
Formal security analysis of MPC-in-the-head
zero-knowledge protocols

Nikolaj Sidorenco
Dept. of Computer Science

Aarhus University
Aarhus, Denmark

sidorenco@cs.au.dk

Sabine Oechsner
Dept. of Computer Science

Aarhus University
Aarhus, Denmark
oechsner@cs.au.dk

Bas Spitters
Concordium Blockchain Research Center

Aarhus University
Aarhus, Denmark
spitters@cs.au.dk

Abstract—Zero-knowledge proofs allow a prover to convince a
verifier of the veracity of a statement without revealing any other
information. An interesting class of zero-knowledge protocols
are those following the MPC-in-the-head paradigm (Ishai et
al., STOC ’07) which use secure multiparty computation (MPC)
protocols as the basis. Efficient instances of this paradigm have
emerged as an active research topic in the last years, starting
with ZKBoo (Giacomelli et al., USENIX ’16). Zero-knowledge
protocols are a vital building block in the design of privacy-
preserving technologies as well as cryptographic primitives like
digital signature schemes that provide post-quantum security.

This work investigates the security of zero-knowledge protocols
following the MPC-in-the-head paradigm. We provide the first
machine-checked security proof of such a protocol on the example
of ZKBoo. Our proofs are checked in the EasyCrypt proof
assistant. To enable a modular security proof, we develop a
new security notion for the MPC protocols used in MPC-in-the-
head zero-knowledge protocols. This allows us to recast existing
security proofs in a black-box fashion which we believe to be of
independent interest.

I. INTRODUCTION

Zero-knowledge proofs [1] allow a party, the prover, to
convince another party, acting as the verifier, of the verac-
ity of some statement without revealing anything else. This
seemingly paradoxical primitive lies at the heart of many
modern privacy-preserving technologies, and more generally
is a crucial cryptographic building block for applications like
digital signature schemes.

One approach to constructing zero-knowledge proofs has
gained particular attention over the last years: the MPC-
in-the-head paradigm of Ishai et al. [2] which uses secure
multiparty computation (MPC) protocols in a surprising way
as the building block. Consider the setting where a prover
holds the pre-image x of a public one-way function f and has
published y = f(x). To convince the verifier that they indeed
know x corresponding to y, the prover will first split the secret
x into random shares x1, . . . , xn such that

∑
i xi = x. The

prover then emulates an MPC protocol ”in their head”, with
the catch that the protocol performs a distributed computation
of f(x) with shares x1, . . . xn as inputs. This emulation yields
one transcript of the protocol execution per party. Prover and
verifier can then interact to reveal a subset of transcripts, which
the prover can check for consistency. If the consistency check
succeeds, then the verifier will be convinced that the prover

knows x. Intuitively, this does not leak any information about
x if the MPC protocol is secure against insider corruption of
some parties and not too many transcripts are revealed.

While at first believed to be of purely theoretical interest,
the MPC-in-the-head paradigm was subsequently shown to
be of practical relevance [3]. Combined with the Fiat-Shamir
heuristic [4], one can moreover obtain efficient digital sig-
nature schemes from such zero-knowledge proofs. In fact,
Picnic, a successful contender for the NIST post-quantum
cryptography standardization competition [5], follows this
design pattern. Moreover, multiple efficiency improvements
have been proposed recently [6], [7]. Given the standardization
potential of this approach, it is natural to ask to formally verify
such constructions.

A. Our Contributions

In this work, we investigate the security of MPC-in-the-head
type zero-knowledge proofs like ZKBoo [3], Picnic [5], [8],
KKW [9], and Banquet [7].
• We provide the first machine-checked security proof of a

zero-knowledge protocol following the MPC-in-the-head
paradigm. Our mechanization studies the ZKBoo proto-
col [3] and is done in the EasyCrypt proof assistant [10].
Interestingly, protocols following the MPC-in-the-head
paradigm use MPC protocols as a building block in a
bigger construction rather than as a goal, and we are
not aware of any other machine-checked proof with this
property.

• To enable a modular security proof, we develop a new
security notion for the MPC protocols in question which
is of independent interest. The new notion enables us to
give black-box security proofs of MPC-in-the-head zero-
knowledge protocols.

Our starting point is the ZKBoo protocol by Giacomelli
et al. [3] as a representative of this protocol class. From a
technical perspective, this class of protocols is an interesting
challenge due to the unconventional combination of complex
primitives like MPC and zero-knowledge proofs. Based on the
observation that modularity of existing constructions currently
does not carry over to modularity of proofs, we propose to use
a refined notion of the MPC protocol (called decomposition
protocol, to keep with the ZKBoo terminology). This new

decomposition notion then allows us to define black-box trans-
formations from decomposition to Σ-protocols, a special class
of zero-knowledge protocol. To demonstrate the generality of
this approach, we recast existing protocols in this style. On a
conceptual level, this clear separation between decomposition
and transformation to Σ-protocol improves the understanding
of the different optimization strategies, and can hopefully help
find new ones. With a clear proof strategy set up, we then
proceed to mechanize the security proof in EasyCrypt. The
EasyCrypt code is available at https://github.com/Nsidorenco/
Decomposition-zk

B. Outline

Section II presents the necessary background for the rest
of this work. The MPC-in-the-head paradigm is presented in
Section III, and we discuss moreover the ZKBoo protocol and
its existing security proof as an example. In Sections IV and V
we present our new decomposition notion and demonstrate the
black-box construction of a Σ-protocol from it. Further proto-
cols, and their relation to our formalization, are discussed in
Section VI. Section VII presents our EasyCrypt formalization
of the ZKBoo protocol. Related work is discussed in Section
VIII before we discuss future work and conclude in Section
IX and X.

II. PRELIMINARIES

This section presents some cryptographic concepts and
notations.

Notation We let [n] denote the set {1, 2, . . . , n}, for any
given integer n and let |A| denote the cardinality of the set A.

Given two probability distributions X and Y we define the
statistical distance between them as

SD(X,Y) =
1

2

∑
i

|Pr[X = i]− Pr[Y = i]|.

Two families of random variables X = {Xk}, Y = {Yk}
indexed by bit-strings k ∈ {0, 1}∗ are said to be perfectly
indistinguishable if Xk = Yk for all k. We write X ∼ Y for
perfectly indistinguishable families X and Y . They are said
to be statistically indistinguishable if there exists a negligible
function ε(·) such that for every k,SD(Xk, Yk) ≤ ε(|k|). They
are said to be computationally indistinguishable if there exists
an efficient distinguisher D with a corresponding negligible
function, such that for all k,

|Pr[D(Xk) = 1]− Pr[D(Yk) = 1] | ≤ ε(|k|).

A. Commitments

A commitment scheme is a cryptographic primitive that
allows a committer holding message m to convince a verifier
of the following. Firstly, that some m was fixed at some point
in time without revealing the value of m. This is done by
sending a commitment, i.e. a token derived from m to the
verifier. Second, the committer can later open the commitment
to reveal m and convince the verifier that the message was not
modified in the meantime.

Definition 1 (Commitment scheme): A commitment scheme
consists of a tuple (setup, com, cverify) of probabilistic
algorithms with the following properties:
• Correctness: Let ck ← setup(1κ). For all m and

(c, r)← com(ck,m), we have cverify(m, c, r) = >.
• Perfect hiding: Let ck ← setup(1κ). For all m,m′, the

distributions com(ck,m) and com(ck,m′) are identical.
• Computational binding: Let ck ← setup(1κ), and c a

commitment. Then for any adversary and message m,
the probability of finding r, r′ such that

cverify(m, c, r) = cverify(m, c, r′) = >

is negligible.
Note that we limit ourselves to the above definition of perfectly
hiding and computationally binding commitments. There are
other notions in the literature.

