
Explicit, Closed-form, General bounds

for Cuckoo Hashing with a Stash

Daniel Noble
University of Pennsylvania, dgnoble@cis.upenn.edu

June 16, 2023

Abstract

Cuckoo Hashing is a dictionary data structure in which a data item
is stored in a small constant number of possible locations. It has the
appealing property that a data structure of size 2m can hold up to
n = 1

dm elements for any constant d > 1; i.e., the data structure size
is a small constant times larger than the combined size of all inserted
data elements. However, the probability that a cuckoo hash table
build fails is Θ(1

m). This is too high for many applications, especially
cryptographic applications and Oblivious RAM. An alternative pro-
posal introduced by Kirsch et al. is to store elements which cannot be
placed in the main table in a “stash”, reducing the failure probability
to O(m−(s+1)) where s is any constant stash size. However, this anal-
ysis did not apply to super-constant s, and the bounds are asymptotic
rather than explicit. Further works improved upon this, but either
were not explicit, not closed-form or had limitations on the stash size.
In this paper we present the first explicit, closed-form bounds for the
failure probability of cuckoo hashing with a stash for general stash
sizes.

1 Overview

This paper proves the first explicit, closed-form bounds for the failure prob-
ability of cuckoo hashing with a stash for general stash sizes. Specifically, it
proves the following bound:

Theorem 1. Given a 2-table cuckoo hash table, in which each table holds
m elements, and which has a stash of size s ≥ 0, the cuckoo hash table
can successfully hold n ≤ 1

dm elements for any d > 1, with build failure

1

probability at most:

C(s+ 2)

(
c(s+ 1)

m

)s+1

where C and c depend only on d:

C =
16e2d

(d− 1)(ln(d) + 1
d − 1)2

e
32d

e(d−1)(ln(d)+ 1
d
−1)2

c =
1

e(d− 1)(ln(d) + 1
d − 1)2

This bound has the following implications.

Negligible Failure for Small Tables
Our bound shows that to obtain failure negligible in some parameter N , it
suffices to have s = Θ(log(N)) and m = ω(log(N)). Specifically Theorem 1
implies:

Corollary 1. The probability of build failure for a 2-table cuckoo hash table
of size m = ω(log(N)) and a stash of size s = Θ(log(N)) is negligible in N .

The best previous analysis was by Kirsch et al., who only showed that this
could be achieved whenm = Ω(log7(N)) [KMW09]. This result was used ex-
tensively in Hierarchical ORAMs (e.g. [GMOT12, LO13, AKL+20, KM19]),
which wished to use Cuckoo Hashing with a stash for many hash tables of
varying size, including “small” tables. While the constants were not explicit,
if we set the constant to 1 and set N to 240 this condition only holds for
m > 237, which is far from small. By improving this result, we greatly in-
crease the feasibility of Hierarchical ORAMs based on Cuckoo Hashing with
a stash. Furthermore, many of these protocols needed separate, less effi-
cient, hash tables for tables of sizes o(log7(N)). In some cases our analysis
can avoid the need for these additional inefficient hash tables, simplifying
Hierarchical ORAMs.

Flexible Concrete Parameter Choices
Our bound can be used to obtain concrete parameters for a desired security
level. This has some advantages compared to choosing parameters based on
simulation, as has been done for instance by [PSSZ15]. Firstly, and most
importantly, it allows for parameter choices when the failure probability, 2−σ

is very small. Simulation here encounters a Catch-22: ideally the protocol
never fails over the total number of times it is ever executed, say W , but

2

to show this would require running at least W executions in the simulation.
It is rare for a protocol to be executed more times by researchers than in
production. Secondly, it provides flexibility: it allows easy computation of
bounds for the failure probability for new sets of parameters without needing
to re-run expensive simulations. Lastly, on a philosophical level, it is more
satisfying to base results on analysis than heuristics.

Table 1 below shows concrete parameter choices obtained from Theo-
rem 1. It sets d = 3 and the failure probability to 2−40. Compared to the
simulation-based parameters of [PSSZ15], these parameters are a moderate
constant times larger: the memory usage is 2.5x larger and the stash sizes
about 4x larger. (See Table 4 of [PSSZ15]).

Number of Elements n 28 210 212 214 216 218 220 222 224

Stash Size s 47 28 20 16 13 11 10 9 8

Table 1: Stash sizes needed to obtain failure probability below 2−40 when
d = 3.

Excess of Random Bipartite Graphs
Our result can also be understood (and will be proven in) the language of
random graphs. Specifically, we will make use of the standard representation
of cuckoo hashing as a problem of bounding the excess of a random bipartite
graph. We will prove the first explicit closed-form general upper bound for
the excess of balanced bipartite graphs with randomly chosen edges:

Theorem 2. Let G be a bipartite multigraph with parts L and R, where
|L| = |R| = m, and n = 1

dm edges each chosen independently and uniformly
at random from L × R. Let ex(G) represent the excess of G, that is the
minimum number of edges that need be removed such that every connected
component has at most one cycle. Then:

Pr(ex(G) ≥ t) ≤ C(t+ 1)

(
ct

m

)t

for every t ≥ 1 and d > 1 where C and c are defined as above.

The paper is organized as follows. Section 2 presents a summary of
previous work. Section 3 explains cuckoo hashing and Section 4 explains
the correspondence between cuckoo hashing and random bipartite graphs.
Section 5 presents the main analysis on the graph problem, though proofs for
some of the lemmas for this analysis are deferred to Section 6. As a bonus,

3

Section 7 shows that Corollary 1 is basically tight; that is if m = O(log(N))
it is essentially impossible to attain negligible failure probability in N .

2 Previous Work

Cuckoo hashing, introduced by Pagh and Rodler [PR01], is a hash table im-
plementation that improves performance by allowing objects to be stored in
a number of locations. Specifically, a cuckoo hash table can store n elements
of size W in Θ(nW) space, with accesses only accessing Θ(1) locations of
size W . It is still sometimes impossible to place all items in the required
locations, in which case the build fails. A build failure, which we henceforth
refer to just as failure, occurs with probability Θ(1n) (see [DK12] for the
explicit constant).

For many applications this failure probability is sufficient. If a failure oc-
curs the hash table can simply be rebuilt with new hash functions. While a
hash table rebuild requires Θ(n) computation, the probability of this occur-
rence is Θ(1n), so the amortized computation cost per access is still constant.

However, for many applications this failure probability is still too high.
In particular, in security-oriented applications, rebuilds often constitute a
security failure.

Kirsch, Mitzenmacher and Wieder therefore introduced the modification
that any items which could not be stored in the main tables would be stored
in a “stash” of constant size s [KMW09]. They showed that the probability
of a build failure1 was then reduced to O(n−(s+1)). (They state this as the
equivalent statement that the probability that the required stash is at least
s is O(n−s).) This analysis allowed the failure probability to be reduced
significantly, but it only applied to constant s.

