
An Intimate Analysis of Cuckoo Hashing with a

Stash

Daniel Noble ∗

May 18, 2021

Abstract

Cuckoo Hashing is a dictionary data structure in which a data item is
stored in a small constant number of possible locations. It has the appeal-
ing property that the data structure size is a small constant times larger
than the combined size of all inserted data elements. However, many
applications, especially cryptographic applications and Oblivious RAM,
require insertions, builds and accesses to have a negligible failure prob-
ability, which standard Cuckoo Hashing cannot simultaneously achieve.
An alternative proposal introduced by Kirsch et al. is to store elements
which cannot be placed in the main table in a “stash”, reducing the fail-
ure probability to O(n−s) where n is the table size and s any constant
stash size. This failure probability is still not negligible. Goodrich and
Mitzenmacher showed that the failure probability can be made negligible
in some parameter N when n = Ω(log7(N)) and s = Θ(log(N)). This pa-
per presents a tighter analysis which shows failure probability negligible
in N for all n = ω(log(N)) (which is asymptotically optimal) and presents
explicit constants for the failure probability upper bound.

1 Introduction

Cuckoo hashing is a hash table implementation that improves performance by
allowing objects to be stored in a number of locations [PR01]. Pagh and Rodler
discovered that this small modification greatly reduced the probability of a
build failure. Specifically, a Cuckoo Hash table can store n elements of size
W in O(nW) space, with failure probability Θ(1

n) (see [DK12] for the explicit
constant).

For many applications this failure probability was sufficient. In the case that
a failure did occur, the hash table could simply be rebuilt with new hash func-
tions. While a hash table rebuild requires Θ(n) computation, the probability of
this occurrance is Θ(1

n), so the amortized computation cost per access is still
constant.

∗University of Pennsylvania, dgnoble@cis.upenn.edu

1

A series of works then began to use Cuckoo hashing for applications, most
notably Oblivious RAM [PR10, GMOT12] (explained below), in which the fail-
ure probability above is unsufficent due to the following reasons:

• Indexes are sensitive data, so a rebuild constituted a security failure. (See
Appendix D of [GM11] for more details.)

• Furthermore, the probability of a security failure needed to be negligible
in some parameter N ≥ n.

• Moreover, n, the number of data items, might be significantly smaller than
(e.g., polylogarithmic in) N .

A sequence of works arose to reduce the failure probability of Cuckoo hash-
ing.

First, Kirsch, Mitzenmacher and Wieder explored the modification that any
items which could not be stored in the Cuckoo Hash table would be stored in
a “stash” of constant size s [KMW09]. They showed that the probability of
a build failure was then reduced to O(n−s). This analysis allowed the failure
probability to be reduced significantly, but it only applied to constant s, so did
not allow the failure probability to be negligible in n.

While Cuckoo Hashing was initially designed to allow for a constant number
of accesses, in certain situations it was acceptable to have a super-constant num-
ber of stash accesses if this could provide a negligible build failure probability.
For instance, since the stash is small, the stash may be stored in a lower memory
level, so accesses to the stash may be significantly cheaper than accesses to the
hash table. Another important use-case is Oblivious RAM (ORAM). Oblivious
RAM is a cryptographic primitive in which a trusted client can store data on an
untrusted RAM. While encryption allows the client to hide the contents of the
data, ORAM ensures that the client can also hide its access patterns from the
untrusted RAM. Many Oblivious RAM designs use the hierarchical approach,
where data is stored in various hash tables of exponentially increasing sizes.
The client may have a small amount of memory available itself, which may be
enough for instance to store the stash. Therefore it is reasonable in this model
for the cost of stash accesses to be counted separately from those of accesses to
the Cuckoo Hash table(s). Other Hierachical ORAMs allowed the client to only
have constant memory usage, and solved the problem of super-constant stashes
by reinserting stash elements into another level, or having a single shared stash.
This meant that only non-stash elements would be accessed in any given Hash
Table, allowing for a constant number of accesses in these Hash Tables.

Goodrich and Mitzenmacher developed such an Oblivious RAM protocol
[GM11]. While the analysis of Kirsch et al. did not provide negligible fail-
ure probability, Goodrich and Mitzenmacher extended this analysis to achieve
negligible failure probability in certain cases. They proved that, provided n =
Ω(log7(N)), a stash of size s = Θ(log(N)) would result in a failure probability
negligible in N . (For tables of size o(log7(N)) another type of oblivious hashing
data structure was needed.)

2

Aumüller, Dietzfelbinger and Woelfel then presented an elegant alternative
analysis of Cuckoo Hashing with a Stash based on graph counting [ADW14].
They showed firstly, that for constant s the probability of a build failure was
further upper-bounded by O(n−(s+1)). They then showed that for‘ sufficiently

large n, the failure probability is O(n−
s
2) when s ≤ n 1

3r , for a suitable constant
r.

These analyses leave open the question of how small n can be in terms of
N and still have a Cuckoo Hash table with a stash with negligible probability
of build failure. This paper extends these analyses to present a bound that is
asymptotically tight. The bound on the failure probability also contains explicit
constants. This is an important step towards constructing concrete hierarchical
ORAM implementations, which require concrete bounds for build failures of
small cuckoo hash tables.