B. MPC

A secure multiparty computation (MPC) protocol allows a
set of n mutually distrusting parties P1, . . . , Pn to compute
a public function f of their private inputs x1, . . . , xn. The
function f is typically assumed to be represented as an arith-
metic circuit. Security of MPC protocols can be studied with
respect to different corruption models. In this work, we focus
on passive security (also called honest-but-curious), where
all protocol participants are assumed to follow the protocol
specification but might try to derive additional information
from the messages they receive. An MPC protocol is deemed
passively secure if it provides
• Correctness: Parties learn the correct output
f(x1, . . . , xn), and

• Privacy: Parties do not learn anything about the inputs of
honest parties beyond what f(x1, . . . , xn) reveals.

We will denote by view the transcript of a protocol execution
from the point of view of a party Pi, consisting of the input
xi, all messages Pi receives, as well as its random choices.

C. Zero-knowledge protocols

Zero-knowledge protocols [1] are a cryptographic primitive
that allows a prover P to convince a verifier V of the veracity
of a public statement, without revealing anything beyond that
fact.

1) Σ-protocols: An important subclass of zero-knowledge
protocols consists of the Σ-protocols [11]. A Σ-protocol is
a zero-knowledge proof of knowledge for a relation R, i.e. it
allows a prover to prove knowledge of a witness x for a public
statement h in relation R.

Definition 2 (Σ-protocol): Let R be a relation. A Σ-protocol
for R is an interactive protocol between a prover P and a
verifier V , where P and V hold a common input h and P
has additional secret input x with R(h, x), with the following
properties:
• The protocol has a special 3-move form (a, e, z) as shown

in Fig 1.

https://github.com/Nsidorenco/Decomposition-zk
https://github.com/Nsidorenco/Decomposition-zk

• Completeness: If prover P is honest, i.e. R(h, x) and P
follows the protocol, then an honest verifier V will always
accept.

• s-special soundness: Given s transcripts
(a, e1, z1), . . . , (a, es, zs), an x′ with R(h, x′) can
be extracted from the transcripts.

• Special honest-verifier zero-knowledge: Assuming that
the verifier is honest, there exists a simulator S that sim-
ulates transcripts such that real and simulated transcripts
are statistically indistinguishable.

Prover(h, x) Verifier(h)

a← scommit(h, x)
a−−−−→

e← schallenge()
e←−−−−

z ← sresponse(h, x, a, e)
z−−−−→ sverify(h, a, e, z)

Fig. 1: Σ-Protocol overview

Interactive Σ-protocols can be made non-interactive and turned
into digital signature schemes via the Fiat-Shamir transforma-
tion [4]. The idea is to replace the random challenge of the
verifier by the output of a hash function on the statement to
be proved and the first protocol message. This ensures that the
prover chooses the first message before seeing the challenge.
This transformation from proof of knowledge to signature was
proven secure in the random oracle model by Pointcheval and
Stern [12].

III. THE MPC-IN-THE-HEAD PARADIGM

Since the invention of the zero-knowledge concept, many
approaches to constructing protocols were proposed. In recent
years, the MPC-in-the-head paradigm (Ishai et al. [2]) has
gained popularity. In this section, we briefly revisit the MPC-
in-the-head paradigm as well as the ZKBoo protocol.

A. MPC-in-the-head-based zero-knowledge

To obtain a zero-knowledge protocol from an MPC protocol,
the MPC-in-the-head paradigm proposes the following idea.
Assume there is a public function φ and value y, and we want
to prove knowledge of a witness x such that φ(x) = y in zero-
knowledge. The value y could, for example, be the output of
the SHA-256 hash function φ. As is standard in the MPC
literature, we assume that φ is given in the form of a circuit.
• The prover P starts by secret sharing the private input
x into inputs x1, . . . , xn to virtual parties P1, . . . , Pn.
Assume that the circuit representation of φ is chosen
such that it evaluates the function on such a shared input.
The prover then runs an MPC protocol for evaluating φ
on those shares ”in their head”. As a result, P obtains
one protocol transcript for each party, also referred to as

views. The prover then commits to all views and sends
the commitments to the verifier V .

• The prover and verifier engage in an interactive protocol
to select and open a random subset of committed views.

• The prover opens those commitments to reveal the re-
quested views.

• The verifier checks for consistency of the opened views
and accepts if they are consistent as well as valid open-
ings of the commitments.

The crucial observation is that if the MPC protocol allows for
local verifiability of views, then the above idea yields zero-
knowledge protocols. While the MPC-in-the-head paradigm
was initially believed to be of mostly theoretical interest, a
series of recent works, starting with ZKBoo [3], showed it to
be of practical relevance.

B. ZKBoo

We will now study the ZKBoo protocol as a concrete
instance of the MPC-in-the-head paradigm. The ZKBoo pro-
tocol [3] was the first construction to show that the MPC-
in-the-head paradigm [2] could be instantiated to yield a
practically efficient protocol. The idea is to use a secret-
sharing-based MPC protocol with three parties and a particular
communication pattern as the basis: Each party Pi only sends
messages to one of the other parties, namely their neighbor
Pi−1. This pattern ensures that meaningful consistency checks
can be performed given a pair of views of a protocol execution.
The protocol operates on arithmetic circuits over a finite field
Zp.

1) The Construction: For convenience, and to separate the
MPC protocol from the Σ-protocol construction, the authors
define (2,3)-decomposition. This is the view generation for an
MPC protocol with three parties and privacy against passive
corruption of two parties. This decomposition can then be
combined with any commitment scheme to obtain a Σ-protocol
for proving knowledge of a pre-image of a value y under a
function φ.

a) (2,3)-Decomposition: Let φ be a function that is
represented as a circuit with N gates. A (2,3)-decomposition
for φ is defined as follows:

Definition 3 ([3]): A (2,3)-decomposition for a function
φ is the set of functions D = {Share,Rec, φ(1)1 , . . . , φ

(N+1)
1 ,

. . . , φ
(1)
3 , . . . , φ

(N+1)
3 ,Output1, Output2,Output3} such that

Share is a surjective function and φ
(i)
m , Outputi and Rec are

functions as described before. Let Π∗φ be the algorithm in
Fig. 2, then we say that D
• (Correctness) is correct if Pr[φ(x) = Π∗φ] = 1 for all

x ∈ X . The probability is computed over the choice of
the random tapes ki.

• (Privacy) has 2-privacy if it is correct and for all
e ∈ [3] there exists a PPT simulator Se such that
({ki,wi}i∈{e,e+1},ye+2

) and Se(φ,y) have the same
probability distribution for all x ∈ X .

The decomposition functions are implemented by ZKBoo as:

Protocol Π∗φ

Let φ : X → Y be a function and D a related (2,3)-
decomposition as defined in Def. 3.
Input: x ∈ X

1) Sample random tapes k1, k2, k3.
2) Compute (x1,x2,x3)← Share(x;k1,k2,k3).
3) Let w1, w2, w3 be vectors with N + 1 entries.

Initialize wi[0] = xi, for all i ∈ [3].
• For j = 1, . . . , N and i ∈ [3] compute:

wi[j] = φ
(j)
i ((wm[0..j − 1],km)m∈{i,i+1}).

4) Compute yi = Output(wi,ki) for i ∈ [3].
5) Compute y = Rec(y1,y2,y3).

Output: y ∈ Y .

Fig. 2: Protocol Π∗φ describing how to use decomposition, used
in Def. 3. Reproduced from [3].

