. Observe that

WA = W̃A

x + Wu = W̃u

W>y = W̃>y − 〈x,y〉
〈u,a〉

a

Therefore, the two experiments Ideal and Hyb are identically distributed.

D.3 Alternative Operational Security Definition

We give an n-concurrent version of the security definition which is easier to use in our proofs.
Consider an n-concurrent version of the security experiments in which the adversary A is allowed
to invoke n instances of the FE scheme. Specifically, let FE-Real[n](1κ,m) and FE-Ideal[n](1κ,m)
denote the n-current versions of the real-world and ideal-world experiments, as defined below:

Experiment FE-Real[n](1κ,m):

pp := (q, e,G1,G2,GT , g1, g2)
$←G(1κ)

∀i ∈ [n] : (mpki,mski)← Setup(pp,m)

{xi}i∈[n] ← A(1κ, {mpki}i∈[n]) where xi ∈ Zmq
∀i ∈ [n] : cti ← Enc(mpki,xi)

b← A{KGen(mski,·)}i∈[n]({cti}i∈[n])

Output b

Experiment FE-Ideal[n](1κ,m):

pp := (q, e,G1,G2,GT , g1, g2)
$←G(1κ)

∀i ∈ [n] : (mpki,mski)← S̃etup(pp,m)

{xi}i∈[n] ← A(1κ, {mpki}i∈[n]) where xi ∈ Zmq
∀i ∈ [n] : cti ← Ẽnc(mski)

b← A{Oi(·)}i∈[n]({cti}i∈[n])

Output b

For i ∈ [n], the oracle Oi(·) in the above FE-Ideal experiment is defined as below: upon receiving

a KGen query with [y]1 ∈ Gm
1 return K̃Gen(mski, [y]1, [〈xi, y〉]1) to A.

Lemma D.3. Let n be bounded by a fixed polynomial in the security parameter κ. If FE is 1-SEL-
SIM-secure, then any non-uniform p.p.t. A’s views in FE-Real[n](1κ,m) and FE-Ideal[n](1κ,m) are
computationally indistinguishable.

Proof. The proof can be accomplished through a standard hybrid argument. Starting from FE-Real[n](1κ,m)
in which all instances of FE are instantiated with the real scheme, one by one, we shall replace each
instance of FE that A is interacting with with a simulated instance. Due to the 1-SEL-SIM-security
of FE, A’s views in each adjacent pair of hybrids are computationally indistinguishable.
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