2 Cuckoo Hashing

Cuckoo Hashing in its simplest form involves 2 hash functions, h1 and h2, and
2 hash tables, T1 and T2, each with m = εn locations of capacity 1. Each
hash table has a unique hash function, and the hash functions are assumed to
produce outputs uniformly at random in [m]. The tables consist of pairs (x, y)
where x is the dictionary key and y is the dictionary value. An item (x, y) is
stored in the table by being inserted into T1[h1(x)]. If another item (x′, y′) was
stored in that location, it is removed from its original location (like a baby bird
being displaced from its nest by a Cuckoo chick) and is placed in T2[h2(x′)].
This may replace another item, which the algorithm likewise attempts to insert.
This process continues either until every item has found a location in which
to be inserted, or some threshold on the recursion depth is reached.1 In the
latter case the insertion has “failed”. This triggers a “table rebuild” in which
new tables are created with new hash functions and the algorithm attempts to
insert every element into the new hash table.

Cuckoo Hash tables can be generalized to have a larger number of hash
functions. They can also be generalized to use a single table. However, this
work will analyze only the traditional 2-table version.

3 A Lower Bound

We begin by showing the following lower bound on the number of elements n in
terms of the security parameter N , such that cuckoo hashing with a stash can
fail with negligible probability in N . For consistency with other parts of the
paper, we use the 2-table construction but this can easily be adapted to other
constructions.

1Many works (e.g. [KMW09]) set this recursion depth to α log(N) for a sufficiently large
constant α. This makes the probability that an item that can be inserted is not inserted small,
but does not make this probabality negligible. Therefore we instead in our analysis assume
that the maximum recursion depth is 2n, which ensures an optimal allocation.

3

Theorem 1. If n = O(log(N)) and n − s = Ω(n) then it is impossible for a
2-table Cuckoo Hash table to have a negligible build failure probability in N .

Proof. Since n − s = Ω(n), it follows that n − s ≥ c0n for sufficiently large n
where the constant c0 satisfies 0 < c0 ≤ 1. Therefore:

n− s
n
≥ c0

n− s− 2

n
≥ c0 −

2

n
n− s− 2

n
≥ c0

2
when n ≥ 4

c0
n− s− 2

n
≥ c1 for constant c1 satisfying 0 < c1 ≤

1

2

Since n = O(log(N)), there is some constant c2 such that n ≤ c2 log(N) (for
sufficiently large n).

Let m = εn be the size of each table.
If all n items are hashed to the first dn−s−22 e locations in both tables, then

2dn−s−22 e ≤ n−s−1 items can be stored in the table, and s items can be stored
in the stash, but 1 item will not be able to be stored at all, so the build fails.

The probability that all n items are stored in the first dn−s−22 e locations in
both tables is at least:

(
n− s− 2

2εn

)2n

≥
(c1

2ε

)2c2 log(N)

≥ N2c2 log(c12ε)

This is non-negligible in N . Therefore the probability of a build failure is
non-negligible.

This immediately implies the contrapositive:

Corollary 1. Cuckoo Hashing with a stash requires n − s = o(n) or n =
ω(log(N)) in order to succeed with failure negligible in N .

The case that n− s = o(n) is very unnatural–it implies that a sub-constant
number of elements are stored in the table, at which point the Cuckoo table is
not providing much use. Thus, in any realistic setting where Cuckoo tables are
used, it is necessary that n = ω(log(N)). This provides the lower bound for n in
terms of N such that Cuckoo Hashing with a stash has a negligible probability
of failure. We will later provide analysis that shows that this is also the upper
bound for Cuckoo Hashing to succeed, so this bound is tight.

4

4 Graph Representation

Analyses of Cuckoo Hash table failure often represent the problem as a graph
problem as follows. For each location in the Cuckoo hash table, create a vertex.
Since the Cuckoo hash table has two tables each of size m, there will be 2m
vertices. For each element stored in the Cuckoo hash table, draw an edge
between the two locations in which it may be stored. Let G be the resulting
graph. Since there will be one location from each table, G will be bipartite,
with m vertices in each part. There may also be multiple edges between a pair
of vertices, so G is a multigraph. Observe also that the graph is not connected:
since n < m some nodes will not be connected to any edges and there may also
be multiple connected components that contain edges.

Let G(m,m, n) be a function that generates a graph representation of a
random Cuckoo hash table, i.e., it is a bipartite graph with partsA andB each of
m vertices and n edges chosen uniformly at random from A×B. G← G(m,m, n)
represents a sampling of a random Cuckoo graph G. Let γ(G) denote the
cyclotomic number of G, that is the minimum number of edges that must be
removed in order for G to be acyclic. Let ex(G) denote the excess of G, that
is the minimum number of edges that must be removed from G to ensure that
every connected component is acyclic or unicyclic.

Analysis is based on the following critical observation (which is proven, for
instance, as Lemma 5 of [ADW14]).

Theorem 2. Let G be the graph representation of a Cuckoo hash table with a
stash of size s. Then the build succeeds if and only if ex(G) ≤ s.

5 A Tight Analysis

Our primary result is the following theorem:

Theorem 3. The probability of build failure for a 2-table cuckoo hash table with
n = ω(log(N)) elements and a stash of size s = Θ(log(N)), is negligible in N .

This follows from the following concrete bounds:

Theorem 4. The probability of build failure for a 2-table cuckoo hash table with
n elements, tables of size m = εn and a stash of size s fails is:

Pr(ex(G(m,m, n) ≥ s+ 1) ≤ ε4(s+ 2)

(
ε5(s+ 1)

n

)s+1

where ε4 and ε5 are the following constants:

ε4 =
16e3ε(ε+ 1)2

(ε− 1)5
e

20ε(ε+1)2

(ε−1)5

ε5 =
(ε+ 1)2

eε(ε− 1)5

5

The remainder of this section proves Theorem 4, (though some more tedius
lemmas are deferred to section 6).

