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Abstract

Verifiable Secret-Sharing (VSS) is a fundamental primitive in secure distributed computing.
It is used as a building block in several distributed computing tasks, such as Byzantine agree-
ment and secure multi-party computation. In this article, we consider VSS schemes with perfect
security, tolerating computationally unbounded adversaries. We comprehensively survey the exist-
ing perfectly-secure VSS schemes in three different communication settings, namely synchronous,
asynchronous and hybrid setting and provide full details of the existing schemes in these settings.
The aim of this survey is to provide a clear knowledge and foundation to researchers who are
interested in knowing and extending the state-of-the-art perfectly-secure VSS schemes.

1 Introduction

A central concept in cryptographic protocols is that of Secret Sharing (SS) [55, 14]. Consider a set
P = {P1, . . . , Pn} of mutually distrusting parties, where the distrust is modeled by a centralized
adversary, who can control up to t parties. Then a SS scheme allows a designated dealer D ∈ P
to share a secret s among P, by providing each Pi a share of the secret s. The sharing is done
in such a way that the adversary controlling any subset of at most t share-holders fails to learn
anything about s, while any subset of at least t + 1 share-holders can jointly recover s. In a SS
scheme, it is assumed that all the parties including the ones under the adversary’s control follow the
protocol instructions correctly (thus, the adversary is assumed to only eavesdrop the computation
and communication of the parties under its control). VSS [18] extends the notion of SS to the
more powerful malicious/active adversarial model, where the adversary can completely dictate the
behaviour of the parties under its control during a protocol execution. Moreover, D is allowed to
be potentially corrupted. A VSS scheme consists of a sharing phase and a reconstruction phase,
each implemented by a publicly-known protocol. During the sharing phase, D shares its secret in a
verifiable fashion, which is later reconstructed during the reconstruction phase. If D is honest, then
the privacy of its secret is maintained during the sharing phase and the shared secret is later robustly
reconstructed, irrespective of the behaviour of the corrupt parties. The interesting property of VSS
is the verifiability property, which guarantees that even if D is corrupt, it has “consistently/correctly”
shared some value among the parties and the same value is later reconstructed. One can interpret VSS
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as a distributed commitment, where, during the sharing phase, D publicly commits to a private input
(known only to D) and later during the reconstruction phase, the committed value is reconstructed
publicly (even if D does not cooperate). Due to its central importance in secure distributed-computing
tasks, such as secure multi-party computation (MPC) [12, 54] and Byzantine agreement (BA) [30],
VSS has been studied in various settings, based on the following categorizations.
• Conditional vs Unconditional Security: If the adversary is computationally bounded (where

it is allowed to perform only polynomial amount of computations), then the notion of security
achieved is conditional/cryptographic [53, 5, 6], whereas unconditionally-secure VSS provides
security even against a computationally unbounded adversary. Unconditionally-secure VSS can
be further categorized as perfectly-secure where all security guarantees are achieved in an error-
free fashion [12], and statistically-secure where a negligible error is allowed [54, 25, 40].

• Type of Communication: Here we have three categories. The synchronous model assumes
that the parties are synchronized through a global clock and there are strict (publicly-known)
upper bounds on the message delays [12, 54, 33, 32, 39, 3]. The second category is the asyn-
chronous model [11, 13, 7, 49, 50, 24], where the parties are not synchronized and where the
messages can be arbitrarily (but finitely) delayed. A major challenge in the asynchronous
model is that a slow sender party (whose messages are delayed) cannot be distinguished from
a corrupt sender who does not send messages at all. Due to this inherent phenomenon, asyn-
chronous VSS (AVSS) protocols are more complicated than their synchronous counter-parts.
The third category is the hybrid communication setting [51], which is a mix of the synchronous
and asynchronous models. Namely, the protocol starts with a few initial synchronous rounds,
followed by a completely asynchronous execution. The main motivation for considering a hy-
brid setting is to “bridge” the feasibility and efficiency gaps between completely synchronous
and completely asynchronous protocols.

• Corruption Capacity: Most of the works on VSS assume a threshold adversary which can
corrupt any subset of t parties. A non-threshold adversary [26, 46, 22, 23] is a more generalized
adversary, where the corruption capacity of adversary is specified by a publicly-known adversary
structure, which is a collection of potentially corrupt subsets of parties. During the protocol
execution, the adversary can choose any subset from the collection for corruption.

Our Contributions and Paper Organization We provide a comprehensive survey of all the
existing perfectly-secure VSS schemes tolerating a threshold adversary. We cover three communication
settings, namely synchronous, asynchronous and hybrid. These schemes are designed over a period
of three decades. The nuances, subtleties and foundational ideas involved in these works need a
holistic and unified treatment, which is the focus of this work. This survey is structured to provide
an easy digest of the perfectly-secure VSS schemes. Through this survey, we hope to provide a clear
knowledge and foundation to researchers who are interested in knowing and extending the state-of-
the-art perfectly-secure VSS schemes. The survey is divided into three parts, each dealing with a
separate communication model. We do not survey SS schemes and their share sizes, for which the
interested readers are referred to the survey by Beimel [10].

Part I : Synchronous Communication Setting

2 Preliminaries and Definitions

Throughout part I, we consider a synchronous communication setting, where the parties in P are
connected by pair-wise private and authentic channels. The distrust in the system is modelled by a
computationally unbounded adversary Adv, who can corrupt at most t parties during the execution
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of a protocol in a malicious/Byzantine fashion and force them to behave in any arbitrary manner.
The parties under the control of Adv are called corrupt/malicious, while the parties not under Adv’s
control are called honest. We assume a static adversary, who decides the set of corrupt parties at the
beginning of a protocol. However, following [41] the protocols discussed can be proved to be secure
even against an adaptive adversary, who can corrupt parties as the protocol proceeds.

We also assume the presence of a broadcast channel, which allows any designated party to send
some message identically to all the parties. A protocol in the synchronous setting operates as a
sequence of rounds. In each round, a party can (privately) send messages to other parties and
broadcast a message. Moreover in a given round, each party can simultaneously use the broadcast
channel. The messages sent or broadcast by a party is determined by its input, random coins and
the messages received from other parties in previous rounds. The view of a party during a protocol
execution consists of its inputs, random coins and all the messages received by the party throughout
the protocol execution. The view of Adv is the collection of the views of the corrupt parties.

Structure of a VSS Scheme. Following [33], VSS schemes can be structured into two phases. A
sharing phase executed by a protocol Sh, followed by a reconstruction phase executed by a protocol
Rec. While the goal of Sh is to share a secret held by a designated dealer D ∈ P, the aim of Rec is
to reconstruct back the shared secret. Specifically, during Sh, the input of D is some secret s ∈ S,
where S is some publicly-known secret-space which is the set of all possible D’s secrets. Additionally,
the parties may have random inputs for the protocol. Let viewi denote the view of Pi at the end of
Sh. Based on viewi, each Pi outputs a share si, as determined by Sh.

During Rec, each Pi reveals a subset of viewi, as per Rec. The parties then apply a reconstruction
function on the revealed views, as per Rec and reconstruct some output. Following [39], we say that
round-complexity of Sh (resp. Rec) is (R,R′), if Sh (resp. Rec) involves total R rounds and among
these R rounds, the broadcast channel is used for R′ rounds. By communication complexity of a
protocol, we mean the total number of bits communicated by the honest parties in the protocol.

2.1 Definitions

A t-out-of-n secret-sharing (SS) scheme is a pair of functions (G,R). While G is probabilistic, R is
deterministic. Function G generates shares for the input secret, while R maps the shares back to the
secret. The shares are generated in such a way that the probability distribution of any set of t shares
is independent of the secret, while any set of t+ 1 shares uniquely determines the secret.

Definition 2.1 (t-out-of-n secret-sharing [34]). It is a pair of algorithms (G,R), such that:
– Syntax: The share-generation function G takes input a secret s and some randomness q and

outputs a vector of n shares (s1, . . . , sn). The recovery function R takes input a set of t + 1
shares corresponding to t+ 1 indices {i1, . . . , it+1} ⊂ {1, . . . , n} and outputs a value.

– Correctness: For any s ∈ S and any vector (s1, . . . , sn) where (s1, . . . , sn) = G(s, q) for
some randomness q, the condition R(si1 , . . . , sit+1) = s holds for any subset {i1, . . . , it+1} ⊂
{1, . . . , n}.

– Privacy: For any subset of t indices, the probability distribution of the shares corresponding
to these indices is independent of the underlying secret. That is, for any I = {i1, . . . , it} ⊂
{1, . . . , n}, let gI(s)

def
= (si1 , . . . , sit), where (s1, . . . , sn) = G(s, q) for some randomness q. Then

we require that for every index-set I where |I| = t, the random variables gI(s) and gI(s
′) are

identically distributed, for every s, s′ ∈ S, where s 6= s′.

Definition 2.2. Let Π = (ΠG,ΠR) be a t-out-of-n secret-sharing scheme. Then we say that a value s
is secret-shared among P as per Π, if there exists some randomness q such that (s1, . . . , sn) = ΠG(s, q)
and each honest party Pi ∈ P has the share si.
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In the literature, two types of VSS schemes have been considered. The type-I VSS schemes
are “weaker” compared to the type-II VSS schemes. Namely, in type-II VSS, it is guaranteed that
the dealer’s secret is secret-shared as per the semantics of some specified secret-sharing scheme1 (for
instance, say Shamir’s SS [55]). While type-I VSS is sufficient to study VSS as a stand-alone primitive
(for instance, to study the round complexity of VSS [32] or to design a BA protocol [16]), type-II
VSS schemes are desirable when VSS is used as a primitive in secure MPC protocols [39, 4, 3].

Definition 2.3 (Type-I VSS [33]). Let (Sh,Rec) be a pair of protocols for the parties in P, where
a designated dealer D ∈ P has some private input s ∈ S for the protocol Sh. Then (Sh,Rec) is called
a Type-I perfectly-secure VSS scheme, if the following requirements hold.

– Privacy: If D is honest, then the view of Adv during Sh is distributed independent of s.
– Correctness: If D is honest, then all honest parties output s at the end of Rec.
– Strong Commitment: Even if D is corrupt, in any execution of Sh, the joint view of the

honest parties defines a unique value s? ∈ S (which could be different from s), such that all
honest parties output s? at the end of Rec, irrespective of the behaviour of Adv.

Definition 2.4 (Type-II VSS [34]). Let Π = (ΠG,ΠR) be a t-out-of-n SS scheme. Then (Sh,Rec)
is called a Type-II perfectly-secure VSS scheme with respect to Π, if the following requirements hold.

– Privacy: If D is honest, then the view of Adv during Sh is distributed independent of s.
– Correctness: If D is honest, then at the end of Sh, the value s is secret-shared among P as

per Π (see Definition 2.2). Moreover, all honest parties output s at the end of Rec.
– Strong Commitment: Even if D is corrupt, in any execution of Sh the joint view of the

honest parties defines some value s? ∈ S, such that s? is secret-shared among P as per Π (see
Definition 2.2). Moreover, all honest parties output s? at the end of Rec.

Alternative Definition of VSS Definition 2.3-2.4 are called “property-based” definition, where
we enumerate a list of desired security goals. One can instead follow other definitional frameworks
such as the the ideal-world/real-world paradigm of Canetti [17] or the constructive-cryptography
paradigm of Liu-Zhang and Maurer [42]. Proving the security of VSS schemes as per these paradigm
brings in additional technicalities in the proofs. Since our main goal is to survey the existing VSS
protocols, we will stick to the property-based definitions, which are easy to follow.

2.2 Properties of Polynomials Over a Finite Field

Let F be a finite field where |F| > n with α1, . . . , αn be distinct non-zero elements of F. A degree-d
univariate polynomial over F is of the form f(x) = a0 + . . . + adx

d, where ai ∈ F. A degree-(`,m)

bivariate polynomial over F is of the form F (x, y) =

i=`,j=m∑
i,j=0

rijx
iyj , where rij ∈ F. The polynomials

fi(x)
def
= F (x, αi) and gi(y)

def
= F (αi, y) are called the ith row and column-polynomial respectively of

F (x, y) as evaluating fi(x) and gi(y) at x = α1, . . . , αn and at y = α1, . . . , αn respectively results in
an n× n matrix of points on F (x, y) (see Fig 1). Note that fi(αj) = gj(αi) = F (αj , αi) holds for all
αi, αj . We say a degree-m polynomial Fi(x) (resp. a degree-` polynomial Gi(y)), where i ∈ {1, . . . , n},
lies on a degree-(`,m) bivariate polynomial F (x, y), if F (x, αi) = Fi(x) (resp. F (αi, y) = Gi(y)) holds.
F (x, y) is called symmetric, if rij = rji holds, implying F (αj , αi) = F (αi, αj) and F (x, αi) = F (αi, x).

Definition 2.5 (d-sharing [28, 8]). A value s ∈ F is said to be d-shared, if there exists a degree-d

polynomial, say q(·), with q(0) = s, such that each (honest) Pi ∈ P holds its share si
def
= q(αi)

1In Type-I VSS, the underlying secret need not be secret-shared as per the semantics of any t-out-of-n SS scheme.
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(we interchangeably use the term shares of s and shares of the polynomial q(·) to denote the values
q(αi)). The vector of shares of s corresponding to the (honest) parties in P is denoted as [s]d. A set
of values S = (s(1), . . . , s(L)) ∈ FL is said to be d-shared, if each s(i) ∈ S is d-shared.

2.2.1 Properties of Univariate Polynomials Over F

Most of the type-II VSS schemes are with respect to the Shamir’s t-out-of-n SS scheme (ShaG, ShaR)
[55]. Algorithm ShaG takes input a secret s ∈ F. To compute the shares, it picks a Shamir-sharing
polynomial q(·) randomly from the set Ps,t of all degree-t univariate polynomials over F whose
constant term is s. The output of ShaG is (s1, . . . , sn), where si = q(αi). Since q(·) is chosen
randomly, the probability distribution of the t shares learnt by Adv will be independent of the
underlying secret. Formally:

Lemma 2.6 ([4]). For any set of distinct non-zero elements α1, . . . , αn ∈ F, any pair of values
s, s′ ∈ F, any subset I ⊂ {1, . . . , n} where |I| = ` ≤ t, and every ~y ∈ F`, it holds that:

Pr
f(x)∈rPs,t

[
~y = ({f(αi)}i∈I)

]
= Pr

g(x)∈rPs′,t

[
~y = ({g(αi)}I∈I)

]
,

where f(x) and g(x) are chosen randomly (denoted by the notation ∈r) from Ps,t and Ps′,t, respec-
tively.

Let (s1, . . . , sn) be a vector of Shamir-shares for s, generated by ShaG. Moreover, let I ⊂
{1, . . . , n}, where |I| = t + 1. Then ShaR takes input the shares {si}i∈I and outputs s by inter-
polating the unique degree-t Shamir-sharing polynomial passing through the points {(αi, si)}i∈I .

Relationship Between d-sharing and Reed-Solomon (RS) Codes Let s be d-shared through
a polynomial q(·) and let (s1, . . . , sn) be the vector of shares. Moreover, let W be a subset of these
shares, such that it is ensured that at most r shares in W are incorrect (the exact identity of the
incorrect shares are not known). The goal is to error-correct the incorrect shares in W and correctly
reconstruct back the polynomial q(·). Coding-theory [47] says that this is possible if and only if
|W | ≥ d+ 2r + 1 and the corresponding algorithm is denoted by RS-Dec(d, r,W ). There are several
well-known efficient instantiations of RS-Dec, such as the Berlekamp-Welch algorithm [44].