Kutzelnigg provided a detailed analysis of cuckoo hashing with a stash
based on a generating function approach [Kut10]. He showed (Theorem
1) that the failure probability is exactly c(α, s)m−s−1 − O(m−s−2) where
m is the size of each table, s is the stash size, α is related to the ratio
between the size of the table and the number of entries and c depends only
on α and s. Note that c(α, s) is constant in m, but is a function of s.
Therefore, this result does not show how the failure probability increases
with s, even asymptotically. Furthermore, determining c(α, s) is extremely
computationally intensive, effectively limiting this result to very small values
of s. In particular: “The calculations [to compute c(α, s)] are limited by

1While this paper presents failure probabilities in terms of m, if other papers present
their results in terms of n, we do too. Since n = 1

d
m converting between these is trivial.

4

the available memory of the machine that executed the computer algebra
system. Using a workstation with 12GB RAM, we were successful in solving
the problem for s ∈ {0, 1, 2}.” [Kut10] Thus, it seems that a standard
workstation is not able to compute c(α, s) for s > 2. Therefore, while this is
a powerful result that demonstrates the asymptotic behavior in terms of m
and provides precise bounds for small constant s, it does not provide upper
bounds on the failure probability for general values of s.

Goodrich and Mitzenmacher developed another analysis for super-constant
values of s in order to generate an improved Oblivious RAM protocol [GM11].
Oblivious RAM is a technique to hide virtual accesses from an adversary who
can see physical accesses, and numerous protocols have used cuckoo hashing
for this purpose (e.g., [PR10], [GMOT12], [KLO12]). In these protocols,
cuckoo hashing build failures constitute a security failure. Failure is desired
to be negligible in some parameter N , but tables can be much smaller than
N , for instance they may be polylogarithmic in N . Goodrich and Mitzen-
macher extended the analysis of Kirsch et al. to achieve negligible failure
probability in certain cases. They proved that, provided n = Ω(log7(N)),
the probability of a build failure is upper bounded by n−Ω(s) for general
values of s. Thus, a stash of size s = Θ(log(N)) would result in a failure
probability negligible in N .

Aumüller, Dietzfelbinger and Woelfel then presented an elegant alter-
native analysis of cuckoo hashing with a stash based on graph counting
[ADW14]. In this analysis, they showed a new result for super-constant
stash sizes. They showed that for sufficiently large n, the failure probability

is O(n− s
2) when s ≤ n

1
3ϱ , for a suitable constant ϱ. However this constraint

on the relationship between s and n proves restrictive in practice. They
state “a rough estimate ... shows that ϱ = 27 suffices”, but this would im-
pose the restriction that s ≤ n

1
81 . Even for s = 2, this makes the bound

inapplicable for practical values of m.
Pinkas et al. [PSWW18a] observed that an analysis by Wieder [Wie16]

provided a bound on the stash size that does not make any assumptions
about the stash size (see Appendix C of the full version [PSWW18b]). While
Wieder’s proof does not present explicit bounds in the final result, Pinkas et
al. filled in the missing details to present a explicit, general bound. However,
the bound they present is still not closed-form.2

2We could make the bound closed-form, such as by applying Lemma 7 from this paper.
This would result in the following bound for the failure probability:(

2

m

)s+1

2e

(
8(s+ 1) + 1

e ln(d)

)8(s+1)+1

5

Pinkas et al. [PSSZ15] instead used simulation to calculate the failure
probability of cuckoo hashing with a stash. Specifically, they generated
random instances of the problem for n ∈ {211, 212, 213, 214} and d = 1.2. For
each value of n they generated 230 random instances of the cuckoo hashing
table and determined the stash sizes that were needed. From this they
extrapolated the stash sizes needed for smaller error probabilities and other
values of n (see [PSSZ15] Table 3 and Figure 1).

Two recent works investigate the interplay between stashes and other
modifications to standard cuckoo hashing. Minaud and Papamanthou an-
alyze a variant of cuckoo hashing with a stash in which each location has
a capacity ℓ > 1 [MP23]. They show that if ℓ is a (sufficiently large3)
constant and the stash size s is also constant, the failure probability is
upper-bounded by Θ(n−ℓ−s) (Theorem 2). They also prove an asymptotic
bound that applies to super-constant ℓ and s (Theorem 1), which again
does not apply when ℓ = 1. Yeo explores the effectiveness of increasing the
number of hash functions k. He shows a lower bound4 on the efficacy of
combining all 3 parameters: that to achieve failure probability ϵ requires
that k2ℓ + ks = Ω(log(1/ϵ)/ log(n). He also shows an upper bound when
many hash functions are used and for constant s and ℓ: a failure probability
ϵ can be achieved by using k = Θ(

√
log(1/ϵ)/ log(n)) hash functions.

Most of these results did not provide explicit constants [KMW09, GM11,
ADW14, Wie16]. Additionally, some of these restrict the stash size either
to a constant ([KMW09]) or to a very small polynomial in n ([ADW14]).
[Kut10] is also restricted to small stash sizes due to the difficulty of calculat-
ing the term c(α, s). [PSWW18a] is explicit and general, but is not closed
form. [PSSZ15] is not directly comparable as it presents specific concrete
parameter choices based on simulation. [MP23] and the upper bound of
[Yeo22] are also not directly comparable as they either increase the number

For this probability to be less than 1 would require, roughly, that m > (8(s+1))8. Even
for s = 2 this would require that m > 236, a significant restriction in practice.

Asymptotically, the bound presented in Theorem 1 of this paper is much tighter. The
bound above can be represented asymptotically as:

O(O(1)sm−(s+1)s8s+9)

whereas the equivalent representation of Theorem 1 would be:

O(O(1)sm−(s+1)ss+2)

3In particular, both theorems require that the capacity of each location is at least 5.5,
that is at least 1 + ln(1/ϵ)/(1− ln(2)) where ϵ ≤ 0.25.

4Theorem 2. See theorem statement for additional constraints.

6

of items per location or increase the number of hash functions. As such,
despite much analysis of the build failure probability of cuckoo hashing with
a stash, this is the first paper to present a concrete, explicit, closed-form
upper bound.

3 Cuckoo Hashing

Cuckoo Hashing in its simplest form involves 2 hash functions, h1 and h2,
and 2 hash tables, T1 and T2, each with m = dn locations of capacity 1.
Each hash table has a unique hash function, and the hash functions are
assumed to produce outputs uniformly at random in {1, . . . ,m}. The tables
consist of pairs (x, y) where x is the dictionary key and y is the dictionary
value. An item (x, y) is stored in the table by being inserted into T1[h1(x)].
If another item (x′, y′) was stored in that location, it is removed from its
original location (like a baby bird being displaced from its nest by a Cuckoo
chick) and is placed in T2[h2(x

′)]. This may replace another item, which the
algorithm likewise attempts to insert. This process continues either until
every item has found a location in which to be inserted or it is determined
that it is impossible to place all items in the cuckoo hash table.5 In the latter
case the insertion has “failed”. This triggers a “table rebuild” in which new
tables are created with new hash functions and the algorithm attempts to
insert every element into the new hash table.

In cuckoo hashing with a stash, if an item cannot be inserted, the build
does not immediately fail, but instead the item is placed in the stash. The
build only fails if an item cannot be inserted and the stash is already full.