• Share(x;k1,k2,k3) performs an additive secret sharing
of x into three random shares x1, x2, x3 such that x =
x1 + x2 + x3.

• Rec(y1,y2,y3) outputs y = y1 + y2 + y3.
• The gate evaluation functions φ(j)i are defined as follows.

Consider the j-th gate, and let a and b be its left and right
input gates, resp. Then for i ∈ [3], φ(j)i is defined as:

– unary addition of α:

wi[j] = φ
(j)
i (wi[a]) =

{
wi[a] + α if i = 1

wi[a] otherwise
– unary multiplication by α:

wi[j] = φ
(j)
i (wi[a]) = α ·wi[a]

– binary addition:
wi[j] = φ

(j)
i (wi[a],wi[b]) = (wi[a] + wi[b])

– binary multiplication:

wi[j] =φ
(j)
i (wi[a, b],wi+1[a, b])

=wi[a] ·wi[b] + wi+1[a] ·wi[b]

+ wi[a] + wi+1[b] +Ri(j)−Ri+1(j)

where Ri(j) is sampled uniformly using ki.
• Outputi(wi,ki) selects the shares of the output wires of

the circuit.
Specifically, the gate evaluation functions φ(j)i restrict com-

munication between all parties of the protocol. Any of the
φi functions can only take inputs from two distinct parties.
By restricting all internal computations of the protocol to two
parties we can freely reveal all inputs to one gate evaluation
function, without revealing the reconstructed output. The se-
crecy of the reconstructed input is ensured by 2-privacy of
decomposition.

b) ZKBoo protocol: Given the (2,3)-decomposition de-
scribed above and a commitment scheme, the ZKBoo protocol
proceeds to construct a Σ-protocol as shown in Fig. 3, fol-
lowing the MPC-in-the-head paradigm. The protocol is shown
to be a Σ-protocol assuming the security of the commitment
scheme and the (2,3)-decomposition.

2) Black-Box Security: We will now revisit the security
proof of the ZKBoo construction. The proof of [3, Prop. 4.2]
is not black-box as it relies on implementation specifics rather
than on the security guarantees given by the decomposition
and the commitment scheme.

a) Revisiting the ZKBoo security proof: To prove that
the ZKBoo construction is a Σ-protocol, it is necessary to
prove three properties: Completeness, 3-special soundness and
special honest-verifier zero-knowledge. We stress that our
findings do not affect the correctness of the existing security
proof, but only its modularity and transferability to further
constructions.

The completeness property is derived from the correctness
of the commitment scheme in combination with correctness
of the decomposition. There is, however, a subtle issue that
prevents this proof step from being fully black-box: Correct-
ness of the decomposition itself does not guarantee anything
about the verifier’s ability to verify the opened views. More
specifically, correctness is a property of the protocol Π∗φ
derived from a decomposition D relating the outputs of Π∗φ(x)
and φ(x) for all x. This property lacks a statement about
the intermediate computation results, i.e. the views of the
decomposition resulting in the output, which is needed to
reason about the verification procedure. Indeed, the standard
correctness property in the MPC literature only guarantees cor-
rectness of the end result and not the intermediate computation
steps1. Hence the security proof needs to revisit the concrete
implementation of verification (recomputing the views in this
case) and conclude that verification is indeed possible.

The 3-special soundness property is a modified special
soundness property that proves witness extraction given 3
transcripts (instead of the usual 2). The proof relies on multiple
assumptions: First, the binding property of the commitment
scheme is used to argue that the opened views are identical in
the overlapping indices except with negligible probability. The
next step invokes the reconstruction property of the specific
secret sharing scheme used by ZKBoo to extract a potential
input. This non-black-box step is necessary due to the lack
of an explicit extractability guarantee of the decomposition
notion. Correctness of the decomposition ensures that the
extracted input is valid.

Finally, special honest-verifier zero-knowledge follows di-
rectly from 2-privacy of the decomposition and the hiding
property of the commitment scheme, so this part is black-box.

b) Conclusion: As explained above, the ZKBoo security
proof is not black-box, which seems to stem from an incom-
plete formalization of the required properties of the underlying
MPC protocol. In the next sections, we will make a black-box
construction and proof. To do so we modify the notion of
decomposition. This formalization is not limited to ZKBoo,
but captures a range of other protocols, as we will discuss in
Section VI

1Correctness of intermediate steps is of course shown during the proof, but
this information is usually dropped in the final statement as it is not necessary
for many applications.

ZKBoo protocol

The verifier and the prover have input y ∈ Lφ. The prover knows x such that y = φ(x). A (2,3) decomposition of φ is given.
Let Π∗φ be the protocol related to this decomposition.

Commit:The prover does the following:
1) Sample random tapes k1, k2, k3.
2) Run Π∗φ and obtain the views w1, w2, w3 and the output shares y1, y2, y3.
3) Commit to ci = com(ki,wi) for all i ∈ [3].
4) Send a = (y1,y2,y3, c1, c2, c3).

Prove: The verifier chooses an index e ∈ [3] and sends it to the prover. The prover answers to the verifier’s challenge sending
opening ce, ce+1 thus revealing z = (ke,we,ke+1,ke+1).

Verify:The verifier runs the following checks:
1) If the openings of commitments ce, ce+1 do not verify, output reject.
2) If Rec(y1,y2,y3) 6= y, output reject.
3) If ∃i ∈ {e, e+ 1} such that yi 6= Outputi(wi), output reject.
4) If ∃j such that we[j] 6= φ

(j)
e (we,we+1,ke,we+1), output reject.

5) Otherwise output accept.

Fig. 3: ZKBoo protocol, reproduced from [3].

IV. DECOMPOSITION PROTOCOLS

Now that we understand why the decomposition notion of
Giacomelli et al. [3] is not sufficient for a black-box security
proof of the ZKBoo protocol, we will remedy this. This
section proposes a new decomposition notion and explains
how the (2,3)-decomposition of Giacomelli et al. relates to
it. In Section V we will provide a black-box construction of
the ZKBoo protocol from our decomposition notion.

A. Syntax and Security

Let us first consider the syntax. First of all, we combine the
Share and φ(j)i functions into one decompose algorithm since
they are no longer used separately. Next, remember that the
black-box proof issues we discussed relate to the extractability
of a witness from views as well as a lack of understanding of
verification of the views. To mitigate these issues, we add a
new verify algorithm to the decomposition notion. Finally,
we observe that the optimizations of the ZKBoo protocol
which we investigate in Section VI improve efficiency by not
sending the full views in the last message of the Σ-protocol,
but instead performing a reversible compression step. For this
reason, we add the compress algorithm to our formalization.
So, the syntax of a decomposition looks as follows:

Definition 4 (Decomposition protocols): Let n denote the
number of parties. Let C and R be distributions and let
←R R denote uniformly sampling an element from the
distribution. A decomposition π is a collection of algorithms:
(decompose, compress, verify, out, rec) such that
• decompose(φ, x, ks) takes a circuit φ with input x and

a collection of random values and returns n views. We
fix the distribution R as the universe of all random value
inputs accepted by decompose.

• compress(v) is a compression function that trans-
forms a view w into an alternative representation.
For convenience, we define a compression function

compress(ws, I(e)) := (compress(ws[i]))i∈I(e) for a
full set of n views and a list of challenged views,
produced by I. We denote the universe of possible
challenges e ∈ C.

• uncompress(w) is the inverse of compress.
• verify(φ,ws′, e, ys) takes a circuit, d compressed

views, a challenge, and n output shares and returns
true/false,

• out(w[i]) takes a view and returns the output share,
• rec(ys) takes a list of output shares and returns the

output value of the circuit.