2.2.2 Properties of Bivariate Polynomials Over F

There always exists a unique degree-d univariate polynomial, passing through d+ 1 distinct points.
A generalization of this result for bivariate polynomials is that if there are “sufficiently many”
univariate polynomials which are “pair-wise consistent”, then together they lie on a unique bivariate
polynomial. Formally:

Lemma 2.7 (Pair-wise Consistency Lemma [16, 50, 4]). Let {fi1(x), . . . , fiq(x)} and {gj1(y), . . . ,
gjr(y)} be degree-` and degree-m polynomials respectively where q ≥ m + 1, r ≥ ` + 1 and where
i1, . . . , iq, j1, . . . , jr ∈ {1, . . . , n}. Moreover, let for every i ∈ {i1, . . . , iq} and every j ∈ {j1, . . . , jr},
the condition fi(αj) = gj(αi) holds. Then there exists a unique degree-(`,m) bivariate polynomial
F ?(x, y), such that the polynomials fi1(x), . . . , fiq(x) and gj1(y), . . . , gjr(y) lie on F ?(x, y).

In type-II VSS schemes based on Shamir’s SS scheme, D on having input s first picks a random
degree-t Shamir-sharing polynomial q(·) ∈ Ps,t and then embeds q(·) into a random degree-(t, t)
bivariate polynomial F (x, y) at x = 0. Each Pi then receives fi(x) = F (x, αi) and gi(y) = F (αi, y)
from D. Similar to Shamir SS, Adv by learning at most t row and column-polynomials, does not
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learn s. Intuitively, this is because (t+1)2 distinct values are required to uniquely determine F (x, y),
but Adv learns at most t2 + 2t distinct values. In fact, it can be shown that for every two degree-t
polynomials q1(·), q2(·) such that q1(αi) = q2(αi) = fi(0) holds for every Pi ∈ C (where C is the set of
corrupt parties), the distribution of the polynomials {fi(x), gi(y)}Pi∈C when F (x, y) is chosen based
on q1(·), is identical to the distribution when F (x, y) is chosen based on q2(·). Formally:

Lemma 2.8 ([4]). Let C ⊂ P where |C| ≤ t, and let q1(·) 6= q2(·) be degree-t polynomials where

q1(αi) = q2(αi) holds for all Pi ∈ C. Then the probability distributions
{
{F (x, αi), F (αi, y)}Pi∈C

}
and{

{F ′(x, αi), F ′(αi, y)}Pi∈C

}
are identical, where F (x, y) 6= F ′(x, y) are different degree-(t, t) bivariate

polynomials, chosen at random, under the constraints that F (0, y) = q1(·) and F ′(0, y) = q2(·) holds.

3 Lower Bounds

In any perfectly-secure VSS scheme, the joint view of the honest parties should uniquely determine
the dealer’s secret. Otherwise the correctness property will be violated if the corrupt parties produce
incorrect view during the reconstruction phase. Since there can be only n − t honest parties, to
satisfy the privacy property, the condition n− t > t should necessarily hold, as otherwise the view of
the adversary will not be independent of the dealer’s secret. We actually need a stricter necessary
condition of n > 3t to hold for any perfectly-secure VSS scheme, as stated in the following theorem.

Theorem 3.1 ([29]). Let Π = (Sh,Rec) be a perfectly-secure VSS scheme. Then n > 3t holds.

Theorem 3.1 is first proved formally by Dolev, Dwork, Waarts and Yung in [29] by relating VSS
with the problem of 1-way perfectly-secure message transmission (1-way PSMT) [29]. In the 1-way
PSMT problem, there is a sender S and a receiver R, such that there are n disjoint uni-directional
communication channels Ch1, . . . , Chn from S to R (i.e. only S can send messages to R along
these channels). At most t out of these channels can be controlled by a computationally unbounded
malicious/Byzantine adversary in any arbitrary fashion. The goal is to design a protocol, which
allows S to send some input message m reliably (i.e. R should be able to receive m without any
error) and privately (i.e. view of the adversary should be independent of m) to R. In [29], it is shown
that a 1-way PSMT protocol exists only if n > 3t. Moreover, if there exists a perfectly-secure VSS
scheme (Sh,Rec) with n ≤ 3t, then one can design a 1-way PSMT protocol with n ≤ 3t, which is
a contradiction. On a very high level, the reduction from 1-way PSMT to VSS can be shown as
follows: S on having a message m, acts as a dealer and runs an instance of Sh with input m by
playing the role of the parties P1, . . . , Pn as per the protocol Sh. Let viewi be the view generated
for Pi, which S communicates to R over Chi. Let R receives view′i over Chi, where view′i = viewi
if Chi is not under adversary’s control. To recover m, R applies the reconstruction function as per
Rec on (view′1, . . . , view

′
n). It is easy to see that the correctness of the VSS scheme implies that R

correctly recovers m, while the privacy of the VSS scheme guarantees that the view of any adversary
controlling at most t channels remains independent of m.

An alternative argument for the requirement of n > 3t for perfect VSS follows from its reduction
to a perfectly-secure reliable-broadcast (RB) protocol over the pair-wise channels, for which n > 3t
is required [52]. This is elaborated further later in the context of usage of a broadcast channel
for designing VSS protocols (the paragraph entitled ”On the Usage of Broadcast Channel” after
Lemma 3.4 and Footnote 2).

The Round Complexity of VSS In Genarro, Ishai, Kushilevitz and Rabin [33], the round-
complexity of a VSS scheme is defined to be the number of rounds in the sharing phase, as all
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(perfectly-secure) VSS schemes adhere to a single-round reconstruction. The interplay between the
round-complexity of perfectly-secure VSS and resilience bounds is stated below.

Theorem 3.2 ([33]). Let R ≥ 1 be a positive integer and let R′ ≤ R. Then:
• If R = 1, then there exists no perfectly-secure VSS scheme with (R,R′) rounds in the sharing

phase if either t > 1 (irrespective of the value of n) or if (t = 1 and n ≤ 4).
• If R = 2, then perfectly-secure VSS with (R,R′) rounds in sharing phase is possible only if
n > 4t.

• If R ≥ 3, then perfectly-secure VSS with (R,R′) rounds in sharing phase is possible only if
n > 3t.

We give a very high level overview of the proof of Theorem 3.2. We focus only on 2 and R-round
sharing phase VSS schemes where R ≥ 3, as one can use standard hybrid arguments to derive the
bounds related to VSS schemes with 1-round sharing phase (see for instance [48]). The lower bound
for 2-round VSS schemes (namely n > 4t) is derived by relating VSS to the secure multi-cast (SM)
problem. In the SM problem, there exists a designated sender S ∈ P with some private message
m and a designated receiving set R ⊆ P, where S ∈ R and where |R| > 2. The goal is to design
a protocol which allows S to send its message identically to all the parties only in R, even in the
presence of an adversary who can control any t parties, possibly including S. Moreover, if all the
parties in R are honest, then the view of the adversary should be independent of m. Genarro et
al. [33] establishes the following relationship between VSS and SM.

Lemma 3.3 ([33]). Let (Sh,Rec) be a VSS scheme with a k-round sharing phase where k ≥ 2. Then
there exists a k-round SM protocol.

The proof of Lemma 3.3 proceeds in two steps.
– It is first shown that for any R-round protocol Π, there exists an R-round protocol Π′ with the

same security guarantees as Π, such that all the messages in rounds 2, . . . , R of Π′ are broadcast
messages. The idea is to let each Pi exchange a “sufficiently-large” random pad with every Pj
apriori during the first round. Then in any subsequent round of Π, if Pi is supposed to privately
send vij to Pj , then in Π′, party Pi instead broadcasts vij being masked with appropriate pad,
exchanged with Pj . Since Pj is supposed to hold the same pad, it can unmask the broadcasted
value and recover vij and process it as per Π.

– Let (Sh,Rec) be a VSS scheme where Sh requires k rounds such that k ≥ 2. Using the previous
implication, we can assume that all the messages during the final round of Sh are broadcast
messages. Using (Sh,Rec), one can get a k-round SM protocol as follows: the parties invoke an
instance of Sh, with S playing the role of D with input m. In the final round, apart from the
messages broadcasted by the parties as part of Sh, every party Pi privately sends its entire view
of the first k − 1 rounds during Sh to every party in R. Based on this, every party in R will
get the view of all the parties in P for all the k rounds of Sh. Intuitively, this also gives every
(honest) party in R the share of every (honest) party from Sh. Every party in R then applies
the reconstruction function on the n extrapolated views as per Rec and outputs the result. It
is easy to see that the correctness of the VSS implies that if S is honest, then all the honest
parties in R obtains m. Moreover, the privacy of the VSS scheme implies that if R contains
only honest parties, then the view of the adversary remains independent of m. Finally, the
strong commitment of the VSS guarantees that even if S is corrupt, all honest parties in R
obtain the same output.

Next, Genarro et al. [33] shows the impossibility of any 2-round SM protocol with n ≤ 4t.

Lemma 3.4. There exists no 2-round SM protocol where n ≤ 4t.
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By a standard player-partitioning argument [43], Lemma 3.4 reduces to showing the impossibility
of any 2-round SM protocol with n = 4 and t = 1. At a high-level, the player-partitioning argument
goes as follows: if there exists a 2-round SM protocol Π with n = 4t, then one can also design a
2-round SM protocol Π′ for 4 parties, where each of the 4 parties in Π′ plays the role of a disjoint
set of t parties as per Π. However, one can show that there does not exist any 2-round SM protocol
with n = 4 and t = 1, thus ruling out the existence of any 2-round SM protocol with n ≤ 4t. We
refer the interested readers to [33] for the proof of non-existence of any 2-round SM protocol with
n = 4 and t = 1. Now combining Lemma 3.3 with Lemma 3.4, we get that there exists no VSS
scheme with n ≤ 4t and a 2-round sharing phase. Since n > 3t is necessary for any VSS scheme,
this automatically implies that a VSS scheme with 3 or more rounds of sharing phase will necessarily
require n > 3t.

On the Usage of Broadcast Channel All synchronous VSS schemes assume the existence of a
broadcast channel. However, this is just a simplifying abstraction, as the parties can “emulate” the
effect of a broadcast channel by executing a perfectly-secure reliable-broadcast (RB) protocol over
the pair-wise channels, provided n > 3t holds [52]. RB protocols with guaranteed termination in the
presence of malicious/Byzantine adversaries require Ω(t) rounds of communication [31], while the RB
protocols with probabilistic termination guarantees require O(1) expected number of rounds [30, 38]
where the constants are high. Given the fact that the usage of broadcast channel is an “expensive
resource”, a natural question is whether one can design a VSS scheme with a constant number of
rounds in the sharing phase and which does not require the usage of broadcast channel in any of
these rounds. Unfortunately, the answer is no. This is because such a VSS scheme will imply the
existence of a strict constant round RB protocol with guaranteed termination in the presence of a
malicious adversary (the message to be broadcast by the sender can be shared using the VSS scheme
with sender playing the role of the dealer, followed by reconstructing the shared message), which is
impossible as per the result of2 [31]. Hence the best that one can hope for is to design VSS schemes
which invoke the broadcast channel only in a fewer rounds.

4 Upper Bounds

We now discuss the optimality of the bounds in Theorem 3.2 by presenting VSS schemes with
various round-complexities. The sharing phase of these schemes are summarized in Table 1 and their
reconstruction phase require one round. The prefix in the names of the schemes denotes the number
of rounds in the sharing phase. In the table, G denotes a finite group and RSS stands for replicated
secret-sharing [37] (see Section 4.1.4). The 3AKP-VSS scheme has some special properties, compared
to 3FGGRS-VSS, 3KKK-VSS schemes, which are useful for designing round-optimal perfectly-secure
MPC protocols (see Section 4.1.7).

2This reduction from RB to VSS is another way to argue the necessity of the n > 3t condition for VSS, since the
necessary condition for RB is n > 3t [52].
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Scheme n Round Complexity Type Sharing Semantic Algebraic Structure Communication Complexity

7BGW-VSS [12] n > 3t (7, 5) Type-II Shamir F O(n2 log |F|+ BC(n2 log |F|))
5BGW-VSS [33] n > 3t (5, 3) Type-II Shamir F O(n2 log |F|+ BC(n2 log |F|))
4GIKR-VSS [33] n > 3t (4, 3) Type-II Shamir F O(n2 log |F|+ BC(n2 log |F|))
3GIKR-VSS [33] n > 3t (3, 2) Type-II RSS G O(n ·

(
n
t

)
log |G|+ BC(n ·

(
n
t

)
log |G|))

3FGGRS-VSS [32] n > 3t (3, 2) Type-I Not Applicable F O(n3 log |F|+ BC(n3 log |F|))
3KKK-VSS [39] n > 3t (3, 1) Type-II Shamir F O(n3 log |F|+ BC(n3 log |F|))
3AKP-VSS [3] n > 3t (3, 2) Type-II Shamir F O(n3 log |F|+ BC(n3 log |F|))
2GIKR-VSS [33] n > 4t (2, 1) Type-II Shamir F O(n2 log |F|+ BC(n2 log |F|))
1GIKR-VSS [33] n = 5, t = 1 (1, 0) Type-I Not Applicable F O(n log |F|)

Table 1: Summary of the sharing phase of the perfectly-secure VSS schemes, with BC denoting
communication over the broadcast channel.

4.1 VSS Schemes with n > 3t

We start with perfectly-secure VSS schemes with n > 3t. While presenting these schemes, we use the
following simplifying conventions. If in a protocol a party is expecting some message from a sender
party and if it either receives no message or semantically/syntactically incorrect message, then the
receiving party substitutes some default value and proceeds with the steps of the protocol. Similarly,
if the dealer is publicly identified to be cheating then the parties discard the dealer and terminate
the protocol execution with a default sharing of 0.

4.1.1 The 7BGW-VSS Scheme

The scheme (Fig 2) consists of the protocols 7BGW-VSS-Sh and 7BGW-VSS-Rec. Protocol 7BGW-VSS-Sh
is actually a simplified version of the original protocol, taken from [36]. To share s, the dealer D
picks a random degree-t Shamir-sharing polynomial q(·) and the goal is to ensure that D verifiably
distributes the Shamir-shares of s as per q(·). Later, during 7BGW-VSS-Rec, the parties exchange
these Shamir-shares and reconstruct q(·) by error-correcting up to t incorrect shares using the al-
gorithm RS-Dec. The verifiability in 7BGW-VSS-Sh ensures that even if D is corrupt, the shares
distributed by D to the (honest) parties are as per some degree-t Shamir-sharing polynomial, say

q?(·), thus ensuring that s?
def
= q?(0) is t-shared. Moreover, the same s? is reconstructed during

7BGW-VSS-Rec. This ensures that the scheme is of type-II.
To prove that D is sharing its secret using a degree-t polynomial q(·), the dealer D embeds q(·)

in a random degree-(t, t) bivariate polynomial F (x, y). As shown in Fig 1, there are two approaches
to do this embedding. The polynomial q(·) could be either embedded at x = 0 (the approach shown
in part (a)) or it could be embedded at y = 0 (the approach shown in part (b)). For our description,
we follow the first approach. The dealer then distributes distinct row and column-polynomials to
respective parties. If D is honest, then this distribution of information maintains the privacy of
dealer’s secret (follows from Lemma 2.8). Also, if D is honest, then constant term of the individual
row-polynomials actually constitute the Shamir-shares of s, as they constitute distinct points on
q(·). However, a potentially corrupt D may distribute polynomials, which may not be derived from
a single degree-(t, t) bivariate polynomial. Hence, the parties interact to verify if D has distributed
“consistent” row and column-polynomials, without revealing any additional information about s.

Every pair of parties Pi, Pj upon receiving the polynomials fi(x), gi(y) and fj(x), gj(y) respec-
tively, interact and check if fi(αj) = gj(αi) and fj(αi) = gi(αj) holds. If the checks pass for all the
pairs of (honest) parties, then from Lemma 2.7, it follows that D has distributed consistent row (and
column-polynomials) to the parties. However, if the checks do not pass, then either D has distributed
inconsistent polynomials or the parties have not exchanged the correct common values. In this case,
the parties interact publicly with D to resolve these inconsistencies. The details follow.
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[s]t

(a)

fj(x)⇒

gi(y)
⇓

⇓
q(·)

F (α1, α1) . . . F (αi, α1) . . . F (αn, α1)

.