The analysis will proceed by observing the randomly generated graph, care-
fully choosing which information about the graph is revealed. This will give
bounds on both the size and the cyclotomic number of the component contain-
ing a randomly chosen edge, which will give bounds on the excess of the entire
graph. We will make extensive use of the following algorithm, which should
be viewed as occuring on a randomly generated graph. Observed variables are
therefore drawn from probability distributions and the distribution of the re-
mainder of the graph at any point is conditioned on the variables that have
already been observed.

Edge Component Search Algorithm

1. While ∃ an undiscovered edge in G

(a) Select one such edge at random. Call it e. Call the vertices it connects
v1 and v2.

(b) Let Qe be a queue initialized to {v1, v2}. Set Ve = {}, Ye = {e}.
(c) While Qe is not empty

i. Set v ← dequeue(Qe).

ii. Add v to Ve.

iii. Set Nv to be the number of undiscovered neighbors of v, (i.e.,
neighbors of v which have never been placed in Qe for any edge
e). This should be thought of as first observing |Nv|, and then
observing the vertices themselves.

iv. Enqueue all vertices in Nv to Qe.

v. For each w in Nv, add one of the edges connecting v to w to
Ye. (If there is more that one such edge, pick one at random,
without observing the total number of such edges.)

(d) Set Te = (Ve, Ye).

(e) For every pair of vertices in Ve which are in different parts of G,
observe the number of unobserved edges between the vertices. Set
Ze to be the set of these edges.

(f) Set Ce = (Ve, Ye ∪ Ze).

Theorem 5. Ce calculated in step 1f will be the connected component in G
containing the edge e chosen in step 1a.

Proof. Observe that steps 1b and 1c are identical to a Breadth First Search
(BFS), except that the queue begins containing two vertices instead of 1. How-
ever, v2 is a neighbor of v1, so the initial state of the system can be viewed as
the state of a BFS starting at v1 where the first neighbor (v2) has already been
found, and added to the queue. Therefore, the resulting BFS will find exactly

6

the nodes reachable from v1 in G, which is exactly the nodes in the connected
component in G containing e. Observe also that any edges that may exist in
Ce are found, either in steps 1b and 1(c)v, in which case they are added to Ye,
or in step 1e in which case they are added to Ze. Either way, these edges exist
in Ce. Lastly, only edges in the connected component containing e exist in Ce,
since only edges in G connecting vertices in Ce are added.

Observing the correspondence to a BFS also indicates the following Lemma.

Lemma 1. Te calculated in step 1d is a spanning tree of Ce.

Furthermore, Ye and Ze are disjoint. Therefore, Ze contains a set of edges
in Ce which, if removed, produces a tree. This implies the following fact.

Fact 1. |Ze| = γ(Ce)

Lastly, since the random edge selected in 1a will always be one that has
not yet been discovered, and all edges in a component are discovered when
that component is explored, each new component found will be separate to all
previous components found. Furthermore, since the algorithm continues until
all edges are found, it will find all components of G.

Now we upper-bound the number of neighbors found in step 1(c)iii.

Theorem 6. The number of neighbors found in step 1(c)iii is stochastically
dominated by Bin(n, 1

m)

Proof. First, the number of undiscovered neighbors of v found in step 1(c)iii
is at most the number of undiscovered edges that connect to v. Let u be the
number of discovered edges at a certain point of time, and n−u be the number
of undiscovered edges. Let A be the part of the bipartite graph containing v and
B the other part. Each of the u edges has one end-point in A. One of these u
edges is known to have its end-point in A at v (for v1, v2 this is e, and for other
vertices, it is the edge that was used to find v). Therefore, there are u− 1 edges
that have other end-points in A, and so at most u − 1 vertices in A that are
end-points of previously discovered edges. Only vertices that are end-points of
a previously-discovered edge may have their number of neighbors examined (in
step 1(c)iii). Therefore, there are at least m− u+ 1 vertices in A (including v)
which prior to to step 1(c)iii have not had their number of neighbors examined.

Some of the remaining n− u edges may be later discovered to exist between
previously found vertex-pairs (in step 1e). The number of undiscovered edges
that are not in this category is still at most n− u.

Therefore, there are at most n−u edges that could contribute towards |Nv|,
and for each, the only thing that is known about the edge’s end-point in A is
that it is not one of the at most u−1 vertices in A which have had their number
of neighbors counted. Hence, each such edge will have v as its end-point in A
with probability at most 1

m−u+1 . Since there are at most n − u such edges,

|Nv| is stochastically dominated by Bin(n − u, 1
m−u+1), which by Lemma 4 is

stochastically dominated by Bin(n, 1
m)

7

We now need to show bounds on the number of edges found in step 1e. It
will help to first define three types of vertex pairs. The first are opened vertex
pairs, for which the number of edges between the pair of vertices is fully known
(including when it is known to be zero). Step 1e cannot find any edges between
opened vertex pairs, since it only finds previously undiscovered edges. The
second type is partially opened vertex pairs, for which it is known that at least
one edge exists between them but it is not known how many more exist. The
third type is unopened vertex pairs, for which it is not yet known whether the
vertices are neighbors.

We begin by showing bounds on the number of edges between unopened
vertex pairs.