Cuckoo hash tables can be generalized to have a larger constant number
of tables, or have locations with some constant capacity greater than 1.
They can also be generalized to use multiple hash functions in a single
table. However, this work will analyze only the traditional 2-table version.

5Some works fix a maximum recursion depth for the insertion procedure, such as
[KMW09] which sets it to α log(N) for a sufficiently large constant α. It is then pos-
sible, with a small but non-negligible (in N) probability, that an insertable item is not
inserted. Our analysis instead assumes an optimal allocation. This can be achieved by
only stopping the insertion when it is detected that the insertion process has entered an
infinite loop. See Section 4 of [Kut10] for more details. This process still has an expected
insertion time of Θ(1) per item (Lemma 3.7 of [Aum10]), so building the full table this
way takes expected Θ(n) time.

7

4 Graph Representation

Analyses of cuckoo hash table failure often represent the problem as a graph
problem as follows. For each location in the cuckoo hash table, create a
vertex. Since the cuckoo hash table has two tables each of size m, there
will be 2m vertices. For each element stored in the cuckoo hash table, draw
an edge between the two locations in which it may be stored, so n edges
total. Let G be the resulting graph. Since there will be one location from
each table, G will be bipartite, with m vertices in each part. There may
also be multiple edges between a pair of vertices, so G is a multigraph.
Observe also that the graph is not connected: since n < m some nodes will
not be connected to any edges and there may also be multiple connected
components that contain edges.

We introduce some graph notation and terminology. Given a graph G,
let γ(G) denote the cyclotomic number of G, that is the minimum number
of edges that must be removed in order for G to have no cycles. Let ex(G)
denote the excess of G, that is the minimum number of edges that must be
removed from G to ensure that every connected component has at most one
cycle.

Analysis is based on the following well-established observation (which
is proven, for instance, as Lemma 5 of [ADW14]) which relates the build
failure in a cuckoo hash table to the excess of its graph representation:

Theorem 3. Let G be the graph representation of a cuckoo hash table with a
stash of size s, where s is any non-negative integer. Then the build succeeds
if and only if ex(G) ≤ s. Equivalently, the build fails if and only if ex(G) ≥
s+ 1.

Now, let G(m,m, n) be the distribution of graphs generated from graph
representations of random cuckoo hash tables with 2 tables of size m and n
items. Let G ← G(m,m, n), i.e., G is randomly sampled from G(m,m, n).
As already stated, G will then be a bipartite graph with parts A and B
each of m vertices. Since each hash function produces a random value in
{1, . . . ,m}, G will have n edges chosen uniformly at random from A ×
B. Note that this exactly matches the description of how G is chosen in
Theorem 2. Therefore, Theorem 2 describes the bounds on the excess of
graph representations of random cuckoo hash tables. Thus, by Theorem 3,
Theorem 2 implies Theorem 1.

8

5 An Explicit Analysis

The remainder of this section proves Theorem 2, (though some more tedious
lemmas are deferred to Section 6).

We follow the blueprint of Kirsch et al’s analysis. [KMW09]. Their
approach, in short, is to first bound the excess generated by each component
of the graph. This is done by first bounding the size of each component, and
calculating the distribution of the excess for a given size. Once they have
bounds for the excess of each component, they sum this over the number of
components to obtain a bound for the excess of the entire graph.

One core idea in Kirsch et al’s analysis is to bound the excess of a related
graph where the total number of edges is distributed according to a Poisson
distribution Po(λ), where n < λ < m. This means that the number of edges
between any pair of edges is distributed according to independent Poisson
distributions Po(λ

m2). This has the benefit that revealing the number of
edges between any pair of vertices will not affect the distribution between
any other pair, much simplifying their analysis. However, it has the downside
that there is a possibility that Po(λ) < n, that is the Poisson graph has fewer
edges than the original graph. In this case the excess of the Poisson graph
cannot be used to upper-bound that of the original. They parameterize the
Poisson graph so that this occurs with failure probability e−Ω(n). This term
is added to the final failure probability. While this is asymptotically small,
it complicates use of the bound in practice. To use the bound some concrete
λ must be chosen: small λ increases the constant in the above Ω(·) notation,
large λ reduces the effective value of d in the remainder of the analysis.

We adopt a different approach. Instead of assuming that the existence
of edges between pairs of vertices is independent, we carefully explore the
graph in such a way such that, despite dependency, the distribution of edges
between any pair will always be upper bounded by Binomial distributions.
This is delicate. For instance, if we were to begin by picking a random
vertex, v, in the left part of the graph and checking the number of neighbors
it has, there is a chance that it has 0 neighbors. Conditioned on this event,
the expected number of neighbors of any other left vertex increases, as there
are still the same number of edges left to find but one fewer left vertex to use
them. As such, our analysis begins by picking a random edge and carefully
doing a Breadth First Search from this edge. Compared to [KMW09], this
also allows us to sum component excesses starting from (at most) n edge-
initiated Breadth First Searches rather than (at most) m vertex-initiated
Breadth First Searches.

The algorithm below shows the (carefully chosen) method we use for

9

observing the contents of the graph. This algorithm will be used first to
bound the size of components found, then the excess of each component.
Finally this allows us to bound the excess of the entire graph.

Edge Component Search Algorithm

1. While ∃ an undiscovered edge in G

(a) Select one such edge at random. Call it e. Call the vertices it
connects v1 and v2.

(b) Let Qe be a queue initialized to {v1, v2}. Set Ve = {}, Ye = {e}.
(c) While Qe is not empty

i. Set v ← dequeue(Qe).

ii. Add v to Ve.

iii. Set Nv to be the set of undiscovered neighbors of v, (i.e.,
neighbors of v which have never been placed in Qe for any
edge e). This should be thought of as first observing |Nv|,
and then observing the vertices themselves.

iv. Enqueue all vertices in Nv to Qe.

v. For each w in Nv, add one of the edges connecting v to w to
Ye. (If there is more that one such edge, pick one at random,
without observing the total number of such edges.)

(d) Set Te = (Ve, Ye).

(e) For every pair of vertices in Ve which are in different parts of
G, observe the number of unobserved edges between the vertices.
Set Ze to be the set of these edges.

(f) Set Ce = (Ve, Ye ∪ Ze).

Theorem 4. Ce calculated in step 1f will be the connected component in G
containing the edge e chosen in step 1a.

Proof. Observe that steps 1b and 1c are identical to a Breadth First Search
(BFS), except that the queue begins containing two vertices instead of 1.
However, v2 is a neighbor of v1, so the initial state of the system can be
viewed as the state of a BFS starting at v1 where the first neighbor (v2)
has already been found, and added to the queue. Therefore, the resulting
BFS will find exactly the nodes reachable from v1 in G, which is exactly the
nodes in the connected component in G containing e. Observe also that any
edges that may exist in Ce are found, either in steps 1b and 1(c)v, in which

10

case they are added to Ye, or in step 1e in which case they are added to
Ze. Either way, these edges exist in Ce. Lastly, only edges in the connected
component containing e exist in Ce, since only edges in G connecting vertices
in Ce are added.