..
.
..

...
...

...

F (α1, αj) . . . F (αi, αj) . . . F (αn, αj)

...
...

...
...

...

F (α1, αn) . . . F (αi, αn) . . .F (αn, αn)

⇒

.

..

⇒

...

⇒

f1(0)

.

..

fj(0)

...

fn(0)

[s]t

(b)

fj(x)⇐

gi(y)
⇓

⇐ q(·)

F (α1, α1) . . . F (αi, α1) . . . F (αn, α1)

.

..
.
..

...
...

...

F (α1, αj) . . . F (αi, αj) . . . F (αn, αj)

...
...

...
...

...

F (α1, αn) . . . F (αi, αn) . . .F (αn, αn)

⇓ ⇓ ⇓ ⇓ ⇓

g1(0) . . . gi(0) . . . gn(0)

Figure 1: Pictorial depiction of the values on the degree-(t, t) polynomial F (x, y) distributed by D
and how they constitute [s]t. The value highlighted in the yellow color denotes a common value held
by every pair of parties (Pi, Pj). In the first approach, the Shamir-sharing polynomial q(·) is set
as F (0, y) and the Shamir-shares are the constant terms of the individual row-polynomials. In the
second approach, q(·) is set as F (x, 0) and the Shamir-shares are the constant terms of the individual
column-polynomials.

Every Pi upon receiving the supposedly common values on its column polynomial prepares a
complaint-list Li, which includes all the parties Pj whose received value is inconsistent with Pi’s
column-polynomial (this is interpreted as if there is a dispute between Pi and Pj). If there is a
dispute between Pi and Pj , then at least one of the three parties D, Pi, Pj is corrupt. Each party
then broadcasts its complaint-list. In response, for every dispute reported by a party, the dealer
D makes public its version of the disputed value, namely the corresponding value on its bivariate
polynomial. This is followed by the first-stage accusations against the dealer. Namely, a party
publicly “accuses” D, if the party is in dispute with more than t parties or if it finds D making public
a value, which is not consistent with its column-polynomial. In response, D makes public the row
and column-polynomials of such accusing parties. However, care has to taken to ensure that these
broadcasted polynomials are consistent with the polynomials of the parties who have not yet accused
D. This is done through the second-stage of public accusations against the dealer, where a party
(who has not yet accused D) publicly accuses D, if it finds any inconsistency between the row and
column-polynomials held by the party and the polynomials which were made public by D.

An honest D always respond correctly against any accusation or dispute. Moreover, there will be
at most t accusations against D. Consequently, if the parties find D not responding to any accusa-
tion/dispute or if more than t parties accuse D, then D is corrupt and hence the parties discard D. If
D is honest, then all the values which are made public correspond to corrupt parties (already known
to Adv) and hence does not violate privacy. On the other hand, if D is corrupt but not discarded,
then it ensures that the polynomials of all honest parties are consistent.

Sharing Phase: Protocol 7BGW-VSS-Sh

Scheme 7BGW-VSS
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• Round I (sending polynomials) — the dealer does the following:
– On having the input s ∈ F, pick a random degree-t Shamir-sharing polynomial q(·), such that

q(0) = s holds. Then pick a random degree-(t, t) bivariate polynomial F (x, y), such that
F (0, y) = q(·) holds.

– For i = 1, . . . , n, send the polynomials fi(x)
def
= F (x, αi) and gi(y)

def
= F (αi, y) to party Pi.

• Round II (pair-wise consistency checks) — each party Pi does the following:

– On receiving degree-t polynomials fi(x), gi(y) from D, send fij
def
= fi(αj) to Pj , for j = 1, . . . , n.

• Round III (broadcast complaints) — each party Pi does the following:
– Initialize a complaint-list Li to ∅. For j = 1, . . . , n, include Pj to Li, if fji 6= gi(αj). Broadcast

Li.
• Round IV (resolving complaints) — the dealer does the following:

– For i = 1, . . . , n, if Pi has broadcast Li 6= ∅, then for every Pj ∈ Li, broadcast the value F (αi, αj).
• Round V (first-stage accusations) — each party Pi does the following:

– Broadcast the message (Pi, accuse,D), if any of the following conditions hold.

1. |Li| > t or if Pi ∈ Li;
2. If ∃k ∈ {1, . . . , n}, such that Pi ∈ Lk and F (αk, αi) 6= fi(αk);
3. If for any Pj ∈ Li, the condition F (αi, αj) 6= gi(αj) holds.

• Round VI (resolving first-stage accusations) — the dealer does the following:
– For every Pi who has broadcast (Pi, accuse,D), broadcast the degree-t polynomials fi(x) and

gi(y).
• Round VII (second-stage accusations) — each party Pi does the following:

– Broadcast the message (Pi, accuse,D) if there exists any j ∈ {1, . . . , n} such that D has broadcast
degree-t polynomials fj(x), gj(y) and either fj(αi) 6= gi(αj) or gj(αi) 6= fi(αj) holds.

• Output decision — each party Pi does the following:
– If more than t parties Pj broadcast (Pj , accuse,D) throughout the protocol, then discard D.
– Else output the sharea si = fi(0).

Reconstruction Phase: Protocol 7BGW-VSS-Rec

Each party Pi sends the share si to every party Pj ∈ P. Let Wi be the set of shares received by Pi from
the parties. Party Pi executes RS-Dec(t, t,Wi) to reconstruct s.

aIf D has broadcast new polynomials fi(x), gi(y) for Pi during Round VI, then consider these new polynomials.

Figure 2: The perfectly-secure VSS scheme of Ben-Or, Goldwasser and Wigderson [12].

Since the idea of bivariate polynomials has been used in all the followup works on perfectly-secure
VSS, we give a very high level overview of the proof of the properties of 7BGW-VSS scheme.

Theorem 4.1. Protocols (7BGW-VSS-Sh, 7BGW-VSS-Rec) constitute a Type-II perfectly-secure VSS
scheme with respect to Shamir’s t-out-of-n secret-sharing scheme. The protocol incurs a communi-
cation of O(n2 log |F|) bits over the point-to-point channels and broadcast of O(n2 log |F|) bits.

Proof. If D is honest, then fi(αj) = gj(αi) and fj(αi) = gi(αj) holds for every pair of parties
(Pi, Pj). Consequently, no honest Pj will be present in the list Li of any honest Pi. Moreover, D
honestly resolves the first-stage accusations as well as second-stage accusations and consequently, no
honest party accuses and discards D. Hence s will be t-shared through the degree-t polynomial q(·).
Moreover, during 7BGW-VSS-Rec, the honest parties correctly reconstruct q(·) and hence s. This
follows from the properties of RS-Dec and the fact that q(·) is a degree-t polynomial and at most t
corrupt parties can send incorrect shares. Hence, the correctness property is guaranteed.

Let C be the set of corrupt parties. If D is honest, then throughout 7BGW-VSS-Sh, the view of
Adv consists of {fi(x), gi(y)}Pi∈C . Moreover, no honest party accuses D and hence all the information
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which D makes public can be derived from {fi(x), gi(y)}Pi∈C . Now since these polynomials are derived
from F (x, y), which is a randomly chosen polynomial embedding q(·), it follows from Lemma 2.8 that
the view of Adv is distributed independently of s, thus guaranteeing privacy.

For strong commitment we have to consider a corrupt D. If the honest parties discard D,

then clearly the value s?
def
= 0 will be t-shared and the same value 0 gets reconstructed during

7BGW-VSS-Rec. On the other hand, consider the case when the honest parties do not discard D
during 7BGW-VSS-Sh. In this case we claim that the row and column-polynomials of all the hon-
est parties are derived from a single degree-(t, t) bivariate polynomial, say F ?(x, y), which we call

as D’s committed bivariate polynomial. Consequently, s?
def
= F ?(0, 0) will be t-shared through the

Shamir-sharing polynomial q?(·) def= F ?(0, y) and s? gets reconstructed during 7BGW-VSS-Rec.
To prove the claim, we first note that there are at least n − t ≥ 2t + 1 parties who do not

broadcast an accuse message against D (as otherwise D is discarded). Let H be the set of honest
parties among these n − t parties. It is easy to see that |H| ≥ n − 2t ≥ t + 1. The parties in H
receive degree-t row and column-polynomials from D. Moreover, for every Pi, Pj ∈ H, their row
and column-polynomials are pair-wise consistent (as otherwise either Pi or Pj would broadcast an
accuse message against D). It then follows from Lemma 2.7 that the row and column-polynomials
of all the parties in H lie on a single degree-(t, t) bivariate polynomial, say F ?(x, y). Next consider
any honest party Pj 6∈ H, who broadcasts an accuse message against D and corresponding to which
D makes public the row and column-polynomials of Pj . To complete the proof of the claim, we
need to show that these polynomials also lie on F ?(x, y). We show it for the row-polynomial of Pj
and a similar argument can be used for the column-polynomial as well. So let fj(x) be the degree-t
row-polynomial broadcast by D for Pj . It follows that fj(αi) = gi(αj) holds for every Pi ∈ H,
where gi(y) is the degree-t column polynomial held by Pi (otherwise Pi would have broadcast an
accuse message against D). Now gi(y) = F ?(αi, y) holds. Moreover, since |H| ≥ t + 1, the distinct
points {(αj , gi(αj))}Pi∈H uniquely determine the degree-t polynomial F ?(x, αj). This implies that
fj(x) = F ?(x, αj), as two different degree-t polynomials can have at most t common points.

In the protocol, D sends two degree-t polynomials to each party and every pair of parties exchange
2 common values, which requires a communication of O(n2) field elements. There could be at most
t parties corresponding to which D makes public their polynomials and this requires a broadcast of
O(n2) field elements.

4.1.2 A 5-round Version of 7BGW-VSS-Sh

Protocol 7BGW-VSS-Sh follows the “share-complaint-resolve” paradigm, where D first distributes the
information on its bivariate polynomial, followed by parties complaining about any “inconsistency”,
which is followed by D resolving these inconsistencies. At the end, either all (honest) parties held
consistent polynomials derived from a single degree-(t, t) bivariate polynomial or D is discarded.
The “complaint” and “resolve” phases of 7BGW-VSS-Sh occupied five rounds. In Gennaro, Ishai,
Kushilevitz and Rabin [33], the authors proposed a round-reducing technique, which collapses these
phases to three rounds, thus reducing the overall number of rounds to five. The modified protocol
5BGW-VSS-Sh is presented in Fig 3.

The high level idea of 5BGW-VSS-Sh is as follows. In 7BGW-VSS-Sh, during the third round,
Pi broadcasts only the identity of the parties with which it has a dispute (through Li), followed by
D making the corresponding disputed values public during Round IV, which is further followed by
Pi accusing D during Round V, if Pi finds D’s version to mis-match with Pi’s version. Let us call
Pi to be unhappy, if it accuses D during Round V. The round-reducing technique of [33] enables
to identify the set of unhappy parties UH by the end of Round IV as follows. During Round III,
apart from broadcasting the list of disputed parties, party Pi also makes public its version of the
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corresponding disputed values. In response, both D and the corresponding complainee party makes
public their respective version of the disputed value. Now based on whether D’s version matches the
complainant’s version or complainee’s version, the parties can identify the set UH.

In 7BGW-VSS-Sh, once UH is identified, D makes public the polynomials of the parties in UH dur-
ing Round VI. And to verify if D made public the correct polynomials, during Round VII, the parties
not in UH raise accusations against D, if they find any inconsistency between the polynomials held
by them and the polynomials made public by D. The round-reducing technique of [33] collapses these
two rounds into a single round. Namely, once UH is decided, D makes public the row-polynomials of
these parties. In parallel, the parties not in UH make public the corresponding supposedly common
values on these row-polynomials. Now to check if D broadcasted correct row-polynomials, one just
has to verify whether each broadcasted row-polynomial is pair-wise consistent with at least 2t + 1
corresponding values, broadcasted by the parties not in UH.

• Round I — D picks F (x, y) as in 7BGW-VSS-Sh and distributes fi(x), gi(y) lying on F (x, y) to each
Pi.

• Round II — As in 7BGW-VSS-Sh, each Pi upon receiving fi(x), gi(y) from D, sends fij = fi(αj) to
Pj .

• Round III — each party Pi does the following:
– For every Pj ∈ P where fji 6= gi(αj), broadcast (complaint, i, j, gi(αj)).

• Round IV (making disputed values public) — the dealer and each party Pj does the
following:

– If Pi broadcasts (complaint, i, j, gi(αj)), then D and Pj broadcasts F (αi, αj) and fj(αi) respec-
tively.

• Local computation (deciding unhappy parties) — each party Pk does the following:
– Initialize a set of unhappy parties UH to ∅.
– For every pair of parties (Pi, Pj), such that Pi has broadcast (complaint, i, j, gi(αj)), D has

broadcast F (αi, αj) and Pj has broadcast fj(αi), do the following.
– If gi(αj) 6= F (αi, αj), then include Pi to UH.
– If fj(αi) 6= F (αi, αj), then include Pj to UH.

– If |UH| > t, then discard D.
• Round V (resolving unhappy parties) — the dealer and each Pj 6∈ UH does the following:

– For every Pi ∈ UH, the dealer D broadcasts degree-t polynomial fi(x).
– For every Pi ∈ UH, party Pj broadcasts gj(αi).

• Output decision — each party Pk does the following:
– If there exists any Pi ∈ UH for which D broadcasts fi(x) and at most 2t parties Pj 6∈ UH broadcast

gj(αi) values where fi(αj) = gj(αi) holds, then discard D.
– Else output the share fk(0).

Protocol 5BGW-VSS-Sh

Figure 3: A simplified 5-round version of 7BGW-VSS-Sh due to Genarro, Ishai, Kushilevitz and Rabin [33].

4.1.3 The 4-round 4GIKR-VSS Scheme

Genarro et al [33] proposed another round-reducing technique to reduce the number of rounds of
5BGW-VSS-Sh by one. The modified protocol 4GIKR-VSS-Sh is presented in Fig 4. The idea is to
ensure that the set UH is decided by the end of Round III, even though this might look like an
impossible task. This is because UH can be decided during Round IV, only after the results of
pair-wise consistency checks are available during Round III. The key-observation of [33] is that the
parties can “initiate” the pair-wise consistency checks from Round I itself. More specifically, every
Pi, Pj exchange random pads privately during the Round I, independently of D’s distribution of the
polynomials. During the second round, Pi, Pj can then broadcast a masked version of the supposedly
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common values on their polynomials, using the exchanged pads as the masks. If D, Pi and Pj are
honest, then the masked version of the common values will be the same and nothing about the
common values will be learnt, as the corresponding masks will be private. By comparing the masked
versions of the common values, the parties publicly learn about the results of pair-wise consistency
checks by the end of the Round II.

• Round I (sending polynomials and exchanging random pads)
– D picks F (x, y) as in 7BGW-VSS-Sh and distributes fi(x), gi(y) lying on F (x, y) to each Pi.
– Each Pi ∈ P picks a random pad rij ∈ F corresponding to every Pj ∈ P and sends rij to Pj .

• Round II (broadcasting common values in a masked fashion) — each Pi does the following:

– Broadcast aij
def
= fi(αj) + rij and bij

def
= gi(αj) + r′ji, where r′ji is the pad, received from Pj .

• Round III (making disputed values public) — for all Pi, Pj where aij 6= bji, party Pi, Pj
and D does the following:

– D broadcasts F (αj , αi); Pi broadcasts fi(αj) and Pj broadcasts gj(αi).
• Local computation (deciding unhappy parties) — each party Pk does the following:

– Initialize a set of unhappy parties UH to ∅. For every (Pi, Pj) where aij 6= bji and where Pi has
broadcast fi(αj), D has broadcast F (αj , αi) and Pj has broadcast gj(αi), do the following.
– If fi(αj) 6= F (αj , αi), then include Pi to UH.
– If gj(αi) 6= F (αj , αi), then include Pj to UH.