Theorem 7. In the Edge Component Search Algorithm, if at a point in time
u edges have been discovered, then the number of edges between an unopened
vertex pair, v and w, is stochastically dominated by Bin(n, 1

m(m−u)).

Proof. First we show that the number of edges between v and w is stochastically
dominated by Bin(n− u, 1

(m−u)2).

Let q be the number of edges that exist between unopened vertex pairs.
Every such edge must not yet have been discovered, but there may be some
undiscovered edges between partially opened vertex pairs. Therefore q ≤ n− u

For the q edges that exist between unopened vertex pairs, we do not know
any information about which vertices they exist between beyond the fact that
they exist between unopened vertex pairs. Futhermore, it is equally likely to
exist between any such pair.

Since only u edges have been discovered, there must be at least m−u vertices
in each part that touch no discovered edges. Hence, each pair of such vertices is
an unopened vertex pair. Therefore, there are at least (m−u)2 unopened vertex
pairs. Thus, for any given unopened pair, and an edge that exists between a
unopened pair, the probability that the edge exists between that unopened pair

is at most
(

1
m−u

)2
. Hence, the number of edges between any given unopened

pair will be stochastically dominated by Bin(n − u, 1
(m−u)2), which by Lemma

5, is stochastically dominated by Bin(n, 1
m(m−u)).

Next we show bounds on the number of additional edges found in step 1e
between partially opened pairs.

Theorem 8. In the Edge Component Search Algorithm, the number of addi-
tional edges between a partially opened vertex pair is stochastically dominated
by the number of edges between an unopened vertex pair.

(Proof deferred to section 6).
Combining this with Theorem 7 and observing that u ≤ n, we get the

following result.

Theorem 9. In the Edge Component Search Algorithm, any vertex pair that
is partially opened or unopened, has a number of undiscovered edges that is
stochastically dominated by Bin(n, 1

m(m−n)).

8

Now define a function H(m,n), which samples a graph H ← H(m,n) chosen
the same as Ce in step 1 of the Edge Component Search Algorithm except that:

• Edges and vertices are given new unique identifiers when discovered that
may not be the same as the names “found” by the Edge Component Search
Algorithm.

• |Nv| in step 1(c)iii is chosen from Bin(n, 1
m)

• In step 1e, the additional edges between any pair of vertices in different
parts is chosen from Bin(n, 1

m(m−n)). (Recall the graph is a tree at this

point, so is bipartite.)

• We refer to Ve as V , Qe as Q, Ye as Y and Ze as Z.

Theorem 10. For any component Ce discovered in the Edge Component Search
Algorithm, γ(Ce) is stochastically dominated by γ(H) for an independent sample
H ← H(m,n).

Proof. We can view the two graph-sampling algorithms as running in parallel
using the same source of randomness. We can choose an interpretation of the
randomness generated such that if an event in the sampling of H stochastically
dominates an event in the sampling of Ce, the event always happens in H if
it happens in Ce. Since the probability of finding an edge in Ce is always
stochastically dominated by that of finding the edge in H (from Theorems 6 and
9), Ce will be a subset of H for any choice of randomness. Therefore γ(Ce) ≤
γ(H) for any choice of randomness, which implies that γ(Ce) is stochastically
dominated by γ(H).

We can now upper bound |H| and γ(H) in order to upper bound γ(Ce).

Theorem 11. For H ← H(m,n), where m = εn for ε > 1, and ε1 = (ε−1)2
ε+1 ,

for k ≥ 2,

Pr(|H| ≥ k) ≤ 2ε2

k − 1
e−ε1k

Proof. Now, the vertices of H are found by each vertex having a number of chil-
dren chosen from the distribution Bin(n, 1

m). Therefore (V, Y) can be viewed
as the result of a Galton-Watson Branching process, with 2 roots, and chil-
dren chosen from independent samples of Bin(n, 1

m). The Otter-Dwass formula
[Pit98, Dwa69] states that the probability that a Galton-Watson process that
initially has α nodes, will be of size k is exactly

α

k
Pr(Sk = k − α)

where Sk is the distribution of k samples of the progeny distribution. In this
case Sk = Bin(nk, 1

m). Therefore, for k ≥ 2

Pr(|H| = k) =
2

k
Pr(Bin(nk,

1

m
) = k − 2)

9

=
2(k − 1)

(kn− k + 2)(kn− k + 1)
m2

(
1− 1

m

)2

Pr(Bin(nk,
1

m
) = k)

≤ 2ε2(k − 1)

(k − k
n)(k − k

n)
Pr(Bin(nk,

1

m
) = k)

≤ 2ε2

k − 1
Pr(Bin(nk,

1

m
) = k)

≤ 2ε2

k − 1
Pr(Bin(nk,

1

m
) ≥ k)

≤ 2ε2

k − 1
e−ε1k

where ε1 = (ε−1)2
ε+1 and the last step comes from a Chernoff Bound.

Now we can bound γ(H) for a given |H|.

Theorem 12. For H ← H(m,n),

Pr(γ(H) ≥ t||H| = k) ≤
(

enk2

4m(m− n)t

)t

Proof. H is bipartite. If one part has size a, the other has size k − a. The
cylotomic number of H is the number of additional edges added in the last step.
The number of pairs of vertices that may have edges added between them is

a(k − a) which has maximum value bk2 cd
k
2 e = bk

2

4 c.
Each such vertex pair has a number of edges drawn from the distribution

Bin(n, 1
(m−n)m). Therefore the total number of edges is stochastically dominated

by Bin(nbk
2

4 c,
1

m(m−n)).