Our definition differs from the original by omitting the
explicit communication pattern of the φ

(j)
i function. While

the communication pattern is the mechanism enabling veri-
fication of views, we believe it is an implementation detail
of decompose which is ensured by the security properties.
By omitting the communication pattern we achieve a more
succinct definition that allows for any arbitrary communication
pattern provided the parties can still verify projected views
without revealing information about the input.

After defining the syntax of a decomposition protocol, we
will now express its security. We identify four properties of
interest: verifiability, privacy, special soundness, and lossless-
ness of compression.

a) Verifiability: Verifiability captures that the views of a
subset of parties in an honest execution of the protocol can
be verified. This property subsumes and extends correctness
of the underlying MPC protocol.

Definition 5 (Verifiability): For any fixed φ accepted by the
decomposition, we say π is verifiable if for all challenges e ∈
C and inputs x,

Pr[verifiability game(φ, x, e)] = 1

where

verifiability game(φ, x, e) = {
rs←R R;

ws← decompose(c, x, ks);

ys← map out ws;

y ← rec(ys);

ws′ ← uncompress(compress ws e);

valid← verify(c, ws′, ys);

return valid ∧ φ(x) = y

}

b) d-Privacy: The next property, d-privacy, captures the
fact that a subset of views of size d does not reveal the input
to the decomposition protocol. As is common in cryptography,
this privacy property is stated using simulators. Note that
the simulator is required to simulate not the parties’ views
obtained from the decompose function, but their compressed
versions. Moreover, the simulator should be able to produce
the output shares for all n parties which are indistinguishable
from real output shares.

Definition 6 (d-Privacy): A decomposition π is said to be
d-private if for all challenges e ∈ C and accepted circuits φ
there exists a PPT simulator Se such that

∀φ, x, e : real(φ, x, e) ∼ Se(φ, c(x))

where
real(φ, x, e) = {

rs←R R;

ws← decompose(c, x, ks);

ys← map out ws;

return (compress ws e, ys);

}

c) k-Special Soundness: Moreover, we require k-special
soundness, meaning that given multiple partial (compressed)
protocol views that are consistent with each other and verify, it
is possible to extract a valid input to the protocol. In particular,
given any subset of views of size k, we can extract a valid
input to the protocol.

Definition 7 (k-Special Soundness):
A decomposition π has k-special soundness if there exists a

PPT extractor witness extractor such that for any k tuples
of (ws′1, es1, ys1), . . . , (ws′k, esk, ysk)

• If es1, . . . , esk are pairwise different, and
• if the compressed views are pairwise consistent, i.e.
∀i, i′, j : j ∈ I(esi) ∩ I(esi′) =⇒ ws′i[j] = ws′i′ [j].
In particular, ys1 = · · · = ysk.

• if each set of compressed views verifies, i.e.
∀i, verify(φ,ws′i, esi, ysi) = true,

• then Pr[φ(witness extractor(c, {ws′i, esi}∀i) =
rec(map out(ys1)] = 1.

d) Losslessness of compression: Finally, we require the
compression function to be lossless and hence completely
reversible.

Definition 8 (Lossless Compression): Let compress be a
compression function with domain (e). Compress is lossless
if there exists an efficiently computable function uncompress

such that for all x ∈ D, uncompress(compress(x)) = x.
e) Decomposition Security: Combining the properties

above, we obtain the following security definition for decom-
position protocols:

Definition 9 (Secure decomposition protocol): Let k, d ∈ N.
A decomposition protocol φ is (k, d)-secure if it has verifia-
bility, d-Privacy, k-Special Soundness, and its decompression
is lossless.

B. Example: ZKBoo Decomposition Protocol
We now show that our new definition of a secure decompo-

sition captures existing protocols by considering the example
of ZKBoo. Further examples will be discussed in Section IV.
The construction, recast in our syntax, looks as follows:
• R is the universe of all three element tuples

(ks1, ks2, ks3) where ksi is a list of N random values.
• C = {1, 2, 3}
• out and rec work exactly as before.
• compress selects the appropriate views from a list of

views according to the challenge.
• decompose is a combination of Share and the gate com-

putation functions φ(j)i from Section III-B. Concretely,
the function corresponds to steps 2 and 3 in Fig. 2.

• verify performs the following checks:
– The views are well-formed.
– The output shares ys[e], y[e+ 1] are consistent with

the output gate shares in the corresponding views
ws′[e+ 1], ws′[e+ 1].

– For j = 1, . . . , N and i = 1, . . . , 3,
φ
(j)
i (ws′[a], ws′[b], ws′[a], ws′[b]) = ws′[e][j].

Here ws′[e][j] denotes the share of gate j in view e.
Lemma 1: The construction described above is a secure

decomposition for d = 2 and k = 3.
Proof: To show security, we need to prove verifiability,

3-special soundness, 2-privacy and losslessness of the com-
pression.

Verifiability is an extension of the original correctness proof.
Correctness concludes that the output shares reconstruct to
the value of circuit evaluation, for any input. It is proven by
structural induction on the type of gates. A consequence of the
proof is that all intermediate shares have been computed by
φi. In particular, that they have to follow the communication
pattern of party i solely depending on party i+1’s shares. Well-
formedness and output share consistency are trivially shown by
the original correctness proof, which proves the three criteria
for verify to succeed.

3-special soundness follows from the security of the additive
secret sharing scheme that is used by decompose and is
given by the original 3-special soundness proof of the
Σ-Protocol.

The proof of 2-privacy carries over directly. Finally, loss-
lessness is trivial, since compress is a projection and it does
not modify the individual views.

We conclude that ZKBoo fits our general framework.

V. FROM DECOMPOSITION TO Σ-PROTOCOL

In this section, we show an example of a black-box
construction of a Σ-protocol from the decomposition notion
presented in Section IV. We focus on one of the simplest
constructions based on the Σ-protocol by Giacomelli et al. [3].
As we will discuss in Section VI, this construction forms the
basis for a family of secure transformations. Note that we
obtain a stronger result than Giacomelli et al.: Our construction
works for any secure decomposition. Moreover, we add the
compress function to compress views to capture a greater
variety of decompositions.

A. Example: ZKBoo Σ-Protocol

Let π be a secure decomposition and Com be a secure
commitment scheme. The transformation into a Σ-Protocol is
shown in Fig. 4. All references to the internal structure of the
decomposition, or even the circuit, are removed. This stands
in contrast to Figure. 3.

For the sake of completeness, we will briefly outline the
security of this protocol.

Lemma 2: Let π be a secure (k,d)-decomposition, and Com
a secure commitment scheme. Then the protocol described in
Fig. 4 is a secure Σ-protocol.

Proof:
Completeness: Verifiability of the underlying decompo-

sition implies that verify(φ, z, ys) ∧ rec(ys) = y will
always result in true. Verification of commitments, due to
our definition of lossless compression, is proven with no
additional assumptions on the structure of ws. The domain
of compress is by definition I(e). Hence, for all indices
i ∈ I(e), ws[i] = z[i]. This reduces the verification of
commitments to cverify(com(ws[i]), ws[i])) which is en-
sured by correctness of the commitment scheme. k-Special
Soundness: Given k verifying transcripts of the Σ-Protocol
we can extract k runs of the decomposition, each revealing
d views. Because all Σ-Protocol transcripts are computed
from distinct challenges, the underlying decomposition must
also have been computed from distinct challenges. Moreover,
since the randomness and input to the decomposition protocols
are fixed, all k runs contain the same shares. In particular,
this is also the case for the d projected views. Finally, the
binding property of the commitment scheme ensures that
all k decomposition views where computed from the same
randomness and input.