– If |UH| > t, then discard D.
• Round IV (resolving unhappy parties) — the dealer and each Pj 6∈ UH does the following:

– For every Pi ∈ UH, D broadcasts degree-t polynomial fi(x) and Pj broadcasts gj(αi).
• Output decision — each party Pk does the following:

– If there exists any Pi ∈ UH for which D broadcasts fi(x) and at most 2t parties Pj 6∈ UH broadcast
gj(αi) values where fi(αj) = gj(αi) holds, then discard D.

– Else output the share fk(0).

Protocol 4GIKR-VSS-Sh

Figure 4: A 4-round sharing phase protocol due to Genarro, Ishai, Kushilevitz and Rabin [33].

4.1.4 The 3-round 3GIKR-VSS Scheme

We now present the 3GIKR-VSS scheme from [33], which has a round-optimal sharing phase, namely
a 3-round sharing phase. However, the protocol is inefficient, as it requires an exponential (in n
and t) amount of computation and communication. The computations in 3GIKR-VSS scheme are
done over a finite group (G,+). We first explain t-out-of-n replicated secret-sharing (RSS) [37]. Let

K
def
=
(
n
t

)
and A1, . . . , AK denote the set of all possible subsets of P of size t. For k = 1, . . . ,K, let

Gk = P \Ak. It is easy to see that in each Gk, the majority of the parties are honest. To share s ∈ G,
the share-generation algorithm of RSS outputs (v(1), . . . , v(K)) ∈ GK , where v(1), . . . , v(K) are random

elements, such that v(1) + . . . + v(K) = s holds. The share si for Pi is defined as si
def
= {v(j)}Pi∈Gj .

Any t-sized subset of (s1, . . . , sn) will have at least one “missing” element from v(1), . . . , v(K), say
v(l), whose probability distribution will be independent of s, thus ensuring privacy. On the other
hand, any (t+ 1)-sized subset of (s1, . . . , sn) will have all values v(1), . . . , v(K) which can be added to
reconstruct back s, thus ensuring correctness. We say that s ∈ G is RSS-shared, if it is secret-shared
as per t-out-of-n RSS. That is, if there exist v(1), . . . , v(K) where s = v(1) + . . . + v(K), with all the
parties in Gk holding v(k).

Scheme 3GIKR-VSS is presented in Fig 5. The sharing protocol 3GIKR-VSS-Sh verifiably generates
a replicated secret-sharing of dealer’s secret, maintaining its privacy if D is honest. The verifiability
ensures that even if D is corrupt, there exists some value which has been shared as per RSS by D.
The reconstruction protocol 3GIKR-VSS-Rec allows the parties to reconstruct the RSS-shared value of
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D. During 3GIKR-VSS-Sh, D generates a vector of values (v(1), . . . , v(K)) as per the share-generation
algorithm of RSS and sends v(k) to all the parties in Gk. If D is honest, then this ensures the privacy
of s. This is because if Adv corrupts the parties in Ak, then it will not know v(k). To ensure that
a potentially corrupt D has distributed the same vk to all the (honest) parties in Gk, each pair of
parties in Gk privately exchange their respective copies of v(k) and publicly raise a complaint if they
find any inconsistency. To resolve any complaint raised for Gk, D makes public the value v(k) for Gk,
thus ensuring that all the parties in Gk have the same v(k). Notice that this does not violate privacy,
since if any inconsistency is reported for Gk, then either D is corrupt or Gk consists of at least one
corrupt party and so adversary already knows v(k).

The above process will require four rounds, which can be collapsed to three, based on the idea
of pre-exchanging pair-wise random pads. During 3GIKR-VSS-Rec, the goal of each Pi is to correctly
obtain v(1), . . . , v(K). If Pi ∈ Gk, then it already has v(k). However, if Pi 6∈ Gk, then every party in Gk
sends v(k) to Pi, who applies the majority rule to filter out the correct v(k).

Sharing Phase: Protocol 3GIKR-VSS-Sh

• Round I (distributing shares and exchanging random pads): Let K =
(
n
t

)
and A1, . . . , AK

denote the set of all possible subsets of P of size t and let Gk = P \Ak.
– D on having the input s ∈ G, randomly selects v(1), . . . , v(K) ∈ G such that s = v(1) + . . .+ v(K)

holds. It then sends v(k) to every party Pi ∈ Gk, for k = 1, . . . ,K.

– For k = 1, . . . ,K, each Pi ∈ Gk sends a randomly chosen pad r
(k)
ij ∈ G to every Pj ∈ Gk where

i < j.
• Round II (pair-wise consistency check within each group)

– For k = 1, . . . ,K, each pair of parties Pi, Pj ∈ Gk with i < j do the following:

– Pi broadcasts a
(k)
ij = v

(k)
i + r

(k)
ij , where v

(k)
i denotes the version of v(k) received by Pi from D.

– Pj broadcasts a
(k)
ji = v

(k)
j + r

′(k)
ij , where v

(k)
j denotes the version of v(k) received by Pj from

D and r
′(k)
ij denotes the pad received by Pj from Pi.

• Round III (resolving conflicts)

– For k = 1, . . . ,K, if there exists Pi, Pj ∈ Gk such that a
(k)
ij 6= a

(k)
ji , then D broadcasts the value

v(k).
• Output determination — each party Pi does the following:

– If ∃k ∈ {1, . . . ,K} where Pi ∈ Gk such that D broadcast v(k), then set v
(k)
i to v(k).

– Output the share si
def
= {v(k)i }Pi∈Gk

.

Reconstruction Phase: Protocol 3GIKR-VSS-Rec

Each party Pi ∈ P does the following:

– ∀k ∈ {1, . . . ,K}, such that Pi ∈ Gk, send v
(k)
i to every party in P \ Gk.

– ∀k ∈ {1, . . . ,K} where Pi 6∈ Gk, set v(k) to be the value v
(k)
j received from at least t+1 parties Pj ∈ Gk.

– Output s =
∑

Gk:Pi∈Gk

v
(k)
i +

∑
Gk:Pi 6∈Gk

v(k).

Scheme 3GIKR-VSS

Figure 5: The 3-round 3GIKR-VSS scheme due to Genarro, Ishai, Kushilevitz and Rabin [33].

4.1.5 The 3-round 3FGGRS-VSS Scheme

The 4GIKR-VSS protocol comes closest in terms of the number of rounds to obtain a round optimal
and efficient VSS scheme. Round IV of 4GIKR-VSS-Sh consists of D making public the polynomials
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of the unhappy parties. Fitzi et al. [32] observed that the elimination of Round IV results in a
primitive that satisfies a weaker commitment property, where the reconstructed value may be some
predefined default value, when the dealer is corrupt. This primitive is called weak verifiable secret
sharing (WSS) [54] and is used as a building block to construct a VSS scheme. We next present the
required background and the WSS scheme of [32].

Definition 4.2 ((n, t)-WSS [54]). Let (Sh,Rec) be a pair of protocols where D ∈ P has a private
input s ∈ S for Sh. Then (Sh,Rec) is a perfectly-secure (n, t)-WSS scheme, if the following hold.

– Privacy and Correctness: Same as in VSS.
– Weak Commitment: Even if D is corrupt, in any execution of Sh the joint view of the honest

parties defines a unique value s? ∈ S (which could be different from s), such that each honest
party outputs either s? or some default value ⊥ at the end of Rec, irrespective of Adv.

The WSS scheme 3FGGRS-WSS of Fitzi et al. [32] is given in Fig. 6. Protocol 3FGGRS-WSS-Sh
is the same as 4GIKR-VSS-Sh, except that the parties do not execute Round IV. Consequently,
the parties in UH will not posses their shares. Hence, during 3FGGRS-WSS-Rec, only the happy
parties (who are not in UH) participate by broadcasting their respective polynomials. To verify that
correct polynomials are broadcasted, the pair-wise consistency of these polynomials is checked. The
polynomials which are not found to be pair-wise consistent with “sufficiently many” polynomials
are not considered. If the parties are left with at least n − t polynomials, then they are used to
reconstruct back D’s committed Shamir-sharing polynomial, else the parties output ⊥. The idea is
that if the parties are left with n − t polynomials, then they lie on the same degree-(t, t) bivariate
polynomial as committed by D to honest happy parties during the sharing phase, as among these
polynomials, at least t+ 1 belong to the honest parties who are happy.

For an honest D, no honest party will be in UH and hence all honest parties will have their
respective shares of D’s Shamir-sharing polynomial. Moreover, if any corrupt party produces an
incorrect polynomial during the reconstruction phase, then it will be ignored due to the pair-wise
consistency checks. Thus 3FGGRS-WSS achieves the properties of a type-II VSS, for an honest D.
However if D is corrupt, then up to t honest parties may belong to UH. Moreover, during the
reconstruction phase, even if a single corrupt party produces incorrect polynomials, then the parties
reconstruct⊥. And this prevents 3FGGRS-WSS from being a VSS scheme.

Sharing Phase: Protocol 3FGGRS-WSS-Sh

• The parties execute the first 3 rounds of 4GIKR-VSS-Sh. Let UH be the set of unhappy parties and let

W def
= P \ UH be the set of happy parties. If |UH| > t, then discard D.

Reconstruction Phase: Protocol 3FGGRS-WSS-Rec

• Revealing private information: each Pi ∈ W broadcasts fi(x) and gi(y).
• Consistency check and output decision — each party Pi does the following:

– Construct a consistency graph G over the set of parties W with an edge between Pj and Pk if and
only if fj(αk) = gk(αj) and gj(αk) = fk(αj).

– Remove Pj from G, if it has degree less than n− t in G. Repeat till no more nodes can be removed
from G. Redefine W to be the set of parties, whose corresponding nodes remain in G.

– If |W| < n− t then output a default value ⊥. Else interpolate a degree-t polynomial q(·) through
the points {(αj , fj(0))}Pj∈W and output q(·), s = q(0).

Scheme 3FGGRS-WSS

Figure 6: The 3-round 3FGGRS-WSS scheme due to Fitzi, Garay, Gollakota, Rangan and Srinathan [32].
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Sharing and Reconstructing Polynomial Using 3FGGRS-WSS One can interpret D’s compu-
tation in 3FGGRS-WSS-Sh as if D wants to share the degree-t Shamir-sharing polynomial F ?(0, y).
If D is not discarded, then each (honest) Pj ∈ W receives the share F ?(0, αj) from D through its
degree-t row-polynomial F ?(x, αj). Here F ?(x, y) is the degree-(t, t) bivariate polynomial committed
by D to the honest parties in W, which is the same as F (x, y) for an honest D. If D is honest, then
adversary learns at most t shares lying on F (0, y) and hence its view will be independent of F (0, 0).
Similarly, the computations during 3FGGRS-WSS-Rec can be interpreted as if the parties publicly try
to reconstruct a degree-t Shamir-sharing polynomial F ?(0, y), which has been shared by D during
3FGGRS-WSS-Sh. If D is honest, then the parties robustly reconstruct the shared polynomial. Else,
the parties either reconstruct the shared polynomial or output ⊥. Hence we propose the following
notations for 3FGGRS-WSS, which later simplifies the presentation of 3FGGRS-VSS.

Notation 4.3 (Notations for using 3FGGRS-WSS). We use the following notations.
• We say that party Pj ∈ P shares a degree-t polynomial r(·) held by Pj , to denote that Pj plays

the role of D and invokes an instance of 3FGGRS-WSS-Sh by selecting r(·) as its Shamir-sharing
polynomial and all the parties participate in this instance.

• We say that Pi receives a wss-share rji from Pj , to denote that in Round I of the 3FGGRS-WSS-Sh
instance invoked by Pj , Pi receives a degree-t row-polynomial from Pj , whose constant term is
rji. If Pj is not discarded during the 3FGGRS-WSS-Sh instance, then the wss-shares rji of all
the honest parties in W lie on a unique degree-t Shamir-sharing polynomial held by Pj .

• Let r(·) be a degree-t polynomial shared by Pj through an instance of 3FGGRS-WSS-Sh. We say
that the parties try to reconstruct Pj’s shared polynomial, to denote that the parties execute
the corresponding instance of 3FGGRS-WSS-Rec, which either outputs r(·) or ⊥.

From WSS to VSS The sharing-phase protocol of 3FGGRS-VSS (see Fig. 7) is the same as the
first three rounds of 4GIKR-VSS-Sh with the following twist. The random pads rji used by Pj to
verify the pair-wise consistency of its row-polynomial with the other parties’ column-polynomials
are “tied together” by letting these pads lie on a random degree-t blinding-polynomial rj(·), which
is shared by Pj (see Notation 4.3). For pair-wise consistency, Pj makes public the polynomial Aj(·),
which is a masked version of its row-polynomial and its blinding-polynomial, while every Pi makes
public the supposedly common value on its column-polynomial, blinded with the wss-share of Pj ’s
blinding-polynomial. This new way of performing pair-wise consistency checks achieves the same
“goals” as earlier. Moreover, privacy is maintained for an honest D, as for every honest Pj , the
adversary obtains at most t wss-shares of Pj ’s blinding-polynomial, which are randomly distributed.
The set of happy parties for the VSS is identified based on the results of pair-wise consistency and
conflict-resolutions, as done in 4GIKR-VSS-Sh. Moreover, the parties also ensure that for every happy
party Pj for the VSS, there is an overlap of at least n − t between the set of happy parties for the
VSS and the set of happy parties for Pj ’s WSS-sharing instance. This is crucial for ensuring the
strong commitment property during the reconstruction phase.

Let F ?(x, y) be the degree-(t, t) bivariate polynomial, committed by D during the sharing phase.
During the reconstruction phase, instead of asking the happy parties to make their row-polynomials
public, the parties reconstruct their blinding-polynomials (by executing instances of 3FGGRS-WSS-Rec),
which are then unmasked from the corresponding Aj(·) polynomials to get back the row-polynomials
of the happy parties. For the honest happy parties Pj , robust reconstruction of their blinding-
polynomials is always guaranteed, thus ensuring that their row-polynomials F ?(x, αj) are robustly
reconstructed. If the reconstruction of Pj ’s blinding-polynomial fails, then Pj is corrupt and hence
can be safely discarded from consideration. However, if Pj is corrupt and the parties reconstruct
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a degree-t polynomial during the corresponding 3FGGRS-WSS-Rec instance, then the weak commit-
ment property of the WSS ensures that reconstructed polynomial is the correct blinding-polynomial.
Hence unmasking it from Aj(·) will return back the row-polynomial F ?(x, αj). This is because there
are at least n− t parties, which belong to the happy set of both the VSS instance, as well as Pj ’s WSS
instance. Among these n − t common happy-parties, at least t + 1 are honest. And the wss-shares
received by these honest parties Pk from Pj uniquely define Pj ’s blinding-polynomial rj(·), while
evaluations of the column-polynomials of the same honest-parties Pk at y = αj uniquely determine
the degree-t row-polynomial F ?(x, αj). Moreover, during the sharing phase these honest parties Pk
collectively ensured that Aj(·) = F ?(x, αj) + rj(·) holds, as otherwise they do not belong to the
happy set of Pj ’s WSS instance.

Sharing Phase: Protocol 3FGGRS-VSSSh

• Round I (sending polynomials and exchanging random pads):
– D picks F (x, y) and distributes fi(x), gi(y) lying on F (x, y) to each Pi.
– Each party Pi ∈ P (including D) picks a random degree-t blinding-polynomial ri(·) and shares it

through an instance WSS−Shi of 3FGGRS-WSS-Sh.
• Round II (broadcasting common values in a masked fashion) — each Pi does the following:

– Broadcast the degree-t polynomial Ai(·)
def
= fi(x) + ri(·).

– Broadcast bij
def
= gi(αj) + r′ji, where r′ji denotes the wss-share received from Pj during WSS−Shj .

– For every k ∈ {1, . . . , n}, concurrently execute Round II of the instance WSS−Shk.
• Round III:

– (making disputed values public) — for all Pi, Pj where Ai(αj) 6= bji, dealer D broadcasts
F (αj , αi), party Pi broadcasts fi(αj) and party Pj broadcasts gj(αi).