Applying the Chernoff bound from Lemma 7 completes the proof.

Theorem 13. For any component Ce found by the Edge Component Search
Algorithm,

Pr(γ(Ce) ≥ t) ≤ ε2
(
ε3t

m

)t
where ε2 = 8eε2 and ε3 = 1

e(ε−1)ε21
= (ε+1)2

e(ε−1)5 .

Proof. First we show bounds on γ(H), where H ← H(m,n). Combining Theo-
rem 11 and Theorem 12 we can obtain bounds for γ(H):

Pr(γ(H) ≥ t) ≤
∞∑
k=2

Pr(|H| = k)Pr(γ(H) ≥ t||H| = k)

10

≤
∞∑
k=2

2ε2

k − 1
e−ε1k

(
enk2

4m(m− n)t

)t
≤ 2ε2

(
en

4m(m− n)t

)t ∞∑
k=2

1

k − 1
e−ε1kk2t

≤ 4ε2
(

en

4m(m− n)t

)t ∞∑
k=2

e−ε1kk2t−1

Applying Lemma 8 yields:

≤ 4ε2
(

en

4m(m− n)t

)t
2e

(
2t

ε1e

)2t

≤ 8eε2
(

t

em(ε− 1)ε21

)t

Since γ(Ce) is stochastically dominated by γ(H),

Pr(γ(Ce) ≥ t) ≤ 8eε2
(

t

e(ε− 1)ε21m

)t

This immediately implies the following corollary:

Corollary 2. For any component Ce found by the Edge Component Search
Algorithm,

Pr(ex(Ce) ≥ s) ≤ ε2
(
ε3(s+ 1)

m

)s+1

where ε2 = 8eε2 and ε3 = 1
e(ε−1)ε21

= (ε+1)2

e(ε−1)5 .

Note that this bound not only applies to the first component found, but to
every component found.

Let C ′e be the component containing e if e is the first edge found in the Edge
Component Search Algorithm and let C ′e be an empty component otherwise.
ex(C ′e) = ex(Ce) if e is the first edge found in Ce, and ex(C ′e) = 0 otherwise.
In either case the bound of Corollary 2 applies to ex(C ′e).

We will need the following Lemma (proven in section 6).

Lemma 2. Let U(s, q) be the set of sequences of positive integers, where T ∈
U if and only if |T | = q and

∑
1≤i≤q Ti = s, where s ≥ q ≥ 1. Then∑

T∈U(s,q)

∏
1≤i≤q(Ti + 1)Ti+1 ≤ 0.89q−1(s+ 1)s+1

We can now bound the excess of the entire graph,

11

Pr(ex(G) ≥ s) = Pr(
∑
e

ex(C ′e) ≥ s)

≤
∑

j1,...,jn∑
i ji=s

Pr(∧iex(C ′ei) ≥ ji)

≤
s∑
q=1

∑
j1,...,jn∑
i ji=s

|{ji:ji≥1}|=q

∏
{ji:ji≥1}

ε2

(
ε3(ji + 1)

m

)ji+1

≤
s∑
q=1

∑
R⊆{1,...,n}
|R|=q

∑
j1,...,jq∑
i ji=s
ji≥1

q∏
i=1

ε2

(
ε3(ji + 1)

m

)ji+1

≤
s∑
q=1

(
n

q

) ∑
T∈U(s,q)

q∏
i=1

ε2

(
ε3(Ti + 1)

m

)Ti+1

≤
s∑
q=1

(
n

q

)
εq2

(ε3
m

)s+q ∑
T∈U(s,q)

q∏
i=1

(Ti + 1)
Ti+1

Apply Lemma 10:

≤
s∑
q=1

(
n

q

)
εq2

(ε3
m

)s+q
0.89q−1(s+ 1)s+1

≤ 1

0.89
(s+ 1)s+1

(ε3
m

)s s∑
q=1

(
0.89eε2ε3

εq

)q
≤ (s+ 1)e

0.89

(ε3s
m

)s s∑
q=1

(
0.89eε2ε3

εq

)q
Applying Lemma 11:

≤ (s+ 1)e

0.89

(ε3s
m

)s 2e0.89ε2ε3
ε

e
0.89ε2ε3

ε

≤ (s+ 1)16e3ε(ε+ 1)2

(ε− 1)5
e

20ε(ε+1)2

(ε−1)5

(ε3s
m

)s

This completes the proof of Theorem 4.

6 Additional Lemmas

This section contains proofs of (more tedius) lemmas.

12

We begin by showing a useful lemma for inequalities with exponentials.

Lemma 3.

a2b1 ≤ a1b2 ⇒
(

1− 1

a1 + 1

)b1
≥
(

1− 1

a2

)b2

Proof. (
1− 1

a1 + 1

)b1
≥
(

1− 1

a2

)b2
⇔

b1 ln

(
1− 1

a1 + 1

)
≥ b2 ln

(
1− 1

a2

)
⇐

b1

(
1− 1

1− 1
a1+1

)
≥ b2

(
− 1

a2

)
⇔

b1

(
1− a1 + 1

a1

)
≥ − b2

a2
⇔

− b1
a1
≥ − b2

a2
⇔

a2b1 ≤ a1b2

Lemma 4. Bin(n − q, 1
m−q+1) is stochastically dominated by Bin(n, 1

m) when
m ≥ n.