The consistency of revealed views concludes the proof of
k-Special Soundness by application of the soundness prop-
erty of the decomposition. Special Honest-Verifier Zero-
Knowledge: Special honest-verifier zero-knowledge is a direct
consequence of d-privacy in combination with the hiding
property of the commitment scheme which allows simulating
commitments. Privacy of the decomposition gives a simulator

capable of simulating all output shares of the decomposition
and projected views ws′, such that ∀i ∈ I(e), ws′[i] = ws[i].
Here ws are the views computed by an honest decomposition.
For each index j 6∈ I(e), the view ws[j] will not be used by
verify, nor by cverify. Since the views with no simulated
counterpart are never accessed, the hiding property of the
commitment schemes ensures indistinguishability.

VI. FURTHER MPC-IN-THE-HEAD PROTOCOLS

Numerous implementations of the MPC-in-the-head
paradigm for zero-knowledge exist, many of them are
optimizations of ZKBoo. In this section, we will briefly
discuss how they fit within our definition of a decomposition
and how the corresponding transformation to a Σ-protocol
change. Note that we consider ZKBoo as the base protocol
and explain how the differences of the alternative protocols
fit within our framework.

A. ZKB++

The first protocol is ZKB++ [13]. It offers numerous op-
timisations for reducing the size of the messages in the Σ-
Protocol. Like in ZKBoo, the underlying MPC protocol is
kept as a three-party protocol with 2-Privacy. The compress
functions and the randomness space are optimized. Instead of
sampling a long random string at the beginning, the protocol
starts by sampling a short seed and proceeds by expanding it
into a long pseudo-random one. View compression works as
follows: Given a view, the input share and the random seed
used to generate all further randomness is projected out. Since
all randomness is fixed by the seed it is possible to recompute
all shares of the views given the input share. The remaining
algorithms for computing the decomposition and verification
remain unchanged.

B. KKW

Another optimisation vector was explored by Katz,
Kolesnikov and Wang [9]. They replace the traditional MPC
protocol with one with preprocessing. This approach splits
the MPC protocol into an input-independent offline phase
and an online phase where parties use their respective inputs.
Essentially, correlated randomness [14] is generated during
the offline phase and used in the online phase. The main
observation is that since the offline phase is input-independent,
revealing it completely does not compromise input privacy.
Of course, such a revealed offline phase cannot be used in an
online phase. So, the work employs a trick to use the repetition
of Σ-protocol executions in their favor. Instead of repeating
the protocol execution multiple times to reduce the soundness
error, like ZKBoo, KKW directly runs m copies of the MPC
protocol. The correct execution of the offline phase is then
verified via a cut-and-choose approach, i.e. some of the offline
phase instances are completely revealed. For the remaining
instances, the online phase can then be verified following the
ZKBoo template, where the verifier requests the opening of a
subset of party views for each instance.

Prover(φ, x, y) Verifier(φ, y)

rs←R R
ws← decompose(φ, x, ks)

cs← map com ws
ys← map out ks
a← (cs, ys)

a−−−−→
e←R C

e←−−−−
z ← compress(ws, I(e))

z−−−−→
verify(φ, z, ys)

∧ rec(ys) = y

∧ ∀i ∈ I(e) : cverify((decompose z[i]), cs[i])

Fig. 4: ZKBoo Σ-protocol construction based on secure decomposition.

In our terminology, we let R be the universe of all sets of
size m of preprocessed data from the protocol. decompose
then executes the online phase for each set of provided
preprocessed data. decompose returns the input of each party,
masked under the preprocessing. The challenge set C is then
all tuples of challenges to open a subset of the preprocessing,
and challenges to open all but an individual party from the
MPC protocols. compress selects the subset of runs chosen in
the challenge and reveals all preprocessing. For the remaining
runs, all preprocessing and views are sent, barring the view of
party p.

Since this protocol requires the prover to execute multiple
decomposition protocols with the same secret input, but with
different initial randomness, the authors added optimisations
not only to the MPC protocol but also to the Σ-protocol con-
struction. First, all randomness (preprocessing) is committed
to. Then, instead of sending all commitments to the verifier a
hash of all preprocessing concatenated is computed. Moreover,
all messages of the online phase are concatenated and hashed.
The hash of these two hash values is then sent to the verifier.
When the prover responds to a challenge, compress is used
to send the preprocessing and online phase. Additionally, the
commitments to the preprocessing of the unrevealed party are
sent. Uncompress is the identity.

To verify an execution of the Σ-Protocol, the verifier first
ensures that the offline and online phase are executed cor-
rectly by calling verify. Next, the verifier commits to all
preprocessing revealed, concatenated it with the commitment
of the unrevealed party (when applicable), and computes the
hash. The verifier then runs decompose, and commits to all
messages of the online phase. Finally, the two hash values are
hashed again and compared to the value sent by the prover.

C. Picnic

The zero-knowledge protocol underlying the Picnic sig-
nature scheme [13] is a combination of the optimizations
described above and hence fits nicely within our approach.

D. SNI-in-the-head
Seker et al. [15] showed ZKBoo to be susceptible to

probing attacks on the exposed views of the decomposition. To
mitigate this attack, the authors then proposed a change to the
protocol, in particular how multiplication gates are evaluated.
The entire extension conforms to our definitions since only
the internal implementation of the decompose function is
changed compared to ZKBoo. Since the attack is only on the
exposed views of the decomposition, the Σ-Protocol does not
need to change.

E. BBQ and Banquet
BBQ [6] and Banquet [7] continue the line of optimizations

of ZKB++ and KKW and adapt their approach to work with
the AES block cipher as the function for the relation to be
proved, i.e. the public statement is an AES ciphertext. Using
AES is desirable as it is a well-studied and standardized cipher.
BBQ uses an MPC protocol in the preprocessing model and
can thus be expressed similarly to the KKW protocol. Banquet
observes that it is sufficient to compute the verification circuit
for correct AES evaluation instead of computing the AES
evaluation itself. This change does not affect the applicability
of our security notion. Banquet further shows how to improve
efficiency by removing the preprocessing again and uses
an MPC protocol specifically tailored to evaluate the AES
evaluation verification.

VII. EASYCRYPT FORMALIZATION

In this section, we present how we checked our security
proof of ZKBoo (Section III-B) in EasyCrypt. The formaliza-
tion consists of several parts: We formalize our decomposition
notion, introduced in Section IV-A and Σ-protocols. Moreover,
we implement our version of the ZKBoo decomposition from
Section IV-B and prove it to be a secure decomposition.
Finally, we implement and prove the security of a Σ-protocol
based on any secure decomposition to obtain a complete
machine-checked security proof of ZKBoo. In this section,
we consider a Σ-protocol for a fixed relation R.

A. EasyCrypt

EasyCrypt [10] is a proof assistant designed to cap-
ture the code-based game-playing approach to cryptographic
proofs [16]. In EasyCrypt, protocols are modelled as proba-
bilistic programs. The tool provides an ambient higher-order
logic and an embedded probabilistic relational Hoare logic to
reason about a probabilistic while language. It offers power-
ful automation through its interaction with SMT solvers. Prov-
ing security of a cryptographic protocol proceeds by proving
a series of game transformations. Each transformation either
moves a procedure call or substitutes one. This reduction is
captured in the relational Hoare logic. Additionally, EasyCrypt
has support for defining abstract (ML-style) modules. With
abstract modules, one can formulate security specification by
quantifying over all possible implementations of a module.
This makes black-box style security proofs possible. In such
proofs, one only relies on abstract security notions as opposed
to concrete implementation details of the protocol.