– For every k ∈ {1, . . . , n}, the parties concurrently execute Round III of the instance WSS−Shk.
• Local computation at the end of Round III — each party Pk does the following:

– Initialize a set UH of unhappy parties. For every Pi, Pj where Ai(αj) 6= bji, do the following.
– Include Pi ∈ UH (resp. Pj ∈ UH), if F (αj , αi) 6= fi(αj) (resp. F (αj , αi) 6= gj(αi)) holds.

Let V def
= P \ UH be the set of happy parties.

– For j ∈ {1, . . . , n}, let Wj denote the set of happy parties during the instance WSS−Shj . Remove
Pi from Wj , if during Round II, Aj(αi) 6= bij holds.

– For every Pj ∈ V, if |V ∩ Wj | < n − t, then remove Pj from V. Repeat this step till no more
parties can be removed from V. If |V| < n− t, then discard D.

Reconstruction Phase: Protocol 3FGGRS-VSSRec

• Reconstructing the blinding-polynomials:
– ∀Pj ∈ V, the parties try to reconstruct Pj ’s blinding-polynomial by participating in an instance

WSS−Recj of 3FGGRS-WSS-Rec. Pj is removed from V if ⊥ is the output during WSS−Recj .
• Output decision — each party Pi does the following:

– For each Pj ∈ V, compute fj(x) = Aj(x)− rj(·), where rj(·) is reconstructed during WSS−Recj .
Interpolate a degree-t polynomial q(·) through {(αj , fj(0))}Pj∈V . Output s = q(0).

Scheme 3FGGRS-VSS

Figure 7: The 3-round 3FGGRS-VSS scheme due to Fitzi, Garay, Gollakota, Rangan and Srinathan [32].

4.1.6 The 3-round 3KKK-VSS Scheme

The 3FGGRS-VSS scheme is a Type-I VSS, because if D is corrupt, then only the honest parties in
V get their shares. Moreover, it makes use of the broadcast channel during two of the rounds of the
sharing phase, which is not optimal (the optimal is one round). The 3KKK-VSS scheme due to Katz
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et al. [39] rectifies both these problems.
The optimal broadcast-channel usage must first be rectified for 3FGGRS-WSS-Sh. The modi-

fied construction 3KKK-WSS-Sh (see Fig 8) is based on the observation that during Round II of
3FGGRS-WSS-Sh (which is the same as Round II of 4GIKR-VSS-Sh), there is no need to publicly per-
form the pair-wise consistency checks over masked values. Instead, parties can first privately perform
the pair-wise consistency checks over unmasked values and later publicly announce the results during
the third round. However, we also need to add a provision for the dealer to resolve any potential
conflicts during the third round itself. For this, during the second round, every Pi, Pj privately
exchange their supposedly common values and also the random pads. Additionally, the pads are also
“registered” with the dealer. Later during the third round, upon a disagreement between Pi and Pj ,
they broadcast their respective common values and their respective random pads, else they broadcast
their appropriately masked common values. In parallel, dealer either broadcasts the common value
in a masked fashion if the pads it received from Pi, Pj are same, else it just broadcasts the common
value. The secrecy of the common values is maintained if Pi, Pj and the dealer are honest. On the
other hand, if dealer is corrupt and if there is a disagreement between honest Pi, Pj , then the dealer
can “take side” with at most one of them during the third round.

• Round I (sending polynomials and exchanging random pads):
– D distributes fi(x), gi(y) lying on F (x, y) to each Pi. In parallel, each Pi sends a random pad rij

to Pj and additionally the pad-list {rij}Pj∈P to D.
• Round II (exchanging common values and confirming pad) — each Pi does the following:

– Send aij = fi(αj) and bij = gi(αj) to Pj .
– Send {r′ji}Pj∈P to D, where r′ji denotes the pad received from Pj during Round I.

• Round III (complaint and resolution) — each party Pi does the following:
– For j ∈ {1, . . . , n}, let a′ji and b′ji be the values received from Pj during Round II.

– If b′ji 6= fi(αj), broadcast (j, disagree-row, fi(αj), rij), else broadcast (j, agree-row, fi(αj)+
rij).

– If a′ji 6= gi(αj), broadcast (j, disagree-column, gi(αj), r
′
ji), else broadcast (j, agree-column,

gi(αj) + r′ji).
– If Pi = D, then for every ordered pair of parties (Pj , Pk), additionally do the following.

– Let r
(1)
jk and r

(2)
jk be the pads received from Pj and Pk respectively during Round I and Round

II. If r
(1)
jk 6= r

(2)
jk , then broadcast ((j, k), NEQ, F (αk, αj)), else broadcast ((j, k), EQ, F (αk, αj)+

r
(1)
jk ).

• Local computation (identifying unhappy parties) — each party Pk does the following:
– Initialize a set of unhappy parties UH to ∅. For every Pi, Pj such that Pi broadcasts (j, disagree-row,

fi(αj), rij) and Pj broadcasts (i, disagree-column, gj(αj), r
′
ij) where rij = r′ij , do the following.

– Include Pi to UH, if one of the following holds.
– During Round III, D broadcasts ((i, j), NEQ, dij), such that dij 6= fi(αj).
– During Round III, D broadcasts ((i, j), EQ, dij), such that dij 6= fi(αj) + rij .

– Include Pj to UH, if one of the following holds.
– During Round III, D broadcasts ((i, j), NEQ, dij), such that dij 6= gj(αi).
– During Round III, D broadcasts ((i, j), EQ, dij), such that dij 6= gj(αi) + r′ij .

– If |UH| > t, then discard D. Else let W = P \ UH be the set of happy parties.

Protocol 3KKK-WSS-Sh

Figure 8: The 3-round 3KKK-WSS-Sh protocol due to Katz, Koo and Kumaresan [39].

From 3KKK-WSS to 3KKK-VSS The notion of sharing and reconstructing degree-t polynomials
(as per Notation 4.3) is applicable even for 3KKK-WSS. Replacing 3FGGRS-WSS with 3KKK-WSS
in the 3FGGRS-VSS readily provides a VSS scheme with the optimal usage of the broadcast channel.
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However, the resultant VSS need not be of Type-II if D is corrupt, as the unhappy honest parties
may not get their shares. Hence 3KKK-VSS deploys an additional trick to get rid of this problem.

Let Pi be an unhappy party during 3FGGRS-VSS-Sh and let F ?(x, y) be D’s committed bivariate
polynomial. Note that each happy Pj broadcasts a masking Aj(·) of F ?(x, αj). If Pi is happy in
WSS−Shj , then Pi can compute the point F ?(αi, αj) on its supposedly column-polynomial F ?(αi, y)
by unmasking the wss-share r′ji computed during WSS−Shj from Aj(αi). Hence if there is a set
SSi of at least t + 1 happy parties Pj , who keep Pi happy during WSS−Shj instances, then Pi can
compute t + 1 distinct points on F ?(αi, y) and hence get F ?(αi, y). However, it is not clear how
to extend the above approach to enable Pi obtain its row-polynomial F ?(x, αi), which is required
for Pi to obtain its share of D’s Shamir-sharing polynomial F ?(0, y). The way-out is to let D use a
symmetric bivariate polynomial, which ensures that F ?(x, αi) = F ?(αi, y) holds.

The above idea requires broadcast during the second and third round. To ensure the optimal usage
of the broadcast channel, the technique used in 3KKK-WSS-Sh is deployed, along with postponing the
broadcast of masked row-polynomials to the third round. However, this brings additional challenges
to filter out the parties from Wj sets for the individual WSS instances. For example, a corrupt D
can distribute pair-wise inconsistent polynomials in such a way that the masked polynomial Aj(·)
broadcast by an honest happy party Pj is inconsistent with the corresponding masked value broadcast
by an honest unhappy party Pi, even though Pi belongs to Wj during WSS−Shj . Simply removing
Pi from Wj in this case (as done in 3FGGRS-VSS-Sh) might end up resulting in Pi being removed
from the Wj sets of every honest happy party. And this may lead to SSi set of size less than t+ 1.
To prevent this, apart from pair-wise consistency checks of masked row-polynomials, the parties also
carefully consider the results of private pair-wise consistency checks performed during the second
round, whose results are public during the third round (see Fig. 9). We stress that even though each
party obtains a single polynomial from D, it is treated both as row as well as column-polynomial to
perform the pair-wise consistency checks. Accordingly, if Pi finds a “negative” result for the private
pair-wise consistency check with Pj , then it broadcasts both disagree-row and disagree-column
messages against Pj . Else it broadcasts just an agree-column message for Pj ; the agree-row message
for Pj is assumed to be implicitly present in the latter case. The reconstruction phase of 3KKK-VSS
scheme is the same as 7BGW-VSS.

Sharing Phase: Protocol 3KKK-VSS-Sh

• Round I (sending polynomials and exchanging random pads):
– D embeds its Shamir-sharing polynomial q(·) in a random degree-(t, t) symmetric bivariate poly-

nomial F (x, y) at x = 0 and sends only the row-polynomial fi(x) = F (x, αi) to party Pi.
– Each party Pi ∈ P (including D) picks a random degree-t blinding polynomial ri(·) and shares it

through an instance WSS−Shi of 3KKK-WSS-Sh. In addition, Pi sends the polynomial ri(·) to
D.

• Round II (exchanging common values and confirming pad) — each Pi does the following:
– For j = 1, . . . , n, send aij = fi(αj) to Pj . Send {r′ji}j=1,...,n to D, where r′ji is the wss-share

received from Pj during Round I of WSS−Shj .
– For j = 1, . . . , n execute Round II of the instance WSS−Shj .

• Round III (complaint and resolution) — each party Pi does the following:
– Broadcast the degree-t polynomial Ai(·) = fi(x) + ri(·).
– For j ∈ {1, . . . , n}, let a′ji be the value received from Pj during Round II.

– If a′ji 6= fi(αj), then broadcast (j, disagree-row, fi(αj), rij) and (j, disagree-column, fi(αj), r
′
ji).

– Else broadcast (j, agree-column, fi(αj) + r′ji).
– If Pi = D, then for every ordered pair of parties (Pj , Pk), additionally do the following.

– Let r
(1)
jk and r

(2)
jk be the pads received from Pj and Pk respectively during Round I and Round

Protocol 3KKK-VSS
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II. If r
(1)
jk 6= r

(2)
jk , then broadcast ((j, k), NEQ, F (αk, αj)), else broadcast ((j, k), EQ, F (αk, αj)+

r
(1)
jk ).

– For every j ∈ {1, . . . , n}, concurrently execute Round III of WSS−Shj .
• Local computation at the end of Round III — each party Pk does the following:

– Initialize a set of unhappy parties UH to ∅. For every Pi, Pj such that Pi broadcasts (j, disagree-row,
fi(αj), rij) and Pj broadcasts (i, disagree-column, fj(αi), r

′
ij) where rij = r′ij , do the following.

– Include Pi to UH, if one of the following holds.
– During Round III, D broadcasts ((i, j), NEQ, dij), such that dij 6= fi(αj).
– During Round III, D broadcasts ((i, j), EQ, dij), such that dij 6= fi(αj) + rij .

– Include Pj to UH, if one of the following holds.
– During Round III, D broadcasts ((i, j), NEQ, dij), such that dij 6= fj(αi).
– During Round III, D broadcasts ((i, j), EQ, dij), such that dij 6= fj(αi) + r′ij .

– Let V = P \ UH be the set of happy parties and for every Pj ∈ V, let Wj be the set of happy
parties during WSS−Shj . Remove Pj from V, if any of the following holds:
– |Wj | < n− t.
– ∃i ∈ {1, . . . , n} : Pj broadcasts (i, disagree-row, fj(αi), rji) where Aj(αi) 6= fj(αi) + rji.

– For every Pj ∈ V, remove Pi from Wj , if any of the following holds.
– Pi broadcasts (j, agree-column, y) such that Aj(αi) 6= y.
– Pj broadcasts (i, disagree-row, fj(αi), rji) and Pi broadcasts either (j, agree-column, ?) or

(j, disagree-column, ?, r′ji), where r′ji 6= rji.
– Remove Pj from V if |V ∩Wj | < n− t. Repeat, till no more parties can be removed from V.
– If |V| < n− t, then discard D.

• Computing shares — each party Pi ∈ P does the following:
– If Pi ∈ V, then output the share fi(0). Else recompute fi(x) as follows and output the share fi(0).

– Add Pj to SSi, if Pj ∈ V and Pi ∈ Wj . Interpolate {(αj , Aj(αi) − r′ji)}Pj∈SSi
to compute

fi(x).

Figure 9: The 3-round sharing-phase protocol due to Katz, Koo and Kumaresan [39].

4.1.7 The 3-round 3AKP-VSS Scheme

In Applebaum, Kachlon and Patra [3], it is shown that 4 rounds are necessary and sufficient for
securely computing any n-party degree-2 functionality with perfect security and optimal resilience
of t < n/3. To design their 4-round MPC protocol, they rely on a 3-round Type-II perfectly-secure
VSS which should ensure that if D is not discarded at the end of sharing phase, then one of the
following holds for every honest party Pi at the end of Round II.
• Pi holds its tentative Shamir-share of the underlying secret;
• Pi holds at least t+ 1 tentative shares of its Shamir-share, which we call as sub-shares.

Moreover, it is also required that at the end of Round III, either the tentative share or the tentative
sub-shares should turn out to be correct (the exact case need not be known to Pi at the end of
Round II). The 3FGGRS-VSS does not satisfy the above requirements, as it is not a Type-II VSS.
The 3KKK-VSS scheme also fails because if Pi 6∈ V, then it obtains its sub-shares through SSi only
at the end of Round III. Hence in Applebaum et al. [3], a new 3-round VSS scheme (see Fig 10) is
presented, satisfying the above requirements. The scheme is obtained by tweaking the 3FGGRS-VSS
scheme and by borrowing the idea of symmetric bivariate polynomial from the 3KKK-VSS scheme.
The reconstruction phase of the scheme is same as 7BGW-VSS-Rec.

Sharing Phase: Protocol 3AKP-VSS-Sh

• Round I: Same as Round I of 3FGGRS-VSS-Sh, except that D uses a random degree-(t, t) symmetric
bivariate polynomial F (x, y) and distributes only the row-polynomial fi(x) = F (x, αi) to every Pi.

Protocol 3AKP-VSS
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• Round II: Same as Round II of 3FGGRS-VSS-Sh, except that bij
def
= fi(αj) + r′ji. Moreover, every

party Pi sets si
def
= fi(0) as its tentative Shamir-share and {Aj(αi) − r′ji}Pj∈P as its tentative sub-

shares.
• Round III: Same as Round III of 3FGGRS-VSS-Sh, except that for every Pi, Pj where Ai(αj) 6= bji,

party Pi broadcasts (fi(αj), rij), party Pj broadcasts (fj(αi), r
′
ij) and D broadcasts F (αj , αi).

• Local computation at the end of Round III — each party Pk does the following:
– Compute the sets UH and V as in 3FGGRS-VSS-Sh, based on every Pi, Pj for which Ai(αj) 6= bji.
– Remove Pi from Wj , if Aj(αi) 6= bij during Round II and rji 6= r′ji during Round III.
– Remove Pj from V if there exists some i ∈ {1, . . . , n}, such that Pj broadcasts (fj(αi), rji) during

Round III and Aj(αi) 6= fj(αi) + rj(αi).
– Remove Pj from V, if |V ∩ Wj | < n − t. Repeat, till no more parties can be removed from V. If
|V| < n− t, then discard D.

• Computing shares — each party Pi ∈ P: compute the shares as in the protocol 3KKK-VSSSh.

Figure 10: The 3-round sharing-phase protocol due to Applebaum, Kachlon and Patra [3].

4.2 VSS Scheme with n > 4t

We present a perfectly-secure VSS scheme with n > 4t and a 2-round sharing phase due to Genarro
et al. [33]. We first present a data structure called (n, t)-star (which we often call as just star).