Proof. Now Bin(n1, p1) is stochastically dominated by Bin(n2, p2) if and only
if n1 ≤ n2 and (1 − p1)n1 ≥ (1 − p2)n2 [KM10]. Set n1 = n − q, n2 = n,
p1 = 1

m−q+1 , p2 = 1
m . Clearly n1 ≤ n2. Observe that

(
1− 1

m− q + 1

)n−q
≥
(

1− 1

m

)n
⇐

Applying Lemma 3

(n− q)m ≤ n(m− q)⇔
−qm ≤ −qn⇔
m ≥ n

The last statement is true, so the condition (1−p1)n1 ≥ (1−p2)n2 holds,

Lemma 5. If integers m,n, u satisfy m > n ≥ u ≥ 1 then Bin(n − u, 1
(m−u)2)

is stochastically dominated by Bin(n, 1
m(m−u)).

13

Proof. Bin(n1, p1) is stochastically dominated by Bin(n2, p2) if and only if n1 ≤
n2 and (1− p1)

n1 ≥ (1− p2)
n
2 [KM10]. Set n1 = n − u, n2 = n, p1 = 1

(m−u)2

and p2 = 1
m(m−u) . Clearly n1 ≤ n2. Now(

1− 1

(m− u)2

)n−u
≥
(

1− 1

m(m− u)

)n
⇐

Applying Lemma 3

(n− u)m(m− u) ≤ n
(
(m− u)2 − 1

)
(n− u)m ≤ n(m− u− 1

m− u
)⇔

um ≥ n(u+
1

m− u
)⇔

m

n
≥
u+ 1

m−u
u

⇔

m− n
n

≥ 1

u(m− u)
⇔

n

m− n
≤ u(m− u)

The last statement holds since u(m − u) ≥ m − 1 ≥ n ≥ n
m−n . Hence

(1 − p1)n1 ≥ (1 − p2)n2 as required, so Bin(n − u, 1
(m−u)2) is stochastically

dominated by Bin(n, 1
m(m−u)).

Theorem 8. In the Edge Component Search Algorithm, the number of addi-
tional edges between a partially opened vertex pair is stochastically dominated
by the number of edges between an unopened vertex pair.

Proof. The case of the pair v1, v2 is special because the initial edge e that
was found between these was discovered by selecting a random undiscovered
edge, rather that requesting information about the pair v1, v2. Therefore, the
occurrance of e between v1 and v2 does not affect the distribution of other edges.
Hence the remaining edges between v1 and v2 will actually be distributed exactly
the same as between any unopened vertex pair.

For the remaining partially opened vertex pairs, we will prove a slightly
different statement, which implies the one above. Let A be the number of
additional edges between the partially opened pair andB be the number between
the unopened pair. We show that if i < j, the probability that A = i and B = j
is less than the probability that A = j and B = i.

Let there be some state, S, observed on the remainder of the system. By
Bayes:

Pr(B = i ∧A = j + 1|S)

Pr(B = j ∧A = i+ 1|S)
=

Pr(B = i ∧A = j + 1)Pr(S|B = i ∧A = j + 1)

Pr(B = j ∧A = i+ 1)Pr(S|B = j ∧A = i+ 1)

14

Now Pr(S|B = i∧A = j+1) = Pr(S|B = j∧A = i+1), since in both cases
i+ j+ 1 edges will have been used between the two vertex-pairs. Therefore, the
probability above is simply

Pr(B = i ∧A = j + 1)

Pr(B = j ∧A = i+ 1)

Note that this statement is true regardess of what the state S is (as long
as it is possible), so we can consider S to be all information learned about
the assignment of edges from the beginning of the Edge Component Search
Algorithm.

So, if there are initially b vertex pairs and n edges:

Pr(B = i ∧A = j + 1|S)

Pr(B = j ∧A = i+ 1|S)
=

Pr(B = i ∧A = j + 1)

Pr(B = j ∧A = i+ 1)

=
Pr(B = i|A = j + 1)Pr(A = j + 1)

Pr(B = j|A = i+ 1)Pr(A = i+ 1)

=

(
n−j−1

i

) (
1
b−1

)i (
1− 1

b−1

)n−j−1−i (
n
j+1

) (
1
b

)j+1 (
1− 1

b

)n−j−1
(
n−i−1
j

) (
1
b−1

)j (
1− 1

b−1

)n−i−1−j (
n
i+1

) (
1
b

)i+1 (
1− 1

b

)n−i−1
=

(
n−j−1

i

)(
n
j+1

)(
n−i−1
j

)(
n
i+1

)
=
i+ 1

j + 1
< 1

Therefore, Pr(B = i∧A = j+ 1|S) < Pr(B = j ∧A = i+ 1|S), when i < j,
which implies that after observation of the sysem S, A − 1 is stochastically
dominated by B. Therefore, the number of additional edges between a partially
opened pair is stochastically dominated by the number of edges between an
unopened pair.

Lemma 6. Let X be the sum of indepenent Bernoulli variables, with mean µ.
A basic form of the Chernoff Bound for any δ > 0 is as follows:

Pr(X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ
This implies the following looser bound:

Lemma 7. For any non-negative integer t,

Pr(X ≥ t) ≤
(eµ
t

)t

15

Proof. For t ≤ µ, eµt ≥ e, so
(
eµ
t

)t ≥ 1, so the statement holds as the probability
cannot be more than 1. For t > µ we can view t = (1 + δ)µ for some δ > 0.