Observing the correspondence to a BFS also indicates the following
Lemma.

Lemma 1. Te calculated in step 1d is a spanning tree of Ce.

Furthermore, Ye and Ze are disjoint. Therefore, Ze contains a set of
edges in Ce which, if removed, produces a tree. This implies the following
fact.

Fact 1. |Ze| = γ(Ce)

Lastly, since the random edge selected in 1a will always be one that has
not yet been discovered, and all edges in a component are discovered when
that component is explored, each new component found will be separate to
all previous components found. Furthermore, since the algorithm continues
until all edges are found, it will find all components of G.

We will now prove some claims about the distibutions of neighbors, and
edges, found by the Edge Component Search Algorithm. The analysis is
made challenging by the fact that the existence of edges is not independent:
the more edges are found, the fewer are left to find. Likewise, the more
vertices are explored by the BFS, the fewer are left as possible end-points
for the remaining edges. However this is resolved, in short, due to the way
variables are observed in the Edge Component Search Algorithm, as edges
are discovered at least as quickly as vertices are found in either part. Thus,
even though the actual probability distributions depend on what has already
been discovered, we can find probability distributions that only depend on
m and n that stochastically dominate the real distributions.

We first upper-bound the number of neighbors found in step 1(c)iii.

Theorem 5. The number of neighbors found in step 1(c)iii is stochastically
dominated by Bin(n, 1

m)

Proof. First, the number of undiscovered neighbors of v found in step 1(c)iii
is at most the number of undiscovered edges that connect to v. Let u be
the number of discovered edges at a certain point of time, and n − u be
the number of undiscovered edges. Let A be the part of the bipartite graph
containing v and B the other part. Each of the u edges has one end-point

11

in A. One of these u edges is known to have its end-point in A at v (for v1,
v2 this is e, and for other vertices, it is the edge that was used to find v).
Therefore, there are u− 1 edges that have other end-points in A, and so at
most u− 1 vertices in A that are end-points of previously discovered edges.
Only vertices that are end-points of a previously-discovered edge may have
their number of neighbors examined (in step 1(c)iii). Therefore, there are
at least m − u + 1 vertices in A (including v) which prior to to step 1(c)iii
have not had their number of neighbors examined.

Some of the remaining n − u edges may be later discovered to exist
between previously found vertex-pairs (in step 1e). The number of undis-
covered edges that are not in this category is still at most n− u.

Therefore, there are at most n− u edges that could contribute towards
|Nv|, and for each, the only thing that is known about the edge’s end-point
in A is that it is not one of the at most u− 1 vertices in A which have had
their number of neighbors counted. Hence, each such edge will have v as
its end-point in A with probability at most 1

m−u+1 . Since there are at most

n − u such edges, |Nv| is stochastically dominated by Bin(n − u, 1
m−u+1),

which by Lemma 3 is stochastically dominated by Bin(n, 1
m)

We now need to show bounds on the number of edges found in step 1e.
It will help to first define three types of vertex pairs. The first are opened
vertex pairs, for which the number of edges between the pair of vertices
is fully known (including when it is known to be zero). Step 1e cannot
find any edges between opened vertex pairs, since it only finds previously
undiscovered edges. The second type is partially opened vertex pairs, for
which it is known that at least one edge exists between them but it is not
known how many more exist. The third type is unopened vertex pairs, for
which it is not yet known whether the vertices are neighbors.

We begin by showing bounds on the number of edges between unopened
vertex pairs.

Theorem 6. In the Edge Component Search Algorithm, if at a point in time
u edges have been discovered, then the number of edges between an unopened
vertex pair, v and w, is stochastically dominated by Bin(n, 1

m(m−u)).

Proof. First we show that the number of edges between v and w is stochas-
tically dominated by Bin(n− u, 1

(m−u)2
).

Let q be the number of edges that exist between unopened vertex pairs.
Every such edge must not yet have been discovered, but there may be some

12

undiscovered edges between partially opened vertex pairs. Therefore q ≤
n− u

For the q edges that exist between unopened vertex pairs, we do not know
any information about which vertices they exist between beyond the fact
that they exist between unopened vertex pairs. Furthermore, it is equally
likely to exist between any such pair.

Since only u edges have been discovered, there must be at least m − u
vertices in each part that touch no discovered edges. Hence, each pair of such
vertices is an unopened vertex pair. Therefore, there are at least (m − u)2

unopened vertex pairs. Thus, for any given unopened pair, and an edge
that exists between a unopened pair, the probability that the edge exists

between that unopened pair is at most
(

1
m−u

)2
. Hence, the number of

edges between any given unopened pair will be stochastically dominated
by Bin(n − u, 1

(m−u)2
), which by Lemma 4, is stochastically dominated by

Bin(n, 1
m(m−u)).

Next we show bounds on the number of additional edges found in step
1e between partially opened pairs.

Theorem 7. In the Edge Component Search Algorithm, the number of addi-
tional edges between a partially opened vertex pair is stochastically dominated
by the number of edges between an unopened vertex pair.

(Proof deferred to section 6).
Combining this with Theorem 6 and observing that u ≤ n, we get the

following result.

Theorem 8. In the Edge Component Search Algorithm, any vertex pair that
is partially opened or unopened, has a number of undiscovered edges that is
stochastically dominated by Bin(n, 1

m(m−n)).

Now define a function H(m,n), which samples a graph H ← H(m,n)
chosen the same as Ce in step 1 of the Edge Component Search Algorithm
except that:

• Edges and vertices are given new unique identifiers when discovered
that may not be the same as the names “found” by the Edge Compo-
nent Search Algorithm.

• |Nv| in step 1(c)iii is chosen from Bin(n, 1
m)

13

• In step 1e, the additional edges between any pair of vertices in different
parts is chosen from Bin(n, 1

m(m−n)). (Recall the graph is a tree at this

point, so is bipartite.)

• We refer to Ve as V , Qe as Q, Ye as Y and Ze as Z.

Theorem 9. For any component Ce discovered in the Edge Component
Search Algorithm, γ(Ce) is stochastically dominated by γ(H) for an inde-
pendent sample H ← H(m,n).

Proof. We can view the two graph-sampling algorithms as running in parallel
using the same source of randomness. We can choose an interpretation
of the randomness generated such that if an event in the sampling of H
stochastically dominates an event in the sampling of Ce, the event always
happens in H if it happens in Ce. Since the probability of finding an edge in
Ce is always stochastically dominated by that of finding the edge in H (from
Theorems 5 and 8), Ce will be a subset of H for any choice of randomness.
Therefore γ(Ce) ≤ γ(H) for any choice of randomness, which implies that
γ(Ce) is stochastically dominated by γ(H).

We can now upper bound |H| and γ(H) in order to upper bound γ(Ce).