Definition 4.4 ((n, t)-star [11]). Let G be an undirected graph over P. Then a pair of subsets of
nodes (C,D) where C ⊆ D ⊆ P is called an (n, t)-star, if all the following hold.

– |C| ≥ n− 2t and |D| ≥ n− t.
– For every Pi ∈ C and every Pj ∈ D, the edge (Pi, Pj) is present in G.

Ben-Or et al. [11] presents an efficient algorithm for checking the presence of a star. Whenever
the input graph contains a clique of size at least n− t, then the algorithm outputs a star.

Protocol 2GIKR-VSS-Sh is based on a simplification of the asynchronous VSS scheme of Ben-Or
et al. [11], adapted to the synchronous setting (see Section 6.1). As done in the earlier protocols,
D distributes row and column-polynomials to the respective parties. The goal is then to verify
if the row and column-polynomials of all (honest) parties are derived from a single degree-(t, t)
bivariate polynomial. However, since n > 4t (compared to n > 3t in the earlier protocols), the above
verification task is significantly simplified. For simplicity, we first explain an inefficient verification,
followed by the actual efficient method used in the protocol.

Once the parties receive their respective polynomials, they perform the pair-wise consistency
checks (based on the idea of using random pads). The parties next construct a consistency-graph G
over P, where there exists an edge between a pair of parties if no dispute is reported between them.
The parties next check for the presence of a clique of size n− t in G, which is bound to exist if D is
honest. If no clique is obtained then clearly D is corrupt and hence discarded. If a clique C of size
n− t is obtained, then the polynomials of the honest parties in C are pair-wise consistent and lie on
a single degree-(t, t) bivariate polynomial, say F ?(x, y). However, there could be up to t (honest)
parties outside C and the goal is to let each such “outsider” Pi 6∈ C obtain its degree-t row-polynomial
F ?(x, αi). The crucial observation here is that since n > 4t, achieving this goal does not require any
additional interaction. That is, each Pi 6∈ C considers the set of n − t ≥ 3t + 1 gji values, received
from the parties Pj ∈ C as part of the pair-wise consistency test. Among these gji values, at least
2t + 1 are sent by the honest parties Pj ∈ C, which uniquely define F ?(x, αi). Since F ?(x, αi) is a
degree-t polynomial and there can be at most t corrupt parties Pj ∈ C who may provide incorrect
values of gji, party Pi can error-correct these values and obtain F ?(x, αi).
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The above method is inefficient, as finding a maximum-sized clique is an NP-complete problem.
Instead, the parties check for the presence of a star. If D is honest then the set of honest parties
constitute a potential clique of size n − t in G and so a star is always obtained. If a star (C,D) is
obtained, then there are at least |C|−t = t+1 honest parties in C holding degree-t row-polynomials and
at least |D|− t = 2t+1 honest parties in D holding degree-t column-polynomials, which are pair-wise
consistent and hence lie on a single degree-(t, t) bivariate polynomial F ?(x, y). Any Pi 6∈ C obtains
its corresponding row-polynomial F ?(x, αi) by applying the error-correction procedure as discussed
above on the gji values received from Pj ∈ D. Protocol 2GIKR-VSS-Sh is presented in Fig 11; the
reconstruction protocol 2GIKR-VSS-Rec is the same as 7BGW-VSS-Rec.

• Round I: D picks F (x, y) and distributes fi(x), gi(y) lying on F (x, y) to each Pi. In parallel, each Pi
sends a random mask rij to each Pj .

• Round II: Each Pi broadcasts aij = fi(αj) + rij and bij = gi(αj) + r′ji, where r′ji is the pad, received
from Pj .

• Local computation at the end of round II — each party Pi does the following:
– Construct an undirected graph G over P, where the edge (Pl, Pm) is present if alm = bml and

aml = blm holds. Run the star-finding algorithm over G.
– If no star is obtained, then discard D. Else let (C,D) be the star obtained in G.

– If Pi ∈ C, then output the share fi(0).
– Else recompute the row-polynomial fi(x) as follows and output the share fi(0).

– ∀Pj ∈ D, compute gji = bji − rij . Execute RS-Dec(t, t, Si) to get fi(x), where Si
def
=

{gji}Pj∈D.

Protocol 2GIKR-VSS-Sh

Figure 11: The 2-round 2GIKR-VSS-Sh protocol with n > 4t due to Genarro, Ishai, Kushilevitz and Rabin
[33].

4.3 VSS Scheme with a Single Round

Genarro et al. [33] presented a VSS scheme (Fig 12) with 1-round sharing-phase, where n = 5 and t =
1. For simplicity, let P1 be the dealer. During the sharing phase, P1 distributes Shamir-shares of its
secret. Since no additional rounds are available, the parties cannot verify whether D has distributed
consistent shares. In the reconstruction phase, the dealer is not allowed to participate. The remaining
parties exchange their respective shares and try to error-correct one potential incorrect share. If the
error-correction is successful then the parties output the constant term of the reconstructed degree-1
polynomial, else they output ⊥. Since there can be one corrupt party, there are two possible cases. If
P1 is honest, then privacy is ensured and the shares of P2, P3, P4 and P5 lie on a degree-1 polynomial.
Hence during the reconstruction phase, even if a potentially corrupt party provides incorrect share,
it can be error-corrected, thus guaranteeing the correctness property.

The case when P1 is corrupt can be divided into three sub-cases. If P1 has distributed valid
Shamir-shares (all lying on degree-1 polynomial), then the underlying Shamir-shared value will be
reconstructed correctly. The second sub-case is when P1 has distributed valid Shamir-shares to exactly
three parties, say P2, P3 and P4, and let their shares lie on a degree-1 polynomial q?(·). Hence during
the reconstruction phase, all honest parties reconstruct s? = q?(0) by error-correcting the share
provided by P5. The remaining sub-case is when the shares of no three parties among {P2, P3, P4, P5}
lie on a degree-1 polynomial. In this case we define s?

def
= ⊥, where ⊥ 6∈ F, indicating that the sharing

dealt by P1 is “invalid”. During the reconstruction phase, the error-correction will fail (since the
shares of no three parties lie on a degree-1 polynomial) and hence the honest parties output ⊥. Thus
in all the 3 sub-cases, strong commitment property is achieved.

23



Sharing Phase: Protocol 1GIKR-VSS-Sh

The dealer P1 on having input s ∈ F, picks a random degree-1 polynomial q(·) over F such that q(0) = s.
For i = 2, . . . , 5, it sends the share si = q(αi) to Pi.

Reconstruction Phase: Protocol 1GIKR-VSS-Rec

Each party Pi ∈ {P2, P3, P4, P5} does the following:
• Send si to every Pj ∈ P \ {P1}. On receiving sj from Pj , include sj in a list Wi. Execute

RS-Dec(1, 1,Wi).
– If RS-Dec outputs a degree-1 polynomial q(·), then output q(0). Else output ⊥.

Scheme 1GIKR-VSS

Figure 12: The one round perfectly-secure VSS scheme of Genarro, Ishai, Kushilevitz and Rabin [33].

Part III : Asynchronous Communication Setting

5 Preliminaries and Definitions

In the synchronous communication setting, each party knows in advance how long it has to wait for
an expected message, and if the message does not arrive within that time-bound, then the sender
party is corrupt. Unfortunately, it is impossible to ensure such strict time-outs in real-world net-
works like the Internet. Motivated by this, [11, 16] introduced the asynchronous communication
model with eventual message delivery. Apart from a better modelling of real-world networks, asyn-
chronous protocols have the advantage of running at the actual speed of the underlying network.
More specifically, for a synchronous protocol, the participants have to pessimistically set the global
delay ∆ to a large value to ensure that the messages sent by every party at the beginning of a round
reach their destination within time ∆. But if the actual delay δ is such that δ << ∆, then the
protocol fails to take advantage of the faster network and its running time will be proportional to ∆.

In the asynchronous model, the messages can be arbitrarily, but finitely delayed. The only
guarantee is that any sent message is eventually delivered, but probably in a different order. The
sequence of message delivery is controlled by a scheduler and to model the worst case scenario, we
assume that the scheduler is under the control of Adv. Due to the lack of any upper bound on
the message delays, no party can wait to receive communication from all its neighbours to avoid an
endless wait (as a corrupt neighbour may not send any message). As a result, a party can afford to
wait for messages from at most n− t parties (including itself), thus ignoring communication from t
potentially honest neighbours. Consequently, all synchronous VSS protocols become insecure when
executed in an asynchronous environment, as they depend upon the fact that the messages of all
the honest parties are considered. Due to the absence of any global clock, the execution of any
asynchronous protocol is event-based, rather than round-based.

Informally, an AVSS scheme consists of an asynchronous sharing and an asynchronous recon-
struction phase, providing privacy, correctness and strong commitment guarantees. However, we
need these properties to hold eventually. Additionally, we need termination guarantees. Namely,
if D is honest, then we require that these phases eventually terminate. On the other hand, if D
is corrupt, then the termination demands are “weaker”. Namely, we require the honest parties to
terminate the sharing and reconstruction phase only if some honest party has terminated the sharing
phase. This models the fact that a potentially corrupt D may not invoke the sharing phase in the
first place (this is unlike synchronous VSS, where protocols always terminate after a “finite” number
of communication rounds).
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Definition 5.1 (Perfectly-Secure AVSS [16]). Let (Sh,Rec) be a pair of asynchronous protocols
for the n parties, where a designated dealer D ∈ P has a private input s for Sh and where each
(honest) party who completes Sh, subsequently invokes Rec, with its local output of Sh. Then
(Sh,Rec) constitute a perfectly-secure AVSS scheme, if all the following holds for every possible Adv.
• Termination:

– If D is honest, then every honest party will eventually complete Sh.
– If some honest party has completed Sh, then all honest parties will eventually complete Sh.
– If some honest party has completed Sh, then it will eventually complete Rec.

• Privacy and Correctness: Same as for synchronous VSS.
• Strong Commitment: If D is corrupt and some honest party completes Sh, then the joint

view of the honest parties at the end of Sh defines a value s? (possibly different from s), such
that all honest parties eventually output s? at the end of Rec.

We can have Type-I and Type-II AVSS schemes. All the existing perfectly-secure AVSS schemes
are of Type-II, where the secret is always shared as per the Shamir’s secret-sharing scheme.

5.1 Asynchronous Tools

Asynchronous Reliable-Broadcast (ACast) An ACast protocol allows a designated sender
S ∈ P to identically send a message m to all the parties. If S is honest, then all honest parties
eventually terminate with output m. While, if S is corrupt and some honest party terminates with
output m?, then eventually every other honest party should terminate with output m?. Hence the
termination guarantees are “weaker” than synchronous reliable-broadcast (RB), where the protocol
always terminates, irrespective of S. Bracha [15] presented a very elegant instantiation of ACast for
any n > 3t. We use the term Pi broadcasts m to mean that Pi acts as S and invokes an instance of
ACast protocol to broadcast m. Similarly, the term Pj receives m from the broadcast of Pi means
that Pj completes the instance of ACast protocol where Pi is S, with m as output.

Online Error-Correction (OEC) Let s be d-shared among P ′ ⊆ P such that d < (|P ′| − 2t)
holds. That is, there exists some degree-d polynomial q(·) with q(0) = s and each Pi ∈ P ′ has a share
q(αi). The goal is to make some designated party, say PR, reconstruct s (actually OEC allows PR
to reconstruct q(·)). In the synchronous setting, this is achieved by letting every party in P ′ to send
its share to PR, who can apply the algorithm RS-Dec and error-correct up to t potentially incorrect
shares. Given that d < (|P ′| − 2t), the reconstruction will be robust. In the asynchronous setting,
achieving the same goal requires a bit of trick. The intuition behind OEC is that PR keeps waiting
till it receives d + t + 1 shares, all of which lie on a unique degree-d polynomial, which eventually
happens for PR (even if the corrupt parties in P ′ do not send their shares to PR) as there are at
least |P ′| − t ≥ d+ t+ 1 honest parties in P ′. This step requires PR to repeatedly apply RS-Dec and
try recover q(·), upon asynchronously receiving every new share from the parties in P ′. Once PR
receives d+ 1 + 1 shares lying on a degree-d polynomial, say q′(·), then q′(·) = q(·). This is because
among the d+ t+ 1 shares, at least d+ 1 are from the honest parties, which uniquely determine q(·).
We denote the OEC procedure by OEC(P ′, d).

6 Perfectly-Secure AVSS Schemes

We discuss the various perfectly-secure AVSS schemes [11, 50, 21]. While the sharing phase requires
n > 4t, with the exception of [50] the reconstruction phase requires n > 3t. The necessity of the
condition n > 4t follows from [13, 1], where it is shown that in any AVSS scheme designed with n ≤ 4t,
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there is a non-zero probability in the termination property. We summarize the AVSS schemes in
Table 2. While the degree of sharing d is t for [11, 21], the degree d could be more than t for [50].

Sharing Phase Reconstruction Phase

Scheme n d L |F| Communication Complexity (CC) n CC

BCG-AVSS [11] n > 4t t 1 |F| > n O(n2 log |F|+ BC(n2 log n)) n > 3t O(n2 log |F|)
PCR-AVSS [50] n > 4t t < d < n− 2t 1 |F| > n O(n2 log |F|+ BC(n2 log n)) n > 4t O(n2 log |F|)
CHP-AVSS [21] n > 4t t ≥ n− 3t |F| > 2n− 3t O(L · n2 log |F|+ BC(n2 log n)) n > 3t O(L · n2 log |F|)

Table 2: Summary of the perfectly-secure AVSS schemes. Here L denotes the number of values shared
through a single AVSS instance and BC denotes the communication happening through ACast.

6.1 BCG-AVSS Scheme

The BCG-AVSS scheme is presented in Fig 13. The sharing phase protocol BCG-AVSS-Sh is a slightly
modified and simplified version of the original protocol [11], based on the simplifications suggested in
[7, 50]. Protocol BCG-AVSS-Sh is similar to 2GIKR-VSS-Sh (see Fig 11), executed in the asynchronous
setting. The protocol has four stages, each of which is executed asynchronously.

During the first stage, D distributes the row and column-polynomials to the respective parties.
During the second stage, the parties perform perform pair-wise consistency checks and publicly
announce the results, based on which parties build a consistency-graph. Since the results of the
consistency checks are broadcasted asynchronously, the consistency-graph might be different for
different parties (however, the edges which are present in the graph of one honest party will be
eventually included in the graph of every other honest party). During the third stage, D checks for a
star (C,D) in its consistency-graph, which it then broadcasts as a “proof” that the row-polynomials
of the (honest) parties in C and the column-polynomials of the (honest) parties in D lie a single
degree-(t, t) bivariate polynomial, which is considered as D’s “committed” bivariate polynomial. A
party upon receiving (C,D) from D accepts it, when (C,D) constitutes a star in its own consistency-
graph. Fo an honest D, the set of honest parties eventually constitute a clique and hence D eventually
finds a star, which will be eventually accepted by every honest party.

Once a star is accepted by Pi then in the last stage, its goal is to compute its share, for which Pi
should hold its degree-t row-polynomial, lying on D’s committed bivariate polynomial. If Pi ∈ C, then
it already has this polynomial. Else, Pi waits for the common values on the required row-polynomial
from the parties in D and error-corrects the incorrectly received values using OEC. Since Pi’s desired
row-polynomial has degree-t and since each Pj in D holds a share of this polynomial in the form of
a common value on its column-polynomial, OEC eventually outputs the desired row-polynomial for
Pi, as |D| ≥ 3t+ 1 and D contains at most t corrupt parties3.

During reconstruction phase, every party sends its share to every other party. The parties then
reconstruct the secret by using OEC on the received shares (this step will work even if n > 3t).