Pr(X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ
≤
(

e

(1 + δ)

)(1+δ)µ

e−µ

≤
(

eµ

(1 + δ)µ

)(1+δ)µ

e−µ

≤
(eµ
t

)t

Lemma 8. Let t ≥ 1, ε1 ∈ (0, 1). Then:

∞∑
k=1

k2t−1e−ε1k ≤ 2e

(
2t

ε1e

)2t

Proof. It is possible to approximate a summation with an integral, using the
same methods as Reinman sums but in reverse. Let f(x) be a continuous func-
tion that is monotonically increasing until a maximum point xmax, after which x
is monotonically decreasing. Let x′ = bxmaxc. Let h(x) = min(f(bxc), f(bxc+

1)). Let us observe how
∑b
x=a h(x) approximates

∫ b+1

a
f(x)dx.

Observe that for any integer a, h(x) is the same for all x ∈ [a, a+ 1). Since
f(x) has no local minima and is continuous, the minimum value of f(x) over the
range [a, a+ 1) is either at f(a) or f(a+ 1). Therefore f(x) ≥ min(f(a), f(a+
1)) = h(x) for x ∈ [a, a + 1). Since this applies to the interval [a, a + 1)
for any integer a, h(x) ≤ f(x) for all x. Hence, for any integers a and b,∑b
a h(x) =

∫ b+1

a
h(x) ≤

∫ b+1

a
f(x)dx.

∫ b+1

a

f(x)dx ≥
b∑
a

h(x)

≥
x′−1∑
a

f(x) +min(f(x′), f(x′ + 1)) +

b∑
x′+1

f(x+ 1)

≥

(
b+1∑
a

f(x)

)
−max(f(x′), f(x′ + 1)

≥

(
b+1∑
a

f(x)

)
− f(xmax)

16

Hence:

b∑
a

f(x) ≤
∫ b

a

f(x)dx+ f(xmax)

Let f(x) = x2t−1e−ε1x where t ≥ 1 and 0 < ε1 < 1. First we need to
show that it is a function that is monitonically increasing, then monitonically
decreasing.

f ′(x) = (2t− 1)x2t−2e−ε1x − ε1x2t−1e−ε1 = x2t−2e−ε1(2t− 1− ε1x)

Observe that x2t−2 and e−ε1 are both positive. Therefore f ′(x) will be
positive when x < 2t−1

ε1
, f ′(x) = 0 at x = 2t−1

ε1
and will be negative when x >

2t−1
ε1

. Therefore this function is monotonically increasing, then monitonically

decreasing, as required, with xmax = 2t−1
ε1

. We can easily calculate:

f(xmax) =

(
2t− 1

ε1

)2t−1

e−(2t−1)

=

(
2t− 1

ε1e

)2t−1

Hence the inequality applies to the sum and

∞∑
k=1

k2t−1e−ε1k ≤
∫ ∞
1

x2t−1e−ε1xdx+

(
2t− 1

ε1e

)2t−1

≤
∫ ∞
0

x2t−1e−ε1xdx+

(
2t− 1

ε1e

)2t−1

By a standard integral identity,
∫∞
0
x2t−1e−ε1xdx = (2t−1)!

ε2t1
. Furthermore, a

factorial approximation shows that (2t− 1)! ≤ (2t)2te−(2t−1). Hence

∞∑
k=1

k2t−1e−ε1k ≤
(

2t

ε1

)2t

e−(2t−1) +

(
2t− 1

ε1e

)2t−1

≤
(

2t

ε1

)2t

e−(2t−1) +

(
2t

ε1

)2t−1

e−(2t−1)

Recalling that 0 < ε1 < 1, so 2t
ε1
> 1

≤ 2

(
2t

ε1

)2t

e−(2t−1)

≤ 2e

(
2t

ε1e

)2t

17

Lemma 9. For all integers s ≥ 2,
∑s−1
a=1(a+ 1)a+1(s+ 1− a)s+1−a ≤ 0.89(s+

1)s+1

Proof. By calculation, this is true for s ∈ {2, 3, 4, 5, 6, 7, 8}, for which the left-
hand side values are, respectively {16, 216, 2777, 38824, 607534, 10707768, 212342547}
and the right-hand side values are respectively {24.03, 227.84, 2781.25, 41523.84,
732953.27, 14931722.24, 344804235.2}. For s > 8 we prove by induction.

Given that it holds true for s ≤ 8, let us show it holds true for s+ 1.

s∑
a=1

(a+ 1)a+1(s+ 2− a)s+2−a

≤
t∑

a=1

(a+ 1)a+1(s+ 2− a)s+2−a +

s−1∑
a=t+1

(a+ 1)a+1(s+ 2− a)s+2−a + (s+ 1)s+122

≤
t∑

a=1

(a+ 1)a+1(s+ 2− a)s+2−a + (s+ 1− t)e
s−1∑
a=t+1

(a+ 1)a+1(s+ 1− a)s+1−a + (s+ 1)s+122

≤
t∑

a=1

(a+ 1)a+1(s+ 2− a)s+2−a + (s+ 1− t)e(
s−1∑
a=1

(a+ 1)a+1(s+ 1− a)s+1−a −
t∑

a=1

(a+ 1)a+1(s− a+ 1)s−a+1

)
+ (s+ 1)s+122

Applying the inductive hypothesis yields:

≤ e
t∑

a=1

(a+ 1)a+1(s+ 2− a)(s+ 1− a)s+1−a + (s+ 1− t)e0.89(s+ 1)s+1

− e(s+ 1− t)
t∑

a=1

(a+ 1)a+1(s− a+ 1)s−a+1 + (s+ 1)s+122

≤ e
t∑

a=1

(a+ 1)a+1(s− a+ 1)s−a+1((s+ 2− a)− (s+ 1− t)) + 0.89(s+ 2)s+2

− te0.89(s+ 1)s+1 + (s+ 1)s+122

≤ 0.89(s+ 2)s+2 + 22(s+ 1)s+1 + e

t∑
a=1

(a+ 1)a+1(s− a+ 1)s−a+1(t+ 1− a)− te0.89(s+ 1)s+1

Setting t = 3 yields:

≤ 0.89(s+ 2)s+2 + 22(s+ 1)s+1 + e22ss3 + e33(s− 1)s−12 + e44(s− 2)s−2 − 3e0.89(s+ 1)s+1

18

≤ 0.89(s+ 2)s+2 + (s+ 1)s+1

(
22 +

12

s
+

54

es(s− 1)
+

256

e2s(s− 1)(s− 2)
− 3e0.89

)

For s ≥ 8, the term 22+ 12
s + 54

es(s−1) + 256
e2s(s−1)(s−2) ≤ 5.5. Since 3e0.89 > 5.5

the inequality simplifies to:

s∑
a=1

(a+ 1)a+1(s+ 2− a)s+2−a ≤ 0.89(s+ 2)s+2

Since it holds true up to s = 2, . . . , 8 by inspection, and holds true for s ≥ 8
by induction, the statement is true for all s ≥ 2.

Lemma 10. Let U(s, q) be the set of sequences of positive integers, where
T ∈ U if and only if |T | = q and

∑
1≤i≤q Ti = s, where s ≥ q ≥ 1. Then∑

T∈U(s,q)

∏
1≤i≤q(Ti + 1)Ti+1 ≤ 0.89q−1(s+ 1)s+1

Proof. We proceed by induction on the length of the sequences. For q = 1, U
contains a single sequence T with T1 = s. Then

∑
T∈U(s,q)

∏
1≤i≤q(Ti+1)Ti+1 =

(s+ 1)s+1 = 0.890(s+ 1)s+1.
Assume that the theorem holds for all sequences of length q ≥ 1. We will

show that it also holds for all sequences of length q + 1.

∑
T∈U(s,(q+1))

∏
1≤i≤q+1

(Ti + 1)Ti+1 ≤
s−q∑
T1=1

(T1 + 1)T1+1
∑

T ′∈U((s−T1),q)

∏
1≤i≤q

(T ′i + 1)T
′
i+1

Applying our inductive hypothesis gives:

≤
s−1∑
a=1

(a+ 1)a+10.89q−1(s− a+ 1)s−a+1

≤ 0.89q−1
s−1∑
a=1

(a+ 1)a+1(s− a+ 1)s−a+1

Using Lemma 9

≤ 0.89q(s+ 2)s+2

Lemma 11. For a > 0,
∞∑
x=1

(a
x

)x
≤ 2ae

a
e

19

Proof. Over the positive reals the function f(x) =
(
a
x

)x
is maximized at x = a

e ,
for which it has value e

a
e . Therefore:

∞∑
x=1

(a
x

)x
≤

2a−1∑
x=1

(a
x

)x
+

∞∑
x=2a

(a
x

)x
≤

2a−1∑
x=1

(e
a
e) +

∞∑
x=2a

(
1

2

)x
≤ e ae (2a− 1) + 1

≤ 2ae
a
e

7 Acknowledgements

This research was sponsored in part by ONR grant (N00014-15-1-2750) “Syn-
Crypt: Automated Synthesis of Cryptographic Constructions”.

20

References

[ADW14] Martin Aumüller, Martin Dietzfelbinger, and Philipp Woelfel. Ex-
plicit and efficient hash families suffice for cuckoo hashing with a
stash. Algorithmica, 70(3):428–456, 2014.

[DK12] Michael Drmota and Reinhard Kutzelnigg. A precise analysis of
cuckoo hashing. ACM Transactions on Algorithms (TALG), 8(2):1–
36, 2012.

[Dwa69] Meyer Dwass. The total progeny in a branching process and a
related random walk. Journal of Applied Probability, 6(3):682–686,
1969.

[GM11] Michael T Goodrich and Michael Mitzenmacher. Privacy-preserving
access of outsourced data via oblivious RAM simulation. In ICALP,
pages 576–587. Springer, 2011.

[GMOT12] Michael T Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and
Roberto Tamassia. Privacy-preserving group data access via state-
less oblivious RAM simulation. In SODA, pages 157–167. SIAM,
2012.

[KM10] Achim Klenke and Lutz Mattner. Stochastic ordering of classical
discrete distributions. Advances in Applied probability, 42(2):392–
410, 2010.

[KMW09] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More robust
hashing: Cuckoo hashing with a stash. SIAM Journal on Comput-
ing, 39(4):1543–1561, 2009.

[Pit98] Jim Pitman. Enumerations of trees and forests related to branching
processes and random walks. Microsurveys in discrete probability,
41:163–180, 1998.

[PR01] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In
ESA, pages 121–133. Springer, 2001.

[PR10] Benny Pinkas and Tzachy Reinman. Oblivious RAM revisited. In
CRYPTO, pages 502–519. Springer, 2010.

21