B. Σ-Protocol

We start by explaining the target of our formalization: Σ-
protocols. As is common in EasyCrypt, we model this primi-
tive as an abstract module. Similar to the work of Butler et al.
in CryptHOL [17], we choose four procedures corresponding
to the generation of the three messages exchanged and the final
verification step. We generalize their security definitions from
2-Special Soundness to s-Special Soundness. The security
properties are then expressed as follows:
• Completeness:

∀h, x, e : R h x

=⇒ Pr[completeness game(h, x, e) = true] = 1.

• s-Special Soundness:

∀h, x : R h x =⇒ real(h, x, e) ∼ ideal(h, e).

• Special Honest-Verifier Zero-Knowledge:

∀h,a, es, vs :

(∀i, 0 ≤ i < |es| : Pr[sverify(h, a, es[i], vs[i])] = 1)

∧ |es| = |vs| ∧ (∀(e, e′) ∈ es : e 6= e′)

=⇒ Pr[soudness game(h, a, es, vs)] = 1.

The programs used to express game-based security can be
seen in Figure 5.

C. Commitments

To implement the Σ-protocol we are interested in, we need
two components: a commitment scheme and a decomposition.
The commitment scheme we use is adapted from Butler et
al. [17] and Metere and Dong [18] by changing some game-
based definitions to ones in relational Hoare logic. This affects
the hiding property, which is more conveniently stated directly
as a property of the output distribution of com. Again, we
formalize the commitment scheme as an abstract module with
procedures for the different algorithms according to Def. II-A
and the security properties as:

• Correctness:

∀m : Pr[cverify(m, com(m)) = true] = 1.

• Hiding:

∀m,m′ : com(m) ∼ com(m′).

• Binding: ∀c,m,m′ :

Pr[cverify(m, c) ∧ cverify(m′, c)] = 1− ε.

D. Decomposition

The next part is the heart of our formalization: our decom-
position from Section IV.

1) Circuits and Views: First, we choose representations for
both the circuit and the state of each party. To deal with
circuit evaluation, we need a method for associating gates and
intermediate computations. This is similar to MPC protocols.
We chose to represent both our circuit and views as lists, as
this gives us a one-to-one correspondence between gates and
shares: the intermediate value for circuit[i] can be found at
view[i]. Moreover, lists allow convenient induction proofs.

2) Security: The security properties are stated in (rela-
tional) Hoare logic.
• Verifiability:

∀(φ : Circuit)(e ∈ C)(x : Input) :

valid circuit(φ) =⇒
Pr[verifiability game(φ, x, e) = true] = 1.

• d-Privacy:

∀(φ : Circuit)(e ∈ C)(x : Input) :

real(φ, x, e) ∼ simulator(φ, φ(x), e),

where real and simulator are defined in definition 6.
• s-Special Soundness:

∀(φ : Circuit)(es ∈ list C)(vs : list view)(ys : list shares) :
(∀i, 0 ≤ i < n : Pr[verify(φ, es[i]), vs[i], ys = true] = 1.)

∧ |vs| = |es| ∧ ∀(e, e′) ∈ es : e 6= e′ ∧ |ys| = n

∧ valid circuit(φ) ∧ fully consistent(vs, es)

=⇒ Pr

[
c(witness extractor(φ, vs, es)) =

rec (map out ys)

]
= 1.

• Losslessness of compression:
∀(w : V iew), uncompress(compress(w)) = w.

The third property uses a helper predicate
fully consistent({vs1, . . . , k}, {es1, . . . esk}). A
collection of lists of views with respective challenges
are fully consistent if the view of the party constrained within
two different lists of views vsa, vsb are equivalent.

E. ZKBoo Decomposition

With the primitives in place, we can now describe our
implementation of ZKBoo and its security proofs.

completeness game(h, x, e) =

a← scommit(h, x);

z ← sresponse(h, x, a, e);

return sverify(h, a, e, z);

real(h, x, e) =

a← scommit(h, x);

z ← sresponse(h, x, a, e);

return (a, e, z);

ideal(h, e) =

(a, z)← S(h, e);

return (a, e, z);

soundness game(h, a, es, zs) =

x′ ← extractor(h, a, es, za);

return R h w x′

Fig. 5: Σ-Protocol games

1) Computation and ”communication”: The implementa-
tion of most procedures of the decomposition is straightfor-
ward, the only part that requires thought is decompose. Here
we use the gate computation function φ from the original ZK-
Boo paper. While we have removed it from the decomposition
notion itself, it is useful in the implementation. We thus fix a
procedure

compute : list view × gate→ list share

that updates the views of all parties for gate gate. This up-
dating of all shares simultaneously models the communication
pattern. All present and past shares are available to the parties,
but shares for future gates are unavailable.

2) Randomness sampling: When implementing a proba-
bilistic program there are two ways to sample randomness:
lazily and eagerly. Both are equivalent, and both are possible
in EasyCrypt. Eager sampling samples all randomness at the
start of the execution. When a new random value is needed, the
next unused value is used. In the case of ZKBoo, that means
sampling randomness outside of the decompose procedure.
This is necessary for the construction of a Σ-protocol, as
that protocol needs some control over the random choices.
Lazy sampling, on the other hand, samples randomness at the
moment it is needed in the protocol. This has the advantage
that it allows one to reason about random choices locally.
When proving a relational statement, one often wants to relate
random choices in two programs via a coupling. This is easier
with lazy sampling. For this reason, we define two versions of
decompose, one that takes all randomness as input and one
that samples internally, and prove them equivalent. The former
is more convenient to describe the construction itself, while
the latter simplifies the security proof.

3) Security: We prove verifiability by showing that the
views produced by decompose are computed by the procedure
outlined in Section III-B and that they reconstruct to the value
of circuit evaluation. This is achieved by induction on the
structure of the circuit. With this in mind, it is immediate
that verify always succeeds after compress ◦ decompose.
In particular, since compress is a projection, we can directly
apply the invariant proven on the views of decompose.

Privacy is proven using a relational statement. For any valid
circuit, we show that view e and e+1 are identically distributed
to the two simulated views. By induction on the structure of the
circuit, we show that any gate can be simulated. To facilitate
the proof, we rewrite the procedures to use lazy sampling. In
this way, we can easily manipulate the random shares in both
the simulator and decomposition to make the computed shares

indistinguishable. Finally, we reuse the proof from verifiability
that the views reconstruct to circuit evaluation. This fixes
the output share of the party that is not simulated to be the
simulated output value subtracted from the circuit evaluation.

To prove k-Special Soundness we use fully consistent

to derive knowledge of each view in the decomposition. More-
over, the assumption that all revealed views verify allow us to
derive that all gates of all views were computed as defined by
the decomposition. To show that the input share of the revealed
views gives us the secret input for the circuit evaluation, we
run the decomposition again. By induction on the number of
computed gates, starting from out guess at the secret input,
we conclude that our constructed input yields the desired
output. Moreover, every gate in the circuit reconstruct to the
desired intermediate value. By the reconstruction property
proven during verifiability, we can conclude that our guess at
the input leads to the correct reconstructed output. This output
is equal to the output of circuit evaluation.

F. Transformation to Σ-protocol

Finally, we arrive at the Σ-protocol that is our main interest.
Due to the security definitions of decompositions (Def. 4), the
transformation is black-box and can be constructed indepen-
dently of implementation details. For our EasyCrypt formal-
ization, this means that the construction is parameterized by
an arbitrary decomposition function. We can then instantiate
it with the ZKBoo decomposition described above and obtain
the ZKBoo protocol.