Theorem 10. For H ← H(m,n), where m = dn for d > 1, and c1 =
ln(d) + 1

d − 1, for k ≥ 2,

Pr(|H| ≥ k) ≤ 2d2

k − 1
e−c1k

Proof. Now, the vertices of H are found by each vertex having a number
of children chosen from the distribution Bin(n, 1

m). Therefore (V, Y) can be
viewed as the result of a Galton-Watson Branching process, with 2 roots, and
children chosen from independent samples of Bin(n, 1

m). The Otter-Dwass
formula [Pit98, Dwa69] states that the probability that a Galton-Watson
process that initially has α nodes, will be of size k is exactly

α

k
Pr(Sk = k − α)

where Sk is the distribution of k samples of the progeny distribution. In this
case Sk = Bin(nk, 1

m). Therefore, for k ≥ 2

Pr(|H| = k) =
2

k
Pr(Bin(nk, 1/m) = k − 2)

14

We can rearrange the binomial to make it amenable to Chernoff Bounds:

Pr(Bin (nk, 1/m) = k − 2) =
(kn)!

(k − 2)!(kn− k + 2)!

(
1

m

)k−2(
1− 1

m

)kn−(k−2)

=
k(k − 1)

(kn− k + 2)(kn− k + 1)
m2

(
1− 1

m

)2 (kn)!

k!(kn− k)!

(
1

m

)k (
1− 1

m

)kn−k

=
k(k − 1)

(kn− k + 2)(kn− k + 1)
m2

(
1− 1

m

)2

Pr(Bin(nk,
1

m
= k)

We then substitute this term and apply basic inequalities to simplify:

Pr(|H| = k) =
2(k − 1)

(kn− k + 2)(kn− k + 1)
m2

(
1− 1

m

)2

Pr(Bin(nk,
1

m
) = k)

≤ 2(k − 1)

(kn− k)(kn− k)
m2Pr(Bin(nk,

1

m
) = k)

≤ 2d2(k − 1)

(k − k
n)(k −

k
n)

Pr(Bin(nk,
1

m
) = k)

≤ 2d2

k − 1
Pr(Bin(nk,

1

m
) = k)

≤ 2d2

k − 1
Pr(Bin(nk,

1

m
) ≥ k)

A standard Chernoff bound can now be applied on the binomial dis-
tribution, where the expected value is µ = nk

m = k
d and the lower limit is

k = dµ.

Pr(X ≥ dµ) ≤
(e
d

)dµ
e−µ

≤ eke−k ln(d)e−
k
d

≤ e−k(ln(d)+ 1
d
−1)

Substituting yields our final result, with c1 = ln(d) + 1
d − 1:

Pr(|H| = k) ≤ 2d2

k − 1
e−c1k

15

Now we can bound γ(H) for a given |H|.

Theorem 11. For H ← H(m,n),

Pr(γ(H) ≥ t||H| = k) ≤
(

enk2

4m(m− n)t

)t

Proof. H is bipartite. If one part has size a, the other has size k − a. The
cyclotomic number of H is the number of additional edges added in the last
step. The number of pairs of vertices that may have edges added between
them is a(k − a) which has maximum value ⌊k2⌋⌈

k
2⌉ = ⌊

k2

4 ⌋.
Each such vertex pair has a number of edges drawn from the distribu-

tion Bin(n, 1
(m−n)m). Therefore the total number of edges is stochastically

dominated by Bin(n⌊k24 ⌋,
1

m(m−n)).
Applying the Chernoff bound from Lemma 6 completes the proof.

Theorem 12. For any component Ce found by the Edge Component Search
Algorithm,

Pr(γ(Ce) ≥ t) ≤ c2

(
c3t

m

)t

where c2 = 8ed2 and c3 =
1

e(d−1)c21
= 1

e(d−1)(ln(d)+ 1
d
−1)2

.

Proof. First we show bounds on γ(H), where H ← H(m,n). Combining
Theorem 10 and Theorem 11 we can obtain bounds for γ(H):

Pr(γ(H) ≥ t) ≤
∞∑
k=2

Pr(|H| = k)Pr(γ(H) ≥ t||H| = k)

≤
∞∑
k=2

2d2

k − 1
e−c1k

(
enk2

4m(m− n)t

)t

≤ 2d2
(

en

4m(m− n)t

)t ∞∑
k=2

1

k − 1
e−c1kk2t

≤ 4d2
(

en

4m(m− n)t

)t ∞∑
k=2

e−c1kk2t−1

16

Applying Lemma 7 yields:

Pr(γ(H) ≥ t) ≤ 4d2
(

en

4m(m− n)t

)t

2e

(
2t

c1e

)2t

≤ 8ed2
(

t

em(d− 1)c21

)t

Since γ(Ce) is stochastically dominated by γ(H),

Pr(γ(Ce) ≥ t) ≤ 8ed2
(

t

e(d− 1)c21m

)t

This immediately implies the following corollary:

Corollary 2. For any component Ce found by the Edge Component Search
Algorithm,

Pr(ex(Ce) ≥ s) ≤ c2

(
c3(s+ 1)

m

)s+1

where c2 = 8ed2 and c3 =
1

e(d−1)c21
= 1

e(d−1)(ln(d)+ 1
d
−1)2

.

Note that this bound not only applies to the first component found, but
to every component found.

Let C ′
e be the component containing e if e is the first edge found in

the Edge Component Search Algorithm and let C ′
e be an empty component

otherwise. ex(C ′
e) = ex(Ce) if e is the first edge found in Ce, and ex(C ′

e) = 0
otherwise. In either case the bound of Corollary 2 applies to ex(C ′

e).
We will need the following Lemma (proven in section 6).

Lemma 9. Let U(s, q) be the set of sequences of positive integers, where
T ∈ U if and only if |T | = q and

∑
1≤i≤q Ti = s, where s ≥ q ≥ 1. Then∑

T∈U(s,q)

∏
1≤i≤q(Ti + 1)Ti+1 ≤

(
4
e

)q−1
(s+ 1)s+1

We can now bound the excess of the entire graph,

Pr(ex(G) ≥ s) = Pr(
∑
e

ex(C ′
e) ≥ s)

17

≤
∑

j1,...,jn∑
i ji=s

Pr(∧iex(C ′
ei) ≥ ji)

≤
∑

j1,...,jn∑
i ji=s

∏
{ji:ji≥1}

c2

(
c3(ji + 1)

m

)ji+1

≤
s∑

q=1

∑
j1,...,jn∑

i ji=s
|{ji:ji≥1}|=q

∏
{ji:ji≥1}

c2

(
c3(ji + 1)

m

)ji+1

≤
s∑

q=1

∑
R⊆{1,...,n}

|R|=q

∑
j1,...,jq∑

i ji=s
ji≥1

q∏
i=1

c2

(
c3(ji + 1)

m

)ji+1

≤
s∑

q=1

(
n

q

) ∑
T∈U(s,q)

q∏
i=1

c2

(
c3(Ti + 1)

m

)Ti+1

≤
s∑

q=1

(
n

q

)
cq2

(c3
m

)s+q ∑
T∈U(s,q)

q∏
i=1

(Ti + 1)Ti+1

We then apply Lemma 9, binomial approximation
(
n
q

)
≤
(
en
q

)q
and inequal-

ity (s+ 1)s+1 = (s+ 1)ss((s+ 1)/s)s = (s+ 1)ss(1 + 1/s)s ≤ (s+ 1)sse.