Sharing Phase: Protocol BCG-AVSS-Sh

• Stage I : Distributing Polynomials — the dealer D does the following
– On having the input s ∈ F, pick a random degree-t Shamir-sharing polynomial q(·), such that

q(0) = s holds. Then pick a random degree-(t, t) bivariate polynomial F (x, y), such that
F (0, y) = q(·) holds.

– For i = 1, . . . , n, send the polynomials fi(x) = F (x, αi) and gi(y) = F (αi, y). to Pi.
• Stage II : Pair-wise consistency checks and building consistency-graph — each party Pi

Scheme BCG-AVSS

3For this step, it is necessary that n > 4t. Else |D| ≤ 3t and OEC will fail to let Pi obtain its desired row-polynomial.
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– Upon receiving fi(x), gi(y) from D, send fij = fi(αj) and gij = gi(αj) to Pj , for j = 1, . . . , n.
– Upon receiving fji, gji from Pj , broadcast (OK, i, j) if fji = gi(αj) and gji = fi(αj) hold.
– Construct a graph Gi over P. Add the edge (Pj , Pk) in Gi, if (OK, j, k) and (OK, k, j) are received

from the broadcast of Pj and Pk respectively. Keep updating Gi, upon receiving new (OK, ?, ?)
messages.

• Stage III : Finding star in the consistency-graph — the dealer D does the following
– Let GD be the consistency-graph built by D. After every update in GD, run the star-finding

algorithm to check for the presence of a star in GD. If a star (C,D) is found in GD, then
broadcast (C,D).

• Stage IV : share computation — each party Pi does the following
– If (C,D) is received from the broadcast of D, then accept it if (C,D) is a star in the graph Gi.
– If (C,D) is accepted, then compute the share si as follows and terminate.

– If Pi ∈ C, then set si = fi(0), where fi(x) is the degree-t row-polynomial received from D.
– Else initialize Wi to ∅. Upon receiving gji from Pj ∈ D, include gji to Wi. Keep updating

Wi and keep executing OEC(Wi, t) till a degree-t polynomial fi(x) is obtained. Then set
si = fi(0).

Reconstruction Phase: Protocol BCG-AVSS-Rec

Each party Pi ∈ P does the following.
– Send the share si to every party Pj ∈ P.
– Initialize a set Ri to ∅. Upon receiving sj from Pj , include sj to Ri. Keep updating Ri and executing

OEC(Ri, t) till a degree-t polynomial q(·) is obtained. Then output s = q(0) and terminate.

Figure 13: The perfectly-secure AVSS scheme of Ben-Or, Canetti and Goldreich [11].

For the sake of completeness, we prove the properties of the scheme BCG-AVSS, as stated in Theorem
6.1. The proof for the follow-up AVSS schemes also use similar arguments.

Theorem 6.1. (BCG-AVSS-Sh,BCG-AVSS-Rec) constitute a Type-II perfectly-secure AVSS scheme
with respect to Shamir’s t-out-of-n secret-sharing scheme.

Proof. Let us first consider an honest D. The privacy simply follows from the fact that during
BCG-AVSS-Sh, the adversary learns at most t rows and column-polynomials, lying on F (x, y). If
D is honest, then every pair of honest parties Pi, Pj eventually receive their respective polynomials
and exchange the common points on their polynomials. Since the pair-wise consistency test will
pass, Pi and Pj eventually broadcasts (OK, i, j) and (OK, j, i) messages respectively and from the
properties of ACast, these messages are eventually delivered to every honest party. Since there are
at least n − t honest parties, the honest parties will eventually constitute a clique in every honest
party’s consistency graph. Consequently, D eventually finds a star (C,D) in its consistency graph
and broadcasts it, which is eventually delivered to every honest party. Moreover, (C,D) is eventually
accepted by every honest party, as (C,D) eventually forms a star in every honest party’s consistency
graph. Now consider an arbitrary honest Pi. If Pi ∈ C, then it already has the polynomial fi(x)
and hence it outputs fi(0) as its share and terminates BCG-AVSS-Sh. On the other hand, even if
Pi 6∈ C, it eventually receives the common point on its row polynomial from the honest parties in D
as part of the pair-wise consistency checks and hence by applying OEC, it eventually computes fi(0)
as its share and terminates BCG-AVSS-Sh. During BCG-AVSS-Rec, the share of every honest party
is eventually delivered to every honest party. Consequently, by applying OEC, every honest party
eventually reconstructs s. This proves the correctness property.

Next consider a corrupt D and let Ph be the first honest party to terminate Sh. This implies
that Ph has received (C,D) from the broadcast of D, which constitutes a star in Ph’s consistency
graph. From the properties of ACast, every honest party will eventually receive and accept (C,D).
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This implies that the row-polynomials of the honest parties in C and the column-polynomials of the
honest parties in D are pair-wise consistent and lie on a single degree-(t, t) bivariate polynomial, say
F ?(x, y). Let q?(·) = F ?(0, y) and s? = q?(0). Consider an arbitrary honest Pi. If Pi ∈ C, then it
already has the row-polynomial F ?(x, αi) and hence it outputs F ?(0, αi) = q?(αi) as its share of s?.
On the other hand, even if Pi 6∈ C, it eventually receives the common point on its row polynomial
from the honest parties in D as part of the pair-wise consistency checks and hence by applying OEC,
it eventually computes F ?(0, αi) as its share. Moreover, it is easy to see that during BCG-AVSS-Rec,
every honest party eventually outputs s?. This proves the strong commitment property.

6.2 PCR-AVSS Scheme

Patra, Choudhury and Rangan [50] observed that the BCG-AVSS scheme can be modified in a non-
trivial way to generate a d-sharing of D’s input in a verifiable fashion, for any given d in the range
t ≤ d < n− 2t. The resultant scheme is presented in Fig 14. The main motivation for an AVSS with
the degree of sharing greater than t is to get efficient MPC protocols (see [28, 7, 8, 50]).

To d-share s, D picks a random degree-d Shamir-sharing polynomial q(·) with q(0) = s and
embeds it in a random degree-(d, t) bivariate polynomial F (x, y) at y = 0. Thus the row and
column-polynomials have different degrees. This is in contrast to the earlier schemes where q(·) has
degree-t and where q(·) is embedded at x = 0 (instead of y = 0) in a random degree-(t, t) bivariate
polynomial. D then distributes the row and column-polynomials and the parties publicly announce
the results of pair-wise consistency checks and build consistency-graphs. D then proves that it has
distributed consistent polynomials to “sufficiently many” parties, derived from a single degree-(d, t)
bivariate polynomial, say F ?(x, y) (where F ?(x, y) = F (x, y) for an honest D). This stage is different
from BCG-AVSS-Sh and constitutes the core of PCR-AVSS-Sh. In a more detail, D publicly proves
that it has delivered degree-d row-polynomials lying on F ?(x, y), to at least n− t = 3t+ 1 parties E
and degree-t column-polynomials lying on F ?(x, y), to at least n − t = 3t + 1 parties F (the sets E
and F need not be the same). Once the existence of (E ,F) is confirmed (we will discuss in the sequel
how such sets are identified), D’s sharing is completed by ensuring that every Pi gets its degree-d
column-polynomial gi(y). Party Pi can then output gi(0) (which is the same as F ?(αi, 0)) as its share
and the value s? = F ?(0, 0) will be d-shared through F ?(x, 0). If Pi ∈ F then it will already have its
gi(y) polynomial. For Pi 6∈ F , we observe that every Pj ∈ E possesses a share on gi(y) in the form of
a point on Pj ’s row-polynomial and which Pj would have sent to Pi as part of pair-wise consistency
test. Since there are at least 3t + 1 such parties Pj in E and since gi(y) has degree-t, party Pi can
reconstruct gi(y) by using the OEC mechanism.

If D is honest, then Adv learns at most t rows and column-polynomials lying on F (x, y). Now
similar to Lemma 2.8, one can show that the probability distribution of these polynomials will be
independent of q(·) = F (0, y). That is, for every candidate degree-d polynomial q(·), there exists
some degree-(d, t) bivariate polynomial, consistent with the row and column-polynomials learnt by
Adv. Intuitively this is because (d + 1)(t + 1) distinct points are required to uniquely determine
F (x, y), but Adv learns at most t(d + 1) + t distinct points on F (x, y) through the polynomials of
corrupt parties, leaving d+ 1− t “degree of freedom” from the view-point of Adv. This ensures the
privacy of D’s input. We next discuss how the (E ,F) sets are identified.

Dealer first finds a star (C,D) in its consistency-graph, proving that the row and column-
polynomials of the honest parties in C and D respectively lie on F ?(x, y). This follows from Lemma
2.7 and the fact that the degree-d row-polynomials and the degree-t column-polynomials of honest
parties in C and D respectively are pair-wise consistent, where C and D has t+ 1 and n− 2t = d+ 1
honest parties respectively. To find (E ,F), the dealer finds additional “supportive parties” whose
row and column-polynomials also lie on F ?(x, y). The idea is that for an honest D, the row and
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column-polynomials of all honest parties lie on F (x, y) and there are n − t honest parties. To hunt
for these additional supportive parties, D follows the following two-stage non-intuitive approach.
• It first tries to “expand” D by identifying additional parties whose degree-t column-polynomials

also lie on F ?(x, y). The expanded set F , includes all the parties having edges with at least
2t + 1 parties from C. Thus D ⊆ F . It is easy to see that the column-polynomial of every
Pj ∈ F lies on F ?(x, y), as it will be pair-wise consistent with the row-polynomials of at least
t+ 1 honest parties from C, all of which lie on F ?(x, y).

• D then tries to “expand” C by searching for the parties Pj , who have an edge with at least d+t+1
parties from F . This will guarantee that Pj ’s degree-d row-polynomial lies on F ?(x, y), as it
will be pair-wise consistent with the column-polynomials of at least d+ 1 honest parties from
F , all of which lie on F ?(x, y). Such parties Pj are included by D in a set E . Notice that the
parties in C will satisfy the above condition and so C ⊆ E .

Once D finds (E ,F), it broadcasts them and then the parties verify whether indeed they satisfy the
above conditions. However there is a subtle issue, as an honest D may have to wait indefinitely for
the “expansion” of D and C sets, beyond their initial cardinalities. For instance, let n = 4t + 1,
d = 2t and let C and D be of size 2t+ 1 and 3t+ 1 respectively, containing t corrupt parties. If the
corrupt parties Pi in C choose to be inconsistent with the parties Pj outside D (by not broadcasting
the (OK, i, j) messages), then the honest parties Pj outside D will have edges with only t+ 1 parties
from C and will not be included in the set F . So F will remain the same as D. Similarly, the corrupt
parties in F may choose to be inconsistent with the parties outside C, due to which E will remain
the same as C. To deal with the above, Patra et al. [50] observed that if D is honest then eventually
the honest parties form a clique in the consistency-graph. Moreover, if the star-finding algorithm is
executed on “this” instance of the consistency graph, then the C component of the obtained star will
have at least 2t+ 1 honest parties. Now if C contains at least 2t+ 1 honest parties, then eventually
D will expand to F , which will contain all n − t honest parties and eventually C will expand to E
containing n− t = 3t+ 1 parties. This crucial observation is at the heart of PCR-AVSS-Sh. However,
it is difficult for D to identify an instance of its dynamic consistency-graph that contains a clique
involving at least n− t honest parties. The way-out is to repeatedly run the star-finding algorithm
and try the expansion of every instance of star (C,D) obtained in the consistency-graph.

Sharing Phase: Protocol PCR-AVSS-Sh

• Stage I : Distributing Polynomials — same steps as BCG-AVSS-Sh except that the Shamir-sharing
polynomial q(·) is of degree-d, the bivariate polynomial F (x, y) is of degree-(d, t) and F (x, 0) = q(·).

• Stage II : Pair-wise consistency checks and building consistency-graph — same as BCG-AVSS-Sh.
• Stage III : Finding (E ,F) in the consistency-graph — the dealer D does the following

– After every update in GD, run the star-finding algorithm to check for the presence of a star. Let
there are α number of distinct stars that are found till now in GD, where α ≥ 0.
– If a new star (Cα+1,Dα+1) is found in GD, then do the following:

1. Add Pj to a set Fα+1 if Pj has an edge with at least 2t+ 1 parties from Cα+1 in GD.
2. Add Pj to a set Eα+1 if Pj has an edge with at least d+ t+ 1 parties from Fα+1 in GD.
3. For β = 1, . . . , α, update the existing Fβ and Eβ sets as follows:
• Add Pj to Fβ , if Pj 6∈ Fβ and Pj has an edge with at least 2t + 1 parties from Cβ in

GD.
• Add Pj to Eβ , if Pj 6∈ Eβ and Pj has an edge with at least d + t + 1 parties from Fβ

in GD.

– If no new star is obtained, then update the existing sets Fβ , Eβ by executing the step 3 as
above.

– Let (Eγ ,Fγ) be the first pair among the generated pairs (Eβ ,Fβ) such that |Eγ | ≥ 3t + 1 and

Scheme PCR-AVSS
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|Fγ | ≥ 3t+ 1. Then broadcast ((Cγ ,Dγ), (Eγ ,Fγ)).
• Stage IV : share computation — each party Pi does the following

– If ((Cγ ,Dγ), (Eγ ,Fγ)) is received from the broadcast of D, accept it if all the following hold.
– |Eγ | ≥ 3t+ 1 and |Fγ | ≥ 3t+ 1 and (Cγ ,Dγ) is a star in the consistency-graph Gi.
– Every party Pj ∈ Fγ has an edge with at least 2t+ 1 parties from Cγ in Gi.
– Every party Pj ∈ Eγ has an edge with at least d+ t+ 1 parties from Fγ in Gi.

– If ((Cγ ,Dγ), (Eγ ,Fγ)) is accepted, then compute the share si as follows and terminate.
– If Pi ∈ Fγ , then set si = gi(0), where gi(y) is the degree-t column-polynomial received from

D.
– Else initialize Wi to ∅. Upon receiving fji from Pj ∈ E , include fji to Wi. Keep updating

Wi and keep executing OEC(Wi, t) till a degree-t polynomial gi(y) is obtained. Then set
si = gi(0).

Reconstruction Phase: Protocol PCR-AVSS-Rec

Same steps as BCG-AVSS-Rec, except that the parties now run OEC(?, d) to recover a degree-d polynomial.

Figure 14: The perfectly-secure AVSS scheme of Patra, Choudhury and Rangan [50].

6.3 CHP-AVSS Scheme

Protocol BCG-AVSS-Sh requires a communication of O(n2 log |F|) bits over the pair-wise channels,
apart from the broadcast of Θ(n2) OK messages and the broadcast of star. The protocol gener-
ates t-sharing of a single secret. If D wants to t-share L secrets, then it can invoke L instances of
BCG-AVSS-Sh. This makes the broadcast-complexity (namely the number of bits to be broadcast) pro-
portional to L. Instead Choudhury, Hirt and Patra [21] proposed a modification of 4 PCR-AVSS-Sh,
which allows D to t-share L secrets for any given L ≥ n− 3t, without incurring any additional com-
munication complexity. The broadcast-complexity of CHP-AVSS-Sh will be independent of L, which
is a significant saving. This is because each instance of the broadcast in the asynchronous setting
needs to be emulated by running the costly Bracha’s ACast protocol.

We explain the idea of CHP-AVSS-Sh assuming L = n− 3t. If L > n− 3t, then D can divide its
inputs into multiple batches of n− 3t and invoke an instance of CHP-AVSS-Sh for each batch. Recall
that in PCR-AVSS-Sh, if D is honest, then the adversary’s view leaves d+ 1− t “degree of freedom”
in the degree-(d, t) bivariate polynomial F (x, y), where t < d < n− 2t. If we consider the maximum
value dmax of d which is n − 2t − 1, this implies n − 3t degree of freedom. While PCR-AVSS-Sh
uses this degree of freedom for generating a dmax-sharing of a single secret by embedding a single
degree-dmax sharing-polynomial in F (x, y), CHP-AVSS-Sh uses it for t-sharing of n − 3t values by
embedding n− 3t degree-t Shamir-sharing polynomials in F (x, y).