Let R (φ, y) x ⇐⇒ φ(x) = y be the relation of the Σ-
protocol. The procedure implementations are seen in Figure 6.

1) Security:
Lemma 3 (Completeness): If the underlying decomposition

satisfies verifiability and the commitment scheme is correct,
then

∀(φ : Circuit)(e ∈ C)(x : Input) :

R h x =⇒ Pr[Completeness(φ, x, e) = true] = 1.

To prove Completeness, we consider the decomposition and
commitment scheme parts separately. By applying verifiability
of the decomposition, we see that the verification check will
pass, because the views originate from a call to decompose.
For the commitment scheme, we first use losslessness of the
decomposition to derive that the views considered by the
verifier are, in fact, identical to the ones produced by the
prover. We then apply correctness of the commitment scheme
to conclude that the commitments always verify.

scommit((φ, y), x) =

ks← R;

ws← decompose(φ, x, ks);

cs← map com ws;

ys← map out ws;

return (ys, cs);

sresponse((φ, y), (cs, ys), e) =

z ← compress(ws, I(e));

return z;

sverify((φ, y), (cs, ys), e, z) =

ws← uncompressz;

v ← ∀i ∈ I(e) : cverify(ws[i], cs[i]);

return v ∧ verify(φ, z, e, ys);

Fig. 6: Σ-Protocol transformation procedures

Lemma 4 (SHVZK): If the underlying decomposition is d-
Private, for any d, and the commitment scheme is perfectly
hiding, then

∀h, (e ∈ C), x :

R h x =⇒ real(h, x, e) ∼ ideal(h, e).

Where the simulator is defined as:

simulator((φ, y), e) = {
(z′, ys)← Se(φ, y);

ws′ ← uncompress(z′);

cs← map

λi : if i ∈ I(e)

then com(ws′[i])

else com([])

 [0..N];

return (ys, cs)}

In proving Special Honest-Verifier Zero-Knowledge, we first
use d-Privacy of the decomposition to show the simulated
views revealed by compress under challenge e are indistin-
guishable from the real views. The indistinguishability also
implies that both verify and cverify will succeed since
their inputs are indistinguishable from the honestly generated
inputs, which are known to succeed. Finally, we use the
hiding property of the commitment scheme to conclude that
commitments to empty lists are indistinguishable from the
commitments to the unrevealed views of the decomposition.

Lemma 5 (s-Special Soundness): If the underlying decom-
position has k-Special Soundness and the commitment scheme
is binding with probability 1− ε, then

∀(φ : Circuit), (es ∈ C)y, a, es, zs :
(∀(e, e′) ∈ es : e 6= e′)

∧ |es| = |vs| = s ∧ valid circuit(c)

∧ (∃(a ∈ es, b ∈ es, i) : a 6= b ∧ i ∈ vs[a] ∧ i ∈ vs[b])
∧ (∀i, i < |es| : Pr[sverify(c, y, a, es[i], vs[i]) = true] = 1)

=⇒ Pr[soundness game((φ, y), a, e, z) = true] = (1− ε).

From k-Special Soundness of the decomposition, it follows
that we can extract a valid witness for the relation. The
assumptions of s-Special Soundness therefore implies the

assumptions of k-Special Soundness from the decomposition.
Concretely, this is achieved by proving:

(∀i, i < |es| : Pr[sverify(φ, y, a, es[i], vs[i]) = true] = 1)

=⇒ fully consistent(vs, es).

To show this, we use the binding property of the commit-
ment scheme. We assume that we are given enough responses,
such that at least two responses will overlap on at least one
view. Because of this overlap, it follows from the binding
property that the two different openings are equivalent.

From the overlap and the proof of equivalence, we derive
that the responses are fully consistent.

VIII. RELATED WORK

We list work on formal verification of zero-knowledge
protocols.

a) Computational Analysis: One approach is to formal-
ize security proofs of zero-knowledge protocols, which is also
the focus of this work. Previous work in this direction includes
ZKCrypt by Almeida et al. [19] which automatically generates
CertiCrypt proofs [20] of the resulting protocols. The work of
Butler, Aspinall and Gascón [17] focuses on formalizing Σ-
protocols in CryptHOL [21]. Both have in common that they
focus on simpler algebraic protocols, like proving knowledge
of pre-images under group homomorphisms. This limits us-
ability to problems that exhibit this simpler algebraic structure.
The present work formalizes more sophisticated protocols in
which security is reduced to the security of complex building
blocks like MPC protocols. The zero-knowledge protocols that
we study use secret-sharing-based MPC as a building block.
This type of MPC protocol has been formalized previously by
Butler, Aspinall and Gascón [22] and Haagh et al. [23]. Our
MPC protocol formalization is close in spirit to the passive
security construction of Haagh et al., yet it differs in that we
directly formalize a simulation-based security notion which is
more familiar to cryptographers than the non-interference used
there.

b) Symbolic Analysis: An orthogonal line of work stud-
ies the symbolic security of protocols that use zero-knowledge
protocols as primitives [24], [25]. In this setting, the zero-
knowledge proofs themselves are treated as abstract objects
that can be manipulated according to fixed rules modeled as
equational theory. Symbolic security of a protocol then rules
out any attack that follows only those allowed manipulations.

This approach cannot capture the security of a concrete zero-
knowledge protocol, but only of another protocol that uses it.

IX. DISCUSSION AND FUTURE WORK

The present work shows how formal verification cannot only
recreate existing proofs but also foster a deeper understanding
of the object in question. In our case, we set out to formalize
the ZKBoo security proof and found out that what looked
like a modular proof structure was not as modular as it
could be. Obvious future work includes extending our efforts
to more efficient protocols following the MPC-in-the-head
paradigm, especially, if any of them becomes standardized. As
mentioned, Picnic was recently announced as an ‘alternate’
in the third round of the NIST post-quantum cryptography
standardization competition. The reason Picnic is an alternate,
and not a candidate, is that several improvements were pub-
lished after the submission of Picnic. Once the line of research
converges to one, or more, efficient constructions ready for
standardization, we expect our work to form the basis of
further formal verification efforts. One could even consider
connecting our work with an actual implementation. Simulta-
neously, the structures that we identified in this work enhance
the understanding of the MPC-in-the-head paradigm and can
provide insights into possibilities for further optimization and
constructions.

X. CONCLUSION

We initiated the formal analysis of zero-knowledge proto-
cols following the MPC-in-the-head paradigm. Based on the
observation that existing constructions are black-box in the
MPC protocol they use while their security analysis is not, we
proposed a new security notion for these MPC protocols. This
modular security proof then enabled us to develop a machine-
checked security proof of the ZKBoo protocol in EasyCrypt
as an example of this protocol class.

Acknowledgments: The authors would like to thank Claudio
Orlandi for helpful discussions. This work was partially sup-
ported by AFOSR grant Homotopy type theory and probabilis-
tic computation (12595060) and the Concordium Blockchain
Research Center at Aarhus University. The second author was
supported by the Danish Independent Research Council under
Grant-ID DFF-8021-00366B (BETHE).

REFERENCES

[1] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity
of interactive proof-systems (extended abstract),” in 17th ACM STOC.
ACM Press, May 1985, pp. 291–304.

[2] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Zero-knowledge
from secure multiparty computation,” in 39th ACM STOC, D. S. Johnson
and U. Feige, Eds. ACM Press, Jun. 2007, pp. 21–30.