Pr(ex(G) ≥ s) ≤
s∑

q=1

(
n

q

)
cq2

(c3
m

)s+q
(
4

e

)q−1

(s+ 1)s+1

≤
s∑

q=1

(
en

q

)q

cq2

(c3
m

)s+q
(
4

e

)q−1

(s+ 1)s+1

≤ 1(
4
e

)(s+ 1)s+1
(c3
m

)s s∑
q=1

((
4
e

)
ec2c3

dq

)q

≤ (s+ 1)e(
4
e

) (c3s
m

)s s∑
q=1

((
4
e

)
ec2c3

dq

)q

Finally, we apply Lemma 10:

Pr(ex(G) ≥ s) ≤ (s+ 1)e(
4
e

) (c3s
m

)s 2e (4e) c2c3
d

e
(4
e)c2c3

d

18

≤ (s+ 1)
2e2c2c3

d
e

4c2c3
ed

(c3s
m

)s
Setting our constants accordingly completes the proof of Theorem 2:

C =
2e2c2c3

d
e

4c2c3
ed =

16e2d

(d− 1)(ln(d) + 1
d − 1)2

e
32d

e(d−1)(ln(d)+ 1
d
−1)2

c = c3 =
1

e(d− 1)(ln(d) + 1
d − 1)2

6 Additional Lemmas

This section contains the deferred proofs of useful lemmas. We begin by
proving an inequality which will be useful in showing stochastic dominance
between Binomial distributions.

Lemma 2.

ax ≤ by, a, b, y > 0, x > 1⇒
(
1− 1

y + 1

)a

≥
(
1− 1

x

)b

Proof. Under the above parameters, ax ≤ by ⇒ a
y ≤

b
x ⇒ −

a
y ≥ −

b
x .

−a

y
= a

(
−1

y

)
= a

(
1− y + 1

y

)
= a

(
1− 1

y/(y + 1)

)
1

y/(y+1) > 0 so we can use inequality 1 − 1
s+1 ≤ ln(s + 1) with s + 1 =

y/(y + 1).

−a

y
≤ a ln(

y

y + 1
) = a ln(1− 1

y + 1
)

Meanwhile− b
x = b

(
− 1

x

)
. Since x > 1, 0 < 1

x < 1 so− 1
x > −1. Therefore

we can use inequality s ≥ ln(s+ 1) with s = − 1
x . Therefore:

− b

x
≥ b ln(1− 1

x
)

a ln(1− 1

y + 1
) ≥ b ln(1− 1

x
)

(
1− 1

y + 1

)a

≥
(
1− 1

x

)b

19

Lemma 3. Bin(n−q, 1
m−q+1) is stochastically dominated by Bin(n, 1

m) when
m ≥ n > q ≥ 0.

Proof. Now Bin(n1, p1) is stochastically dominated by Bin(n2, p2) if and only
if n1 ≤ n2 and (1 − p1)

n1 ≥ (1 − p2)
n2 [KM10]. Clearly n − q ≤ n, so the

first condition is satisfied. The second condition will be satisfied if:(
1− 1

m− q + 1

)n−q

≥
(
1− 1

m

)n

(1)

Now m ≥ n > q ≥ 0, so:

qm ≥ qn

mn− qm ≤ mn− qn

m(n− q) ≤ n(m− q)

If we apply Lemma 2 with a = n − q, x = m, b = n and y = m − q, (note
that all range requirements are satisfied) we obtain inequality (1). Hence
the second condition is satisfied, completing the proof.

Lemma 4. If integers m,n, u satisfy m > n ≥ u ≥ 1 then Bin(n−u, 1
(m−u)2

)

is stochastically dominated by Bin(n, 1
m(m−u)).

Proof. Bin(n1, p1) is stochastically dominated by Bin(n2, p2) if and only if
n1 ≤ n2 and (1− p1)

n1 ≥ (1− p2)
n
2 [KM10]. Clearly, n− u ≤ n, so the first

condition is satisfied. The second condition will be satisfied if:(
1− 1

(m− u)2

)n−u

≥
(
1− 1

m(m− u)

)n

(2)

Since m > n > u ≥ 1, u(m−u) is minimized when u = 1 where it equals
m− 1. It follows that:

u(m− u)(m− n) ≥ (m− 1)(m− n) ≥ m− 1

u(m− u)(m− n) ≥ n

(m− u)um ≥ (m− u)un+ n

(m− u)(um−mn) ≥ (m− u)(un−mn) + n

(m− u)(mn− um) ≤ (m− u)(mn− un)− n

m(m− u)(n− u) ≤ n((m− u)2 − 1)

20

Applying Lemma 2 with a = n − u, x = m(m − u), b = n and y =
(m− u)2 − 1, (and noting all range requirements are satisfied), we see that
Inequality (2) holds, completing the proof.

Theorem 7. In the Edge Component Search Algorithm, the number of addi-
tional edges between a partially opened vertex pair is stochastically dominated
by the number of edges between an unopened vertex pair.

Proof. The case of the pair v1, v2 is special because the initial edge e that
was found between these was discovered by selecting a random undiscovered
edge, rather that requesting information about the pair v1, v2. Therefore,
the occurrence of e between v1 and v2 does not affect the distribution of
other edges. Hence the remaining edges between v1 and v2 will actually be
distributed exactly the same as between any unopened vertex pair.

For the remaining partially opened vertex pairs, we will prove a slightly
different statement, which implies the one above. Let A be the number of
additional edges between the partially opened pair and B be the number
between the unopened pair. We show that if i < j, the probability that
A = i and B = j is less than the probability that A = j and B = i.

Let there be some state, S, observed on the remainder of the system. By
Bayes:

Pr(B = i ∧A = j + 1|S)
Pr(B = j ∧A = i+ 1|S)

=
Pr(B = i ∧A = j + 1)Pr(S|B = i ∧A = j + 1)

Pr(B = j ∧A = i+ 1)Pr(S|B = j ∧A = i+ 1)

Now Pr(S|B = i ∧ A = j + 1) = Pr(S|B = j ∧ A = i + 1), since in
both cases i+ j+1 edges will have been used between the two vertex-pairs.
Therefore, the probability above is simply

Pr(B = i ∧A = j + 1)

Pr(B = j ∧A = i+ 1)

Note that this statement is true regardless of what the state S is (as long
as it is possible), so we can consider S to be all information learned about
the assignment of edges from the beginning of the Edge Component Search
Algorithm.