In a more detail, given s(1), . . . , s(n−3t) for t-sharing, D picks n − 3t random degree-t Shamir-
sharing polynomials q(1)(·), . . . , q(n−3t)(·), where q(k)(0) = s(k). These polynomials are embedded
in a degree-(dmax, t) bivariate polynomial, which is otherwise a random polynomial, except that
F (βk, y) = q(k)(·) holds. Here β1, . . . , βn−3t are distinct, publicly-known non-zero elements from F,
different from the evaluation-points α1, . . . , αn (this requires |F| > 2n − 3t). Notice that the em-
bedding and the degree of the sharing-polynomials are different in PCR-AVSS-Sh and CHP-AVSS-Sh.
Accordingly, the shares of the parties are different (see Fig 15). The shares of Pi in CHP-AVSS-Sh will
be {F (βk, αi)}k∈{1,...,n−3t}. And to compute them, Pi should get its row-polynomial fi(x) = F (x, αi),
as Pi can then compute its shares by evaluating fi(x) at x = β1, . . . , βn−3t.

4It is easy to see that the communication complexity of PCR-AVSS-Sh is the same as BCG-AVSS-Sh.
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[s]dmax , s = q(0)

[s(1)]t [s(L)]t

fi(x)⇒

q(·)⇒

gj(y)
⇓

q(1)(·)
⇓

q(L)(·)
⇓

s(1) = q(1)(0) s(L) = q(L)(0)

F (α1, α1) . . . F (αj , α1) . . . F (αn, α1)

...
...

...
...

...

F (α1, αi) . . . F (αj , αi) . . . F (αn, αi)

...
...

...
...

...

F (α1, αn) . . . F (αj , αn) . . .F (αn, αn)

⇓ . . . ⇓ . . . ⇓

g1(0) . . . gj(0) . . . gn(0)

⇒

...

⇒

...

⇒

f1(β1) = q(1)(α1)

...

fi(β1) = q(1)(αi)

...

fn(β1) = q(1)(αn)

. . .

...

. . .

...

. . .

f1(βL) = q(L)(α1)

...

fi(βL) = q(L)(αi)

...

fn(βL) = q(L)(αn)

Figure 15: Values distributed by D in PCR-AVSS-Sh and CHP-AVSS-Sh on degree-(dmax, t) polynomial
F (x, y), where dmax = n− 2t− 1. In PCR-AVSS-Sh, s is dmax-shared through F (x, 0) (shown in red
color), while in CHP-AVSS-Sh, s(1), . . . , s(L) are t-shared through F (β1, y), . . . , F (βL, y) (shown in
blue color), where L = n− 3t.

To achieve the above goal, we observe that if D invokes PCR-AVSS-Sh (with the above modifi-
cations) and if the protocol terminates, then it ensures that D has “committed” a degree-(dmax, t)
bivariate polynomial F ?(x, y), such that each (honest) party Pj possesses its column-polynomial
gj(y) = F ?(αj , y). We also observe that for each row-polynomial fi(x) = F ?(x, αi), every Pj holds a
share F ?(αj , αi) in the form of gj(αi). Moreover, the degree of fi(x) is dmax = n− 2t− 1. Hence, if
every party Pj sends its share gj(αi) of fi(x) to Pi, then Pi can reconstruct its desired row-polynomial

fi(x) by applying OEC on the received values. Hence the values ~S′ = (F ?(β1, 0), . . . , F ?(βn−3t, 0))
will be t-shared, where ~S′ = (s(1), . . . , s(n−3t)) for an honest D.

Part III : Hybrid Communication Setting

7 Preliminaries and Definitions for Hybrid Communication Setting

Even though the asynchronous model is practically more relevant compared to the synchronous
setting, there are some inherent downsides in general with asynchronous protocols. Synchronous
protocols offer better resilience, compared to asynchronous protocols (for instance t < n/4 for AVSS
compared to t < n/3 for VSS). Additionally, asynchronous protocols are more complex. An inherent
drawback of asynchronous MPC (AMPC) protocols is the lack of input-provision from all honest
parties; i.e. inputs of up to t honest parties may not be considered for the computation [7]. To get
rid of these drawbacks, several forms of “synchronization” have been considered in the literature
([27, 9, 35, 45, 2, 51]). One of these is the hybrid communication setting [7, 9, 50, 51, 20, 19], which
is a “mix” of synchronous and asynchronous setting. Namely, the first R rounds are assumed to be
synchronous, after which the network behaves asynchronously. There are several practical advantages
of the hybrid setting compared to a completely asynchronous setting. For instance, one can guarantee
input-provision in MPC protocols. Moreover, one can design protocols with the same resilience, as
synchronous protocols, without letting the network to be synchronous for the entire duration of
the protocol. Also, it is theoretically interesting to study the trade-off between network synchrony
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and resilience, round and communication-complexity of various distributed-computing tasks. In the
context of VSS, Patra and Ravi [51] have shown that one can design a Type-II perfectly-secure AVSS
satisfying Definition 5.1 with t < n/3 in the hybrid setting (which otherwise would require t < n/4
in a completely asynchronous setting), where R = 1. Notice that the protocol has optimal resilience
as well as it requires the optimal number of synchronous rounds.

We next define weak polynomial sharing (WPS), which is used in [51]. The primitive allows a
dealer D to distribute shares of a degree-t polynomial held by D. If D is honest, then every honest
party should eventually terminate with its share. Moreover, even if D is corrupt and some honest
party terminates Sh, then it is ensured that D has distributed shares of some degree-t polynomial to
at least t+ 1 honest parties. Property-wise, WPS is a weaker primitive than WSS, as it has only a
sharing phase and may not allow even a “weak reconstruction” of D’s shared polynomial.

Definition 7.1 (Weak Polynomial Sharing (WPS) [51]). Let Sh be protocol for the n parties
in the hybrid setting, where a designated dealer D ∈ P has a degree-t polynomial f(x) over F as
input for Sh. Then Sh constitutes a perfectly-secure WPS, if all the following hold.
• Termination and Privacy: Same as AVSS.
• Correctness: If some honest party terminates Sh, then there exists a degree-t weakly committed

polynomial f?(x) over F such that.
– If D is honest, then f?(x) = f(x) and each honest Pi outputs f(αi) at the end of Sh.
– If D is corrupt, then every honest Pi outputs either f?(αi) or some default value ⊥, with at

least t+ 1 honest parties outputting f?(αi).

8 Hybrid AVSS Protocol with t < n/3

In the AVSS schemes, the parties not receiving their shares from D, deploy OEC to recompute their
shares from the sub-shares received from the parties, who have received their shares from D. This
inherently requires n > 4t. On contrary, the hybrid AVSS of Patra et al. [51] is designed with n > 3t.
The presence of a synchronous round at the beginning simplifies certain aspects of verifiability and
completely avoids the need for OEC. We first start with the WPS construction of [51], which is similar
to the 3KKK-WSS-Sh protocol. The dealer embeds its degree-t polynomial in a random symmetric
degree-(t, t) bivariate polynomial and distributes its row-polynomials. In parallel, the parties pair-
wise exchange random pads. Since the pads are exchanged during the synchronous round, each Pi
receives the pad selected for it by every other party, at the end of the synchronous round. The sent
and received pads are also “registered” with D for the comparison purpose. Based on this, D sends to
Pi its list of conflicting-parties Ci, who did not concur on the pads. Based on Ci, party Pi broadcasts
its common values in a masked fashion for the parties who are not in Ci and in an unmasked fashion
for the parties who are in Ci. The dealer then checks whether Pi’s public values are consistent with
the bivariate polynomial and the pads registered with D and accordingly includes Pi to a set W.
Once W achieves the size of 2t+ 1 (which eventually happens for an honest D), D broadcasts W. It
is then publicly verified that no pair of parties inW publicly conflicts over their supposedly common
values that are either in padded or in clear form.

IfW is successfully verified, then the row-polynomials of the (honest) parties inW lie on a single
degree-(t, t) symmetric bivariate polynomial F ?(x, y). While every Pi ∈ W can output the constant
term of its row-polynomial as its share, any Pi 6∈ W tries to compute its row-polynomial by inter-
polating the common values with the parties in W. If Pi has a conflict with any party in W, then
the common value is publicly available. Else, it subtracts the pad it sent to that party in the syn-
chronous round from the padded value available publicly. If the interpolation does not give a degree-t
polynomial (which can happen only for a corrupt D), then Pi outputs ⊥.
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Synchronous Phase

• Sending polynomials and exchanging random pads:
– D with input f(·) chooses a random symmetric degree-(t, t) bivariate F (x, y) such that

F (0, y) = f(·) and sends fi(x) = F (x, αi) to each party Pi ∈ P
– Each party Pi ∈ P picks a random pad rij for every Pj ∈ P and sends rij to Pj .

– Each Pi sends {rij}Pj∈P to D. Let {r(1)ij }Pj∈P be the list of sent-pads received by D from Pi.

Asynchronous Phase

• Verifying masks:

– Each Pi sends the pads {r′ji}Pj∈P received from various parties to D. Let {r(2)ji }Pj∈P be the list
of received-pads which D receives from Pi.

– Upon receiving {r(2)ji }Pj∈P from Pi, dealer D sends to Pi a set Ci = {Pj : r
(2)
ji 6= r

(1)
ji }.

• Broadcasting masked/unmasked common values — each party Pi: Broadcasts (Ai,Bi, Ci),
where:

– Ai = {aij = fi(αj) + rij}Pj∈P .
– Bi = {bij}Pj∈P , where bij = fi(αj) if Pj ∈ Ci and bij = fi(αj) + r′ji otherwise.

• Constructing and broadcasting W — Dealer D does the following:
– Upon receiving (Ai,Bi, Ci) from Pi, mark Pi as correct and include inW, if all the following holds.

– aij − r(1)ij = F (αj , αi)

– bij = F (αj , αi) for all Pj ∈ Ci and bij − r(2)ji = F (αj , αi) otherwise
– Ci is the same set sent by D to Pi.

– Wait until |W| ≥ 2t+ 1 and then broadcast W.
• Verifying W — each party Pi: AcceptW received from the broadcast of D if all the following hold.

– |W| ≥ 2t+ 1 and (Aj ,Bj , Cj) is received from the broadcast of each Pj ∈ W.
– Every Pj , Pk ∈ W are pair-wise consistent, as per the following conditions.

– if Pj ∈ Ck and Pk ∈ Cj then bjk = bkj
– if Pj ∈ Ck and Pk 6∈ Cj then akj = bjk
– if Pj 6∈ Ck and Pk ∈ Cj then ajk = bkj
– Else ajk = bkj and akj = bjk

• Output stage — each party Pi: If W is accepted, then terminate with output si, computed as
follows.

– If Pi ∈ W then set si = fi(0).
– Else interpolate the points {(αj , sij)}Pj∈W where sij = bji if Pi ∈ Cj and sij = bji− rij otherwise.

If the interpolation outputs a degree-t polynomial fi(x) then set si = fi(0), else set si = ⊥.

Protocol WPS

Figure 16: WPS protocol of Patra and Ravi [51].

From WPS to VSS WPS fails to serve as a VSS because if D is corrupt, then the parties out-
side W may output ⊥. Protocol PR-Sh fixes this shortcoming. The protocol has two “layers” of
communication. The first layer is similar to WPS and identifies a set V of 2t + 1 parties whose
row-polynomials lie on a single degree-(t, t) symmetric bivariate polynomial F ?(x, y). The second
layer enables the parties outside V to obtain their row-polynomials lying on F ?(x, y). In a more
detail, every Pj picks a random blinding-polynomial rj(·) and shares it by invoking an instance WPSj
of WPS. Additionally, it makes public the polynomial rj(·) + fj(x). The idea is that if later Pj is
a part of V, then any Pi 6∈ V can compute the point fj(αi) (which is the same as fi(αj)) on Pi’s
row-polynomial, if Pi obtains the output rj(αi) during WPSj . While an honest Pj ∈ V makes public
the correct rj(·) + fj(x), care has to be taken to ensure that even a corrupt Pj ∈ V has made public
the correct polynomial. This is done as follows. First, each Pk participates conditionally during
WPSj only if the blinded polynomial of Pk is consistent with respect to its received point on rk(·)
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during WPSk and the supposedly common value fk(j). Second, Pj is included in V only when during
WPSj the generated W set Wj is accepted and which has an overlap of 2t+ 1 with V.

For a corrupt Pj ∈ V, an honest Pi 6∈ V may end up obtaining ⊥ during WPSj . However
there will be at least t + 1 honest Pj ∈ V, corresponding to whom Pi eventually obtains rj(αi)
during WPSj , using which Pi obtains t + 1 points on fi(x), which are sufficient to compute fi(x).

Synchronous Phase

D and parties execute the same steps as in the synchronous phase of WPS. Additionally, each Pi picks a
random degree-t blinding-polynomial ri(·) and as a dealer invokes an instance WPSi of WPS to share ri(·).
Moreover, Pi also participates in the synchronous phase of the instance WPSj for every Pj ∈ P.

Asynchronous Phase
• Verifying masks: Parties and D execute the same steps as in WPS.
• Broadcasting values — each party Pi: Broadcast (Ai,Bi, Ci, di(x)), where Ai,Bi, Ci are same as

in WPS and di(x) = ri(·) + fi(x).
• Participating in WPS instances — each party Pi: For j = 1, . . . , n, participate in WPSj if a

degree-t polynomial dj(x) is received from the broadcast of Pj and if dj(αi) = rj(αi) + fi(αj) holds.
• Computing and Broadcasting V — the D: compute and broadcast (V, {Wi}Pi∈V), such that:

– Every Pi ∈ V is marked as correct (by satisfying the same conditions as in WPS).
– For every Pi ∈ V, the set Wi is accepted during the instance WPSi.
– |V| ≥ 2t+ 1 and |V ∩Wi| ≥ 2t+ 1 for every Pi ∈ V.

• Verifying V — each party Pi: Accept (V, {Wi}Pi∈V) received from the broadcast of D, if:
– Every Pj , Pk ∈ V are pair-wise consistent (using the same criteria as in WPS).
– For all Pj ∈ V, the set Wj is accepted during the instance WPSj .
– |V| ≥ 2t+ 1 and for every Pj ∈ V, the condition |V ∩Wj | ≥ 2t+ 1 holds.

• Output stage — each party Pi: If (V, {Wi}Pi∈V) is accepted then terminate with output si, where:
• If Pi ∈ V then set si = fi(0).
• Else compute the output rji in WPSj for every Pj ∈ V, interpolate degree-t polynomial fi(x)

through the points {(αi, sij = dj(αi)− rji)}Pj∈V∧rji 6=⊥ and set si = fi(0).

Protocol PR-Sh

Figure 17: The hybrid AVSS protocol of Patra and Ravi [51].

9 Open Problems

We identify the following open problems in the domain of perfectly-secure VSS.
• The communication complexity of existing efficient VSS schemes with a 3-round sharing phase

is n times more compared to the VSS schemes which allow four or more rounds in the sharing
phase (see Table 1). It is interesting to see if one can close this gap.

• We are unaware of any non-trivial lower bound on the communication complexity of perfectly-
secure VSS schemes. One could explore deriving any non-trivial lower bound.

• The broadcast complexity (namely the number of bits broadcasted) of all VSS schemes with
n > 3t is proportional to the number of values L shared by the scheme (namely O(L ·n3 log |F|)
bits). This is unlike the AVSS scheme of Patra et al. [21], where the broadcast complexity is
O(n2 log n) for sharing L values. Given that each instance of broadcast needs to be emulated
by running a costly reliable broadcast (RB) protocol, it is interesting to see if one can design a
VSS scheme with n > 3t where the broadcast complexity is independent of L.

• The 3AKP-VSS VSS scheme [3] uses the broadcast channel during two rounds, while the optimal
usage is one round. One could explore to achieve the same properties as the 3AKP-VSS scheme,
with the broadcast channel being used only during one round.
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