[3] I. Giacomelli, J. Madsen, and C. Orlandi, “ZKBoo: Faster zero-
knowledge for Boolean circuits,” in USENIX Security 2016, T. Holz
and S. Savage, Eds. USENIX Association, Aug. 2016, pp. 1069–1083.

[4] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in CRYPTO’86, ser. LNCS, A. M.
Odlyzko, Ed., vol. 263. Springer, Heidelberg, Aug. 1987, pp. 186–194.

[5] G. Zaverucha, M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ra-
macher, C. Rechberger, D. Slamanig, J. Katz, X. Wang, V. Kolesnikov,
and D. Kales, “Picnic,” National Institute of Standards and Tech-
nology, Tech. Rep., 2020, available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[6] C. de Saint Guilhem, L. De Meyer, E. Orsini, and N. P. Smart, “BBQ:
Using AES in picnic signatures,” in SAC 2019, ser. LNCS, K. G.
Paterson and D. Stebila, Eds., vol. 11959. Springer, Heidelberg, Aug.
2019, pp. 669–692.

[7] C. Baum, C. Delpech de Saint Guilhem, D. Kales, E. Orsini, P. Scholl,
and G. Zaverucha, “Banquet: Short and fast signatures from AES,”
IACR Cryptol. ePrint Arch., vol. 2021, p. 68, 2021. [Online]. Available:
https://eprint.iacr.org/2021/068

[8] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rech-
berger, D. Slamanig, and G. Zaverucha, “Post-quantum zero-knowledge
and signatures from symmetric-key primitives,” Cryptology ePrint
Archive, Report 2017/279, 2017, http://eprint.iacr.org/2017/279.

[9] J. Katz, V. Kolesnikov, and X. Wang, “Improved non-interactive zero
knowledge with applications to post-quantum signatures,” in ACM CCS
2018, D. Lie, M. Mannan, M. Backes, and X. Wang, Eds. ACM Press,
Oct. 2018, pp. 525–537.

[10] G. Barthe, B. Grégoire, S. Heraud, and S. Zanella Béguelin, “Computer-
aided security proofs for the working cryptographer,” in CRYPTO 2011,
ser. LNCS, P. Rogaway, Ed., vol. 6841. Springer, Heidelberg, Aug.
2011, pp. 71–90.

[11] I. Damgaard, “On Σ-protocols,” lecture notes, Aarhus University, 2011.
[12] D. Pointcheval and J. Stern, “Security proofs for signature schemes,” in

EUROCRYPT’96, ser. LNCS, U. M. Maurer, Ed., vol. 1070. Springer,
Heidelberg, May 1996, pp. 387–398.

[13] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rech-
berger, D. Slamanig, and G. Zaverucha, “Post-quantum zero-knowledge
and signatures from symmetric-key primitives,” in ACM CCS 2017,
B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, Eds. ACM
Press, Oct. / Nov. 2017, pp. 1825–1842.

[14] Y. Ishai, E. Kushilevitz, S. Meldgaard, C. Orlandi, and A. Paskin-
Cherniavsky, “On the power of correlated randomness in secure com-
putation,” in TCC 2013, ser. LNCS, A. Sahai, Ed., vol. 7785. Springer,
Heidelberg, Mar. 2013, pp. 600–620.

[15] O. Seker, S. Berndt, L. Wilke, and T. Eisenbarth, “SNI-in-the-head:
Protecting MPC-in-the-head protocols against side-channel analysis,” in
ACM CCS 20, J. Ligatti, X. Ou, J. Katz, and G. Vigna, Eds. ACM
Press, Nov. 2020, pp. 1033–1049.

[16] M. Bellare and P. Rogaway, “The security of triple encryption and a
framework for code-based game-playing proofs,” in EUROCRYPT 2006,
ser. LNCS, S. Vaudenay, Ed., vol. 4004. Springer, Heidelberg,
May / Jun. 2006, pp. 409–426.

[17] D. Butler, D. Aspinall, and A. Gascón, “On the formalisation of Σ-
protocols and commitment schemes,” in Principles of Security and
Trust - 8th International Conference, POST 2019, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings,
ser. Lecture Notes in Computer Science, F. Nielson and D. Sands, Eds.,
vol. 11426. Springer, 2019, pp. 175–196.

[18] R. Metere and C. Dong, “Automated cryptographic analysis of the
pedersen commitment scheme,” CoRR, vol. abs/1705.05897, 2017.
[Online]. Available: http://arxiv.org/abs/1705.05897

[19] J. B. Almeida, M. Barbosa, E. Bangerter, G. Barthe, S. Krenn, and
S. Zanella Béguelin, “Full proof cryptography: verifiable compilation
of efficient zero-knowledge protocols,” in ACM CCS 2012, T. Yu,
G. Danezis, and V. D. Gligor, Eds. ACM Press, Oct. 2012, pp. 488–500.

[20] G. Barthe, B. Grégoire, and S. Z. Béguelin, “Formal certification of
code-based cryptographic proofs,” in Proceedings of the 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2009, Savannah, GA, USA, January 21-23, 2009, Z. Shao
and B. C. Pierce, Eds. ACM, 2009, pp. 90–101.

[21] D. A. Basin, A. Lochbihler, and S. R. Sefidgar, “CryptHOL: Game-based
proofs in higher-order logic,” Journal of Cryptology, vol. 33, no. 2, pp.
494–566, Apr. 2020.

[22] D. Butler, D. Aspinall, and A. Gascón, “How to simulate it in isabelle:
Towards formal proof for secure multi-party computation,” in Interactive
Theorem Proving - 8th International Conference, ITP 2017, Brası́lia,
Brazil, September 26-29, 2017, Proceedings, ser. Lecture Notes in
Computer Science, M. Ayala-Rincón and C. A. Muñoz, Eds., vol. 10499.
Springer, 2017, pp. 114–130.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2021/068
http://eprint.iacr.org/2017/279
http://arxiv.org/abs/1705.05897

[23] H. Haagh, A. Karbyshev, S. Oechsner, B. Spitters, and P.-Y. Strub,
“Computer-aided proofs for multiparty computation with active secu-
rity,” in CSF 2018Computer Security Foundations Symposium, S. Chong
and S. Delaune, Eds. IEEE Computer Society Press, 2018, pp. 119–131.

[24] M. Backes and D. Unruh, “Computational soundness of symbolic
zero-knowledge proofs against active attackers,” in CSF 2008Computer
Security Foundations Symposium, A. Sabelfeld, Ed. IEEE Computer
Society Press, 2008, pp. 255–269.

[25] M. Backes, M. Maffei, and D. Unruh, “Zero-knowledge in the applied
Pi-calculus and automated verification of the direct anonymous attesta-
tion protocol,” in 2008 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2008, pp. 202–215.

	Introduction
	Our Contributions
	Outline

	Preliminaries
	Commitments
	MPC
	Zero-knowledge protocols
	-protocols

	The MPC-in-the-head paradigm
	MPC-in-the-head-based zero-knowledge
	ZKBoo
	The Construction
	Black-Box Security

	Decomposition protocols
	Syntax and Security
	Example: ZKBoo Decomposition Protocol

	From Decomposition to -Protocol
	Example: ZKBoo -Protocol

	Further MPC-in-the-Head Protocols
	ZKB++
	KKW
	Picnic
	SNI-in-the-head
	BBQ and Banquet

	EasyCrypt Formalization
	EasyCrypt
	-Protocol
	Commitments
	Decomposition
	Circuits and Views
	Security

	ZKBoo Decomposition
	Computation and "communication"
	Randomness sampling
	Security

	Transformation to -protocol
	Security

	Related Work
	Discussion and Future Work
	Conclusion
	References