So, if there are initially b vertex pairs and n edges:

Pr(B = i ∧A = j + 1|S)
Pr(B = j ∧A = i+ 1|S)

=
Pr(B = i ∧A = j + 1)

Pr(B = j ∧A = i+ 1)

21

=
Pr(B = i|A = j + 1)Pr(A = j + 1)

Pr(B = j|A = i+ 1)Pr(A = i+ 1)

=

(
n−j−1

i

) (
1

b−1

)i (
1− 1

b−1

)n−j−1−i (
n

j+1

) (
1
b

)j+1 (
1− 1

b

)n−j−1

(
n−i−1

j

) (
1

b−1

)j (
1− 1

b−1

)n−i−1−j (
n

i+1

) (
1
b

)i+1 (
1− 1

b

)n−i−1

=

(
n−j−1

i

)(
n

j+1

)(
n−i−1

j

)(
n

i+1

)
=

i+ 1

j + 1
< 1

Therefore, Pr(B = i ∧ A = j + 1|S) < Pr(B = j ∧ A = i + 1|S),
when i < j, which implies that after observation of the system S, A − 1 is
stochastically dominated by B. Therefore, the number of additional edges
between a partially opened pair is stochastically dominated by the number
of edges between an unopened pair.

Lemma 5. Let X be the sum of independent Bernoulli variables, with mean
µ. A basic form of the Chernoff Bound for any δ > 0 is as follows:

Pr(X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ

This implies the following looser bound:

Lemma 6. For any non-negative integer t,

Pr(X ≥ t) ≤
(eµ

t

)t

Proof. For t ≤ µ, eµ
t ≥ e, so

(eµ
t

)t ≥ 1, so the statement holds as the
probability cannot be more than 1. For t > µ we can view t = (1 + δ)µ for
some δ > 0.

Pr(X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ

≤
(

e

(1 + δ)

)(1+δ)µ

e−µ

≤
(

eµ

(1 + δ)µ

)(1+δ)µ

e−µ

22

≤
(eµ

t

)t

Lemma 7. Let a ≥ 1, b ∈ (0, 1). Then:

∞∑
k=1

kae−bk ≤ 2e

(
a+ 1

be

)a+1

Proof. It is well-known that a Riemann sum can be used to approximate
an integral. Furthermore, if the summands are chosen to be the minimum
point, the Riemann sum will lower-bound the integral:

v−1∑
i=u

min(f(i), f(i+ 1)) ≤
∫ v

u
f(x)dx

where u and v are integers.
It naturally follows that an integral can be used to upper-bound a sum-

mation. However, since we are taking the minimum of each adjacent pair,
certain summands may be excluded, while others may be double-counted.
Let us analyze the case where over the range [u, v] f(x) is continuous and
monotonically increasing up to some maximum xmax after which it is mono-
tonically decreasing, where u < xmax < v.

If xmax is an integer, then f(xmax) will not be included in the above sum,
whereas for all other integers i ∈ [u, v], f(i) will be included. If xmax is not
an integer, either f(⌊xmax⌋) or f(⌈xmax⌉) will not be included, whichever
one is larger, and f(i) will be included for all other integers i ∈ [u, v]. Either
way, since xmax is the maximum on the curve f(·), the excluded element is
still at most f(xmax). Therefore:

v∑
i=u

f(i) ≤
v−1∑
i=u

min(f(i), f(i+ 1)) + f(xmax) ≤
∫ v

u
f(x)dx+ f(xmax)

We can now apply this to the function in question. Let f(x) = xae−bx

where a ≥ 1 and 0 < b < 1. First we need to show that f(·) is monotonically
increasing, then monotonically decreasing.

f ′(x) = axa−1e−bx − bxae−b = xa−1e−b(a− bx)

23

Observe that xa−1 and e−b are both positive. Therefore f ′(x) will be
positive when x < a

b , f
′(x) = 0 at x = a

b and will be negative when x >
a
b . Therefore this function is monotonically increasing, then monotonically
decreasing, as required, with xmax = a

b . We can easily calculate:

f(xmax) =
(a
b

)a
e−a

Hence the inequality applies to the sum and

∞∑
k=1

kae−bk ≤
∫ ∞

1
xae−bxdx+

(a

be

)a
≤
∫ ∞

0
xae−bxdx+

(a

be

)a

By a standard integral identity,
∫∞
0 xae−bxdx = a!

ba+1 . Furthermore, a
factorial approximation shows that a! ≤ (a+ 1)a+1e−a. Hence:

∞∑
k=1

kae−bk ≤
(
a+ 1

b

)a+1

e−a +
(a
b

)a
e−a

Recall that 0 < b < 1, so a+1
b > 1. Therefore:

∞∑
k=1

kae−bk ≤ 2

(
a+ 1

b

)a+1

e−a

≤ 2e

(
a+ 1

be

)a+1

Lemma 8. For all integers s ≥ 2,
∑s−1

a=1(a + 1)a+1(s + 1 − a)s+1−a ≤(
4
e

)
(s+ 1)s+1

Proof. Let T (a) = (a+ 1)a+1(s− a+ 1)s−a+1.
For 2 ≤ a ≤ s

2

T (a)

T (a− 1)
=

(a+ 1)a+1(s− a+ 1)s−a+1

aa(s− a+ 2)s−a+2

24

=

(
a+ 1

a

)a(s− a+ 1

s− a+ 2

)s−a+2 a+ 1

s− a+ 1

=

(
1 +

1

a

)a(
1− 1

s− a+ 2

)s−a+2 a+ 1

s− a+ 1

≤ e1e−1 a+ 1

s− a+ 1

≤ a+ 1

s− a+ 1

≤
s
2 + 1
s
2 + 1

≤ 1

Therefore T (a) ≤ T (a − 1). By induction, this means T (a) ≤ T (1) for
all 1 ≤ a ≤ ⌊ s2⌋. We also have a symmetry: T (a) = T (s− a), so this means
T (a) ≤ T (1) for ⌈ s2⌉ ≤ a ≤ s− 1 as well. Therefore:

s−1∑
a=1

T (a) ≤
s−1∑
a=1

T (1) = (s− 1)22ss

≤ 4ss+1 = 4

(
s

s+ 1

)s+1

(s+ 1)s+1 = 4

(
1− 1

s+ 1

)s+1

(s+ 1)s+1

≤ 4

e
(s+ 1)s+1

Lemma 9. Let U(s, q) be the set of sequences of positive integers, where
T ∈ U if and only if |T | = q and

∑
1≤i≤q Ti = s, where s ≥ q ≥ 1. Then∑

T∈U(s,q)

∏
1≤i≤q(Ti + 1)Ti+1 ≤

(
4
e

)q−1
(s+ 1)s+1

Proof. We proceed by induction on the length of the sequences. For q = 1,
U contains a single sequence T with T1 = s. Then

∑
T∈U(s,q)

∏
1≤i≤q(Ti +

1)Ti+1 = (s+ 1)s+1 =
(
4
e

)0
(s+ 1)s+1.

Assume that the theorem holds for all sequences of length q ≥ 1. We
will show that it also holds for all sequences of length q + 1.

∑
T∈U(s,(q+1))

∏
1≤i≤q+1

(Ti + 1)Ti+1 ≤
s−q∑
T1=1

(T1 + 1)T1+1
∑

T ′∈U((s−T1),q)

∏
1≤i≤q

(T ′
i + 1)T

′
i+1

25

Applying our inductive hypothesis gives:

≤
s−1∑
a=1

(a+ 1)a+1

(
4

e

)q−1

(s− a+ 1)s−a+1

≤
(
4

e

)q−1 s−1∑
a=1

(a+ 1)a+1(s− a+ 1)s−a+1

Using Lemma 8

≤
(
4

e

)q

(s+ 2)s+2

Lemma 10. For a > 0,
∞∑
x=1

(a
x

)x
≤ 2ae

a
e

Proof. Over the positive reals the function f(x) =
(
a
x

)x
is maximized at

x = a
e , for which it has value e

a
e . Therefore:

∞∑
x=1

(a
x

)x
≤

2a−1∑
x=1

(a
x

)x
+

∞∑
x=2a

(a
x

)x
≤

2a−1∑
x=1

(e
a
e) +

∞∑
x=2a

(
1

2

)x

≤ e
a
e (2a− 1) + 1

≤ 2ae
a
e

7 A Lower Bound

We now show the following lower bound on the number of elements n in
terms of the security parameter N , such that cuckoo hashing with a stash
can fail with negligible probability in N . For consistency with other parts
of the paper, we use the 2-table construction but this can easily be adapted
to other constructions.

26

Theorem 13. If n = O(log(N)) and n− s = Ω(n) then it is impossible for
a 2-table Cuckoo Hash table to have a negligible build failure probability in
N .

Proof. Since n− s = Ω(n), it follows that n− s ≥ c0n for sufficiently large
n where the constant c0 satisfies 0 < c0 ≤ 1. Therefore:

n− s

n
≥ c0

n− s− 2

n
≥ c0 −

2

n
n− s− 2

n
≥ c0

2
when n ≥ 4

c0
n− s− 2

n
≥ c1 for constant c1 satisfying 0 < c1 ≤

1

2

Since n = O(log(N)), there is some constant c2 such that n ≤ c2 log(N)
(for sufficiently large n).

Let m = dn be the size of each table.
If all n items are hashed to the first ⌈n−s−2

2 ⌉ locations in both tables,
then 2⌈n−s−2

2 ⌉ ≤ n− s− 1 items can be stored in the table, and s items can
be stored in the stash, but 1 item will not be able to be stored at all, so the
build fails.

The probability that all n items are stored in the first ⌈n−s−2
2 ⌉ locations

in both tables is at least:

(
n− s− 2

2dn

)2n

≥
(c1
2d

)2c2 log(N)

≥ N2c2 log(c1
2d)

This is non-negligible in N . Therefore the probability of a build failure
is non-negligible.

This immediately implies the contrapositive:

Corollary 3. Cuckoo Hashing with a stash requires n − s = o(n) or n =
ω(log(N)) in order to succeed with failure negligible in N .

27

The case that n − s = o(n) is very unnatural–it implies that a sub-
constant number of elements are stored in the table, at which point the
Cuckoo table is not providing much use. Thus, in any realistic setting where
Cuckoo tables are used, it is necessary that n = ω(log(N)). This provides
the lower bound for n in terms of N such that Cuckoo Hashing with a stash
has a negligible probability of failure.

8 Acknowledgments

I would like to thank Sampath Kannan for helpful discussions.
This research was sponsored in part by ONR grant (N00014-15-1-2750)

“SynCrypt: Automated Synthesis of Cryptographic Constructions” and a
gift from Ripple Labs, Inc.

28

References

[ADW14] Martin Aumüller, Martin Dietzfelbinger, and Philipp Woelfel.
Explicit and efficient hash families suffice for cuckoo hashing
with a stash. Algorithmica, 70(3):428–456, 2014.

[AKL+20] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak,
Enoch Peserico, and Elaine Shi. OptORAMa: Optimal obliv-
ious RAM. In EUROCRYPT, pages 403–432. Springer, 2020.

[Aum10] Martin Aumüller. An alternative analysis of cuckoo hashing
with a stash and realistic hash functions. PhD thesis, Diplo-
marbeit, Technische Universität Ilmenau, 2010.

[DK12] Michael Drmota and Reinhard Kutzelnigg. A precise analysis
of cuckoo hashing. ACM Transactions on Algorithms (TALG),
8(2):1–36, 2012.

[Dwa69] Meyer Dwass. The total progeny in a branching process and a
related random walk. Journal of Applied Probability, 6(3):682–
686, 1969.

[GM11] Michael T Goodrich and Michael Mitzenmacher. Privacy-
preserving access of outsourced data via oblivious RAM simu-
lation. In ICALP, pages 576–587. Springer, 2011.

[GMOT12] Michael T Goodrich, Michael Mitzenmacher, Olga Ohrimenko,
and Roberto Tamassia. Privacy-preserving group data access
via stateless oblivious RAM simulation. In SODA, pages 157–
167. SIAM, 2012.

[KLO12] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)
security of hash-based oblivious RAM and a new balancing
scheme. In SODA, pages 143–156. SIAM, 2012.

[KM10] Achim Klenke and Lutz Mattner. Stochastic ordering of clas-
sical discrete distributions. Advances in Applied probability,
42(2):392–410, 2010.

[KM19] Eyal Kushilevitz and Tamer Mour. Sub-logarithmic dis-
tributed oblivious RAM with small block size. In PKC, pages
3–33. Springer, 2019.

29

[KMW09] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More
robust hashing: Cuckoo hashing with a stash. SIAM Journal
on Computing, 39(4):1543–1561, 2009.

[Kut10] Reinhard Kutzelnigg. A further analysis of cuckoo hashing
with a stash and random graphs of excess r. Discrete Mathe-
matics and Theoretical Computer Science, 12(3):81–101, 2010.

[LO13] Steve Lu and Rafail Ostrovsky. Distributed oblivious RAM
for secure two-party computation. In TCC, pages 377–396.
Springer, 2013.

[MP23] Brice Minaud and Charalampos Papamanthou. Generalized
cuckoo hashing with a stash, revisited. Information Processing
Letters, page 106356, 2023.

[Pit98] Jim Pitman. Enumerations of trees and forests related to
branching processes and random walks. Microsurveys in dis-
crete probability, 41:163–180, 1998.

[PR01] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing.
In ESA, pages 121–133. Springer, 2001.

[PR10] Benny Pinkas and Tzachy Reinman. Oblivious RAM revisited.
In CRYPTO, pages 502–519. Springer, 2010.

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael
Zohner. Phasing: Private set intersection using permutation-
based hashing. In 24th USENIX Security Symposium
(USENIX Security 15), pages 515–530, 2015.

[PSWW18a] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi
Wieder. Efficient circuit-based psi via cuckoo hashing. In An-
nual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 125–157. Springer, 2018.

[PSWW18b] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi
Wieder. Efficient circuit-based psi via cuckoo hashing. Cryp-
tology ePrint Archive, 2018.

[Wie16] Udi Wieder. Hashing, load balancing and multiple choice draft,
2016.

30

[Yeo22] Kevin Yeo. Cuckoo hashing in cryptography: Optimal param-
eters, robustness and applications. Cryptology ePrint Archive,
2022.

31

